WorldWideScience

Sample records for fast polycrystalline cdte

  1. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  2. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  3. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State Univeristy; Brinkman, Daniel [Arizona State Univeristy; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Dragica, Vasileska [Arizona State Univeristy; Ringhofer, Christian [Arizona State University

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  4. Phosphorus Doping of Polycrystalline CdTe by Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Colegrove, Eric; Albin, David S.; Guthrey, Harvey; Harvey, Steve; Burst, James; Moutinho, Helio; Farrell, Stuart; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and cross-sectional cathodoluminescence corroborates expected P distributions. Devices fabricated with diffused P exhibit hole concentrations up to low 1015 cm-3, however a subsequent activation anneal enabled hole concentrations greater than 1016 cm-3. CdCl2 treatments and Cu based contacts were also explored in conjunction with the P doping process.

  5. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Huizhen [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Ma, Jinwen [College of New Energy, Bohai University, Jinzhou, Liaoning 121013 (China); Mu, Yannan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Department of Physics and Chemistry, Heihe University, Heihe 164300 (China); Su, Shi; Lv, Pin; Zhang, Xiaoling; Zhou, Liying; Li, Xue; Liu, Li; Fu, Wuyou [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Yang, Haibin, E-mail: yanghb@jlu.edu.cn [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-06-15

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm{sup 2}, which is higher than that of samples prepared at other temperatures. Furthermore, CdCl{sub 2} treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl{sub 2} treatment improved to 2.97 mA/cm{sup 2}, indicating a potential application in photovoltaic devices.

  6. Time-resolved photoluminescence of polycrystalline CdTe grown by close-spaced sublimation

    Science.gov (United States)

    Keyes, B.; Dhere, R.; Ramanathan, K.

    1994-06-01

    Polycrystalline CdTe has shown great promise as a low-cost material for thin-film, terrestrial photovoltaic applications, with efficiencies approaching 16% achieved with close-spaced sublimation (CSS)-grown CdTe. Due to the inherent complexities of polycrystalline material, much of the progress in this area has occurred through a slow trial-and-error process. This report uses time-resolved photoluminescence (TRPL) to characterize the CdTe material quality as a function of one basic growth parameter—substrate temperature. This characterization is done for two different glass substrate materials, soda-lime silicate and borosilicate.

  7. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Yin, Wan-Jian [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); College of Physics, Optoelectronics and Energy and Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-01-28

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  8. Photoinduced cathodic deposition of CdTe nanoparticles on polycrystalline gold substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Sunyoung; Paeng, Ki-Jung [Department of Chemistry, Yonsei University, Wonju Campus, Wonju, Kangwondo 220-710 (Korea); Choi, Byunghyun; Myung, Noseung [Department of Applied Chemistry, Konkuk University Chungju Campus, Chungju, Chungbuk 380-701 (Korea); Rajeshwar, Krishnan [Center for Renewable Energy Science and Technology (CREST), The University of Texas at Arlington, Arlington, TX 76109-0065 (United States)

    2007-06-15

    A combination of photocathodic stripping and precipitation was used to prepare CdTe nanoparticles (size range: 30-60 nm) that were immobilized on a polycrystalline Au substrate. Thus visible light irradiation of a Te modified Au surface generated Te{sup 2-} species in situ followed by interfacial reaction with added Cd{sup 2+} ions in 0.1 M Na{sub 2}SO{sub 4} electrolyte. The resultant CdTe compound semiconductor deposited as nanosized particles uniformly dispersed on the Au substrate surface. This approach to CdTe nanoparticle deposition was monitored by a combination of electrochemical methods (voltammetry, chronoamperometry) and quartz crystal microgravimetry in the 'dark' and under illumination. The synthesized CdTe nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray analyses and laser Raman spectroscopy. (author)

  9. Effects of Sn-doping on morphology and optical properties of CdTe polycrystalline films

    Institute of Scientific and Technical Information of China (English)

    Li Jin; Yang Linyu; Jian Jikang; Zou Hua; Sun Yanfei

    2009-01-01

    Sn-doped CdTe polycrystalline films were successfully deposited on ITO glass substrates by close space sublimation. The effects of Sn-doping on the microstructure, surface morphology, and optical properties of polycrystalline films were studied using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry, respectively. The results show that the lower molar ratio of Sn and CdTe conduces to a strongly preferential orientation of (111) in films and a larger grain size, which indicates that the crystallinity of films can be improved by appropriate Sn-doping. As the molar ratio of Sn and CdTe increases, the preferential orientation of (111) in films becomes weaker, the grain size becomes smaller, and the crystal boundary becomes indistinct, which indicates that the crystallization growth of films is incomplete. However, as the Sn content increases, optical absorption becomes stronger in the visible region. In summary, a strongly preferential orientation of (111) in films and a larger grain size can be obtained by appropriate Sn-doping (molar ratio of Sn : CdTe = 0.06 : 1), while the film retains a relatively high optical absorption in the visible region. However, Sn-doping has no obvious influence on the energy gap of CdTe films.

  10. Vapor transport deposition of large-area polycrystalline CdTe for radiation image sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Keedong; Cha, Bokyung; Heo, Duchang; Jeon, Sungchae [Korea Electrotechnology Research Institute, 111 Hanggaul-ro, Ansan-si, Gyeonggi-do 426-170 (Korea, Republic of)

    2014-07-15

    Vapor transport deposition (VTD) process delivers saturated vapor to substrate, resulting in high-throughput and scalable process. In addition, VTD can maintain lower substrate temperature than close-spaced sublimation (CSS). The motivation of this work is to adopt several advantages of VTD for radiation image sensor application. Polycrystalline CdTe films were obtained on 300 mm x 300 mm indium tin oxide (ITO) coated glass. The polycrystalline CdTe film has columnar structure with average grain size of 3 μm ∝ 9 μm, which can be controlled by changing the substrate temperature. In order to analyze electrical and X-ray characteristics, ITO-CdTe-Al sandwich structured device was fabricated. Effective resistivity of the polycrystalline CdTe film was ∝1.4 x 10{sup 9}Ωcm. The device was operated under hole-collection mode. The responsivity and the μτ product estimated to be 6.8 μC/cm{sup 2}R and 5.5 x 10{sup -7} cm{sup 2}/V. The VTD can be a process of choice for monolithic integration of CdTe thick film for radiation image sensor and CMOS/TFT circuitry. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Deposition of Cl-doped CdTe polycrystalline films by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Tamotsu; Takahashi, Kohei; Akiba, Sho; Yasuda, Nao [Department of Electrical and Electronic Engineering, National Institute of Technology, Kisarazu College, 2-11-1 Kiyomidai-higashi, Kisarazu, Chiba 292-0041 (Japan); Tokuda, Satoshi; Kishihara, Hiroyuki; Ichioka, Akina; Doki, Takahiro; Sato, Toshiyuki [Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2015-06-15

    The effects of Cl-doping on the CdTe layers by the close-spaced sublimation (CSS) deposition were investigated. Cl-doped CdTe polycrystalline films were deposited on graphite substrates by CSS method using a mixture of CdTe and CdCl{sub 2} powder as a source. In X-ray diffraction (XRD) patterns of the obtained films with various deposition times, many diffraction peaks other than CdTe peaks were observed in the deposition times lower than 10 min. These diffraction peaks were probably due to the formation of chlorides of Cd, Te and C, such as CdCl{sub 2}, TeCl{sub 4}, Te{sub 3}Cl{sub 2} and C{sub 10}Cl{sub 8}. X-ray fluorescence (XRF) and secondary ion mass spectrometry (SIMS) analyses revealed that a large amount of chlorine was contained in the films with the deposition times lower than 10 min, and that Cl concentration decreased with increasing the deposition time above 3 min. These results indicate that the films containing the chlorides of Cd, Te and C in addition to CdTe are formed in the initial stage of the CSS deposition using a mixture of CdTe and CdCl{sub 2} powder as a source. Cross-sectional images revealed that the grain size was decreased by the effect of Cl-doping. Furthermore, current-voltage (I -V) characteristics of the CdTe/graphite structures were measured, and it was found that the resistivity of the Cl-doped CdTe layer was much higher than that of the undoped CdTe layer. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Role of polycrystallinity in CdTe and CuInSe sub 2 photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J.R. (Colorado State Univ., Fort Collins, CO (United States))

    1991-01-01

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  13. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    Science.gov (United States)

    Burst, James M.; Farrell, Stuart B.; Albin, David S.; Colegrove, Eric; Reese, Matthew O.; Duenow, Joel N.; Kuciauskas, Darius; Metzger, Wyatt K.

    2016-11-01

    CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 1016 cm-3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 1016 cm-3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. This combination of long lifetime, high carrier concentration, and improved stability can help overcome historic barriers for CdTe solar cell development.

  14. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    Directory of Open Access Journals (Sweden)

    James M. Burst

    2016-11-01

    Full Text Available CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na elements can increase hole density above 1016 cm−3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P in a Cd-rich ambient, lifetimes of 30 ns with 1016 cm−3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. This combination of long lifetime, high carrier concentration, and improved stability can help overcome historic barriers for CdTe solar cell development.

  15. Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2

    Science.gov (United States)

    Jensen, S. A.; Burst, J. M.; Duenow, J. N.; Guthrey, H. L.; Moseley, J.; Moutinho, H. R.; Johnston, S. W.; Kanevce, A.; Al-Jassim, M. M.; Metzger, W. K.

    2016-06-01

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  16. Long Carrier Lifetimes in Large-Grain Polycrystalline CdTe Without CdCl2

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Soren A.; Burst, James M.; Duenow, Joel N.; Guthrey, Harvey L.; Moseley, John; Moutinho, Helio R.; Johnston, Steve W.; Kanevce, Ana; Al-Jassim, Mowafak M.; Metzger, Wyatt K.

    2016-06-27

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  17. Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji-Hui; Burst, James M.; Albin, David S.; Wei, Su-Huai; Metzger, Wyatt K.

    2016-05-01

    A key challenge in cadmium telluride (CdTe) semiconductors is obtaining stable and high hole density. Group I elements substituting Cd can form ideal acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but copper creates stability problems and hole density that has not exceeded 1015 cm-3. If hole density can be increased beyond 10^16 cm-3, CdTe solar technology can exceed multicrystalline silicon and provide levelized costs of electricity below conventional energy sources. Group V elements substituting Te offer a solution, but are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain boundary (GB) diffusion of phosphorous (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast GB diffusion, there is a fast bulk diffusion component that enables deep P incorporation in CdTe. Detailed first-principles calculations indicate the slow bulk diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, this result opens up new experimental possibilities for Group V doping in CdTe materials.

  18. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  19. Nanoscale Imaging of Band Gap and Defects in Polycrystalline CdTe Photovoltaic Devices

    Science.gov (United States)

    Zhitenev, Nikolai; Yoon, Yohan; Chae, Jungseok; Katzenmeyer, Aaron; Yoon, Heayoung; An, Sangmin; Shumacher, Joshua; Centrone, Andrea

    To further increase the power efficiency of polycrystalline thin film photovoltaic (PV) technology, a detailed understanding of microstructural properties of the devices is required. In this work, we investigate the microstructure of CdTe PV devices using two optical spectroscopies. Sub-micron thickness lamella samples were cut out from a PV device, either in cross-section or in-plane, by focused ion beam. The first technique is the photothermal induced resonance (PTIR) used to obtain absorption spectra over a broad range of wavelengths. In PTIR, a wavelength tunable pulsed laser is combined with an atomic force microscope to detect the local thermal expansion of lamella CdTe sample induced by light absorption. The second technique based on a near-field scanning optical microscope maps the local absorption at fixed near-IR wavelengths with energies at or below CdTe band-gap energy. The variation of the band gap throughout the CdTe absorber determined from PTIR spectra is ~ 20 meV. Both techniques detect strong spatial variation of shallow defects over different grains. The spatial distribution of mid-gap defects appears to be more uniform. The resolution, the sensitivity and the applicability of these two approaches are compared.

  20. Micro through nanostructure investigations of polycrystalline CdTe: Correlations with processing and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Moutinho, H.R.; Hasoon, F.A.; Keyes, B.M.; Ahrenkiel, R.K.; Al-Jassim, M.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Birkmire, R.W. [Univ. of Delaware, Newark, DE (United States). Inst. of Energy Conversion

    1994-12-31

    This paper provides first-time correlations of the nanoscale physical structure with the macroscale electronic and optical properties of CdTe/CdS thin films for several standard deposition techniques. Atomic force microscopy (AFM) was used to determine the micro and nanostructures of polycrystalline CdTe thin films used in photovoltaic (PV) cell fabrication. Photoluminescence (PL) was used to determine band gap, relative defect density, and photoexcited carrier lifetime. Nanostructural features (nanograins), beyond the spatial resolution of conventional scanning electron microscopy (SEM), were observed and characterized in as-deposited CdTe. The correlations of the proximal probe measurements of the physical structure with the optically determined electronic properties were used to show the effects of the chemical and heat processing, directly and conclusively. A particularly striking effect with important implications for PV applications is the diffusion of sulfur across the CdTe/CdS interface during heat treatment.

  1. Thermoelectric power and Hall effect measurements in polycrystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Paez, B.A. [Pontificia Univ. Javeriana, Santafe de Bogota (Colombia). Thin Films Group

    2000-07-01

    Polycrystalline CdTe thin films deposited by close space sublimation (CSS), were characterized through thermoelectric power, {alpha}, Hall coefficient, and resistivity, {rho}, measurements in the range of 90 to 400 K. This was in order to determine the scattering mechanisms which mainly affect the electrical transport properties in CdTe thin films. The results were analyzed based on theoretical calculations of {alpha} against temperature. This model includes scattering processes within the grains and at the grain boundaries. Some of the parameters used in this calculation were determined experimentally: grain size, crystal structure, activation energy and effective mass. It is important to state that the main approximations were justified according to experimental measurements. (orig.)

  2. Studies on the grain boundary effect in polycrystalline CdTe films using optical reflectance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, J. (Dept. of Materials Science, Indian Association for the Cultivation of Science, Calcutta (India)); Pal, R. (Dept. of Materials Science, Indian Association for the Cultivation of Science, Calcutta (India)); Bhattacharyya, S.K. (Central Glass and Ceramic Research Inst., Calcutta (India)); Chaudhuri, S. (Dept. of Materials Science, Indian Association for the Cultivation of Science, Calcutta (India)); Pal, A.K. (Dept. of Materials Science, Indian Association for the Cultivation of Science, Calcutta (India))

    1993-11-15

    The grain boundary effect in polycrystalline CdTe films deposited at various substrate temperatures has been studied critically. The grain boundary potential, the density of trap states at the boundary region and the carrier concentration in the films were obtained by an alternative technique that utilizes the reflectance measurements of the highly resistive films deposited on a nonabsorbing substrate. The barrier height in the CdTe films decreased from 0.34 to 0.2 eV as the grain size increased from 60 to 133 nm, owing to the increase in the deposition temperature from 373 to 523 K. Correspondingly, the density of trap states in the grain boundary region decreased from 1.63x10[sup 13] to 6.15x10[sup 12] cm[sup -2]. (orig.)

  3. [Spectral analysis of the effect of annealing on CdTe polycrystalline film].

    Science.gov (United States)

    Wang, Wen-Wu; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping; Lei, Zhi; Zhang, Jing-Quan; Li, Bing; Li, Wei; Wu, Li-Li

    2010-03-01

    Polycrystalline CdTe thin films were prepared by close-spaced sublimation (CCS) and were annealed in different condition. The thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy(XPS). The content distribution and valence state of all elements after annealing were studied. All results show that the as-deposited CdTe thin films are in a cubic phase and have the preferred orientation in (111) direction. After annealing, the peak intensity of (111), (220), (311) grows and the crystal grains grow up, while the crystal boundary decreases. So the compound probabilities of current carrier decrease, therefore shunt resistance and drain current are improved. From detailed analysis of X-ray photoelectron data, it is proposed that tellurium oxides present and its content reduces with depth increasing and that there are TeCl2O building blocks.

  4. Preparation and Properties of CdTe Polycrystalline Films for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huajing; ZHANG Jingquan; FENG Lianghuan; ZHENG Jiagui; CAI Wei; LI Bing; CAI Yaping

    2006-01-01

    The structure and characteristics of CdTe thin films are closely dependent on the whole deposition process in close-space sublimation (CSS). The physical mechanism of CSS was analyzed and the temperature distribution in CSS system was measured, and the influences of the increasing-temperature process and pressure on the preliminary nucleus creation were studied. The results indicate: the samples deposited at different pressures have a cubical structure of CdTe and the diffraction peaks of CdS and SnO2∶F. As the atmosphere pressure increases, the crystal size of CdTe decreases, the rate of the transparency of the thin film decreases and the absorption side moves towards the short-wave direction. After a 4-minute depositing process with a substrate temperature of 500 ℃ and a source temperature of 620 ℃, the polycrystalline thin films can be made, so the production of high-quality integrated cell with SnO2:F/CdS/CdTe/Au structure is hopeful.

  5. One-Dimensional Reaction-Diffusion Simulation of Cu Migration in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Da [Arizona State University; Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-13

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  6. Structural and electrical properties of polycrystalline CdTe films for direct X-ray imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Bo Kyung, E-mail: goldrain99@kaist.ac.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of); Yang, Keedong [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of); Cha, Eun Seok; Yong, Seok-Min [Department of Materials Science and Engineering, KAIST, Daejeon, Repulic of Korea (Korea, Republic of); Heo, Duchang; Kim, Ryun Kyung; Jeon, Seongchae; Seo, Chang-Woo; Kim, Cho Rong [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of); Ahn, Byung Tae [Department of Materials Science and Engineering, KAIST, Daejeon, Repulic of Korea (Korea, Republic of); Lee, Tae-Bum [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of)

    2013-12-11

    We introduce polycrystalline cadmium telluride (CdTe) with high atomic number and density, low effective energy and wide band gap for application in large area diagnostic X-ray digital imaging. In this work, polycrystalline CdTe films were fabricated on ITO/glass substrate by both physical vapor deposition (PVD) with slow deposition rate and pressure of 10{sup −6} Torr and the closed space sublimation (CSS) method with high deposition rate and low vacuum pressure(10{sup −2} Torr). The various polycrystalline CdTe films were grown at different deposition rates and substrate temperatures. Physical properties such as microstructures and the crystal structure of the polycrystalline samples were investigated by SEM and XRD patterns respectively. The PVD method resulted in microstructures with columnar shape and more uniform surface, while the CSS method produced microstructures with many larger grains and less uniform surface. The films were polycrystalline structures with a preferential (111) direction. The electrical and optical properties such as the dark current as a function of applied bias voltage and X-ray sensitivity of the fabricated films were measured and investigated under X-ray exposure.

  7. Structural and electrical properties of polycrystalline CdTe films for direct X-ray imaging detectors

    Science.gov (United States)

    Cha, Bo Kyung; Yang, Keedong; Cha, Eun Seok; Yong, Seok-Min; Heo, Duchang; Kim, Ryun Kyung; Jeon, Seongchae; Seo, Chang-Woo; Kim, Cho Rong; Ahn, Byung Tae; Lee, Tae-Bum

    2013-12-01

    We introduce polycrystalline cadmium telluride (CdTe) with high atomic number and density, low effective energy and wide band gap for application in large area diagnostic X-ray digital imaging. In this work, polycrystalline CdTe films were fabricated on ITO/glass substrate by both physical vapor deposition (PVD) with slow deposition rate and pressure of 10-6 Torr and the closed space sublimation (CSS) method with high deposition rate and low vacuum pressure(10-2 Torr). The various polycrystalline CdTe films were grown at different deposition rates and substrate temperatures. Physical properties such as microstructures and the crystal structure of the polycrystalline samples were investigated by SEM and XRD patterns respectively. The PVD method resulted in microstructures with columnar shape and more uniform surface, while the CSS method produced microstructures with many larger grains and less uniform surface. The films were polycrystalline structures with a preferential (111) direction. The electrical and optical properties such as the dark current as a function of applied bias voltage and X-ray sensitivity of the fabricated films were measured and investigated under X-ray exposure.

  8. Low temperature growth of high quality CdTe polycrystalline layers

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, I R B [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Suela, J [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Oliveira, J E [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Ferreira, S O [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Motisuke, P [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, SP (Brazil)

    2007-08-07

    We have investigated the growth of CdTe thin films on glass substrates by hot wall epitaxy. The layers have been characterized by scanning electron microscopy, atomic force microscopy, profilometry, x-ray diffraction and optical transmission. The grown samples are polycrystalline with a high preferential [1 1 1] orientation. Atomic force microscopy and scanning electron microscopy reveal pyramidal grain shapes with a size of around 0.3 {mu}m. The surface roughness increases with sample thickness and growth temperature, reaching about 200 nm for 10 {mu}m thick layers grown at 300 deg. C. Samples with a thickness of 2 {mu}m grown at 150 deg. C showed a roughness of less than 40 nm. Optical transmission measurements demonstrate layers with high optical quality.

  9. Low temperature growth of high quality CdTe polycrystalline layers

    Science.gov (United States)

    Ribeiro, I. R. B.; Suela, J.; Oliveira, J. E.; Ferreira, S. O.; Motisuke, P.

    2007-08-01

    We have investigated the growth of CdTe thin films on glass substrates by hot wall epitaxy. The layers have been characterized by scanning electron microscopy, atomic force microscopy, profilometry, x-ray diffraction and optical transmission. The grown samples are polycrystalline with a high preferential [1 1 1] orientation. Atomic force microscopy and scanning electron microscopy reveal pyramidal grain shapes with a size of around 0.3 µm. The surface roughness increases with sample thickness and growth temperature, reaching about 200 nm for 10 µm thick layers grown at 300 °C. Samples with a thickness of 2 µm grown at 150 °C showed a roughness of less than 40 nm. Optical transmission measurements demonstrate layers with high optical quality.

  10. Micro through nanostructure investigations of polycrystalline CdTe. Correlations with processing and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Moutinho, H.R.; Hasoon, F.S.; Keyes, B.M.; Ahrenkiel, R.K.; Al-Jassim, M.; Kazmerski, L.L. [National Renewable Energy Laboratory, Golden, CO (United States); Birkmire, R.W. [Institute of Energy Conversion, University of Delaware, Newark, DW (United States)

    1996-06-10

    This paper provides first-time correlations of the nanoscale physical structure with the macroscale electronic and optical properties of CdTe/CdS thin films for several standard deposition techniques. Atomic force microscopy (AFM) was used to determine the micro and nanostructures of polycrystalline CdTe thin films used in photovoltaic (PV) cell fabrication. Photoluminescence (PL) was used to determine band gap, relative defect density, and photoexcited carrier lifetime. Cross-sectional scanning tunneling microscopy (STM) was used to determine the nanoscale electronic properties. Nanostructural features (nanograins), beyond the spatial resolution of conventional scanning electron microscopy (SEM), were observed and characterized in as-deposited CdTe. The correlations of the proximal probe measurements of the physical and electronic structure with the optically determined electronic properties were used to show the effects of the chemical and heat processing, directly and conclusively. A particularly striking effect with important implications for PV applications is the diffusion of sulfur across the CdTe/CdS interface during heat treatment

  11. Fabrication of solar cells based on polycrystalline CdTe thin films using an economical production. Energie

    Energy Technology Data Exchange (ETDEWEB)

    Tranchart, J.C.; Boucherez, P.

    1983-01-01

    Polycrystalline CdS and CdTe films were produced by serigraphy. High-quality CdS films were obtained, especially with CdCl as melting phase. In the field of CdTe films, further studies are required in order to improve the sintering process, the film porosity characteristics, and the electric resistivity which decides the serial conductivity of the n-CdS/p-CdTe structures. In the field of solar cells, quartz +In/sub 2/O/sub 3/+CdS+CdTe heterostructures with a photoelectric efficiency of 2.5% were obtained. This value is too low, even if the economic advantages of serigraphy are taken into account. Further studies should center on the sintering process for CdTe films.

  12. Enhanced electrical properties at boundaries including twin boundaries of polycrystalline CdTe thin-film solar cells.

    Science.gov (United States)

    Li, H; Liu, X X; Lin, Y S; Yang, B; Du, Z M

    2015-05-07

    The effect of grain boundaries (GBs), in particular twin boundaries (TBs), on CdTe polycrystalline thin films is studied by conductive atomic force microscopy (C-AFM), electron-beam-induced current (EBIC), scanning Kelvin probe microscopy (SKPM), electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM). Four types of CdTe grains with various densities of {111} Σ3 twin boundaries (TBs) are found in Cl-treated CdTe polycrystalline thin films: (1) grains having multiple {111} Σ3 TBs with a low angle to the film surface; (2) grains having multiple {111} Σ3 TBs parallel to the film surfaces; (3) small grains on a scale of not more than 500 nm, composed of Cd, Cl, Te, and O; and (4) CdTe grains with not more than two {111} Σ3 TBs. Grain boundaries (including TBs) exhibit enhanced current transport phenomena. However, the {111} Σ3 TB is much more beneficial to micro-current transport. The enhanced current transport can be explained by the lower electron potential at GBs (including TBs) than the grain interiors (GIs). Our results open new opportunities for enhancing solar cell performances by controlling the grain boundaries, and in particular TBs.

  13. Effects of Antimony Doping in Polycrystalline CdTe Thin-Film Solar Cells

    Science.gov (United States)

    Okamoto, Tamotsu; Ikeda, Shigeyuki; Nagatsuka, Satsuki; Hayashi, Ryoji; Yoshino, Kaoru; Kanda, Yohei; Noda, Akira; Hirano, Ryuichi

    2012-10-01

    The effects of antimony (Sb) doping of the CdTe layer in the CdTe solar cells were investigated using Sb-doped CdTe powders as source materials for CdTe deposition by the close-spaced sublimation (CSS) method. Conversion efficiency increased with increasing Sb concentration below 1×1018 cm-3, mainly owing to the improvement of the fill factor. Secondary ion microprobe mass spectrometry (SIMS) depth profile revealed that the Sb impurities at a concentration of approximately 1×1016 cm-3 were incorporated into the CdTe layer when using the Sb-doped CdTe source of 1×1018 cm-3. The observation of surface morphology showed that the grain sizes were improved by Sb addition. Therefore, the improved performance upon Sb addition to CdTe solar cells was probably due to the improvements in crystallinity, such as increased grain size.

  14. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  15. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  16. Sulfur diffusion in polycrystalline thin-film CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, M.H.; Song, W.; Tang, T.; Mao, D.; Collins, R.T. [Colorado School of Mines, Golden, CO (United States). Physics Dept.; Levi, D.H.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States); Lindstrom, S.C.; Johnson, M.B. [Univ. of Oklahoma, Norman, OK (United States)

    1998-12-31

    X-ray diffraction and photoluminescence measurements have been used to characterize the diffusion of S into CdTe during post growth annealing of CdTe solar cells. For anneals at 410 C in the presence of CdCl{sub 2}, evidence that both a CdTe{sub 1{minus}x}S{sub x} phase and nearly-pure CdTe are present near the back contact is observed. The ternary phase becomes more prominent and the S concentration increases with depth reaching roughly 4--5% near the CdS interface. Much less diffusion is observed at 350 C while for a 460 C anneal, CdTe{sub 1{minus}x}S{sub x} with a S concentration near 5% is found throughout the layer. The presence of CdCl{sub 2} during the anneal enhances the interdiffusion.

  17. Polycrystalline CuInSe{sub 2} and CdTe PV solar cells. Annual subcontract report, 15 April 1993--14 April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N.G. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1994-11-01

    This is an annual technical report on the Phase 2 of a three-year phased research program. The principal objective of the research project is to develop novel and low-cost processes for the fabrication of stable and efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe polycrystalline-thin-film solar cells using reliable techniques amenable to scale-up for economic, large-scale manufacture. The aims are to develop a process for the non-toxic selenization so as to avoid the use of extremely toxic H{sub 2}Se in the fabrication of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} thin-film solar cells; to optimize selenization parameters; to develop a process for the fabrication of CdTe solar cells using Cd and Te layers sputtered from elemental targets; to develop an integrated process for promoting the interdiffusion between Cd/Te layers, CdTe phase formation, grain growth, type conversion, and junction formation; to improve adhesion; to minimize residual stresses; to improve the metallic back-contact; to improve the uniformity, stoichiometry, and morphology of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe thin films; and to improve the efficiency of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe solar cells.

  18. Polycrystalline CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, April 15, 1992--April 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N.G. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1994-08-01

    The principal objective of the research project is to develop processes for the fabrication of cadmium-telluride, CdTe, and copper-indium-gallium-diselenide, Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2}, polycrystalline-thin-film solar cells using techniques that can be scaled-up for economic manufacture on a large scale. The aims are to fabricate CdTe solar cells using Cd and Te layers sputtered from elemental targets; to promote the interdiffusion between Cd/Te layers, CdTe phase formation, and grain growth; to utilize non-toxic selenization so as to avoid the use of extremely toxic H{sub 2}Se in the fabrication of Cu(In{sub l{minus}x}Ga{sub x})Se{sub 2} thin-film solar cells; to optimize selenization parameters; to improve adhesion; to minimize residual stresses; to improve the uniformity, stoichiometry, and morphology of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} thin films, and the efficiency of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} solar cells.

  19. Anomalous scaling and super-roughness in the growth of CdTe polycrystalline films

    OpenAIRE

    Mata, Angélica S.; Ferreira, Jr,Augusto; Ribeiro, Igor R. B.; Ferreira, Sukarno O.

    2011-01-01

    CdTe films grown on glass substrates covered by fluorine doped tin oxide by Hot Wall Epitaxy (HWE) were studied through the interface dynamical scaling theory. Direct measures of the dynamical exponent revealed an intrinsically anomalous scaling characterized by a global roughness exponent $\\alpha$ distinct from the local one (the Hurst exponent $H$), previously reported [Ferreira \\textit{et al}., Appl. Phys. Lett. \\textbf{88}, 244103 (2006)]. A variety of scaling behaviors was obtained with ...

  20. Atomic-resolution characterization of the effects of CdCl{sub 2} treatment on poly-crystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Paulauskas, T., E-mail: tpaula2@uic.edu; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Klie, R. F. [Department of Physics, University of Illinois at Chicago, 845 W. Taylor St. M/C 273, Chicago, Illinois 60607-7059 (United States); Chan, M. K. Y. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Building 440, Argonne, Illinois 60439 (United States)

    2014-08-18

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl{sub 2} environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl{sub 2}, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  1. [Spectral analyzing effects of atmosphere states on the structure and characteristics of CdTe polycrystalline thin films made by close-spaced sublimation].

