WorldWideScience

Sample records for fast radiative shocks

  1. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  2. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  3. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  4. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  5. Interplanetary fast shock diagnosis with the radio receiver on Ulysses

    Science.gov (United States)

    Hoang, S.; Pantellini, F.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Meuer-Vernet, N.; Perche, C.; Steinberg, J.-L.; Lengyel-Frey, D.; Macdowall, R. J.

    1992-01-01

    The radio receiver on Ulysses records the quasi-thermal noise which allows a determination of the density and temperature of the cold (core) electrons of the solar wind. Seven interplanetary fast forward or reverse shocks are identified from the density and temperature profiles, together with the magnetic field profile from the Magnetometer experiment. Upstream of the three strongest shocks, bursts of nonthermal waves are observed at the electron plasma frequency f(peu). The more perpendicular the shock, the longer the time interval during which these upstream bursts are observed. For one of the strongest shocks we also observe two kinds of upstream electromagnetic radiation: radiation at 2 f(peu), and radiation at the downstream electron plasma frequency, which propagates into the less dense upstream regions.

  6. Fast Electrocardiogram Amplifier Recovery after Defibrillation Shock

    Directory of Open Access Journals (Sweden)

    Ivan Dotsinsky

    2005-04-01

    Full Text Available A procedure for fast ECG amplifier recovery after defibrillation shocks was developed and simulated in the MATLAB environment. Exponentially decaying post-shock voltages have been recorded. Signals from the AHA database are taken and mixed with the recorded exponential disturbances. The algorithm applies moving averaging (comb filter on the compound input signal, thereby obtaining the samples of the disturbance. They are currently subtracted from the input signal. The results obtained show that its recovery is practically instantaneous.

  7. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  8. Electromagnetically driven radiative shocks and their measurements

    International Nuclear Information System (INIS)

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  9. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  10. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  11. Fast multilevel radiative transfer

    International Nuclear Information System (INIS)

    Paletou, Frederic; Leger, Ludovick

    2007-01-01

    The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and successive overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno and Fabiani Bendicho [A novel iterative scheme for the very fast and accurate solution of non-LTE radiative transfer problems. Astrophys J 1995;455:646]; it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry

  12. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  13. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  14. Structure of fast shocks in the presence of heat conduction

    International Nuclear Information System (INIS)

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-01-01

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V d in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K 0 , the ratio of upstream plasma pressure to magnetic pressure β 1 , Alfven Mach number M A1 , and the angle θ 1 between shock normal and magnetic field. It is found that as the upstream shock parameters K 0 , β 1 , and M A1 increase or θ 1 decreases, the width of foreshock L d increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are

  15. Fast multilevel radiative transfer

    Science.gov (United States)

    Paletou, Frédéric; Léger, Ludovick

    2007-01-01

    The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and Successive Overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno & Fabiani Bendicho (1995); it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry.

  16. Theory and Experiment on Radiative Shocks

    Science.gov (United States)

    Drake, R. Paul

    2005-07-01

    The current generation of high-energy-density research facilities has enabled the beginnings of experimental studies of radiation hydrodynamic systems, common in astrophysics but difficult to produce in the laboratory. Radiative shock experiments specifically have been a topic of increasing effort in recent years. Our group and collaborators [1] have emphasized the radiographic observation of structure in radiative shocks. These shocks have been produced on the Omega laser by driving a Be piston through Xenon at velocities above 100 km/s. The talk will summarize these experiments and their results. Interpreting these and other experiments is hampered by the limited range of assumptions used in published theories, and by the limitations in readily available simulation tools. This has motivated an examination of radiative shock theory [2]. The talk will summarize the key issues and present results for specific cases. [ 1 ] Gail Glendinning, Ted Perry, Bruce Remington, Jim Knauer, Tom Boehly, and other members of the NLUF Experimental Astrophysics Team. Publications: Reighard et al., Phys. Rev. Lett. submitted; Leibrandt, et al., Ap J., in press, Reighard et al., IFSA 03 Proceedings, Amer. Nucl. Soc. (2004). [2] Useful discussions with Dmitri Ryutov and Serge Bouquet. Supported by the NNSA programs via DOE Grants DE-FG52-03NA00064 and DE FG53 2005 NA26014

  17. Radiating shocks and condensations in flares

    International Nuclear Information System (INIS)

    Fisher, G.H.

    1985-01-01

    Rapid energy release (by either ''thick target'' (beam) or ''thermal'' models of heating) in solar flare loop models usually leads to ''chromospheric evaporation,'' the process of heating cool chromospheric material to coronal temperatures, and the resulting increase in hot soft x-ray emitting plasma. The evaporated plasma flows up into the coronal portion of the loop because of the increased pressure in the evaporated region. However, the pressure increase also leads to a number of interesting phenomena in the flare chromosphere, which will be the subject of this paper. The sudden pressure increase in the evaporated plasma initiates a downward moving ''chromospheric condensation,'' an overdense region which gradually decelerates as it accretes material and propagates into the gravitationally stratified chromosphere. Solutions to an equation of motion for this condensation shows that its motion decays after about one minute of propagation into the chromosphere. When the front of this downflowing region is supersonic relative to the atmosphere ahead of it, a radiating shock will form. If the downflow is rapid enough, the shock strength should be sufficient to excite uv radiation normally associated with the transition region, and furthermore, the radiating shock will be brighter than the transition region. These results lead to a number of observationally testable relationships between the optical and ultraviolet spectra from the condensation and radiating shock

  18. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Teuta Pilizota

    Full Text Available All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15-20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery.

  19. Geometry of fast magnetosonic rays, wavefronts and shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-11-25

    Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes. - Highlights: • Magnetosonic waves are studied in a genuinely multidimensional setting. • Curvature and the angle between rays and wavefronts are the main parameters. • Shock waves may exist or not, depending on initial conditions. • Both velocity and shape of those waves present a large variety of possible outcomes.

  20. Effect of lateral radiative losses on radiative shock propagation

    Czech Academy of Sciences Publication Activity Database

    Busquet, M.; Audit, E.; González, M.; Stehlé, C.; Thais, F.; Acef, O.; Bauduin, D.; Barroso, P.; Rus, Bedřich; Kozlová, Michaela; Polan, Jiří; Mocek, Tomáš

    2007-01-01

    Roč. 3, - (2007), s. 8-11 ISSN 1574-1818 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : radiative shocks * laboratory astrophysics Subject RIV: BH - Optics, Masers, Lasers

  1. Counterpropagating Radiative Shock Experiments on the Orion Laser.

    Science.gov (United States)

    Suzuki-Vidal, F; Clayson, T; Stehlé, C; Swadling, G F; Foster, J M; Skidmore, J; Graham, P; Burdiak, G C; Lebedev, S V; Chaulagain, U; Singh, R L; Gumbrell, E T; Patankar, S; Spindloe, C; Larour, J; Kozlova, M; Rodriguez, R; Gil, J M; Espinosa, G; Velarde, P; Danson, C

    2017-08-04

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.

  2. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  3. Nonrelativistic grey Sn-transport radiative-shock solutions

    International Nuclear Information System (INIS)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-01-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  4. Nonthermal Radiation from Supernova Remnant Shocks

    Directory of Open Access Journals (Sweden)

    Hyesung Kang

    2013-09-01

    Full Text Available Most of high energy cosmic rays (CRs are thought to be produced by diffusive shock acceleration (DSA at supernova remnants (SNRs within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the timedependent evolution of the self-amplified magnetic fields, Alfvénic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and γ-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

  5. A radiating shock evaluated using Implicit Monte Carlo Diffusion

    International Nuclear Information System (INIS)

    Cleveland, M.; Gentile, N.

    2013-01-01

    Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)

  6. Excitation of intense shock waves by soft X-radiation

    International Nuclear Information System (INIS)

    Branitskij, A.V.; Fortov, V.E.; Danilenko, K.N.; Dyabilin, K.S.; Grabovskij, E.V.; Vorobev, O. Yu.; Lebedev, M.E.; Smirnov, V.P.; Zakharov, A.E.; Persyantsev, I.V.

    1996-01-01

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm 2 , a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs

  7. Excitation of intense shock waves by soft X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Branitskij, A V; Fortov, V E; Danilenko, K N; Dyabilin, K S; Grabovskij, E V; Vorobev, O Yu; Lebedev, M E; Smirnov, V P; Zakharov, A E; Persyantsev, I V [Troitsk Inst. of Innovative and Fusion Research, Troitsk (Russian Federation)

    1997-12-31

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm{sup 2}, a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs.

  8. Shock-induced fast reactions of zinc nanoparticles and RDX

    Energy Technology Data Exchange (ETDEWEB)

    Xue Mian; Wu Jinghe; Ye Song; Yang Xiangdong [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Hu Dong; Wang Yanping; Zhu Wenjun; Li Chengbing [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900 (China)], E-mail: mi-anxue@163.com

    2008-02-21

    Fast reactions of zinc nanoparticles and RDX were investigated in normal incident shock waves. The emergence time and emission spectra intensity of partial products such as NO{sub 2}, H, C{sub 2}, O, CO, CH{sub 2}O, CO{sub 2}, H{sub 2}O and ZnO were observed by a TDS5054 oscilloscope. The results indicate that NO{sub 2} appears first in each experiment, which is in agreement with the theoretical results. The addition of zinc nanoparticles to RDX can not only shorten the ignition delay time by 20% but also double the shockwave diffusion velocity to 2180 {+-} 50 m s{sup -1} and triple the temperature to 2020 {+-} 60 K. The emergence time of products shortens by around 10-40% and the emission spectra intensity of H{sub 2}O and CH{sub 2}O rises by about three times and one times, respectively. CO{sub 2}, H{sub 2}O and O{sub 2} in various concentrations were introduced into the zinc-RDX reaction, respectively, which indicate that O{sub 2} made the ignition delay time shorten by over 30%, the effect of H{sub 2}O was not prominent while CO{sub 2} made the ignition delay time lag by around 30%. The results indicate that the Zn-O{sub 2} reaction mainly occurs in O{sub 2}, CO{sub 2} and H{sub 2}O.

  9. Shock-induced fast reactions of zinc nanoparticles and RDX

    International Nuclear Information System (INIS)

    Xue Mian; Wu Jinghe; Ye Song; Yang Xiangdong; Hu Dong; Wang Yanping; Zhu Wenjun; Li Chengbing

    2008-01-01

    Fast reactions of zinc nanoparticles and RDX were investigated in normal incident shock waves. The emergence time and emission spectra intensity of partial products such as NO 2 , H, C 2 , O, CO, CH 2 O, CO 2 , H 2 O and ZnO were observed by a TDS5054 oscilloscope. The results indicate that NO 2 appears first in each experiment, which is in agreement with the theoretical results. The addition of zinc nanoparticles to RDX can not only shorten the ignition delay time by 20% but also double the shockwave diffusion velocity to 2180 ± 50 m s -1 and triple the temperature to 2020 ± 60 K. The emergence time of products shortens by around 10-40% and the emission spectra intensity of H 2 O and CH 2 O rises by about three times and one times, respectively. CO 2 , H 2 O and O 2 in various concentrations were introduced into the zinc-RDX reaction, respectively, which indicate that O 2 made the ignition delay time shorten by over 30%, the effect of H 2 O was not prominent while CO 2 made the ignition delay time lag by around 30%. The results indicate that the Zn-O 2 reaction mainly occurs in O 2 , CO 2 and H 2 O

  10. Radiation therapy with fast neutrons: A review

    International Nuclear Information System (INIS)

    Jones, D.T.L.; Wambersie, A.

    2007-01-01

    Because of their biological effects fast neutrons are most effective in treating large, slow-growing tumours which are resistant to conventional X-radiation. Patients are treated typically 3-4 times per week for 4-5 weeks (sometimes in combination with X-radiation) for a variety of conditions such as carcinomas of the head and neck, salivary gland, paranasal sinus and breast; soft tissue, bone and uterine sarcomas and malignant melanomas. It is estimated that about 27,000 patients have undergone fast neutron therapy to date

  11. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  12. Nonthermal Particles and Radiation Produced by Cluster Merger Shocks

    Science.gov (United States)

    2003-09-10

    NONTHERMAL PARTICLES AND RADIATION PRODUCED BY CLUSTER MERGER SHOCKS Robert C. Berrington and Charles D. Dermer Naval Research Laboratory, Code 7653...of the merging cluster and is assumed to be constant as the shock propagates outward from the cluster center. In this paper , we model the cluster ...emission in the60–250 eV band for a number of clus- ters. These clusters include Virgo , Coma, Fornax, A2199, A1795, and A4059 (Lieu et al. 1996a, 1996b

  13. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    International Nuclear Information System (INIS)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua; Zhang, Lei

    2017-01-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  14. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua [School of Earth and Space Sciences, Peking University No. 5 Yiheyuan Road, Haidian District Beijing, 100871 (China); Zhang, Lei, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences No.1 Nanertiao, Zhongguancun, Haidian district Beijing, 100190 (China)

    2017-06-20

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  15. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  16. Formation of fast shocks by magnetic reconnection in the solar corona

    International Nuclear Information System (INIS)

    Hsieh, M. H.; Tsai, C. L.; Ma, Z. W.; Lee, L. C.

    2009-01-01

    Reconnections of magnetic fields over the solar surface are expected to generate abundant magnetohydrodynamic (MHD) discontinuities and shocks, including slow shocks and rotational discontinuities. However, the generation of fast shocks by magnetic reconnection process is relatively not well studied. In this paper, magnetic reconnection in a current sheet is studied based on two-dimensional resistive MHD numerical simulations. Magnetic reconnections in the current sheet lead to the formation of plasma jets and plasma bulges. It is further found that the plasma bulges, the leading part of plasma jets, in turn lead to the generation of fast shocks on flanks of the bulges. The simulation results show that during the magnetic reconnection process, the plasma forms a series of structures: plasma jets, plasma bulges, and fast shocks. As time increases, the bulges spread out along the current sheet (±z direction) and the fast shocks move just ahead of the bulges. The effects of initial parameters ρ s /ρ m , β ∞ , and t rec on the fast shock generation are also examined, where ρ s /ρ m is the ratio of plasma densities on two sides of the initial current sheet, β ∞ =P ∞ /(B ∞ 2 /2μ 0 ), P ∞ is the plasma pressure and B ∞ is the magnetic field magnitude far from the current sheet, and t rec is the reconnection duration. In the asymmetric case with ρ s /ρ m =2, β ∞ =0.01 and t rec =1000, the maximum Alfven Mach number of fast shocks (M A1max ) is M A1max congruent with 1.1, where M A1 =V n1 /V A1 , and V n1 and V A1 are, respectively, the normal upstream fluid velocity and the upstream Alfven speed in the fast shocks frame. As the density ratio ρ s /ρ m (=1-8) and plasma beta β ∞ (=0.0001-1) increase, M A1max varies slightly. For the case with a large plasma beta β ∞ (=5), the fast shock is very weak. As the reconnection duration t rec increases, the bulges lead to generation of fast shocks with a higher M A1max . The present results can be

  17. Computing the Dust Distribution in the Bow Shock of a Fast-moving, Evolved Star

    NARCIS (Netherlands)

    van Marle, A. -J; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind–interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock

  18. Fast-shock ignition: a new approach to inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2013-03-01

    Full Text Available  A new concept for inertial confinement fusion called fast-shock ignition (FSI is introduced as a credible scheme in order to obtain high target gain. In the proposed model, the separation of fuel ignition into two successive steps, under the suitable conditions, reduces required ignitor energy for the fuel ignition. The main procedure in FSI concept is compressing the fuel up to stagnation. Then, two high intensity short pulse laser spikes with energy and power lower than those required for shock ignition (SI and fast ignition (FI with a proper delay time are launched at the fuel which increases the central hot-spot temperature and completes the ignition of the precompressed fuel. The introduced semi-analytical model indicates that with fast-shock ignition, the total required energy for compressing and igniting the fuel can be slightly reduced in comparison to pure shock ignition. Furthermore, for fuel mass greater than , the target energy gain increases up to 15 percent and the contribution of fast ignitor under the proper conditions could be decreased about 20 percent compared with pure fast ignition. The FSI scheme is beneficial from technological considerations for the construction of short pulse high power laser drivers. The general advantages of fast-shock ignition over pure shock ignition in terms of figure of merit can be more than 1.3.

  19. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  20. Astrophysical radiative shocks: From modeling to laboratory experiments

    Czech Academy of Sciences Publication Activity Database

    Gonzales, N.; Stehlé, C.; Audit, E.; Busquet, M.; Rus, Bedřich; Thais, F.; Acef, O.; Barroso, P.; Bar-Shalom, A.; Bauduin, D.; Kozlová, Michaela; Lery, T.; Madouri, A.; Mocek, Tomáš; Polan, Jiří

    2006-01-01

    Roč. 24, - (2006), s. 535-540 ISSN 0263-0346 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE; European Commission(XE) 5592 - JETSET Grant - others:CNRS(FR) PNPS Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * laser plasmas * radiative shock waves * radiative transfer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.958, year: 2006

  1. Particle Acceleration and Radiative Losses at Relativistic Shocks

    Science.gov (United States)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  2. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Van Swearingen, F.L.; McCullough, D.L.; Dyer, R.; Appel, B.

    1987-01-01

    Extracorporeal shock wave lithotripsy is rapidly becoming an accepted treatment of renal calculi. Since fluoroscopy is involved to image the stones it is important to know how much radiation the patient receives during this procedure. Surface radiation exposure to the patient was measured in more than 300 fluoroscopic and radiographic procedures using thermoluminescent dosimeters. Initial results showed an average skin exposure of 10.1 rad per procedure for each x-ray unit, comparing favorably with exposure rates for percutaneous nephrostolithotomy and other routine radiological procedures. Factors influencing exposure levels include stone characteristics (location, size and opacity), physician experience and number of shocks required. Suggestions are given that may result in a 50 per cent reduction of radiation exposure

  3. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    Science.gov (United States)

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  4. Subcritical-to-supercritical transition in quasi-perpendicular fast shocks

    International Nuclear Information System (INIS)

    Livesey, W.A.

    1985-01-01

    The magnetic structure of collisionless quasi-perpendicular bow shock waves was observed and studied using fluxgate magnetometer data from the ISEE-1 and 2 spacecraft. The angle theta/sub Bn/ between upstream magnetic field and the shock normal was determined for each case. The fast Mach number M, β/sub i/, and β/sub e/ of the shock waves were estimated using solar wind plasma parameters. The critical fast Mach number M/sub c/, the Mach number for which the downstream flow speed just equals the downstream sound speed, was calculated for each shock using the Rankine-Hugoniot shock jump conditions. A survey of the dependence of various magnetic substructures upon these parameters was performed. A precursor foot to the shock was noted for shock waves characterized by M/M/sub c/ > 1. The thickness of this foot region was in good quantitative agreement with predicted trajectories of solar wind ions undergoing specular reflection from the shock ramp

  5. Research status of fast flows and shocks in laboratory plasmas. Supersonic plasma flow and shock waves in various magnetic channels

    International Nuclear Information System (INIS)

    Inutake, Masaaki; Ando, Akira

    2007-01-01

    Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)

  6. An integral view of fast shocks around supernova 1006

    NARCIS (Netherlands)

    Nikolic, S.; Heng, K.; Kupko, D.; Husemann, B.; Raymond, J.C.; Hughes, J.P.; Falcon-Barroso, J.; Ven, G. van de

    2013-01-01

    Supernova remnants are among the most spectacular examples of astrophysical pistons in our cosmic neighborhood. The gas expelled by the supernova explosion is launched with velocities ~1000 kilometers per second into the ambient, tenuous interstellar medium, producing shocks that excite hydrogen

  7. Fetus, fasting, and festival: the persistent effects of in utero social shocks.

    Science.gov (United States)

    Chen, Xi

    2014-09-01

    The Fetal Origins Hypothesis (FOH), put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children's well-being before they are born or even before their mothers realize that they are pregnant.

  8. Fetus, Fasting, and Festival: The Persistent Effects of In Utero Social Shocks

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-09-01

    Full Text Available The Fetal Origins Hypothesis (FOH, put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children’s well-being before they are born or even before their mothers realize that they are pregnant.

  9. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    Science.gov (United States)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  10. The jumps of physical quantities at fast shocks under pressure anisotropy: theory versus observations at the bow shock

    International Nuclear Information System (INIS)

    Vogl, D.F.

    2000-10-01

    The interaction of the solar wind with magnetized planets leads to the formation of the so-called magnetosphere, a cavity generated by the geomagnetic field. The supersonic, superalfvenic, and magnetized solar wind flow interacting with blunt bodies produces a detached bow shock, separating the solar wind from the magnetosheath, the region between the shock wave and the magnetopause. On approach to a planetary obstacle, the solar wind becomes subsonic at the bow shock and then flows past the planet in the magnetosheath. At the bow shock, the plasma parameters and the magnetic field strength change from upstream to downstream, i.e., an increase of plasma density, temperature, pressure, and magnetic field strength, and a decrease of the velocity across the shock. In this PhD thesis we mainly concentrate on the variations of all physical quantities across the bow shock taking into account pressure anisotropy, which is an important feature in space plasma physics and observed by various spacecraft missions in the solar wind as well as in the magnetosheath. Dealing with anisotropic plasma conditions, one has to introduce the so-called pressure tensor, characterized by two scalar pressures, the pressure perpendicular (P p erp) and the pressure parallel (P p arallel) with respect to the magnetic field and in general one speaks of anisotropic conditions for P p erp is not P p arallel. Many spacecraft observations of the solar wind show P p arallel > P p erp, whereas observations of the magnetosheath show the opposite case, P p arallel p erp. Therefore, dissipation of kinetic energy into thermal energy plays an important role in studying the variations of the relevant physical quantities across the shock. It has to be mentioned that planetary bow shocks are good examples for fast MHD shock waves. Therefore, the basic equations for describing the changes across the shock can be obtained by integrating the MHD equations in conservative form. We note that these equations, the

  11. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, T.; Sawada, H.; Wei, M. S.; Beg, F. N. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Regan, S. P.; Anderson, K.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hund, J.; Paguio, R. R.; Saito, K. M.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Patel, P. K.; Wilks, S. C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2012-09-15

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm{sup 3} foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  12. Comparisons of Air Radiation Model with Shock Tube Measurements

    Science.gov (United States)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  13. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Marti, J.M.; Robles, J.E.; Arbizu, J.; Castro, F. de; Berian, J.M.; Richter, J.A.

    1992-01-01

    We analyzed the radiological exposure to patients during Extracorporeal Shock Wave Lithotripsy (ESWL) using a second generator lithotriptor. Stone location is accomplished by fluoroscopy and 'quick pics' or snapshots. A prospective study over 55 patients showed a mean exposure of 32.2 R. The introduction of the ALARA criterion reduced it to 16.1 R in the following 145 patients. Mean radiation exposure to patient varies according to treatment difficulty. A mean increase of radiation exposure of 1.6 between low and high difficulty treatment groups was observed. This variation was about 96% when the physician who performed the treatment was considered. (author)

  14. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang (Division of Urology, Dept. of Surgery, National Yang-Ming Medical College and Veterans General Hospital-Taipei, Taiwan (China))

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au).

  15. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au)

  16. Positive and negative sudden impulses caused by fast forward and reverse interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrioli, Vania Fatima; Savian, Jairo Francisco, E-mail: vaniafatima@gmail.com, E-mail: savian@lacesm.ufsm.br [Space Science Laboratory of Santa Maria - LACESM/CT - UFSM, Universidade Federal de Santa Maria - UFSM, Centro Tecnologico, Santa Maria, RS (Brazil); Echer, Ezequiel, E-mail: eecher@dge.inpe.br [National Institute for Space Research - INPE - MCT, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: njschuch@lacesm.ufsm.br [Southern Regional Space Research Center - CRSPE/INPE - MCT, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS (Brazil)

    2007-07-01

    Fast forward interplanetary shocks (FFS) are characterized by positive jump in all interplanetary plasma parameters (solar wind speed, temperature and density) and interplanetary magnetic field. However the fast reverse interplanetary shocks (FRS) are characterized by negative jump in all mentioned parameters except solar wind speed. Observations show that FFS cause positive sudden impulses (SI) while FRS cause negative SI in the H-component of the geomagnetic field. In this work we investigate the SI caused by interplanetary shocks. We use the observed plasma parameters, upstream and downstream, to calculate the variation of dynamic pressure. We observe that the SI amplitude is larger for positive SI than for negative ones, as a consequence of the fact that FFS have larger dynamic pressure variations as compared to FRS. (author)

  17. Comparative Study between Slow Shock Wave Lithotripsy and Fast Shock Wave Lithotripsy in the Management of Renal Stone

    Directory of Open Access Journals (Sweden)

    AKM Zamanul Islam Bhuiyan

    2013-01-01

    Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A

  18. Acceleration of Solar Energetic Particles at a Fast Traveling Shock in Non-uniform Coronal Conditions

    Science.gov (United States)

    Le Roux, J. A.; Arthur, A. D.

    2017-09-01

    Time-dependent solar energetic particle (SEP) acceleration is investigated at a fast, nearly parallel spherical traveling shock in the strongly non-uniform corona by solving the standard focused transport equation for SEPs and transport equations for parallel propagating Alfvén waves that form a set of coupled equations. This enables the modeling of self-excitation of Alfvén waves in the inertial range by SEPs ahead of the shock and its role in enhancing the efficiency of the diffusive shock acceleration (DSA) of SEPs in a self-regulatory fashion. Preliminary results suggest that, because of the highly non-uniform coronal conditions that the shock encounters, both DSA and wave excitation are highly time-dependent processes. Thus, DSA spectra of SEPs strongly deviate from the simple power-law prediction of standard steady-state DSA theory and initially strong wave excitation weakens rapidly. Consequently, the ability of DSA to produce high energy SEPs in the corona of ∼1 GeV, as observed in the strongest gradual SEP events, appears to be strongly curtailed at a fast nearly parallel shock, but further research is needed before final conclusions can be drawn.

  19. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    International Nuclear Information System (INIS)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 μm) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.

  20. The relationship between shock response spectrum and fast Fourier transform

    International Nuclear Information System (INIS)

    Zola, Maurizio

    2001-01-01

    In this paper the basic relationship between response spectrum and fast Fourier transform is laid down. Since a long time the response spectrum has been used by structural engineers in the seismic domain and nowadays it is going to be used to define transient motions. This way to define the excitation is more general and more real than the use of classical shape pulses for the reproduction of real environment. Nevertheless the response spectrum of a real excitation represents a loss of some information with respect to the Fourier transform. A useful discussion could arise from these observations. Appendix A gives the relationship between the mathematic Fourier transform and the digital Fourier transform given by computers, while Appendix B gives some examples of response spectra and Fourier transforms of simple functions. (author)

  1. Characteristics of shock-associated fast-drift kilometric radio bursts

    Science.gov (United States)

    Macdowall, R. J.; Kundu, M. R.; Stone, R. G.

    1987-01-01

    The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper unambiguous SA event criteria are established for the purpose of statistically comparing SA events with conventional kilometric type III bursts. Applying these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval, it is found that more than 70 percent of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity.

  2. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  3. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  4. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  5. Anti-diffusive radiation flow in the cooling layer of a radiating shock

    International Nuclear Information System (INIS)

    McClarren, Ryan G.; Paul Drake, R.

    2010-01-01

    This paper shows that for systems with optically thin, hot layers, such as those that occur in radiating shocks, radiation will flow uphill: radiation will flow from low to high radiation energy density. These are systems in which the angular distribution of the radiation intensity changes rapidly in space, and in which the radiation in some region has a pancaked structure, whose effect on the mean intensity will be much larger than the effect on the scalar radiation pressure. The salient feature of the solution to the radiative transfer equation in these circumstances is that the gradient of the radiation energy density is in the same direction as the radiation flux, i.e. radiation energy is flowing uphill. Such an anti-diffusive flow of energy cannot be captured by a model where the spatial variation of the Eddington factor is not accounted for, as in flux-limited diffusion models or the P 1 equations. The qualitative difference between the two models leads to a monotonic mean intensity for the diffusion model whereas the transport mean intensity has a global maximum in the hot layer. Mathematical analysis shows that the discrepancy between the diffusion model and the transport solution is due to an approximation of exponential integrals using a simple exponential.

  6. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  7. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  8. Dispersive shock mediated resonant radiations in defocused nonlinear medium

    Science.gov (United States)

    Bose, Surajit; Chattopadhyay, Rik; Bhadra, Shyamal Kumar

    2018-04-01

    We report the evolution of resonant radiation (RR) in a self-defocused nonlinear medium with two zero dispersion wavelengths. RR is generated from dispersive shock wave (DSW) front when the pump pulse is in non-solitonic regime close to first zero dispersion wavelength (ZDW). DSW is responsible for pulse splitting resulting in the generation of blue solitons when leading edge of the pump pulse hits the first ZDW. DSW also generates a red shifted dispersive wave (DW) in the presence of higher order dispersion coefficients. Further, DSW through cross-phase modulation with red shifted dispersive wave (DW) excites a localized radiation. The presence of zero nonlinearity point in the system restricts red-shift of RR and enhances the red shifting of DW. It also helps in the formation of DSW at shorter distance and squeezes the solitonic region beyond second zero dispersion point. Predicted results indicate that the spectral evolution depends on the product of Kerr nonlinearity and group velocity dispersion.

  9. The pretective effects of heat shock protein 70 on radiation injury of V79 cells

    International Nuclear Information System (INIS)

    Qin Yongchun; Zhang Baoguo; Hong Chengjiao

    2008-01-01

    Westem blot was used to detect the expression of heat shock protein 70 in V79 cells after heat shock pretreatment; V79 cells were irradiated using γ-ray after heat shock pretreatment, survival rate was observed using Colony formation assay. Our study shows that 1) the overexpression of heat shock protein 70 was observed in cells recovering for 1 hour after heat shock pretreatment, with peak expression in cells recovering for 4 hours, and could last for 24 hours; 2) heat shock pretreatment was able to elevate survival rate of V79 cells after irradiation by 60 Co γ ray (when the irradiation dose was less than 6 Gy). The results indicate that heat shock protein 70 has protective effect on radiation induced cell death of V79 cells (when the irradiation dose was less than 6 Gy). (authors)

  10. Formation of fast exotic atoms by radiative Coulomb capture

    International Nuclear Information System (INIS)

    Chatterjee, L.; Das, G.; Chakravorty, A.; Goswami, R.; Mondal, S.K.

    1993-01-01

    Interesting surprises in some exotic atom kinetics have been reported recently. These involve muonic atom transfer cross sections, nuclear pion capture and the q 1s effect in μCF. These can be explained if the exotic atom population contains a contributing fast component. Such fast atoms can be formed by radiative continuum to bound transitions of fast (keV) muons or pions. Cross sections for formation of such fast pionic and muonic atoms and their velocity distributions are reported. The possibility of these processes competing with the thermalisation channels and contributing effectively to the exotic atom population discussed. (orig.)

  11. Radiation-mediated Shocks in Gamma-Ray Bursts: Pair Creation

    Science.gov (United States)

    Lundman, Christoffer; Beloborodov, Andrei M.; Vurm, Indrek

    2018-05-01

    Relativistic sub-photospheric shocks are a possible mechanism for producing prompt gamma-ray burst (GRB) emission. Such shocks are mediated by scattering of radiation. We introduce a time-dependent, special relativistic code which dynamically couples Monte Carlo radiative transfer to the flow hydrodynamics. The code also self-consistently follows electron–positron pair production in photon–photon collisions. We use the code to simulate shocks with properties relevant to GRBs. We focus on plane-parallel solutions, which are accurate deep below the photosphere. The shock generates a power-law photon spectrum through the first-order Fermi mechanism, extending upward from the typical upstream photon energy. Strong (high Mach number) shocks produce rising νF ν spectra. We observe that in non-relativistic shocks the spectrum extends to {E}\\max ∼ {m}e{v}2, where v is the speed difference between the upstream and downstream. In relativistic shocks the spectrum extends to energies E> 0.1 {m}e{c}2 where its slope softens due to Klein–Nishina effects. Shocks with Lorentz factors γ > 1.5 are prolific producers of electron–positron pairs, yielding hundreds of pairs per proton. The main effect of pairs is to reduce the shock width by a factor of ∼ {Z}+/- -1. Most pairs annihilate far downstream of the shock, and the radiation spectrum relaxes to a Wien distribution, reaching equilibrium with the plasma at a temperature determined by the shock jump conditions and the photon number per proton. We discuss the implications of our results for observations of radiation generated by sub-photospheric shocks.

  12. Measurement of Radiative Non-Equilibrium for Air Shocks Between 7-9 Km/s

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.

    2016-01-01

    This paper describes a recent characterization of non-equilibrium radiation for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data is spectrally resolved from 190- 1450 nm and spatially resolved behind the shock front. Comparisons are made to DPLR/NEQAIR simulations using different modeling options and recommendations for future study are made based on these comparisons.

  13. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  14. Narrow Radiative Recombination Continua: A Signature of Ions Crossing the Contact Discontinuity of Astrophysical Shocks

    Science.gov (United States)

    Behar, Ehud; Nordon, Raanan; Soker, Noam; Kastner, Joel H.; Yu, Young Sam

    2009-01-01

    X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v 1000 kilometers per second) as it collides with an earlier circumstellar slow wind (v 10 kilometers per second). In theory, the shocked fast wind (hot hubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT approximately equal to 100 eV) crossing the CD and penetrating the cold nebular gas (kT approximately equal to 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30degree3639 indicating bare C VII ions are recombining with cool electrons at kT(sub e) = 1.7 plus or minus 1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30degree3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to deltakT greater than 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be common feature of stellar wind shocks.

  15. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    International Nuclear Information System (INIS)

    Shibayama, Takuya; Nakabou, Takashi; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory

    2015-01-01

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability

  16. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Kusano, Kanya [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Miyoshi, Takahiro [Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Vekstein, Grigory [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-10-15

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.

  17. 1 D analysis of Radiative Shock damping by lateral radiative losses

    Science.gov (United States)

    Busquet, Michel; Audit, Edouard

    2008-11-01

    We have demonstrated the effect of the lateral radiative losses in radiative shocks propagative in layered quasi-planar atmospheres.[1,2] The damping of the precursor is sensitive to the fraction of self-emitted radiation reflected by the walls (called albedo) We have given recently an experimental determination of the wall albedo.[2] For parametric analysis of this effect, we implement lateral losses in the 1D hydro-rad code MULTI [3] and compared results with 2D simulations. [1] S.Leygnac, et al., Phys. Plasmas 13, 113301 (2006) [2] M.Busquet, et al, High Energy Density Plasmas 3, 8-11 (2007); M.Gonzalez, et al, Laser Part. Beams 24, 1-6 (2006) [3] Ramis et al, Comp. Phys. Comm., 49, 475 (1988)

  18. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  19. Short-term fasting protects mice against γ ray radiation

    International Nuclear Information System (INIS)

    Zhu Shengnan; Gu Xiuling; Song Lian; Tong Jian; Li Jianxiang

    2012-01-01

    Objective: To investigate the antagonistic effects of short-term fasting against 60 Co γ ray radiation. Methods: After fasting ICR mice were irradiated for 3 min at a dose rate of 2.5 Gy/min and then returned to normal diet. General situation, body weight changes, food consumption and toxic status were observed. WBC, organ index and anti-oxidative ability (ROS, SOD, MDA, T-AOC) were analyzed. Results: After 60 Co γ ray radiation, the mice exhibited severe toxic symptoms before death. The survival rates were 0 for control and 12 h group, 12.5% for 48 h group and 50% for 72 h group respectively. ROS production of 72 h group was reduced compared with 0 h group (P<0.05). Conclusion: Short-term fasting may attenuate radiation induced injuries, evidenced by a significant increase in mice survival rate. (authors)

  20. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  1. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  2. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  3. Optical Spectroscopy Measurements of Shock Waves Driven by Intense Z-Pinch Radiation

    International Nuclear Information System (INIS)

    Asay, J.; Bernard, M.; Bailey, J.E.; Carlson, A.L.; Chandler, G.A.; Hall, C.A.; Hanson, D.; Johnston, R.; Lake, P.; Lawrence, J.

    1999-01-01

    Z-pinches created using the Z accelerator generate approximately220 TW, 1.7 MJ radiation pulses that heat large (approximately10 cm 3 ) hohlraums to 100-150 eV temperatures for times of order 10 nsec. We are performing experiments exploiting this intense radiation to drive shock waves for equation of state studies. The shock pressures are typically 1-10 Mbar with 10 nsec duration in 6-mm-diameter samples. In this paper we demonstrate the ability to perform optical spectroscopy measurements on shocked samples located in close proximity to the z-pinch. These experiments are particularly well suited to optical spectroscopy measurements because of the relatively large sample size and long duration. The optical emission is collected using fiber optics and recorded with a streaked spectrograph. Other diagnostics include VISAR and active shock breakout measurements of the shocked sample and a suite of diagnostics that characterize the radiation drive. Our near term goal is to use the spectral emission to obtain the temperature of the shocked material. Longer term objectives include the examination of deviations of the spectrum from blackbody, line emission from lower density regions, determination of kinetic processes in molecular systems, evaluation of phase transitions such as the onset of metalization in transparent materials, and characterization of the plasma formed when the shock exits the rear surface. An initial set of data illustrating both the potential and the challenge of these measurements is described

  4. Radiation protection monitoring at the JOYO experimental fast reactor

    International Nuclear Information System (INIS)

    Ouchi, S.; Endo, K.; Susaki, T.

    1979-01-01

    This paper describes the radiation protection monitoring programme for the JOYO experimental fast reactor and some of the health physics problems experienced during the low-power nuclear tests. These include: a detailed description of the centralized radiation monitoring system; the methods and results of the individual monitoring systems; the results of operational monitoring for the handling of new plutonium fuel subassemblies; the evaluation of the external radiation dose rate around the primary coolant system; and the results of an experiment on the thermal dependence of some personnel dose meters. (author)

  5. Coherent radiation of photon by fast particles in exited matter

    International Nuclear Information System (INIS)

    Ryazanov, M.I.

    1981-01-01

    The review on the theory of coherent photon radiation by fast charged particle interaction with excited by external electromagnetic field atoms of matter is presented. The motive particle excites in the matter longitudinal electric oscillations (plasmons, longitudinal optical phonons, longitudinal excitons). Energy and momentum conservation laws in the course of quantum radiation in the matter by a charged particle are considered taking into account the energy-matter exchange. It follows from the conservation laws that for the processes investigated the quantum angle of escape is stiffly connected with its frequency. The cohe-- rent luminescence processes are considered as generalized Vavilov- Cherenkov radiation [ru

  6. Study of the reflection of fast neutrons by a simple theory of shock. Application to iron

    International Nuclear Information System (INIS)

    Devillers, Christian; Hasselin, Gilbert

    1964-10-01

    By using a first shock theory, the authors report the calculation of an albedo current for fast neutrons, i.e. the rate between the reflected current per cm 2 of plate and the incident current on the same cm 2 . They also compute the spectrum and the angular distribution of reflected neutrons. These calculations are performed by means of three specific software: Psyche 1 for the determination of the albedo due to elastic scattering, and Psyche 2 and 3 for inelastic scattering (the first one addresses incident neutrons with an energy 0.86 and 5 MeV, and the second one the 5-12 MeV energy band). Hypotheses for each calculation are presented, as well as calculation principles and methods. Results are briefly presented and discussed in terms of albedo evolution with respect to incidence and to plate thickness

  7. OBSERVATIONAL SIGNATURES OF SUB-PHOTOSPHERIC RADIATION-MEDIATED SHOCKS IN THE PROMPT PHASE OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levinson, Amir

    2012-01-01

    A shock that forms below the photosphere of a gamma-ray burst (GRB) outflow is mediated by Compton scattering of radiation advected into the shock by the upstream fluid. The characteristic scale of such a shock, a few Thomson depths, is larger than any kinetic scale involved by several orders of magnitude. Hence, unlike collisionless shocks, radiation-mediated shocks cannot accelerate particles to nonthermal energies. The spectrum emitted by a shock that emerges from the photosphere of a GRB jet reflects the temperature profile downstream of the shock, with a possible contribution at the highest energies from the shock transition layer itself. We study the properties of radiation-mediated shocks that form during the prompt phase of GRBs and compute the time-integrated spectrum emitted by the shocked fluid following shock breakout. We show that the time-integrated emission from a single shock exhibits a prominent thermal peak, with the location of the peak depending on the shock velocity profile. We also point out that multiple shock emission can produce a spectrum that mimics a Band spectrum.

  8. Laboratory astrophysics with high energy and high power lasers: from radiative shocks to young star jets

    International Nuclear Information System (INIS)

    Diziere, A.

    2012-01-01

    Laboratory astrophysics are a rapidly developing domain of the High Energy Density Physics. It aims to recreate at smaller scales physical processes that astronomical telescopes have difficulties observing. We shall approach, in this thesis, three major subjects: 1) Jets ejected from young stars, characterized by an important collimation degree and ending with a bow shock; 2) Radiative shocks in which radiation emitted by the shock front itself plays a dominant role in its structure and 3) Accretion shocks in magnetic cataclysmic variables whose important cooling factor allows them to reach stationarity. From the conception to experimental realization, we shall attempt to reproduce in laboratory each of these processes by respecting the scaling laws linking both situations (experimental and astrophysical) established beforehand. The implementation of a large array of visible and X-ray diagnostics will finally allow to completely characterize them and calculate the dimensionless numbers that validate the astrophysical relevance. (author) [fr

  9. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  10. Effect of Ramadan fasting on serum heat shock protein 70 and serum lipid profile.

    Science.gov (United States)

    Zare, A; Hajhashemi, M; Hassan, Z M; Zarrin, S; Pourpak, Z; Moin, M; Salarilak, S; Masudi, S; Shahabi, S

    2011-07-01

    Ramadan, the holy month for the Islamic world, is a period every year when food and fluid intake is restricted to the pre-sunrise and post-sunset hours. The aim of this study was to evaluate the effect of Ramadan fasting on the serum concentration of heat shock protein 70 (HSP70) and serum lipid profile in healthy men. A total of 32 male volunteers with a mean age of 28.5 (range 23-37) years were selected for the study. Blood samples were obtained one day prior to Ramadan and on the 3rd and 25th days of fasting. Serum HSP70, triglyceride (TG), cholesterol (Chol), low-density lipoprotein (LDL) and high-density lipoprotein (HDL), LDL/HDL and Chol/HDL ratios were investigated. It was observed that the mean concentrations of serum HSP70 and HDL on the 25th day of Ramadan were significantly higher than those recorded one day before Ramadan and on the 3rd day of Ramadan, and the levels on the 3rd day of Ramadan was significantly higher than those recorded one day before Ramadan. Mean concentrations of serum TG, Chol, LDL, and LDL/HDL and Chol/HDL ratios on the 25th day of Ramadan were significantly lower than those recorded one day before Ramadan and on the 3rd day of Ramadan, and the levels found on the 3rd day of Ramadan were also significantly lower than those recorded one day before Ramadan. Ramadan fasting increases serum HSP70 and improves serum lipid profile.

  11. Distributed solar radiation fast dynamic measurement for PV cells

    Science.gov (United States)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  12. Radiation Protection Practices of Staff during Extra-Corporeal Shock ...

    African Journals Online (AJOL)

    Methodology: Some members of staff who were present when the extra-corporeal shock wave lithotripsy (ESWL) was used in the hospital at Okada were interviewed between November 2002 and August 2003. Radiology records of the hospital were studied. Literature search involved available publication on the procedure ...

  13. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Science.gov (United States)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  14. SUB-PHOTOSPHERIC EMISSION FROM RELATIVISTIC RADIATION MEDIATED SHOCKS IN GRBs

    International Nuclear Information System (INIS)

    Bromberg, Omer; Mikolitzky, Ziv; Levinson, Amir

    2011-01-01

    It is proposed that the prompt emission observed in bursts that exhibit a thermal component originates from relativistic radiation mediated shocks (RRMS) that form below the photosphere of the gamma-ray burst (GRB) outflow. It is argued that such shocks are expected to form in luminous bursts via collisions of shells that propagate with moderate Lorentz factors Γ ∼< 500. Faster shells will collide above the photosphere to form collisionless shocks. We demonstrate that in events like GRB 090902B a substantial fraction of the explosion energy is dissipated below the photosphere, in a region of moderate optical depth τ ∼< 300, whereas in GRB 080916C the major fraction of the energy dissipates above the photosphere. We show that under conditions anticipated in many GRBs, such RRMS convect enough radiation upstream to render photon production in the shock transition negligible, unlike the case of shock breakout in supernovae. The resulting spectrum, as measured in the shock frame, has a relatively low thermal peak, followed by a broad, nonthermal component extending up to the Klein-Nishina limit.

  15. Fast simulation tool for ultraviolet radiation at the earth's surface

    Science.gov (United States)

    Engelsen, Ola; Kylling, Arve

    2005-04-01

    FastRT is a fast, yet accurate, UV simulation tool that computes downward surface UV doses, UV indices, and irradiances in the spectral range 290 to 400 nm with a resolution as small as 0.05 nm. It computes a full UV spectrum within a few milliseconds on a standard PC, and enables the user to convolve the spectrum with user-defined and built-in spectral response functions including the International Commission on Illumination (CIE) erythemal response function used for UV index calculations. The program accounts for the main radiative input parameters, i.e., instrumental characteristics, solar zenith angle, ozone column, aerosol loading, clouds, surface albedo, and surface altitude. FastRT is based on look-up tables of carefully selected entries of atmospheric transmittances and spherical albedos, and exploits the smoothness of these quantities with respect to atmospheric, surface, geometrical, and spectral parameters. An interactive site, http://nadir.nilu.no/~olaeng/fastrt/fastrt.html, enables the public to run the FastRT program with most input options. This page also contains updated information about FastRT and links to freely downloadable source codes and binaries.

  16. VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)

    Science.gov (United States)

    Sutherland, R. S.; Dopita, M. A.

    2017-06-01

    In this paper we treat the preionization problem in shocks over the velocity range 10shock-precursor parameter, {Psi}=Q/vs, where Q is the ionization parameter of the UV photons escaping upstream. This parameter determines both the temperature and the degree of ionization of the gas entering the shock. In increasing velocity, the shock solution regimes are cold neutral precursors (vs<~40km/s), warm neutral precursors (40<~vs<~75km/s), warm partly ionized precursors (75<~vs<~120km/s), and fast shocks in which the preshock gas is in photoionization equilibrium and is fully ionized. The main effect of a magnetic field is to push these velocity ranges to higher values and to limit the postshock compression. In order to facilitate comparison with observations of shocks, we provide a number of convenient scaling relationships for parameters, such as postshock temperature, compression factors, cooling lengths, and Hβ and X-ray luminosity. (4 data files).

  17. Interaction of rippled shock wave with flat fast-slow interface

    Science.gov (United States)

    Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong

    2018-04-01

    The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.

  18. Planar radiative shock experiments and their comparison to simulations

    International Nuclear Information System (INIS)

    Reighard, A. B.; Drake, R. P.; Mucino, J. E.; Knauer, J. P.; Busquet, M.

    2007-01-01

    Recent experiments have obtained radiographic data from shock waves driven at >100 km/s in xenon gas, and Thomson scattering data from similar experiments using argon gas. Presented here is a review of these experiments, followed by an outline of the discrepancies between the data and the results of one-dimensional simulations. Simulations using procedures that work well for similar but nonradiative experiments show inconsistencies between the measured position of the interface of the beryllium and xenon and the calculated position for these experiments. Sources of the discrepancy are explored

  19. Experimental study of radiative shocks at PALS facility

    Czech Academy of Sciences Publication Activity Database

    Stehlé, C.; Gonzalez, M.; Kozlová, Michaela; Rus, Bedřich; Mocek, Tomáš; Acef, O.; Colombier, J.P.; Lanz, T.; Champion, N.; Jakubczak, Krzysztof; Polan, Jiří; Barroso, P.; Baudin, D.; Audit, E.; Dostál, Jan; Stupka, Michal

    2010-01-01

    Roč. 28, č. 2 (2010), s. 253-261 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * hydrodynamics * laser plasmas * shocks * stellar formation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.656, year: 2010 http://journals.cambridge.org/action/displayFulltext?type=6&fid=7807203&jid=LPB&volumeId=28&issueId=02&aid=7807202&fulltextType=RA&fileId=S02630346100

  20. Nonequilibrium radiation behind a strong shock wave in CO{sub 2}-N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rond, C. [Universite de Provence - IUSTI, 5 rue Enrico Fermi, Marseille 13013 (France)], E-mail: rond@coria.fr; Boubert, P.; Felio, J.-M.; Chikhaoui, A. [Universite de Provence - IUSTI, 5 rue Enrico Fermi, Marseille 13013 (France)

    2007-11-09

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO{sub 2}-N{sub 2}-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO{sub 2}, showing the way towards a better description of the chemistry of the mixture.

  1. Nonequilibrium radiation behind a strong shock wave in CO 2-N 2

    Science.gov (United States)

    Rond, C.; Boubert, P.; Félio, J.-M.; Chikhaoui, A.

    2007-11-01

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO 2-N 2-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO 2, showing the way towards a better description of the chemistry of the mixture.

  2. A fast radiation-to-coherent light converter

    International Nuclear Information System (INIS)

    Wang, C.L.; Flatley, J.E.; Stewart, P.H.

    1988-01-01

    We have developed a radiation-to-coherent light converter (RCLC) with a monolithically integrated semiconductor chip that consists of a chromium-doped GaAs photoconductor detector modulates the laser diode, which has been biased above the lasing threshold, thus converting a radiation pulse to an electric pulse and then to a light pulse. The laser pulse is then transmitted to a fast recorder through a high-bandwidth optical fiber. In the absence of a single-step x-ray pumped laser, our converter appears to be the first integrated device that can efficiently convert x-ray flux into coherent light. This device has been tested successfully with the 50-ps electron beams of a 17-MeV linear accelerator and with 50-ns x-ray pulses from a Z-pinch plasma source. 2 refs., 9 figs

  3. Use of Z pinch radiation sources for high pressure shock wave studies

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Trott, W.M.; Chandler, G.A.; Holland, K.G.; Fleming, K.J.; Trucano, T.G.

    1998-01-01

    Recent developments in pulsed power technology demonstrate use of intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions larger than possible with other radiation sources. Initial indications are that the use of Z pinch sources can be used to produce planar shock waves in samples with diameters of a few millimeters and thicknesses approaching one half millimeter. These dimensions allow increased accuracy of both shock velocity and particle velocity measurements. The Z pinch radiation source uses imploding metal plasma induced by self-magnetic fields applied to wire arrays to produce high temperature x-ray environments in vacuum hohlraum enclosures. Previous experiments have demonstrated that planar shock waves can be produced with this approach. A photograph of a wire array located inside the vacuum hohlraum is shown here. Typically, a few hundred individual wires are used to produce the Z pinch source. For the shock wave experiments being designed, arrays of 120 to 240 tungsten wires with a diameter of 40 mm and with individual diameters of about 10 microm are used. Preliminary experiments have been performed on the Z pulsed radiation source to demonstrate the ability to obtain VISAR measurements in the Z accelerator environment. Analysis of these results indicate that another effect, not initially anticipated, is an apparent change in refractive index that occurs in the various optical components used in the system. This effect results in an apparent shift in the frequency of reflected laser light, and causes an error in the measured particle velocity. Experiments are in progress to understand and minimize this effect

  4. Variables influencing radiation exposure during extracorporeal shock wave lithotripsy. Review of 298 treatments

    International Nuclear Information System (INIS)

    Carter, H.B.; Naeslund, E.B.R.; Riehle, R.A. Jr.

    1987-01-01

    Retrospective review of 298 extracorporeal shock wave lithotripsy (ESWL) treatments was undertaken to determine the factors which influence radiation exposure during ESWL. Fluoroscopy time averaged 160 seconds (3-509), and the average number of spot films taken per patient was 26 (5-68). The average stone burden was 19.3 mm (3-64). Average calculated skin surface radiation exposure was 17.8 R per treatment. Radiation exposure increased with increasing stone burden and patient weight. Stones treated in the ureter resulted in a higher average patient radiation exposure than for renal stones (19 R vs 16 R), even though the average size of these ureteral stones (11.3 mm) was significantly less than the mean. However, type of anesthetic (general or regional) used was not a significant factor. Operator training, experience, and familiarity with radiation physics should significantly decrease the amount of imaging time and consequent patient radiation exposure during ESWL

  5. Variables influencing radiation exposure during extracorporeal shock wave lithotripsy. Review of 298 treatments

    Energy Technology Data Exchange (ETDEWEB)

    Carter, H.B.; Naeslund, E.B.R.; Riehle, R.A. Jr.

    1987-12-01

    Retrospective review of 298 extracorporeal shock wave lithotripsy (ESWL) treatments was undertaken to determine the factors which influence radiation exposure during ESWL. Fluoroscopy time averaged 160 seconds (3-509), and the average number of spot films taken per patient was 26 (5-68). The average stone burden was 19.3 mm (3-64). Average calculated skin surface radiation exposure was 17.8 R per treatment. Radiation exposure increased with increasing stone burden and patient weight. Stones treated in the ureter resulted in a higher average patient radiation exposure than for renal stones (19 R vs 16 R), even though the average size of these ureteral stones (11.3 mm) was significantly less than the mean. However, type of anesthetic (general or regional) used was not a significant factor. Operator training, experience, and familiarity with radiation physics should significantly decrease the amount of imaging time and consequent patient radiation exposure during ESWL.

  6. Radiation control and safety of fast reactor; Radijaciona kontrola i sigurnost postrojenja sa brzim reaktorom

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Antic, D [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1983-07-01

    The fundamental activities for safeguard of radiation control and safety and the necessary staff for them for fast reactor plant are shown. The basic systems for the plant radiation control are counted, especially with regards to poisoning of some fuel materials. The particular characteristics of the plant radiation control determined by the fast reactor are pointed out. (author)

  7. Simulations of radiative shocks and jet formation in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, P; Gonzalez, M; GarcIa-Fernandez, C; Oliva, E [Instituto de Fusion Nuclear, Universidad Politcnica de Madrid, Madrid (Spain) (Spain); Kasperczuk, A; Pisarczyk, T [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland) (Poland); Ullschmied, J [Institute of Plasma Physics AS CR, Prague (Czech Republic) (Czech Republic); Stehle, C [LERMA, Observatoire de Paris, Meudon (France) (France); Rus, B [Institute of Physics, PALS Center, Prague (Czech Republic) (Czech Republic); GarcIa-Senz, D; Bravo, E; Relano, A [Departament de Fisica i Enginyeria Nuclear. Universitat Politecnica de Catalunya. Barcelona (Spain) (Spain)], E-mail: velarde@din.upm.es

    2008-05-01

    We present the simulations of two relevant hydrodynamical problems related to astrophysical phenomena performed by three different codes. The numerical results from these codes will be compared in order to test both the numerical method implemented inside them and the influence of the physical phenomena simulated by the codes. Under some conditions laser produced plasmas could be scaled to the typical conditions prevailing in astrophysical plasmas. Therefore, such similarity allows to use existing laser facilities and numerical codes suitable to a laser plasma regime, for studying astrophysical proccesses. The codes are the radiation fluid dynamic 2D ARWEN code and the 3D HERACLES, and, without radiation energy transport, a Smoothed-Particle Hydrodynamics (SPH) code. These codes use different numerical techniques and have overlapping range of application, from laser produced plasmas to astrophysical plasmas. We also present the first laser experiments obtaining cumulative jets with a velocity higher than 100 km/s.

  8. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    Science.gov (United States)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  9. A fast infrared radiative transfer model for overlapping clouds

    International Nuclear Information System (INIS)

    Niu Jianguo; Yang Ping; Huang Hunglung; Davies, James E.; Li Jun; Baum, Bryan A.; Hu, Yong X.

    2007-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm -1 ) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm -1 ). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model

  10. Generation of Pc 1 waves by the ion temperature anisotropy associated with fast shocks caused by sudden impulses

    International Nuclear Information System (INIS)

    Mandt, M.E.; Lee, L.C.

    1991-01-01

    Observations have reported on the high correlation of Pc 1 events with magnetospheric compressions. A number of mechanisms have been suggested for the generation of the Pc 1 waves. In this paper, the authors propose a new mechanism which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse (Δρυ 2 ) with the Earth's bow shock leads to the formation of a weak fast mode shock propagating into the magnetosheath. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasi-perpendicular geometry, the shock wave exhibits anisotropic heating with T perpendicular > T parallel . This anisotropy drives unstable ion cyclotron waves which they believe can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker spiral magnetic field configuration

  11. Reply on the comment of the paper "New probing techniques of radiative shocks"

    Science.gov (United States)

    Stehlé, Chantal; Kozlová, Michaela; Larour, Jean; Nejdl, Jaroslav; Suzuki-Vidal, Francisco; Cohen, Mathieu; Chaulagain, Uddhab P.; Champion, Norbert; Barroso, Patrice; Acef, Ouali; Delattre, Pierre-Alexandre; Dostál, Jan; Krus, Miroslav; Chièze, Jean-Pierre; Ibgui, Laurent

    2014-05-01

    Imaging the structure of a radiative shock is a challenging task as the high plasma densities produced need a short wavelength to penetrate the plasma, requiring highly sophisticated imaging techniques. In a recent paper (Stehlé et al., Opt. Commun. 285 (2012) 64-69 [1]) the feasibility of a novel imaging technique using an X-ray laser (XRL) at 21 nm with a pulse duration 0.15 ns was proved. The recorded image was attributed to a shock propagating with a velocity of ~60 km/s. This velocity is in agreement with measurements of the plasma self-emission using time and space resolved diode diagnostics, and also in qualitative agreement with 1D numerical simulations. However, due to the inhomogeneous reflectivity of the XUV imaging mirror and to the low number of XRL photons, the quality of the recorded image was insufficient to unambiguously identify the different shock regions. Thus, arguing an ad hoc spatial resolution of ~0.5 mm and a stepwise representation of the shock-piston system, the potential of the technique to observe a radiative precursor was contested (Busquet's comment (in press) [2]). In this reply we aim at clarifying different aspects of the experimental setup, spatial resolution and other questions raised in this comment in order to back up our findings together with their respective analysis and interpretations.

  12. Propagation of a shock wave in a radiating spherically symmetric distribution of matter

    International Nuclear Information System (INIS)

    Herrera, L.; Nunez, L.; Universidad de Los Andes, Merida, Venezuela)

    1987-01-01

    A method used to study the evolution of radiating spheres reported by Herrera et al. (1980) is extended to the case in which the sphere is divided in two regions by a shock wave front. The equations of state at both sides of the shock are different, and the solutions are matched on it via the Rankine-Hugoniot conditions. The outer-region metric is matched with a Vaidya solution on the boundary surface of the sphere. As an example of the procedure, two known solutions for radiating systems are considered. The matter distribution is free of singularities everywhere within the sphere and a Gaussian-like pulse is assumed to carry out a fraction of the total mass. Exploding models are then obtained. Finally, the results are discussed in the light of recent work on gravitational collapse and supernovae. 29 references

  13. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  14. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  15. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  16. A physics informed emulator for laser-driven radiating shock simulations

    KAUST Repository

    McClarren, Ryan G.; Ryu, D.; Paul Drake, R.; Grosskopf, Michael; Bingham, Derek; Chou, Chuan-Chih; Fryxell, Bruce; van der Holst, Bart; Paul Holloway, James; Kuranz, Carolyn C.; Mallick, Bani; Rutter, Erica; Torralva, Ben R.

    2011-01-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. © 2011 Elsevier Ltd. All rights reserved.

  17. A physics informed emulator for laser-driven radiating shock simulations

    KAUST Repository

    McClarren, Ryan G.

    2011-09-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. © 2011 Elsevier Ltd. All rights reserved.

  18. Specification of fast neutron radiation quality from cell transformation data

    International Nuclear Information System (INIS)

    Coppola, M.

    1992-01-01

    Experimental data on the neoplastic transformation of C3H 10T1/2 cells measured at Casaccia after neutron and X-ray irradiation were used to determine neutron RBE values for the RSV-Tapiro fast reactor energy spectrum and for monoenergetic neutrons of 0.5, 1, and 6 MeV. In parallel, micro-dosimetric measurements provided the actual lineal energy distributions and related mean parameters for the reactor radiation. From these experiments, values of the neutron quality factor were derived for the reactor neutron energy spectrum and, in turn, for the other neutron energies tested. A mathematical expression giving a smooth dependence on neutron energy was also determined for the effective quality factor in the entire energy range examined. The results were compared with other proposals

  19. COMMISSIONING AND FIRST RESULTS FROM CHANNELING RADIATION AT FAST

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NIU, DeKalb; Mihalcea, D. [NIU, DeKalb; Broemmelsiek, D. [Fermilab; Edstrom, D. [Fermilab; Sen, T. [Fermilab; Romanov, A. [Fermilab; Ruan, J. [Fermilab; Shiltsev, V. [Fermilab; Kobak, P. [BYU-I; Rush, W. [Kansas U.; Hyun, J. [Tsukuba, Graduate U. Adv. Studies

    2016-10-18

    X-rays have widespread applications in science and industry, but developing a simple, compact, and high-quality X-ray source remains a challenge. Our collaboration has explored the possible use of channeling radiation driven by a 50 MeV low-emittance electron beam to produce narrowband hard X-rays with photon energy of 40 to 140 keV [8,9,11]. Here we present the simulated X-ray spectra including the background bremsstrahlung contribution, and a description of the required optimization of the relevant electron-beam parameters necessary to maximize brilliance of the resulting X-ray beam. Results are presented from our test of this, carried out at the Fermilab Accelerator Science & Technology (FAST) facility’s 50-MeV low-energy electron injector. As a result of the beam parameters, made possible by the photo-injector based SRF linac, the average brilliance at FAST was expected to be about one order of magnitude higher than that in previous experiments.

  20. Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry

    Science.gov (United States)

    Gupta, Roop N.; Lee, Kam-Pui; Moos, James N.; Sutton, Kenneth

    1990-01-01

    Results are obtained for the forebody of a planetary exploration vehicle entering the earth's atmosphere. A viscous-shock-layer analysis is used assuming the flow to be laminar and in chemical equilibrium. Presented results include coupled radiation and ablation injection. This study further includes the effect of different transport and thermodynamic properties and radiation models. A Lewis number of 1.4 appears adequate for the radiation-dominated flows. Five velocities corresponding to different possible trajectory points at an altitude of 70 km have been further analyzed in detail. Sublimation and radiative equilibrium wall temperatures are employed for cases with and without coupled injection, respectively. For the cases analyzed here, the mass injection rates are small. However, the rates could become large if a lower altitude is used for aerobraking and/or the body size is increased. A comparison of the equilibrium results with finite-rate chemistry calculation shows the flowfield to be in chemical equilibrium.

  1. On the radiation mechanism of repeating fast radio bursts

    Science.gov (United States)

    Lu, Wenbin; Kumar, Pawan

    2018-06-01

    Recent observations show that fast radio bursts (FRBs) are energetic but probably non-catastrophic events occurring at cosmological distances. The properties of their progenitors are largely unknown in spite of many attempts to determine them using the event rate, duration, and energetics. Understanding the radiation mechanism for FRBs should provide the missing insights regarding their progenitors, which is investigated in this paper. The high brightness temperatures (≳1035 K) of FRBs mean that the emission process must be coherent. Two general classes of coherent radiation mechanisms are considered - maser and the antenna mechanism. We use the observed properties of the repeater FRB 121102 to constrain the plasma conditions needed for these two mechanisms. We have looked into a wide variety of maser mechanisms operating in either vacuum or plasma and find that none of them can explain the high luminosity of FRBs without invoking unrealistic or fine-tuned plasma conditions. The most favourable mechanism is antenna curvature emission by coherent charge bunches where the burst is powered by magnetic reconnection near the surface of a magnetar (B ≳ 1014 G). We show that the plasma in the twisted magnetosphere of a magnetar may be clumpy due to two-stream instability. When magnetic reconnection occurs, the pre-existing density clumps may provide charge bunches for the antenna mechanism to operate. This model should be applicable to all FRBs that have multiple outbursts like FRB 121102.

  2. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun; Takahashi, Satoko [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Im, Myungshin; Kim, Jae-Woo; Jang, Minsung [Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, FPRD, Seoul National University, Shillim-dong, San 56-1, Kwanak-gu, Seoul (Korea, Republic of); Yamaoka, Kazutaka [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Tashiro, Makoto [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan); Pak, Soojong, E-mail: urata@astro.ncu.edu.tw [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-10

    We present multi-wavelength observations of a typical long duration GRB 120326A at z = 1.798, including rapid observations using a Submillimeter Array (SMA) and a comprehensive monitoring in the X-ray and optical. The SMA observation provided the fastest detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku, yielded a spectral peak energy of E{sub peak}{sup src}=107.8{sub −15.3}{sup +15.3} keV and an equivalent isotropic energy of E{sub iso} as 3.18{sub −0.32}{sup +0.40}×10{sup 52} erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation (6.°69 ± 0.°16). The forward shock modeling, using a two-dimensional relativistic hydrodynamic jet simulation, was also determined by the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical (αo – α{sub X} = –1.45 ± 0.10) indicated different radiation processes in each of them. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties, as well as forward shock modeling parameters, enabled us to determine reasonable functions to describe the afterglow properties. Because half of the events share similar properties in the X-ray and optical as the current event, GRB 120326A will be a benchmark with further rapid follow-ups, using submillimeter instruments such as an SMA and the Atacama Large Millimeter/submillimeter Array.