    Science.gov (United States)

    Zheng, Hua-jing; Zheng, Jia-gui; Feng, Liang-huan; Zhang, Jing-quan; Xie, Er-qing

    2005-07-01

    The structure and characteristics of CdTe thin films are dependent on the working atmosphere states in close-spaced sublimation. In the present paper, CdTe polycrystalline thin films were deposited by CSS in mixture atmosphere of argon and oxygen. The physical mechanism of CSS was analyzed, and the temperature distribution in CSS system was measured. The dependence of preliminary nucleus creation on the atmosphere states (involving component and pressure) was studied. Transparencies were measured and optic energy gaps were calculated. The results show that: (1) The CdTe films deposited in different atmospheres are cubic structure. With increasing oxygen concentration, a increases and reaches the maximum at 6% oxygen concentration, then reduces, and increases again after passing the point at 12% oxygen concentration. Among them, the sample depositing at 9% oxygen concentration is the best. The optic energy gaps are 1.50-1.51 eV for all CdTe films. (2) The samples depositing at different pressures at 9% oxygen concentration are all cubical structure of CdTe, and the diffraction peaks of CdS and SnO2:F still appear. With the gas pressure increasing, the crystal size of CdTe minishes, the transparency of the thin film goes down, and the absorption side shifts to the short-wave direction. (3) The polycrystalline thin films with high quality deposit in 4 minutes under the depositing condition that the substrate temperature is 550 degrees C, and source temperature is 620 degrees C at 9% oxygen concentration.

  2. Thin-Film Solar Cells Based on the Polycrystalline Compound Semiconductors CIS and CdTe

    Directory of Open Access Journals (Sweden)

    Michael Powalla

    2007-01-01

    14% expected in the near future. The integrated interconnection of single cells into large-area modules of 0.6×1.2m2 enables low-cost mass production, so that thin-film modules will soon be able to compete with conventional silicon-wafer-based modules. This contribution provides an overview of the basic technologies for CdTe and CIS modules, the research and development (R&D issues, production technology and capacities, the module performance in long-term outdoor testing, and their use in installations.

  3. Anomalous scaling and super-roughness in the growth of CdTe polycrystalline films

    Science.gov (United States)

    Mata, Angélica S.; Ferreira, Silvio C., Jr.; Ribeiro, Igor R. B.; Ferreira, Sukarno O.

    2008-09-01

    CdTe films grown on glass substrates covered by fluorine-doped tin oxide by hot-wall epitaxy were studied through the interface dynamical scaling theory. Direct measures of the dynamical exponent revealed an intrinsically anomalous scaling characterized by a global roughness exponent α , distinct from the local one (the Hurst exponent H ) previously reported by Ferreira [Appl. Phys. Lett.88, 244103 (2006)]. A variety of scaling behaviors was obtained with varying substrate temperature. In particular, a transition from an intrinsically anomalous scaling regime with H≠αrough regime with H≠α>1 at high temperatures was observed. The temperature is a growth parameter that controls both the interface roughness and dynamical scaling exponents. Nonlocal effects are pointed out as the factors ruling the anomalous scaling behavior.

  4. CdTe devices and method of manufacturing same

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  5. Fluoroscopic x-ray demonstrator using a CdTe polycrystalline layer coupled to a CMOS readout chip

    Science.gov (United States)

    Arques, M.; Renet, S.; Brambilla, A.; Feuillet, G.; Gasse, A.; Billon-Pierron, N.; Jolliot, M.; Mathieu, L.; Rohr, P.

    2010-04-01

    Dynamic X-ray imagers require large surface, fast and highly sensitive X-ray absorbers and dedicated readout electronics. Monocrystalline photoconductors offer the sensitivity, speed, and MTF performances. Polycristalline photoconductors offer the large surface at a moderate cost. The challenge for them is to maintain the first performances at a compatible level with the medical applications requirements. This work has been focused on polycristalline CdTe grown by Close Space Sublimation (CSS) technique. This technique offers the possibility to grow large layers with a high material evaporation yield. This paper presents the results obtained with an image demonstrator using 350μm thick CdTe_css layers coupled to a CMOS readout circuit with Indium bumping. The present demonstrator has 200 x 200 pixels, with a pixel pitch of 75μm ×75μm. A total image surface of 15mm × 15mm has then been obtained. The ASIC works in an integration mode, i.e. each pixel accumulates the charges coming from the CdTe layer on a capacitor, converting them to a voltage. Single images as well as video sequences have been obtained. X-ray performance at 16 frames per second rate is measured. In particular a readout noise of 0.5 X ray, an MTF of 50% at 4 lp/mm and a DQE of 20% at 4lp/mm and 600 nGy are obtained. Although present demonstrator surface is moderate, it demonstrates that high performance can be expected from this assembly concept and its interest for medical applications.

  6. Investigation of polycrystalline CdTe thin films deposited by physical vapor deposition, close-spaced sublimation, and sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H.R.; Hasoon, F.S.; Abulfotuh, F.; Kazmerski, L.L. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    1995-11-01

    CdTe thin films, deposited on different substrate structures by physical vapor deposition, sputtering, and close-spaced sublimation, have been treated with CdCl{sub 2} at several temperatures. The morphology of the films has been studied by atomic force microscopy, and the observations were correlated to results obtained from x-ray diffraction, cathodoluminescence, and minority-carrier lifetime measurements. The samples treated at 400 {degree}C resulted in the best device-quality films, independent of deposition method and underlying substrate structure. For the first time, a nanograin structure was observed in CdTe sputtered samples. copyright {ital 1995} {ital American} {ital Vacuum} {ital Society}.

  7. Super fast detection of latent fingerprints with water soluble CdTe quantum dots.

    Science.gov (United States)

    Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun

    2013-03-10

    A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development.

  8. Addendum to "Anomalous scaling and super-roughness in the growth of CdTe polycrystalline films"

    OpenAIRE

    Fábio S. Nascimento; Mata, Angélica S.; Ferreira, Silvio C.; Ferreira, Sukarno O.

    2011-01-01

    The scaling of the growth of CdTe films on glass substrates was investigated by Mata \\textit{et al.} [Phys. Rev. B \\textbf{78}, 115305 (2008)]. Part of the analysis consisted of the estimation of the correlation length $\\xi$ using the decay in the height-height correlation function. Afterwards, the dynamical exponent $z$ was determined using the scaling hypothesis $\\xi\\sim t^{1/z}$. In this Addendum, we show that the correlation lengths obtained by Mata \\textit{et al.} provide a long waveleng...

  9. Wiring-up carbon single wall nanotubes to polycrystalline inorganic semiconductor thin films: low-barrier, copper-free back contact to CdTe solar cells.

    Science.gov (United States)

    Phillips, Adam B; Khanal, Rajendra R; Song, Zhaoning; Zartman, Rosa M; DeWitt, Jonathan L; Stone, Jon M; Roland, Paul J; Plotnikov, Victor V; Carter, Chad W; Stayancho, John M; Ellingson, Randall J; Compaan, Alvin D; Heben, Michael J

    2013-11-13

    We have discovered that films of carbon single wall nanotubes (SWNTs) make excellent back contacts to CdTe devices without any modification to the CdTe surface. Efficiencies of SWNT-contacted devices are slightly higher than otherwise identical devices formed with standard Au/Cu back contacts. The SWNT layer is thermally stable and easily applied with a spray process, and SWNT-contacted devices show no signs of degradation during accelerated life testing.

  10. Spectroscopic study on the doping of polycrystalline CdTe layers for solar cells; Spektroskopische Untersuchungen zur Dotierung von polykristallinen CdTe-Schichten fuer Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Christian

    2011-11-29

    First in the present thesis the fundamental properties of CdTe are described. In the following it is discussed, how a CdTe solar cell is generally constructed, which specialities are to be regarded, and how an improvement of the actually reachable data of such a solar cell in view of the efficiency can be reached fundamentally and in then practical realization. In the third chapter the physical foundations of the most important methods are discussed, which are applied in the framework of this thesis for the analysis of the CdTe layers. The fourth chapter describes the details of the experiments of this thesis. The fifth chapter deals with the analysis of the photoluminescence of CdTe layers. Special attention is put on the analysis of the excitonic luminescence. The sixth chapter treats the implantation of CdTe layers with phosphor. The influence of phosphorus as dopant on the PL spectra of CdTe and the correponding characteristics of implanted solar cells are presented. Also the influence of radiation damages as consequence of the ion implantation is studied in this chapter by means of the analysis of differently thick absorber layers. In the seventh chapter finally a new procedure for the fabrication of solar cells on the base of CdTe as absorber material is introduced, which shall make possible to change the stoichiometry of cadmium mand tellurium specifically and to present additionally a suited material, in order to form the doping of CdTE a solar-cell material variably. The fundamental properties of the new facility are experimentally determined, and first solar cells are fabricated with this facility and analyzed. Also an in-situ doping with phosphorus is thereby performed and the result studied.

  11. 具有复合背接触层的 CdTe多晶薄膜太阳电池%Polycrystalline CdTe thin- film solar cells with complex back contact layers

    Institute of Scientific and Technical Information of China (English)

    覃文治; 夏庚培; 郑家贵; 李卫; 蔡伟; 冯良桓; 蔡亚平; 黎兵; 张静全; 武莉莉

    2005-01-01

    To improve the properties of back contacts of CdTe solar cells, ZnTe:Cu and polycrystalline Cd1- xZnxTe films were deposited by simultaneous evaporation. Investigative data of the configuration and performance indicate that energy gap of Cd1- xZnxTe films assume quadratic connection with zinc content. With increasing of Cu content, energy gap of polycrystalline ZnTe:Cu will decrease. ZnTe/ZnTe:Cu or Cd1- xZnxTe/ZnTe:Cu back contacted cells can reduce the heterogeneous interface state density and modify the structure of energy band of the solar cells. Furthermore, diffusion of Cu can avoid by this compound films in CdTe solar cells. An efficiency of 13.38% of solar cell with dimension of 0.502cm2was fabricated.%为了提高 CdTe太阳电池的背接触性能,用共蒸发法制备了 ZnTe:Cu和 Cd1- xZnxTe多晶薄膜. 研究结果表明: Cd1- xZnxTe多晶薄膜的能隙与锌含量呈二次方关系, ZnTe:Cu多晶薄膜能隙随着掺 Cu浓度的增加而减小.分别用 ZnTe/ZnTe:Cu和 Cd1- xZnxTe/ZnTe:Cu复合膜作为背接触层,既能 修饰异质结界面,改善电池的能带结构,又能防止 Cu原子向电池内部扩散.因此获得了面积 0.502cm2,转换效率为 13.38%的 CdTe多晶薄膜太阳电池.

  12. Study of the defect levels, electrooptics, and interface properties of polycrystalline CdTe and CdS thin films and their junction

    Energy Technology Data Exchange (ETDEWEB)

    Abulfotuh, F.A.; Balcioglu, A.; Wangensteen, T.; Moutinho, H.R.; Hassoon, F.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Al-Douri, A.; Alnajjar, A. [United Arab Emirates Univ., Al-Ain (United Arab Emirates). Physics Dept.

    1997-12-31

    In this study, the electrical behavior of CdS/CdTe junctions was investigated using deep-level transient spectroscopy (DLTS) and capacitance-voltage (c-v) measurements. The results were then correlated to chemical composition and optical properties (measured by using a wavelength-scanning ellipsometer) of the CdTe film and the dominant defect states were determined by photoluminescence (PL) emission measured before and after post-deposition CdCl{sub 2} treatments. CdTe films used in this study were prepared by electrochemical deposition (ED), close-spaced sublimation (CSS), and physical vapor deposition (PVD). The chemical and heat treatments are shown to decrease Cd-vacancy levels (PL measurements), which determine various parameters crucial to the device performance such as the type and concentration of the dominant defects and deep levels, greatly affect the device performance by controlling open-circuit voltage.

  13. K-edge EXAFS and XANES studies of Cu in CdTe thin-film solar cells

    Science.gov (United States)

    Liu, Xiangxin; Gupta, Akhlesh; Compaan, Alvin D.; Leyarovska, Nadia; Terry, Jeff

    2002-03-01

    Copper has been identified as a very important dopant element in CdTe thin-film solar cells. Cu is a deep acceptor in CdTe and is commonly used to obtain a heavily doped, low resistance back contact to polycrystalline CdTe. Cu also helps to increase the open circuit voltage of the cell. However, Cu is also a fast diffuser in CdTe, especially along grain boundaries, and can accumulate at the CdS/CdTe junction. It is suspected of leading to cell performance degradation in some cases. The present study is designed to help identify the lattice location of the Cu in CdTe. Cu K-edge, x-ray absorption (XAS) measurements were conducted on Cu in thin films of CdTe. Experiments were performed at the MR-CAT beamline at the Advanced Photon Source. The 3 mm CdTe layers were magnetron sputtered onto fused silica substrates. Some films were diffused with Cu from a 200 Å layer of evaporated Cu. XAS spectra were collected in fluorescence geometry with a 13 elements Ge detector. Quantitative fluorescence spectroscopy measurements were also performed. Details of the Cu environment and possible changes with time will be reported.

  14. Studies of crystalline CdZnTe radiation detectors and polycrystalline thin film CdTe for X-ray imaging applications

    CERN Document Server

    Ede, A

    2001-01-01

    The development of a replacement to the conventional film based X-ray imaging technique is required for many reasons. One possible route for this is the use of a large area film of a suitable semiconductor overlaid on an amorphous silicon readout array. A suitable semiconductor exists in cadmium telluride and its tertiary alloy cadmium zinc telluride. In this thesis the spectroscopic characteristics of commercially available CZT X- and gamma-radiation detectors are established. The electronic, optical, electro-optic, structural and compositional properties of these detectors are then investigated. The attained data is used to infer a greater understanding for the carrier transport in a CZT radiation detector following the interaction of a high energy photon. Following this a method used to fabricate large area films of CdTe on a commercial scale is described. This is cathodic electrodeposition from an aqueous electrolyte. The theory and experimental arrangement for this technique are described in detail with ...

  15. Development of a computer model for polycrystalline thin-film CuInSe sub 2 and CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. (Purdue Univ., Lafayette, IN (United States))

    1992-09-01

    This report describes work to develop an accurate numerical model for CuInSe{sub 2} (CIS) and CdTe-based solar cells capable of running on a personal computer. Such a model will aid researchers in designing and analyzing CIS- and CdTe-based solar cells. ADEPT (A Device Emulation Pregrain and Tool) was used as the basis for this model. An additional objective of this research was to use the models developed to analyze the performance of existing and proposed CIS- and CdTe-based solar cells. The development of accurate numerical models for CIS- and CdTe-based solar cells required the compilation of cell performance data (for use in model verification) and the compilation of measurements of material parameters. The development of the numerical models involved implementing the various physical models appropriate to CIS and CdTe, as well as some common window. A version of the model capable of running on an IBM-comparable personal computer was developed (primary code development is on a SUN workstation). A user-friendly interface with pop-up menus is continuing to be developed for release with the IBM-compatible model.

  16. A fast simulator for polycrystalline processes with application to phase change alloys

    CERN Document Server

    Ashwin, Peter; Wright, C David

    2007-01-01

    We present a stochastic simulator for polycrystalline phase-change materials capable of spatio-temporal modelling of complex anneals. This is based on consideration of bulk and surface energies to generate rates of growth and decay of crystallites built up of `monomers' that themselves may be quite complex molecules. We perform a number of simulations of this model using a Gillespie algorithm. The simulations are performed at molecular scale and using an approximation of local free energy changes that depend only on immediate neighbours. The sites are on a lattice that neither correspond to the crystal lattice nor to individual monomers, but instead gives information about a two-state local phase $r$ (where $r=0$ corresponds to amorphous and 1 corresponds to crystalline) and a continuous crystal orientation $\\phi$ at each site. As an example we use this to model crystallisation in chalcogenide GST ($GeSbTe$) alloys used for example in phase-change memory devices, where reversible changes between amorphous and...

  17. Development of a computer model for polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, 1 January 1990--31 December 1990

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. [Purdue Univ., Lafayette, IN (United States)

    1992-04-01

    This report describes work to develop a highly accurate numerical model for CuInSe{sub 2} and CdTe solar cells. ADEPT (A Device Emulation Program and Toolbox), a one-dimensional semiconductor device simulation code developed at Purdue University, was used as the basis of this model. An additional objective was to use ADEPT to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. The work is being performed in two phases. The first phase involved collecting device performance parameters, cell structure information, and material parameters. This information was used to construct the basic models to simulate CuInSe{sub 2} and CdTe solar cells. This report is a tabulation of information gathered during the first phase of this project on the performance of existing CuInSe{sub 2} and CdTe solar cells, the material properties of CuInSr{sub 2}, CdTe, and CdS, and the optical absorption properties of CuInSe{sub 2}, CdTe, and CdS. The second phase will entail further development and the release of a version of ADEPT tailored to CuInSe{sub 2} and CdTe solar cells that can be run on a personal computer. In addition, ADEPT will be used to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. 110 refs.

  18. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    OpenAIRE

    Pinheiro,Wagner Anacleto; Falcão, Vivienne Denise; Cruz,Leila Rosa de Oliveira; Ferreira,Carlos Luiz

    2006-01-01

    Unlike other thin film deposition techniques, close spaced sublimation (CSS) requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate) and a sintered C...

  19. Low-cost conversion of polycrystalline silicon into sheet by HEM and FAST. [Heat Exchanger Method and Fixed Abrasive Slicing Technique

    Science.gov (United States)

    Khattak, C. P.; Schmid, F.

    1980-01-01

    The conversion of polycrystalline silicon to sheet form (the wafers produced are 10 cm x 10 cm cross section with minimum surface damage) by the Heat Exchanger Method (HEM) and multi-wire Fixed Abrasive Slicing Technique (FAST), as a means of reducing the cost of solar arrays for adaptation of photovoltaic technology for terrestrial applications, is given. A schematic of a HEM furnace, which includes a silica crucible, and developments in the HEM process are presented. A new machine for slicing with wire was designed and fabricated. The high-speed slicer has been used to slice 19 wafers per cm from 10 cm diameter crystals. Both HEM and FAST are low-cost processes and they have the potential of giving one of the lowest add-on costs ($6.24 and $6.48 per square meter of sheet respectively, with the combination add-on cost of $14.87 per square meter) of this conversion.

  20. Low-cost conversion of polycrystalline silicon into sheet by HEM and FAST. [Heat Exchanger Method and Fixed Abrasive Slicing Technique

    Science.gov (United States)

    Khattak, C. P.; Schmid, F.

    1980-01-01

    The conversion of polycrystalline silicon to sheet form (the wafers produced are 10 cm x 10 cm cross section with minimum surface damage) by the Heat Exchanger Method (HEM) and multi-wire Fixed Abrasive Slicing Technique (FAST), as a means of reducing the cost of solar arrays for adaptation of photovoltaic technology for terrestrial applications, is given. A schematic of a HEM furnace, which includes a silica crucible, and developments in the HEM process are presented. A new machine for slicing with wire was designed and fabricated. The high-speed slicer has been used to slice 19 wafers per cm from 10 cm diameter crystals. Both HEM and FAST are low-cost processes and they have the potential of giving one of the lowest add-on costs ($6.24 and $6.48 per square meter of sheet respectively, with the combination add-on cost of $14.87 per square meter) of this conversion.

  1. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); Li, Chen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Poplawsky, Jonathan [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Zhiwei [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  2. Resetting the Defect Chemistry in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Wyatt K.; Burst, James; Albin, David; Colegrove, Eric; Moseley, John; Duenow, Joel; Farrell, Stuart; Moutinho, Helio; Reese, Matt; Johnston, Steve; Barnes, Teresa; Perkins, Craig; Guthrey, Harvey; Al-Jassim, Mowafak

    2015-06-14

    CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by increasing open-circuit voltage (Voc) and fill factor. Record-efficiency CdTe cells have been limited to Voc <; 880 mV, whereas GaAs can attain Voc of 1.10 V with a slightly smaller bandgap [2,3]. To overcome this barrier, we seek to understand and increase lifetime and carrier concentration in CdTe. In polycrystalline structures, lifetime can be limited by interface and grain-boundary recombination, and attaining high carrier concentration is complicated by morphology.

  3. Development of a computer model for polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells; Annual subcontract report, 1 March 1992--28 February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. [Purdue Univ., West Lafayette, IN (United States)

    1994-03-01

    Solar cells operate by converting the radiation power from sun light into electrical power through photon absorption by semiconductor materials. The elemental and compound material systems widely used in photovoltaic applications can be produced in a variety of crystalline and non-crystalline forms. Although the crystalline group of materials have exhibited high conversion efficiencies, their production cost are substantially high. Several candidates in the poly- and micro-crystalline family of materials have recently gained much attention due to their potential for low cost manufacturability, stability, reliability and good performance. Among those materials, CuInSe{sub 2} and CdTe are considered to be the best choices for production of thin film solar cells because of the good optical properties and almost ideal band gap energies. Considerable progress was made with respect to cell performance and low cost manufacturing processes. Recently conversion efficiencies of 14.1 and 14.6% have been reported for CuInSe{sub 2} and CdTe based solar cells respectively. Even though the efficiencies of these cells continue to improve, they are not fully understood materials and there lies an uncertainty in their electrical properties and possible attainable performances. The best way to understand the details of current transport mechanisms and recombinations is to model the solar cells numerically. By numerical modeling, the processes which limit the cell performance can be sought and therefore, the most desirable designs for solar cells utilizing these materials as absorbers can be predicted. The problems with numerically modeling CuInSe{sub 2} and CdTe solar cells are that reported values of the pertinent material parameters vary over a wide range, and some quantities such as carrier concentration are not explicitly controlled.

  4. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    Directory of Open Access Journals (Sweden)

    Wagner Anacleto Pinheiro

    2006-03-01

    Full Text Available Unlike other thin film deposition techniques, close spaced sublimation (CSS requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass. The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

  5. Fast Two-stage Protector Against Electromagnetic Pulse Based on Electroresistance Effect in Polycrystalline La-Sr(Ca-Mn-O Films

    Directory of Open Access Journals (Sweden)

    Laura ŽURAUSKAITĖ

    2014-06-01

    Full Text Available The electroresistance (ER effect in polycrystalline films of La0.83Sr0.17MnO3 and La0.7Ca0.3MnO3 was investigated in the temperature range of (5 – 290 K using high power sub-nanosecond rise time electrical pulses with amplitude up to 1 kV. It was obtained that conductance vs. voltage dependences are nonlinear and could be well fitted by empirical formula G = G0 + Gα · Uα; where G is conductance, U is the voltage applied across the sample, G0 is the conductance at low voltage, and Gα and α are the parameters related to the electrical transport mechanism. Parameters α for La-Ca-Mn-O and La-Sr-Mn-O were 1.5 and 1.33 respectively. It was obtained that there are two regions of the electroresistance vs. temperature dependence for both films: low temperature region where ER exhibits very slow dependence on temperature and high temperature region where ER significantly decreases with temperature. It was demonstrated that polycrystalline manganite films can be used for the development of protectors against short electromagnetic pulse (EMP, and fast two-stage protector operating at cryogenic temperatures (80 K is proposed. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6325

  6. Characterization of CdTe films deposited at various bath temperatures and concentrations using electrophoretic deposition.

    Science.gov (United States)

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  7. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2012-05-01

    Full Text Available CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111 orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  8. Development of high-efficiency, thin-film CdTe solar cells. Annual subcontract report, January 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A. [Georgia Institute of Technology, Atlanta, GA (United States)

    1994-09-01

    Polycrystalline thin film CdTe solar cells are one of the leading candidates for terrestrial photovoltaic applications. Theoretical calculations project an efficiency of 27% for single crystal, single junction CdTe cells, and the practically achievable efficiency for polycrystalline CdTe cells is 18-20%. Polycrystalline CdTe cells made by different groups show a significant variation in short circuit currents, open circuit voltages, and cell efficiencies. A better understanding of carrier loss and transport mechanism is crucial for explaining these differences, improving the yield, and bridging the gap between current and practically achievable limits in CdTe cell efficiencies. The goal of this program is to improve the understanding of the loss mechanisms in thin film CdS/CdTe solar cells and to improve their efficiency by characterizing the properties of the films as well as the finished devices.

  9. Thin-film CdTe cells: Reducing the CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, V.; Liu, X.; Paudel, N.; Kwon, D.; Wieland, K.A.; Compaan, A.D., E-mail: alvin.compaan@utoledo.edu

    2011-08-31

    Polycrystalline thin-film CdTe is currently the dominant thin-film technology in world-wide PV manufacturing. With finite Te resources world-wide, it is appropriate to consider the limits to reducing the thickness of the CdTe layer in these devices. In our laboratory we have emphasized the use of magnetron sputtering for both CdS and CdTe achieving AM1.5 efficiency over 13% on 3 mm soda-lime glass with commercial TCO and 14% on 1 mm aluminosilicate glass. This deposition technique is well suited to good control of very thin layers and yields relatively small grain size which also facilitates high performance with ultra-thin layers. This paper describes our magnetron sputtering studies for fabrication of very thin CdTe cells. Our thinnest cells had CdTe thicknesses of 1 {mu}m, 0.5 {mu}m and 0.3 {mu}m and yielded efficiencies of 12%, 9.7% and 6.8% respectively. With thinner cells Voc, FF and Jsc are reduced. Current-voltage (J-V), temperature dependent J-V (J-V-T) and apparent quantum efficiency (AQE) measurements provide valuable information for understanding and optimizing cell performance. We find that the stability under light soak appears not to depend on CdTe thickness from 2.5 to 0.5 {mu}m. The use of semitransparent back contacts allows the study of bifacial response which is particularly useful in understanding carrier collection in the very thin devices.

  10. The influence of fast neutron irradiation on the intra- and intergrain properties of the polycrystalline BiPbSrCaCuO system

    Science.gov (United States)

    Wiśniewski, A.; Baran, M.; Kozioł, Z.; Przysłupski, P.; Piechota, J.; Puźniak, R.; Pajaçzkowska, A.; Pȩkała, M.; Pytel, B.; Pytel, K.

    1990-09-01

    The influence of irradiation by fast neutrons with fluences from 3.3 x 10 16n/ cm2 up to 3 x 10 18n/ cm2 on the physical properties of polycrystalline Bi0.7Pb0.3SrCaCu1.8Ox was examined. Studies of DC magnetization, AC susceptibility, transport and thermoelectric power were performed. The irradiation caused a decrease of Tc, determined from the onset of diamagnetism, by as much as 31 K for a fluence of 3 x 10 18n/ cm2. A strong influence of neutron irradiation on both intra- and intergranular properties was observed. The defects within the superconducting grains created by neutrons caused an increase of the pinning forces which enhanced the critical magnetization current. A gradual decoupling of Josephson weak links with increasing neutron fluence was observed in transport and low field magnetization measurements. From the AC susceptibility measurements the irreversibility lines between the flux-creep and flux-flow regions were determined. An increase of the absolute values of thermoelectric power with rising fluence was noticed.

  11. Polycrystalline strengthening

    DEFF Research Database (Denmark)

    Hansen, Niels

    1985-01-01

    . The strength-grain size relationships can be described in a number of empirical equations relating the yield stress and the flow stress in tension to various structural parameters. A number of such equations are reviewed and their predictive capability is discussed. Structural information of importance...... found, and this structural information is correlated with a number of strength structural equations. Finally, the flow stress of fcc and bcc polycrystalline specimens is related to the occurrence of microstructures formed by macroscopic and microscopic strain accommodation processes during plastic...... for the understanding of polycrystalline strengthening is obtained mainly from surface relief patterns and from bulk structures observed by transmission electron microscopy of thin foils. The results obtained by these methods are discussed and correlations are proposed. A number of features characterizing the deformed...

  12. 含氯气氛退火对CdTe薄膜性质影响的交流阻抗研究%Complex impedance spectroscopy analysis of CdCl_2 annealing on the CdTe polycrystalline thin films

    Institute of Scientific and Technical Information of China (English)

    付文博; 王文武; 刘庭良; 何绪林; 张静全; 冯良桓; 武莉莉; 李卫; 黎兵; 曾广根

    2011-01-01

    The complex impedance spectroscopy was measured for the cadmium telluride polycrystalline thin films of as-deposited and annealed under CdCl2 atmosphere.Then the complex impedance spectroscopy was fitting with using constant phase element(CPE) equivalent circuits model,and the dependence of grain bulk resistance,grain boundary resistance and time constant τ on the annealing process was realized.The results show that,grain bulk resistance increases,grain boundary resistance and time constant τ decrease with the increased temperature.%对近空间升华制备的CdTe薄膜进行了CdCl2气氛下热处理。测量了样品在室温下的交流阻抗特性,基于恒相位角元件(CPE)等效电路拟合所测量的复阻抗谱,分析了退火工艺对CdTe薄膜的晶粒体电阻、晶界电阻、弛豫时间的影响。结果表明,随退火温度的增加,晶粒电阻增大,晶界电阻减小,弛豫时间缩短。

  13. Fractal features of CdTe thin films grown by RF magnetron sputtering

    Science.gov (United States)

    Hosseinpanahi, Fayegh; Raoufi, Davood; Ranjbarghanei, Khadijeh; Karimi, Bayan; Babaei, Reza; Hasani, Ebrahim

    2015-12-01

    Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  14. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  15. Study of Cu-related Defect States in Single-crystal CdTe

    Science.gov (United States)

    Corwine, Caroline; Sites, James; Gessert, Timothy; Metzger, Wyatt; Dippo, Pat; Duda, Anna

    2003-10-01

    We have studied single-crystal CdTe using low-temperature photoluminescence (PL) in an effort to understand the effects of copper on the deep levels, as well as the effect of a bromine methanol (BrMe) etch on subsequent copper diffusion into CdTe. In present polycrystalline CdS/CdTe solar cell technology, the use of a back contact that contains Cu is necessary to produce high-efficiency cells. However, it is not generally understood why Cu is necessary for these devices to function well. In order to obtain further advances in the efficiencies of these solar cells, it is important to know how the back contact process may affect the defect states in CdTe. PL is one tool used to study defect states. However, before PL can be used effectively for polycrystalline CdTe solar cells, relevant spectral features first must be interpreted for single-crystal CdTe. All PL in this study was taken at 4.5 K. We report on PL peaks at 1.40 and 1.45 eV, which are seen only after Cu is diffused into single-crystal CdTe.

  16. CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field

    Science.gov (United States)

    Park, Hyunik; Yang, Gwangseok; Chun, Seungju; Kim, Donghwan; Kim, Jihyun

    2013-07-01

    We report on ultraviolet (UV) photodetectors fabricated by positioning Cadmium Telluride (CdTe) microwires (μWs) precisely by dielectrophoretic (DEP) force, where CdTe μWs were grown using an Au-catalyst-assisted closed-space-sublimation (CSS) method. The optical properties of CSS-grown CdTe μWs were characterized by micro-photoluminescence and micro-Raman spectroscopies. Optoelectronic characteristics were obtained after CdTe μWs were aligned on a pre-patterned SiO2/Si substrate by a non-uniform electric field. Photocurrents were increased with increasing the light intensities. Fast and reliable photoresponse and recovery were observed when CdTe μWs were exposed to UV illuminations. We demonstrated that high quality CdTe μWs grown by the CSS method have significant potentials as optoelectronic devices.

  17. 3D Lifetime Tomography Reveals How CdCl 2 Improves Recombination Throughout CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Edward S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; PLANT PV, Inc, Alameda CA 94501 USA; Ursprung, Benedikt [PLANT PV, Inc, Alameda CA 94501 USA; Colegrove, Eric [National Renewable Energy Laboratory, Golden CO 80401 USA; Moutinho, Helio R. [National Renewable Energy Laboratory, Golden CO 80401 USA; Borys, Nicholas J. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Hardin, Brian E. [PLANT PV, Inc, Alameda CA 94501 USA; Peters, Craig H. [PLANT PV, Inc, Alameda CA 94501 USA; Metzger, Wyatt K. [National Renewable Energy Laboratory, Golden CO 80401 USA; Schuck, P. James [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA

    2016-11-15

    Using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.

  18. Semiconductor nanowires self-assembled from colloidal CdTe nanocrystal building blocks: optical properties and application perspectives

    OpenAIRE

    RAKOVICH, YURY; DONEGAN, JOHN FRANCIS

    2012-01-01

    PUBLISHED Solution-based self-assembly of quasi-one-dimensional semiconductor nanostructures (nanowires) from quasi-zero-dimensional (quantum dots) colloidal nanocrystal building blocks has proven itself as a powerful and flexible preparation technique. Polycrystalline CdTe nanowires self-assembled from light-emitting thiol-capped CdTe nanocrystals are the focus of this Feature Article. These nanowires represent an interesting model system for quantum dot solids, where electronic coupling ...

  19. Semiconductor nanowires self-assembled from colloidal CdTe nanocrystal building blocks: optical properties and application perspectives

    OpenAIRE

    Rakovich, Yury P.; Jäckel, Frank; Donegan, John F.; Rogach, Andrey L

    2012-01-01

    Solution-based self-assembly of quasi-one-dimensional semiconductor nanostructures (nanowires) from quasi-zero-dimensional (quantum dots) colloidal nanocrystal building blocks has proven itself as a powerful and flexible preparation technique. Polycrystalline CdTe nanowires self-assembled from light-emitting thiol-capped CdTe nanocrystals are the focus of this Feature Article. These nanowires represent an interesting model system for quantum dot solids, where electronic coupling between the i...

  20. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    Science.gov (United States)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-03-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  1. Effects of CdTe growth conditions and techniques on the efficiency limiting defects and mechanisms in CdTe solar cells

    Science.gov (United States)

    Rohatgi, A.; Chou, H. C.; Jokerst, N. M.; Thomas, E. W.; Ferekides, C.; Kamra, S.; Feng, Z. C.; Dugan, K. M.

    1996-01-01

    CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates using close-spaced sublimation (CSS) and metalorganic chemical vapor deposition (MOCVD). Te/Cd mole ratio was varied in the range of 0.02 to 6 in the MOCVD growth ambient in an attempt to vary the native defect concentration. Polycrystalline CdTe layers grown by MOCVD and CSS both showed average grain size of about 2 μm. However, the CdTe films grown by CSS were found to be less faceted and more dense compared to the CdTe grown by MOCVD. CdTe growth techniques and conditions had a significant impact on the electrical characteristics of the cells. The CdTe solar cells grown by MOCVD in the Te-rich growth condition and by the CSS technique gave high cell efficiencies of 11.5% and 12.4%, respectively, compared to 6.6% efficient MOCVD cells grown in Cd-rich conditions. This large difference in efficiency is explained on the basis of (a) XRD measurements which showed a higher degree of atomic interdiffusion at the CdS/CdTe interface in high performance devices, (b) Raman measurements which endorsed more uniform and preferred grain orientation by revealing a sharp CdTe TO mode in the high efficiency cells, and (c) carrier transport mechanism which switched from tunneling/interface recombination to depletion region recombination in the high efficiency cells. In this study, Cu/Au layers were evaporated on CdTe for the back contact. Lower efficiency of the Te-rich MOCVD cells, compared to the CSS cells, was attributed to contact related additional loss mechanisms, such as Cd pile-up near Cu/CdTe interface which can give rise to Cd-vacancy defects in the bulk, and higher Cu concentration in the CdTe layer which can cause shunts in the device. Finally, SIMS measurements on the CdTe films of different crystallinity and grain size confirmed that grain boundaries are the main conduits for Cu migration into the CdTe film. Thus larger CdTe grain size or lower grain boundary area per unit volume

  2. Effects of Various RF Powers on CdTe Thin Film Growth Using RF Magnetron Sputtering

    Science.gov (United States)

    Alibakhshi, Mohammad; Ghorannevis, Zohreh

    2016-09-01

    Cadmium telluride (CdTe) film was deposited using the magnetron sputtering system onto a glass substrate at various deposition times and radio frequency (RF) powers. Ar gas was used to generate plasma to sputter the CdTe atoms from CdTe target. Effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD) analysis showed that the films exhibited polycrystalline nature of CdTe structure with the (111) orientation as the most prominent peak. Optimum condition to grow the CdTe film was obtained and it was found that increasing the deposition time and RF power increases the crystallinity of the films. From the profilometer and XRD data's, the thicknesses and crystal sizes of the CdTe films increased at the higher RF power and the longer deposition time, which results in affecting the band gap as well. From atomic force microscopy (AFM) analysis we found that roughnesses of the films depend on the deposition time and is independent of the RF power.

  3. Polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  4. Development of high-efficiency, thin-film CdTe solar cells. Final subcontract report, 1 February 1992--30 November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A. [Georgia Inst. of Tech., Atlanta, GA (United States)

    1996-01-01

    This report describes work performed by the Georgia Institute of Technology (GIT) to bring the polycrystalline CdTe cell efficiency a step closer to the practically achievable efficiency of 18% through fundamental understanding of detects and loss mechanisms, the role of chemical and heat treatments, and investigation of now process techniques. The objective was addressed by a combination of in-depth characterization, modeling, materials growth, device fabrication, and `transport analyses of Au/Cu/CdTe/CdS/SnO {sub 2} glass front-wall heterojunction solar cells. GiT attempted to understand the loss mechanism(s) in each layer and interface by a step-by-step investigation of this multilayer cell structure. The first step was to understand, quantify, and reduce the reflectance and photocurrent loss in polycrystalline CdTe solar calls. The second step involved the investigation of detects and loss mechanisms associated with the CdTe layer and the CdTe/CdS interface. The third stop was to investigate the effect of chemical and heat treatments on CdTe films and cells. The fourth step was to achieve a better and reliable contact to CdTe solar cells by improving the fundamental understanding. Of the effects of Cu on cell efficiency. Finally, the research involved the investigation of the effect of crystallinity and grain boundaries on Cu incorporation in the CdTe films, including the fabrication of CdTe solar calls with larger CdTe grain size.

  5. Physical properties of Bi-doped CdTe thin films deposited by cosputtering

    Energy Technology Data Exchange (ETDEWEB)

    Becerril, M.; Zelaya-Angel, O. [Departamento de Fisica, CINVESTAV-IPN, Apdo. Postal 14-740, 07000 Mexico D.F. (Mexico); Vigil-Galan, O.; Contreras-Puente, G.; Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, 07738 Mexico D.F. (Mexico)

    2007-03-15

    The structural, morphological, electrical, and optical properties of CdTe-Bi cosputtered thin films related with composition are presented. The films were grown on Corning glass substrates at room temperature from a CdTe-Bi target. The composition measurements show that the Bi content in the films ranges from x = 0.0 to x = 6.37 at%, depending on the area fraction covered by the Bi piece attached to the CdTe target. The structure of the annealed films was determined from X-ray diffraction measurements. Two kinds of structures were observed, depending on the Bi content: (1) CdTe polycrystalline films containing a small amount of Bi that is probably incorporated in the Cd and Te sites of the CdTe lattice. (2) Amorphization of the polycrystalline films, with higher Bi content. From the experimental results, we concluded that using this deposition method n/p-type Bi-doped CdTe polycrystalline films can be produced with electrical resistivity between 10{sup 2}-10{sup 3} {omega} cm and electron mobility between 10{sup 1} and 10{sup 2} cm{sup 2}V{sup -1}s{sup -1}. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    OpenAIRE

    Zulkarnain Zainal; Mohd Norizam Md Daud; Azmi Zakaria; Mohd Sabri Mohd Ghazali; Atefeh Jafari; Wan Rafizah Wan Abdullah

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the ...

  7. On the doping problem of CdTe films: The bismuth case

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Brown, M. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Ruiz, C.M. [Depto. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Vidal-Borbolla, M.A. [Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Lomas 4a. Secc., 78210 San Luis Potosi, SLP (Mexico); Ramirez-Bon, R. [CINVESTAV-IPN, U. Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)], E-mail: mtufinovel@yahoo.com.mx; Calixto, M. Estela [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)

    2008-08-30

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10{sup 13} cm{sup -3}, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10{sup 15} cm{sup -3}. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented.

  8. Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging

    Science.gov (United States)

    Alberi, K.; Fluegel, B.; Moutinho, H.; Dhere, R. G.; Li, J. V.; Mascarenhas, A.

    2013-10-01

    Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 μm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction.

  9. Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging.

    Science.gov (United States)

    Alberi, K; Fluegel, B; Moutinho, H; Dhere, R G; Li, J V; Mascarenhas, A

    2013-01-01

    Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 μm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction.

  10. Thin film CdTe solar cells with an absorber layer thickness in micro- and sub-micrometer scale

    Science.gov (United States)

    Bai, Zhizhong; Yang, Jun; Wang, Deliang

    2011-10-01

    CdTe thin film solar cell with an absorber layer as thin as 0.5 μm was fabricated. An efficiency of 7.9% was obtained for a 1-μm-thick CdTe solar cell. An increased intensity of deep recombination states in the band gap, which was responsible for the reduced open-circuit voltage and fill factor for ultra-thin solar cells, was induced due to the not-well-developed polycrystalline CdTe microstructure and the CdS/CdTe heterojunction and the presence of Cu in the back contact. The experimental results presented in this study demonstrated that 1-μm-thick absorber layer is thick enough to fabricate CdTe solar cell with a decent efficiency.

  11. Influence of Kilo-Electron Oxygen Ion Irradiation on Structural, Electrical and Optical Properties of CdTe Thin Films

    Science.gov (United States)

    Honey, Shehla; Thema, F. T.; Bhatti, M. T.; Ishaq, A.; Naseem, Shahzad; Maaza, M.

    2016-09-01

    In this paper, effect of oxygen (O+) ion irradiation on the properties of polycrystalline cubic structure CdTe thin films has been investigated. CdTe thin films were irradiated with O+ ions of energy 80keV at different fluence ranging from 1×1015 to 5×1016 ion/cm2 at room temperature. At 1×1015 ion/cm2 O+ ions fluence, the CdTe structure was maintained while XRD peaks of cubic phase were shifted toward lower angles. At 5×1016 ion/cm2 O+ ions fluence, cubic structure of CdTe thin films was transformed into hexagonal structure. In addition, electrical resistivity and optical bandgap were decreased with increasing O+ ion beam irradiation.

  12. Photo-responsivity characterizations of CdTe films for direct-conversion X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryun Kyung; Cha, Bo Kyung; Jeon, Sung Chae; Seo, Chang Woo [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Yun, Seung Man [Pusan National University, Busan (Korea, Republic of)

    2014-08-15

    We have fabricated and investigated thin, polycrystalline, cadmium-telluride (CdTe) films in order to utilize them for optical switching readout layers in direct-conversion X-ray detectors. The polycrystalline CdTe films are fabricated on ITO glasses by using the physical vapor deposition (PVD) method at a slow deposition rate and a pressure of 10{sup -6} torr. CdTe films with thicknesses of 5 and 20 μm are grown. The electrical and the optical characteristics of the CdTe films are investigated by measuring the dark-current and the photo-current as functions of the applied field under different wavelengths of light. Higher photo-currents are generated at the longer wavelengths of light for the same applied voltage. When a higher electrical field is applied to the 20 μm-thick CdTe film, a higher dark-current, a higher photo-current, a larger number of charges, and a higher quantum efficiency are generated.

  13. Comparative study of electrical properties of Cd and Te-enriched CdTe thin films at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nazar Abbas, E-mail: nabbasqureshi@yahoo.co [Thin Films Research Laboratory, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 45320 (Pakistan)

    2010-09-17

    Cd and Te-enriched cadmium telluride (CdTe) polycrystalline thin films were grown on corning glass substrates by Close Spaced Sublimation (CSS) technique. The structural investigations performed by means of X-ray diffraction (XRD) technique, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) showed that the deposited films exhibit a polycrystalline structure with <1 1 1> as preferred orientation. The optical transmittance for Te-enriched CdTe sample was above 0.8 in the range of 1500-2500 nm, which was significantly below 0.8 for Cd-enriched CdTe sample. The electrical properties of these samples were analyzed as a function of the Cd and Te concentration at cryogenic temperature. The electrical resistivity dropped several orders of magnitude. These properties are significantly changed at cryogenic temperature. The comparative study revealed that using this deposition technique, n-type, and p-type Cd and Te-enriched CdTe polycrystalline films can be produced.

  14. CdTe Nanowires studied by Transient Absorption Microscopy

    Directory of Open Access Journals (Sweden)

    Kuno M.

    2013-03-01

    Full Text Available Transient absorption measurements were performed on single CdTe nanowires. The traces show fast decays that were assigned to charge carrier trapping at surface states. The observed power dependence suggests the existence of a trap-filling mechanism. Acoustic phonon modes were also observed, which were assigned to breathing modes of the nanowires. Both the fundamental breathing mode and the first overtone were observed, and the dephasing times provide information about how the nanowires interact with their environment.

  15. The study of properties of CdTe thin films deposited in Ar/O{{2}} atmosphere

    Science.gov (United States)

    Li, Y.; Li, B.; Feng, L.; Zheng, J.; Li, W.

    2009-02-01

    The preparation and properties of CdTe thin films is of a primary interest for the CdTe thin film solar cells in both research and technology. In our work, polycrystalline CdTe thin films were deposited on pretreated glass substrates in Ar/O{2} atmosphere by closed-space sublimation (CSS) technology. Structural property was studied by X-ray diffraction (XRD), surface morphology was observed by scanning electron microscopy (SEM). The optical and electrical properties of CdTe films were investigated, as well as the effects of deposition temperatures, the ratio of gas (Ar/O{2}) and post-treatment on the properties. The high quality CdTe layer was prepared based on the above studies. These layers were used to prepared CdS/CdTe/ZnTe:Cu solar cells. Efficiency of 13.38% and fill factor of 70.3% (0.501 cm2 area) for CdTe solar cells have been achieved. Project supported by the National High Technology Research and Development Program of China (Grant No.2003AA513010) and the National Natural Science Foundation of China (Grant No.60506004).

  16. Nitric-phosphoric acid etching effects on the surface chemical composition of CdTe thin film.

    Science.gov (United States)

    Irfan, Irfan; Ding, Huanjun; Xia, Wei; Lin, Hao; Tang, Ching W.; Gao, Yongli

    2009-03-01

    Nitric-phosphoric (NP) acid etching has been regarded as one of the most successful methods for the formation of low resistance back contact with the metal electrode in CdTe based solar cells. We report back surface chemical composition for eight different durations of NP etching of CdTe polycrystalline thin film. We studied the surfaces with x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IEPS) and atomic force microscopy (AFM). Etching dependence on the back surface composition and electronic structure was observed. Valence and conduction band shifts relative to the Fermi level of the system with different etching duration were analyzed. The sample was left in open ambient condition for three weeks and XPS data were obtained again in order to study the difference in surface chemical composition with the pristine CdTe film. Unetched and highly etched part of the sample were sputtered and the depth profile analyzed.

  17. Structural reproducibility of CdTe thin films deposited on different substrates by close space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Potlog, T.; Spalatu, N.; Maticiuc, N. [Physics Department, Moldova State University, Chisinau (Moldova); Hiie, J.; Valdna, V.; Mikli, V.; Mere, A. [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2012-02-15

    We report on the characterization of polycrystalline CdTe thin films grown directly on glass, SnO{sub 2}-coated glass, and CdS/SnO{sub 2}/glass at relatively low temperatures by employing the close space sublimation technique (CSS). The deposited films have been characterized by using optical absorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Based on the SEM and optical analysis, the CdTe/CdS/SnO{sub 2}/glass thin films exhibit a superior crystal quality and reproducibility in comparison to other CdTe films grown on glass and SnO{sub 2}/glass. XRD study reveals that films are polycrystalline with a cubic crystal structure. The EDX characterization indicates that all CdTe thin films are nearly stoichiometric. The optical absorption study shows a larger variation of band gap from 1.485 to 1.495 eV for CdTe grown on SnO{sub 2}-coated glass. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Structural, optical, photoluminescence, dielectric and electrical studies of vacuum-evaporated CdTe thin films

    Indian Academy of Sciences (India)

    Ziaul Raza Khan; M Zulfequar; Mohd Shahid Khan

    2012-04-01

    Highly-oriented CdTe thin films were fabricated on quartz and glass substrates by thermal evaporation technique in the vacuum of about 2 × 10-5 torr. The CdTe thin films were characterized by X-ray diffraction (XRD), UV–VIS–NIR, photoluminescence spectroscopy and scanning electron microscopy (SEM). X-ray diffraction results showed that the films were polycrystalline with cubic structure and had preferred growth of grains along the (111) crystallographic direction. Scanning electron micrographs showed that the growth of crystallites of comparable size on both the substrates. At the room temperature, photoluminescence spectra of the films on both the substrates showed sharp peaks with a maximum at 805 nm. This band showed significant narrowing suggesting that it originates from the transitions involving grain boundary defects. The refractive index of CdTe thin films was calculated using interference pattern of transmission spectra. The optical band gap of thin films was found to allow direct transition with energy gap of 1.47–1.50 eV. a.c. conductivity of CdTe thin films was found to increase with the increase in frequency whereas dielectric constant was observed to decrease with the increase in frequency.

  19. Recrystallization of polycrystalline silicon

    Science.gov (United States)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  20. Surface passivation for CdTe devices

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Matthew O.; Perkins, Craig L.; Burst, James M.; Gessert, Timothy A.; Barnes, Teresa M.; Metzger, Wyatt K.

    2017-08-01

    In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.

  1. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  2. Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source

    Directory of Open Access Journals (Sweden)

    Nor A. Abdul-Manaf

    2015-09-01

    Full Text Available Cadmium telluride (CdTe thin films have been successfully prepared from an aqueous electrolyte bath containing cadmium chloride (CdCl2·H2O and tellurium dioxide (TeO2 using an electrodeposition technique. The structural, electrical, morphological and optical properties of these thin films have been characterised using X-ray diffraction (XRD, Raman spectroscopy, optical profilometry, DC current-voltage (I-V measurements, photoelectrochemical (PEC cell measurement, scanning electron microscopy (SEM, atomic force microscopy (AFM and UV-Vis spectrophotometry. It is observed that the best cathodic potential is 698 mV with respect to standard calomel electrode (SCE in a three electrode system. Structural analysis using XRD shows polycrystalline crystal structure in the as-deposited CdTe thin films and the peaks intensity increase after CdCl2 treatment. PEC cell measurements show the possibility of growing p-, i- and n-type CdTe layers by varying the growth potential during electrodeposition. The electrical resistivity of the as-deposited layers are in the order of 104 Ω·cm. SEM and AFM show that the CdCl2 treated samples are more roughness and have larger grain size when compared to CdTe grown by CdSO4 precursor. Results obtained from the optical absorption reveal that the bandgap of as-deposited CdTe (1.48–1.52 eV reduce to (1.45–1.49 eV after CdCl2 treatment. Full characterisation of this material is providing new information on crucial CdCl2 treatment of CdTe thin films due to its built-in CdCl2 treatment during the material growth. The work is progressing to fabricate solar cells with this material and compare with CdTe thin films grown by conventional sulphate precursors.

  3. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  4. Synthesis and optical characterization of nanocrystalline CdTe thin films

    Science.gov (United States)

    Al-Ghamdi, A. A.; Khan, Shamshad A.; Nagat, A.; Abd El-Sadek, M. S.

    2010-11-01

    From several years the study of binary compounds has been intensified in order to find new materials for solar photocells. The development of thin film solar cells is an active area of research at this time. Much attention has been paid to the development of low cost, high efficiency thin film solar cells. CdTe is one of the suitable candidates for the production of thin film solar cells due to its ideal band gap, high absorption coefficient. The present work deals with thickness dependent study of CdTe thin films. Nanocrystalline CdTe bulk powder was synthesized by wet chemical route at pH≈11.2 using cadmium chloride and potassium telluride as starting materials. The product sample was characterized by transmission electron microscope, X-ray diffraction and scanning electron microscope. The structural characteristics studied by X-ray diffraction showed that the films are polycrystalline in nature. CdTe thin films with thickness 40, 60, 80 and 100 nm were prepared on glass substrates by using thermal evaporation onto glass substrate under a vacuum of 10 -6 Torr. The optical constants (absorption coefficient, optical band gap, refractive index, extinction coefficient, real and imaginary part of dielectric constant) of CdTe thin films was studied as a function of photon energy in the wavelength region 400-2000 nm. Analysis of the optical absorption data shows that the rule of direct transitions predominates. It has been found that the absorption coefficient, refractive index ( n) and extinction coefficient ( k) decreases while the values of optical band gap increase with an increase in thickness from 40 to 100 nm, which can be explained qualitatively by a thickness dependence of the grain size through decrease in grain boundary barrier height with grain size.

  5. Technical evaluation of Solar Cells, Inc., CdTe module and array at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Strand, T.; Hansen, R. [National Renewable Energy Lab., Golden, CO (United States); Powell, R.; Sasala, R. [Solar Cells, Inc., Toledo, OH (United States)

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}, V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  6. SEM, EDS, PL and absorbance study of CdTe thin films grown by CSS method

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Torres, M.E.; Silva-Gonzalez, R.; Gracia-Jimenez, J.M. [Instituto de Fisica, BUAP, Apdo. Postal J-48, San Manuel, 72570 Puebla, Pue. (Mexico); Casarrubias-Segura, G. [CIE- UNAM, 62580 Temixco, Morelos (Mexico)

    2006-09-22

    Oxygen-doped CdTe films were grown on conducting glass substrates by the close spaced sublimation (CSS) method and characterized using SEM, EDS, photoluminescence (PL) and absorbance. A significant change in the polycrystalline morphology is observed when the oxygen proportion is increased in the deposition atmosphere. The EDS analysis showed that all samples are nonstoichiometric with excess Te. The PL spectra show emission bands associated with Te vacancies (V{sub Te}), whose intensities decrease as the oxygen proportion in the CSS chamber is increased. The oxygen impurities occupy Te vacancies and modify the surfaces states, improving the nonradiative process. (author)

  7. BSA activated CdTe quantum dot nanosensor for antimony ion detection.

    Science.gov (United States)

    Ge, Shenguang; Zhang, Congcong; Zhu, Yuanna; Yu, Jinghua; Zhang, Shuangshuang

    2010-01-01

    A novel fluorescent nanosensor for Sb(3+) determination was reported based on thioglycolic acid (TGA)-capped CdTe quantum dot (QD) nanoparticles. It was the first antimony ion sensor using QD nanoparticles in a receptor-fluorophore system. The water-soluable TGA-capped CdTe QDs were prepared through a hydrothermal route, NaHTe was used as the Te precursor for CdTe QDs synthesis. Bovine serum albumin (BSA) conjugated to TGA-capped CdTe via an amide link interacting with carboxyl of the TGA-capped CdTe. When antimony ion enters the BSA, the lone pair electrons of the nitrogen and oxygen atom become involved in the coordination, switching off the QD emission and a dramatic quenching of the fluorescence intensity results, allowing the detection of low concentrations of antimony ions. Using the operating principle, the antimony ion sensor based on QD nanoparticles showed a very good linearity in the range 0.10-22.0 microg L(-1), with the detection limit lower than 2.94 x 10(-8) g L(-1) and the relative standard deviation (RSD) 2.54% (n = 6). In a study of interferences, the antimony-sensitive TGA-QD-BSA sensor showed good selectivity. Therefore, a simple, fast, sensitive, and highly selective assay for antimony has been built. The presented method has been applied successfully to the determination of antimony in real water samples (n = 6) with satisfactory results.

  8. Influence of CuxS back contact on CdTe thin film solar cells

    Science.gov (United States)

    Zhi, Lei; Lianghuan, Feng; Guanggen, Zeng; Wei, Li; Jingquan, Zhang; Lili, Wu; Wenwu, Wang

    2013-01-01

    We present a detailed study on CuxS polycrystalline thin films prepared by chemical bath method and utilized as back contact material for CdTe solar cells. The characteristics of the films deposited on Si-substrate are studied by XRD. The results show that as-deposited CuxS thin film is in an amorphous phase while after annealing, samples are in polycrystalline phases with increasing temperature. The thickness of CuxS thin films has great impact on the performance of CdS/CdTe solar cells. When the thickness of the film is about 75 nm the performance of CdS/CdTe thin film solar cells is found to be the best. The energy conversion efficiency can be higher than 12.19%, the filling factor is higher than 68.82% and the open-circuit voltage is more than 820 mV.

  9. Influence of CuxS back contact on CdTe thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    Lei Zhi; Feng Lianghuan; Zeng Guanggen; Li Wei; Zhang Jingquan; Wu Lili; Wang Wenwu

    2013-01-01

    We present a detailed study on CuxS polycrystalline thin films prepared by chemical bath method and utilized as back contact material for CdTe solar cells.The characteristics of the films deposited on Si-substrate are studied by XRD.The results show that as-deposited CuxS thin film is in an amorphous phase while after annealing,samples are in polycrystalline phases with increasing temperature.The thickness of CuxS thin films has great impact on the performance of CdS/CdTe solar cells.When the thickness of the film is about 75 nm the performance of CdS/CdTe thin film solar cells is found to be the best.The energy conversion efficiency can be higher than 12.19%,the filling factor is higher than 68.82% and the open-circuit voltage is more than 820 mV.

  10. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure

    Science.gov (United States)

    Luo, Run; Liu, Bo; Yang, Xiaoyan; Bao, Zheng; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-01-01

    The Cadmium telluride (CdTe) thin film has been prepared by physical vapor deposition (PVD), the Ar + O2 pressure is about 0.9 kPa. This method is a newer technique to deposit CdTe thin film in large area, and the size of the film is 30 × 40 cm2. This method is much different from the close-spaced sublimation (CSS), as the relevance between the source temperature and the substrate temperature is weak, and the gas phase of CdTe is transferred to the substrate by Ar + O2 flow. Through this method, the compact and uniform CdTe film (30 × 40 cm2) has been achieved, and the performances of the CdTe thin film have been determined by transmission spectrum, SEM and XRD. The film is observed to be compact with a good crystallinity, the CdTe is polycrystalline with a cubic structure and a strongly preferred (1 1 1) orientation. Using the CdTe thin film (3 × 5 cm2) which is taken from the deposited large-area film, the 14.6% efficiency CdS/CdTe thin film solar cell has been prepared successfully. The structure of the cell is glass/FTO/CdS/CdTe/graphite slurry/Au, short circuit current density (Jsc) of the cell is 26.9 mA/cm2, open circuit voltage (Voc) is 823 mV, and filling factor (FF) is 66.05%. This technique can be a quite promising method to apply in the industrial production, as it has great prospects in the fabricating of large-area CdTe film.

  11. Electrical characterization of CdTe grain-boundary properties from as processed CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.M.; Robinson, G.Y. [Colorado State Univ., Fort Collins, CO (United States); Levi, D.H.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States); Kaydanov, V. [Colorado School of Mines, Golden, CO (United States)

    1998-09-01

    An ability to liftoff or separate the thin-film polycrystalline CdTe from the CdS, without the use of chemical etches, has enabled direct electrical characterization of the as-processed CdTe near the CdTe/CdS heterointerface. The authors use this ability to understand how a back-contact, nitric-phosphoric (NP) etch affects the grain boundaries throughout the film. Quantitative determination of the grain-boundary barrier potentials and estimates of doping density near the grain perimeter are determined from theoretical fits to measurements of the current vs. temperature. Estimates of the bulk doping are determined from high-frequency resistivity measurements. The light and dark barrier potentials change after the NP etch, and the origin of this change is postulated. Also, a variable doping density within the grains of non-etched material has been determined. These results allow a semi-quantitative grain-boundary band diagram to be drawn that should aid in determining more accurate two-dimensional models for polycrystalline CdTe solar cells.

  12. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  13. Electron and hole drift mobility measurements on thin film CdTe solar cells

    Science.gov (United States)

    Long, Qi; Dinca, Steluta A.; Schiff, E. A.; Yu, Ming; Theil, Jeremy

    2014-07-01

    We report electron and hole drift mobilities in thin film polycrystalline CdTe solar cells based on photocarrier time-of-flight measurements. For a deposition process similar to that used for high-efficiency cells, the electron drift mobilities are in the range of 10-1-100 cm2/V s, and holes are in the range of 100-101 cm2/V s. The electron drift mobilities are about a thousand times smaller than those measured in single crystal CdTe with time-of-flight; the hole mobilities are about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl2; treatment had little effect on the hole drift mobility, but decreased the electron mobility. We are able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in thin film CdTe, but the actual mechanism reducing the mobilities from the single crystal values is not known.

  14. Process Development for High Voc CdTe Solar Cells: Phase I, Annual Technical Report, October 2005 - September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C. S.; Morel, D. L.

    2007-04-01

    The focus of this project is the open-circuit voltage of the CdTe thin-film solar cell. CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, but the efficiency of the CdTe solar cell has been stagnant for the last few years. At the manufacturing front, the CdTe technology is fast paced and moving forward with U.S.-based First Solar LLC leading the world in CdTe module production. To support the industry efforts and continue the advancement of this technology, it will be necessary to continue improvements in solar cell efficiency. A closer look at the state-of-the-art performance levels puts the three solar cell efficiency parameters of short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the 24-26 mA/cm2, 844?850 mV, and 74%-76% ranges respectively. During the late 1090s, efforts to improve cell efficiency were primarily concerned with increasing JSC, simply by using thinner CdS window layers to enhance the blue response (<510 nm) of the CdTe cell. These efforts led to underscoring the important role 'buffers' (or high-resistivity transparent films) play in CdTe cells. The use of transparent bi-layers (low-p/high-p) as the front contact is becoming a 'standard' feature of the CdTe cell.

  15. 14% sputtered thin-film solar cells based on CdTe

    Science.gov (United States)

    Compaan, A. D.; Gupta, A.; Drayton, J.; Lee, S.-H.; Wang, S.

    2004-02-01

    Polycrystalline II-VI semiconductor materials show great promise for thin-film photovoltaic cells and modules. Large-area deposition of these II-VI semiconductors such as CdTe is possible by a variety of methods but the use of a plasma-based method such as magnetron sputtering can have significant advantages. Here we present recent results in the fabrication of CdS/CdTe cells using rf magnetron sputtering and discuss some of the advantages that appear possible from the use of sputtering methods in this class of materials. Some of these advantages are particularly relevant as the polycrystalline thin-film PV community addresses issues related to the challenges of fabricating high efficiency tandem cells with efficiencies over 25%. Our best results have been obtained with sputtered ZnO:Al to achieve a CdTe solar cell with 14.0% efficiency at one sun for an air-mass-1.5 global spectrum. In addition, we have studied reactive sputtering of ZnTe:N which shows promise for use as a transparent back contact or recombination junction for alloyed II-VI-based top cells in a tandem solar-cell configuration.