  3. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A

    International Nuclear Information System (INIS)

    Urata, Yuji; Huang, Kuiyun; Takahashi, Satoko; Im, Myungshin; Kim, Jae-Woo; Jang, Minsung; Yamaoka, Kazutaka; Tashiro, Makoto; Pak, Soojong

    2014-01-01

    We present multi-wavelength observations of a typical long duration GRB 120326A at z = 1.798, including rapid observations using a Submillimeter Array (SMA) and a comprehensive monitoring in the X-ray and optical. The SMA observation provided the fastest detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku, yielded a spectral peak energy of E peak src =107.8 −15.3 +15.3 keV and an equivalent isotropic energy of E iso as 3.18 −0.32 +0.40 ×10 52 erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation (6.°69 ± 0.°16). The forward shock modeling, using a two-dimensional relativistic hydrodynamic jet simulation, was also determined by the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical (αo – α X = –1.45 ± 0.10) indicated different radiation processes in each of them. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties, as well as forward shock modeling parameters, enabled us to determine reasonable functions to describe the afterglow properties. Because half of the events share similar properties in the X-ray and optical as the current event, GRB 120326A will be a benchmark with further rapid follow-ups, using submillimeter instruments such as an SMA and the Atacama Large Millimeter/submillimeter Array.

  4. Radiation assisted thermonuclear burn wave dynamics in heavy ion fast ignition of cylindrical deuterium-tritium fuel target

    International Nuclear Information System (INIS)

    Rehman, S.; Kouser, R.; Nazir, R.; Manzoor, Z.; Tasneem, G.; Jehan, N.; Nasim, M.H.; Salahuddin, M.

    2015-01-01

    Dynamics of thermonuclear burn wave propagation assisted by thermal radiation precursor in a heavy ion fast ignition of cylindrical deuterium-tritium (DT) fuel target are studied by two dimensional radiation hydrodynamic simulations using Multi-2D code. Thermal radiations, as they propagate ahead of the burn wave, suffer multiple reflections and preheat the fuel, are found to play a vital role in burn wave dynamics. After fuel ignition, the burn wave propagates in a steady state manner for some time. Multiple reflection and absorption of radiation at the fuel-tamper interface, fuel ablation and radial implosion driven by ablative shock and fast fusion rates on the fuel axis, at relatively later times, result into filamentary wave front. Strong pressure gradients are developed and sausage like structures behind the front are appeared. The situation leads to relatively reduced and non-uniform radial fuel burning and burn wave propagation. The fuel burning due to DD reaction is also taken into account and overall fusion energy and fusion power density, due to DT and DD reactions, during the burn wave propagation are determined as a function of time. (authors)

  5. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    Science.gov (United States)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  6. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  7. Effects and radiation dose to patients during extracorporeal shock wave lithotripsy for kidney stones

    International Nuclear Information System (INIS)

    Weng Zhigen; Shao Songsheng; Shao Min

    1991-01-01

    Extracorporeal shock wave lithotripsy (ESWL) is rapidly becoming an accepted treatment of renal calculi. Since fluoroscopy is involved in it to image the stones, it is important to know how much radiation and effects the patients receive during ESWL. Surface radiation exposure to 134 patients and medical personnel were measured during the course of ESWL using LiF(Mg, P, Cu) thermoluminescent dosimeters. Initial results showed an average skin exposure of 162 mSv per case, with a wide range of 5 to 2360 mSv. Factors influencing exposure levels include stone characteristics (location, size and opacity), physician's experience and number of shocks required. The monthly radiation dose to personnel working in the ESWL suite averaged 0.07-0.54 mSv. The effects of radiation to patients were observed pre-and post-ESWL by using white blood cell counts, lyphocyte micronucleus assays and chromosome aberration analysis. White blood cell counts rose or reduced to > 1000 cells in 50 per cent of cases and rose in one third of cases. Lymphocyte micronuclei and chromosome aberrations were observed in 20 patients during the cources. The average frequency of micronuclei was 0.5 per mille pre-ESWL and 1 per mille post-ESWL (P < 0.05). The dicentric chromosomes were markedly increased as compared with those of pre-ESWL with statistically significant difference (P < 0.05)

  8. A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars

    Science.gov (United States)

    Imamura, J. N.; Wolff, M. T.; Durisen, R. H.

    1984-01-01

    Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.

  9. Luminosity profiles and the evolution of shock waves in general relativistic radiating spheres

    International Nuclear Information System (INIS)

    Herrera, L.; Nunez, L.A.

    1989-10-01

    A method recently proposed by the authors to study the evolution of discontinuities in radiating spherically symmetric distributions of matter is systematically applied to model the evolution of a composite radiant sphere. The matter configuration, free of singularities, is divided in two regions by a shock wave front, and at each side of this interface a different equation of state is considered. Solutions are matched across the shock via the Rankine-Hugoniot conditions while the outer region metric joins the Vaidya solution at the boundary surface. The influence on the evolution of these composite spheres of different shapes of neutrino outburst profiles, and particular neutrino-transfer processes from the inner core to the outer mantel is explored. Prospective applications to supernova scenarios are discussed. (author). 18 refs, 4 figs, 1 tab

  10. Radiation protection aspects of a high flux, fast neutron generator

    International Nuclear Information System (INIS)

    DeLuca, P.M.; Torti, R.P.; Chenevert, G.M.; Tesmer, J.R.; Kelsey, C.A.

    1976-01-01

    During the development and operation of a gas target, DT neutron generator for use in cancer therapy, two radiation hazards were routinely encountered - personnel exposure to neutrons and to tritium. The principal hazard was irradiation by fast neutrons. By assembling the source below ground level, adding shielding and the use of a controlled access, key identification interlock, the neutron hazard has been reduced. With the present source strength of 2 x 10 12 n/sec, an average neutron dose rate in the control room of 20 mrem/hr was measured- a level compatible with a limited run schedule. The second hazard was exposure to tritium in both gaseous and solid forms. A target inventory of 90 Ci, and overall inventory of 500 Ci, and the need to modify and repair the generator present significant potential hazard due to tritium exposure. The use of protective gloves, wipe tests, urine assays, continuous room air monitoring, and equipment decontamination minimized personnel exposure and effectively confined contamination. The dose due to tritium has been ∼ 0.5 rem/year and negligible spread of contamination has occurred

  11. A physics informed emulator for laser-driven radiating shock simulations

    International Nuclear Information System (INIS)

    McClarren, Ryan G.; Ryu, D.; Paul Drake, R.; Grosskopf, Michael; Bingham, Derek; Chou, Chuan-Chih; Fryxell, Bruce; Holst, Bart van der; Paul Holloway, James; Kuranz, Carolyn C.; Mallick, Bani; Rutter, Erica; Torralva, Ben R.

    2011-01-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. - Highlights: → Uncertainty quantification for two linked computer codes is investigated. → We perform physics-based dimension reduction on the code output. → This reduces the uncertain degrees of freedom from hundreds to tens.

  12. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  13. Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2

    Directory of Open Access Journals (Sweden)

    T. Gegechkori

    2018-02-01

    Full Text Available The original hot shock wave assisted consolidation method combining high temperature was applied with the two-stage explosive process without any further sintering to produce superconducting materials with high density and integrity. The consolidation of MgB2 billets was performed at temperatures above the Mg melting point and up to 1000oC in partially liquid condition of Mg-2B blend powders. The influence of the type of boron (B isotope in the composition on critical temperature and superconductive properties was evaluated. An example of a hybrid Cu-MgB2–Cu superconducting tube is demonstrated and conclusions are discussed.

  14. A semiquantitative theory for the 2fp radiation observed upstream from the earth's bow shock

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1988-01-01

    A semiquantitative theory for the 2f p radiation observed upstream from the Earth's bow shock is presented: the radiation is produced by the process L + L → T + S, proceeding as two sequential three-wave steps L → L' + S and L + L' → T, in the foreshock where nonthermal L and S waves are observed. (Here L, S, and T denote Langmuir, ion acoustic, and transverse electromagnetic waves, respectively.) This theory is consistent with all the available wave data, including the characteristics and levels of a class of low-frequency waves identified as S wave products of the process L → L' + S, and the brightness temperature and bandwidth of the 2f p radiation. Indeed the theory could account for higher 2f p brightness temperatures if required. Predictions of the theory suitable for observational testing include (1) the existence of two 2f p sources, one to each wing of the foreshock, (2) the spatial location of the source regions, and (3) the characteristics and levels of the product L' and S waves in the source regions. The radiation should (4) have intrinsic bandwidths of the order of 1 kHz or less, (5) be less than 0.1% circularly polarized, and (6) have a limiting brightness temperature equal to the effective temperature T L of the L waves producing the radiation

  15. Comparison of theory with atomic oxygen 130.4 nm radiation data from the Bow Shock ultraviolet 2 rocket flight

    Science.gov (United States)

    Levin, Deborah A.; Candler, Graham V.; Collins, Robert J.; Howlett, Carl L.; Espy, Patrick; Whiting, Ellis; Park, Chul

    1993-01-01

    Comparison is made between the results obtained from a state-of-the-art flow and radiative model and bow shock vacuum ultraviolet (VUV) data obtained the recent Bow Shock 2 Flight Experiment. An extensive data set was obtained from onboard rocket measurements at a reentry speed of 5 km/sec between the altitudes of approximately 65-85 km. A description of the NO photoionization cell used, the data, and the interpretation of the data will be presented. The primary purpose of the analyses is to assess the utility of the data and to propose a radiation model appropriate to the flight conditions of Bow Shock 2. Theoretical predictions based on flow modeling discussed in earlier work and a new radiation model are compared with data.

  16. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  17. Development and Transition of the Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Spann, James F.; Zank, G.

    2014-01-01

    We outline a plan to develop and transition a physics based predictive toolset called The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 Astronomical Units; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements. The described transition plan is based on a well established approach developed in the Earth Science discipline that ensures that the customer has a tool that meets their needs

  18. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Michael T.; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hemphill, Paul B. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Schwarm, Fritz-Walter; Wilms, Jörn [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr, 7, D-96049 Bamberg (Germany)

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  19. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    Science.gov (United States)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  20. 2D RADIATION-HYDRODYNAMIC SIMULATIONS OF SUPERNOVA SHOCK BREAKOUT IN BIPOLAR EXPLOSIONS OF A BLUE SUPERGIANT PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Akihiro; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.

  1. Numerical procedure for the calculation of nonsteady spherical shock fronts with radiation

    International Nuclear Information System (INIS)

    Winkler, K.H.

    The basis of the numerical method is an implicit difference scheme with time backward differences to a freely moving coordinate system. The coordinate system itself is determined simultaneously with the iterative solution of the physical equations as a function of the physical variables. Shock fronts, even nonsteady ones, are calculated as discontinuities according to the Rankine--Hugoniot equations. The radiation field is obtained from the two-dimensional, static, spherically symmetric transport equation in conjunction with the time-dependent one-dimensional moment equations. No artificial viscosity of any type is ever used. The applicability of the method developed is demonstrated by an example involving the calculation of protostar collapse. 11 figures

  2. The fast kinetics of the action of ionizing radiation in bacteria

    International Nuclear Information System (INIS)

    Harrop, H.A.

    1980-06-01

    The application of a fast-mixing and irradiation method, the gas explosion technique, to observe processes involved in the action of ionising radiation on bacteria is described. The decay of oxygen-dependent damage appears to be consistent with competition between chemical repair and fixation of radiation-induced lesions. (author)

  3. Halo Emission of the Cat's Eye Nebula, NGC 6543 Shock Excitation by Fast Stellar Winds

    Directory of Open Access Journals (Sweden)

    Siek Hyung

    2002-09-01

    Full Text Available Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001, while Hubble Space Telescope (HST WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20'', is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed [O III] line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

  4. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  5. Measurement and Analysis of the Extreme Physical Shock Environment Experienced by Crane-Mounted Radiation Detection Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, M [Texas A & M Univ., College Station, TX (United States); Erchinger, J [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marianno, C [Texas A & M Univ., College Station, TX (United States); Kallenbach, Gene A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Grypp, M [US Dept. of the Navy

    2017-09-01

    Potentially, radiation detectors at ports of entry could be mounted on container gantry crane spreaders to monitor cargo containers entering and leaving the country. These detectors would have to withstand the extreme physical environment experienced by these spreaders during normal operations. Physical shock data from the gable ends of a spreader were recorded during the loading and unloading of a cargo ship with two Lansmont SAVER 9X30 units (with padding) and two PCB Piezotronics model 340A50 accelerometers (hard mounted). Physical shocks in the form of rapid acceleration were observed in all accelerometer units with values ranging from 0.20 g’s to 199.99 g’s. The majority of the shocks for all the Lansmont and PCB accelerometers were below 50 g’s. The Lansmont recorded mean shocks of 21.83 ± 13.62 g’s and 24.78 ± 11.49 g’s while the PCB accelerometers experienced mean shocks of 34.39 ± 25.51 g’s and 41.77 ± 22.68 g’s for the landside and waterside units, respectively. Encased detector units with external padding should be designed to withstand at least 200 g’s of acceleration without padding and typical shocks of 30 g’s with padding for mounting on a spreader.

  6. Fast and simple model for atmospheric radiative transfer

    NARCIS (Netherlands)

    Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.

    2010-01-01

    Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the

  7. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1983-01-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho 0 strain) were used to assess the role of O 2 , mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho 0 yeast grown and heat shocked in either the presence or absence of O 2 are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O 2 , mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes

  8. Study of fast electrons from hard-X radiation

    International Nuclear Information System (INIS)

    Arslanbekov, R.

    1995-01-01

    The goal of this thesis is the study of fast electron dynamics by means of the hard X-ray diagnosis installed in TORE SUPRA and numerical simulations. Fast electrons are generated in the plasma in the presence of the injected lower hybrid (LH) waves. Two aspects are studied in detail: the lower hybrid wave propagation and absorption in a periodically perturbed media and 2-D Fokker-Planck modelling of the fast electron dynamics in the presence of the LH power. Ripple effects on lower hybrid wave propagation and absorption are investigated using the ray tracing technique. A cylindrical equilibrium is first studied and a strong modification of the ray dynamics is predicted. Calculations are carried out in a real toroidal geometry corresponding to TORE SUPRA. It is shown that the lack of toroidal axisymmetry of the magnetic field may result in a modification of the ray evolution even if the global ray evolution is governed by the larger poloidal inhomogeneity. Simulation of LH experiments are performed for TORE SUPRA tokamak which has a large magnetic ripple (7% at the plasma edge). By considering ripple perturbation in LH current drive simulations, a better agreement is found with experimental results, in particular with the hard-X spectra and the current density profiles. In the second part of the thesis, a 2-D modeling of the fast electron dynamics in the velocity phase space is considered, based on the 2-D relativistic electron Fokker-Planck equation. Electron distribution functions obtained are used to calculate non-thermal Bremsstrahlung emission for different TORE SUPRA shots in a wide range of experimental conditions. (J.S.). 168 refs., 93 figs., 1 tab., 3 appendix

  9. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  10. Long-term prognosis of maxillary sinus malignant tumor patients treated by fast neutron radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Hirohisa; Numata, Tsutomu; Yuza, Jun; Suzuki, Haruhiko; Konno, Akiyoshi [Chiba Univ. (Japan). School of Medicine; Miyamoto, Tadaaki

    1995-03-01

    From 1976 through 1990, 19 patients with maxillary sinus malignant tumor were treated with combination therapy consisting of maxillectomy and radiation of fast neutron. Fast neutron radiotherapy was performed at National Institute of Radiological Sciences. Eight patients had adenoid cystic carcinomas, three patients squamous cell carcinomas, one patient a carcinoma in pleomorphic adenoma, four patients fibrosarcomas, one patient osteosarcoma, one patient chondrosarcoma and one patient rhabdomyosarcoma. Fast neutron therapy after/before surgery was effective in fresh cases with T2-3N0M0 adenoid cystic carcinomas and sarcomas (except for fibrosarcoma). Nine patients were alive more than three years after treatment. And serious complications of fast neutron radiation therapy appeared in six of these nine patients. Visual impairment of opposite side occurred in four patients. Bone necrosis occured in one patient and brain dysfunction in one patient. (author).

  11. Long-term prognosis of maxillary sinus malignant tumor patients treated by fast neutron radiation therapy

    International Nuclear Information System (INIS)

    Kishi, Hirohisa; Numata, Tsutomu; Yuza, Jun; Suzuki, Haruhiko; Konno, Akiyoshi; Miyamoto, Tadaaki.

    1995-01-01

    From 1976 through 1990, 19 patients with maxillary sinus malignant tumor were treated with combination therapy consisting of maxillectomy and radiation of fast neutron. Fast neutron radiotherapy was performed at National Institute of Radiological Sciences. Eight patients had adenoid cystic carcinomas, three patients squamous cell carcinomas, one patient a carcinoma in pleomorphic adenoma, four patients fibrosarcomas, one patient osteosarcoma, one patient chondrosarcoma and one patient rhabdomyosarcoma. Fast neutron therapy after/before surgery was effective in fresh cases with T2-3N0M0 adenoid cystic carcinomas and sarcomas (except for fibrosarcoma). Nine patients were alive more than three years after treatment. And serious complications of fast neutron radiation therapy appeared in six of these nine patients. Visual impairment of opposite side occurred in four patients. Bone necrosis occured in one patient and brain dysfunction in one patient. (author)

  12. Experimental study of fast electron transport and of the propagation of shock waves generated by laser in the framework of inertial fusion

    International Nuclear Information System (INIS)

    Sakaki, T.

    2016-01-01

    This document presents 3 experiments carried out within the framework of inertial fusion. The first experiment was devoted to the study of fast electron beam transport in a compressed target. The implosion of the target with a cylindrical geometry was carried out with the GEKKO XII laser facility (ILE Osaka, Japan). The fast electron beam was generated by the LFEX laser (∼10"1"9 W/cm"2) and its propagation through the compressed cylinder was observed with several X-ray diagnostics. This experiment showed the guiding effect of the electron beam resulting from self-generated magnetic fields. Furthermore, the results of this experiment were in good agreement with numerical simulations. Two other experiments were performed to study the propagation of strong shock waves created by lasers in a plasma. They were carried out with different laser systems. In the first experiment with the Gekko XII laser, we observed the creation and the propagation of two successive shock waves in an ablation plasma in CH and Be. The objective of characterizing the amplification of a transmitted shock by the collision of two counter-propagating shocks has been partially realized. The comparison of the experimental results with the hydrodynamic simulations enabled us to confirm an amplification of the shock by a factor 2 in pressure in the condition of this experiment. The shot with a Be target allowed the development and validation of the diagnostic method of X-ray radiography for shock wave propagation. The second experiment was performed with PHELIX GSI laser (Darmstadt, Germany). The purpose of this experiment was to study the generation of strong shocks. They were applied to study the equation of state of carbon in the WDM state. The condition of pressure and density for the carbon were obtained by deducing the pressure and the velocity of the shock wave chronometric diagnostics employed in this experiment. In this experiment, diamond was at the metallic liquid phase with a pressure

  13. A fast, exact code for scattered thermal radiation compared with a two-stream approximation

    International Nuclear Information System (INIS)

    Cogley, A.C.; Pandey, D.K.

    1980-01-01

    A two-stream accuracy study for internally (thermal) driven problems is presented by comparison with a recently developed 'exact' adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result is that the exact method is computationally as fast as the two-stream approximation for nonisothermal media

  14. Experimental study of the interaction of two laser-driven radiative shocks at the PALS laser

    Czech Academy of Sciences Publication Activity Database

    Singh, R.L.; Stehlé, C.; Suzuki-Vidal, F.; Kozlová, Michaela; Larour, J.; Chaulagain, Uddhab P.; Clayson, T.; Rodriguez, R.; Gil, J.M.; Nejdl, Jaroslav; Krůs, Miroslav; Dostál, Jan; Dudžák, Roman; Barroso, P.; Acef, O.; Cotelo, M.; Velarde, P.

    2017-01-01

    Roč. 23, June (2017), s. 20-30 ISSN 1574-1818 R&D Projects: GA MŠk EE2.3.30.0057; GA MŠk EE2.3.20.0279; GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LM2015083 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : radiative shocks * hydrodynamics laser-plasmas * spectroscopy * laboratory astrophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  15. Development of a fast optimization preview in radiation treatment planning

    International Nuclear Information System (INIS)

    Hoeffner, J.; Decker, P.; Schmidt, E.L.; Herbig, W.; Rittler, J.; Weiss, P.

    1996-01-01

    Usually, the speed of convergence of some iterative algorithms is restricted to a bounded relaxation parameter. Exploiting the special altering behavior of the weighting factors at each step, many iteration steps are avoided by overrelaxing this relaxation parameter. Therefore, the relaxation parameter is increased as long as the optimization result is improved. This can be performed without loss of accuracy. Our optimization technique is demonstrated by the case of a right lung carcinoma. The solution space for this case is 36 isocentric X-ray beams evenly spaced at 10 . Each beam is restricted to 23 MV X-ray fields with a planning target volume matched by irregular field shapes, similar to that produced by a multileaf collimator. Four organs at risk plus the planning target volume are considered in the optimization process. The convergence behavior of the optimization algorithm is shown by overrelaxing the relaxation parameter in comparison to conventional relaxation parameter control. The new approach offers the ability to get a fast preview of the expected final result. If the clinician is in agreement with the preview, the algorithm is continued and achieves the result proven by the Cimmino optimization algorithm. In the other case, if the clinician doesn't agree with the preview, he will be able to change the optimization parameters (e.g. field entry points) and to restart the algorithm. (orig./MG) [de

  16. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  17. Designing research of fast neutron radiation field based on the reactor

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Zhang Xiaomin

    2009-01-01

    Based on the Tsinghua University experimental nuclear reactor neutron source, this research designed moderate theory technical scheme, and the thickness of materials in the scheme were selected by means of Monte Carlo simulating method. An fast neutron radiation field was gained. (authors)

  18. On possibility to make a new type of calorimeter: radiation resistant and fast

    International Nuclear Information System (INIS)

    Derevshchikov, A.A.; Khodyrev, V.Yu.; Kryshkin, V.I.; Rakhmatov, V.E.; Ronzhin, A.I.

    1990-01-01

    It is proposed to use electron multipliers, which directly detect low energy shower particles as an active element in sandwich calorimeters. The approach pffers fast and radiation resistant calorimetry. Test of the method is presented with the use of a microchannel plate. 4 refs.; 4 figs

  19. Hyper fast radiative transfer for the physical retrieval of surface parameters from SEVIRI observations

    International Nuclear Information System (INIS)

    Liuzzi, G; Masiello, G; Serio, C; Blasi, M G; Venafra, S

    2015-01-01

    This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007. (paper)

  20. Activation measurements of fast neutron radiative capture for 139La

    International Nuclear Information System (INIS)

    Luo, Junhua; Han, Jiuning; Liu, Rong; Jiang, Li; Liu, Zhenlai; Sun, Guihua; Ge, Suhong

    2013-01-01

    The neutron capture cross section of the neutron magic isotope 139 La has been measured relative to that of 27 Al by means of the activation method. The fast neutrons were produced via the 3 H(d,n) 4 He reaction on Pd-300 neutron generator. The natural high-purity La 2 O 3 powder was used as target material. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with high-purity germanium (HPGe) detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The new values for E n =13.5±0.2, 14.1±0.2, and 14.8±0.2 MeV are found to be 1.30±0.08, 1.15±0.08 and 0.99±0.07 mb, respectively. Results were discussed and compared with some corresponding values found in the literature. - Highlights: ► D–T neutron source was used to measure cross sections using activation method. ► 27 Al(n,α) 24 Na was used as the monitor for the measurement. ► The cross sections for the (n,γ) reactions on neutron magic isotope 139 La have been measured. ► The data for 139 La(n,γ) 140 La reaction are presented. ► The results were compared with previous data and with evaluation data

  1. An approach to modelling radiation damage by fast ionizing particles

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1987-01-01

    The paper presents a statistical approach to modelling radiation damage in small biological structures such as enzymes, viruses, and some cells. Irreparable damage is assumed to be caused by the occurrence of ionizations within sensitive regions. For structures containing double-stranded DNA, one or more ionizations occurring within each strand of the DNA will cause inactivation; for simpler structures without double-stranded DNA a single ionization within the structure will be sufficient for inactivation. Damaging ionizations occur along tracks of primary irradiating particles or along tracks of secondary particles released at primary ionizations. An inactivation probability is derived for each damage mechanism, expressed in integral form in terms of the radius of the biological structure (assumed spherical), rate of ionization along primary tracks, and maximum energy for secondary particles. The performance of each model is assessed by comparing results from the model with those derived from data from various experimental studies extracted from the literature. For structures where a single ionization is sufficient for inactivation, the model gives qualitatively promising results; for larger more complex structures containing double-stranded DNA, the model requires further refinements. (author)

  2. Theoretical and experimental investigation of the Z pinch plasma as a source of power pulse of soft X radiation for generation of shock waves in condensed targets

    International Nuclear Information System (INIS)

    Grabovskij, E.V.; Smirnov, V.P.; Zakharov, S.V.; Vorob'ev, O.Yu.; Dyabilin, K.S.; Lebedev, M.E.; Fortov, V.E.; Frolov, A.A.

    1996-01-01

    Paper presents the results of theoretical analysis of processes occurring in Z-pinch plasma under conditions initiating a powerful pulse of soft X-radiation. The main attention is focused on double liner circuit designs. Estimations of power of radiation and spectrum are studied. The results are used to simulate processes occurring at generation of shock waves under the effect of soft X-radiation on the target. Experiments to generate shock waves with up to 3 Mbar amplitude pressure in lead under the effect of soft X-radiation were conducted using Angara-5 plant. 24 refs., 9 figs

  3. Theory for the radiation at the third to fifth harmonics of the plasma frequency upstream from the Earth's bow shock

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1988-01-01

    A theory is presented for the radiation at the third to fifth harmonics of the plasma frequency observed upstream from the Earth's bow shock: the radiation is produced by the process L+T'→T in the foreshock, with the initial T' radiation being the frequently observed second harmonic radiation (generated by another process) and the L waves being products of the decay L'→L+S of L' waves generated by a streaming instability. (Here L, S, and T denote Langmuir, ion acoustic, and 'transverse electromagnetic waves, respectively.) The theory can account for the observed radiation when unusually large levels (electric fields in excess of 10 mV/m) of suitable L waves are present. Such levels of L waves are possible, in principle, but have not been reported before; the radiation is observed quite infrequently, thereby implying a requirement for unusual foreshock conditions. Predictions for the characteristics of the source regions (one to each wing of the foreshock) and the bandwidth of the radiation are given. Potential problems for the theory, relating to the large levels of L waves required to account for the radiation, are discussed. copyright American Geophysical Union 1988

  4. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock.

    Science.gov (United States)

    Moskalev, Alexey; Zhikrivetskaya, Svetlana; Krasnov, George; Shaposhnikov, Mikhail; Proshkina, Ekaterina; Borisoglebsky, Dmitry; Danilov, Anton; Peregudova, Darya; Sharapova, Irina; Dobrovolskaya, Eugenia; Solovev, Ilya; Zemskaya, Nadezhda; Shilova, Lyubov; Snezhkina, Anastasia; Kudryavtseva, Anna

    2015-01-01

    The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms.

  5. Influence of Heat Shock Temperatures and Fast Freezing on Viability of Probiotic Sporeformers and the Issue of Spore Plate Count Versus True Numbers

    Directory of Open Access Journals (Sweden)

    Mojtaba Jafari

    2016-02-01

    Full Text Available Background and Objectives: The purpose of the present study was to investigate effects of various heat shock conditions and fast freezing and subsequent thawing on the viability and recovery of Bacillus coagulans and Bacillus subtilis as probiotic sporeformers, and also to compare spore plate and microscopic counts. Materials and Methods: After preparing the final suspensions of B. coagulans and Bacillus subtilis subsp. Natto spores, they were spread-plated before and after fast freezing treatment (-70°C for about 1 min. Heat shock treatments of the spores were carried out at 68oC for 15, 20, and 30 min as well as at 80oC for 10 and 15 min. Concentrations of the examined probiotic sporeformers were determined simultaneously by plate enumerations and microscopically determined counts. Student’s t-test and one-way analysis of variance (ANOVA of SPSS were used for statistical analysis of the data. Analysis of DoE results was carried out using Minitab. Results: The results presented here show that the highest recovery rates for B. coagulans (14.75 log CFU/mL and B. subtilis spores (14.80 log CFU/mL were under a heat shock condition of 68°C for 20 min in nutrient agar (p<0.05. In addition, the survival rates of B. coagulans and B. subtilis spores under the fast freezing and subsequent thawing condition were about 90% and 88%, respectively. Plate counts differed significantly from counts determined microscopically, with differences of almost 0.5 and 0.8 log for B. coagulans and B. subtilis spores, respectively (p<0.05. In addition, DoE results of the study revealed that both factors of spore count method and only freezing factor in fast freezing treatment have a significant effect on concentrations of the spores examined (p<0.05. Conclusions: Heat shock conditions, freezing and subsequent thawing circumstances, and plate counts or enumerations determined microscopically have significant influences on the viability of probiotic sporeformers and

  6. Shock pressure induced by 0.44 mu m laser radiation on aluminum targets

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Stabile, H.; Ravasio, A.; Desai, T.; Lucchini, G.; Strati, F.; Ullschmied, Jiří; Krouský, Eduard; Skála, Jiří; Králiková, Božena; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Nishimura, H.; Ochi, Y.; Kilpio, A.; Shashkov, E.; Stuchebrukhov, I.; Vovchenko, V.; Krasuyk, I.

    2003-01-01

    Roč. 21, č. 4 (2003), s. 481-487 ISSN 0263-0346 R&D Projects: GA MŠk LN00A100 Grant - others:HPRI-CT(XX) 1999-00053 Institutional research plan: CEZ:AV0Z2043910 Keywords : rear target luminosity, shock pressure, shock waves Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.646, year: 2003

  7. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  8. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...

  9. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    International Nuclear Information System (INIS)

    Broda, E.

    1945-01-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  10. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1945-07-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  11. The induced expression of heat shock proteins as a part of the early cellular response to gamma radiation

    International Nuclear Information System (INIS)

    Stankova, K.; Ivanova, K.; Georgieva, R.; Rupova, I.; Boteva, R.

    2008-01-01

    A variety of stressful stimuli including gamma radiation can induce increase in the synthesis of heat shock proteins (Hsp). This family of molecular chaperones includes members with molecular masses ranging from 10 to 150 kDa and has been identified in all organisms from bacteria to humans. Hsp70 chaperones are very important. The present study aimed to characterize the radiation-induced changes in Hsp70 synthesis in human lymphocytes as a part of the early cellular response to gamma irradiation. The expression of Hsp70 was determined with Western blot and the radiation-induced apoptotic changes were registered by staining with fluorescent dyes. Part of the experiments were performed in the presence of the organic solvent DMSO. At low concentrations this reagent shows antioxidant activity and can reduce the level of the radiation-induced oxidant stress which determines the predominant biological effects of the ionizing radiation. Irradiation with 0.5 to 8 Gy caused statistically significant increase in the synthesis of Hsp70 which was strongest after irradiation with 4 Gy. In the range 0.5-2 Gy the enhancement of the radiation-induced synthesis of Hsp70 reached 60%. Our experimental results characterize changes in the Hsp70 synthesis after gamma irradiation as a part of the early cellular stress response in lymphocytes. (authors)

  12. Effective radiation exposure evaluation during a one year follow-up of urolithiasis patients after extracorporeal shock wave lithotripsy.

    Science.gov (United States)

    Kaynar, Mehmet; Tekinarslan, Erdem; Keskin, Suat; Buldu, İbrahim; Sönmez, Mehmet Giray; Karatag, Tuna; Istanbulluoglu, Mustafa Okan

    2015-01-01

    To determine and evaluate the effective radiation exposure during a one year follow-up of urolithiasis patients following the SWL (extracorporeal shock wave lithotripsy) treatment. Total Effective Radiation Exposure (ERE) doses for each of the 129 patients: 44 kidney stone patients, 41 ureter stone patients, and 44 multiple stone location patients were calculated by adding up the radiation doses of each ionizing radiation session including images (IVU, KUB, CT) throughout a one year follow-up period following the SWL. Total mean ERE values for the kidney stone group was calculated as 15, 91 mSv (5.10-27.60), for the ureter group as 13.32 mSv (5.10-24.70), and in the multiple stone location group as 27.02 mSv (9.41-54.85). There was no statistically significant differences between the kidney and ureter groups in terms of the ERE dose values (p = 0.221) (p >0.05). In the comparison of the kidney and ureter stone groups with the multiple stone location group; however, there was a statistically significant difference (p = 0.000) (p ionized radiation, different imaging modalities with low dose and/or totally without a dose should be employed in the diagnosis, treatment, and follow-up bearing the aim to optimize diagnosis while minimizing the radiation dose as much as possible.

  13. The Effect of Radiator on CR-39 Registration of Fast Neutrons

    International Nuclear Information System (INIS)

    El-Badrya, B.A.; Hegazya, T.M.; Morsya, A.A.; Zaki, M.F.