  16. Innovative sputtering techniques for CIS and CdTe submodule fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.M.; Misra, M.S.; Lanning, B. (Martin Marietta Aerospace, Denver, CO (United States). Astronautics Group)

    1993-03-01

    This report describes work done during Phase 1 of the subject subcontract. The subcontract was designed to study innovative deposition techniques, such as the rotating cylindrical magnetron sputtering system and electrodeposition for large-area, low-cost copper indium diselenide (CIS) and cadmium telluride (CdTe) devices. A key issue for photovoltaics (PV) in terrestrial and future space applications is producibility, particularly for applications using a large quantity of PV. Among the concerns for fabrication of polycrystalline thin-film PV, such as CIS and CdTe, are production volume, cost, and minimization of waste. Both rotating cylindrical magnetron (C-Mag[trademark]) sputtering and electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film PV due to scaleability, efficient utilization of source materials, and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mae facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput reduced health and safety risks, and, ultimately, lower fabrication cost. Electrodeposited films appear to be adherent and comparable with low-cost fabrication techniques. Phase I involved the initial film and device fabrication using the two techniques mentioned herein. Devices were tested by both internal facilities, as well as NREL and ISET.

  17. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  18. Gelcasting Polycrystalline Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  19. About the use of photoacoustic spectroscopy for the optical characterization of semiconductor thin films: CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E.; Calderon, A. [CICATA-IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico); Vigil G, O.; Sastre, J.; Contreras P, G.; Aguilar H, J. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Saucedo, E.; Ruiz, C.M. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2006-07-01

    CdTe has been used satisfactorily in multiple and diverse technological applications such as detectors of X and gamma rays that operate at room temperature, for digital imagenology of X rays with medical and industrial applications and as active part in CdTe/CdS solar cells. In form of films, CdTe is generally grown with thicknesses ranging between 3 and 15 {mu}m, for which it is difficult to measure, by means of optical techniques, absorption coefficients greater than 10{sup 3} cm{sup -1} because nearly full absorption of light should occur below 800 nm. The exact determination of the optical absorption coefficient in detectors on the basis of CdTe is very important since this parameter determines the absorption length at which 90% of the photons with energies over the forbidden zone of the CdTe will be absorbed by this. In CdS/CdTe polycrystalline solar cells the greater efficiency of conversion have been reported for film thicknesses of 10 mm, however, the optimal value of this parameter depends strongly on the method and the variables of growth. The optical absorption coefficient spectrum can be determined by several methods, often involving several approximations and the knowledge of some minority carrier related electronic parameters that reduce their application in general way. In this work we propose to determine the absorption coefficient in CdTe thin films by photoacoustic spectroscopy (PAS), because this technique allow us to obtain the optical absorption spectra in thicker layers and therefore the study of the influence of the several growth and post-growth processes in the optical properties of this thin films. We measure by PAS the optical-absorption coefficients of CdTe thin films in the spectral region near the fundamental absorption edge ranging from 1.0 to 2.4 eV using an open cell in the transmission configuration. The films were deposited on different substrates by the CSVT-HW (hot wall) technique. In order to study the influence of several

  20. Seebeck effect in polycrystalline semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jerhot, J.; Vlcek, J.

    1982-06-18

    The paper deals with the interpretation of the Seebeck coefficient measured for a polycrystalline semiconductor. Polycrystalline semiconductors are considered to be composed of grains separated from one another by intergrain domains. An isotype heterojunction with a certain density of interface states is assumed to exist at the grain-intergrain domain interface. The general formula for the Seebeck coefficient under these conditions is derived. The relations valid for systems of practical interest are shown as limiting cases of the formula presented.

  1. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    Science.gov (United States)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  2. Gelcasting polycrystalline alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  3. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  4. Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1991--15 January 1992

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  5. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report, 20 March 1995--19 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J U; Mao, D [Colorado School of Mines, Golden, CO (United States)

    1997-04-01

    The objective of this project is to develop improved processes for fabricating CdTe/CdS polycrystalline thin-film solar cells. Researchers used electrodeposition to form CdTe; electrodeposition is a non-vacuum, low-cost technique that is attractive for economic, large-scale production. During the past year, research and development efforts focused on several steps that are most critical to the fabricating high-efficiency CdTe solar cells. These include the optimization of the CdTe electrodeposition process, the effect of pretreatment of CdS substrates, the post-deposition annealing of CdTe, and back-contact formation using Cu-doped ZnTe. Systematic investigations of these processing steps have led to a better understanding and improved performance of the CdTe-based cells. Researchers studied the structural properties of chemical-bath-deposited CdS thin films and their growth mechanisms by investigating CdS samples prepared at different deposition times; investigated the effect of CdCl{sub 2} treatment of CdS films on the photovoltaic performance of CdTe solar cells; studied Cu-doped ZnTe as a promising material for forming stable, low-resistance contacts to the p-type CdTe; and investigated the effect of CdTe and CdS thickness on the photovoltaic performance of the resulting cells. As a result of their systematic investigation and optimization of the processing conditions, researchers improved the efficiency of CdTe/CdS cells using ZnTe back-contact and electrodeposited CdTe. The best CdTe/CdS cell exhibited a V{sub oc} of 0.778 V, a J{sub sc} of 22.4 mA/cm{sup 2}, a FF of 74%, and an efficiency of 12.9% (verified at NREL). In terms of individual parameters, researchers obtained a V{sub oc} over 0.8 V and a FF of 76% on other cells.

  6. Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1990--15 January 1991

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

    1991-11-01

    Results and conclusion of Phase I of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe{sub 2} and CdTe solar cells. The kinetics of the formation of CuInSe{sub 2} by selenization with hydrogen selenide was investigated and a CuInSe{sub 2}/CdS solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe{sub 2} films and a cell efficiency of 7%. Detailed investigations of the open circuit voltage of CuInSe{sub 2} solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe{sub 2} thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe{sub 2} is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10% can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm{sup 2} are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

  7. Digital signal processing for CdTe detectors using VXIbus data collection systems

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Daiji; Takahashi, Hiroyuki; Kurahashi, Tomohiko; Iguchi, Tetsuo; Nakazawa, Masaharu

    1996-07-01

    Recently fast signal digitizing technique has been developed, and signal waveforms with very short time periods can be obtained. In this paper, we analyzed each measured pulse which was digitized by an apparatus of this kind, and tried to improve an energy resolution of a CdTe semiconductor detector. The result of the energy resolution for {sup 137}Cs 662 keV photopeak was 13 keV. Also, we developed a fast data collection system based on VXIbus standard, and the counting rate on this system was obtained about 50 counts per second. (author)

  8. Synthesis and properties of 10% Zn layered CdTe thin films by SEL method

    Science.gov (United States)

    Shanmugan, S.; Mutharasu, D.

    2011-10-01

    Te/Cd/Te/Zn/Cd stacked layers were prepared by Stacked Elemental Layer (SEL) Method. All stacks were annealed from 200 °C to 500 °C and the prepared films were confirmed as polycrystalline nature. Cubic CdTe and Hexagonal ZnTe were identified at high annealing temperature. Transmittance spectra emphasized the significance of Zn doping by annealing the stack. The calculated optical constants n and k were 1.52-2.45 and 0.07-0.36 respectively. The band gaps (Eg) were observed between 1.38 and 1.44 eV at above 350 °C. A uniform surface morphology could be observed at high annealing temperatures. The observed results encouraged the Zn doping using SEL method.

  9. Roughness of CdTe thin films grown on glass by hot wall epitaxy.

    Science.gov (United States)

    Leal, F F; Ferreira, S O; Menezes-Sobrinho, I L; Faria, T E

    2005-01-12

    Cadmium telluride films were grown on glass substrates using the hot wall epitaxy (HWE) technique. The samples were polycrystalline with a preferential (111) orientation. Scanning electron micrographs reveal a grain size between 0.1 and 0.5 µm. The surface morphology of the samples was studied by measuring the roughness profile using a stylus profiler. The roughness as a function of growth time and scale size were investigated to determine the growth and roughness exponents, β and α, respectively. From the results we can conclude that the growth surface has a self-affine character with a roughness exponent α equal to 0.69 ± 0.03 and almost independent of growth time. The growth exponent β was equal to 0.38 ± 0.06. These values agree with that determined previously for CdTe(111) films grown on GaAs(100).

  10. Physical properties of spray deposited CdTe thin films: PEC performance

    Institute of Scientific and Technical Information of China (English)

    V. M. Nikale; S. S. Shinde; C. H. Bhosale; K.Y. Rajpure

    2011-01-01

    p-CdTe thin films were prepared by spray pyrolysis under different ambient conditions and characterized using photoelectrochemical (PEC),X-ray diffraction (XRD),scanning electron microscopy,energy-dispersive analysis by X-ray (EDAX),and optical transmission studies.The different preparative parameters viz solution pH,solution quantity,substrate temperature and solution concentration have been optimized by the PEC technique in order to get good-quality photosensitive material.XRD analysis shows the polycrystalline nature of the film,having cubic structure with strong (111) orientation.Micrographs reveal that grains are uniformly distributed over the surface of the substrate indicating the well-defined growth ofpolycrystalline CdTe thin film.The EDAX study for the sample deposited at optimized preparative parameters shows the nearly stoichiometric Cd:Te ratio.Optical absorption shows the presence of direct transition with band gap energy of 1.5 eV.Deposited films exhibit the highest photocurrent of 2.3 mA,a photovoltage of 462 mV,a 0.48 fill factor and 3.4% efficiency for the optimized preparative parameters.

  11. Swift heavy ion irradiation induced nanograin formation in CdTe thin films

    Science.gov (United States)

    Survase, Smita; Narayan, Himanshu; Sulania, I.; Thakurdesai, Madhavi

    2016-11-01

    Swift Heavy Ion (SHI) irradiation is a unique technique for nanograin formation through grain fragmentation. Contrary to the generally reported SHI irradiation induced grain growth on CdTe thin films, we report fragmentation leading to nanograin formation. Thermally evaporated polycrystalline CdTe thin films were irradiated with 100 MeV 197Au, 107Ag and 58Ni ions beams up to a fluence of 5 × 1012 ions/cm2. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were carried out for surface analysis before and after irradiation. SEM micrographs indicate that the larger grains in the as-deposited films were fragmented into smaller grains due to irradiation. The extent of fragmentation was found to increase with increasing electronic energy loss (Se). AFM pictures also supported the irradiation induced fragmentation. Structural characterization was done using X-ray Diffraction (XRD) technique. The ion induced strain and dislocation density were calculated from the XRD data. Both the strain and dislocation density were found to increase with increasing Se . The observed grain fragmentation is explained on the basis of a combined effect of strain induced disintegration of grains after the Coulomb explosion, and an 'incomplete' re-crystallization of the molten thermal spikes. Moreover, the optical band gap Eg (1.5 eV for as-deposited film), determined from UV-vis spectroscopy, increased with Se, and possibly because of ion induced strain and defect annealing.

  12. Positron lifetime in polycrystalline gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, A.M.; Serna, J. (Universidad Complutense de Madrid (Spain). Dept. de Fisica del Estado Solido)

    1984-06-16

    Positron lifetimes are measured on polycrystalline gadolinium between 15 and 25 /sup 0/C taking into account the microstructure of the specimens, especially the grain sizes of untreated or annealed sheets. Results show the existence of a trapping effect of positrons in Gd due to different trapping centers such as point defects, dislocations, grain boundaries, and other defects.

  13. Near infrared laser annealing of CdTe and in-situ measurement of the evolution of structural and optical properties

    Science.gov (United States)

    Simonds, Brian J.; Misra, Sudhajit; Paudel, Naba; Vandewal, Koen; Salleo, Alberto; Ferekides, Christos; Scarpulla, Michael A.

    2016-04-01

    The high performance of polycrystalline CdTe thin film solar cells is enabled by annealing in the presence of Cl. This process is typically carried out for tens of minutes resulting in reduction of defect states within the bandgap among other beneficial effects. In this work, we investigate laser annealing as a means of rapidly annealing CdTe using a continuous wave sub-bandgap 1064 nm laser. The partial transmission of the beam allows us to monitor the annealing process in-situ and in real time. We find that optoelectronic and structural changes occur through two distinct kinetic processes resulting in the removal of deep defects and twinned regions, respectively. A multilayer optical model including surface roughness is used to interpret both the in-situ transmission as well as ex-situ reflectivity measurements. These experiments demonstrate beneficial material changes resulting from sub-bandgap laser-driven CdCl2 treatment of CdTe in minutes, which is an important step towards accelerating the processing of the CdTe absorber layer.

  14. CdTe Films Deposited by Closed-space Sublimation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CdTe films are prepared by closed-space sublimation technology. Dependence of film crystalline on substrate materials and substrate temperature is investigated. It is found that films exhibit higher crystallinity at substrate temperature higher than 400℃. And the CdTe films deposited on CdS films with higher crystallinity have bigger crystallite and higher uniformity. Treatment with CdCl2 methanol solution promotes the crystallite growth of CdTe films during annealing.

  15. Synthesis and Surface Modification of CdTe Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CdTe nanocrystals were prepared in aqueous solution via the reaction between Cd2+ and NaHTe in the presence of mercaptoacetic acid. Interactions between CdTe nanocrystals and phenylalanine were formed via electrostatic/coordinate self-assembly. The photoluminescence intensity of CdTe nanocrystals was improved obviously. The interaction mechanism was discussed and was considered to be surface passivation.

  16. CdTe nanoparticles for the deposition of CdTe films using close spaced sublimation

    Science.gov (United States)

    Schumm, Benjamin; Althues, Holger; Kaskel, Stefan

    2010-08-01

    In this work a nanostructured CdTe powder was applied as a source material for CdTe film deposition via Close Spaced Sublimation (CSS). Growth kinetics and the resulting film properties were studied and compared to the films deposited from a commercially available CdTe bulk powder as source. The nanostructured powder was synthesized by a solvothermal elemental reaction of Cd and Te in ethylene diamine leading to particles of around 100-500 nm in diameter with a specific surface area of 4.1 m 2 g -1. An increase in the deposition rate by the factor of 1.7 was observed for the nanostructured powder as compared to the bulk material.

  17. Polycrystalline thin film materials and devices. Final subcontract report, 16 January 1990--15 January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.; Yokimcus, T.A. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

    1993-08-01

    This report describes results and conclusions of the final phase (III) of a three-year research program on polycrystalline thin-film heterojunction solar cells. The research consisted of the investigation of the relationships between processing, materials properties, and device performance. This relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority-carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current, which appears to be caused by recombination in the space charge region. Developing an efficient commercial-scale process for fabricating large-area polycrystalline, thin-film solar cells from a research process requires a detailed understanding of the individual steps in making the solar cell, and their relationship to device performance and reliability. The complexities involved in characterizing a process are demonstrated with results from our research program on CuInSe{sub 2}, and CdTe processes.

  18. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  19. Comparison of Minority Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, T. A.; Dhere, R. G.; Duenow, J. N.; Kuciauskas, D.; Kanevce, A.; Bergeson, J. D.

    2011-07-01

    We discuss typical and alternative procedures to analyze time-resolved photoluminescence (TRPL) measurements of minority carrier lifetime (MCL) with the hope of enhancing our understanding of how this technique may be used to better analyze CdTe photovoltaic (PV) device functionality. Historically, TRPL measurements of the fast recombination rate (t1) have provided insightful correlation with broad device functionality. However, we have more recently found that t1 does not correlate as well with smaller changes in device performance, nor does it correlate well with performance differences observed between superstrate and substrate CdTe PV devices. This study presents TRPL data for both superstrate and substrate CdTe devices where both t1 and the slower TRPL decay (t2) are analyzed. The study shows that changes in performance expected from small changes in device processing may correlate better with t2. Numerical modeling further suggests that, for devices that are expected to have similar drift field in the depletion region, effects of changes in bulk MCL and interface recombination should be more pronounced in t2. Although this technique may provide future guidance to improving CdS/CdTe device performance, it is often difficult to extract statistically precise values for t2, and therefore t2 data may demonstrate significant scatter when correlated with performance parameters.

  20. Transparent polycrystalline cubic silicon nitride

    Science.gov (United States)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  1. Microstructure and point defects in CdTe nanowires for photovoltaic applications.

    Science.gov (United States)

    Williams, B L; Halliday, D P; Mendis, B G; Durose, K

    2013-04-05

    Defects in Au-catalysed CdTe nanowires vapour-liquid-solid-grown on polycrystalline underlayers have been critically evaluated. Their low-temperature photoluminescence spectra were dominated by excitonic emission with rarely observed above-gap emission also being recorded. While acceptor bound exciton lines due to monovalent metallic impurities (Ag, Cu or Na) were seen, only deeper, donor-acceptor-pair emission could be attributed to the Au contamination that is expected from the catalyst. Annealing under nitrogen acted to enhance the single crystal-like PL emission, whilst oxidizing and reducing anneals of the type that is used in solar cell device processing caused it to degrade. The incidence of stacking faults, polytypes and twins was related only to the growth axes of the wires ( 50%, 30% and 20%), and was not influenced by annealing. The potential electrical activity of the point and extended defects, and the suitability of these nanowire materials (including processing steps) for solar cell applications, is discussed. Overall they have a quality that is superior to that of thin polycrystalline films, although questions remain about recombination due to Au.

  2. Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique

    Energy Technology Data Exchange (ETDEWEB)

    Guszpit, Ewelina, E-mail: ewelina.guszpit@gmail.com [Wroclaw Medical University, Department of Biomedical and Environmental Analysis, Faculty of Pharmacy (Poland); Krizkova, Sona [Mendel University in Brno, Department of Chemistry and Biochemistry, Faculty of Agronomy (Czech Republic); Kepinska, Marta [Wroclaw Medical University, Department of Biomedical and Environmental Analysis, Faculty of Pharmacy (Poland); Rodrigo, Miguel Angel Merlos [Mendel University in Brno, Department of Chemistry and Biochemistry, Faculty of Agronomy (Czech Republic); Milnerowicz, Halina [Wroclaw Medical University, Department of Biomedical and Environmental Analysis, Faculty of Pharmacy (Poland); Kopel, Pavel; Kizek, Rene [Mendel University in Brno, Department of Chemistry and Biochemistry, Faculty of Agronomy (Czech Republic)

    2015-11-15

    Quantum dots (QDs) are fluorescence nanoparticles (NPs) with unique optic properties which allow their use as probes in chemical, biological, immunological, and molecular imaging. QDs linked with target ligands such as peptides or small molecules can be used as tumor biomarkers. These particles are a promising tool for selective, fast, and sensitive tagging and imaging in medicine. In this study, an attempt was made to use QDs as a marker for human metallothionein (MT) isoforms 1 and 2. Four kinds of CdTe QDs of different sizes bioconjugated with MT were analyzed using the chip-CE technique. Based on the results, it can be concluded that MT is willing to interact with QDs, and the chip-CE technique enables the observation of their complexes. It was also observed that changes ranging roughly 6–7 kDa, a value corresponding to the MT monomer, depend on the hydrodynamic diameters of QDs; also, the MT sample without cadmium interacted stronger with QDs than MT saturated with cadmium. Results show that MT is willing to interact with smaller QDs (blue CdTe) rather than larger ones QDs (red CdTe). To our knowledge, chip-CE has not previously been applied in the study of CdTe QDs interaction with MT.Graphical Abstract.

  3. Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique

    Science.gov (United States)

    Guszpit, Ewelina; Krizkova, Sona; Kepinska, Marta; Rodrigo, Miguel Angel Merlos; Milnerowicz, Halina; Kopel, Pavel; Kizek, Rene

    2015-11-01

    Quantum dots (QDs) are fluorescence nanoparticles (NPs) with unique optic properties which allow their use as probes in chemical, biological, immunological, and molecular imaging. QDs linked with target ligands such as peptides or small molecules can be used as tumor biomarkers. These particles are a promising tool for selective, fast, and sensitive tagging and imaging in medicine. In this study, an attempt was made to use QDs as a marker for human metallothionein (MT) isoforms 1 and 2. Four kinds of CdTe QDs of different sizes bioconjugated with MT were analyzed using the chip-CE technique. Based on the results, it can be concluded that MT is willing to interact with QDs, and the chip-CE technique enables the observation of their complexes. It was also observed that changes ranging roughly 6-7 kDa, a value corresponding to the MT monomer, depend on the hydrodynamic diameters of QDs; also, the MT sample without cadmium interacted stronger with QDs than MT saturated with cadmium. Results show that MT is willing to interact with smaller QDs (blue CdTe) rather than larger ones QDs (red CdTe). To our knowledge, chip-CE has not previously been applied in the study of CdTe QDs interaction with MT.

  4. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  5. Lattice sites of Li in CdTe

    NARCIS (Netherlands)

    Restle, M; BharuthRam, K; Quintel, H; Ronning, C; Hofsass, H; Wahl, U; Jahn, SG

    1996-01-01

    The lattice site occupation of Li in CdTe at temperatures between 40 and 500 K was investigated with the emission channeling method. Radioactive Li-8 ions were implanted at low doses into CdTe single crystals. Emission channeling patterns of alpha-particles emitted in the nuclear decay of Li-8 (t(1/

  6. [Spectral analysis of effects of annealing on the characteristics of intrinsic SnO2 polycrystalline thin films].

    Science.gov (United States)

    Zeng, Guang-Gen; Zheng, Jia-Gui; Li, Bing; Chen, Qi; Wu, Li-Li; Li, Wei; Zhang, Jing-Quan; Lei, Zhi; Cai, Ya-Ping; Cai, Wei; Feng, Liang-Huan

    2008-02-01

    In order to improve the conversion efficiency of the CdTe solar cells, it is necessary to decrease the thickness of CdS layer. However, the decrease in CdS thickness may lead to adverse effects on the solar cells. Therefore, a high-resistance transparent layer (intrinsic SnO2) has been used as a buffer layer between the transparent conducting oxide (TCO) and CdS layer. In the present paper, SnO2 polycrystalline thin films were prepared by magnetic reactive sputtering. The properties of the films before and after annealing were studied by XRD and XPS. The results revealed that the films annealed at 550 degrees C for 30 minutesare polycrystalline SnO2 with a single phase of tetragonal structure and have orientation of (110) direction. XPS investigation shows that after annealing the oxygen content of the film increases, O1s peak shifts to lower energies, and SnO is oxidized into SnO2, After annealing the intrinsic SnO2 films of high-resistance as a buffer layer are very suitable for the CdTe solar cells.

  7. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  8. (CdTe){sub 1-x}(In{sub 2}Te{sub 3}){sub x} pseudo-binary in polycrystalline CdTe-In films

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Rodriguez, R.; Pena, J.L. [CINVESTAV-IPN, Merida (Mexico). Appl. Phys. Dept.; Hernandez, M.P. [IMRE, University of La Havana, 10400 Vedado, La Habana (Cuba); Zapata-Torres, M. [CICATA-IPN ALTAMIRA, Km. 14.5 Carretera Tampico-Puerto Altamira. Altamira Tamaulipas, C.P. 89600, Altamira (Spain)

    2000-09-03

    Polycrystalline CdTe-In films were prepared using close-spaced vapor transport technique combined with free evaporation (CSVT-FE), and the stoichiometry and structural properties were investigated. Auger electron spectroscopy (AES) was used to quantify the stoichiometry of the indium concentration in the films which increased according to the rise of temperature of the In source. X-ray diffraction analysis allowed to identify the CdTe ({alpha}-phase) in all films, together with the CdIn{sub 2}Te{sub 4} ({beta}-phase) in the films grown at the highest temperatures of the In source. For low In concentration films, the lattice parameter decreased linearly with the molar percent of In{sub 2}Te{sub 3} in CdTe (below 5 mol%). This behavior corroborated the presence of the solid solution. (orig.)

  9. CdTe ambulatory ventricular function monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lazewatsky, J.L.; Alpert, N.M.; Moore, R.H.; Boucher, C.A.; Strauss, H.W.

    1979-01-01

    A prototype device consisting of two arrays of CdTe detectors, ECG amplifiers and gate, microprocessor, and tape recorder was devised to record simultaneous ECG and radionuclide blood pool data from the left ventricle for extended periods during normal activity. The device is intended to record information concerning both normal and abnormal physiology of the heart and to permit the evaluation of new pharmaceuticals under everyday conditions. Preliminary results indicate that the device is capable of recording and reading out data from both phantoms and patients.

  10. A low-cost non-toxic post-growth activation step for CdTe solar cells.

    Science.gov (United States)

    Major, J D; Treharne, R E; Phillips, L J; Durose, K

    2014-07-17

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  11. Casting larger polycrystalline silicon ingots

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  12. Fracture behaviour of polycrystalline tungsten

    Science.gov (United States)

    Gaganidze, Ermile; Rupp, Daniel; Aktaa, Jarir

    2014-03-01

    Fracture behaviour of round blank polycrystalline tungsten was studied by means of three point bending Fracture-Mechanical (FM) tests at temperatures between RT and 1000 °C and under high vacuum. To study the influence of the anisotropic microstructure on the fracture toughness (FT) and ductile-to-brittle transition (DBT) the specimens were extracted in three different, i.e. longitudinal, radial and circumferential orientations. The FM tests yielded distinctive fracture behaviour for each specimen orientation. The crack propagation was predominantly intergranular for longitudinal orientation up to 600 °C, whereas transgranular cleavage was observed at low test temperatures for radial and circumferentially oriented specimens. At intermediate test temperatures the change of the fracture mode took place for radial and circumferential orientations. Above 800 °C all three specimen types showed large ductile deformation without noticeable crack advancement. For longitudinal specimens the influence of the loading rate on the FT and DBT was studied in the loading rate range between 0.06 and 18 MPa m1/2/s. Though an increase of the FT was observed for the lowest loading rate, no resolvable dependence of the DBT on the loading rate was found partly due to loss of FT validity. A Master Curve approach is proposed to describe FT vs. test temperature data on polycrystalline tungsten. Fracture safe design space was identified by analysis compiled FT data.

  13. Device Physics of Thin-Film Polycrystalline Cells and Modules; Final Subcontract Report; 6 December 1993-15 March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J. R. (Department of Physics, Colorado State University, Ft. Collins, Colorado)

    1999-05-03

    This report describes work performed under this subcontract by Colorado State University (CSU). The results of the subcontract effort included progress in understanding CdTe and Cu(In1-xGax)Se2-based solar cells, in developing additional measurement and analysis techniques at the module level, and in strengthening collaboration within the thin-film polycrystalline solar-cell community. A major part of the CdTe work consisted of elevated-temperature stress tests to determine fabrication and operation conditions that minimize the possibility of long-term performance changes. Other CdTe studies included analysis of the back-contact junction, complete photon accounting, and the tradeoff with thin CdS between photocurrent gain and voltage loss. The Cu(In1-xGax)Se2 studies included work on the role of sodium in enhancing performance, the conditions under which conduction-band offsets affect cell performance, the transient effects of cycling between light and dark conditions, and detailed analysis of several individual series of cells. One aspect of thin-film module analysis has been addressing the differences in approach needed for relatively large individual cells made without grids. Most work, however, focused on analysis of laser-scanning data, including defect signatures, photocurrent/shunting separation, and the effects of forward bias or high-intensity light. Collaborations with other laboratories continued on an individual basis, and starting in 1994, collaboration was through the national R&D photovoltaic teams. CSU has been heavily involved in the structure and logistics of both the CdTe and CIS teams, as well as making frequent technical contributions in both areas.

  14. Process Development for High Voc CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  15. Auger relative sensitivivity factors for CdTe oxide

    OpenAIRE

    P. Bartolo-Pérez; J. L. Peña; M.H. Farías

    1999-01-01

    The Auger lineshape of Te MNN in measurements of Auger spectra of CdTe oxide films with various degrees of oxidation was analyzed. By using standards from stoichiometric compounds, Auger relative sensitivity factors (RSF´s) of Cd, Te and O for CdTe oxide thin films were obtained. The value of the RFS of oxygen is about constant, 0.27-0.28, for the standard compound, CdO, TeO2 and CdTeO3 (considering the RSF of Cd as 1). However, the obtained RSF of Te changes from 0.69 in CdTe up to 0.87 in C...

  16. Thin-film-based CdTe photovoltaic module characterization: measurements and energy prediction improvement.

    Science.gov (United States)

    Lay-Ekuakille, A; Arnesano, A; Vergallo, P

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m(2). About 37,000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m(2) and from -1 to 40 W/m(2) from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  17. Thermal characterization and determination of recombination parameters in CdTe films on glass substrates by using open photoacoustic cell technique

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-T, M.A. [Depto. de C. Basicas, ESCOM-IPN, Av. Miguel Othon de Mendizabal S/N, Col. Lindavista, CP 07738, Mexico DF (Mexico)]. E-mail: mgonzalezt@ipn.mx; Cruz-Orea, A. [Depto. de Fisica, CINVESTAV-IPN, Av. IPN No.2508, Col. San Pedro Zacatenco, CP. 07360, Mexico DF (Mexico); Albor-A, M.L. de [Depto. de Fisica, ESFM-IPN, Edif. 9, U.P. ' Adolfo Lopez Mateos' , CP 07738, Mexico DF (Mexico); Castillo-A, F. de L [Depto. de Fisica, ESFM-IPN, Edif. 9, U.P. ' Adolfo Lopez Mateos' , CP 07738, Mexico DF (Mexico)

    2005-06-01

    CdTe is a semiconductor with a wide variety of applications and perspectives for electronic industry (high-efficiency photoelectric cells, infrared radiation detectors, etc.). In the present work, we used photoacoustic (PA) technique to study the thermal properties and the surface recombination velocity in CdTe/glass samples. Experimental PA phase signal as a function of modulation frequency in a heat transmission configuration was fitted to the theoretical expression for PA signal, which takes into account the heat sources resulting from the absorption of light in semiconductors and the nonradiative processes involved, which depend on their thermal, optical and electronic transport properties. By this procedure, it was possible to determine the thermal diffusivity and the surface recombination velocity in these samples. The studied samples were thin polycrystalline CdTe film deposited on glass slides. CdTe layers were deposited by a hot-wall closed-spaced vapor transport method, known as gradient recrystallization and growth. The values for the deposition parameters used in this study were the following: 700 deg. C for the source temperature and 450 and 550 deg. C for the substrate temperatures with three different deposition times from 5 to 20 min (then three different film thicknesses were obtained). A clear increment in the surface velocity and surface roughness is observed as the film thickness is increased.

  18. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K. [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF (United Kingdom)

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  19. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    Science.gov (United States)

    Fedorenko, Y. G.; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-10-01

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  20. Shock waves in polycrystalline iron.

    Science.gov (United States)

    Kadau, Kai; Germann, Timothy C; Lomdahl, Peter S; Albers, Robert C; Wark, Justin S; Higginbotham, Andrew; Holian, Brad Lee

    2007-03-30

    The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cubic (fcc) structure. The simulated shock Hugoniot is compared to experiments. By calculating the extended x-ray absorption fine structure (EXAFS) directly from the atomic configurations, a comparison to experimental EXAFS measurements of nanosecond-laser shocks shows that the experimental data is consistent with such a phase transformation. However, the atomistically simulated EXAFS spectra also show that an experimental distinction between the hcp or fcc phase is not possible based on the spectra alone.

  1. Innovative sputtering techniques for CIS and CdTe submodule fabrication. Annual subcontract report, 1 September 1991--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.M.; Misra, M.S.; Lanning, B. [Martin Marietta Aerospace, Denver, CO (United States). Astronautics Group

    1993-03-01

    This report describes work done during Phase 1 of the subject subcontract. The subcontract was designed to study innovative deposition techniques, such as the rotating cylindrical magnetron sputtering system and electrodeposition for large-area, low-cost copper indium diselenide (CIS) and cadmium telluride (CdTe) devices. A key issue for photovoltaics (PV) in terrestrial and future space applications is producibility, particularly for applications using a large quantity of PV. Among the concerns for fabrication of polycrystalline thin-film PV, such as CIS and CdTe, are production volume, cost, and minimization of waste. Both rotating cylindrical magnetron (C-Mag{trademark}) sputtering and electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film PV due to scaleability, efficient utilization of source materials, and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mae facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput reduced health and safety risks, and, ultimately, lower fabrication cost. Electrodeposited films appear to be adherent and comparable with low-cost fabrication techniques. Phase I involved the initial film and device fabrication using the two techniques mentioned herein. Devices were tested by both internal facilities, as well as NREL and ISET.

  2. Characterization of Sputtered CdTe Thin Films with Electron Backscatter Diffraction and Correlation with Device Performance.

    Science.gov (United States)

    Nowell, Matthew M; Scarpulla, Michael A; Paudel, Naba R; Wieland, Kristopher A; Compaan, Alvin D; Liu, Xiangxin

    2015-08-01

    The performance of polycrystalline CdTe photovoltaic thin films is expected to depend on the grain boundary density and corresponding grain size of the film microstructure. However, the electrical performance of grain boundaries within these films is not well understood, and can be beneficial, harmful, or neutral in terms of film performance. Electron backscatter diffraction has been used to characterize the grain size, grain boundary structure, and crystallographic texture of sputtered CdTe at varying deposition pressures before and after CdCl2 treatment in order to correlate performance with microstructure. Weak fiber textures were observed in the as-deposited films, with (111) textures present at lower deposition pressures and (110) textures observed at higher deposition pressures. The CdCl2-treated samples exhibited significant grain recrystallization with a high fraction of twin boundaries. Good correlation of solar cell efficiency was observed with twin-corrected grain size while poor correlation was found if the twin boundaries were considered as grain boundaries in the grain size determination. This implies that the twin boundaries are neutral with respect to recombination and carrier transport.

  3. Fundamentals of polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (USA). Inst. of Energy Conversion)

    1991-01-01

    This report presents the results of a one-year research program on polycrystalline thin-film solar cells. The research was conducted to better understand the limitations and potential of solar cells using CuInSe{sub 2} and CdTe by systematically investigating the fundamental relationships linking material processing, material properties, and device behavior. By selenizing Cu and In layers, we fabricated device-quality CuInSe{sub 2} thin films and demonstrated a CuInSe{sub 2} solar cell with 7% efficiency. We added Ga, to increase the band gap of CuInSe{sub 2} devices to increase the open-circuit voltage to 0.55 V. We fabricated and analyzed Cu(InGa)Se{sub 2}/CuInSe{sub 2} devices to demonstrate the potential for combining the benefits of higher V{sub oc} while retaining the current-generating capacity of CuInSe{sub 2}. We fabricated an innovative superstrate device design with more than 5% efficiency, as well as a bifacial spectral-response technique for determining the electron diffusion length and optical absorption coefficient of CuInSe{sub 2} in an operational cell. The diffusion length was found to be greater than 1 {mu}m. We qualitatively modeled the effect of reducing heat treatments in hydrogen and oxidizing treatments in air on the I-V behavior of CuInSe{sub 2} devices. We also investigated post-deposition heat treatments and chemical processing and used them to fabricate a 9.6%-efficient CdTe/CdS solar cell using physical vapor deposition.

  4. Growth of CdTe: Al films; Crecimiento de peliculas de CdTe: Al

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, M.; Zapata T, M. [CICATA-IPN, 89600 Altamira, Tamaulipas (Mexico); Melendez L, M. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico); Pena, J.L. [CINVESTAV-IPN, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico)

    2006-07-01

    CdTe: AI films were grown by the close space vapor transport technique combined with free evaporation (CSVT-FE). The Aluminum (Al) evaporation was made by two kinds of sources: one made of graphite and the other of tantalum. The films were deposited on glass substrates. The Al source temperature was varied maintaining the CdTe source temperature fixed as well as the substrate temperature. The films were characterized by x-ray energy dispersive analysis (EDAX), x-ray diffraction and optical transmission. The results showed for the films grown with the graphite source for Al evaporation, the Al did not incorporate in the CdTe matrix, at least to the level of EDAX sensitivity; they maintained the same crystal structure and band gap. For the samples grown with the tantalum source, we were able to incorporate the Al. The x-ray diffraction patterns show that the films have a crystal structure that depends on Al concentration. They were cubic up to 2.16 at. % Al concentration; for 19.65 at. % we found a mixed phase; for Al concentration higher than 21 at. % the films were amorphous. For samples with cubic structure it was found that the lattice parameter decreases and the band gap increases with Al concentration. (Author)

  5. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  6. Studies of key technologies for CdTe solar modules

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, CdS thin films, which act as the window layer and n-type partner to the p-type CdTe layer, were prepared by chemical bath deposition (CBD). CdTe thin films were deposited by the close-spaced sublimation (CSS) method. To obtain high-quality back contacts, a Te-rich layer was created with chemical etching and back contact materials were applied after CdTe annealing. The results indicate that the ZnTe/ZnTe:Cu complex layers show superior performance over other back contacts. Finally, by using laser scribing and mechanical scribing, the CdTe mini-modules were fabricated, in which a glass/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni solar module with a PWQC-confirmed total-area efficiency of 7.03% (54 cm2) was achieved.

  7. Controlled Synthesis of Nanoscale CdTe Urchins

    Institute of Scientific and Technical Information of China (English)

    BAO Jian; SHEN Yue; SUN Yan; YUE Yang; CHEN Xin; DAI Ning

    2009-01-01

    We presented a simple route to prepare nanoscale CdTe urchins in a tri-n-octylphosphine oxide(TOPO)system.CdTe urchins consisted of a core and several attached arms.The arms were ca.3 nm wide,and their lengths could be controlled with the reaction time.The authors investigated the optical absorption and structural properties of the prepared CdTe.The lengths of the arms could be tuned into CdTe nanourchins,which led to a change in the photophysical properties of the nanoscale CdTe urchins.The results,including transmission electron microscopy(TEM) and absorption spectra,indicated that mesoporous silica and aminopropyltriethoxysilane(APTES) contributed to the formation of nanoscale CdTe urchins.

  8. Interaction of porphyrins with CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei, E-mail: weichen@uta.edu [Department of Physics, University of Texas at Arlington, Box 19059 Arlington, TX 76019 (United States)

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  9. Spatial Distribution of Dopant Incorporation in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt; Al-Jassim, Mowafak

    2016-11-21

    In this work we use state-of-the-art cathodoluminescence (CL) spectrum imaging that provides spectrum-per-pixel mapping of the CL emission to examine how dopant elements are incorporated into CdTe. Emission spectra and intensity are used to monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on theoretical modeling. Our results show that grain boundaries play a role in the incorporation of dopants in CdTe, whether intrinsic or extrinsic. This type of analysis is crucial for providing feedback to design different processing schedules that optimize dopant incorporation in CdTe photovoltaic material, which has struggled to reach high carrier concentration values. Here, we present results on CdTe films exposed to copper, phosphorus, and intrinsic doping treatments.

  10. Dynamic effects in CdTe quantum-dot LEDs

    OpenAIRE

    Gallardo, D. E.

    2006-01-01

    In this work the electrical and electroluminescence properties CdTe nanocrystal films were analysed. The structure consisted of a multilayer of CdTe nanocrystals deposited by the layer-by-layer technique, sandwiched between an ITO anode and an aluminium cathode. The first part of this work was dedicated to structural and process improvement. Earlier devices, produced through a layer-by-layer (LbL) manual procedure, had an average thickness of 30nm per nanocrystal monolayer,...

  11. CdTe Photovoltaics for Sustainable Electricity Generation

    Science.gov (United States)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  12. CdTe Photovoltaic Devices for Solar Cell Applications

    Science.gov (United States)

    2011-12-01

    July 28, 2011 14. ABSTRACT Cadmium telluride ( CdTe ) has been recognized as a promising photovoltaic material for thin - film solar cells because of...mail.mil Phone: 301 394 0963 ABSTRACT Cadmium telluride ( CdTe ) has been recognized as a promising photovoltaic material for thin - film ...absorption coefficient allows films as thin as 2 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 17% have been

  13. Temperature dependent electroreflectance study of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raadik, T., E-mail: taavi.raadik@ttu.ee [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krustok, J.; Josepson, R.; Hiie, J. [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Potlog, T.; Spalatu, N. [Moldova State University, A. Mateevici str. 60, MD-2009 Chisinau (Moldova, Republic of)

    2013-05-01

    Cadmium telluride is a promising material for large scale photovoltaic applications. In this paper we study CdS/CdTe heterojunction solar cells with electroreflectance spectroscopy. Both CdS and CdTe layers in solar cells were grown sequentially without intermediate processing by the close-space sublimation method. Electroreflectance measurements were performed in the temperature range of T = 100–300 K. Two solar cells were investigated with conversion efficiencies of 4.1% and 9.6%. The main focus in this work was to study the temperature dependent behavior of the broadening parameter and the bandgap energy of CdTe thin film in solar cells. Room temperature bandgap values of CdTe were E{sub g} = 1.499 eV and E{sub g} = 1.481 eV for higher and lower efficiency solar cells, respectively. Measured bandgap energies are lower than for single crystal CdTe. The formation of CdTe{sub 1−x}S{sub x} solid solution layer on the surface of CdTe is proposed as a possible cause of lower bandgap energies. - Highlights: ► Temperature dependent electroreflectance measurements of CdS/CdTe solar cells ► Investigation of junction properties between CdS and CdTe ► Formation of CdTe{sub 1−} {sub x}S{sub x} solid solution layer in the junction area.

  14. High-quality CdTe films from nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.L.; Pehnt, M.; Urgiles, E. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  15. Extremal Overall Elastic Response of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Lipton, Robert

    1996-01-01

    Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...

  16. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  17. Overcoming degradation mechanisms in CdTe solar cells: First annual report, August 1998--August 1999

    Energy Technology Data Exchange (ETDEWEB)

    Cahen, D.; Gartsman, K.; Hodes, G.; Rotlevy, O.; Visoly-Fisher, I,; Dobson, K.

    2000-02-28

    The authors have studied the importance of chemical processes for the stability of CdTe solar cells, in particular, diffusion in the ohmic contact/absorber junction regions. Both whole cells and test systems containing only the ohmic contact and the absorber are used. They found several experimental methods to be useable tools to follow the effects of impurity diffusion on the CdTe grain boundaries, grain bulk, and surface. In addition, they have explored alternative contacting schemes. The first year of activities led to the following tentative conclusions: Grain boundaries in CdTe/CdS cells are NOT fully passivated and are expected to be electrically active; There appears to be fast ionic diffusion in the vicinity of the Cu/HgTe/graphite back-contact, possibly enhanced by grain boundary diffusion; The macroscopic response to stress is different for cells with identical back-contact, but from different manufacturers. Different factors and/or different reactions to identical factors are possibly at work here; and Ni-P appears to be a promising back-contact material.

  18. Degradation of ultrathin CdTe films with SWCNT or Graphene back contact

    Science.gov (United States)

    Gorji, Nima E.

    2015-06-01

    The degradation of ultrathin film solar cells based on CdS/CdTe materials and back contacted with nanolayers are analysed using SCAPS. The ultrathin films suffer from uncompleted photo-absorption and fast degradation. The instability in performance was mainly attributed to the back contact materials which cause roll-over and cause mobile ions inter-diffusion. Thus, in this work, three different nanolayers such as single walled carbon nanotubes and Graphene are considered as the metal-free back contacts with wide controllable work function for the CdTe films. The simulations show that the roll-over in characteristics of the device disappears when the work function of the nanolayer increases by a proper doping. The current density-voltage curves showed promising results when the CdTe thickness was thinned down to 0.7 μm. Surface coverage of the grain boundaries at the interface of CdTe/nanolayer can reduce the contact series resistance and improve the carrier collection. However, the inter-sheet resistance of the nanolayers should be re-optimized. Finally, the time dependent approach was applied to simulate the defect generation under stress condition where the Cu-doped nanolayers showed faster degradation while the nanolayer back contacted devices showed higher stability.

  19. Charge-carrier transport and recombination in heteroepitaxial CdTe

    Science.gov (United States)

    Kuciauskas, Darius; Farrell, Stuart; Dippo, Pat; Moseley, John; Moutinho, Helio; Li, Jian V.; Allende Motz, A. M.; Kanevce, Ana; Zaunbrecher, Katherine; Gessert, Timothy A.; Levi, Dean H.; Metzger, Wyatt K.; Colegrove, Eric; Sivananthan, S.

    2014-09-01

    We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm2 (Vs)-1 and diffusion coefficient D of 17 cm2 s-1. We find limiting recombination at the epitaxial film surface (surface recombination velocity Ssurface = (2.8 ± 0.3) × 105 cm s-1) and at the heteroepitaxial interface (interface recombination velocity Sinterface = (4.8 ± 0.5) × 105 cm s-1). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic devices that employ epitaxial CdTe.

  20. Charge-carrier transport and recombination in heteroepitaxial CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius, E-mail: Darius.Kuciauskas@nrel.gov; Farrell, Stuart; Dippo, Pat; Moseley, John; Moutinho, Helio; Li, Jian V.; Allende Motz, A. M.; Kanevce, Ana; Zaunbrecher, Katherine; Gessert, Timothy A.; Levi, Dean H.; Metzger, Wyatt K. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401-3305 (United States); Colegrove, Eric; Sivananthan, S. [Microphysics Laboratory, Physics Department, University of Illinois at Chicago, Chicago, Illinois 60612 (United States)

    2014-09-28

    We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm² (Vs)⁻¹ and diffusion coefficient D of 17 cm² s⁻¹. We find limiting recombination at the epitaxial film surface (surface recombination velocity Ssurface = (2.8 ± 0.3) × 10⁵cm s ⁻¹) and at the heteroepitaxial interface (interface recombination velocity Sinterface = (4.8 ± 0.5) × 10⁵ cm s⁻¹). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic devices that employ epitaxial CdTe.

  1. Effect of film thickness on microstructure parameters and optical constants of CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.co [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt); Afify, N. [Physics Department, Assiut University, Assiut (Egypt); El-Taher, A. [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt)

    2009-08-12

    Different thickness of cadmium telluride (CdTe) thin films was deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The XRD experiments showed that the films are polycrystalline and have a zinc-blende (cubic) structure. The microstructure parameters, crystallite size and microstrain were calculated. It is observed that the crystallite size increases and microstrain decreases with the increase in the film thickness. The fundamental optical parameters like band gap and extinction coefficient are calculated in the strong absorption region of transmittance and reflectance spectrum. The possible optical transition in these films is found to be allowed direct transition with energy gap increase from 1.481 to 1.533 eV with the increase in the film thickness. It was found that the optical band gap increases with the increase in thickness. The refractive indices have been evaluated in transparent region in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index can be extrapolated by Cauchy dispersion relationship over the whole spectral range, which extended from 400 to 2500 nm. It is observed that the refractive index, n increases on increasing the film thickness up to 671 nm and then the variation of n with higher thickness lie within the experimental errors.

  2. Variable Temperature Current-Voltage Measurements of CdTe Solar Cells

    Science.gov (United States)

    Smith, A. D.

    2000-03-01

    We have used a 2" x 2" Peltier heat pump chip powered with 24 V from a computer power supply to build a variable temperature stage for current voltage measurements of solar cells. A voltage divider was used to achieve several different set point temperatures from 25 oC to -24 oC. This system was used with a halogen lamp to study the electrical performance of polycrystalline thin-film solar cells fabricated in our group. These cells have the superstrate structure glass/SnO2:F/CdS/CdTe/metal.(1) The I-V characteristic shows evidence of a blocking back-diode which sets in below room temperature. This behavior will be related to the diffusion into the CdTe of the metals used for our back contact.(2) 1. M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, R.G. Bohn, and A.D. Compaan, Appl. Phys. Lett. 69, 3045-3047 (1996). 2. D. Grecu and A.D. Compaan, Appl. Phys. Lett. 75, 361-363 (1999).

  3. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  4. Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy

    Science.gov (United States)

    Luria, Justin; Kutes, Yasemin; Moore, Andrew; Zhang, Lihua; Stach, Eric A.; Huey, Bryan D.

    2016-11-01

    The influence of microstructural defects on the device properties in CdTe remains largely unknown. This is partly because characterization techniques have been unable to image electrical pathways throughout three-dimensional grains and grain boundaries with nanoscale resolution. Here, we employ a conductive and tomographic variation of atomic force microscopy to study charge transport at the nanoscale in a functioning thin-film solar cell with 12.3% efficiency. Images of electric current collected through the device thickness reveal spatially dependent short-circuit and open-circuit performance, and confirm that grain boundaries are preferential pathways for electron transport. Results on samples with and without cadmium chloride treatment reveal little difference in grain structure at the microscale, with samples without treatment showing almost no photocurrent either at planar defects or at grain boundaries. Our results supports an energetically orthogonal transport system of grain boundaries and interconnected planar defects as contributing to optimal solar cell performance, contrary to the conventional wisdom of the deleterious role of planar defects on polycrystalline thin-film solar cells.

  5. Charged grain boundaries reduce the open-circuit voltage of polycrystalline solar cells—An analytical description

    Science.gov (United States)

    Gaury, Benoit; Haney, Paul M.

    2016-12-01

    Analytical expressions are presented for the dark current-voltage relation J(V) of a pn+ junction with positively charged columnar grain boundaries with high defect density. These expressions apply to non-depleted grains with sufficiently high bulk hole mobilities. The accuracy of the formulas is verified by direct comparison to numerical simulations. Numerical simulations further show that the dark J(V) can be used to determine the open-circuit potential Voc of an illuminated junction for a given short-circuit current density Jsc . A precise relation between the grain boundary properties and Voc is provided, advancing the understanding of the influence of grain boundaries on the efficiency of thin film polycrystalline photovoltaics like CdTe and Cu(In,Ga)Se2 .

  6. Device physics of thin-film polycrystalline cells and modules: Phase 1 annual report: February 1998--January 1999

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J. R.

    1999-12-21

    This report describes work done by Colorado State University (CSU) during Phase 1 of this subcontract. CSU researchers continued to make basic measurements on CI(G)S and CdTe solar cells fabricated at different labs, to quantitatively deduce the loss mechanisms in these cells, and to make appropriate comparisons that illuminate where progress is being made. Cells evaluated included the new record CIGS cell, CIS cells made with and without CdS, and those made by electrodeposition and electroless growth from solution. Work on the role of impurities focused on sodium in CIS. Cells with varying amounts of sodium added during CIS deposition were fabricated at NREL using four types of substrates. The best performance was achieved with 10{sup {minus}2}--10{sup {minus}1} at% sodium, and the relative merits of proposed mechanisms for the sodium effect were compared. Researchers also worked on the construction and testing of a fine-focused laser-beam apparatus to measure local variations in polycrystalline cell performance. A 1{micro}m spot was achieved, spatial reproducibility in one and two dimensions is less than 1 {micro}m, and photocurrent is reliably measured when the 1{micro}m spot is reduced as low as 1-sun in intensity. In elevated-temperature stress tests, typical CdTe cells held at 100 C under illumination and normal resistive loads for extended periods of time were generally very stable; but those held under reverse or large forward bias and those contacted using larger amounts of copper were somewhat less stable. CdTe cell modeling produced reasonable fits to experimental data, including variations in back-contact barriers. A major challenge being addressed is the photovoltaic response of a single simple-geometry crystallite with realistic grain boundaries.

  7. Recent advances in thin film CdTe solar cells

    Science.gov (United States)

    Ferekides, Chris S.; Ceekala, Vijaya; Dugan, Kathleen; Killian, Lawrence; Oman, Daniel; Swaminathan, Rajesh; Morel, Don

    1996-01-01

    CdTe thin film solar cells have been fabricated on a variety of glass substrates (borosilicate and soda lime). The CdS films were deposited to a thickness of 500-2000 Å by the chemical bath deposition (CBD), rf sputtering, or close spaced sublimation (CSS) processes. The CdTe films were deposited by CSS in the temperature range of 450-625 °C. The main objective of this work is to fabricate high efficiency solar cells using processes that can meet low cost manufacturing requirements. In an attempt to enhance the blue response of the CdTe cells, ZnS films have also been prepared (CBD, rf sputtering, CSS) as an alternative window layer to CdS. Device behavior has been found to be consistent with a recombination model.

  8. Study of Back Contacts for CdTe Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    ZnTe/ZnTe∶Cu layer is used as a complex back contact. The parameters of CdTe solar cells with and without the complex back contacts are compared. The effects of un-doped layer thickness, doped concentration and post-deposition annealing temperature of the complex layer on solar cells performance are investigated.The results show that ZnTe/ZnTe∶Cu layer can improve back contacts and largely increase the conversion efficiency of CdTe solar cells. Un-doped layer and post-deposition annealing of high temperature can increase open voltage. Using the complex back contact, a small CdTe cell with fill factor of 73.14% and conversion efficiency of 12.93% is obtained.

  9. ISOTROPIC TEXTURING OF POLYCRYSTALLINE SILICON WAFERS

    Institute of Scientific and Technical Information of China (English)

    L. Wang; H. Shen; Y.F. Hu

    2005-01-01

    An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal etching conditions have been determined by etching rate calculation, scanning electron microscope (SEM) image and reflectance measurement. The surface morphology of the textured wafers varies in accordance with the different etchant concentration which in turn leads to the dissimilarity of etching speed. Textured polycrystalline silicon wafer surfaces display randomly located etched pits which can reduce the surface reflection and enhance the light absorption. The special relationship between reflectivity and etching rate was studied. Reflectance measurements show that isotropic texturing is one of the suitable techniques for texturing polycrystalline silicon wafers and benefits solar cells performances.

  10. Scaling properties of polycrystalline graphene: a review

    Science.gov (United States)

    Isacsson, Andreas; Cummings, Aron W.; Colombo, Luciano; Colombo, Luigi; Kinaret, Jari M.; Roche, Stephan

    2017-03-01

    We present an overview of the electrical, mechanical, and thermal properties of polycrystalline graphene. Most global properties of this material, such as the charge mobility, thermal conductivity, or Young’s modulus, are sensitive to its microstructure, for instance the grain size and the presence of line or point defects. Both the local and global features of polycrystalline graphene have been investigated by a variety of simulations and experimental measurements. In this review, we summarize the properties of polycrystalline graphene, and by establishing a perspective on how the microstructure impacts its large-scale physical properties, we aim to provide guidance for further optimization and improvement of applications based on this material, such as flexible and wearable electronics, and high-frequency or spintronic devices.

  11. CdTe nano-structures for photovoltaic devices

    OpenAIRE

    Corregidor, V.; Alves, L. C.; FRANCO, N.; Barreiros, Maria Alexandra; Sochinskii, N. V.; Alves, E

    2013-01-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200–600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orient...

  12. Optical measurements for excitation of CdTe quantum dots

    Science.gov (United States)

    Vladescu, Marian; Feies, Valentin; Schiopu, Paul; Craciun, Alexandru; Grosu, Neculai; Manea, Adrian

    2016-12-01

    The paper presents the experimental results obtained using a laboratory setup installation for fluorescence excitation of CdTe QDs used as biomarkers for clinical diagnostics. Quantum Dots (QDs) made of Cadmium Telluride (CdTe), are highly fluorescent and they are used as robust biomarkers. Generally, QDs are referred to as the zero-dimensional colloidal crystals that possess strong size dependence and multi-colored luminescence properties. Along with its intrinsic features, such as sharp and symmetric emission, photo-stability and high quantum yields, QDs play a vital role in various applications, namely the identification of the chemical moieties, clinical diagnostics, optoelectronics, bio-imaging and bio-sensing1.

  13. Development of transparent polycrystalline beta-silicon carbide

    Science.gov (United States)

    Bayya, Shyam S.; Villalobos, Guillermo R.; Hunt, Michael P.; Sanghera, Jasbinder S.; Sadowski, Bryan M.; Aggarwal, Ishwar D.; Cinibulk, Michael; Carney, Carmen; Keller, Kristin

    2013-09-01

    Transparent beta-SiC is of great interest because its high strength, low coefficient of thermal expansion, very high thermal conductivity, and cubic crystal structure give it a very high thermal shock resistance. A transparent, polycrystalline beta-SiC window will find applications in armor, hypersonic missiles, and thermal control for thin disc lasers. SiC is currently available as either small transparent vapor grown disks or larger opaque shapes. Neither of which are useful in window applications. We are developing sintering technology to enable transparent SiC ceramics. This involves developing procedures to make high purity powders and studying their densification behavior. We have been successful in demonstrating transparency in thin sections using Field Assisted Sintering Technology (FAST). This paper will discuss the reaction mechanisms in the formation of beta-SiC powder and its sintering behavior in producing transparent ceramics.

  14. Effect of ZnTe and CdZnTe Alloys at the Back Contact of 1-μm-Thick CdTe Thin Film Solar Cells

    Science.gov (United States)

    Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    2002-05-01

    N2-doped ZnTe was introduced onto 1-μm-thick CdTe absorbers in order to reduce the carrier recombination at the back contact of CdS/CdTe/C/Ag configuration solar cells. ZnTe films were grown by molecular beam epitaxy (MBE) on GaAs and Corning glass substrates to investigate the characteristics of the films. Epitaxial growth of ZnTe was realized on GaAs substrates and a hole concentration of 8 × 1018 cm-3 with a resistivity of 0.045 Ω \\cdotcm was achieved as a result of nitrogen doping. In contrast, polycrystalline ZnTe films were grown on Corning glass and CdTe thin films. Dark and photoconductivity of ZnTe films increased to 1.43 × 10-5 S/cm and 1.41 × 10-4 S/cm, respectively, while the Zn to Te ratio was decreased to 0.25 during MBE growth. These ZnTe films with different thicknesses were inserted into close-spaced sublimation (CSS)-grown 1-μm-thick CdTe solar cells. A conversion efficiency of 8.31% (Voc: 0.74 V, Jsc: 22.98 mA/cm2, FF: 0.49, area: 0.5 cm2) was achieved for a 0.2-μm-thick ZnTe layer with a cell configuration of CdS/CdTe/ZnTe/Cu-doped-C/Ag. Furthermore, to overcome the problem of possible recombination loss in the interface layer of CdTe and ZnTe, the intermediate ternary CdZnTe is investigated. The compositional factor in Cd1-xZnxTe:N alloy is varied and the dependence of the conductivity is evaluated. For instance, Cd0.5Zn0.5Te:N, with dark and photoconductivity of 2.13 × 10-6 and 2.9 × 10-5 S/cm, respectively, is inserted at the back contact of a 1-μm-thick CdTe solar cell. A conversion efficiency of 7.46% (Voc: 0.68 V, Jsc: 22.60 mA/cm2, FF: 0.49, area: 0.086 cm2) was achieved as the primary result for a 0.2-μm-thick Cd0.5Zn0.5Te:N layer with the cell configuration of CdS/CdTe/Cd0.5Zn0.5Te:N/Au.

  15. Stochastic Multiscale Modeling of Polycrystalline Materials

    Science.gov (United States)

    2013-01-01

    Thrun, and K. Ober- mayer , editors, Advances in Neural Information Processing Systems 15, pages 705–712, Cambridge, MA, 2003. MIT Press. [19] E Van der...modeling of polycrystalline IN 100. International Journal of Plasticity, 24(10):1694–1730, 2008. Special Issue in Honor of Jean - Louis Chaboche. [111] V. B

  16. Extremal Overall Elastic Response of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Lipton, Robert

    1997-01-01

    Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...

  17. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  18. Dry Etching on CdTe Polycrystalline Thin Film%CdTe多晶薄膜的干法腐蚀

    Institute of Scientific and Technical Information of China (English)

    杨帆; 郑家贵; 冯良桓; 王文武

    2011-01-01

    我们采用等离子束轰击的方法,研究了干法腐蚀对多晶CdTe薄膜结构和性能的变化,以及对CdTe太阳电池性能的影响.发现与湿法腐蚀方法相比,等离子束溅射轰击不仅可以彻底清除表面的氧化层,而且可以同时改善表面的微粗糙度,增强薄膜的附着力.通过对不同腐蚀方法所制成的CdTe电池器件的性能测试,得出了电池性能较好的干法腐蚀工艺条件.

  19. Radiative and interfacial recombination in CdTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, C. H., E-mail: craig.swartz@txstate.edu; Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H. [Materials Science, Engineering, and Commercialization Program, Texas State University, 601 University Dr., San Marcos, Texas 78666 (United States); Zaunbrecher, K. N. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Mississippi RSF200, Golden, Colorado 80401 (United States)

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  20. Thermal stability of substitutional ag in CdTe

    NARCIS (Netherlands)

    Jahn, SG; Hofsass, H; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Wahl, U

    1996-01-01

    The thermal stability of substitutional Ag in CdTe was deduced from lattice location measurements at different temperatures. Substitutional Ag probe atoms were generated via transmutation doping from radioactive Cd isotopes. The lattice sites of Ag isotopes were determined by measuring the channelin

  1. Simulation of charge transport in pixelated CdTe

    Science.gov (United States)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  2. Intracavity CdTe modulators for CO2 lasers.

    Science.gov (United States)

    Kiefer, J. E.; Nussmeier, T. A.; Goodwin, F. E.

    1972-01-01

    The use of cadmium telluride as an electrooptic material for intracavity modulation of CO2 lasers is described. Included are the predicted and measured effects of CdTe intracavity modulators on laser performance. Coupling and frequency modulation are discussed and experimental results compared with theoretically predicted performance for both techniques. Limitations on the frequency response of the two types of modulation are determined.

  3. Thermal stability of substitutional ag in CdTe

    NARCIS (Netherlands)

    Jahn, SG; Hofsass, H; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Wahl, U

    1996-01-01

    The thermal stability of substitutional Ag in CdTe was deduced from lattice location measurements at different temperatures. Substitutional Ag probe atoms were generated via transmutation doping from radioactive Cd isotopes. The lattice sites of Ag isotopes were determined by measuring the channelin

  4. Size controlled preparation of CdTe nanoparticles by apoferritin

    Science.gov (United States)

    Peng, Shasha; Kim, Ji Hyeon; Park, Sang Joon

    2017-06-01

    Cadmium telluride quantum dots (CdTe QDs) were synthesized in the cavity of horse spleen apoferritin and CdTe-apoferritin complex was fluorescent. Apoferritin is a popular bio-template to prepare various nanoparticles with narrow size distribution due to the confinement of the hollow protein shell. In this work, we controlled the diameters of CdTe NPs by changing the reaction conditions. Altering the molar ratio of Cd to Te from 1:0.05 to 1:0.2 and pH can change the diameters of NPs cores. The synthesized QDs were characterized by photoluminescence (PL) spectroscopy, UV-vis spectroscopy and transmission electron microscopy (TEM). The results showed that the PL intensity decreased when the Cd/Te molar ratio was decreased from 1:0.05 to 1:0.3 and pH was increased from 9.01 to 9.96. In addition, it was proven that the existence of apoferritin is necessary for the present synthetic method and the formation of CdTe QDs in the inner cavity of apoferritin.