    2008-01-01

    Three different configurations of a personal neutron dosimeter using CR-39 plastic detector were placed in Plastiplast pouch composed from inside to outside of Aluminum ( 27 Al, 40 Ξ m), polyethylene (PE, 20 Ξ m), Cellulose Nitrate (CN, 40 Ξ m). One dosimeter was composed of a CR-39 detector and a PE radiator (1 mm thick), another of two CR-39 detectors with one serving as radiator, and the other of CR-39 alone (without radiator). These dosimeters have been irradiated with fast neutrons of average energy 4.5 MeV with neutron fluence ranging from 5.5 x 10 6 to 0.5 x 10 8 cm - 2 emitted from 241 Am-Be neutron source. The polymeric materials have been chosen on the basis of their hydrogen contents, which are as followed: CR-39, 48%, Polyethylene, 66.7% and CN, 32% by atomic ratio to produce protons via (n, p) elastic scattering with hydrogen and increasing the detection efficiency of CR-39. After irradiation, the dose equivalent response of the detectors has been studied by using conventional etching for two periods, 6h and 8h for these configurations. The thicknesses and compositions of the radiators are chosen so as to suppress the CR-39 response below 4 MeV by preventing the recoils of hydrogen nuclei, out of the hydrogen-rich radiators (PE, CR-39), from reaching the post-etch surface of the detector. Track counting was performed using an automated system. It was found that the dosemeter responses were linear as a function of a neutron equivalent dose and that the CR-39 detector has the same response with radiator or without radiator and thus appears as a promising fast neutron dosimeter. The results are discussed and compared with the literature

  14. Beam and radiation tests of a fast, warm liquid open-quotes swimming poolclose quotes calorimeter

    International Nuclear Information System (INIS)

    Kadyk, J.

    1993-09-01

    A fast, warm liquid calorimeter module with lead absorber immersed in tetramethyl pentane (TMP) as the liquid medium (i.e. a open-quotes swimming poolclose quotes configuration) has been built and tested in a high energy beam at FNAL, and exposed to intense radiation from a strong Co 60 source. A two-tower prototype, incorporating the concept of the electrostatic transformer for fast readout, exhibited very good uniformity and small cross-talk in the beam test. This same calorimeter was exposed to over 10 Mrad of radiation from the Co 60 source, and the electron drift lifetime was measured as a function of accumulated dose. The lifetime improved significantly with small doses of radiation, up to a few hundred krad, then decreased gradually at higher doses, and extrapolated to a minimum useful lifetime of 0.1 μs at over 150 Mrad. This result was confirmed by measurements on a small single-electrode test cell which was irradiated to more than 25 Mrad. In this case, the lifetime decreased from 10μs to 0.1 μs when extrapolated to a dose of over 600 Mrad. This cell was also used to measure the effect of positive ion open-quotes space chargeclose quotes buildup under intense radiation. The results suggest that such effects are small even at the highest intensity available, about 1.3 Mrad/day, for applied fields ≥25 kV/cm

  15. Influence of gamma radiation and fast neutrons on the growth of Haplopappus gracilis (Nutt) A. Gray callus

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Wajda, L.; Korzonek, M.; Polska Akademia Nauk, Krakow. Inst. Fizjologii Roslin)

    1979-01-01

    The sensitivity of the callus of Haplopappus gracilis to gamma radiation and fast neutrons was studied. High doses of radiation cause inhibition of callus growth. At small doses the effect is less pronounced. Stimulation of callus growth was seen. Apart from morphological changes, ionizing radiations lowered the fresh weight ratio of the callus. The RBE value for 5.5 MeV neutrons depended on the dose rate of radiation and the combination of growth medium. (author)

  16. 0-d modeling of fast radiative shutdown of Tokamak discharges following massive gas injection

    International Nuclear Information System (INIS)

    Hollmann, E.M.; Parks, P.B.; Scott, H.A.

    2008-01-01

    0-D modeling of fast radiative shutdowns of tokamak discharges following massive gas injection is presented. Realistic neutral deposition rates are used together with a 1-D diffusive model to estimate impurity deposition into the plasma. Non-coronal radiation rates including opacity are used, as are induced wall currents, wall impurity radiation, and neutral and neoclassical corrections to plasma resistivity. The 0-D modeling is found to reproduce the shutdown timescale and free electron density rise seen in DIII-D argon injection experiments well. Opacity, wall currents, and wall impurities can all have a significant (>10%) impact on simulated timescales. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  18. Power Difference in Spectrum of Sound Radiation before and after Break of Phantom by Piezoelectric Extracorporeal Shock Wave Lithotriptor

    Science.gov (United States)

    Kanai, Hiroshi; Jang, Yun-Seok; Chubachi, Noriyoshi; Tanahashi, Yoshikatsu

    1994-05-01

    This paper investigates the difference in the spectrum of sound radiated before and after the break of a phantom at a focal point of the piezoelectric extracorporeal shock wave lithotriptor (ESWL) in order to identify the break time or to examine whether a calculus exists exactly at the focal point or not. From the preliminary experiments using a piece of chalk as a phantom of a calculus to measure the sound radiated when impact is applied to the chalk by an impact hammer, it is found that the bending vibration component of the vibration is exhibited in the spectrum of sound. However, for small-sized chalk shorter than 3 cm, the peak frequency of the bending vibration is higher than 20 kHz. From the experiments using a piezoeletric ESWL, it is found that there is clear difference in the power spectra among the sound radiated before the break, that radiated just after the break in the breaking process, and that radiated when the chalk does not exist at the focal point of the ESWL. These characteristics will be effective for the examination of the existence of the calculus at the focal point.

  19. Fabrication and Characterization of Targets for Shock Propagation and Radiation Burnthrough Measurements on Be-0.9 AT. % Cu Alloy

    International Nuclear Information System (INIS)

    Nobile, A.; Dropinski, S.C.; Edwards, J.M.; Rivera, G.; Margevicius, R.W.; Sebring, R.J.; Olson, R. E.; Tanner, D.L.

    2004-01-01

    Beryllium-copper alloy (Be0.9%Cu) ICF capsules are being developed for the pursuit of thermonuclear ignition at the National Ignition Facility (NIF). Success of this capsule material requires that its shock propagation and radiation burnthrough characteristics be accurately understood. To this end, experiments are being conducted to measure the shock propagation and radiation burnthrough properties of Be0.9%Cu alloy. These experiments involve measurements on small Be0.9%Cu wedge, step and flat samples. Samples are mounted on 1.6-mm-diameter x 1.2-mm-length hohlraums that are illuminated by the OMEGA laser at the University of Rochester. X-rays produced by the hohlraum drive the sample. A streaked optical pyrometer detects breakout of the shock produced by the X-ray pulse. In this paper we describe synthesis of the alloy material, fabrication and characterization of samples, and assembly of the targets. Samples were produced from Be0.9%Cu alloy that was synthesized by hot isostatic pressing of Be powder and copper flake. Samples were 850 μm diameter disks with varying thickness in the case of wedge and step samples, and uniform thickness in the case of flat samples. Sample thickness varied in the range 10-90 μm. Samples were prepared by precision lathe machining and electric discharge machining. The samples were characterized by a Veeco white light interferometer and an optical thickness measurement device that simultaneously measured the upper and lower surface contours of samples using two confocal laser probes. Several campaigns with these samples have been conducted over the past two years

  20. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    International Nuclear Information System (INIS)

    Vishwakarma, J P; Nath, G

    2010-01-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient α R are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  1. Magnetogasdynamics shock waves in a rotational axisymmetric non-ideal gas with increasing energy and conductive and radiative heat-fluxes

    Science.gov (United States)

    Nath, Gorakh

    2016-07-01

    Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.

  2. CARS Measurement of Vibrational/Rotational Temperatures with Total Radiation Visualization behind Strong Shock Waves of 5-7 km/s

    Science.gov (United States)

    Sakurai, K.; Bindu, V. Hima; Niinomi, S.; Ota, M.; Maeno, K.

    2011-05-01

    In the development of aerospace technology the design of space vehicles is important in phase of reentry flight. The space vehicles reenter into the atmosphere with range of 6-8 km/s. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. The experimental data for re-entry analyses, however, have remained in classical level. Recent development of optical instruments enables us to have novel approach of diagnostics to the re-entry problems. We employ the CARS (Coherent Anti-Stokes Raman Spectroscopy) method for measurement of real gas temperatures of N2 with radiation of the strong shock wave. The CARS signal can be acquired even in the strong radiation area behind the strong shock waves. In addition, we try to use the CCD camera to obtain 2D images of total radiation simultaneously. The strong shock wave in front of the reentering space vehicles is experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas.

  3. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    Science.gov (United States)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system

  4. Study and impact of fast electrons diagnosed by electron cyclotron radiation on Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Gomez, P.

    1999-12-01

    This thesis aims at characterizing the dynamics of fast electrons generated by the Landau absorption of the hybrid wave and studying their effects on electron cyclotron radiation. The different processes involved in the propagation and resonant absorption of the hybrid wave in plasmas are described. A method such as ray-tracing allows the characterization of the dynamics of heating but this method relies on the hypothesis of geometrical optics. Whenever absorption rate is low as it is in Tore-Supra, the hybrid wave undergoes a series of successive reflections on the edge of the plasma before being completely absorbed. These reflections generate an electromagnetic chaos in which geometrical optics hypothesis are no longer valid. A statistical treatment of the Fokker-Planck equation allows the calculation of the mean distribution function of electrons in the plasma submitted to hybrid wave. The electron cyclotron radiation is then deduced and by assuming that plasma behaves like a black body, a theoretical radiative temperature is calculated. The confrontation of this theoretical temperature profile with experimental values allows the validation of this modeling and the estimation of the effects of fast electrons on temperature measurements. (A.C.)

  5. The Shock/Shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Doss, F. W., E-mail: fdoss@lanl.gov; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-05-15

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (∼ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  6. Fast microwave detection system for coherent synchrotron radiation study at KEK: Accelerator test facility

    International Nuclear Information System (INIS)

    Aryshev, A.; Araki, S.; Karataev, P.; Naito, T.; Terunuma, N.; Urakawa, J.

    2007-01-01

    A fast room temperature microwave detection system based on the Schottky Barrier-diode detector was created at the KEK ATF (Accelerator Test Facility). It was tested using Coherent Synchrotron Radiation (CSR) generated by the 1.28 GeV electron beam in the damping ring. The speed performance of the detection system was checked by observing the CSR from a multi-bunch (2.8 ns bunch separation time) beam. The theoretical estimations of CSR power yield from an edge of bending magnet as well as new injection tuning method are presented. A very high sensitivity of CSR power yield to the longitudinal electron distribution in a bunch is discussed

  7. Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes

    International Nuclear Information System (INIS)

    Slattery, W.L.; Spangenberg, W.H.

    1982-01-01

    A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described

  8. A fast high-voltage current-peak detection system for the ALICE transition radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Verclas, Robert [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    During LHC operation in run 1, the gaseous detectors of ALICE occasionally experienced simultaneous trips in their high voltage which affected the majority of the high voltage channels. These trips are caused by large anode currents in the detector and are potentially related to LHC machine operations. We developed and installed a fast current-peak detection system for the ALICE Transition Radiation Detector. This system is based on FPGA technology and monitors 144 out 522 high voltage channels minimally invasively at a maximum readout rate of 2 MHz. It is an integral part of the LHC beam monitoring system. We report on the latest status.

  9. Erroneous Magnet Positioning Leads to Failure of Inhibition of Inappropriate Shock during Fast Conducting Atrial Fibrillation Episodes.

    Science.gov (United States)

    Römers, Hans; VAN Dijk, Vincent; Balt, Jippe

    2017-06-01

    We present the case of a 75-year-old patient with a single-chamber St. Jude Medical internal cardioverter defibrillator (ICD; St. Jude Medical, St. Paul, MN, USA) for primary prevention, who was admitted with 39 inappropriate ICD shocks because of atrial fibrillation with rapid ventricular frequention, despite magnet placement. Review of the device manual and literature revealed that apart from different responses to magnet placement programmed for the various manufacturers, the type of magnet and the positioning can be of specific interest. In the case presented, the donut-shaped magnet should have been placed off-center instead of directly over the device. © 2017 Wiley Periodicals, Inc.

  10. Fast Deploy Radiation Monitoring Array Emergency Solution Based on GPS and Cellular Network

    International Nuclear Information System (INIS)

    Vax, E.; Broide, A.; Manor, A.; Marcus, E.; Seif, R.; Nir, J.; Kadmon, Y.; Sattinger, D.; Levinson, S.; Tal, N.

    2004-01-01

    Radiation monitoring of a possible contaminating source is highly important for safety and risk analysis. Since the monitoring must cover the whole contaminated area, the standard solution is to scatter an array of numerous fixed detectors in advance. The Fast Deploy Radiation Monitoring Array (FDRMA) is a solution that does not require coverage of the entire area. The FDRMA is a compact, world wide applicative, seamless and novel solution, designed for emergency cases. The system consists of GPS and IP cellular network, which make it mobile and therefore suitable for global use. The most significant advantage of the FDRMA system is minimizing the exposure time of the monitoring teams, while maintaining flexibility of the deployment area, as opposed to the Vehicle Monitoring System (VMS) [1] or the standard solution mentioned above. A detailed description of the proposed FDRMA system and its comparison to a fixed detectors' array is presented in this work

  11. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    Science.gov (United States)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  12. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, Silvia [Dipartimento di Astronomia, Universitá di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Max, Claire [Center for Adaptive Optics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); U, Vivian, E-mail: jfwang@northwestern.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-01-20

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s{sup –1}. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H{sub 2}(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L {sub 0.5-8} {sub keV} = 5.3 × 10{sup 41} erg s{sup –1}, the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M {sub hot} = 1.8 × 10{sup 8} M {sub ☉}) and thermal energy (E {sub th} = 6.5 × 10{sup 57} erg). The total iron mass in the highly ionized plasma is M {sub Fe} = 4.6 × 10{sup 5} M {sub ☉}. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  13. Fast and Furious: Shock Heated Gas as the Origin of Spatially Resolved Hard X-Ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    Science.gov (United States)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Pellegrini, Silvia; Max, Claire; Risaliti, Guido; U, Vivian; Zezas, Andreas

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ~ 6 keV (~70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ~2200 km s-1. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 1041 erg s-1, the diffuse hard X-ray emission is ~100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 108 M ⊙) and thermal energy (E th = 6.5 × 1057 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 105 M ⊙. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  14. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    International Nuclear Information System (INIS)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas; Pellegrini, Silvia; Max, Claire; U, Vivian

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s –1 . For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H 2 (1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 10 41 erg s –1 , the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 10 8 M ☉ ) and thermal energy (E th = 6.5 × 10 57 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 10 5 M ☉ . Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  15. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F. [CNRS-IN2P3-IPN Orsay, Orsay (France)

    2007-07-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators ({approx}24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: {approx}20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T{approx}4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35{mu}A) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose ({approx}20%): a neutrons fluence of more than 10{sup 14} n/cm{sup 2} is achieved in {approx}20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T{approx}4.2 K. This new apparatus allows on-line automatic measurements

  16. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    International Nuclear Information System (INIS)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F.

    2007-01-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators (∼24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: ∼20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T∼4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35μA) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose (∼20%): a neutrons fluence of more than 10 14 n/cm 2 is achieved in ∼20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T∼4.2 K. This new apparatus allows on-line automatic measurements of actuators characteristics and the

  17. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Science.gov (United States)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  18. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  19. Towards radiation hard converter material for SiC-based fast neutron detectors

    Science.gov (United States)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection

  20. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  1. Radiative bow shock wave (?) driven by nuclear ejecta in a Seyfert galaxy

    International Nuclear Information System (INIS)

    Wilson, A.S.; Ulvestad, J.S.; California Institute of Technology, Pasadena)

    1987-01-01

    New VLA maps at 2 cm of the 13-arcsec-scale linear radio source in the center of NGC 1068 are described. The northeast lobe shows a limb-brightened conical morphology, very sharp leading edges, and a magnetic field running parallel to these edges. The spectral index between 2 and 6 cm in these line-brightened regions is near 1.0. The northeast subpeak has a very steep radio spectrum between 18 and 2 cm which is attributed to inverse Compton losses of the relativistic electrons on the infrared photons. The spectral indices in the southwest lobe lie in the range 0.9-1.5 except in its northern parts, where a much larger index is found. The northeast lobe radio emission could arise in either the cocoon of old jet material which has passed through the internal shock in the ejecta and blown out to either side, or in interstellar material compressed by a bow shock wave driven into the galactic ISM. 45 references

  2. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  3. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter

    International Nuclear Information System (INIS)

    Pisani, F.

    2000-02-01

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  4. Final Report for Project DE-SC0006958: "An Investigation of the Effects of magnetic Fields and Collisionality on Shock Formation in Radiatively Cooled Plasma Flows"

    Energy Technology Data Exchange (ETDEWEB)

    Bott-Suzuki, Simon

    2014-11-05

    We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.

  5. Bending of fuel fast reactor fuel elements under action of non-uniform temperature gradients and radiation-induced swelling

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.; Karasik, E.A.

    1984-01-01

    The bending of rod fuel elements in gas-cooled fast reactors under the action of temperature gradients radiation-induced swelling non-uniform over the perimeter of fuel cans is evaluated. It is pointed out that the radiation-induced swelling gives the main contribution to the bending of fuel elements. Calculated data on the bending of the corner fuel element in the assembly of the fast reactor with dissociating gas coolant are given. With the growth of temperature difference over the perimeter, the bending moment and deformation increase, resulting in the increase of axial stresses. The obtained data give the basis for accounting the stresses connected with thermal and radiation bending when estimating serviceability of fuel elements in gas cooled fast reactors. Fuel element bending must be also taken into account when estimating the thermal hydrualic properties

  6. Fast cine-magnetic resonance imaging point tracking for prostate cancer radiation therapy planning

    International Nuclear Information System (INIS)

    Dowling, J; Chandra, S; Dang, K; Fox, Chris D; Gill, Suki; Kron, T; Pham, D; Foroudi, F

    2014-01-01

    The analysis of intra-fraction organ motion is important for improving the precision of radiation therapy treatment delivery. One method to quantify this motion is for one or more observers to manually identify anatomic points of interest (POIs) on each slice of a cine-MRI sequence. However this is labour intensive and inter- and intra- observer variation can introduce uncertainty. In this paper a fast method for non-rigid registration based point tracking in cine-MRI sagittal and coronal series is described which identifies POIs in 0.98 seconds per sagittal slice and 1.35 seconds per coronal slice. The manual and automatic points were highly correlated (r>0.99, p<0.001) for all organs and the difference generally less than 1mm. For prostate planning peristalsis and rectal gas can result in unpredictable out of plane motion, suggesting the results may require manual verification.

  7. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  8. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    Science.gov (United States)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  9. Luxol Fast Blue as a dosimetric material for industrial radiation processes

    International Nuclear Information System (INIS)

    Rushdi, M.A.H.; Beshir, W.B; Abdel-Fattah, A.A; Soliman, Y.S

    2015-01-01

    Using of polyvinyl butyral (PVB) film containing loxul fast blue (LFB) dye, thin films were prepared. Upon irradiation these films undergo a gradual change in color. Optical density change was analyzed spectrophotometrically at the maximum of the absorption band peaking at 421 nm. The useful dose range of film dosimeter response was seen from 0.5 to 50 kGy with (r2 = 0.999). Effects of the dosimetric parameters such as relative humidity and post-irradiation storage in dark and indirect daylight conditions on dosimeters performance were discussed. Addition studies have been done to evaluate the film dosimeter behavior at different energy regions including the mass energy absorption coefficient and mass stopping power dependence of the system. The effective atomic number and the radiation chemical yield for the film dosimeter were determined. The uncertainty budget for high doses has obtained from the measurement with value of 4.86% at 2σ confidence level.

  10. Fast heavy-ion radiation damage of glycine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryosuke [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2016-12-15

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  11. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  12. Uncertainty of fast biological radiation dose assessment for emergency response scenarios.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Higueras, Manuel; Puig, Pedro; Einbeck, Jochen; Samaga, Daniel; Barquinero, Joan Francesc; Barrios, Lleonard; Brzozowska, Beata; Fattibene, Paola; Gregoire, Eric; Jaworska, Alicja; Lloyd, David; Oestreicher, Ursula; Romm, Horst; Rothkamm, Kai; Roy, Laurence; Sommer, Sylwester; Terzoudi, Georgia; Thierens, Hubert; Trompier, Francois; Vral, Anne; Woda, Clemens

    2017-01-01

    Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.

  13. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  14. Fast charge digitizer and digital data acquisition system for measuring time varying radiation fields

    International Nuclear Information System (INIS)

    Lee, T.R.; Schneider, R.H.; Wyatt, J.L.

    1976-01-01

    A radiation measuring instrument including a fast charge digitizer and a digital data acquisition system has been developed. The fast charge digitizer includes a charge integrator connected to a conventional ionization chamber which generates an output current in proportion to ionizing radiation exposure rate. The charge integrator has an output connected to a comparator which is switched from a high state to a low state when the output of the integrator goes above the comparator threshold. The comparator output is connected to a bistable multivibrator consisting of two non-retriggerable one shot multivibrators connected in a feedback configuration. As long as the comparator output is in the low state, the bistable multivibrator generates a train of pluses which are fed back through an analog switch and a high megohm resistance to the input of the integrator. This feedback is negative and has the effect of removing the charge from the integrating capacitor, thus causing the integrator output eventually to drop below the comparator threshold. When this occurs the comparator output returns to the high state and the bistable multivibrator ceases to generate output pulses. An output terminal is connected between the bistable multivibrator and the analog switch and feeds a train of pulses proportional to the amount of charge generated by the multivibrator output voltage and the high megohm resistance to a counter connected to a random access memory device. The output pulses are counted for a predetermined time and then stored in one of the data locations of the random access memory device. The counter is then reset and a further predetermined sample period is counted. This continues until all of the locations in the random access memory device are filled and then the data is read from the random access memory device

  15. Contributions on fast electronics advancement in charged particles and gamma radiation spectrometry

    International Nuclear Information System (INIS)

    Scintei, N.

    1978-01-01

    The main object of the thesis consists of the following outfits and apparata designed and developed by the author: diagram of fast-low coincidences for simultaneously raising four angle correlations; chamber of coincidences and excitation functions with a 4π integration system; current integrator in picoampers field; pulse fast discriminator based on extrapolating the pulse front given by the GeLi detector. The final chapter deals with neutron action on the switching time of a phosphorus and borine doped, silicon p-n junction. It describes the mechanism through which defects are generated by nuclear radiation as well as the development of active electric centres within the monocrystal. It also calculates the electric interaction of these centres in a silicon p-n junction. Results of the experiments confirmed a great improvement in switching time for switching semi-conductor devices of the BA series as a consequence of neutron irradiation. Specific data of irradiation and thermal treatments only present technical operating particularities of technological nature. (author)

  16. The effects of fast electron radiation on the development of Trogoderma granarium Everts (Coleoptera:Dermestidae)

    International Nuclear Information System (INIS)

    Szlendak, E.; Davis, R.

    1989-01-01

    Effects of fast electron radiation exposures (range from 0 to 1.00 kGy) on the developmental stages of the khapra beetle, Trogoderma granarium Everts, were studied. Adults were very sensitive and were sterilized when irradiated at 21.6 Gy or higher. Treated by lower doses, females laid some eggs, although their viability was very low. Pupal development was stopped with 600 Gy and adults that emerged from pupae treated by lower doses were sterile or laid unviable eggs. No F 1 progeny were developed when pupae were treated by 5 Gy, the lowest dose applied. Larvae did not develop after treatment with 50 Gy or higher. Postradiation ovipositional behavior of T.granarium was observed in two different treatment situations. One group of treated adults was reared in cages with a supply of food. A second group of treated adults was kept without food. Feeding appeared to be an important ovipositional factor. Treatment with fast electrons could provide a convenient and efficient method for reducing populations of the khapra beetle in stored grain. (author)

  17. Fast neutron dosimetry using CR-39 track detectors with polyethylene as radiator

    International Nuclear Information System (INIS)

    Castillo, F.; Espinosa, G.; Golzarri, J.I.; Osorio, D.; Rangel, J.; Reyes, P.G.; Herrera, J.J.E.

    2013-01-01

    The chemical etching parameters (etching time, temperature, normality of etchant, etc.) for the use of CR-39 (allyl diglycol carbonate – Lantrack ® ) as a fast neutron dosimeter have been optimized. The CR-39 chips, placed under a 1.5 mm polyethylene radiator, were exposed for calibration to an 241 Am-Be source at different time intervals for a given neutron fluence. After several chemical etching processes of the detectors with different conditions, the optimum characteristics for the chemical etching were found at 6N KOH solution, 60 ± 1 °C, for 12 h. An accurate relationship between the dose and fluence calculations was obtained as a function of the track density. - Highlights: ► Optimum etching time for fast neutron irradiated CR-39 track detectors is found. ► Relationship between dose and fluence obtained as a function of the track density. ► Results are consistent with those reported elsewhere, and extend the dose range

  18. Some study on radiation resistance and reliability of piston ring of waste gas compressor for fast breeder experimental reactor

    International Nuclear Information System (INIS)

    Muramatsu, Takio; Hidaka, Tsukasa

    1976-01-01

    In the fast breeder experimental reactor ''Joyo'', the gaseous wastes such as reactor cover argon, reactor seal nitrogen gas, fuel handling waste gas etc. shall be collected, compressed and storaged for decaying their activity. Compressors applied in the above process have new type oilless piston rings of Teflon filled with graphite, which might be affected by radioactivity of the waste gases. This report deals with some study on the gamma iradiation effects on the plastic piston rings such as tensile strength, elongation, shock and hardness effects under several irradiation doses and on durability test of the irradiated piston rings under the same compression ratio. (auth.)

  19. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  20. Radiation yield from SHIVA Star plasma flow switch driven fast liner implosions

    International Nuclear Information System (INIS)

    Degnan, J.H.; Baker, W.L.; Beason, J.D.

    1987-01-01

    A 2.5 Terawatt 0.5 MJ isotropic equivalent radiation yield was obtained in a SHIVA Star plasma flow switch driven fast liner implosion. The 1313 μF 80 kV discharge delivered 13 MA to a coaxial vacuum inductive store with a plasma armature. Over 9.4 MA current was plasma flow switched to the implosion load (>90% of the gun muzzle current at that time). The load wa a 5 cm radius, 2 cm tall, 200 μg/cm/sup 2/ aluminum plated Formvar cylindrical foil. The radiation pulse was measured with an array of seven X-ray diodes (XRDs). The XRDs all had aluminum photocathodes, a variety of filters and nickel mesh to reduce the incident X-ray photon flux to avoid Child-Langmuir saturation. The filters were chosen so that the authors had seven different diode response functions covering the energy range from 15 eV to about 3 keV. The filters were mounted remote (about 30 cm) from the XRDs. The anode mesh served as part of the mesh array. The distance between meshes was greater than 10 cm. Each XRD had a 5 cm diameter cathode with an aperture limited to a 2 cm diameter. The XRD anode-cathode gap was 1 cm and the bias was 5 kV. The theoretical Child-Langmuir saturation signal was 125 V with 50 Ω termination. The maximum observed signal was 75 V

  1. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  2. Temporal trends in clinical characteristics and management according to sex in patients with cardiogenic shock after acute myocardial infarction: The FAST-MI programme.

    Science.gov (United States)

    Isorni, Marc-Antoine; Aissaoui, Nadia; Angoulvant, Denis; Bonello, Laurent; Lemesle, Gilles; Delmas, Clément; Henry, Patrick; Schiele, François; Ferrières, Jean; Simon, Tabassome; Danchin, Nicolas; Puymirat, Étienne

    2018-02-22

    Cardiogenic shock (CS) complicating acute myocardial infarction (AMI) occurs more frequently in women, but little is known about its potential specificities according to sex. To analyse the incidence, management and 1-year mortality of CS according to sex using the FAST-MI programme. The FAST-MI programme consists of four nationwide French surveys carried out 5 years apart from 1995 to 2010, including consecutive patients with AMI over a 1-month period, and with a 1-year follow-up. Among the 10,610 patients included in the surveys, the incidence of CS was 4.8% in men and 8.2% in women (Psexes. Mean age in patients with CS tended to decrease in men (from 72±12 to 69±13 years) and to increase in women (from 78±10 to 80±9 years). One-year mortality decreased significantly in men (from 70% in 1995 to 48% in 2010) and in women (from 81% to 54%). Using Cox multivariable analysis, female sex was not an independent correlate of 1-year mortality [hazard ratio (HR): 0.98, 95% confidence interval (CI): 0.78-1.22]. Early use of percutaneous coronary intervention was, however, an independent predictor of 1-year survival in women (HR: 0.55, 95% CI: 0.37-0.81), but showed only a non-significant trend in men (HR: 0.85, 95% CI: 0.61-1.19). The incidence of CS-AMI has decreased in both men and women, but remains higher in women. One-year mortality has significantly decreased for both men and women, and the role of early percutaneous coronary intervention as a potential mediator of decreased mortality seems greater in women than in men. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Induction of heat shock-like proteins in Vigna sinensis seedlings growing under ultraviolet-B (280-320 nm) enhanced radiation

    International Nuclear Information System (INIS)

    Nedunchezhian, N.; Annamalainathan, K.; Kulandaivelu, G.

    1992-01-01

    The effect of ultraviolet-B (UV-B) enhanced fluorescent radiation on protein profile and protein synthesis has been investigated in Vigna sinensis L. cv. Walp seedlings growing at various temperatures. In seedlings growing at 30°C, UV-B radiation decreased the level of several proteins as seen in Coomassie brilliant blue stained gel. However, fluorography of the same gel indicates induction of three sets of proteins in the range of 70. 53 and 16 k Da. Such induction under UV-B enhanced radiation resembled that found after heat shock treatments. In seedlings at 10 and 20°C, induction of such proteins varied both qualitatively and quantitatively. At 40°C. UV-B enhanced radiation caused a cumulative effect with temperature. Strong induction of specific proteins by UV-B radiation in seedlings growing under normal temperature indicates a possible protective role

  4. Radiation Dose Assesment And Risk Estimation During Extracorporeal Shock Wave Lithotripsy

    International Nuclear Information System (INIS)

    Sulieman, A.; Ibrahim, A.A.; Osman, H.; Yousef, M.

    2011-01-01

    Extracorporeal shockwave lithotripsy (ESWL) is considered the gold standard for calculi fragmentation. The aims of this study are to measure the entrance surface dose (ESD) using thermo-luminescence dosimeter (TLDs) and to estimate the probability of carcinogenesis during ESWL procedure. The study was carried out at two centers (Group A, 50 patients) and (Group B, 25 patients). The mean ESD and effective doses were 36 mGy and 34 mSv. The results show that the probability of carcinogenesis is a tiny value 100 per million patients) but the main biological effect is occurring due to the accumulative impact of radiation.

  5. Nonlinear Weibel Instability and Turbulence in Strong Collisionless Shocks

    International Nuclear Information System (INIS)

    Medvedev, Mikhail M.

    2008-01-01

    This research project was devoted to studies of collisionless shocks, their properties, microphysics and plasma physics of underlying phenomena, such as Weibel instability and generation of small-scale fields at shocks, particle acceleration and transport in the generated random fields, radiation mechanisms from these fields in application to astrophysical phenomena and laboratory experiments (e.g., laser-plasma and beam-plasma interactions, the fast ignition and inertial confinement, etc.). Thus, this study is highly relevant to astrophysical sciences, the inertial confinement program and, in particular, the Fast Ignition concept, etc. It makes valuable contributions to the shock physics, nonlinear plasma theory, as well as to the basic plasma science, in general

  6. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    International Nuclear Information System (INIS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-01-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion

  7. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Science.gov (United States)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  8. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States)

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  9. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  10. Fast imaging of the laser-blow-off plume driven shock wave: Dependence on the mass and density of the ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    George, Sony [ISP, Cochin University of Science and Tech., Cochin 682 022 (India); Singh, R.K., E-mail: rajesh@ipr.res.in [Institute for Plasma Research, Gandhinagar 382 428 (India); Nampoori, V.P.N. [ISP, Cochin University of Science and Tech., Cochin 682 022 (India); Kumar, Ajai [Institute for Plasma Research, Gandhinagar 382 428 (India)

    2013-01-17

    A systemic investigation of expansion dynamics of plasma plume, produced by laser-blow-off of LiF–C thin film has been done with emphasis on the formation of shock wave and their dependence on the pressure and nature of the ambient gas. The present results demonstrate that highly directional plume produces a strong shock wave in comparison to shock produced by the diverging plume. Shock-velocity, strength and its structure are strongly dependent on ambient environment; maximum shock velocity is observed in helium whereas shock strength is highest in argon environment. The role of chemically reactive processes was not observed in the present case as the plume structure is almost similar in argon and oxygen.