  5. Stochastic multiscale modeling of polycrystalline materials

    Science.gov (United States)

    Wen, Bin

    Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and

  6. Catalytic growth of CdTe nanowires by closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gwangseok; Jung, Younghun [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Chun, Seungju; Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-11-01

    CdTe nano-/micro-structures with various morphologies were grown by using the closed space sublimation (CSS) method on a sapphire substrate by Au-catalyzed vapor–liquid–solid (VLS) mechanism. Length, diameter, and morphology of the CdTe nano-/micro-structures depended on the growth time and temperature gradient between the substrate and powdered CdTe source. Scanning electron microscopy images showed that an Au catalyst droplet existed at the tips of CdTe nanowires, which confirms that CdTe nanowires were grown by an Au-catalyzed VLS mechanism. Also, we observed that the two-dimensional CdTe film layer initially formed before the growth of the CdTe nano-/micro-wires. The optical and structural properties of CdTe nano-/micro-structures were characterized by X-ray diffraction technique and micro-Raman spectroscopy. Our study demonstrates that diverse CdTe nano-/micro-structures can be fabricated by using Au-catalyzed VLS growth process in a simple CSS chamber by controlling the temperature gradient and growth time. - Highlights: • We demonstrated CdTe nanowires using closed space sublimation method. • Au-catalyst droplets at the tips confirmed vapor–liquid–solid mechanism. • Diameters and lengths increased with increasing temperature gradient and time.

  7. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Klie, Robert [Univ. of Illinois, Chicago, IL (United States)

    2016-10-25

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functional theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.

  8. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    Science.gov (United States)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  9. Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements

    Science.gov (United States)

    Tuteja, Mohit; Koirala, Prakash; MacLaren, Scott; Collins, Robert; Rockett, Angus

    2015-10-01

    Polycrystalline CdTe in 12% efficient solar cells has been studied using scanning microwave impedance microscopy (sMIM). The CdS/CdTe junctions were grown on transparent-conducting-oxide-coated soda lime glass using rf sputter deposition. sMIM based capacitance measurements were performed on the exposed surface of CdCl2 treated CdTe adjacent to thermal-evaporation-deposited Cu/Au back contacts. The sMIM instrument was operated at ˜3 GHz, and capacitance measurements were performed as a function of ac and dc voltage biases applied to the tip, with and without sample illumination. Although dc capacitance measurements are affected by sample topography, the differential capacitance measurement was shown to be topography independent. It was found that the grain boundaries exhibit a depleted carrier concentration as compared to the grain bulk. This depletion effect is enhanced under photo-generated carrier separation or under sufficiently large probe tip biases opposite to the majority carrier charge.

  10. Fabrication of CdTe quantum dots-apoferritin arrays for detection of dopamine

    Science.gov (United States)

    Le, Thi Hoa; Kim, Ji Hyeon; Park, Sang Joon

    2017-06-01

    A method was proposed for detecting dopamine using a two-dimensional CdTe quantum dots (QDs)-apoferritin array fabricated on a modified silicon (Si) surface. First, CdTe QDs were synthesized in the cavity of horse spleen apoferritin (HsAFr). Then, the characterization of CdTe QDs in apoferritin was performed using photoluminescence (PL) spectroscopy. Transmission electron microscopy was used to analyze the size and structure of CdTe QDs. An atomic force microscopy image was obtained to evaluate the topography of the Si surface. In addition, the PL change resulting from the conjugation reaction of the CdTe QDs-apoferritin array with dopamine was investigated. When the array was linked to dopamine, a significant quenching of fluorescence was observed. Accordingly, the CdTe QDs-apoferritin arrays could be employed as useful sensing media for dopamine detection.

  11. Equilibrium shapes of polycrystalline silicon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Korzec, M. D., E-mail: korzec@math.tu-berlin.de; Wagner, B., E-mail: bwagner@math.tu-berlin.de [Department of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin (Germany); Roczen, M., E-mail: maurizio.roczen@physik.hu-berlin.de [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schade, M., E-mail: martin.schade@physik.uni-halle.de [Zentrum für Innovationskompetenz SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Germany); Rech, B., E-mail: bernd.rech@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany)

    2014-02-21

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  12. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [ed.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  13. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. (ed.)

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  14. Large dynamic range 64-channel ASIC for CZT or CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, F. E-mail: francis.glasser@cea.fr; Villard, P.; Rostaing, J.P.; Accensi, M.; Baffert, N.; Girard, J.L

    2003-08-21

    We present a customized 64-channel ASIC, named ALIX, developed in a 0.8 {mu}m CMOS technology. This circuit is dedicated to measure charges from semi-conductor X-ray detectors like Cadmium Zinc Telluride (CZT) or Cadmium Telluride CdTe. The specificity of ALIX is to be able to measure charges over a very large dynamic range (from 10 fC to 3 nC), and to store eight measurements in a very short time (from every 250 ns to a few ms). Up to eight images are stored inside the ASIC and each image can be read out in 64 {mu}s. A new acquisition sequence can then be started. Two analog readouts are available, one for the X-ray signal and one for the offset and afterglow measurement in case of pulsed X-rays. The outputs are converted into digital values by two off-chip 14 bits Analog-to-Digital Converters (ADC). A first version of ALIX has been tested with CZT and CdTe detectors under high-energy pulsed X-ray photons (20 MeV, 60 ns pulses every 250 ns). We will present the different results of linearity and signal-to-noise ratio. A second version of ALIX has been designed with some corrections. Electrical tests performed on 85 ASICS showed that the corrections were successful. We are now able to integrate them behind a 64x32 pixels 1 mm pitch CZT detector. Such an ASIC could also be used for strip detectors where a large dynamic range and a fast response are necessary.

  15. Large dynamic range 64-channel ASIC for CZT or CdTe detectors

    Science.gov (United States)

    Glasser, F.; Villard, P.; Rostaing, J. P.; Accensi, M.; Baffert, N.; Girard, J. L.

    2003-08-01

    We present a customized 64-channel ASIC, named ALIX, developed in a 0.8 μm CMOS technology. This circuit is dedicated to measure charges from semi-conductor X-ray detectors like Cadmium Zinc Telluride (CZT) or Cadmium Telluride CdTe. The specificity of ALIX is to be able to measure charges over a very large dynamic range (from 10 fC to 3 nC), and to store eight measurements in a very short time (from every 250 ns to a few ms). Up to eight images are stored inside the ASIC and each image can be read out in 64 μs. A new acquisition sequence can then be started. Two analog readouts are available, one for the X-ray signal and one for the offset and afterglow measurement in case of pulsed X-rays. The outputs are converted into digital values by two off-chip 14 bits Analog-to-Digital Converters (ADC). A first version of ALIX has been tested with CZT and CdTe detectors under high-energy pulsed X-ray photons (20 MeV, 60 ns pulses every 250 ns). We will present the different results of linearity and signal-to-noise ratio. A second version of ALIX has been designed with some corrections. Electrical tests performed on 85 ASICS showed that the corrections were successful. We are now able to integrate them behind a 64×32 pixels 1 mm pitch CZT detector. Such an ASIC could also be used for strip detectors where a large dynamic range and a fast response are necessary.

  16. Luminescence effects of ion-beam bombardment of CdTe surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, J., E-mail: javier.olvera@uam.e [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O. [Optronlab Group, Dpto. Fisica Materia Condensada, Edificio I-D, Universidad de Valladolid, Paseo de Belen 1, 47011 Valladolid (Spain); Plaza, J.L.; Dieguez, E. [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2009-09-15

    In the present work, we report the effect of low-energy ion bombardment on CdTe surfaces. The effect is revealed by FESEM images and photoluminescence (PL) measurements carried out before and after irradiation of CdTe polycrystals by means of an ion-beam sputtering (IBS) system. An important improvement in the luminescence of CdTe was observed in the irradiated areas, related to defect-free surfaces.

  17. CHEMICAL AND ELECTRICAL CHARACTERIZATION OF POLYCRYSTALLINE SEMICONDUCTORS

    OpenAIRE

    1982-01-01

    The chemistry and composition of inter- and intragrain regions in polycrystalline semiconductors can be related to, as well as dominate, the electrical characteristics of the materials, and devices fabricated from them. In this paper, high-resolution, complementary surface analysis techniques, including Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy (XPS) and low-energy electron loss spectroscopy (EELS), are used to investigate the ...

  18. Conductivity size effect of polycrystalline metal nanowires

    Directory of Open Access Journals (Sweden)

    Weihuang Xue

    2016-11-01

    Full Text Available It is well known that the conductivity of metal nanowires decreases with the wire diameter. This size effect was first studied for metal thin films when the film thickness approaches the electron mean free path. Fuchs & Sondheimer (FS pointed out that the external surface scattering of the electrons contributes to the conductivity decrease. Mayadas and Shatzkes (MS pointed out that the grain boundary scattering plays a major role for polycrystalline thin films. As is clear that nanowires are 2-d constrained instead of 1-d for thin film, so the size effect would be more eminent. However, today the mostly used physical model for the conductivity of metal nanowires is still the MS theory. This paper proposes a more complete model suitable for circular cross-section polycrystalline metal nanowires, which takes into account of background scattering, external surface scattering, as well as grain boundary scattering. Comparison with experiment data showed that our model can well explain the conductivity size effect of polycrystalline metal nanowires.

  19. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  20. Effect on thickness of Al layer in poly-crystalline Si thin films using aluminum(Al) induced crystallization method.

    Science.gov (United States)

    Jeong, Chaehwan; Na, Hyeon Sik; Lee, Suk Ho

    2011-02-01

    The polycrystalline silicon (poly-Si) thin films were prepared by aluminum induced crystallization. Aluminum (Al) and amorphous silicon (a-Si) layers were deposited using DC sputtering and plasma enhanced chemical vapor deposition method, respectively. For the whole process Al properties of bi-layers can be one of the important factors. In this paper we investigated the structural and electrical properties of poly-crystalline Si thin films with a variation of Al thickness through simple annealing process. All samples showed the polycrystalline phase corresponding to (111), (311) and (400) orientation. Process time, defined as the time required to reach 95% of crystalline fraction, was within 60 min and Al(200 nm)/a-Si(400 nm) structure of bi-layer showed the fast response for the poly-Si films. The conditions with a variation of Al thickness were executed in preparing the continuous poly-Si films for solar cell application.

  1. Review of Photovoltaic Energy Production Using CdTe Thin-Film Modules: Extended Abstract Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, T. A.

    2008-09-01

    CdTe has near-optimum bandgap, excellent deposition traits, and leads other technologies in commercial PV module production volume. Better understanding materials properties will accelerate deployment.

  2. Photoluminescence and Electroluminescence Properties of CdTe Nanoparticles in Conjugated Polymer Hosts

    Institute of Scientific and Technical Information of China (English)

    GUO, Fengqi; XIE, Puhui

    2009-01-01

    The photoinduced energy transfer process from conjugated polymer (PPE4+) to CdTe nanocrystals was found both in solutions and in thin films by a fluorescence spectroscopic technique. Films of PPE4+ blended with CdTe-2 nanocrystals were formed by an electrostatic layer-by-layer assembly technique. Light emitting diodes were fabricated using CdTe-2 as an emitter in PPE4+ host. PPE4+ works as a molecular wire in the energy transfer process from the polymer to the CdTe-2 nanocrystals.

  3. High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Noufi, R.; Zweibel, K.

    2006-05-01

    Thin-film photovoltaic (PV) modules of CdTe and Cu(In,Ga)Se2 (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices.

  4. Optical properties of CdTe: Experiment and modeling

    Science.gov (United States)

    Adachi, Sadao; Kimura, Toshifumi; Suzuki, Norihiro

    1993-09-01

    The real epsilon(sub 1) and imaginary epsilon(sub 2) portions of the dielectric function of CdTe were measured by spectroscopic ellipsometry (SE) in the 1.1-5.6 eV photon-energy range at room temperature. The data obtained were analyzed using different theoretical models, namely the harmonic-oscillator approximation, the standard critical point, and the model dielectric function. These models include the E(sub 0), E(sub 0) + Delta(sub 0), E(sub 1), E(sub 1) + Delta(sub 1), and E(sub 2) gaps as the main dispersion mechanisms. The consequences were reported and of particular interest was the difference in the analyzed results between these theoretical models. Dielectric-related optical constants of CdTe, such as the complex refractive index, the absorption coefficient, and normal-incidence reflectivity, were also investigated.

  5. An NMR quantum computer of the semiconductor CdTe

    Science.gov (United States)

    Shimizu, T.; Goto, A.; Hashi, K.; Ohki, S.

    2002-12-01

    We propose a method to implement a quantum computer by solid-state NMR. We can use the J-coupling for the quantum gate in CdTe. Both Cd and Te have two isotopes with spin 1/2, then we can have 4-qubits. The decoherence by dipole interaction may be minimized by preparing the isotope superlattice grown in the order of— 111Cd- 123Te- 113Cd- 125Te—in the [111] direction and by applying the magnetic field in the direction of [100], the magic angle of the dipole interaction. The optical pumping technique can be used in CdTe to make the initialization of the qubits.

  6. Dependence of CdTe response of bias history

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J.R.; Sasala, R.A.; Eisgruber, I.L. [Colorado State Univ., Boulder, CO (United States)

    1995-11-01

    Several time-dependent effect have been observed in CdTe cells and modules in recent years. Some appear to be related to degradation at the back contact, some to changes in temperature at the thin-film junction, and some to the bias history of the cell or module. Back-contact difficulties only occur in some cases, and the other two effects are reversible. Nevertheless, confusion in data interpretation can arise when these effects are not characterized. This confusion can be particularly acute when more than one time-dependent effect occurs during the same measurement cycle. The purpose of this presentation is to help categorize time-dependent effects in CdTe and other thin-film cells to elucidate those related to bias history, and to note differences between cell and module analysis.

  7. Digital pulse-shape processing for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L; Wachtmeister, S

    2001-01-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  8. Photoluminescence study of Cu diffusion in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Grecu, D.; Compaan, A.D. [Department of Physics, University of Toledo, Toledo, Ohio (United States)

    1999-03-01

    We report changes in the photoluminescence spectra associated with the diffusion of Cu in CdTe thin films used in CdTe/CdS solar cells. Films grown by vapor transport deposition and radio-frequency sputtering as well as single crystal CdTe were included in the study. The main effects of Cu diffusion appear to be the quenching of a donor-acceptor transition associated with Cd vacancies and the increase in intensity of a lower energy broad-band transition. The PL is subsequently used to explore the effects of electric fields on Cu diffusion. The role of Te as a diffusion barrier for Cu is investigated. {copyright} {ital 1999 American Institute of Physics.}

  9. Stepwise cooling technique as a method of growing high-perfection Cl-compensated CdTe

    Science.gov (United States)

    Pavlyuk, M. D.; Subbotin, I. A.; Kanevsky, V. M.; Artemov, V. V.

    2017-01-01

    High-perfection crystals of Cl-compensated CdTe have been grown by the Obreimov-Shubnikov technique using a schedule of stepwise crystal cooling developed with due regard for the correct CdTe phase diagram.

  10. Simulation of charge transport in pixelated CdTe

    OpenAIRE

    Kolstein, M.; G Ariño; Chmeissani, M.; De Lorenzo, G.

    2014-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have op...

  11. Optical modeling of graphene contacted CdTe solar cells

    Science.gov (United States)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  12. Optimizing timing performance of CdTe detectors for PET

    Science.gov (United States)

    Nakhostin, M.

    2017-10-01

    Despite several attractive properties, the poor timing performance of compound semiconductor detectors such as CdTe and CdZnTe has hindered their use in commercial PET imaging systems. The standard method of pulse timing with such detectors is to employ a constant-fraction discriminator at the output of a timing filter which is fed by the pulses from a charge-sensitive preamplifier. The method has led to a time resolution of about 10 ns at full-width at half-maximum (FWHM) with 1 mm thick CdTe detectors. This paper presents a detailed investigation on the parameters limiting the timing performance of Ohmic contact planar CdTe detectors with the standard pulse timing method. The jitter and time-walk errors are studied through simulation and experimental measurements and it is revealed that the best timing results obtained with the standard timing method suffer from a significant loss of coincidence events (~50%). In order to improve the performance of the detectors with full detection efficiency, a new digital pulse timing method based on a simple pattern recognition technique was developed. A time resolution of 3.29  ±  0.10 ns (FWHM) in the energy range of 300–650 keV was achieved with an Ohmic contact planar CdTe detector (5  ×  5  ×  1 mm3). The digital pulse processing method was also used to correct for the charge-trapping effect and an improvement in the energy resolution from 4.83  ±  0.66% to 2.780  ±  0.002% (FWHM) at 511 keV was achieved. Further improvement of time resolution through a moderate cooling of the detector and the application of the method to other detector structures are also discussed.

  13. High efficiency CSS CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.; Marinskiy, D.; Viswanathan, V.; Tetali, B.; Palekis, V.; Selvaraj, P.; Morel, D.L. [University of South Florida, Tampa, FL (United States). Dept. of Electrical Engineering

    2000-02-21

    Cadmium telluride (CdTe) has long been recognized as a strong candidate for thin film solar cell applications. It has a bandgap of 1.45 eV, which is nearly ideal for photovoltaic energy conversion. Due to its high optical absorption coefficient essentially all incident radiation with energy above its band-gap is absorbed within 1-2 {mu}m from the surface. Thin film CdTe solar cells are typically heterojunctions, with cadmium sulfide (CdS) being the n-type junction partner. Small area efficiencies have reached the 16.0% level and considerable efforts are underway to commercialize this technology. This paper will present work carried out at the University South Florida sponsored by the National Renewable Energy Laboratory of the United States Department of Energy, on CdTe/CdS solar cells fabricated using the close spaced sublimation (CSS) process. The CSS technology has attractive features for large area applications such as high deposition rates and efficient material utilization. The structural and optical properties of CSS CdTe and CdS films and junctions will be presented and the influence of some important CSS process parameters will be discussed. (orig.)

  14. Manufacturing of CSS CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D. [ANTEC Solar GmbH, Rudisleben (Germany)

    2000-02-21

    Due to its basic physical and chemical properties CdTe has become a favoured base material for thin film solar cells, using robust, high-throughput manufacturing procedures. The technology shows significant potential for attaining cost levels of <0.5 Euro/W{sub p}. Close-spaced sublimation (CSS) is the fastest and simplest deposition process for both semiconductors used, CdTe and CdS, permitting in-line production at a high linear speed of about 1 m/min. The individual manufacturing steps for integrated modules are explained in view of their incorporation into the production line. ANTEC solar GmbH is engaged to enter the production of CdTe thin film modules on a scale of 10 MW{sub p} (100000 m{sup 2}) per annum, using CSS as the deposition procedure for the semiconductor films, and high-rate in-line sputtering for transparent and opaque contacts. Standard module size will be 60 x 120 cm{sup 2}. The production line is presently under construction. (orig.)

  15. Approaches to improve the Voc of CDTE devices: Device modeling and thinner devices, alternative back contacts

    Science.gov (United States)

    Walkons, Curtis J.

    An existing commercial process to develop thin film CdTe superstrate cells with a lifetime tau=1-3 ns results in Voc= 810-850 mV which is 350 mV lower than expected for CdTe with a bandgap EG = 1.5 eV. Voc is limited by 1.) SRH recombination in the space charge region; and 2.) the Cu2Te back contact to CdTe, which, assuming a 0.3 eV CdTe/Cu2Te barrier, exhibits a work function of phi Cu2Te= 5.5 eV compared to the CdTe valence band of Ev,CdTe=5.8 eV. Proposed solutions to develop CdTe devices with increased Voc are: 1.) reduce SRH recombination by thinning the CdTe layer to ≤ 1 mum; and 2.) develop an ohmic contact back contact using a material with phi BC≥5.8 eV. This is consistent with simulations using 1DSCAPS modeling of CdTe/CdS superstrate cells under AM 1.5 conditions. Two types of CdTe devices are presented. The first type of CdTe device utilizes a window/CdTe stack device with an initial 3-9 mum CdTe layer which is then chemically thinned resulting in regions of the CdTe film with thickness less than 1 mum. The CdTe surface was contacted with a liquid junction quinhydrone-Pt (QH-Pt) probe which enables rapid repeatable Voc measurements on CdTe before and after thinning. In four separate experiments, the window/CdTe stack devices with thinned CdTe exhibited a Voc increase of 30-170 mV, which if implemented using a solid state contact could cut the Voc deficit in half. The second type of CdTe device utilizes C61 PCBM as a back contact to the CdTe, selected since PCBM has a valence band maximum energy (VBM) of 5.8 eV. The PCBM films were grown by two different chemistries and the characterization of the film properties and device results are discussed. The device results show that PCBM exhibits a blocking contact with a 0.6 eV Schottky barrier and possible work function of phiPCBM = 5.2 eV.

  16. Single-Crystal CdTe Homojunction Structures for Solar Cell Applications

    Science.gov (United States)

    Su, Peng-Yu; Dahal, Rajendra; Wang, Gwo-Ching; Zhang, Shengbai; Lu, Toh-Ming; Bhat, Ishwara B.

    2015-09-01

    We report two different CdTe homojunction solar cell structures. Single-crystal CdTe homojunction solar cells were grown on GaAs single-crystal substrates by metalorganic chemical vapor deposition. Arsenic and iodine were used as dopants for p-type and n-type CdTe, respectively. Another homojunction solar cell structure was fabricated by growing n-type CdTe directly on bulk p-type CdTe single-crystal substrates. The electrical properties of the different layers were characterized by Hall measurements. When arsine was used as arsenic source, the highest hole concentration was ~6 × 1016 cm-3 and the activation efficiency was ~3%. Very abrupt arsenic doping profiles were observed by secondary ion mass spectrometry. For n-type CdTe with a growth temperature of 250°C and a high Cd/Te ratio the electron concentration was ~4.5 × 1016 cm-3. Because of the 300 nm thick n-type CdTe layer, the short circuit current of the solar cell grown on the bulk CdTe substrate was less than 10 mA/cm2. The open circuit voltage of the device was 0.86 V. According to a prediction based on measurement of short circuit current density ( J sc) as a function of open circuit voltage ( V oc), an open circuit voltage of 0.92 V could be achieved by growing CdTe solar cells on bulk CdTe substrates.

  17. Investigation on the Effect of the CdCl2 Treatment on CdTe Thin-film Solar Cells of Variable Thickness Fabricated Using Combinatorial Pulsed Laser Deposition

    Science.gov (United States)

    Kadhim, Ali Saber

    Cadmium Chloride (CdCl2) post annealing process has significant impacts on the performance of the CdS/CdTe solar cells since it affects the microstructure, crystallinity and charge carrier doping in CdTe films and also the CdS/CdTe p-n junction formed through S and Te interdiffusion at the junction interface. Therefore, this process has been investigated extensively during the past two decades, and has been optimized for polycrystalline CdS/CdTe thick film solar cells, in which the CdTe thickness is typically in the range of 3-8 microm. Nevertheless, the recent effort to develop cost-performance balanced thin film CdS/CdTe solar cells (with CdTe thickness on the order of 1 microm or less) has encountered difficulties through direct applications of the thick-film CdCl2 post annealing process. These difficulties stem from the large CdTe grain sizes typically in the range of microns in the thick film case. Grain boundaries between such large grains result in through-thickness shorts when the CdTe film thickness is comparable to or smaller than the grain size. Overcoming these difficulties to achieve precise controls of grain morphology, crystallinity and CdS/CdTe interface is important to high-performance CdS/CdTe thin film solar cells and will be the main objective of this thesis. In order to accelerate the study, a combinatorial Pulsed Laser Deposition technique (cPLD) was developed for deposition of CdTe films with different thicknesses on each sample to elucidate important physical properties of Cl diffusion through the selected thickness range at a given CdCl 2 annealing condition. Two sets of samples A and B of CdTe solar cells of multiple thicknesses of 1.5, 1.25, 1.0, and 0.75 microm have been fabricated by using cPLD. Sample A was completed without CdCl2 treatment as a reference, and sample B was treated with CdCl2 in different durations (10, 12, 15, and 17 min) at 360°C in mixed vapor of O2 and Argon (25 sccm:100 sccm). The sample that was treated at 15

  18. Abnormality in fracture strength of polycrystalline silicene

    Science.gov (United States)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-09-01

    Silicene, a silicon-based homologue of graphene, arouses great interest in nano-electronic devices due to its outstanding electronic properties. However, its promising electronic applications are greatly hindered by lack of understanding in the mechanical strength of silicene. Therefore, in order to design mechanically reliable devices with silicene, it is necessary to thoroughly explore the mechanical properties of silicene. Due to current fabrication methods, graphene is commonly produced in a polycrystalline form; the same may hold for silicene. Here we perform molecular dynamics simulations to investigate the mechanical properties of polycrystalline silicene. First, an annealing process is employed to construct a more realistic modeling structure of polycrystalline silicene. Results indicate that a more stable structure is formed due to the breaking and reformation of bonds between atoms on the grain boundaries. Moreover, as the grain size decreases, the efficiency of the annealing process, which is quantified by the energy change, increases. Subsequently, biaxial tensile tests are performed on the annealed samples in order to explore the relation between grain size and mechanical properties, namely in-plane stiffness, fracture strength and fracture strain etc. Results indicate that as the grain size decreases, the fracture strain increases while the fracture strength shows an inverse trend. The decreasing fracture strength may be partly attributed to the weakening effect from the increasing area density of defects which acts as the reservoir of stress-concentrated sites on the grain boundary. The observed crack localization and propagation and fracture strength are well-explained by a defect-pileup model.

  19. Interstellar extinction by fractal polycrystalline graphite clusters?

    CERN Document Server

    Andersen, A C; Pustovit, V N; Niklasson, G A

    2001-01-01

    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. To determine how these structural features would affect the interpretation of the observed interstellar extinction peak at $\\sim 4.6~\\mu$m, we have calculated the extinction by compact and fractal polycrystalline graphite clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters, namely, a rigorous solution and two different discrete-dipole approximation methods.

  20. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Awadesh K Mallik; S A Shivashankar; S K Biswas

    2009-10-01

    Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700°C to 900°C and methane gas concentration from 3% to 1·5%. It is found that the coefficient of friction of the coatings under high vacuum of 133·32 × 10-7 Pa (10-7 torr) with nanocrystalline grains can be manipulated to 0·35 to enhance tribological behaviour of bare Si substrates.

  1. Novel mercuric iodide polycrystalline nuclear particles counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Lab., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel)] [and others

    1996-12-31

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm{sup 2} and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm{sup 2} were produced by industrial ceramic equipment while the smaller ones, about 1 cm{sup 2} area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported.

  2. Superelastic effect in polycrystalline ferrous alloys.

    Science.gov (United States)

    Omori, T; Ando, K; Okano, M; Xu, X; Tanaka, Y; Ohnuma, I; Kainuma, R; Ishida, K

    2011-07-01

    In superelastic alloys, large deformation can revert to a memorized shape after removing the stress. However, the stress increases with increasing temperature, which limits the practical use over a wide temperature range. Polycrystalline Fe-Mn-Al-Ni shape memory alloys show a small temperature dependence of the superelastic stress because of a small transformation entropy change brought about by a magnetic contribution to the Gibbs energies. For one alloy composition, the superelastic stress varies by 0.53 megapascal/°C over a temperature range from -196 to 240°C.

  3. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  4. Close-Spaced Sublimation Growth and Characterization of Polycrystalline Cd1-xZnxTe Thick Films for Flat-Panel X-ray Detectors

    Science.gov (United States)

    Okamoto, Tamotsu; Kono, Makoto; Jibiki, Takayuki; Imai, Kiyokazu; Kishihara, Hiroyuki; Kaino, Masatomo; Tokuda, Satoshi; Sato, Toshiyuki

    2008-04-01

    Polycrystalline Cd1-xZnxTe thick films (x ˜0.05) with thicknesses above 400 µm were prepared by the close-spaced sublimation (CSS) as a conversion layer for next-generation highly efficient flat-panel X-ray detectors. The effects of the substrate temperature on the properties of the Cd1-xZnxTe layer were investigated, and it was found that the surface morphology and preferred crystallographic orientation depended on the substrate temperature. Furthermore, the control of the initial stage of deposition of Cd1-xZnxTe films was attempted, and high-quality Cd1-xZnxTe thick films were obtained by deposition after removing the surface layer of the sintered CdTe and ZnTe powder source.

  5. Temperature-dependent photoluminescence of highly luminescent water-soluble CdTe quantum dots

    Institute of Scientific and Technical Information of China (English)

    Ji Wei Liu; Yu Zhang; Cun Wang Ge; Yong Long Jin; Sun Ling Hu; Ning Gu

    2009-01-01

    Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.

  6. Fabrication of the structures with autocatalytic CdTe nanowires using magnetron sputtering deposition

    Science.gov (United States)

    Soshnikov, I. P.; Semenov, A. A.; Belyavskii, P. Yu.; Shtrom, I. V.; Kotlyar, K. P.; Lysak, V. V.; Kudryashov, D. A.; Pavlov, S. I.; Nashchekin, A. V.; Cirlin, G. E.

    2016-12-01

    We report the possibility of autocatalytic synthesis of highly crystalline perfect CdTe nanowires by magnetron presputtering deposition through the windows in ultrathin layers of SiO2. The photoluminescence spectra of obtained CdTe nanowires exhibit an emission band in the 1.4-1.7 eV region, indicating crystalline perfection of the nanowires.

  7. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  8. NREL Collaboration Breaks 1-Volt Barrier in CdTe Solar Technology

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    NREL scientists have worked with Washington State University and the University of Tennessee to improve the maximum voltage available from CdTe solar cells. Changes in dopants, stoichiometry, interface design, and defect chemistry improved the CdTe conductivity and carrier lifetime by orders of magnitude, thus enabling CdTe solar cells with open-circuit voltages exceeding 1 volt for the first time. Values of current density and fill factor for CdTe solar cells are already at high levels, but sub-par voltages has been a barrier to improved efficiencies. With voltages pushed beyond 1 volt, CdTe cells have a path to produce electricity at costs less than fossil fuels.

  9. Single CdTe microwire photodetectors grown by close-spaced sublimation method.

    Science.gov (United States)

    Yang, Gwangseok; Kim, Byung-Jae; Kim, Donghwan; Kim, Jihyun

    2014-08-11

    We demonstrate single CdTe microwire field-effect transistors (FETs) that are highly sensitive to ultraviolet (UV) light. Dense CdTe microwires were catalytically grown using a close-spaced sublimation system. Structural, morphological and transport properties in conjunction with the optoelectronic properties were systemically investigated. CdTe microwire FETs exhibited p-type behaviors with field-effect mobilities up to 1.1 × 10(-3) cm2 V(-1) s(-1). Optoelectronic properties of our CdTe microwire FETs were studied under dark and UV-illumination conditions, where photoresponse was highly dependent on the back-gate bias conditions. Our CdTe microwire FET-based photodetectors are promising for high-performance micro-optoelectronic applications.

  10. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe

    Directory of Open Access Journals (Sweden)

    Atef Y. Shenouda

    2015-03-01

    Full Text Available CdSe and CdTe are electrodeposited using 0.1 M Cd2+ and different ion concentrations of Se and Te. The effect of the temperature on the electrodeposition process is also studied. The crystal structure of the deposited CdSe and CdTe is investigated by X-ray diffraction (XRD. Scanning electron microscopy (SEM of samples deposited at optimized parameters reveals that CdSe has spongy spherical grains while CdTe has coralloid morphology. Optical absorption shows the presence of direct transition with band gap energy 1.96 and 1.51 eV for CdSe and CdTe, respectively. The highest photo-conversion efficiencies of electrodeposited CdSe and CdTe films per unit area are 6% and 9.6%, respectively that achieved under simple laboratory conditions.

  11. Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods

    Science.gov (United States)

    Vidyasagar, A.; Tan, W. L.; Kochmann, D. M.

    2017-09-01

    Understanding the electromechanical response of bulk polycrystalline ferroelectric ceramics requires scale-bridging approaches. Recent advances in fast numerical methods to compute the homogenized mechanical response of materials with heterogeneous microstructure have enabled the solution of hitherto intractable systems. In particular, the use of a Fourier-based spectral method as opposed to the traditional finite element method has gained significant interest in the homogenization of periodic microstructures. Here, we solve the periodic, electro-mechanically-coupled boundary value problem at the mesoscale of polycrystalline ferroelectrics in order to extract the effective response of barium titanate (BaTiO3) and lead zirconate titanate (PZT) under applied electric fields. Results include the effective electric hysteresis and the associated butterfly curve of strain vs. electric field for mean stress-free electric loading. Computational predictions of the 3D polycrystalline response show convincing agreement with our experimental electric cycling and strain hysteresis data for PZT-5A. In addition to microstructure-dependent effective physics, we also show how finite-difference-based approximations in the spectral solution scheme significantly reduce instability and ringing phenomena associated with spectral techniques and lead to spatial convergence with h-refinement, which have been major challenges when modeling high-contrast systems such as polycrystals.

  12. Lateral boron distribution in polycrystalline SiC source materials

    DEFF Research Database (Denmark)

    Linnarsson, M. K.; Kaiser, M.; Liljedahl, R.

    2013-01-01

    Polycrystalline SiC containing boron and nitrogen are used in growth of fluorescent SiC for white LEDs. Two types of doped polycrystalline SiC have been studied in detail with secondary ion mass spectrometry: sintered SiC and poly-SiC prepared by sublimation in a physical vapor transport setup...

  13. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    Science.gov (United States)

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  14. Degradation and capacitance: voltage hysteresis in CdTe devices

    Science.gov (United States)

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; del Cueto, J. A.; Metzger, W. K.

    2009-08-01

    CdS/CdTe photovoltaic solar cells were made on two different transparent conducting oxide (TCO) structures in order to identify differences in fabrication, performance, and reliability. In one set of cells, chemical vapor deposition (CVD) was used to deposit a bi-layer TCO on Corning 7059 borosilicate glass consisting of a F-doped, conductive tin-oxide (cSnO2) layer capped by an insulating (undoped), buffer (iSnO2) layer. In the other set, a more advanced bi-layer structure consisting of sputtered cadmium stannate (Cd2SnO4; CTO) as the conducting layer and zinc stannate (Zn2SnO4; ZTO) as the buffer layer was used. CTO/ZTO substrates yielded higher performance devices however performance uniformity was worse due to possible strain effects associated with TCO layer fabrication. Cells using the SnO2-based structure were only slightly lower in performance, but exhibited considerably greater performance uniformity. When subjected to accelerated lifetime testing (ALT) at 85 - 100 °C under 1-sun illumination and open-circuit bias, more degradation was observed in CdTe cells deposited on the CTO/ZTO substrates. Considerable C-V hysteresis, defined as the depletion width difference between reverse and forward direction scans, was observed in all Cu-doped CdTe cells. These same effects can also be observed in thin-film modules. Hysteresis was observed to increase with increasing stress and degradation. The mechanism for hysteresis is discussed in terms of both an ionic-drift model and one involving majority carrier emission in the space-charge region (SCR). The increased generation of hysteresis observed in CdTe cells deposited on CTO/ZTO substrates suggests potential decomposition of these latter oxides when subjected to stress testing.

  15. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  16. The strange diffusivity of Ag atoms in CdTe

    CERN Document Server

    Wolf, H; Ostheimer, V; Schachtrup, A R; Stolwijk, N A; Wichert, T

    2001-01-01

    The diffusion of Ag atoms in CdTe was investigated using the radiotracer $^{111}\\!$Ag, which was introduced by implantation with an energy of 60 or 80 keV. The measured diffusion profiles are explained by assuming the existence of a repulsive interaction between Ag and residual Cu atoms causing a drift of the Ag atoms towards the centre of the crystal, which supposes the diffusion in a concentration gradient. This effect vanishes if the Ag concentration is increased and becomes more pronounced if the crystals are simultaneously co- doped with Cu. (11 refs).

  17. Modeling of Irradiation Hardening of Polycrystalline Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  18. Polycrystalline silicon ion sensitive field effect transistors

    Science.gov (United States)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  19. Multifunctional Polycrystalline Ferroelectric Materials Processing and Properties

    CERN Document Server

    Pardo, Lorena

    2011-01-01

    This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Mate...

  20. Novel mercuric iodide polycrystalline nuclear particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Labs., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI, Strasbourg (France)

    1997-12-01

    Polycrystalline mercuric iodide nuclear radiation detectors have been produced in a novel technology. Unlike the normal single-crystal technology, there is no intrinsic limit to the surface on which these detectors can be produced. Detectors with areas up to about 1.5 cm{sup 2}, thicknesses from 30 to 600 {micro}m, and with single electrodes as well as microstrip and pixel contacts have been fabricated and successfully tested with photons in the range of 40--660 keV, {beta} particle`s emitted from a Sr-Y source, and high energy (100 GeV) muons. Results on both charge collection and counting efficiency are reported as well as some very preliminary imaging results. The experimental results on charge collection have been compared with simulation, and a combined {mu}{tau} product 10{sup {minus}7} cm{sup 2}/V for electrons has been estimated.

  1. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  2. Raman characterization of a new Te-rich binary compound: CdTe2.

    Science.gov (United States)

    Rousset, Jean; Rzepka, Edouard; Lincot, Daniel

    2009-04-02

    Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te.

  3. Highly luminescent hybrid SiO2-coated CdTe quantum dots: synthesis and properties.

    Science.gov (United States)

    Liu, Ning; Yang, Ping

    2013-01-01

    Novel hybrid SiO2-coated CdTe quantum dots (QDs) were created using CdTe QDs coated with a hybrid SiO2 shell containing Cd(2+) ions and a sulfur source via a sol-gel process in aqueous solution. Aqueous CdTe QDs with tunable emitting color created through a reaction between cadmium chloride and sodium hydrogen telluride was used as cores for the preparation of hybrid SiO2-coated CdTe QDs. In our experiments we found that the surface state of the cores and preparation conditions that affect the formation of the hybrid SiO2 shell also greatly affect photoluminescence of the hybrid SiO2-coated CdTe QDs. The generation of CdS-like clusters in the vicinity of the CdTe QDs, caused the quantum size effect of the QDs to be greatly reduced, which changes photoluminescence properties of the hybrid QDs fundamentally. Namely, the novel hybrid SiO2 shell played an important role in generating a series of specific optical properties. In addition, the novel hybrid SiO2 shell can be created if no CdTe QD is added. In order to gain an insight into the inter structure of the hybrid shell, we characterized the hybrid SiO2-coated CdTe QDs using X-ray diffraction analysis and discuss the formation mechanism of such a hybrid structure. This work is significant because the novel hybrid SiO2-coated CdTe QDs with its excellent properties can be used in many applications, such as biolabeling and optoelectronic devices.

  4. Influence of Zn2+ doping on the crystal structure and optical-electrical properties of CdTe thin films

    Science.gov (United States)

    Kavitha, R.; Sakthivel, K.

    2015-10-01

    The present study reports the synthesis of Cd1-xZnxTe (x = 0, 0.025, 0.050, 0.075 and 0.100) nanocrystalline thin film through a simple two step method. In the first step fine nanoparticles of Cd1-xZnxTe was prepared by solvothermal microwave irradiation (SMI) technique and then deposited as thin film using dip-coating technique. X-ray diffraction study showed that films are polycrystalline with cubic phase, which are preferentially oriented along the (1 1 1) direction. No impurity phase was observed in the XRD pattern even after higher concentration of doping (x = 0.100) of Zn. FESEM study revealed that the films are homogeneous without cracks and pinholes. TEM micrographs revealed the particles are slightly agglomerated and lesser than 25 nm. The optical absorption study revealed that pure and doped CdTe films possess a direct band gap material with bandgap values between 2.39 and 2.63 eV (±0.02 eV). The values of optical bandgap increase with an increase in dopant (Zn) concentration from x = 0.025 to 0.10. The pure cadmium telluride (CdTe) nanocrystalline film shows a strong green emission peak centered at about 525 nm. The emission peaks of Cd1-xZnxTe nanocrystalline films are red shifted from 525 nm to 611 nm according to the dopant (Zn2+) concentration. The grains in the prepared films are uniformly distributed, which was confirmed by narrow full width at half maximum (FWHM) of the emission peaks (40-65 nm). The DC conductivity has increased by 1.25 and 4 orders as the concentration of dopant increases from x = 0.025 to 0.10 at room temperature (30 °C) and 150 °C respectively. The higher conductivity value is underpinned by the smaller activation energy value and is explained by thermionic emission mechanism.

  5. Growth and characterization of CdTe on GaAs/Si substrates

    Science.gov (United States)

    Radhakrishnan, G.; Nouhi, A.; Liu, J.

    1988-01-01

    Epitaxial CdTe has been grown on both (100) GaAs/Si and (111) GaAs/Si substrates. A combination of molecular beam epitaxy and metal organic chemical vapor deposition have been employed to achieve this growth. The GaAs layers are grown in Si substrates by molecular beam epitaxy, followed by the growth of CdTe on GaAs/Si substra by metalorganic chemical vapor deposition. X-ray diffraction, photoluminescence, and scanning electron microscopy have been used to characterize the CdTe films.

  6. Close space sublimation of CdTe for solar cells and the effect of underlying layers

    OpenAIRE

    Wakeling, B. R.

    2010-01-01

    This work has focused on the design, construction and testing of a close space sublimation system for CdTe deposition. In addition, it also focused on variations to the treatment and fabrication procedures of the transparent conducting oxide and CdS layers prior to the CdTe deposition, in order to influence the structure and electrical properties of the CdTe/CdS interface. CdTe was deposited by the physical vapour process, close space sublimation. The equipment used was custom built for this ...

  7. Preparation of CdTe nanocrystal-polymer composite microspheres in aqueous solution by dispersing method

    Institute of Scientific and Technical Information of China (English)

    LI Minjie; WANG Chunlei; HAN Kun; YANG Bai

    2005-01-01

    Highly fluorescent CdTe nanocrystals were synthesized in aqueous solution, and then processible CdTe nanocrystal-polymer composites were fabricated by coating the aqueous nanocrystals with copolymers of styrene and octadecyl-p-vinyl-benzyldimethylammonium chloride (SOV- DAC) directly. A dichloromethane solution of CdTe nano- crystal-polymer composites was dispersed in the aqueous solution of poly (vinyl alcohol) (PVA) generating highly fluorescent microspheres. Experimental parameters such as the concentration of nanocrystal-polymer composites, the concentration of PVA, and stirring speed which had important effect on the preparation of the microspheres were investigated in detail with fluorescent microscope characterization.

  8. Narrowing the size distribution of CdTe nanocrystals using digestive ripening

    Indian Academy of Sciences (India)

    Mona Mittal; Sameer Sapra

    2015-06-01

    Digestive ripening of polydispersed colloidal CdTe nanocrystals is performed which results in monodispersed nanocrystals (NCs) as studied by optical spectroscopy. Optimization of ligand and refluxing time is carried out. Monodispersed NCs are obtained using mercaptopropionic acid (MPA) as a digestive ripening agent at a refluxing time of 1–2 h. Digestive ripening of CdTe NCs, which are less polydispersed, is also executed and it leads to more monodispersed NCs. In all the cases, there is a shift of maximum emission wavelength of CdTe NCs after digestive ripening that may be due to Ostwald ripening along with digestive ripening.

  9. Metalorganic Vapor Phase Epitaxial Growth of (211)B CdTe on Nanopatterned (211)Si

    Science.gov (United States)

    2012-05-15

    respectively. X-ray analysis of thin CdTe films grown on these substrates gave wider full-width half-maximum (FWHM) values when compared to the layers grown...obtained in the temperature range of 575-675 °C and 505-520 °C respectively. X-ray analy- sis of thin CdTe films grown on these substrates gave wider...An effort was also made to grow thin uniformly merged ~0.6 µm (211)B CdTe film on nanopatterned (211)Si by

  10. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe

    OpenAIRE

    Atef Y. Shenouda; El Sayed, El Sayed M.

    2015-01-01

    CdSe and CdTe are electrodeposited using 0.1 M Cd2+ and different ion concentrations of Se and Te. The effect of the temperature on the electrodeposition process is also studied. The crystal structure of the deposited CdSe and CdTe is investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) of samples deposited at optimized parameters reveals that CdSe has spongy spherical grains while CdTe has coralloid morphology. Optical absorption shows the presence of direct transition...

  11. APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE

    Energy Technology Data Exchange (ETDEWEB)

    Khusainov, A. K. (A. Kh.); Iwanczyk, J. S. (Jan S.); Patt, B. E. (Bradley E.); Prirogov, A. M. (Alexandre M.); Vo, Duc T.

    2001-01-01

    A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  12. ISGRI: a CdTe array imager for INTEGRAL

    Science.gov (United States)

    Lebrun, Francois; Blondel, Claire; Fondeur, Irene; Goldwurm, Andrea; Laurent, Phillipe; Leray, Jean P.

    1996-10-01

    The INTEGRAL soft gamma-ray imager (ISGRI) is a large and thin CdTe array. Operating at room temperature, this gamma camera covers the lower part (below 200 keV) of the energy domain (20 keV - 10 MeV) of the imager on board the INTEGRAL Satellite (IBIS). The ASIC's front-end electronics features particularly a low noise preamplifier, allowing a threshold below 20 keV and a pulse rise-time measurement which permits a charge loss correction. The charge loss correction and its performances are presented as well as the results of various studies on CdTe thermal behavior and radiation hardness. At higher energy (above 200 keV) ISGRI will operate in conjunction with PICsIT, the IBIS CsI gamma camera. A selection among the events in coincidence performed on the basis of the Compton scattering properties reduces strongly the background. This allows an improvement of the sensitivity and permits short term imaging and spectral studies (high energy pulsars) which otherwise would not have fit within the IBIS telemetry allocation.

  13. Advanced CdTe Photovoltaic Technology: September 2007 - March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Barth, K.

    2011-05-01

    During the last eighteen months, Abound Solar (formerly AVA Solar) has enjoyed significant success under the SAI program. During this time, a fully automated manufacturing line has been developed, fabricated and commissioned in Longmont, Colorado. The facility is fully integrated, converting glass and semiconductor materials into complete modules beneath its roof. At capacity, a glass panel will enter the factory every 10 seconds and emerge as a completed module two hours later. This facility is currently undergoing trials in preparation for large volume production of 120 x 60 cm thin film CdTe modules. Preceding the development of the large volume manufacturing capability, Abound Solar demonstrated long duration processing with excellent materials utilization for the manufacture of high efficiency 42 cm square modules. Abound Solar prototype modules have been measured with over 9% aperture area efficiency by NREL. Abound Solar demonstrated the ability to produce modules at industry leading low costs to NREL representatives. Costing models show manufacturing costs below $1/Watt and capital equipment costs below $1.50 per watt of annual manufacturing capacity. Under this SAI program, Abound Solar supported a significant research and development program at Colorado State University. The CSU team continues to make progress on device and materials analysis. Modeling for increased device performance and the effects of processing conditions on properties of CdTe PV were investigated.

  14. Preparation and properties of evaporated CdTe films

    Science.gov (United States)

    Bube, R. H.; Fahrenbruch, A. L.; Chien, K. F.

    1987-07-01

    Previous work on evaporated CdTe films for photovoltaics showed no clear path to successful p-type doping of CdTe during deposition. Post-deposition annealing of the films in various ambients thus was examined as a means of doping. Anneals were done in Te, Cd, P, and As vapors and in vacuum, air and Ar, all of which showed large effects on series resistance and diode parameters. With As, series resistance values of In/p-CdTe/graphite structures decreased markedly. This decrease was due to a decrease in grain boundary and/or back contact barrier height, and thus was due to large increases in mobility; the carrier density was not altered substantially. Although the series-resistance decreases were substantial, the diode characteristics became worse. The decreases were not observed when CdS/CdTe cells were fabricated on Te vapor-annealed films. Preparation of ZnO films by reactive evaporation yielded promising results. Deposition of p-ZnTe films by hot-wall vapor evaporation, using conventional techniques, yielded acceptable specimens.

  15. Emitter Choice for Epitaxial CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-11-21

    High-quality epitaxial CdTe layers with low defect density and high carrier concentration have been demonstrated by several research groups. Nevertheless, one primary challenge for high-performance epitaxial CdTe solar cells is how to choose a suitable emitter partner for the junction formation. The numerical simulations show that a type I heterojunction with small conduction band offset (0.1 eV = ..delta..Ec = 0.3 eV) is necessary to maintain a good cell efficiency even with large interface recombination. Otherwise, a small 'cliff' can assist interface recombination causing smaller Voc, and a large 'spike' (..delta..Ec = 0.4 eV) can impede the photo current and lead to a reduction of JSC and FF. Among the three possible emitters, CdS, CdMgTe, and MgZnO, CdMgTe (with ~30% Mg) and MgZnO (with ~ 20% Mg) are likely to be a better choice since their type-I junction can tolerate a larger density of interface defects.

  16. Performance characteristics of CdTe drift ring detector

    Science.gov (United States)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  17. Patterning thick diffused junctions on CdTe

    CERN Document Server

    Kalliopuska, Juha; Sipilä, Heikki; Andersson, Hans; Vähänen, Sami; Eränen, Simo; Tlustos, Lukas

    2009-01-01

    Dividing the detector crystal into discrete pixels enables making an imaging detector, in which the charge collected by each pixel can be read separately. Even if the detector is not meant for imaging, patterns on the crystal surface may be used as guard structures that control and limit the flow of charges in the crystal. This has been exceedingly hard for the detector crystals having thick diffused layers. The paper reports a patterning method of the thick diffused junctions on CdTe. The patterning method of In-diffused pn-junction on CdTe chip is demonstrated by using a diamond blade. The patterning is done by removing material from the pn-junction side of the chip, so that the trenches penetrate the diffused layer. As the trenches extend deeper into the bulk than the junction, the regions separated by the trench are electrically isolated. Electrical characterization results are reported for the strips separated by trenches with various depths. The strip isolation is clearly seen in both measured leakage c...

  18. Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging.

    Science.gov (United States)

    Shi, Yunfeng; Liu, Lin; Pang, Huan; Zhou, Hongli; Zhang, Guanqing; Ou, Yangyan; Zhang, Xiaoyin; Du, Jimin; Xiao, Wangchuan

    2014-03-13

    A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a high quantum yield (QY) up to 58%. By preparing CdTe QDs within HPAMAM, the biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs can be combined, endowing the CdTe QDs with biocompatibility. The resulting CdTe QDs can be directly used in biomedical fields, and their potential application in bio-imaging was investigated.

  19. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading.

    Science.gov (United States)

    Lambert, P K; Hustedt, C J; Vecchio, K S; Huskins, E L; Casem, D T; Gruner, S M; Tate, M W; Philipp, H T; Woll, A R; Purohit, P; Weiss, J T; Kannan, V; Ramesh, K T; Kenesei, P; Okasinski, J S; Almer, J; Zhao, M; Ananiadis, A G; Hufnagel, T C

    2014-09-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ~10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (~40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  20. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  1. Development of technology for thin substrate polycrystalline solar cells for practical use. Development of elementary technologies for low-cost polycrystalline cell modules; Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Takessho cell module tei cost ka yoso gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on development of elementary technologies for low-cost polycrystalline cell modules in fiscal 1994. (1) On development of elementary technologies for mass production, fast surface machining, fast electrode forming and fast forming of junctions and antireflection films were studied. Surface machining by rotating grindstone was studied as fast cutting of fine grooves on Si substrates, resulting in possible fast machining superior in shape accuracy. Electrode properties equivalent or superior to previous ones were obtained by fast electrode forming using a fast printing/sintering equipment even at transfer speed 7.5 times as high as that of conventional methods. Simultaneous fast forming of junctions and antireflection films were achieved by heat treatment after deposition on Si substrate surfaces while heat-decomposing Ti and P compound gas. (2) On development of module structure, an optimum cell group angle, low reflection rate at glass surface, and fast wiring were studied. 5 figs., 2 tabs.

  2. Structural and optical characterization of polycrystalline CdSe{sub x}Te{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M.; Farag, A.A.M.; El-Sayed, H.E.A. [Faculty of Education, Ain Shams University, Cairo (Egypt)

    2003-11-01

    Solid solutions of CdSe{sub x}Te{sub 1-x} (0.7{<=}x{<=}1) were synthesized by vacuum fusion of stoichiometric amounts of CdSe and CdTe constituents in a silica tube. X-ray and electron microscope diffractometry techniques revealed that the CdSe{sub x}Te{sub 1-x} thin films were polycrystalline with a hexagonal structure. The variation of lattice constants with composition was found to obey Vegard's law. The compositional dependence of the optical constants, the refractive index n and the absorption index k, of the films was determined in the spectral range of 400-2000 nm. The dispersion of the refractive index of the films could be described using the Wemple-DiDomenico single oscillator model. Changes of the dispersion parameters were also studied as a function of the mole fraction x. A plot representing {alpha}{sup 2}=f(h{nu}) showed that the CdSe{sub x}Te{sub 1-x} thin films of different compositions have two direct transitions corresponding to the energy gaps E{sub g} and E{sub g}+{delta}. The variation in either E{sub g} or E{sub g}+{delta} with x indicates that this system belongs to the amalgamation type. The variation follows a quadratic dependence and the bowing parameters were found to be 0.4 and 0.5 eV, respectively. (orig.)

  3. Laser ablation synthesis route of CdTe colloidal quantum dots for biological applications

    Science.gov (United States)

    Almeida, D. B.; Rodriguez, E.; Moreira, R. S.; Agouram, S.; Barbosa, L. C.; Jimenez, E.; Cesar, C. L.

    2009-07-01

    In this work we report a novel technique for obtain thiol capped CdTe colloidal quantum dots in one step. These nanoparticles are compatible for silica capping indicating their possible use as fluorescent markers.

  4. Defect complexes formed with Ag atoms in CDTE, ZnTe, and ZnSe

    CERN Document Server

    Wolf, H; Ostheimer, V; Hamann, J; Lany, S; Wichert, T

    2000-01-01

    Using the radioactive acceptor $^{111}\\!$Ag for perturbed $\\gamma$-$\\gamma$-angular correlation (PAC) spectroscopy for the first time, defect complexes formed with Ag are investigated in the II-VI semiconductors CdTe, ZnTe and ZnSe. The donors In, Br and the Te-vacancy were found to passivate Ag acceptors in CdTe via pair formation, which was also observed in In-doped ZnTe. In undoped or Sb-doped CdTe and in undoped ZnSe, the PAC experiments indicate the compensation of Ag acceptors by the formation of double broken bond centres, which are characterised by an electric field gradient with an asymmetry parameter close to h = 1. Additionally, a very large electric field gradient was observed in CdTe, which is possibly connected with residual impurities.

  5. Effects of high-temperature annealing on ultra-thin CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xia Wei; Lin Hao; Wu, Hsiang N.; Tang, Ching W., E-mail: chtang@che.rochester.edu

    2011-10-31

    High-temperature annealing (HTA), a process step prior to vapor cadmium chloride (VCC) treatment, has been found to be useful for improving the crystallinity of CdTe films and the efficiency of ultra-thin CdTe solar cells. Scanning electron microscopy, optical absorption, photoluminescence measurements and analyses on photoluminescence results using spectral deconvolution reveal that the additional HTA step produces substantial grain growth and reduces grain boundary defects. It also reduces excessive sulfur diffusion across the junction that can occur during the VCC treatment. The HTA step helps to produce pinhole-free CdTe films and reduce electrical shorts in ultra-thin CdTe solar cells. An efficiency of about 11.6% has been demonstrated for ultra-thin CdS/CdTe solar cells processed with HTA step.

  6. Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering

    Institute of Scientific and Technical Information of China (English)

    Chen Huimin; Guo Fuqiang; Zhang Baohua

    2009-01-01

    CdTe nanocrystalline thin films have been prepared on glass, Si and Al2O3 substrates by radio-frequency magnetron sputtering at liquid nitrogen temperature. The crystal structure and morphology of the films were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The XRD examinations revealed that CdTe films on glass and Si had a better crystal quality and higher preferential orientation along the (111) plane than the Al2O3. FESEM observations revealed a continuous and dense morphology of CdTe films on glass and Si substrates. Optical properties of nanocrystalline CdTe films deposited on glass substrates for different deposited times were studied.

  7. Synthesis of CdTe Quantum Dots with Tunable Photoluminescence Using Tellurium Dioxide as Tellurium Source

    Institute of Scientific and Technical Information of China (English)

    刘声燕; 王益林; 杨昆; 周立亚

    2012-01-01

    A simple and convenient method has been developed for synthesis of water-soluble CdTe quantum dots (QDs) under ambient atmospheric conditions. In contrast to the traditional aqueous synthesis, green to red emitting CdTe QDs were prepared by using TeO2 to replace Te or AIzTe3 as tellurium source in this method. The influences of ex- perimental variables, including pH value, 3-mercaptopropionic acid (MPA)/Cd and Te/Cd molar ratios, on the emis- sion peak and photoluminescence (PL) quantum yield (QY) of the obtained CdTe QDs have been systematically investigated. Experimental results indicate that green to red emitting CdTe QDs with a maximum photolumines- cence quantum yield of 35.4% can be prepared at pH 11.3 and rt(Cd) : n(Te) : n(MPA)= 1 : 0.1 : 1.7.

  8. Enhanced Specificity of Multiplex Polymerase Chain Reaction via CdTe Quantum Dots

    Science.gov (United States)

    Liang, Gaofeng; Ma, Chao; Zhu, Yanliang; Li, Shuchun; Shao, Youhua; Wang, Yong; Xiao, Zhongdang

    2011-12-01

    Nanoparticles were recently reported to be able to improve both efficiency and specificity in polymerase chain reaction (PCR). Here, CdTe QDs were introduced into multi-PCR systems. It was found that an appropriate concentration of CdTe QDs could enhance the performance of multi-PCR by reducing the formation of nonspecific products in the complex system, but an excessive amount of CdTe QDs could suppress the PCR. The effects of QDs on PCR can be reversed by increasing the polymerase concentration or by adding bovine serum albumin (BSA). The mechanisms underlying these effects were also discussed. The results indicated that CdTe QDs could be used to optimize the amplification products of the PCR, especially in the multi-PCR system with different primers annealing temperatures, which is of great significance for molecular diagnosis.

  9. Spatial luminescence imaging of dopant incorporation in CdTe Films

    Science.gov (United States)

    Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt K.; Al-Jassim, Mowafak

    2017-01-01

    State-of-the-art cathodoluminescence (CL) spectrum imaging with spectrum-per-pixel CL emission mapping is applied to spatially profile how dopant elements are incorporated into Cadmium telluride (CdTe). Emission spectra and intensity monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on computational modeling. Our results show that grain boundaries play a role in incorporating dopants in CdTe exposed to copper, phosphorus, and intrinsic point defects in CdTe. The image analysis provides critical, unique feedback to understand dopant incorporation and activation in the inhomogeneous CdTe material, which has struggled to reach high levels of hole density.

  10. Spatial luminescence imaging of dopant incorporation in CdTe Films

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt K.; Al-Jassim, Mowafak

    2017-01-28

    State-of-the-art cathodoluminescence (CL) spectrum imaging with spectrum-per-pixel CL emission mapping is applied to spatially profile how dopant elements are incorporated into Cadmium telluride (CdTe). Emission spectra and intensity monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on computational modeling. Our results show that grain boundaries play a role in incorporating dopants in CdTe exposed to copper, phosphorus, and intrinsic point defects in CdTe. The image analysis provides critical, unique feedback to understand dopant incorporation and activation in the inhomogeneous CdTe material, which has struggled to reach high levels of hole density.

  11. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  12. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  13. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    Science.gov (United States)

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  14. Features of the Real Structure of Lanthanum Hexaboride Polycrystalline

    Institute of Scientific and Technical Information of China (English)

    郑树起; 闵光辉; 邹增大; 于普涟; 韩建德; Y. B. Paderno

    2001-01-01

    The microstructure of lanthanum hexaboride (LaB6) polycrystalline has been studied by using transmission electron microscopy. This shows that the ideal LaB6 polycrystalline can be obtained by sintering ingots at the temperature of 2273 K for a holding time of 120min in Ar pressure of 800Torr, where the ingots are formed by pressing LaB6 powder at room temperature at a pressure of 0.4-0.5 GPa. The particles in LaB6 polycrystalline hardly bind; there are only a few pores at the joint parts of three particles and a few impurities exist in some pores. The sintering process for fabricating LaB6 polycrystalline is analysed and the formation of the pore and the impurities are studied from the point of surface tension.

  15. Interface reactions in CdTe solar cell processing

    Energy Technology Data Exchange (ETDEWEB)

    Albin, D.; Dhere, R.; Swartzlander-Guest, A. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1998-12-31

    Currently, the best performing CdS/CdTe solar cells use a superstrate structure in which CdTe is deposited on a heated CdS/SnO{sub 2}/Glass substrate. In the close-spaced-sublimation (CSS) process, substrate temperatures in the range 550 C to 620 C are common. Understanding how these high processing temperatures impact reactions at the CdS/CdTe interface in addition to reactions between previously deposited layers is critical. At the SnO{sub 2}/CdS interface the authors have determined that SnO{sub 2} can be susceptible to reduction, particularly in H{sub 2} ambients. Room-temperature sputtered SnO{sub 2} shows the most susceptibility. In contrast, higher growth temperature chemical vapor deposited (CVD) SnO{sub 2} appears to be much more stable. Elimination of unstable SnO{sub 2} layers, and the substitution of thermal treatments for H{sub 2} anneals has produced total-area solar conversion efficiencies of 13.6% using non-optimized SnO{sub 2} substrates and chemical-bath deposited (CBD) CdS. Alloying and interdiffusion at the CdS/CdTe interface was studied using a new lift-off approach which allows enhanced compositional and structural analysis at the interface. Small-grained CdS, grown by a low-temperature CBD process, results in more CdTe{sub 1{minus}x}S{sub x} alloying (x = 12--13%) relative to larger-grained CdS grown by high-temperature CSS (x{approximately}2--3%). Interdiffusion of S and Te at the interface, measured with lift-off samples, appears to be inversely proportional to the amount of oxygen used during the CSS CdTe deposition. The highest efficiency to date using CSS-grown CdS is 10.7% and was accomplished by eliminating oxygen during the CdTe deposition.