  11. Study of thermochemical nonequilibrium flow in the radiative shock layer of the simulated atmosphere of Titan

    International Nuclear Information System (INIS)

    Koffi-Kpante, Kossi

    1996-01-01

    Inviscid flow of the N 2 -CH 4 -Ar gas mixture in thermochemical nonequilibrium has been studied. We have specially modelled the thermal and the chemical processes, such as vibrational excitation, dissociation, ionization and radiation which can occur in the hypersonic flows. Different vibrational models are tested and the effects of kinetic-vibration coupling modeling are studied on the flow-field properties. Therefore, the intensity of spontaneous emission of CN molecule from B 2 Σ + → X 2 Σ + electronic transition of the violet band, where Δν = 0 is computed. So, comparison is made between experimental and numerical results on: 1) The spontaneous emission of CN, 2) the rotational temperature of CN B state and 3) the vibrational temperature of CN B state. Because of the profiles of the measured intensity and the disagreement between numerical results and measurements, especially on the spontaneous emission and in the thermodynamic size, the inviscid flow and the unsteady boundary layer interaction study is made. Last, the thermal and the chemical processes models described in the first part of this thesis are used to compute the inviscid nonequilibrium flow around the Huygens probe. The equations system has been solved with a finite volume method, in with the fluxes have been split with Van-Leer methods. (author) [fr

  12. Soft x-ray continuum radiation transmitted through metallic filters: An analytical approach to fast electron temperature measurements

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.; Hill, K.; Bitter, M.; Tritz, K.; Kramer, T.; Stutman, D.; Finkenthal, M.

    2010-01-01

    A new set of analytic formulas describes the transmission of soft x-ray continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler et al., Rev. Sci. Instrum. 70, 599 (1999)]. The new analytic formulas can improve the interpretation of the experimental results and thus contribute in obtaining fast temperature measurements in between intermittent Thomson scattering data.

  13. Development of dual stream PCRTM-SOLAR for fast and accurate radiative transfer modeling in the cloudy atmosphere with solar radiation

    Science.gov (United States)

    Yang, Q.; Liu, X.; Wu, W.; Kizer, S.; Baize, R. R.

    2016-12-01

    Fast and accurate radiative transfer model is the key for satellite data assimilation and observation system simulation experiments for numerical weather prediction and climate study applications. We proposed and developed a dual stream PCRTM-SOLAR model which may simulate radiative transfer in the cloudy atmosphere with solar radiation quickly and accurately. Multi-scattering of multiple layers of clouds/aerosols is included in the model. The root-mean-square errors are usually less than 5x10-4 mW/cm2.sr.cm-1. The computation speed is 3 to 4 orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This model will enable a vast new set of scientific calculations that were previously limited due to the computational expenses of available radiative transfer models.

  14. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  15. A critical analysis of shock models for chondrule formation

    Science.gov (United States)

    Stammler, Sebastian M.; Dullemond, Cornelis P.

    2014-11-01

    In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.

  16. The local distribution of radiation quality of a collimated fast neutron beam from 15 MeV deuterons on beryllium

    International Nuclear Information System (INIS)

    Fidorra, J.; Booz, J.

    1978-01-01

    The local distribution of radiation quality (ysub(F), ysub(D)) of a collimated fast neutron beam from 14 MeV deuterons on Beryllium was studied with a spherical 1/2 inch EG and G proportional counter simulating a diameter of 2μm. The deuterons were accelerated by the compact cyclotron CV-28 of the Kernforschungsanlage Juelich. The collimator was constructed by the Cyclotron Corporation. The mean neutron energy was 6 MeV. The measurements were performed in air and in a water phantom at a target skin distance of 125 cm. The energy deposition spectra of fast neutrons obtained at various positions were separated into three components of different radiation quality: the gamma component, the recoil proton component, and the heavy ion component

  17. A fast neutron spectrometer based on an electrochemically etched CR-39 detector with degrader and front radiator

    International Nuclear Information System (INIS)

    Matiullah; Durrani, S.A.

    1987-01-01

    In addition to having promising applications for the development of a fast-neutron dosemeter, electrochemically etched (ECE) CR-39 detectors also offer the possibility of energy-selective fast-neutron detection. This property stems basically from the fact that, to produce 'sparkable' trails in the polymeric detector subjected to ECE, the charged particle resulting from a neutron interaction must fall within a definite 'energy window'. The lower and upper limits of proton energies that can yield ECE spots in CR-39 have been experimentally determined to be ∼ 50 keV and ∼ 2.2 MeV under our processing conditions. To accomplish our objective, we have developed a technique based on ECE spot-density measurements in CR-39 detectors placed in conjuction with judiciously chosen thicknesses of a polyethylene radiator and a lead degrader. The optimum thicknesses of the radiator and the degrader, for a given neutron energy, are determined by computer calculations. (author)

  18. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  19. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  20. Effects of exposure to electromagnetic field radiation (EMFR generated by activated mobile phones on fasting blood glucose

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2013-04-01

    Full Text Available Objective: Extensive use of mobile phones has been accompanied by a common public debate about possible adverse effects on human health. No study has been published so far to establish any association between the fastest growing innovation of mobile phone and fasting blood glucose. The aim was to determine the effects of exposure to electromagnetic field radiation generated by mobile phones on fasting blood glucose in Wistar Albino rats. Materials and Methods: 40 Male Albino rats (Wistar Strain were divided into 5 equally numerous groups. Group A served as the control one, group B received mobile phone radiation for less than 15 min/day, group C: 15-30 min/day, group D: 31-45 min/day, and group E: 46-60 min/day for a total period of 3 months. Fasting blood glucose was determined by using Spectrophotometer and serum insulin by Enzyme-linked Immunosorbent Assay (ELISA. The Homeostatic Model (HOMA-B was applied for the assessment of β-cell function and (HOMA-IR for resistance to insulin. Results: Wister Albino rats exposed to mobile phone radiation for longer than 15 min a day for a total period of 3 months had significantly higher fasting blood glucose (p < 0.015 and serum insulin (p < 0.01 compared to the control group. HOMA-IR for insulin resistance was significantly increased (p < 0.003 in the groups that were exposed for 15-30 and 46-60 min/day compared to the control rats. Conclusion: The results of the present study show an association between long-term exposure to activated mobile phones and increase in fasting blood glucose and serum insulin in Albino rats.

  1. Microgravity Experiment: The Fate of Confined Shock Waves

    Science.gov (United States)

    Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2007-11-01

    Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.

  2. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    International Nuclear Information System (INIS)

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali

    2013-01-01

    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1–20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H 2 O 2 ) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H 2 O 2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (M c ) and crosslinking density (ρ x ) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H 2 O 2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial. - Highlights: ► A new radiation polymerization method is offered in dilute aqueous solution.► This method provides PVA

  3. Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp Expression of Cells Derived from Human Eye

    Directory of Open Access Journals (Sweden)

    Shin Koyama

    2016-08-01

    Full Text Available Human corneal epithelial (HCE-T and human lens epithelial (SRA01/04 cells derived from the human eye were exposed to 60 gigahertz (GHz millimeter-wavelength radiation for 24 h. There was no statistically significant increase in the micronucleus (MN frequency in cells exposed to 60 GHz millimeter-wavelength radiation at 1 mW/cm2 compared with sham-exposed controls and incubator controls. The MN frequency of cells treated with bleomycin for 1 h provided positive controls. The comet assay, used to detect DNA strand breaks, and heat shock protein (Hsp expression also showed no statistically significant effects of exposure. These results indicate that exposure to millimeter-wavelength radiation has no effect on genotoxicity in human eye cells.

  4. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    Energy Technology Data Exchange (ETDEWEB)

    Svirski, Gilad; Nakar, Ehud, E-mail: swirskig@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  5. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    International Nuclear Information System (INIS)

    Svirski, Gilad; Nakar, Ehud

    2014-01-01

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s –1 ) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF ν = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  6. The effects of ionizing radiation on the performance of signaled and unsignalled bar-press shock postponement in the rat

    International Nuclear Information System (INIS)

    Burghardt, W.F. Jr.

    1988-01-01

    Forty-eight rats in four conditions were used to determine the efficacy of preshock warning tones in maintaining bar-press shock postponement performance after irradiation. The SIDMAN group performed without external cues. The SIGNAL group received a 5 sec warning tone preceding shock. The COSAV group had preshock warning tones available for 60 sec following a response on another lever, and was used to assess the ability to maintain performance on two levers simultaneously. In VISIG, warning tones always preceded shocks, but followed shock postponement responses unpredictably. Sham-irradiated control groups were used to compare baseline performance on each task, and for comparison with irradiated subjects. Irradiated subjects could perform the movements necessary to successfully avoid shock. They were able to detect and respond appropriately to preshock warning tones when present, although COSAV subjects did not continue to respond to produce them. Irradiated subjects experienced a significant and lasting increase in the number of shocks received, except when no external cues were available

  7. Optical study of radiation damage in A-SI02 and problems of selective dosimetry of fast neutrons

    International Nuclear Information System (INIS)

    Abdukadyrova, I.Kh.

    1991-01-01

    The present work deals with the optical study of the processes of radiation damage and structural phase transitions (PT) accumulation in α-SiO 2 monocrystals undergoing various influences of fast neutrons (F) and with the possibility of dosimetrical utilization of radiation-sensitive characteristics of the oxide. It has been found that when F grows within the limits of 10 18 -10 20 cm -2 the optical activity var-phi of the crystal changes; the influence of flux density, temperature, surroundings, mixed reactor irradiation components, and thickness change. The process of radiation damage of crystals by spectroscopic methods has been studied. In the course of the neutron irradiation of the α-SiO 2 structure transformation phenomena were studied by means of IR-spectrometry

  8. Atomically Smooth Epitaxial Ferroelectric Thin Films for the Development of a Nonvolatile, Ultrahigh Density, Fast, Low Voltage, Radiation-Hard Memory

    National Research Council Canada - National Science Library

    Ahn, Charles H

    2006-01-01

    The goal of this research is to fabricate atomically smooth, single crystalline, complex oxide thin film nanostructures for use in a nonvolatile, ultrahigh density, fast, low voltage, radiation-hard memory...

  9. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  10. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    International Nuclear Information System (INIS)

    Won, Eun-Ji; Han, Jeonghoon; Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-01-01

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m 2 ) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m 2 of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana

  11. A fast, simple method for screening radiation susceptibility genes by RNA interference

    International Nuclear Information System (INIS)

    Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Otsuki, Marika; Miyagishi, Makoto; Taira, Kazunari; Imai, Takashi; Harada, Yoshi-nobu

    2005-01-01

    Radiotherapy can cause unacceptable levels of damage to normal tissues in some cancer patients. To understand the molecular mechanisms underlying radiation-induced physiological responses, and to be able to predict the radiation susceptibility of normal tissues in individual patients, it is important to identify a comprehensive set of genes responsible for radiation susceptibility. We have developed a simple and rapid 96-well screening protocol using cell proliferation assays and RNA interference to identify genes associated with radiation susceptibility. We evaluated the performance of alamarBlue-, BrdU-, and sulforhodamine B-based cell proliferation assays using the 96-well format. Each proliferation assay detected the known radiation susceptibility gene, PRKDC. In a trial screen using 28 shRNA vectors, another known gene, CDKN1A, and one new radiation susceptibility gene, ATP5G3, were identified. Our results indicate that this method may be useful for large-scale screens designed to identify novel radiation susceptibility genes

  12. Probabilistic safety analysis about the radiation risk for the driver in a fast-scan container/vehicle inspection system

    International Nuclear Information System (INIS)

    Li Junli; Zhu Guoping; Ming Shenjin; Cao Yanfeng

    2008-01-01

    A new Container/Vehicle Inspection System called fast-scan inspection system has been developed and used in some countries, which has a special advantage in scanning efficiency of 200 - 400 containers per hour. However, for its unique scanning mode, the fast-scan inspection system causes some worries about the radiation risk for the truck drivers, who will drive the container truck to pass through the scanning tunnel and might be exposed by the radiation beam in accidents. A PSA analysis, which has been widely used to evaluate the safety of nuclear power plant in the past, is presented here to estimate the probability of accidental exposure to the driver and evaluate the health risk. The fault tree and event tree analysis show that the probability of accidental exposure to the driver is pretty low and the main failure contributions are human errors and scanning control devices failures, which provides some recommendations for the further improvement about this product. Furthermore, on the basic of ICRP No.60 and 76 reports, the health risk to the truck driver is only about 4.0x10 -14 /a. Compared with the exempt level of 5x10 -7 /a, it can be concluded that the fast-scan system is safe enough for the truck driver. (author)

  13. MDS G(N) fast differentiation between natural and artificial gamma radiation with a new class of mobile instruments

    International Nuclear Information System (INIS)

    Katzung, W.; Bottcher, J.

    2009-01-01

    A State-of-the-Art tool used for detecting and tracking artificial gamma radiation out of a helicopter or a vehicle is the MDS G(N) - Mobile Detection System. A highly sensitive scintillation detector detects a significant artificial gamma radiation on the ground even if the helicopter is travelling at high speed. The GPS-aided system visualizes the measured values on a moveable map displayed on the screen of a notebook every second. The colours of the continuously entered points do represent adjustable alarm thresholds. This way, location and intensity of an unknown radioactive source or a radioactive contamination can be determined very quickly. The NBR-technology (Natural Background Rejection) which is used here leads to expressive measurement results differentiating between artificial and natural gamma radiation. Additional He-3 detectors allow simultaneously the detection of neutrons. The NBR principle - developed by Thermo Scientific - stands out for its very short response times. Thus, artificial radiation can be detected reliably within seconds - even when the unit is operated by untrained staff. Unlike traditional analytic measuring techniques, the NBR method is able to detect artificial radiation sources hidden or strongly shielded gamma sources clearly from the natural background radiation. The measuring range from 1 nSv/h to 20 ?Sv/h and is extended to 1 Sv/h with a Geiger Mueller counting tube. The sensitivity amounts to max. 20000 cps (referred to 1 ?Sv/h for Cs-137). The NBR- technique is well-proven and tested for: tracking hidden radiation sources, even such ones with low activity or which are shielded, detection of artificial radiation portions in the range of the natural background, reliably measuring the ambient equivalent dose rate in the range of the natural background, fast detection of artificial radioactivity out of helicopters and vehicles.(author)

  14. Measurement and Prediction of Radiative Non-Equilibrium for Air Shocks Between 7-9 km/s

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.

    2017-01-01

    The present paper describes a recent characterization of thermochemical non-equilibrium for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data are spectrally resolved from 190-1450 nm and spatially resolved behind the shock front. The data are analyzed in terms of a spectral non-equilibrium metric, defined as the average radiance within +/- 2 cm of the peak. Simulations with DPLR/NEQAIR using different rate chemistries show these conditions to be poorly replicated. The sources of discrepancy are examined, leading to an update to the NEQAIR non-Boltzmann model and DPLR rate chemistry. New parameters for the rate chemistry and non-Boltzmann modeling are reported.

  15. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    Science.gov (United States)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  16. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. III. Observational Signatures in Thermal Emission and Scattered Light

    Science.gov (United States)

    Hord, Blake; Lyra, Wladimir; Flock, Mario; Turner, Neal J.; Mac Low, Mordecai-Mark

    2017-11-01

    Recent observations of the protoplanetary disk around the Herbig Be star HD 100546 show two bright features in infrared (H and {L}{\\prime } bands) at about 50 au,with one so far unexplained. We explore the observational signatures of a high-mass planet causing shock heating in order to determine if it could be the source of the unexplained infrared feature in HD 100546. More fundamentally, we identify and characterize planetary shocks as an extra, hitherto ignored, source of luminosity in transition disks. The RADMC-3D code is used to perform dust radiative transfer calculations on the hydrodynamical disk models, including volumetric heating. A stronger shock heating rate by a factor of 20 would be necessary to qualitatively reproduce the morphology of the second infrared source. Instead, we find that the outer edge of the gap carved by the planet heats up by about 50% relative to the initial reference temperature, which leads to an increase in the scale height. The bulge is illuminated by the central star, producing a lopsided feature in scattered light, as the outer gap edge shows an asymmetry in density and temperature attributable to a secondary spiral arm launched not from the Lindblad resonances but from the 2:1 resonance. We conclude that high-mass planets lead to shocks in disks that may be directly observed, particularly at wavelengths of 10 μm or longer, but that they are more likely to reveal their presence in scattered light by puffing up their outer gap edges and exciting multiple spiral arms.

  17. Fast Neutron Radiotherapy for Locally Advanced Prostate Cancer: Final Report of a Radiation Therapy Oncology Group Randomized Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G. E.; Krall, J. M.; Thomas, F. J.; Russell, K. J.; Maor, M. H.; Hendrickson, F. R.; Martz, K. L.; Griffin, T. W.; Davis, L. W.

    1993-01-01

    Between June 1977 and April 1983 the Radiation Therapy Oncology Group (RTOG) sponsored a Phase III randomized trial investigating the use of fast neutron radiotherapy for patients with locally advanced (Stages C and D1) adenocarcinoma of the prostate gland. Patients were randomized to receive either conventional photon radiation or fast neutron radiation used in a mixed-beam (neutron/photon) treatment schedule. A total of 91 analyzable patients were entered into the study, and the two patient groups were balanced with respect to the major prognostic variables. Actuarial curves are presented for local/regional control and "overall" survival. Ten-year results for clinically assessed local control are 70% for the mixed-beam group versus 58% for the photon group (p = 0.03) and for survival are 46% for the mixed-beam group versus 29% for the photon group (p = 0.04). This study suggests that a regional method of treatment can influence both local tumor control and survival in patients with locally advanced adenocarcinoma of the prostate gland.

  18. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    Science.gov (United States)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  19. Extracorporeal shock waves lithotripsy versus retrograde ureteroscopy: is radiation exposure a criterion when we choose which modern treatment to apply for ureteric stones?

    Directory of Open Access Journals (Sweden)

    Catalin Pricop

    2014-10-01

    Full Text Available The aim of this study is to compare two major urological procedures in terms of patient exposure to radiation. We evaluated 175 patients, that were subjected to retrograde ureteroscopy (URS and extracorporeal shock waves lithotripsy (ESWL for lumbar or pelvic ureteral lithiasis, at two urological departments. The C-arm Siemens (produced in 2010 by Siemens AG, Germany was used for ureteroscopy. The radiological devices of the lithotripters used in this study in the two clinical centers had similar characteristics. We evaluated patient exposure to ionizing radiation by using a relevant parameter, the air kerma-area product (PKA; all values in cGy cm2, calculated from the radiation dose values recorded by the fluoroscopy device. PKA depends on technical parameters that change due to anatomical characteristics of each case examined, such as body mass index (BMI, waist circumference, and stone location. For the patients subjected to ESWL for lumbar ureteral lithiasis the mean of PKA (cGy cm2 was 509 (SD=180, while for those treated for pelvic ureteral lithiasis the mean of PKA was 342 (SD=201. In the URS group for lumbar ureteral lithiasis, the mean of PKA (cGy cm2 was 892 (SD=436, while for patients with pelvic ureteral lithiasis, the mean of PKA was 601 (SD=429. The patients treated by URS had higher exposure to ionizing radiation dose than patients treated by ESWL. The risk factors of higher radiation doses were obesity, exposure time, and localization of the stones.

  20. Microdosimetric studies using a Filtered Fast Neutron Irradiation System of research reactor to application in radiation biology

    International Nuclear Information System (INIS)

    Rodrigues, Pedro Pereira

    2007-01-01

    In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C 3 H 8 at 5.6 kPa (42 Torr) pressure, which is equivalent to 1.3 μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A and M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during 1h for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation system (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray. (author)

  1. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  2. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    International Nuclear Information System (INIS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-01-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude. -- Highlights: ► An efficient radiative transfer model is developed for cloud remote sensing. ► Multi-layered clouds and a non-Lambertian surface can be fully considered.

  3. Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1

    Science.gov (United States)

    Hogan, Robin J.; Quaife, Tristan; Braghiere, Renato

    2018-01-01

    A fast scheme is described to compute the 3-D interaction of solar radiation with vegetation canopies. The canopy is split in the horizontal plane into one clear region and one or more vegetated regions, and the two-stream equations are used for each, but with additional terms representing lateral exchange of radiation between regions that are proportional to the area of the interface between them. The resulting coupled set of ordinary differential equations is solved using the matrix-exponential method. The scheme is compared to solar Monte Carlo calculations for idealized scenes from the RAMI4PILPS intercomparison project, for open forest canopies and shrublands both with and without snow on the ground. Agreement is good in both the visible and infrared: for the cases compared, the root-mean-squared difference in reflectance, transmittance and canopy absorptance is 0.020, 0.038 and 0.033, respectively. The technique has potential application to weather and climate modelling.

  4. Radiation of fast positrons interacting with periodic microstructure on the surface of a crystal

    Energy Technology Data Exchange (ETDEWEB)

    Epp, V., E-mail: epp@tspu.edu.ru [Tomsk State Pedagogical University, ul. Kievskaya 60, 634061 Tomsk (Russian Federation); Tomsk State University, pr. Lenina 36, 634050 Tomsk (Russian Federation); Janz, J.G., E-mail: Yanc@tpu.ru [Tomsk Polytechnic University, pr. Lenina 34, 634050 Tomsk (Russian Federation); Kaplin, V.V., E-mail: kaplin@tpu.ru [Tomsk Polytechnic University, pr. Lenina 34, 634050 Tomsk (Russian Federation)

    2016-12-01

    Highlights: • New tunable crystalline source of X-ray radiation is described. • Radiation is emitted by the channeling relativistic particles. • A set of crystal plates offers more effective monitoring of the photon energy. • Formulae describing the radiation properties are obtained. - Abstract: Radiation of positrons passing through a set of equidistant crystal plates is calculated. Each plate is of thickness of half of the particle trajectory period at planar channeling in a thick crystal. Positively charged particle entering the first plate at an angle smaller than the critical channeling angle is captured into channeling mode and changes the direction of its transversal velocity to reversed. Between the half-wave plates the particle moves along a straight line. The proposed setup can be realized as a set of equidistant ridges on the surface of a single crystal. Passing through such set of half-wave crystal plates the particle moves on quasi-undulator trajectories. Properties of the particle radiation emitted during their passage through such “multicrystal undulator” are calculated. The radiation spectrum in each particular direction is discrete, and the frequency of the first harmonic and the number of harmonics in the spectrum depend on the distance between the plates, on energy of the particles and on the averaged potential energy of atomic planes of the crystal. The radiation is bound to a narrow cone in the direction of the average particle velocity and polarized essentially in a plane orthogonal to the atomic planes in the crystal.

  5. The degradation of triazo dye Chlorantine Fast Green BLL in aqueous solutions by gamma radiation: Pt. 3

    International Nuclear Information System (INIS)

    El-Assy, N.B.

    1991-01-01

    The radiation degradation yield (G d values) of Chlorantine Fast Green BLL (CFGBLL), G d , i.e. the value of moles of dye molecules degraded per joule of energy absorbed, was measured in aerated, oxygen-and nitrogen-saturated aqueous solutions. The relatively low degradation yield indicates the absence of chain reactions and probably the poor efficiency and economics, in terms of the practical application of the radiation process. For applications in the radiation treatment of waste water, it is noted that in the presence of oxygen and at higher concentration of CFGBLL, the value of G d increases markedly, so that it may be practical to monitor the extent of sterilization of water. In addition the radiation processing of CFGBLL waste water may also become economically feasible. The specific bimolecular rate constant of the reaction of CFGBLL with the . OH was determined by studying the effect of ethanol concentration on G d using competition kinetics. Suggestions are made for the possible use of CFGBLL aqueous solution as a chemical dosimeter in the range of absorbed dose from 0.1 to 5 kGy. (author)

  6. Radiation heat transfer through the gas of a sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Pradel, P.; Frachet, S.; Petit, D.

    1984-04-01

    Analysis based on results from the COCA test campaign and Germinal mockup of Super Phenix upper shuttings, of the heat transfers and radiation attenuation due to sodium aerosols between the free surface of sodium and the upper shuttings

  7. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  8. ON SHOCKS DRIVEN BY HIGH-MASS PLANETS IN RADIATIVELY INEFFICIENT DISKS. II. THREE-DIMENSIONAL GLOBAL DISK SIMULATIONS

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Okuzumi, Satoshi; Flock, Mario; Mac Low, Mordecai-Mark

    2016-01-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk–planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5M J planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit

  9. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. II. Three-dimensional Global Disk Simulations

    Science.gov (United States)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Mac Low, Mordecai-Mark; Okuzumi, Satoshi; Flock, Mario

    2016-02-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5MJ planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit.

  10. Influence of mutations in some structural genes of heat-shock proteins on radiation resistance of Escherichia coli

    International Nuclear Information System (INIS)

    Verbenko, V.N.; Kuznetsova, L.V.; Bikineeva, E.G.; Kalinin, V.L.

    1992-01-01

    Lethal effects of γ-irradiation were studied in Escherichia coli strains with normal repair genotype and in radiation-resistant Gam r strains, both carrying additional mutations in the structural genes dnaK, grpE, groES or groEL. The null mutation ΔdnaK52::Cm r enhanced radiation sensitivity of wild-type cells and abolished the effect of heat induced rediation-resistance (ETIRR) and elevated radiation resistance of the Gam r strains

  11. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  12. Radition mutagenesis in lavender. Part 2. Effect of heat shock, moisture and post radiation storage on lavender seed radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Raev, R.C. (Institute of the Rose, Essential Oil and Medicinal Plants, Kazanlyk (Bulgaria))

    1983-01-01

    The influence of three factors which increase radiation tolerance of lavender seeds and reduce the biological injuries with lethal effect in case of gamma-irradiation (Cs/sup 137/) was investigated. Irradiation at -65 deg C increased radiation tolerance and led to increased doses and higher mutagenic effect. Seeds with lowered moisture had higher radiosensitivity in comparison to these having 4.5-5 times more water. Post-radiation storage at 20-22 deg C without loss of moisture increased radiation injuries, which grew along with the prolongation of the period from seed irradiation to germination.

  13. Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle

    International Nuclear Information System (INIS)

    Zhang, Jianyi; Fan, Xi’an; Lu, Lei; Hu, Xiaoming; Li, Guangqiang

    2015-01-01

    Highlights: • The ferrites based infrared radiation coating was prepared by HVOF for the first time. • The infrared radiation coatings were applied firstly on the household kettle. • The bonding strength between the coating and substrate could reach 30.7 MPa. • The coating kept intact when cycle reached 27 by quenching from 1000 °C using water. • The energy-saving efficiency of the kettle with coating could reach 30.5%. - Abstract: Starting from Fe 2 O 3 , MnO 2 , Co 2 O 3 and NiO powders, the ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance were successfully prepared on the surface of carbon steel by high velocity oxy-fuel spraying (HVOF). The coating thickness was about 120–150 μm and presented a typical flat lamellar structure. The coating surface was rough and some submicron grade grains distributed on it. The infrared emissivity of the ferrites based coating by HVOF was over 0.74 in 3–20 μm waveband at 800 °C, which was obviously higher than that of the coating by brushing process in the short waveband. The bonding strength was 30.7 MPa between the coating and substrate, which was five times more than that of conventional coatings by brushing process. The combined effect of the superior bonding strength, typical lamellar structure, pre-existing microcracks and newly generated pores made the cycle times reach 27 when the coating samples were quenched from 1000 °C using water. Lastly, the infrared radiation coatings were applied on the underside of household kettle, and the energy-saving efficiency could reach 30.5%. The ferrites based infrared radiation coatings obtained in this work are good candidates for saving energy in the field of cookware and industrial high temperature furnace

  14. Fast multiatlas selection using composition of transformations for radiation therapy planning

    NARCIS (Netherlands)

    Rivest-Hénault, D.; Ghose, S.; Pluim, J.P.W.; Greer, P.B.; Fripp, J.; Dowling, J.A.; Menze, Bj.; Langs, G.; Montillo, A.; Kelm, M.; Mueller, H.; Zhang, Sh.; Cai, W.; Metaxas, D.

    2014-01-01

    In radiation therapy, multiatlas segmentation is recognized as being accurate, but is generally not considered scalable since the highest accuracy is achieved only when using a large atlas database. The fundamental problem is to use such a large database, to accurately represent the population

  15. Health transitions, fast and nasty: the case of Marshallese exposure to nuclear radiation.

    Science.gov (United States)

    Pollock, Nancy J

    2002-09-01

    The concept of health transitions assumes that health status improves with the introduction of western medicine. In this paper I demonstrate that the health of the people of Rongelap, Marshall Islands, has undergone serious damage as a result of nuclear testing, and that women in particular have suffered unduly. Exposure to nuclear radiation over a period of almost fifty years has been recognised by US authorities as a major contributory cause to the high rates of cancers and birth defects suffered by the Rongelap people. Women's reproduction has been severely affected, as evidenced by the many stillbirths and small stature of children born alive. Two generations have been exposed to both background radiation and to radiation ingested with the local foods on which they rely in the absence of other food sources. Clean up has commenced only after this and other communities sought compensation from the United States. The Rongelap people will live with the effects of radiation for generations to come. This transition to ongoing health problems is thus a negative outcome of modern health transition.

  16. The chemistry of two-component fluoride crystalline optical media for heavy, fast, radiation hard scintillators

    International Nuclear Information System (INIS)

    Sobolev, B.P.; Krivandina, E.A.; Fedorov, P.P.; Vasilchenko, V.G.

    1994-01-01

    Prospects for preparation of two-component dense optical materials for scintillators are shown, using data on phase diagrams of about 300 MF m - RF n (m, n ≤ 4) type systems, formed by metal fluorides. Primary characteristics (decay time and light output of luminescence, radiation hardness, etc.) of some multicomponent crystals are reported

  17. Feasibility of a novel approach for fast, economical determination of radiation damage in nuclear reactor cores

    International Nuclear Information System (INIS)

    Was, G.S.

    1993-01-01

    Progress was made in the following areas: radioinduced segregation (modeling and experiment), deformation of irradiated microstructures, stress corrosion cracking of irradiated microstructures, and development of an apparatus to determine the role of deformation on the radiation microstructure in-situ. Materials used were based on Ni-Cr-Fe and 304L

  18. The determination of fast neutron fluence in radiation stability tests of steel samples

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1979-01-01

    The activation method is described of determining fast neutron fluence. Samples of steel designed for WWER type reactor pressure vessels were irradiated in the CHOUCA-rigs in the core of the WWR-S reactor. The neutron spectrum was measured by the multiple activation foil method and the effective cross sections of fluence monitors were calculated. The fluences obtained from the reactions 54 Fe(n,p) 54 Mn and 63 Cu(n,α) 60 Co are presented and the method is discussed. (author)

  19. Fast ion generation in femto- and picosecond laser plasma at low fluxes of heating radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.

    2006-01-01

    X-ray spectra from fluoroplastic targets irradiated by laser pulses with duration of 60 fs to 1 ps have been investigated experimentally. It is shown that, when the contrast of the laser pulse is sufficiently low, the effect of self-focusing of the main laser pulse in the plasma produced by the prepulse can significantly enhance the generation efficiency of fast particles. In this case, ions with energies as high as ∼1 MeV are observed at relatively low laser intensities [ru

  20. Simulations of cloudy hyperspectral infrared radiances using the HT-FRTC, a fast PC-based multipurpose radiative transfer code

    Science.gov (United States)

    Havemann, S.; Aumann, H. H.; Desouza-Machado, S. G.

    2017-12-01

    The HT-FRTC uses principal components which cover the spectrum at a very high spectral resolution allowing very fast line-by-line-like, hyperspectral and broadband simulations for satellite-based, airborne and ground-based sensors. Using data from IASI and from the Airborne Research Interferometer Evaluation System (ARIES) on board the FAAM BAE 146 aircraft, variational retrievals in principal component space with HT-FRTC as forward model have demonstrated that valuable information on temperature and humidity profiles and on the cirrus cloud properties can be obtained simultaneously. The NASA/JPL/UMBC cloudy RTM inter-comparison project has been working on a global dataset consisting of 7377 AIRS spectra. Initial simulations with HT-FRTC for this dataset have been promising. A next step taken here is to investigate how sensitive the results are with respect to different assumptions in the cloud modelling. One aspect of this is to study how assumptions about the microphysical and related optical properties of liquid/ice clouds impact the statistics of the agreement between model and observations. The other aspect is about the cloud overlap scheme. Different schemes have been tested (maximum, random, maximum random). As the computational cost increases linearly with the number of cloud columns, it will be investigated if there is an optimal number of columns beyond which there is little additional benefit to be gained. During daytime the high wave number channels of AIRS are affected by solar radiation. With full scattering calculations using a monochromatic version of the Edwards-Slingo radiation code the HT-FRTC can model solar radiation reasonably well, but full scattering calculations are relatively expensive. Pure Chou scaling on the other hand can not properly describe scattering of solar radiation by clouds and requires additional refinements.

  1. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  2. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    International Nuclear Information System (INIS)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-01

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO 3 or LiNbO 3 as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm 2 10 kW/cm 2 and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor

  3. Fast-response cryogenic calorimeter containing a 52-KG radiation absorber

    International Nuclear Information System (INIS)

    Bendt, P.J.; Yarnell, J.L.

    1977-01-01

    An isothermal liquid helium boiloff calorimeter containing a 52-kg copper radiation absorber, and having a time constant 235 U foils irradiated in a nuclear reactor. The short response time was achieved by the large reduction in heat capacity of solids at 4 0 K, and by nearly isothermal operation. Though the initial power level was approx.3 W, the maximum thermal energy storage was approx.1 joule. The Al clad foils were transported in approx.1 s, and cooled to liquid helium temperature in approx.3 s. Boil-off helium gas was warmed to room temperature in a controlled manner, and measured with a hot-film anemometer flowmeter, which was calibrated by comparison with a dry-test volume flowmeter, and by electric heating of the radiation absorber. The correction for gamma leakage from the absorber was less than or equal to 3%, and the correction at short cooling times for sample cooldown, 2.24-m activity of the Al cladding, and system response time, amounted to 3.4% at 10 s. The overall accuracy (1 sigma) of the radiation measurements is less than or equal to 2%, except at the shortest cooling time (10 s), where it rises to 4%

  4. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Krouský, Eduard; Kucharik, M.; Liska, R.; Ullschmied, Jiří

    2015-01-01

    Roč. 22, č. 3 (2015), s. 1-11, č. článku 032709. ISSN 1070-664X R&D Projects: GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * ultra-high-pressure shocks * laser-induced cavity pressure acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.207, year: 2015

  5. Radiation injuries of the spinal marrow of rats after irradiation with fast electrons

    International Nuclear Information System (INIS)

    Bruce-Micah, B.

    1973-01-01

    Twenty rats were fractionated irradiated on five days of the week with fast electrons of 42 MeV energy with a single dose of 200 r/day. After 1,000 r, 2,000 r, 3,000 r and 4,000 r HD, the animals were supravitally fixed and the spinal marrow was removed. The histological investigation already showed after 1,000 r HD distinct changes of the nerve cells and nerve fibers whereas the vessels appeared not to be injured. After 2,000 r HD, vessel changes with edemas occured for the first time. After 3,000 r HD, all nerve cells were severely injured, the glia tissue was denser and the vessels were enlarged despite endothelial proliferations. Furthermore, there were big edemas around the vessels and a beginning of demyelinisation in the dorsal column. After 4,000 r HD, a great part of the nerve cells and also a few glia cells were destroyed. The remaining glia cells were pyknotic and had partly several nucleoli. The tractus of the white matter consisted almost only now of a glia felt. With a survival time of six weeks, the glia had greatly regenerated and numerous new capillaries had sprouted in the grey matter. The white matter was strongly demyelinised. In the front lateral column, small round necrosis centres were visible. 18 weeks after irradiation, the glia tissue had greatly rebuilt itself. There were only very few nerve cells present. The strong sprouting of new capillaries in the grey matter was most noticeable. The results show that the application of fast electrons is of no advantage as regards injuring the nerve tissue compared to X-rays. (orig./LH) [de

  6. Laser-driven ablation through fast electrons in PALS experiment at the laser radiation intensity of 1–50 PW/cm2

    Czech Academy of Sciences Publication Activity Database

    Gus’kov, S.Yu.; Demchenko, N. N.; Kasperczuk, A.; Pisarczyk, T.; Kalinowska, Z.; Chodukowski, T.; Renner, Oldřich; Šmíd, Michal; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Ullschmied, Jiří; Pisarczyk, P.

    2014-01-01

    Roč. 32, č. 1 (2014), s. 177-195 ISSN 0263-0346 R&D Projects: GA MŠk LM2010014; GA MŠk EE2.3.20.0279 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:AVČR(CZ) M100101208; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : inertial confinement fusion * shock ignition * laser-produced plasma * three-frame interferometry * X-ray spectroscopy * fast electron generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.295, year: 2014

  7. CARS measurement of vibrational and rotational temperature with high power laser and high speed visualization of total radiation behind hypervelocity shock waves of 5-7km/s

    Science.gov (United States)

    Sakurai, Kotaro; Bindu, Venigalla Hima; Niinomi, Shota; Ota, Masanori; Maeno, Kazuo

    2010-09-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) method is commonly used for measuring molecular structure or condition. In the aerospace technology, this method is applies to measure the temperature in thermic fluid with relatively long time duration of millisecond or sub millisecond. On the other hand, vibrational/rotational temperatures behind hypervelocity shock wave are important for heat-shield design in phase of reentry flight. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. In this paper CARS method is applied to measure the vibrational/rotational temperature of N2 behind hypervelocity shock wave. The strong shock wave in front of the reentering space vehicles can be experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas. However CARS measurement is difficult for our experiment. Our measurement needs very short pulse which order of nanosecond and high power laser for CARS method. It is due to our measurement object is the momentary phenomena which velocity is 7km/s. In addition the observation section is low density test gas, and there is the strong background light behind the shock wave. So we employ the CARS method with high power, order of 1J/pulse, and very short pulse (10ns) laser. By using this laser the CARS signal can be acquired even in the strong radiation area. Also we simultaneously try to use the CCD camera to obtain total radiation with CARS method.

  8. Radiative double-electron capture in collisions of fast heavy ions with solid carbon targets

    International Nuclear Information System (INIS)

    Yakhontov, V.L.; Amusia, M.Y.

    1997-01-01

    Two-electron capture with an emission of a single photon (TESP) in collisions of highly charged ions with light atoms is considered. Such a process is actually a time-reversed double photoionization but occurring at specific kinematics. In the lowest order in the interelectron interaction, the TESP probability is determined by two diagrams which are evaluated analytically by means of the Coulomb Green close-quote s function. The calculated ratio of the radiative double-electron capture and single recombination cross sections is in fair agreement with the data obtained in the recent experimental study of this phenomenon. copyright 1997 The American Physical Society

  9. Magnetic field overshoots in the Venus blow shock

    International Nuclear Information System (INIS)

    Tatrallyay, M.; Luhmann, J.G.; Russell, C.T.

    1984-01-01

    An examination of Pioneer Venus Orbiter fluxgate magnetometer data has shown that magnetic field overshoots occur not only behind quasi-perpendicular bow shocks but also behind quasi-parallel shocks. Overshoots are assocciated only with supercritical shocks. Their amplitudes increase with increasing fast Mach number. Solar wind beta has a lesser effect. The thickness of the overshoot increases with decreasing Theta-BN. The thickness of apparent overshoots detected behind 4 strong fast interplanetary shocks (M greater than M/crit) is about 3 orders of magnitude larger. Multiple crossings of the Venus bow shock were observed mainly at turbulent shocks. Their occurence is not influenced by Theta-BN. 15 references

  10. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  11. High-speed, multi-channel detector readout electronics for fast radiation detectors

    International Nuclear Information System (INIS)

    Hennig, Wolfgang

    2012-01-01

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications. The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the

  12. High-speed, multi-channel detector readout electronics for fast radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang

    2012-06-22

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC

  13. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    Science.gov (United States)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  14. Transient and chronic neurological complications of fast neutron radiation for adenocarcinoma of the prostate

    International Nuclear Information System (INIS)

    Russell, K.J.; Laramore, G.E.; Wiens, L.W.; Griffeth, J.T.; Koh, W.J.; Griffin, B.R.; Austin-Seymour, M.M.; Griffin, T.W.

    1990-01-01

    The records of 132 patients participating in clinical trials using fast neutron (n = 94), mixed neutron and photon (n = 16), or conventional photon (n = 22) irradiation for primary management of prostatic cancer were retrospectively reviewed to assess treatment-related neurological complications. With a median follow-up of 14 months (range 1 to 101 months), 31/132 patients (26 neutron, 3 mixed beam, 2 photon) have experienced either sciatica beginning during or shortly after treatment, or diminished bladder or bowel continence that developed at a median time of 6.5 months following treatment. Sciatica responded to oral steroids and was usually self-limited, whereas sphincter dysfunction appears to be permanent. Pre-treatment risk factors for complications included a history of hypertension, diabetes, cigarette smoking or peripheral vascular disease, with 81% of affected patients having one or more risk factors compared witn 55% of unaffected patients (p = 0.01). Seven patients have moderate (5) or severe (2) residual problems, all in the cohorts receiving neutrons (6/7) or mixed beam therapy (1/7). (author). 31 refs.; 5 tabs

  15. Transient and chronic neurological complications of fast neutron radiation for adenocarcinoma of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.J.; Laramore, G.E.; Wiens, L.W.; Griffeth, J.T.; Koh, W.J.; Griffin, B.R.; Austin-Seymour, M.M.; Griffin, T.W. (Washington Univ., Seattle, WA (USA). Lab. of Radiation Ecology); Krieger, J.N. (Washington University, Seattle (USA). Department of Urology); Davis, L.W. (Albert Einstein Coll. of Medicine, Bronx, NY (USA))

    1990-07-01

    The records of 132 patients participating in clinical trials using fast neutron (n = 94), mixed neutron and photon (n = 16), or conventional photon (n = 22) irradiation for primary management of prostatic cancer were retrospectively reviewed to assess treatment-related neurological complications. With a median follow-up of 14 months (range 1 to 101 months), 31/132 patients (26 neutron, 3 mixed beam, 2 photon) have experienced either sciatica beginning during or shortly after treatment, or diminished bladder or bowel continence that developed at a median time of 6.5 months following treatment. Sciatica responded to oral steroids and was usually self-limited, whereas sphincter dysfunction appears to be permanent. Pre-treatment risk factors for complications included a history of hypertension, diabetes, cigarette smoking or peripheral vascular disease, with 81% of affected patients having one or more risk factors compared witn 55% of unaffected patients (p = 0.01). Seven patients have moderate (5) or severe (2) residual problems, all in the cohorts receiving neutrons (6/7) or mixed beam therapy (1/7). (author). 31 refs.; 5 tabs.

  16. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

  17. HERSCHEL* FAR-INFRARED SPECTROSCOPY OF THE GALACTIC CENTER. HOT MOLECULAR GAS: SHOCKS VERSUS RADIATION NEAR Sgr A

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, Javier R.; Etxaluze, M.; Cernicharo, J.; Bell, T. A. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC-INTA, Carretera de Ajalvir, Km 4, Torrejon de Ardoz, E-28850 Madrid (Spain); Gerin, M.; De Luca, M.; Encrenaz, P. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure (France); Neufeld, D. A.; Indriolo, N. [Johns Hopkins University, Baltimore, MD 21218 (United States); Contursi, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Lis, D. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Polehampton, E. T. [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sonnentrucker, P., E-mail: jr.goicoechea@cab.inta-csic.es [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-05-20

    We present a {approx}52-671 {mu}m spectral scan toward Sgr A* taken with the PACS and SPIRE spectrometers on board Herschel. The achieved angular resolution allows us to separate, for the first time at far-IR wavelengths, the emission toward the central cavity (gas in the inner central parsec of the galaxy) from that of the surrounding circumnuclear disk. The spectrum toward Sgr A* is dominated by strong [O III], [O I], [C II], [N III], [N II], and [C I] fine-structure lines (in decreasing order of luminosity) arising in gas irradiated by UV photons from the central stellar cluster. In addition, rotationally excited lines of {sup 12}CO (from J = 4-3 to 24-23), {sup 13}CO, H{sub 2}O, OH, H{sub 3}O{sup +}, HCO{sup +}, and HCN, as well as ground-state absorption lines of OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, CH{sup +}, H{sub 2}O, OH, HF, CH, and NH are detected. The excitation of the {sup 12}CO ladder is consistent with a hot isothermal component at T{sub k} {approx_equal} 10{sup 3.1} K and n(H{sub 2}) {approx}< 10{sup 4} cm{sup -3}. It is also consistent with a distribution of temperature components at higher density with most CO at T{sub k} {approx}< 300 K. The detected molecular features suggest that, at present, neither very enhanced X-ray nor cosmic-ray fluxes play a dominant role in the heating of the hot molecular gas. The hot CO component (either the bulk of the CO column or just a small fraction depending on the above scenario) results from a combination of UV- and shock-driven heating. If irradiated dense clumps/clouds do not exist, shocks likely dominate the heating of the hot molecular gas. This is consistent with the high-velocity gas detected toward Sgr A*.

  18. Validation of Heat Shock Protein 70 as a Tumor-Specific Biomarker for Monitoring the Outcome of Radiation Therapy in Tumor Mouse Models

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christine; Liebhardt, Michael E.; Schmid, Thomas E. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Trajkovic-Arsic, Marija [II Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Hube, Kathrin; Specht, Hanno M. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Schilling, Daniela [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Clinical Kooperation Group, Innate Immunity in Tumor Biology, HelmholtzZentrum München, Munich (Germany); Gehrmann, Mathias; Stangl, Stefan [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Siveke, Jens T. [II Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Wilkens, Jan J. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Multhoff, Gabriele, E-mail: Gabriele.multhoff@lrz.tum.de [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Clinical Kooperation Group, Innate Immunity in Tumor Biology, HelmholtzZentrum München, Munich (Germany)

    2014-03-01

    Purpose: Tumor cells, in contrast to normal cells, frequently overexpress heat shock protein 70 (Hsp70) in the cytosol, present it on their cell surface, and actively release it. Therefore, soluble Hsp70 (sHsp70) was investigated as a potential tumor biomarker for monitoring the outcome of radiation therapy. Methods and Materials: Plasma from mice bearing membrane Hsp70 (mHsp70)-positive FaDu human squamous cell carcinoma of the head and neck and spontaneous pancreatic ductal adenocarcinoma (PDAC) was investigated. A cohort of mice with FaDu tumors (0.32 cm{sup 3}) was irradiated with 30 Gy, and plasma was collected 24 hours after irradiation, after the tumors had shrunk to 50% of their starting volume and after complete remission. sHsp70 levels in the plasma were quantified by enzyme-linked immunosorbent assay. Results: sHsp70 levels were significantly higher in the blood of tumor-bearing mice than that of control animals. A correlation between increasing sHsp70 plasma levels and tumor volume in the range of 0.01 cm{sup 3} to 0.66 cm{sup 3} was observed. Radiation-induced regression of the tumors was associated with significantly decreased sHsp70 levels, which returned to the level of control animals after complete remission. Conclusion: We propose sHsp70 as an innovative biomarker for detecting tumors and for monitoring the clinical outcome of radiation therapy in cancer patients.

  19. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  20. Fast shading correction for cone beam CT in radiation therapy via sparse sampling on planning CT.

    Science.gov (United States)

    Shi, Linxi; Tsui, Tiffany; Wei, Jikun; Zhu, Lei

    2017-05-01

    The image quality of cone beam computed tomography (CBCT) is limited by severe shading artifacts, hindering its quantitative applications in radiation therapy. In this work, we propose an image-domain shading correction method using planning CT (pCT) as prior information which is highly adaptive to clinical environment. We propose to perform shading correction via sparse sampling on pCT. The method starts with a coarse mapping between the first-pass CBCT images obtained from the Varian TrueBeam system and the pCT. The scatter correction method embedded in the Varian commercial software removes some image errors but the CBCT images still contain severe shading artifacts. The difference images between the mapped pCT and the CBCT are considered as shading errors, but only sparse shading samples are selected for correction using empirical constraints to avoid carrying over false information from pCT. A Fourier-Transform-based technique, referred to as local filtration, is proposed to efficiently process the sparse data for effective shading correction. The performance of the proposed method is evaluated on one anthropomorphic pelvis phantom and 17 patients, who were scheduled for radiation therapy. (The codes of the proposed method and sample data can be downloaded from https://sites.google.com/view/linxicbct) RESULTS: The proposed shading correction substantially improves the CBCT image quality on both the phantom and the patients to a level close to that of the pCT images. On the phantom, the spatial nonuniformity (SNU) difference between CBCT and pCT is reduced from 74 to 1 HU. The root of mean square difference of SNU between CBCT and pCT is reduced from 83 to 10 HU on the pelvis patients, and from 101 to 12 HU on the thorax patients. The robustness of the proposed shading correction is fully investigated with simulated registration errors between CBCT and pCT on the phantom and mis-registration on patients. The sparse sampling scheme of our method successfully

  1. The role of microbial low-molecular-weight autoregulatory factors (alkylhydroxybenzenes) in resistance of microorganisms to radiation and heat shock

    Science.gov (United States)

    El-Registan, Galina I.; Mulyukin, Andrey L.; Nikolaev, Yuri A.; Stepanenko, Irina Yu.; Kozlova, Alla N.; Martirosova, Elena I.; Shanenko, Elena F.; Strakhovskaya, Marina G.; Revina, Aleksandra A.

    Low-molecular-weight cell-to-cell communication factors are produced by various pro- and eukaryotes and involved in autoregulation of the growth and development of microbial cultures. As for some bacterial and yeast species, these factors were identified as isomers and homologues of alkylhydroxybenzenes (AHB). Depending on the concentration, they participate in controlling the transition to stationary phase, entering the resting state, and stress resistance of vegetative cells to gamma-irradiation, photooxidation (singlet oxygen), and heat shock. Chemical analogues of microbial AHB protected microbial cultures from stressful situations and exerted (1) the stabilizing activity toward macromolecules and (2) the ability to scavenge active oxygen species. The stabilizing effect of AHBs resulted from their complex formation with protected macromolecules due to intermolecular hydrogen bonds, hydrophobic and electrostatic interactions and was demonstrated on models of individual enzymes (trypsin). Particularly, AHBs protected the yeast from the action of (a) active oxygen species formed during gamma-irradiation (500 Gy, 1.96 Gy/s) or (b) singlet oxygen generated in cells photosensitized by chlorin e 6 (10 μg/L). It is important that microbial AHBs were not species-specific and defended cultured microbial and animal cells from the action of organic toxicants. The use of AHBs as protectants and adaptogens is discussed as well as perspectives of further investigations.

  2. EDF FARN (fast action force in case of nuclear accident) - Focus on radiation protection of workers

    International Nuclear Information System (INIS)

    Le Guen, Bernard

    2014-01-01

    fully operational in an autonomous manner within 24 hours. Within this emergency response context, the radiological risk for the public, incorporated in the ability to reinstate the environmental measurement networks if they have been destroyed is factored into design, mainly with construction of the new emergency response management centre. In addition to the site equipment and human resources, the FARN has personnel trained in RP and stress management in emergency situations, personnel specialised in radiation protection in the field, an RP expert who coordinates response actions in radiation protection terms and a site doctor. Concerning equipment resources, EDF has opted for robust RP equipment common to all its personnel, factoring in Fukushima operating experience, both for worker protection and monitoring and for equipment and procedures appropriate to a high level of background noise. In order to reinstate environmental measurements, modular equipment enables the networks to be increasingly set up as and when the external emergency services arrive. The principle of radiological risk management is based on progressive scheduled enhancement of the different items of RP equipment provided for monitoring and optimum protection of the public and all the emergency response teams, right from the very start and throughout response. The shift crews present on site thus take the first radiation protection actions: worker protection, partial reinstatement of the radiation monitoring network providing the public authorities with information so that they can fulfil their remit of public protection. This approach is supplemented with assessment of release into the atmosphere and analysis of radiological impact using predictive tools at corporate level. Deployment of the FARN with additional input of equipment enables a complete environmental monitoring network to be reinstated within 24 hours, if need be, and additional radiological monitoring equipment to be deployed. Lastly

  3. The radiative capture of fast nucleons in the mass area of medium and heavy nuclei

    International Nuclear Information System (INIS)

    Rigaud, F.

    1978-01-01

    The radiative capture of 14 MeV neutrons cross-sections on the 59 Co, 93 Nb, 103 Rh, 133 Cs, 139 La, Ce and 159 Tb nuclei were investigated by the integration method and by the activation method on the 27 Al, 50 Ti, 51 V, 103 Rh, 127 I and 139 La nuclei. The gamma-ray spectra following the capture of 8-22 MeV protons on 110 Cd and 115 In nuclei were measured and the single-particle states capture cross-sections deduced. The 110 Cd(p,γ 0 ) 111 In angular distribution was also measured at 13 MeV. The direct and semi-direct processes explained the experimental results. The volume form of the coupling interaction was adequate to account the neutrons results and the surface form to account the 110 Cd(p,γ 0 ) 111 In results. The 110 Cd nuclei electric quadrupole excitation was formed negligible compared with the electric dipole excitation which is adequate to explain the 110 Cd(p,γ 0 ) 111 In excitation function [fr

  4. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru; Gribova, O. V., E-mail: gribova79@mail.ru; Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  5. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    International Nuclear Information System (INIS)

    Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2015-01-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.

  6. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  7. Development of the microstrip silicon detector for imaging of fast processes at a synchrotron radiation beam

    Energy Technology Data Exchange (ETDEWEB)

    Aulchenko, V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Pruuel, E. [Lavrentiev Institute of Hydrodynamics, 630090 Novosibirsk, Russian Federtion (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Shekhtman, L. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Ten, K. [Lavrentiev Institute of Hydrodynamics, 630090 Novosibirsk, Russian Federtion (Russian Federation); Tolochko, B. [Institute of Solid State chemistry and Mechanochemistry, 630090 Novosibirsk, Russian Federtion (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Zhulanov, V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation)

    2017-02-11

    In situ imaging of explosions allows to study material properties under very high pressures and temperatures. Synchrotron radiation (SR) is a powerful tool for such studies because of its unique time structure. Flashes of X-rays from individual bunches in a storage ring are so short that an object under study does not move more than 1–10 μm during exposure. If a detector is able to store images synchronously with bunches of an SR source the time resolution of such method will be determined by the duration of SR flash from individual bunch. New beam line at the VEPP-4M storage ring will allow to get X-Ray flux from each bunch close to 10{sup 6} photons/channel where channel area is 0.05×0.5 mm{sup 2} and average beam energy is about 30 keV. Bunches in the machine can be grouped into trains with 20 ns time gap. In order to meet these requirements a new detector development was started based on Si microstrip technology. The detector with a new dedicated front-end chip will be able to record images with maximum signal equivalent to 10{sup 6} photons/channel, with signal to noise ratio of ∼10{sup 3}, spatial resolution of 50 μm and maximum frame rate of 50 MHz. The detector has to drive very high peak and average currents without affecting the front-end chip, therefore a specific design of Si sensor should be developed. The front-end chip has to provide signal measurements with the dynamic range of about 10{sup 4} or more and recording of the signal to an analogue memory with the rate of 50 MHz. The concept of such detector is discussed in the paper. The results of the simulations of the main detector parameters and the results of the first measurements with the prototype sensors are presented.

  8. Hypovolemic shock

    Science.gov (United States)

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  9. Fast solar radiation pressure modelling with ray tracing and multiple reflections

    Science.gov (United States)

    Li, Zhen; Ziebart, Marek; Bhattarai, Santosh; Harrison, David; Grey, Stuart

    2018-05-01

    Physics based SRP (Solar Radiation Pressure) models using ray tracing methods are powerful tools when modelling the forces on complex real world space vehicles. Currently high resolution (1 mm) ray tracing with secondary intersections is done on high performance computers at UCL (University College London). This study introduces the BVH (Bounding Volume Hierarchy) into the ray tracing approach for physics based SRP modelling and makes it possible to run high resolution analysis on personal computers. The ray tracer is both general and efficient enough to cope with the complex shape of satellites and multiple reflections (three or more, with no upper limit). In this study, the traditional ray tracing technique is introduced in the first place and then the BVH is integrated into the ray tracing. Four aspects of the ray tracer were tested for investigating the performance including runtime, accuracy, the effects of multiple reflections and the effects of pixel array resolution.Test results in runtime on GPS IIR and Galileo IOV (In Orbit Validation) satellites show that the BVH can make the force model computation 30-50 times faster. The ray tracer has an absolute accuracy of several nanonewtons by comparing the test results for spheres and planes with the analytical computations. The multiple reflection effects are investigated both in the intersection number and acceleration on GPS IIR, Galileo IOV and Sentinel-1 spacecraft. Considering the number of intersections, the 3rd reflection can capture 99.12 %, 99.14 % , and 91.34 % of the total reflections for GPS IIR, Galileo IOV satellite bus and the Sentinel-1 spacecraft respectively. In terms of the multiple reflection effects on the acceleration, the secondary reflection effect for Galileo IOV satellite and Sentinel-1 can reach 0.2 nm /s2 and 0.4 nm /s2 respectively. The error percentage in the accelerations magnitude results show that the 3rd reflection should be considered in order to make it less than 0.035 % . The

  10. Improved Atmospheric Correction Over the Indian Subcontinent Using Fast Radiative Transfer and Optimal Estimation

    Science.gov (United States)

    Natraj, V.; Thompson, D. R.; Mathur, A. K.; Babu, K. N.; Kindel, B. C.; Massie, S. T.; Green, R. O.; Bhattacharya, B. K.

    2017-12-01

    Remote Visible / ShortWave InfraRed (VSWIR) spectroscopy, typified by the Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG), is a powerful tool to map the composition, health, and biodiversity of Earth's terrestrial and aquatic ecosystems. These studies must first estimate surface reflectance, removing the atmospheric effects of absorption and scattering by water vapor and aerosols. Since atmospheric state varies spatiotemporally, and is insufficiently constrained by climatological models, it is important to estimate it directly from the VSWIR data. However, water vapor and aerosol estimation is a significant ongoing challenge for existing atmospheric correction models. Conventional VSWIR atmospheric correction methods evolved from multi-band approaches and do not fully utilize the rich spectroscopic data available. We use spectrally resolved (line-by-line) radiative transfer calculations, coupled with optimal estimation theory, to demonstrate improved accuracy of surface retrievals. These spectroscopic techniques are already pervasive in atmospheric remote sounding disciplines but have not yet been applied to imaging spectroscopy. Our analysis employs a variety of scenes from the recent AVIRIS-NG India campaign, which spans various climes, elevation changes, a wide range of biomes and diverse aerosol scenarios. A key aspect of our approach is joint estimation of surface and aerosol parameters, which allows assessment of aerosol distortion effects using spectral shapes across the entire measured interval from 380-2500 nm. We expect that this method would outperform band ratio approaches, and enable evaluation of subtle aerosol parameters where in situ reference data is not available, or for extreme aerosol loadings, as is observed in the India scenarios. The results are validated using existing in-situ reference spectra, reflectance measurements from assigned partners in India, and objective spectral quality metrics for scenes without any

  11. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  12. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  13. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer.

    Science.gov (United States)

    Bohoudi, O; Bruynzeel, A M E; Senan, S; Cuijpers, J P; Slotman, B J; Lagerwaard, F J; Palacios, M A

    2017-12-01

    To implement a robust and fast stereotactic MR-guided adaptive radiation therapy (SMART) online strategy in locally advanced pancreatic cancer (LAPC). SMART strategy for plan adaptation was implemented with the MRIdian system (ViewRay Inc.). At each fraction, OAR (re-)contouring is done within a distance of 3cm from the PTV surface. Online plan re-optimization is based on robust prediction of OAR dose and optimization objectives, obtained by building an artificial neural network (ANN). Proposed limited re-contouring strategy for plan adaptation (SMART 3CM ) is evaluated by comparing 50 previously delivered fractions against a standard (re-)planning method using full-scale OAR (re-)contouring (FULLOAR). Plan quality was assessed using PTV coverage (V 95% , D mean , D 1cc ) and institutional OAR constraints (e.g. V 33Gy ). SMART 3CM required a significant lower number of optimizations than FULLOAR (4 vs 18 on average) to generate a plan meeting all objectives and institutional OAR constraints. PTV coverage with both strategies was identical (mean V 95% =89%). Adaptive plans with SMART 3CM exhibited significant lower intermediate and high doses to all OARs than FULLOAR, which also failed in 36% of the cases to adhere to the V 33Gy dose constraint. SMART 3CM approach for LAPC allows good OAR sparing and adequate target coverage while requiring only limited online (re-)contouring from clinicians. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A fast infrared radiative transfer model based on the adding-doubling method for hyperspectral remote-sensing applications

    International Nuclear Information System (INIS)

    Zhang Zhibo; Yang Ping; Kattawar, George; Huang, H.-L.; Greenwald, Thomas; Li Jun; Baum, Bryan A.; Zhou, Daniel K.; Hu Yongxiang

    2007-01-01

    A fast infrared radiative transfer (RT) model is developed on the basis of the adding-doubling principle, hereafter referred to as FIRTM-AD, to facilitate the forward RT simulations involved in hyperspectral remote-sensing applications under cloudy-sky conditions. A pre-computed look-up table (LUT) of the bidirectional reflection and transmission functions and emissivities of ice clouds in conjunction with efficient interpolation schemes is used in FIRTM-AD to alleviate the computational burden of the doubling process. FIRTM-AD is applicable to a variety of cloud conditions, including vertically inhomogeneous or multilayered clouds. In particular, this RT model is suitable for the computation of high-spectral-resolution radiance and brightness temperature (BT) spectra at both the top-of-atmosphere and surface, and thus is useful for satellite and ground-based hyperspectral sensors. In terms of computer CPU time, FIRTM-AD is approximately 100-250 times faster than the well-known discrete-ordinate (DISORT) RT model for the same conditions. The errors of FIRTM-AD, specified as root-mean-square (RMS) BT differences with respect to their DISORT counterparts, are generally smaller than 0.1 K

  15. A Comprehensive Study on Gamma Rays and Fast Neutron Sensing Properties of GAGOC and CMO Scintillators for Shielding Radiation Applications

    Directory of Open Access Journals (Sweden)

    Shams A. M. Issa

    2017-01-01

    Full Text Available The WinXCom program has been used to calculate the mass attenuation coefficients (μm, effective atomic numbers (Zeff, effective electron densities (Nel, half-value layer (HVL, and mean free path (MFP in the energy range 1 keV–100 GeV for Gd3Al2Ga3O12Ce (GAGOC and CaMoO4 (CMO scintillator materials. The geometrical progression (G-P method has been used to compute the exposure buildup factors (EBF and gamma ray energy absorption (EABF in the photon energy range 0.015–15 MeV and up to a 40 penetration depth (mfp. In addition, the values of the removal cross section for a fast neutron ∑R have been calculated. The computed data observes that GAGOC showed excellent γ-rays and neutrons sensing a response in the broad energy range. This work could be useful for nuclear radiation sensors, detectors, nuclear medicine applications (medical imaging and mammography, nuclear engineering, and space technology.

  16. State of the art extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, L.B. (State Univ. of New York at Stony Brook, Stony Brook, NY (US)); Harrison, L.H.; McCullough, D.L. (Wake Forest Univ. Medical Center, Winston-Salem, NC (US))

    1987-01-01

    This book contains 16 chapters. Some of the topics that are covered are: Extracorporeal Shock Wave Lithotripsy Development; Laser-Generated Extracorporeal Shock Wave Lithotripter; Radiation Exposure during ESWL; Caliceal Calculi; and Pediatric ESWL.

  17. State of the art extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Kandel, L.B.; Harrison, L.H.; McCullough, D.L.

    1987-01-01

    This book contains 16 chapters. Some of the topics that are covered are: Extracorporeal Shock Wave Lithotripsy Development; Laser-Generated Extracorporeal Shock Wave Lithotripter; Radiation Exposure during ESWL; Caliceal Calculi; and Pediatric ESWL

  18. Chondrule destruction in nebular shocks

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  19. Shocks in the Early Universe.

    Science.gov (United States)

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  20. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  1. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  2. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  3. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  4. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac

    Science.gov (United States)

    Kontaxis, C.; Bol, G. H.; Stemkens, B.; Glitzner, M.; Prins, F. M.; Kerkmeijer, L. G. W.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2017-09-01

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system’s capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  5. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.

    Science.gov (United States)

    Kontaxis, C; Bol, G H; Stemkens, B; Glitzner, M; Prins, F M; Kerkmeijer, L G W; Lagendijk, J J W; Raaymakers, B W

    2017-08-21

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system's capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  6. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  7. Measurements for the radiation spectra of fast Z-pinches produced at compression of multi-wire arrays on the 'Angara-5-1' facility

    International Nuclear Information System (INIS)

    Bolkhovitinov, E.A.; Rupasov, A.A.; Shikanov, A.S.; Fedulov, M.V.; Grabovsky, E.V.; Gritsuk, A.N.; Oleinik, G.M.; Volkov, G.S.

    2010-01-01

    Complete text of publication follows. The measurements results on the radiation spectra of fast z-pinches produced at compression of cylindrical multi-wire tungsten and aluminum arrays in the experiments on a high-current 'Angara-5-1' facility are presented. Cylindrical multi-wire arrays has linear mass 200-400 μg/cm and the initial diameter 12-20 mm. The pinch current was about 3 MA with pulse duration of 140 ns and peak power 3 TW. The radiation spectra are measured within the range of 50-900 eV quanta by a spectrometer with transmission diffraction grating, where the radiation is recorded on the UF-4 X-ray film. An electromagnetic curtain shutter was used to protect the transmission grating from fast microparticles produced by the erosion of high-voltage electrodes. The radiation spectrum of 1-3 keV quanta was recorded by a convex crystal wide-range spectrometer. Total yield of the radiation was measured by a thermocouple calorimeter. The main part of the tungsten plasma radiative energy proves to correspond to the quasi-continuous spectrum within the range of 80-300 eV quanta. Measurements of the tungsten plasma radiation spectrum with spatial resolution by a pinch radius have shown that the effective transversal size (diameter) of the pinch as not higher than 1 mm. In the case of aluminum plasma an intensive linear radiation of the [H]- and [He]-like ions have been recorded along with a continuous and linear radiation of the [Li]- and [Be]-like ions with the range of 100-300 eV quanta. Spectral measurements of the aluminum plasma radiation with spatial resolution by the pinch radius have shown that the effective transversal size (diameter) of the pinch is around the value of 1.5 mm. Within the framework of the stationary collisional-radiative model, in respect of the [H]- and [He]-like ion spectral lines relative intensities, the parameters of the aluminum plasma pinch, namely, the electron temperature T e ∼ 550 eV and electron density n e ∼ 3 x 10 20 cm

  8. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  9. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  10. Development of Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    R. Hinderler; H. Keller; T.R. Mackie; M.L. Corradini

    2003-09-08

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging.

  11. Development of a Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    International Nuclear Information System (INIS)

    Hinderler, R.; Keller, H.; Mackie, T.R.; Corradini, M.L.

    2003-01-01

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging

  12. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  13. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  14. SHOCKS Fast-Fracture Periodic-Intermittency VS. Random-Sporadicity in Burst Acoustic-Emission (BAE): Dislocation-Line-Defects Special-Relativity Classical Acoustic-Phonon Maser(CAPM) EDDTA Orgins of ``Bak''-``SOC''

    Science.gov (United States)

    Neumann, Peter; Klimontovich, Yuri; Nabarro, Frank; Brailsford, Alan; Siegel, Edward

    2011-06-01

    Glassy fast-fracture instabilities and patterns, long-known semi-infinite crack-propagation sub-terminal-velocity Rayleigh-wave-speed versus ``2''-D linear-elasticity theory predictions, but rather asymptotic to maximum-speed < 0.6 v(Rayleigh), explicitly experimentally identifies a fast-fracture DYNAMIC-instability(FFDI) not included within fracture linear-elasticity theory. FFDI causes PERIODIC-BAE[E. S.:MSE 8.310(71); PSS:(a) 5, 601/ 607 (71); Xl..-Latt. Defects 5, 277(74);Scripta-Met.:6,785(72);8, 587/617(74); 3rd Tokyo A.-E. Symp. (76); Acta- Met.25,383(77); JMMM 7,312(78); ...] emitted/radiated from advancing-crack in addition to crack-velocity fluctuations causing such low sub-Rayleigh crack-velocities, hinting at dimensionality-dominance in 2-D VS. 3-D lattice-``models'' very-provacatively yet another special-case subset of Siegel[MRS Fall-Mtg.,Boston:Symp. On Fractals(89)-5-papers!!!; Symp. On Scaling(90)] SPD/FUZZYICS. Hirth-Lothe-Nabarro-Weertman-... provocative finite Burgers-vector dislocations/line-defects singularities terminal-velocity special-case of Einstein's special-relativity, almost word-for-word Jackson electromagnetics, replaces light-speed by sound-speed!!! Siegel[3rd Tokyo A.-E. Symp.(76); Intl.Quantum-Electronics Conf., Boston (80)

  15. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  16. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  17. Evaluation of an exposed-radiation dose on a dual-source cardiac computed tomography examination with a prospective electrocardiogram-gated fast dual spiral scan

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Koshida, Kichiro; Koshida, Haruka; Sakuta, Keita; Hayashi, Hiroyuki; Takata, Tadanori; Horii, Junsei; Kawai, Keiichi; Yamamoto, Tomoyuki

    2012-01-01

    We evaluated exposed-radiation doses on dual-source cardiac computed tomography (CT) examinations with prospective electrocardiogram (ECG)-gated fast dual spiral scans. After placing dosimeters at locations corresponding to each of the thoracic organs, prospective ECG-gated fast dual spirals and retrospective ECG-gated dual spiral scans were performed to measure the absorbed dose of each organ. In the prospective ECG-gated fast dual spiral scans, the average absorbed doses were 5.03 mGy for the breast, 9.96 mGy for the heart, 6.60 mGy for the lung, 6.48 mGy for the bone marrow, 9.73 mGy for the thymus, and 4.58 mGy for the skin. These values were about 5% of the absorbed doses for the retrospective ECG-gated dual spiral scan. However, the absorbed dose differed greatly at each scan, especially in the external organs such as the breast. For effective and safe use of the prospective ECG-gated fast dual spiral scan, it is necessary to understand these characteristics sufficiently. (author)

  18. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    Science.gov (United States)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  19. Integral Field Spectroscopy of Balmer-dominated Shocks in the Magellanic Cloud Supernova Remnant N103B

    Energy Technology Data Exchange (ETDEWEB)

    Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Seitenzahl, Ivo R.; Dopita, M. A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Vogt, Frédéric P. A. [European Southern Observatory, Av. Alonso de Córdova 3107, 763 0355 Vitacura, Santiago (Chile); Terry, Jason P. [Department of Physics and Astronomy, University of Georgia (United States); Williams, Brian J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Winkler, P. Frank, E-mail: pghavamian@towson.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2017-10-01

    We present results of integral field spectroscopy of Balmer-dominated shocks in the LMC supernova remnant (SNR) N103B, carried out using the Wide Field Integral Spectrograph (WiFeS ) on the 2.3 m telescope at the Siding Spring Observatory in Australia. Existing X-ray studies of N103B have indicated an SN Ia origin. Radiative shock emission from clumpy material surrounding the SNR may result from interaction of the forward shock with relic stellar wind material, possibly implicating a thermonuclear explosion in a single-degenerate binary system. The recently discovered Balmer-dominated shocks mark the impact of the forward shock with low density, partially neutral CSM gas, and form a partial shell encircling clumps of material exhibiting radiative shocks. The WiFeS spectra of N103B reveal broad H α emission having a width as high as 2350 km s{sup −1} along the northern rim, and both H α and H β broad profiles having widths around 1300 km s{sup −1} along the southern rim. Fits to the H α line profiles indicate that in addition to the usual broad and narrow emission components, a third component of intermediate width exists in these Balmer-dominated shocks, ranging from around 125 km s{sup −1} up to 225 km s{sup −1} in width. This is consistent with predictions of recent Balmer-dominated shock models, which predict that an intermediate-width component will be generated in a fast neutral precursor. We derive a Sedov age of approximately 685 ± 20 years for N103B from the Balmer-dominated spectra, consistent with the young age of 380–860 years estimated from light echo studies.

  20. Internat. conference about the radiation behaviour of metallic canning and structure materials for fast breeders in Ajaccio (Korsika)

    International Nuclear Information System (INIS)

    Anderko, K.; Ehrlich, K.

    1979-01-01

    The program includes 48 plenary reports as well as 22 contributions in the form of a poster view and has the following structure: - swelling of ferritic steel - structural instability under radiation - theory of swelling - experiments about the swelling of austenitic steels - mechanical properties after radiation - fuel element behaviour and material optimization - radiation creeping. Additional to the items respecting the conference titel some material problems of the fusion reactor were discussed. (orig./RW) [de

  1. Influence of thiamine on the post-irradiation effect caused by fast neutrons or gamma radiation in callus cultures of Haplopappus gracilis (Nutt) A. Gray

    International Nuclear Information System (INIS)

    Wajda, L.; Korzonek, M.

    1979-01-01

    Influence of thiamine within the investigated range of concentrations 1.5 to 12.0 mg/l on the postirradiation effect caused by fast neutrons or gamma irradiation was found in cultures of Haplopappus gracilis callus. The lowest sensitivity to fast neutrons was noticed in callus grown on nutrient combination 1.5 to 3.0 and 12.0 to 3.0 mg/l of thiamine. On the contrary the highest sensitivity to gamma radiation was shown by cultures grown on nutrient media: 1.5 to 3.0 mg/l; all the other investigated thiamine concentrations caused a marked decrease in the sensitivity of the callus. (author)

  2. Shock waves in luminous early-type stars

    International Nuclear Information System (INIS)

    Castor, J.I.

    1986-01-01

    Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs

  3. Line emission processes in atomic and molecular shocks

    International Nuclear Information System (INIS)

    Shull, J.M.

    1988-01-01

    The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks

  4. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  5. Influence of gamma radiation on the colour strength and fastness properties of fabric using turmeric (Curcuma longa L.) as natural dye

    International Nuclear Information System (INIS)

    Bhatti, Ijaz A.; Adeel, Shahid; Jamal, M. Asghar; Safdar, Muhammad; Abbas, Muhammad

    2010-01-01

    The effect of gamma radiation on the dyeing of cotton with extract of turmeric (Curcuma longa L.) powder has been investigated. Cotton fabric and turmeric powder were irradiated to absorbed doses of 1, 2, 3, 4 and 6 kGy using Co-60 gamma irradiator. Dyeing parameters such as temperature, pH and mordant concentration were optimized. Dyeing was performed using un-irradiated and irradiated cotton with the extracts of un-irradiated and irradiated turmeric powder in order to investigate the effect of radiation treatment on the colour strength of dyed fabric. The reported data of un-irradiated and irradiated fabrics dyed with un-irradiated and irradiated dyes were obtained using the spectraflash SF-650. The colourfastness to light, rubbing- and washing-fastness properties showed that gamma irradiation has improved the dyeing characteristics from fair to good.

  6. Influence of gamma radiation on the colour strength and fastness properties of fabric using turmeric (Curcuma longa L .) as natural dye

    Science.gov (United States)

    Bhatti, Ijaz A.; Adeel, Shahid; Jamal, M. Asghar; Safdar, Muhammad; Abbas, Muhammad

    2010-05-01

    The effect of gamma radiation on the dyeing of cotton with extract of turmeric ( Curcuma longa L.) powder has been investigated. Cotton fabric and turmeric powder were irradiated to absorbed doses of 1, 2, 3, 4 and 6 kGy using Co-60 gamma irradiator. Dyeing parameters such as temperature, pH and mordant concentration were optimized. Dyeing was performed using un-irradiated and irradiated cotton with the extracts of un-irradiated and irradiated turmeric powder in order to investigate the effect of radiation treatment on the colour strength of dyed fabric. The reported data of un-irradiated and irradiated fabrics dyed with un-irradiated and irradiated dyes were obtained using the spectraflash SF-650. The colourfastness to light, rubbing- and washing-fastness properties showed that gamma irradiation has improved the dyeing characteristics from fair to good.

  7. Influence of gamma radiation on the colour strength and fastness properties of fabric using turmeric (Curcuma longa L.) as natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, Ijaz A., E-mail: ijazchem@yahoo.co [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Adeel, Shahid [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Jamal, M. Asghar [Department of Chemistry, G.C. University, Faisalabad 38040 (Pakistan); Safdar, Muhammad [Department of Chemistry, University of A J and K, Muzaffarabad, Azad Kashmir (Pakistan); Abbas, Muhammad [Haris Dyes and Chemicals, Faisalabad 38040 (Pakistan)

    2010-05-15

    The effect of gamma radiation on the dyeing of cotton with extract of turmeric (Curcuma longa L.) powder has been investigated. Cotton fabric and turmeric powder were irradiated to absorbed doses of 1, 2, 3, 4 and 6 kGy using Co-60 gamma irradiator. Dyeing parameters such as temperature, pH and mordant concentration were optimized. Dyeing was performed using un-irradiated and irradiated cotton with the extracts of un-irradiated and irradiated turmeric powder in order to investigate the effect of radiation treatment on the colour strength of dyed fabric. The reported data of un-irradiated and irradiated fabrics dyed with un-irradiated and irradiated dyes were obtained using the spectraflash SF-650. The colourfastness to light, rubbing- and washing-fastness properties showed that gamma irradiation has improved the dyeing characteristics from fair to good.

  8. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Science.gov (United States)

    DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang

    2018-01-01

    One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud

  9. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Directory of Open Access Journals (Sweden)

    S. DeSouza-Machado

    2018-01-01

    Full Text Available One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR satellite sounders use cloud-cleared radiances (CCRs as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA. The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds. From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS and NWP

  10. Effect of fast neutrons and gamma radiation on germination, pollen and ovule sterility and leaf variations in mung bean

    International Nuclear Information System (INIS)

    Avinash Chandra; Tewari, S.N.

    1978-01-01

    The seeds of mung bean (Phaseolus aureus Roxb.) varieties S-8 and Pusa Baisakhi were irradiated with 15, 30, 45 and 60 k rads of gamma-rays and 500, 1000, 2000 and 3000 rads of fast neutrons. The results showed that there is a gradual reduction in amount of germination of seeds, pollen and ovule fertility with increasing doses of both mutagens. These mutagens also cause leaf abnormalities such as unifoliate, bifoliate, trifoliate, tetrafoliate and pentafoliate. Both tetra and pentafoliate leaves observed on the same plant of S-8 variety under fast neutron irradiation appear to have been associated with enhanced luxuriance of the plant resulting in satisfactory pod formation. (author)

  11. Shock Prevention

    Science.gov (United States)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  12. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  13. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-01-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array

  14. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  15. Study of fast electrons from hard-X radiation; Etude des electrons rapides a partir du rayonnement X-dur

    Energy Technology Data Exchange (ETDEWEB)

    Arslanbekov, R.

    1995-12-19

    The goal of this thesis is the study of fast electron dynamics by means of the hard X-ray diagnosis installed in TORE SUPRA and numerical simulations. Fast electrons are generated in the plasma in the presence of the injected lower hybrid (LH) waves. Two aspects are studied in detail: the lower hybrid wave propagation and absorption in a periodically perturbed media and 2-D Fokker-Planck modelling of the fast electron dynamics in the presence of the LH power. Ripple effects on lower hybrid wave propagation and absorption are investigated using the ray tracing technique. A cylindrical equilibrium is first studied and a strong modification of the ray dynamics is predicted. Calculations are carried out in a real toroidal geometry corresponding to TORE SUPRA. It is shown that the lack of toroidal axisymmetry of the magnetic field may result in a modification of the ray evolution even if the global ray evolution is governed by the larger poloidal inhomogeneity. Simulation of LH experiments are performed for TORE SUPRA tokamak which has a large magnetic ripple (7% at the plasma edge). By considering ripple perturbation in LH current drive simulations, a better agreement is found with experimental results, in particular with the hard-X spectra and the current density profiles. In the second part of the thesis, a 2-D modeling of the fast electron dynamics in the velocity phase space is considered, based on the 2-D relativistic electron Fokker-Planck equation. Electron distribution functions obtained are used to calculate non-thermal Bremsstrahlung emission for different TORE SUPRA shots in a wide range of experimental conditions. (J.S.). 168 refs., 93 figs., 1 tab., 3 appendix.

  16. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  17. STTARR: a radiation treatment and multi-modal imaging facility for fast tracking novel agent development in small animal models

    International Nuclear Information System (INIS)

    Yeung, Ivan; McKee, Trevor; Jaffray, David; Hill, Richard

    2014-01-01

    Small animal models play a pivotal role in the pipeline development of novel agents and strategies in personalized cancer therapy. The Spatio-Temporal Targeting and Amplification of Radiation Response Program (STTARR) consists of an animal imaging and precision radiation facility designed to provide innovative biologic imaging and targeted radiation treatment strategies in small animals. The design is to mirror the imaging and radiation treatment facility in a modern cancer center. The STTARR features imaging equipment of small animal scale including CT, MRI, PET, SPECT, Optical devices as well as image guided irradiators. The fleet of imaging and irradiation equipment provides a platform for identification of biological targets of the specific molecular pathways that influence both tumor progression and a patient's response to radiation therapy. Examples will be given in the utilization of the imaging facilities for development in novel approaches in cancer therapy including a PET-FAZA study for hypoxia measurement in a pancreatic adenocarcinoma xenograft model. In addition, the cone-beam image guided small animal irradiator developed at our institute will also be described. The animal platform (couch) provides motion in 3 dimensions to position the animal to the isocentre of the beam. A pair of rotational arms supporting the X-ray/detector pair enables acquisition of cone-beam images of the animal which give rise to image guided precision of 0.5 mm. The irradiation energy ranges from 50 to 225 kVp at a dose rate from 10-400 cGy/min. The gantry is able to direct X-ray beam of different directions to give conformal radiation treatment to the animal. A dedicated treatment planning system is able to perform treatment planning and provide commonly used clinical metrics in the animal treatment plan. Examples will be given to highlight the use of the image guided irradiator for research of drug/irradiation regimen in animal models. (author)

  18. Mean cross sections of fast neutrons radiative capture, transmission and mean resonance parameters for the tin isotopes

    International Nuclear Information System (INIS)

    Timokhov, V.M.; Bokhovko, M.V.; Kazakov, L.E.; Kononov, V.N.; Manturov, G.N.; Poletaev, E.D.

    1988-01-01

    Results of measurements of neutron radiative capture cross sections in the energy range of 20-450 keV and of neutron transmission in the energy range of 20-1400 keV for 112,114,115,116,117,118,119,120,122 ,124S n isotopes and natural mixture of tin are presented. Analysis of the experimental data in the framework of nuclear reactions statistical theory is carried out, as a result of which data on neutron and radiation strength functions, potential scattering radii for S- and P-neutrons, as well as nuclear levels density parameters, are obtained

  19. 2-Shock layered tuning campaign

    Science.gov (United States)

    Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team

    2016-10-01

    The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  20. Obtaining information ultra-fast as-built in areas of high radiation to support decisions in maintenance

    International Nuclear Information System (INIS)

    Sarti Fernandez, F.

    2010-01-01

    One of the problems that arise when studying, planning and assessing a particular maintenance operation has to be performed in high radiation areas, is the determination of the level of reliability of information starting from the one available. For the past several years have been used in nuclear power plants worldwide acquisition systems called 3D laser scanner models.

  1. Fast approximate radiative transfer method for visualizing the fine structure of prominences in the hydrogen H alpha line

    Czech Academy of Sciences Publication Activity Database

    Heinzel, Petr; Gunár, S.; Anzer, U.

    2015-01-01

    Roč. 579, July (2015), A16/1-A16/6 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0906 EU Projects: European Commission(XE) 328138 Institutional support: RVO:67985815 Keywords : radiative transfer * Sun * filaments Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  2. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  3. Parametric control of structural vibrations and sound radiation by fast time-space variation of distributed stiffness parameters

    International Nuclear Information System (INIS)

    Krylov, V.I.; Sorokin, S.V.

    1998-01-01

    The dynamics of a Euler-Bernoulli beam with a time-and-space dependent bending stiffness is studied. The , problem is considered in connection with the application of noise control using smart structures. It is shown that a control for the vibrations of the beam can be achieved by varying the bending stiffness. The technique of direct separation of fast and slow motion coupled with a Green's function method is used to analyze the dynamics of the beam with high-frequency modulation of the stiffness

  4. Shocking revelations

    International Nuclear Information System (INIS)

    Crum, L.A.; Matula, T.J.

    1997-01-01

    In single-bubble sonoluminescence (SBSL) a small gas bubble that has been acoustically levitated in a liquid driven into large amplitude volume oscillations by the sound fields, radiation visible light each and every acoustic cycle. These emissions could potentially lead to thermonuclear fusion. This paper reports on the background of SBSL, what the current research is, and what questions need to be answered in the future. 26 refs., 1 fig

  5. A model of fast radio bursts: collisions between episodic magnetic blobs

    Science.gov (United States)

    Li, Long-Biao; Huang, Yong-Feng; Geng, Jin-Jun; Li, Bing

    2018-06-01

    Fast radio bursts (FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that the collision of a white dwarf with a black hole can generate a transient accretion disk, from which powerful episodicmagnetic blobs will be launched. The collision between two consecutive magnetic blobs can result in a catastrophic magnetic reconnection, which releases a large amount of free magnetic energy and forms a forward shock. The shock propagates through the cold magnetized plasma within the blob in the collision region, radiating through the synchrotron maser mechanism, which is responsible for a non-repeating FRB signal. Our calculations show that the theoretical energetics, radiation frequency, duration timescale and event rate can be very consistent with the observational characteristics of FRBs.

  6. Visible laser radiation from color centers brought on α-Al2O3 by fast electrons

    International Nuclear Information System (INIS)

    Arutyunyan, V.V.; Gevorkyan, V.A.; Ezoyan, R.K.; Eritsyan, G.N.; Sarkisov, V.Kh.

    1988-01-01

    A lamp-pumped lasing from colour centres brought on corundum crystals by 50 MeV electrons is reported. Lasing is observed only in an active element sample with C 3 -vector perpendicular l-vector - orientation. The lasing-action threshold was 1200 j. To find out the reasons for the dependence of lasing from the crystal axis C 3 -vector the absorption, excitation and luminescence spectra of crystals bombarded by different doses of fast electrons and with different thermal annealing are investigated. The results of investigation of spectra of additional absorption within the range 400-600 nm, luminescence excitation registered at the wavelength 560 nm and photoluminescence excitation registered at the wavelength 460 nm (F 2 + -centre) are presented. In the luminescence spectrum there are three bands with maxima near 560, 610, 710 nm and a narrow one at 695 nm resulting from uncontrollable admixture Cr 3+ ions. 3 refs.; 3 figs

  7. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr

    2009-08-07

    A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.

  8. Oxidative Damage and Mutagenic Potency of Fast Neutron and UV-B Radiation in Pollen Mother Cells and Seed Yield of Vicia faba L.

    Directory of Open Access Journals (Sweden)

    Ekram Abdel Haliem

    2013-01-01

    Full Text Available In recent years, there has been a great deal of attention toward free radicals, reactive oxygen species (ROS generated by exposure of crop plant cells to physical radiations. Henceforth, the current study was planned to compare oxidative stress and mutagenic potential of different irradiation doses of fast neutron (FN and UV-B on meiotic-pollen mother cells (PMCs, pollen grains (PGs and seeds yielded from irradiated faba beans seedlings. On the cytogenetic level, each irradiation type had special interference with DNA of PMC and exhibited wide range of mutagenic action on the frequency and type of chromosomal anomalies, fertility of PGs and seed yield productivity based on the irradiation exposure dose and radiation sensitivity of faba bean plants compared with un-irradiated ones. On the molecular level, SDS-PAGE and RPAD-PCR analyses of seeds yielded from irradiated seedlings exhibited distinctive polymorphisms based on size, intensity, appearance, and disappearance of polypeptides bands compared with un-irradiated ones. The total values of protein and DNA polymorphisms reached 88% and 90.80% respectively. The neutron fluency (2.3 × 106 n/cm2 and UV-B dose for 1 hr were recorded as bio-positive effects. The present study proved that genetic variations revealed by cytogenetic test could be supported by gene expression (alterations in RAPD and protein profiles.

  9. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes

    Science.gov (United States)

    Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro

    2018-03-01

    We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.

  10. Analytical solutions of hypersonic type IV shock - shock interactions

    Science.gov (United States)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  11. A fast algorithm for solving a linear feasibility problem with application to Intensity-Modulated Radiation Therapy.

    Science.gov (United States)

    Herman, Gabor T; Chen, Wei

    2008-03-01

    The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.

  12. Non-Linear Optical Phenomena in Detecting Materials as a Possibility for Fast Timing in Detectors of Ionizing Radiation

    CERN Document Server

    Korjik, M. V.; Buganov, O.; Fedorov, A. A.; Emelianchik, I.; Griesmayer, E.; Mechinsky, V.; Nargelas, S.; Sidletskiy, O.; Tamulaitis, G.; Tikhomirov, S. N.; Vaitkevicius, A.

    2016-01-01

    The time resolution of the detectors currently in use is limited by 50-70 ps due to the spontaneous processes involved in the development of the response signal, which forms after the relaxation of carriers generated during the interaction. In this study, we investigate the feasibility of exploiting sub-picosecond phenomena occurring after the interaction of scintillator material with ionizing radiation by probing the material with ultra-short laser pulses. One of the phenomena is the elastic polarization due to the local lattice distortion caused by the displacement of electrons and holes generated by ionization. The key feature of the elastic polarization is its short response time, which makes it prospective for using as an optically detectable time mark. The nonlinear optical absorption of femtosecond light pulses of appropriate wavelength is demonstrated to be a prospective tool to form the mark. This study was aimed at searching for inorganic crystalline media combining scintillation properties and non-...

  13. Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns.

    Science.gov (United States)

    Rothfels, Carl J; Larsson, Anders; Kuo, Li-Yaung; Korall, Petra; Chiou, Wen-Liang; Pryer, Kathleen M

    2012-05-01

    Backbone relationships within the large eupolypod II clade, which includes nearly a third of extant fern species, have resisted elucidation by both molecular and morphological data. Earlier studies suggest that much of the phylogenetic intractability of this group is due to three factors: (i) a long root that reduces apparent levels of support in the ingroup; (ii) long ingroup branches subtended by a series of very short backbone internodes (the "ancient rapid radiation" model); and (iii) significantly heterogeneous lineage-specific rates of substitution. To resolve the eupolypod II phylogeny, with a particular emphasis on the backbone internodes, we assembled a data set of five plastid loci (atpA, atpB, matK, rbcL, and trnG-R) from a sample of 81 accessions selected to capture the deepest divergences in the clade. We then evaluated our phylogenetic hypothesis against potential confounding factors, including those induced by rooting, ancient rapid radiation, rate heterogeneity, and the Bayesian star-tree paradox artifact. While the strong support we inferred for the backbone relationships proved robust to these potential problems, their investigation revealed unexpected model-mediated impacts of outgroup composition, divergent effects of methods for countering the star-tree paradox artifact, and gave no support to concerns about the applicability of the unrooted model to data sets with heterogeneous lineage-specific rates of substitution. This study is among few to investigate these factors with empirical data, and the first to compare the performance of the two primary methods for overcoming the Bayesian star-tree paradox artifact. Among the significant phylogenetic results is the near-complete support along the eupolypod II backbone, the demonstrated paraphyly of Woodsiaceae as currently circumscribed, and the well-supported placement of the enigmatic genera Homalosorus, Diplaziopsis, and Woodsia.

  14. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    Science.gov (United States)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  15. Grain Destruction in a Supernova Remnant Shock Wave

    Science.gov (United States)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  16. On possible structures of transverse ionizing shock waves

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1978-01-01

    The possible structures of ionizing shock waves propagating in gases across the magnetic field are investigated taking account of both ionization kinetics and the non-isothermality of the plasma which is formed within the shock front. It is shown that a definite factor in shaping the structure of the transverse ionizing shock wave is photo-ionization of the neutral gas across the front. The paper includes a study of the evolution of the transverse ionizing shock front with regard to photo-ionization, disclosing that a stable stationary shock structure emerges only in boundary conditions which are close to magnetohydrodynamic ones, i.e. upsilon 1 H 1 = upsilon 2 H 2 . In the case of strong transverse ionizing shock waves, when the flux of ionizing radiation across the front is great, the shock structure is obviously magnetohydrodynamic. (author)

  17. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  18. Analysis of n-in-p type silicon detectors for high radiation environment with fast analogue and binary readout systems

    Energy Technology Data Exchange (ETDEWEB)

    Printz, Martin

    2016-01-22

    The Large Hadron Collider at CERN is the most powerful particle accelerator ever built. The collision of high intensity proton beams at a center of mass energy of up to 14 TeV allows the exploration of the undiscovered territory at the TeV scale with great detail. The high energy physics frontier covers detailed Standard Model (SM) physics like the search for the SM Higgs boson which has been found in July 2012 but also physics beyond the SM like the Supersymmetry or studies of the quark-gluon plasma. The production rate of certain events is correlated to the instantaneous luminosity which is a measure for the number of detected events with in a certain time with respect to the interaction cross-section. In order to increase the statistics by collecting more data the integrated luminosity is maximized as far as possible. Simultaneously an increase of the particle energy and the luminosity reveals challenging experimental requirements for the trigger and detector systems present at the LHC. After a successful Run 1 of the machine between 2010 and 2013, the energy and the instantaneous luminosity of the machine are sequentially increased up to the last so called Phase II Upgrade planned for the years 2024 and 2025. The high luminosity LHC will provide particle beams with the final 14 TeV center of mass energy at an instantaneous luminosity of 5 x 10{sup 34} cm{sup -2}s{sup -1} which is five to seven times the nominal design luminosity. In the course of the Upgrade, the experiments will face extraordinary radiation environments and particle densities and have to be upgraded as well in order to cope with the challenging demands. The Compact Muon Solenoid (CMS) at CERN is a general purpose experiment with a diverse physics measurement program. It is built of several subdetectors. The most inner part consists of the pixel detector and the silicon strip tracker. The latter will be replaced completely during the Phase II Upgrade by a new layout whereas a different silicon

  19. Interaction of Interstellar Shocks with Dense Obstacles: Formation of ``Bullets''

    Science.gov (United States)

    Gvaramadze, V. V.

    The so-called cumulative effect take place in converging conical shock waves arising behind dense obstacles overtaken by incident interstellar shock. A significant part of energy of converging flow of matter swept-up by a radiative conical shock can be transferred to a dense jet-like ejection (``bullet'') directed along the cone axis. Possible applications of this effect for star-forming regions (e.g., OMC-1) and supernova remnants (e.g., Vela SNR) are discussed.

  20. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  1. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  2. A Novel Iterative Scheme for the Very Fast and Accurate Solution of Non-LTE Radiative Transfer Problems

    Science.gov (United States)

    Trujillo Bueno, J.; Fabiani Bendicho, P.

    1995-12-01

    Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel

  3. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  4. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  5. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  6. A set cover approach to fast beam orientation optimization in intensity modulated radiation therapy for total marrow irradiation

    International Nuclear Information System (INIS)

    Lee, Chieh-Hsiu Jason; Aleman, Dionne M; Sharpe, Michael B

    2011-01-01

    The beam orientation optimization (BOO) problem in intensity modulated radiation therapy (IMRT) treatment planning is a nonlinear problem, and existing methods to obtain solutions to the BOO problem are time consuming due to the complex nature of the objective function and size of the solution space. These issues become even more difficult in total marrow irradiation (TMI), where many more beams must be used to cover a vastly larger treatment area than typical site-specific treatments (e.g., head-and-neck, prostate, etc). These complications result in excessively long computation times to develop IMRT treatment plans for TMI, so we attempt to develop methods that drastically reduce treatment planning time. We transform the BOO problem into the classical set cover problem (SCP) and use existing methods to solve SCP to obtain beam solutions. Although SCP is NP-Hard, our methods obtain beam solutions that result in quality treatments in minutes. We compare our approach to an integer programming solver for the SCP to illustrate the speed advantage of our approach.

  7. A set cover approach to fast beam orientation optimization in intensity modulated radiation therapy for total marrow irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chieh-Hsiu Jason; Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Sharpe, Michael B, E-mail: chjlee@mie.utoronto.ca, E-mail: aleman@mie.utoronto.ca, E-mail: michael.sharpe@rmp.uhn.on.ca [Princess Margaret Hospital, Department of Radiation Oncology, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9 (Canada)

    2011-09-07

    The beam orientation optimization (BOO) problem in intensity modulated radiation therapy (IMRT) treatment planning is a nonlinear problem, and existing methods to obtain solutions to the BOO problem are time consuming due to the complex nature of the objective function and size of the solution space. These issues become even more difficult in total marrow irradiation (TMI), where many more beams must be used to cover a vastly larger treatment area than typical site-specific treatments (e.g., head-and-neck, prostate, etc). These complications result in excessively long computation times to develop IMRT treatment plans for TMI, so we attempt to develop methods that drastically reduce treatment planning time. We transform the BOO problem into the classical set cover problem (SCP) and use existing methods to solve SCP to obtain beam solutions. Although SCP is NP-Hard, our methods obtain beam solutions that result in quality treatments in minutes. We compare our approach to an integer programming solver for the SCP to illustrate the speed advantage of our approach.

  8. Thermal-shock experiments with flawed clad cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bryson, J.W.; Alexander, D.J.

    1989-01-01

    The life expectancy of LWR pressure vessels is influenced by a reduction in fracture toughness that is the result of radiation damage. As the fracture toughness decreases, the probability of propagation of preexisting flaws (sharp, crack-like defects) in the wall of the vessel increases. The probability of propagation is also influenced by the type of loading condition and the type of flaws that might exist. A loading condition of particular concern is referred to as pressurized thermal shock (PTS), and a flaw of particular concern for PTS loading conditions is a shallow surface flaw. A sudden cooling (thermal shock) of the inner surface of the vessel results in relatively high tensile stresses and relatively low fracture toughness at the inner surface. In addition, the attenuation of the fast-neutron fluence also results in relatively low fracture toughness at the inner surface. Under some circumstances, this combination of high stress and low toughness at the inner surface makes it possible for very shallow surface flaws to propagate. The PTS issue has been under investigation for quite some time, but thus far possible beneficial effects, other than thermal resistance, of the cladding on the inner surface of the vessel have not been included in the analysis of flaw behavior. This document discusses this effect of cladding on surface flaws and crack propagation

  9. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  10. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  11. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  12. Investigations for the use of the fast digitizers with C6D6 detectors for radiative capture measurements at GELINA

    International Nuclear Information System (INIS)

    Mihailescu, L.C.; Borella, A.; Massimi, C.; Schillebeeckx, P.

    2009-01-01

    The relatively long dead time in conventional data acquisition systems that provide simultaneously the pulse height and the time information for the detected events hinders cross-section measurements with high count rates. This is the case for capture cross-section measurements at the time-of-flight facility GELINA using high radioactive samples or thick samples of materials having strong resonances. Either the high average count rate (e.g. due to the radioactivity of the sample) or the high instantaneous count rate for strong resonances results in a large dead time correction. One solution to reduce the impact of the dead time is the use of a data acquisition system based on fast digitizers. The performances of two commercial digitizers (CAEN N172B and Acqiris DC282), coupled to a C 6 D 6 scintillator, have been tested in terms of pulse height linearity and resolution, dead time and time resolution. The signal processing was done on-line obtaining simultaneously the pulse height and time information for each detected event. With both digitizers a comparable pulse height linearity and resolution has been obtained as with a conventional system. The total dead time of both digital systems is at least a factor 5 shorter than the one for the conventional system. The main difference in performance between the two digitizers is the time resolution. For a relatively large scintillator, a time resolution of about 2 ns has been achieved with the DC282 module and the conventional system while the time resolution was limited to 15 ns with the CAEN N1728B module. For most nuclei a 15 ns time resolution is sufficient to perform resonance shape analysis. Therefore, the CAEN N1728B module can be used for the majority of capture cross-section measurements at GELINA. However, for nuclei with low level density, for which the resolved resonance region extends to the keV-region, a better time resolution is required and the Acqiris DC282 module has to be used.

  13. Magnetohydrodynamic shocks in molecular clouds

    International Nuclear Information System (INIS)

    Chernoff, D.F.

    1985-01-01

    Part one develops the mathematical and physical theory of one-dimensional, time-independent subalfvenic flow in partially ionized gas with magnetic fields, for application to shocks in molecular clouds. Unlike normal gas-dynamic shocks, the neutral flow may be continuous and cool if the gas radiates efficiently and does not self-ionize. Analytic solutions are given in the limit that the neutral gas is either adiabatic or isothermal (cold). Numerical techniques are developed and applied to find the neutral flow under general circumstances. Part two extends the theory and results of part one in three ways: (1) to faster, superalfvenic flow, (2) to complex gases containing heavy charged particles (grains) in addition to ions, containing heavy charged particles (grains) in addition to ions, electrons and neutrals, and (3) to the entire range in (Omega tau), the ratio of charged particle damping time to gyroperiod, expected in gas flows in molecular clouds

  14. Ion cyclotron emission due to the newly-born fusion products induced fast Alfven wave radiative instabilities in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-08-01

    The velocity distribution functions of the newly born (t = 0) charged fusion products of tokamak discharges can be approximated by a monoenergetic ring distribution with a finite v parallel such that v perpendicular ∼ v parallel ∼ v j where (M j V j 2 /2) = E j , the directed birth energy of the charged fusion product species j of mass M j . As the time t progresses these distribution functions will evolve into a Gaussian in velocity with thermal spreadings given by the perpendicular and parallel temperatures T perpendicularj (t) = T parallelj (t) with T j (t) increasing as t increases and finally reaches an isotropic saturation value of T perpendicularj (t ∼ τ j ) = T parallelj (t ∼ τ j ) = T j (t ∼ τ j ) ∼ [M j T d E j /(M j + M)] 1/2 , where T d is the temperature of the background deuterium plasma ions, M is the mass of a triton or a neutron for j = protons and alpha particles, respectively, and τ j ∼ τ sj /4 is the thermalization time of the fusion product species j in the background deuterium plasma and τ sj is the slowing-down time. For times t of the order of τ j their distributions can be approximated by a Gaussian in their total energy. Then for times t ≥ τ sj the velocity distributions of these fusion products will relax towards their appropriate slowing-down distributions. Here the authors will examine the radiative stability of all these distributions. The ion cyclotron emission from energetic ion produced by fusion reactions or neutral beam injection promises to be a useful diagnostic tool

  15. Drift mechanism for energetic charged particles at shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Axford, W.I.; Terasawa, T.

    1983-01-01

    The energy changes of energetic charged particles at a plane shock due to the so-called drift mechanism are analyzed by using the ''adiabatic treatment.'' The analysis shows that for a fast MHD shock, particles lose energy owing to acceleration (curvature) drift in the magnetic field at the shock with the drift velocity being antiparallel to the electric field, and they gain energy owing to gradient drift parallel to the electric field. It is shown that particles with pitch angles aligned along the magnetic field which pass through the shock tend to lose energy owing to acceleration drift, whereas particles with pitch angles nonaligned to the magnetic field gain energy owing to gradient drift. Particles that are reflected by the shock always gain energy. Slow-mode shocks may be similarly analyzed, but in this case curvature drifts give rise to particle energy gains, and gradient drifts result in particle energy losses

  16. Transverse MHD shock waves in a partly ionized plasma

    International Nuclear Information System (INIS)

    Mathers, C.D.

    1980-01-01

    The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)

  17. Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...

    Indian Academy of Sciences (India)

    Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.

  18. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  19. Fundamentals of Non-relativistic Collisionless Shock Physics: IV. Quasi-Parallel Supercritical Shocks

    OpenAIRE

    Treumann, R. A.; Jaroschek, C. H.

    2008-01-01

    1. Introduction, 2. The (quasi-parallel) foreshock; Ion foreshock, Ion foreshock boundary region; Diffuse ions;Low-frequency upstream waves; Ion beam waves; The expected wave modes; Observations; Diffuse ion waves; Electron foreshock; Electron beams; Langmuir waves; stability of the electron beam; Electron foreshock boundary waves; Nature of electron foreshock waves; Radiation; Observations; Interpretation; 3. Quasi-parallel shock reformation; Low-Mach number quasi-parallel shocks; Turbulent ...

  20. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1977-01-01

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF 2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF 2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 350 0 C after different doses of neutrons and gamma rays of 60 Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated [pt

  1. Induction of thermal shock proteins and changes in radiosensitivity after heat treatment of Bombyx mori L. embryos

    International Nuclear Information System (INIS)

    Agaev, F.A.

    1993-01-01

    The method of gel-electrophoresis was used to study thermal shock protein synthesis in Bombyx mori embryos exposed to a mixture of heat and gamma-radiation. Induction of thermal shock protein synthesis was not inhibited by gamma-radiation. It is suggested that thermal shock proteins are involved embryo radiosensitivity modification

  2. The chemistry on a subnanometer scale of radiation-induced precipitation and segregation in fast-neutron irradiated tungsten-rhenium alloys

    International Nuclear Information System (INIS)

    Hershitz, R.; Seidman, D.N.

    1984-01-01

    The phenomena of radiation-induced precipitation and segregation have been investigated in W-10 at.% Re and W-25 at.% Re alloys, employing the atom-probe field-ion-microscope technique. The specimens had been irradiated to a fast-neutron fluence of approx.4x10 22 neutrons cm -2 (e>0.1 MeV) at 575, 625 and 675 deg C. This corresponds to 8.6 dpa and an average displacement rate, for the two year irradiation time of 1.4x10 -7 dpa s -1 . In the W-10 at.% Re alloy, coherent, semicoherent and possibly incoherent precipitates with the composition approx.WRe and a disc-shaped morphology -- one or two atomic planes thick -- were detected at a number density of approx.10 16 cm -3 , and a mean diameter of approx.57 A. In the W-25 at.% Re alloy the same precipitates with the composition approx.WRe 3 were detected at a number density of approx.10 17 cm -3 and a mean diameter of 40 A. The semicoherent WRe 3 precipitates were associated with 4 He atoms; that is, they may have been heterogeneously nucleated. None of the other precipitates were associated with either line or planar defects or with any impurity atoms. Therefore, a true homogeneous radiation-induced precipitation occurs in these alloys. In the W-25 at.% Re alloy a two dimensional WRe 3 phase has been observed at a grain boundary. The nucleation of both precipitates in the vicinity of displacement cascades might be produced by primary knock-on atoms. In both cases, the first step in the nucleation is due to the formation of tightly-bound mobile mixed dumbbells which react to form an immobile di-rhenium cluster. Point-defect mechanisms for all the other observations are also discussed

  3. Sci-Thur PM - Colourful Interactions: Highlights 04: A Fast Quantitative MRI Acquisition and Processing Pipeline for Radiation Treatment Planning and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jutras, Jean-David [Dept. of Oncology, University of Alberta (Canada); De Zanche, Nicola [Dept. of Oncology, University of Alberta. Dept. of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2016-08-15

    MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome than standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.

  4. Thermal shock investigation of silicon nitride

    International Nuclear Information System (INIS)

    Ziegler, G.; Leucht, R.

    1977-01-01

    In this work, the thermal shock properties of commercial reaction-bonded Si 3 N 4 quality material (RBSN), of commercial hot-pressed Si 3 N 4 (HPSN) and of different laboratory grades of hot-pressed Si 3 N 4 were examined. The thermal shock properties of RBSN quality material differ according to the structure considerably: The critical temperature difference for sample crossections of 5 x 5 or 6 x 6 mm after quenching in oil lies between 730 0 C and over 1400 0 C. The best thermal shock properties are shown by high density RBSN quality material having very fine pores and high initial strength. The results indicate that for RBSN large pores and density inhomogenities are responsible for bad thermal shock properties. Resistance to fast temperature change is higher for hot-pressed Si 3 N 4 than for RBSN quality material. In HPSN, the thermal shock results show dependence on structure. High MgO content and the associated coarse rod-shaped configuration of the β phase and structural inhomogenities affect the thermal shock properties in an adverse way. (orig.) [de

  5. Strong shock wave and areal mass oscillations associated with impulsive loading of planar laser targets

    International Nuclear Information System (INIS)

    Velikovich, A.L.; Schmitt, A.J.; Metzler, N.; Gardner, J.H.

    2003-01-01

    When a rippled surface of a planar target is irradiated with a short (subnanosecond) laser pulse, the shock wave launched into the target and the mass distribution of the shocked plasma will oscillate. These oscillations are found to be surprisingly strong compared, for example, to the case when the laser radiation is not turned off but rather keeps pushing the shock wave into the target. Being stronger than the areal mass oscillations due to ablative Richtmyer-Meshkov instability and feedout in planar targets, which have recently been observed at the Naval Research Laboratory (NRL) [Aglitskiy et al., Phys. Plasmas 9, 2264 (2002)], these oscillations should therefore be directly observable with the same diagnostic technique. Irradiation of a target with a short laser pulse represents a particular case of an impulsive loading, a fast release of finite energy in a thin layer near the surface of a target. Renewed interest to the impulsive loading in the area of direct-drive laser fusion is due to the recent proposals of using a short pulse prior to the drive pulse to make the target more resistant to laser imprint and Rayleigh-Taylor growth. Impulsive loading produces a shock wave that propagates into the target and is immediately followed by an expansion wave, which gradually reduces the shock strength. If the irradiated surface is rippled, then, while the shock wave propagates through the target, its modulation amplitude grows, exceeding the initial ripple amplitude by a factor of 2 or more. The oscillating areal mass reaches the peak values that exceed the initial mass modulation amplitude (density times ripple height) by a factor of 5-7 or more, and reverses its phase several times after the laser pulse is over. The oscillatory growth is more pronounced in fluids with higher shock compressibility and is probably related to the Vishniac's instability of a blast wave. Frequency of the oscillations is determined by the speed of sound in the shocked material, and

  6. Nonequilibrium effects on shock-layer radiometry during earth entry.

    Science.gov (United States)

    Arnold, J. O.; Whiting, E. E.

    1973-01-01

    Radiative enhancement factors for the CN violet and N2(+) first negative band systems caused by nonequilibrium thermochemistry in the shock layer of a blunt-nosed vehicle during earth entry are reported. The results are based on radiometric measurements obtained with the aid of a combustion-driven shock tube. The technique of converting the shock-tube measurements into predictions of the enhancement factors for the blunt-body case is described, showing it to be useful for similar applications of other shock-tube measurements.

  7. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  8. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  9. Transient shock waves in heliosphere and Sun-Earth relations

    International Nuclear Information System (INIS)

    Voeroes, Z.

    1990-01-01

    The problem of shock waves, caused by solar activity in the Earth's magnetosphere and its magnetic field, is discussed. All types of shock waves have their origin either in solar corona effects or in solar eruptions. Ionospheric and magnetospheric effects, such as X and gamma radiation, particle production, geomagnetic storms and shock waves, caused by solar activity, are dealt with and attempts are made to explain their interdependence. The origin and propagation of coronal shock waves, interplanetary shock waves and geomagnetic field disorders are described and their relations discussed. The understanding of the solar corona and wind phenomena seems to allow prediction of geomagnetic storms. The measurement and analysis of solar activity and its effects could yield useful information about shock waves physics, geomagnetosphere structure and relations between the Earth and the Sun. (J.J.). 7 figs., 1 tab., 37 refs

  10. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  11. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Parkin, E. R.; Sim, S. A.

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X , remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X /L bol ). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  12. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  13. Radiation hardness tests and characterization of the CLARO-CMOS, a low power and fast single-photon counting ASIC in 0.35 micron CMOS technology

    International Nuclear Information System (INIS)

    Fiorini, M.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.

    2014-01-01

    The CLARO-CMOS is a prototype ASIC that allows fast photon counting with 5 ns peaking time, a recovery time to baseline smaller than 25 ns, and a power consumption of less than 1 mW per channel. This chip is capable of single-photon counting with multi-anode photomultipliers and finds applications also in the read-out of silicon photomultipliers and microchannel plates. The prototype is realized in AMS 0.35 micron CMOS technology. In the LHCb RICH environment, assuming 10 years of operation at the nominal luminosity expected after the upgrade in Long Shutdown 2 (LS2), the ASIC must withstand a total fluence of about 6×10 12 1 MeV n eq /cm 2 and a total ionizing dose of 400 krad. A systematic evaluation of the radiation effects on the CLARO-CMOS performance is therefore crucial to ensure long term stability of the electronics front-end. The results of multi-step irradiation tests with neutrons and X-rays up to the fluence of 10 14 cm −2 and a dose of 4 Mrad, respectively, are presented, including measurement of single event effects during irradiation and chip performance evaluation before and after each irradiation step. - Highlights: • CLARO chip capable of single-photon counting with 5 ns peaking time. • Chip irradiated up to very high neutron, proton and X-rays fluences, as expected for upgraded LHCb RICH detectors. • No significant performance degradation is observed after irradiation

  14. A Reverse Shock in GRB 160509A

    Science.gov (United States)

    Laskar, Tanmoy; Alexander, Kate D.; Berger, Edo; Fong, Wen-fai; Margutti, Raffaella; Shivvers, Isaac; Williams, Peter K. G.; Kopač, Drejc; Kobayashi, Shiho; Mundell, Carole; Gomboc, Andreja; Zheng, WeiKang; Menten, Karl M.; Graham, Melissa L.; Filippenko, Alexei V.

    2016-12-01

    We present the second multi-frequency radio detection of a reverse shock in a γ-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope γ-ray burst 160509A at z = 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at ≲10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of {n}0≈ {10}-3 {{cm}}-3, supporting our previous suggestion that a low-density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N H ≈ 1.5 × 1022 {{cm}}-2, and a high rest-frame optical extinction, A V ≈ 3.4 mag. We identify a jet break in the X-ray light curve at {t}{jet}≈ 6 {days}, and thus derive a jet opening angle of {θ }{jet}≈ 4^\\circ , yielding a beaming-corrected kinetic energy and radiated γ-ray energy of {E}{{K}}≈ 4× {10}50 erg and {E}γ ≈ 1.3× {10}51 erg (1-104 keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of {t}{dec} ≈ 460 s ≈ T 90, a Lorentz factor of {{Γ }}({t}{dec})≈ 330, and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of {R}{{B}}\\equiv {ɛ }{{B},{RS}}/{ɛ }{{B},{FS}}≈ 8. Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of γ-ray burst ejecta.

  15. Forming Behaviour in Laser Shock Drawing

    OpenAIRE

    Schulze Niehoff, H.; Vollertsen, F.; Wielage, H.

    2008-01-01

    Through the continuing trend of miniaturization new cost efficient and fast methods for processing small parts are required. In this paper a new non-mechanical process for the forming process of micro deep drawing is presented. This new deep drawing process utilizes a laser initiated plasma shock wave at the target, which forms the sheet. Several pulses can be applied at one point and therefore high forming degrees can be reached without increasing the energy density. In this paper the pressu...

  16. Shock drift acceleration in the presence of waves

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  17. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter; Etude experimentale de la propagation et du depot d'energie d'electrons rapides dans une cible solide ou comprimee par choc laser: application a l'allumeur rapide

    Energy Technology Data Exchange (ETDEWEB)

    Pisani, F

    2000-02-15

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  18. H2 emission from non-stationary magnetized bow shocks

    Science.gov (United States)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  19. The safety of fast reactors

    International Nuclear Information System (INIS)

    Justin, F.

    1976-01-01

    A response is made to the main questions that a man in the street may arise concerning fast breeder reactors, in particular: the advantages of this line, dangerous materials contained in fast breeder reactors, containment shells protecting the environment from radiations, main studies now in progress [fr

  20. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  1. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...

  2. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation

  3. Shock waves in water at low energy pulsed electric discharges

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  4. Directly acting spring loaded safety valves as shock reducing measure

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2010-01-01

    Hydraulic shocks as induced by fast closure of armatures or by sudden pump failures are massive impacts in piping systems and require extensive measures to absorb the generated load. Basically the avoidance of water hammers are preferable but in case of emergency shutdowns unavoidable hydraulic shocks have to be reduced by appropriate measures. The authors describe experiments with spring loaded safety valves as shock reducing measures. It was shown that the vale dimensions is essential for the efficacy. A realistic modeling is possible using the one-dimensional fluid mechanics code ROLAST.

  5. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M. E. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Department of Science and Technology, Linkoeping University, SE-60174 Norrkoeping (Sweden); Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Romagnani, L. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Pohl, M. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); DESY, D-15738 Zeuthen (Germany)

    2013-04-15

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  6. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    International Nuclear Information System (INIS)

    Dieckmann, M. E.; Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M.; Romagnani, L.; Pohl, M.

    2013-01-01

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  7. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  8. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  9. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  10. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-01-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ''white'' source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report

  11. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    Science.gov (United States)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8

  12. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  13. Shocks inside CMEs: A survey of properties from 1997 to 2006

    Science.gov (United States)

    Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.

    2015-04-01

    We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.

  14. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  15. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  16. The characteristic response of whistler mode waves to interplanetary shocks

    Science.gov (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  17. Counseling For Future Shock

    Science.gov (United States)

    Morgan, Lewis B.

    1974-01-01

    In this article the author looks at some of the searing prophecies made by Alvin Toffler in his book Future Shock and relates them to the world of the professional counselor and the clientele the counselor attempts to serve. (Author)

  18. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  19. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  20. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  1. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done

  2. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-01-01

    CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique

  3. Technology shocks matter

    OpenAIRE

    Jonas D. M. Fisher

    2002-01-01

    This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...

  4. Shock-resistant scintillation detector

    International Nuclear Information System (INIS)

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  5. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    International Nuclear Information System (INIS)

    Villar Colome, J.

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  6. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  7. Physics of intermediate shocks: A review

    Science.gov (United States)

    Karimabadi, H.

    1995-01-01

    Intermediate shocks (ISs) lead to a transition from super-Alfvenic to sub-Alfvenic flow and are different from slow and fast shocks in that an IS rotates the component of the magnetic field tangent to the shock plane by 180 deg. Another peculiarity of ISs is that for the same upstream conditions an IS can have two different downstream states. There also exist a second class of ISs which rotate the magnetic field by an angle other than 180 deg. Due to their noncoplanar nature they cannot be time-stationary and are referred to as time-dependent intermediate shocks (TDIS). The existence of ISs has been the subject of much controversy over the years. Early studies questioned the physical reality of ISs. However, the studies of ISs found a new impetus when C.C. Wu showed that ISs do exist and are stable within the resistive MHD framework. In this paper, after a brief historical overview of the subject, we will review the latest developments in the study of ISs. In particular, we will address the questions of stability and structure of ISs and the relationship between ISs and other discontinuities. One of the recent developments has been the finding that ISs can be unsteady, reforming in time. Details of this process will be discussed. Finally, we examine the effect of anisotropy on the resolutions and discuss the relevance of ISs to the observed field rotations at the Earth's magnetopause.

  8. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  9. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  10. Investigation of the reflection of fast neutrons

    International Nuclear Information System (INIS)

    Devillers, Christian; Hasselin, Gilbert

    1964-10-01

    The authors report the study of the reflection of fast neutrons on a plane plate having a finite and varying thickness and an infinite width. Calculations are performed by using a Monte-Carlo method which allows the number, the energy, the direction, the emergence point of neutrons reflected on a plate, to be computed with respect to the energy and direction of incident neutrons. The author present how paths, elastic and inelastic shocks, direction after shock are calculated. Different information are calculated: the numbers of elastic shocks, inelastic shocks and transmitted neutrons, the number, energy and dose albedo, the spectrum and angular distribution, the distribution of neutron in terms of energy and direction

  11. Shock wave structure in an ideal dissociating gas

    Science.gov (United States)

    Liu, K. H.

    1975-01-01

    Composition changes within the shock layer due to chemical reactions are considered. The Lighthill ideal dissociating gas model was used in an effort to describe the oxygen type molecule. First, the two limiting cases, when the chemical reaction rates are very slow and very fast in comparison to local convective rates, are investigated. Then, the problem is solved for arbitrary chemical reaction rates.

  12. Curved Radio Spectra of Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  13. Shock-induced luminescence from Z-cut lithium niobate

    International Nuclear Information System (INIS)

    Brannon, P.J.; Morris, R.W.; Asay, J.R.

    1985-01-01

    Shock-induced luminescence from lithium niobate has been studied in the stress range 1.6--21.0 GPa. Both fast-framing photography and five-channel optical pyrometry were used to observe the luminescence. The framing photography showed that the emission pattern is heterogeneous for stresses just above the dynamic yield point. A further increase of the stress resulted in a pattern which was essentially homogeneous to within the experimental spatial resolution of about 30 μm. Narrowband filters and photomultiplier tubes were used in the optical pyrometry experiments. A broadband spectrum with a peak near 700 nm was observed. A plot of the energy dissipated by the shock versus shock stress correlates very well with a plot of the 700-nm intensity versus shock stress. The mechanism for light emission in lithium niobate appears to be closely related to the dynamic yielding process

  14. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    International Nuclear Information System (INIS)

    Fainberg, J; Schaefer, W

    2015-01-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples. (paper)

  15. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  16. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  17. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  18. The behaviour of materials in fast reactors

    International Nuclear Information System (INIS)

    Matthews, J.R.

    1977-01-01

    Fast neutron damage in fast reactors can limit the life of structural components through the growth voids. The main features of the current theory of point defect production and condensation are surveyed. The role of metallurgical structures and radiation produced extended defects is outlined and used to demonstrate the development of volume swelling and radiation hardening. Mechanisms of radiation creep are described in the context of the preceding treatment of point defect behaviour. Finally, future trends in the field are briefly explored. (author)

  19. Feasibility of a novel approach for fast, economical determination of radiation damage in nuclear reactor cores. Progress report, [November 1, 1993--October 31, 1994

    International Nuclear Information System (INIS)

    Was, G.S.

    1994-01-01

    Progress has been made in several areas in the second year of grant activity. This includes radiation induced segregation (modeling and experiment), deformation of the irradiated microstructure and stress corrosion cracking of irradiated microstructures

  20. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  1. Life Shocks and Homelessness

    Science.gov (United States)

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  2. Health Shocks and Retirement:

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Larsen, Mona

    We investigate the effect of an acute health shock on retirement among elderly male workers in Denmark, 1991-1999, and in particular whether various welfare state programs and institutions impinge on the retirement effect. The results show that an acute health event increases the retirement chances...... significant. For the most part, the retirement effect following a health shock seems to be immune to the availability of a multitude of government programs for older workers in Denmark....... benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...

  3. Conversion of piston-driven shocks from powerful solar flares to blast wave shocks in the solar wind

    International Nuclear Information System (INIS)

    Pinter, S.

    1990-01-01

    It was suggested by Smart and Shea (1985) that the time of arrival of solar-flare-generated shock waves at any point in space may be predicted by assuming that they are first driven from the Sun after which they decay into blast shocks. Their study was extended by using the duration of the Type IV radio emission as a phenomenological symptom of the piston-driven phase of these shocks. Using a sample of 39 cases of combined Type II/Type IV observations from 1972 to 1982 solar flares, it was found that the average predicted times-of-arrival of these shocks to Earth (and elsewhere) deviate from the actual times by 1.40 hr with a standard deviation of 1.25 hr. On the average, a representative shock from this sample is emitted from a powerful flare with a velocity of 1,560 km sec -1 ; moves at a constant inertial velocity to a distance of 0.12 AU after which it begins to decelerate as a classical (Sedov-type) blast shock that is convected by the ambient solar wind as suggested by Smart and Shea; and arrives to Earth 45.8 hr after its initiation in the Sun. Shocks that appear to deviate from this phenomenological scenario by virtue of lack of detection on Earth are assumed to decay into fast mode MHD waves. (author). 7 figs., 1 tab., 53 refs

  4. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    Science.gov (United States)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  5. Analogy between soap film and gas dynamics. II. Experiments on one-dimensional motion of shock waves in soap films

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chang-Jian, S.K.; Chuang, M.C. [Department of Mechanical Engineering, Da-Yeh University, Chang-Hwa (Taiwan)

    2003-02-01

    This paper presents an experimental investigation of one-dimensional moving shock waves in vertical soap films. The shock waves were generated by bursting the films with a perforating spark. Images of propagating shock waves and small disturbances were recorded using a fast line scan CCD camera. An aureole and a shock wave preceding the rim of the expanding hole were clearly observed. These images are similar to the x-t diagrams in gas dynamics and give the velocities of shock and sound waves. The moving shock waves cause jumps in thickness. The variations of the induced Mach number, M{sub 2} and the ratio of film thickness across the shock wave, {delta}{sub 2}/{delta}{sub 1}, are plotted versus the shock Mach number, M{sub s}. Both results suggest that soap films are analogous to compressible gases with a specific heat ratio of {gamma}{approx_equal}1.0. (orig.)

  6. The Shock Routine

    DEFF Research Database (Denmark)

    van Hooren, Franca; Kaasch, Alexandra; Starke, Peter

    2014-01-01

    in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...... is the exception rather than the rule. Instead, incremental ‘crisis routines’ based on existing policy instruments are overwhelmingly used to deal with economic hardship. We discuss these findings in the light of the psychological ‘threat-rigidity’ effect and reflect on their consequences for theories...

  7. Observations of Macroscopic Shocks in the Laboratory

    Science.gov (United States)

    Endrizzi, Douglass; Laufman-Wollitzer, Lauren; Clark, Mike; Olson, Joseph; Myers, Rachel; Forest, Cary; Gota, Hiroshi; WiPAL Team; Tri Alpha Energy Team

    2016-10-01

    A magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy has been installed on the Wisconsin Plasma Astrophysics Lab (WiPAL) vacuum vessel. The MCPG fires a dense (1018m-3) and warm (10-30 eV) compact toroid (CT) at speeds of order 100 km/s. The CT is characterized using B magnetic diagnostics, multi-tip temperature probes, Ion saturation density probes, and a fast Phantom camera. The CT is injected into vacuum field, neutral gas, and plasmas of various beta. Results and evidence for propagating shocks will be presented. This work supported the NSF GRFP under Grant No. DGE-1256259.

  8. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  9. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  10. Fascinating World of Shock Waves

    Indian Academy of Sciences (India)

    Srimath

    travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!

  11. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  12. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Directory of Open Access Journals (Sweden)

    Guidez Joel

    2017-01-01

    In the case of sodium-cooled fast reactors (SFRs, the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction. From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  13. Design and Implementation of a High-Flux Photoneutron Converter for Analysis of Fast Neutron Radiation Damage on Gallium Nitride Transistors

    Science.gov (United States)

    2017-06-01

    as the polarization and 2DEG control between aluminum gallium nitride (AlGaN) and GaN layers. Third, the physical and electrical properties of...electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics , vol...relationship of the electrical and physical characteristics of the devices with respect to the fast neutron fluence. The damage was also analyzed using

  14. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  15. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard x-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona. This problem is discussed

  16. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  17. Teleconnected food supply shocks

    Science.gov (United States)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  18. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  19. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  20. High-Mach number, laser-driven magnetized collisionless shocks

    International Nuclear Information System (INIS)

    Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.

    2017-01-01

    Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.

  1. Radiation shielding

    International Nuclear Information System (INIS)

    Yue, D.D.

    1979-01-01

    Details are given of a cylindrical electric penetration assembly for carrying instrumentation leads, used in monitoring the performance of a nuclear reactor, through the containment wall of the reactor. Effective yet economical shielding protection against both fast neutron and high-energy gamma radiation is provided. Adequate spacing within the assembly allows excessive heat to be efficiently dissipated and means of monitoring all potential radiation and gas leakage paths are provided. (UK)

  2. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.

    2016-03-16

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong

  3. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J

    1971-12-15

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  4. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    International Nuclear Information System (INIS)

    Hellstroem, J.

    1971-12-01

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  5. Film dosimetric investigations on the exposure of the eyes in radiation therapy of the head and the cervical region with fast electrons up to 17 MeV

    International Nuclear Information System (INIS)

    Stecher, M.; Eichler, R.

    1978-01-01

    Dose distributions in irradiating tumors of the head and the cervical region with 17 MeV electrons were determined in a phantom with films. From the isodoses obtained it can be derived how radiation reaches the eyes and how the dose to the eyes is influenced. Guidance is provided for the reduction of the dose to the eye. (author)

  6. TGF beta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGF beta-receptor I signalling

    NARCIS (Netherlands)

    Wiegman, Erwin M.; Blaese, Marcet A.; Loeffler, Heidi; Coppes, Rob P.; Rodemann, H. Peter

    Background and purpose: It has been proposed that radiation induced stimulation of ATM and downstream components involves activation of TGF beta-1 and that this may be due to TGF beta-1-receptor I-Smad signalling. Therefore, the aim of this study was to clarify the distinct role of TGF

  7. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  8. Fast ejendom

    DEFF Research Database (Denmark)

    Pagh, Peter

    Bogen omfatter en gennemgang af lovgivning, praksis og teori vedrørende køb af fast ejendom og offentligretlig og privatretlig regulering. Bogen belyser bl.a. de privatretlige emner: købers misligholdelsesbeføjelser, servitutter, naboret, hævd og erstatningsansvar for miljøskader samt den...

  9. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  10. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  11. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  12. Fast radiographic systems

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1984-08-01

    Industrial radiography can be performed with shorter exposure times, when instead of X-ray film with lead intensifying screens the radiographic paper with fluorescent screen is used. With paper radiography one can obtain lower material, equipment, and labor costs, shorter exposure and processing times, and easier radiation protection. The speed of the radiographic inspection can also be increased by the use of fluorometallic intensifying screens together with a special brand of X-ray film. Before accepting either of the two fast radiographic systems one must be sure that they can produce radiographs of adequate image quality. Therefore an investigation was performed on that subject using ISO wire IQI's and ASTM penetrameters. The radiographic image quality was tested for aluminium and steel up to 30 mm thick using various brands of radiographic paper and X-ray film with fluorometallic screens and comparing them with fast X-ray films with lead screens. Both systems give satisfactory results. (author)

  13. Fast radiative transfer models for retrieval of cloud properties in the back-scattering region: application to DSCOVR-EPIC sensor

    Science.gov (United States)

    Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego

    2017-04-01

    In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior

  14. Development of fast and radiation hard Monolithic Active Pixel Sensors (MAPS) optimized for open charm meson detection with the CBM experiment

    International Nuclear Information System (INIS)

    Deveaux, M.

    2008-03-01

    The adequacy of CMOS MAPS (Monolithic Active Pixel Sensors) to provide high spatial resolution while submitted to high particle flux and radiation level is assessed in this work. A 55 Fe-source and minimum ionizing particle beams were used to study the performances of MAPS being irradiated either with neutrons and X-rays. As expected, ionizing radiation dominantly causes an increase of the leakage current of the pixels, which translates into increased shot noise. Non-ionizing radiation generates increases in terms of leakage currents but can reduce substantially the lifetime of the signal electrons in the pixel. The latter was found to cause a dramatic drop of the signal if the lifetime of the electrons shrinks below the time required for charge collection. The performances of irradiated detectors were studied as a function of the operation conditions, i.e. in terms of temperature and integration time of the pixel. It was demonstrated that running the detectors at low temperature ( 7 collisions per second, would shrink the lifetime of the detector to a few days. It was however demonstrated that a balanced configuration exists where, for lower beam interaction rate, enough D 0 -mesons can be collected and analyzed to investigate their production properties with a satisfactory sensitivity. (A.C.)

  15. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  16. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  17. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  18. Shock resistance testing

    International Nuclear Information System (INIS)

    Pouard, M.

    1984-03-01

    In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr

  19. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  20. The Shock Doctrine

    OpenAIRE

    Dionysios K. Solomos; Dimitrios N. Koumparoulis

    2011-01-01

    Naomi Klein attempts to redefine the economic history discovering the historical continuities and to reveal the neoliberal theory which functions via the utilization of specific “tools”. The state of shock is the key for the opponents of Chicago School and Milton Friedman in order for them to establish neoliberal policies and to promote the deregulated capitalism which includes less welfare state, less public sector, less regulation, weakened labor unions, privatizations and laissez-faire. Th...