  16. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    OpenAIRE

    Aliyu, M. M.; Islam, M.A.; Hamzah, N. R.; Karim, M. R.; M.A. Matin; Sopian, K.; Amin, N

    2012-01-01

    This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears...

  17. Characterization of Cr(V)-induced genotoxicity using CdTe nanocrystals as fluorescent probes.

    Science.gov (United States)

    Zhang, Wen-Hao; Sui, Chao-Xia; Wang, Xie; Yin, Gong-Ju; Liu, Ying-Fan; Zhang, Ding

    2014-12-21

    CdTe nanocrystals capped by cysteamine were synthesized to study Cr(V)-induced genotoxicity. On the surface of TiO2 thin films, the stepwise process of DNA breakage induced by Cr(V)-GSH complexes was vividly observed by using CdTe-DNA self-assembled fluorescent probes; in acetate buffer solution, an analytical method was developed to detect Cr(V)-induced genotoxicity with CdTe fluorescent probes.

  18. Degradation processes occur on the CdTe thin films solar elements

    CERN Document Server

    Mirsagatov, S A; Makhmudov, M; Muzapharova, S A

    1999-01-01

    It is shown the Cu in CdTe polycristalline films is diffusing on the complex mechanism. By bringing of W atoms in thin CdTe layers it is possible to operate diffusion's speed of Cu atoms. Initiation of the (Cu sup + W sub C sub d sup -) complexes under the conditions N(W sub C sub d sup -)>=N(Cu sub i sup +) hardly reduce the diffusion velocity of Cu atoms.

  19. Abnormal hopping conduction in semiconducting polycrystalline graphene

    Science.gov (United States)

    Park, Jeongho; Mitchel, William C.; Elhamri, Said; Grazulis, Larry; Altfeder, Igor

    2013-07-01

    We report the observation of an abnormal carrier transport phenomenon in polycrystalline semiconducting graphene grown by solid carbon source molecular beam epitaxy. At the lowest temperatures in samples with small grain size, the conduction does not obey the two-dimensional Mott-type variable-range hopping (VRH) conduction often reported in semiconducting graphene. The hopping exponent p is found to deviate from the 1/3 value expected for Mott VRH with several samples exhibiting a p=2/5 dependence. We also show that the maximum energy difference between hopping sites is larger than the activation energy for nearest-neighbor hopping, violating the assumptions of the Mott model. The 2/5 dependence more closely agrees with the quasi-one-dimensional VRH model proposed by Fogler, Teber, and Shklovskii (FTS). In the FTS model, conduction occurs by tunneling between neighboring metallic wires. We suggest that metallic edge states and conductive grain boundaries play the role of the metallic wires in the FTS model.

  20. Junction like behavior in polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Shivakumar, E-mail: sbhaskar@mail.uh.edu [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Charlson, Earl Joe; Litvinov, Dmitri [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Makarenko, Boris [Department of Chemistry, University of Houston, TX 77004 (United States)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer The result that we obtained are compared with single crystalline diamond devices. Black-Right-Pointing-Pointer The barrier height of 4.4 eV matches the ideal pn-junction barrier height of diamond thin film. - Abstract: We have successfully fabricated polycrystalline diamond rectifying junction devices on n-type (1 0 0) silicon substrates by Hot Filament Chemical Vapor Deposition (HFCVD) using methane/hydrogen process gas and trimethyl borate and trimethyl phosphite dissolved in acetone as p- and n-type dopants, respectively. Impedance spectroscopy and current-voltage analysis indicates that the conduction is vertical down the grains and facets and not due to surface effects. Electrical characteristics were analyzed with In and Ti/Au top metal contacts with Al as the substrate contact. Current-voltage characteristics as a function of temperature showed barrier potentials of 1.1 eV and 0.77 eV for the In and Ti/Au contacts, respectively. Barrier heights of 4.8 eV (In) and 4.4 eV (Ti/Au) were obtained from capacitance-voltage measurements.

  1. Polishing of dental porcelain by polycrystalline diamond.

    Science.gov (United States)

    Nakamura, Yoshiharu; Sato, Hideaki; Ohtsuka, Masaki; Hojo, Satoru

    2010-01-01

    Polycrystalline diamond (PCD) exhibits excellent abrasive characteristics and is commonly used as loose grains for precision machining of hard ceramics and other materials that are difficult to grind and polish. In the present study, we investigated using bonded PCD for polishing dental porcelain, for which a lustrous surface is difficult to obtain by polishing. We compared the surface texture and characteristics of dental porcelain after polishing with bonded PCD with that obtained using bonded monocrystalline diamond (MCD), which is commonly used for this purpose. Polishing was performed at various pressures and rotational speeds on a custom-built polishing apparatus using bonded PCD or MCD with grain sizes of 3.92 μm on specimens consisting of VITA Omega 900 dentin porcelain after firing and then glazing to a specified surface roughness. The surface roughness of the polished porcelain and the abrasion quantity in terms of its polishing depth were measured, and its surface texture and characteristics were investigated. At low polishing pressures, PCD yielded a finer polished surface than MCD. The polishing depth after polishing for 20-30 min was approximately 2-3 μm with PCD and 1-2 μm with MCD. The polished surface was more uniform and smooth with PCD than with MCD.

  2. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  3. Transferring CdTe Nanoparticles from Liquid Phase to Polyvinylpyrrolidone Nanofibers by Electrospinning and Detecting Its Photoluminescence Property

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-gang; YANG Qing-biao; BAI Jie; SONG Yan; ZHANG Chao-qun; LI Yao-xian

    2008-01-01

    The major aim of this work was to synthesize thio-stabilized CdTe nanoparticles(NPs) in an aqueous solution,which was then enwrapped with cetyltrimethylammonium bromide(CTAB),and finally transferred to the polyvinylpyrrolidone(PVP) matrix by electrospinning,The PVP nanofibers containing CdTe NPs were characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM),to observe the morphology of the nanofibers and the distribution of CdTe NPs,The selective area electronic diffraction(SAED) pattern verified that CdTe NPs were cubic lattice,The photoluminescence(PL) spectrum indicated that CdTe NPs existed in an optical style in PVP nanofibers,Moreover,X-ray photoelectron spectra(XPS) revealed that thiol-stabilized CdTe NPs were enwrapped by CTAB,and PVP acted as a dispersant in the process of electrospinning.

  4. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  5. Substrate preparation effects on defect density in molecular beam epitaxial growth of CdTe on CdTe (100) and (211)B

    Energy Technology Data Exchange (ETDEWEB)

    Burton, George L.; Diercks, David R.; Perkins, Craig L.; Barnes, Teresa M.; Ogedengbe, Olanrewaju S.; Jayathilaka, Pathiraja A.; Edirisooriya, Madhavie; Wang, Alice; Myers, Thomas H.; Gorman, Brian P.

    2017-07-01

    Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth of films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.

  6. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole

    Science.gov (United States)

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-01

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL-1 (3.4 ng mL-1) and the quantitative determination range was 0-2.8 μg mL-1 with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  7. Facile synthesis of straight and branched CdTe nanowires using CdO as precursor.

    Science.gov (United States)

    Liu, Sheng; Yang, Chunyan; Zhang, Wen-Hua; Li, Can

    2011-12-01

    High-quality colloidal CdTe nanowires (NWs) containing both straight and branched ones were controllably prepared via a solution-based approach, using a low melting Bi nanoparticles as catalysts, CdO and tributylphosphine telluride (TBP-Te) as precursors, and a tri-n-octylphosphine oxide/tri-n-octylphosphine (TOPO/TOP) mixture as solvent. The resulting straight CdTe NWs have typical diameters below 20 nm accompanying with lengths exceeding 10 microm. In the case of branched CdTe NWs, tripod, V-shaped and y-shaped morphologies are obtained by decreasing the apparent Cd/Te molar ratio. It is found that, as the surface capping ligands, di-n-octylphosphinic acid (DOPA) is superior to decylphosphonic acid (DPA) in the reproducible growth of high-quality CdTe NWs. Since highly toxic dimethylcadmium, a cadmium precursor widely used in literatures, is replaced by CdO and the amount of the TOPO/TOP solvent mixture is significantly reduced, a relative safe and economical synthetic approach of high-quality colloidal CdTe NWs with controllable morphology is thus presented.

  8. Studies on interaction between CdTe quantum dots and -chymotrypsin by molecular spectroscopy

    Indian Academy of Sciences (India)

    Jianniao tian; Shengzhi Wei; Yanchun Zhao; Rongjun Liu; Shulin Zhao

    2010-05-01

    In this article, the interaction between -Chymotrypsin and CdTe QDs was investigated by fluorescence, synchronous fluorescence, and circular dichroism (CD) spectroscopic methods at pH 7.20 and pH 9.05. The intrinsic fluorescence of -Chy is quenched by CdTe QDs. Under different pH conditions, the level of binding constants is determined to be 103 from fluorescence data. The hydrogen bond or van der Waals force is involved in the binding process when pH is 9.05, while the hydrophobic and electrostatic interactions play main role in the binding process when pH is 7.20. The red-shift of synchronous fluorescence spectral peak of protein after the addition of CdTe QDs reveals that the microenvironments around tryptophan residues are disturbed by CdTe QDs. The secondary structure of -Chy undergoes slight changes as similar by far-UV CD data. The activity and stability of -Chy in the presence of CdTe QDs were also studied. -Chy can maintain its high activity and stability under different pH conditions for 24 h in the presence of CdTe QDs.

  9. Optical properties and charge carrier dynamics of CdTe quantum dots in silicate glasses

    Science.gov (United States)

    Li, Wenke; Zhang, Wenchao; Xia, Mengling; Liu, Chao; Wang, Jing

    2017-05-01

    CdTe quantum dots (QDs) in silicate glasses were fabricated through conventional melt-quenching and heat-treatment; steady-state and transient optical properties of CdTe QDs were investigated. CdTe QDs with diameters of 2.3-5.9 nm with photoluminescence in the range of 553-768 nm were precipitated in the glasses. Time-resolved photoluminescence and transient absorption analysis showed that photoluminescence of CdTe QDs was composed of intrinsic emission and defect emission. Oxidation of Te2- and formation of Te2 during thermal treatment led to the unpassivated Cd2+ on the surface of CdTe QDs and formation of shallow trapping states. The photo-generated electrons were trapped by the shallow surface states of CdTe QDs within 0.4±0.03 ps, and Auger recombination processes occurred within a timescale of 3.2±0.35 ps. Both intrinsic emission and defect emission with effective lifetimes of several nanoseconds and dozens of nanoseconds were observed.

  10. Oxygen Incorporation During Fabrication of Substrate CdTe Photovoltaic Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duenow, J. N.; Dhere, R. G.; Kuciauskas, D.; Li, J. V.; Pankow, J. W.; DeHart, C. M.; Gessert, T. A.

    2012-06-01

    Recently, CdTe photovoltaic (PV) devices fabricated in the nonstandard substrate configuration have attracted increasing interest because of their potential compatibility with flexible substrates such as metal foils and polymer films. This compatibility could lead to the suitability of CdTe for roll-to-roll processing and building-integrated PV. Currently, however, the efficiencies of substrate CdTe devices reported in the literature are significantly lower ({approx}6%-8%) than those of high-performance superstrate devices ({approx}17%) because of significantly lower open-circuit voltage (Voc) and fill factor (FF). In our recent device development efforts, we have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. Here, we investigate how oxygen incorporation in the CdTe deposition, CdCl2 heat treatment, CdS deposition, and post-deposition heat treatment affect device characteristics through their effects on the junction. By adjusting whether oxygen is incorporated during these processing steps, we have achieved Voc values greater than 860 mV and efficiencies greater than 10%.

  11. Cu{sub 2}S as ohmic back contact for CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Türck, Johannes; Siol, Sebastian; Mayer, Thomas; Klein, Andreas; Jaegermann, Wolfram, E-mail: jaegermann@surface.tu-darmstadt.de

    2015-05-01

    We prepared a back contact for CdTe solar cells with Cu{sub 2}S as primary contact. Cu{sub 2}S was evaporated on CdCl{sub 2} treated CdTe solar cells in superstrate configuration. The CdTe and CdS layers were deposited by Closed Space Sublimation. Direct interface studies with X-ray photoelectron spectroscopy have revealed a strongly reactive interface between CdTe and Cu{sub 2}S. A valence band offset of 0.4-0.6 eV has been determined. The performance of solar cells with Cu{sub 2}S back contacts was studied in comparison to cells with an Au contact that deposited onto a CdCl{sub 2}-treated CdTe surface that was chemically etched using a nitric-phosphoric etch. The solar cells were analyzed by current-voltage curves and external quantum efficiency measurements. After several post deposition annealing steps, 13% efficiency was reached with the Cu{sub 2}S back contact, which was significantly higher than the ones obtained for the NP-etched back contacts. - Highlights: • A new back contact for CdTe solar out of Cu{sub 2}S has been tested. • With a direct interface experiment the valence band offset was determined. • Post deposition heat treatment has been carried out for the solar cells. • 13% efficiency has been reached with the Cu{sub 2}S back contact.

  12. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    Science.gov (United States)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  13. Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ogedengbe, O. S.; Swartz, C. H.; Jayathilaka, P. A. R. D.; Petersen, J. E.; Sohal, S.; LeBlanc, E. G.; Edirisooriya, M.; Zaunbrecher, K. N.; Wang, A.; Barnes, T. M.; Myers, T. H.

    2017-06-06

    Iodine-doped CdTe and Cd1-xMgxTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 1018 cm-3 for CdTe and 3 x 1017 cm-3 for Cd0.65Mg0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTe samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd0.65Mg0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 1018 cm-3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 1016 cm-3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 degrees C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.

  14. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.

    Science.gov (United States)

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-15

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL(-1) (3.4 ng mL(-1)) and the quantitative determination range was 0-2.8 μg mL(-1) with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  15. [Preparation and characterization of tumor targeted CdTe quantum dots modified with functional polymer].

    Science.gov (United States)

    Zhu, Hong-Yan; Zhu, Jing-Ping; Xie, Ai-Mei; Yuan, Jing; Hua, Ye; Zhang, Wei

    2014-10-01

    N-acetyl-L-cysteine (NAC) capped quantum dots (QDs) were synthesized by a hydrothermal method and coated with 2-amino-2-deoxy-D-glucose (DG), polyethylene glycol (PEG), and 9-D-arginine (9R). The optical properties, morphology and structure of 9R/DG-coated CdTe QDs were characterized by ultraviolet-visible spectrometry, fluorescence spectrum, Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), liquid chromatography-mass spectrometer (LC-MS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transmission electron micrographs (TEM). Furthermore, the biocompatibility, tumor targeted ability and transmembrane action of 9R/DG-coated CdTe QDs were studied. Results indicated that 9R/DG-coated CdTe QDs was constructed successfully by ligand exchange. The 9R/DG-coated CdTe QDs with the size of 8-10 nm had good dispersity and the absorbance and fluorescence peaks of CdTe QDs after modification were red shifted from 480 nm to 510 nm and 627 nm to 659 nm, respectively. In addition, the CdTe QDs modified by PEG, DG and 9R displayed good biocompatibility, high targeted ability to the cancer cells with glucose transporter type 1 (GLUT1) receptor high expression and obvious transmembrane ability.

  16. CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide.

    Science.gov (United States)

    Ebrahim, Sh; Reda, M; Hussien, A; Zayed, D

    2015-01-01

    The main objective of this work is to synthesize CdTe quantum dots (QDs) conjugated with Concanavalin A (Con A) as a novel biosensor to be selective and specific for the detection of Lipopolysaccharide (LPS). In addition, the conjugated CdTe QDs-Con A was used as fluorescence labels to capture Serratia marcescens bacteria through the recognition between CdTe QDs-Con A and LPS of S. marcescens. The appearance of the lattice plans in the high resolution transmission electron photograph indicated a high crystalline with an average size of 4-5 nm for the CdTe QDs. The results showed that the relative fluorescence intensity of CdTe QDs-Con A decreased linearly with LPS concentration in the range from 10 to 90 fg/mL and with correlation coefficient (R(2)) equal to 0.9713. LPS surrounding the S. marcescens bacteria was bound to the CdTe QDs-Con A and leads to quenching of PL intensity. It was found that a good linear relationship between the relative PL intensity and the logarithmic of cell population of S. marcescens in range from 1×10 to 1×10(6) CFU/mL at pH 7 with R(2) of 0.952 was established.

  17. Reflectance anisotropy spectra of CdTe(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Nava, R.A.; Arzate, N.; Mendoza, B.S. [Photonics Division, Centro de Investigaciones en Optica A. C., Leon, Guanajuato (Mexico)

    2010-08-15

    We present first-principles calculations of reflectance anisotropy spectra (RAS) of the more common CdTe(001) surface reconstructions: Te-terminated (2 x 1) and Cd-terminated (2 x 1) and c(2 x 2). The last two reconstructions with a Cd coverage of half atomic layers. Calculations have been performed by using the density-functional formalism within the local-density approximation + scissors corrections. The electron-ion interaction has been modeled by ab initio, relativistic norm-conserving pseudopotentials. We have also calculated RAS spectra using a semi-empirical tight binding method (SETB) within a sp{sup 3} s{sup *} basis. We show RAS of each surface reconstruction and compare our theoretical results with experimental results reported in the literature and we found a good agreement between experimental and theoretical spectra for the (2 x 1) reconstructions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1997-03-01

    techniques have paved the way for obtaining epitaxial Hg1-xCdxTe thin films at substrate temperatures of ~180 °C with the desired crystalline perfection, stoichiometry, and doping without the necessity of further annealing for improving either the crystalline quality or dopant activity. Retaining larger mercury proportions during annealing would require heated enclosures as in isothermal VPE, hot-wall technique, vacuum evaporation, hot-wall MOCVD, or close-space sublimation. Pb1-xCdxTe thin films can be prepared by magnetron sputtering from cooled Pb1-xCdxTe targets on heated substrates. Hot-wall technique is suitable for the deposition of Pb1-xCdxTe thin films. Hg1-xCdxTe and Pb1-xCdxTe TPV cells will benefit from the substantial work on CdTe thin film solar cells. The paper reviews work on thin films of ternary and pseudoternary compounds of interest for TPV conversion and methods of their preparation with a view to choosing the appropriate materials and fabrication techniques for polycrystalline-thin-film TPV cells.

  19. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong

    2015-01-01

    We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1-1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd(2+). Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  20. Understanding of Defect Physics in Polycrystalline Photovoltaic Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.

    2011-07-01

    The performance of thin-film solar cells is influenced by the quality of interfaces and formation of defects such as point defects, stacking faults, twins, dislocations, and grain boundaries. It is important to understand the defect physics so that appropriate methods may be developed to suppress the formation of harmful defects. Here, we review our understanding of defect physics in thin-film photovoltaic (PV) materials such as Si, CdTe, Cu(In,Ga)Se2 (CIGS), Cu2ZnSnSe2 (CZTSe), and Cu2ZnSnS2 (CZTS) using the combination of nanoscale electron microscopy characterization and density-functional theory (DFT). Although these thin-film PV materials share the same basic structural feature - diamond structure based - the defect physics in them could be very different. Some defects, such as stacking faults and special twins, have similar electronic properties in these thin-film materials. However, some other defects, such as grain boundaries and interfaces, have very different electronic properties in these materials. For example, grain boundaries produce harmful deep levels in Si and CdTe, but they do not produce significant deep levels in CIGS, CZTSe, and CZTS. These explain why passivation is critical for Si and CdTe solar cells, but is less important in CIS and CZTS solar cells. We further provide understanding of the effects of interfaces on the performance of solar cells made of these PV materials.

  1. Vacuum arc on the polycrystalline silica cathode

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.

  2. A New Polycrystalline Co-Ni Superalloy

    Science.gov (United States)

    Knop, M.; Mulvey, P.; Ismail, F.; Radecka, A.; Rahman, K. M.; Lindley, T. C.; Shollock, B. A.; Hardy, M. C.; Moody, M. P.; Martin, T. L.; Bagot, P. A. J.; Dye, D.

    2014-12-01

    In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/ γ' superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ' fraction of ~56% and a secondary γ' size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm-3, which is similar to existing Ni alloys with this level of γ'. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/ γ' Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm-2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.

  3. van der Waals epitaxy of CdTe thin film on graphene

    Science.gov (United States)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  4. Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Salavei, A.; Rimmaudo, I. [Laboratory for Applied Physics, Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Piccinelli, F. [Laboratorio di Chimica dello Stato Solido, DB, Univ. Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona (Italy); Romeo, A., E-mail: alessandro.romeo@univr.it [Laboratory for Applied Physics, Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy)

    2013-05-01

    Due to its high scalability and low production cost, CdTe solar cells have shown a very strong potential for large scale energy production. Although the number of modules produced could be limited by tellurium scarcity, it has been reported that reducing CdTe thickness down to 1.5 μm would solve this issue. There are, however, issues to be considered when reducing thickness, such as formation of pinholes, lower crystallization, and different possible effects on material diffusion within the interfaces. In this work, we present the study of CdTe solar cells fabricated by vacuum evaporation with different CdTe thicknesses. Several cells with a CdTe thickness ranging from 0.7 to 6 μm have been fabricated. The deposition process has been optimized accordingly and their physical and electrical properties have been studied. Thin cells show a different electrical behavior in terms of open circuit voltage and fill factor. Efficiencies range from 7% for thin CdTe cells to 13.5% for the standard thickness. - Highlights: ► Ultra thin CdTe absorbers have been prepared and studied. ► Grain size is depending on the CdTe thickness but spread in the grains increases. ► Lattice parameter is reduced only for ultra thin CdTe. ► The band gap reveals an intermixed CdTe absorber. ► The reason for lower efficiency of ultra thin CdTe is explained.

  5. The electrical conductivity of polycrystalline metallic films

    Science.gov (United States)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  6. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Annual report, 1 February 1983-31 January 1984

    Energy Technology Data Exchange (ETDEWEB)

    Bube, R; Fahrenbruch, A; Huber, W; Fortmann, C; Thorpe, T

    1984-09-01

    Variation of CdS/CdTe/graphite thick film solar cell properties was investigated as a function of temperature for CdS film deposition. A maximum open-circuit voltage of 0.67 V was found for a deposition temperature of 160/sup 0/C, corresponding to a CdS film resistivity of 150 ohm-cm. The effect is not due to avoidance of higher temperature annealing of the CdTe film in higher temperature CdS film depositions nor to the diffusion of In from the outermost CdS: In layer. The effect of coating the graphite before CdTe deposition with Au or Cu was also investigated. Although high concentrations of both Au or Cu could be determined after CdTe deposition, CdTe films grown on this coated graphite had lower hole densities than films grown on uncoated graphite. Photovoltaic parameters of thin-film CdS/CdTe/graphite solar cells were investigated as a function of storage time to check the stability of these cells. Initial degradation of parameters (especially fill factor) could be reversed by heat treatment in hydrogen, with subsequent properties being stable. Heat treatment of CdS/CdTe/graphite solar cells in air increases cell resistivity and decreases fill factor; heat treatment in hydrogen produces the reverse effect. The hole density is not affected by these heat treatments, suggesting that effects are associated with grain boundaries in the film.

  7. Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium

    Science.gov (United States)

    Cheng, Jiahao; Ghosh, Somnath

    2017-02-01

    This paper develops an advanced, image-based crystal plasticity finite element (CPFE) model, for predicting explicit twin formation and associated heterogeneous deformation in single crystal and polycrystalline microstructures of hexagonal close-packed or hcp materials, such as magnesium. Twin formation is responsible for premature failure of many hcp materials. The physics of nucleation, propagation and growth of explicit twins are considered in the CPFE formulation. The twin nucleation model is based on dissociation of sessile dislocations into stable twin loops, while propagation is assumed by atoms shearing on twin planes and shuffling to reduce the thermal activation energy barrier. The explicit twin evolution model however has intrinsic issues of low computational efficiency. Very fine simulation time steps with enormous computation costs are required to simulate the fast propagating twin bands and associated strain localization. To improve the computational efficiency, a multi-time scale subcycling algorithm is developed. It decomposes the computational domain into sub-domains of localized twins requiring very fine time-steps and complementary domains of relatively low resolution. Each sub-domain updates the stress and the deformation-dependent variables in different rates, followed by a coupling at the end of every coarse time step to satisfy global equilibrium. A 6-fold increase in computing speed is obtained for a polycrystalline Mg microstructure simulation in this paper. CPFE simulations of high purity Mg microstructures are compared with experiments with very good agreement in stress-strain response as well as heterogeneous twin formation with strain localization.

  8. Clinical studies of optimised single crystal and polycrystalline diamonds for radiotherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C. [CEA-LIST (Recherche Technologique)/DETECS/SSTM/LCD, CEA/Saclay, Gif-sur-Yvette (France)], E-mail: cdescamps23@yahoo.fr; Tromson, D.; Tranchant, N. [CEA-LIST (Recherche Technologique)/DETECS/SSTM/LCD, CEA/Saclay, Gif-sur-Yvette (France); Isambert, A.; Bridier, A. [Institut Gustave Roussy, Villejuif (France); De Angelis, C.; Onori, S. [Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanita, Roma (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia dell' Universita, Firenze (Italy); Bergonzo, P. [CEA-LIST (Recherche Technologique)/DETECS/SSTM/LCD, CEA/Saclay, Gif-sur-Yvette (France)

    2008-02-15

    Natural diamond based ionisation chambers commercialised by PTW are used in several hospitals, and their dosimetric properties have been reported in many papers. Nevertheless their high costs and long delivery times are strong drawbacks. Advancements in the growth of synthetic diamonds offer new possibilities. This paper presents the dosimetric analysis in terms of stability and repeatability of the signal, background signal, detector response dynamics, linearity of the signal with the absorbed dose and dose rate dependence of synthetic optimised polycrystalline and single crystal diamonds. Both were elaborated at the CEA-LIST using the chemical vapour deposition (CVD) growth technique. The first dosimetric evaluation of single crystal diamond detector, reported here, shows a repeatability better than 0.1%, a good sensitivity around 70 nC/Gy compared to 3 nC/Gy for optimised polycrystalline diamond, very fast response with rise time around 1 s. Moreover, the signal linearity vs absorbed dose and energy dependence are very satisfactory. This preliminary dosimetric study with medical linear accelerators proves that diamond, and more precisely synthetic single crystal diamond, appears as a good alternative to air ionisation chambers for quality beam control and could be a good candidate for intensity modulated radiation therapy (IMRT) beams dosimetry.

  9. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Science.gov (United States)

    Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.

    2016-07-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  10. Effect of Substrate Temperature on CdTe Thin Film Property and Solar Cell Performance%衬底温度对碲化镉薄膜性质及太阳电池性能的影响

    Institute of Scientific and Technical Information of China (English)

    曹胜; 武莉莉; 冯良桓; 王文武; 张静全; 郁骁骑; 李鑫鑫; 李卫; 黎兵

    2016-01-01

    Vapor transport deposition is an excellent method for preparing large area CdTe thin films with high quality and uniformity. Polycrystalline CdTe thin films were deposited by home-made vapor transport deposition system (VTD). The effects of substrate temperature on the property of CdTe film and the performance of CdTe solar cell were inves-tigated. CdTe thin films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis spectrometer, and Hall Effect system. The results show that the CdTe thin films deposited by vapor transport deposi-tion are cubic phase with a preferred orientation in (111) direction. The average grain size increases from 2mm to 6mm and the carrier concentration increases from 1.93×1010 cm–3 to 2.36×1013 cm–3 when the substrate temperature increases from 520 ℃ to 620 ℃. This suggests that high substrate temperature can increase the carrier density significantly due to the suppressed defect recombination. The performance of CdTe thin film solar cells deposited at different sub-strate temperatures demonstrates that high substrate temperature (610℃) can greatly improve the efficiency, open cir-cuit voltage and fill factor of the solar cells. But the substrate temperature higher than 610℃ will reduce the spectral response of the cells in long wavelength region, which results in the degradation of solar cell performance. The small-area CdTe thin film solar cell without back contact layer deposited at substrate temperature of 610℃ obtains the best conversion efficiency of 11.2%.%蒸汽输运法是制备高质量且大面积均匀的 CdTe 薄膜的一种优良的方法。采用自主研发的一套蒸汽输运沉积系统制备了 CdTe 多晶薄膜,并研究了衬底温度对 CdTe 薄膜性质及太阳电池性能的影响。利用 XRD、SEM、UV-Vis和Hall等测试手段研究了衬底温度对薄膜的结构、光学性质和电学性质的影响。结果表明,蒸汽输运法制备的CdTe薄

  11. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 4, August 1-October 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bube, R H

    1981-10-01

    The hot-wall vacuum evaporation system is nearly complete and the first films are expected in early December. CdTe homojunction cells were theoretically modelled and to some extent tested experimentally using the n-type CdTe film on p-type CdTe crystal homojunction cells previously deposited at Linz. Modelling emphasizes the known importance of surface recombination velocity for such homojunction cells. The n-type layer on the experimental cell was thinned by etching from 5 micrometers to 1.5 micrometers, with a corresponding increase in short-circuit current from 0.1 to 1 mA/cm/sup 2/. This behavior is as theoretically expected; to obtain a short-circuit current of 11 mA/cm/sup 2/, as required for a 10% cell, requires a thickness of about 0.2 micrometers for a surface recombination velocity of 10/sup 6/ cm/sec and other realistic cell parameters. By doping experiments on single crystal CdTe, it has been shown that the hole density does decrease when the P dopant density is decreased below a critical value in CdTe:P crystals, thus eliminating the possibility that the major acceptors in the P-doped crystals were not P impurity. Attempts to heavily dope CdTe with As were less successful, but this may be due to the use of elemental As as the dopant in this case rather than a compound of the dopant. Cs was shown to be an effective dopant of CdTe and resistivities as low as 0.3 ohm-cm corresponding to hole densities in the low 10/sup 17/ cm/sup -3/ range were obtained. An apparent correlation between the low-temperature barrier height associated with a grain boundary in CdTe and the angle of mismatch between the two grains has been observed. Improved capacitance of grain boundary measurements should yield defect densities.

  12. PENINGKATAN KUALITAS FILM TIPIS CdTe SEBAGAI ABSORBER SEL SURYA DENGAN MENGGUNAKAN DOPING TEMBAGA (Cu

    Directory of Open Access Journals (Sweden)

    P. Marwoto

    2012-12-01

    Full Text Available Film tipis CdTe dengan doping tembaga (Cu berkonsenterasi 2% telah berhasil ditumbuhkan di atas substrat Indium Tin Oxide (ITO dengan metode dc magnetron sputtering. Penelitian ini dilakukan untuk mengetahui pengaruh doping Cu(2% terhadap struktur morfologi, struktur kristal, fotoluminisensi dan resistivitas listrik film CdTe. Citra morfologi Scanning Electron Microscopy (SEM dan hasil analisis struktur dengan X-Ray Diffraction (XRD menunjukkan bahwa film CdTe:Cu(2% mempunyai citra permukaan dan struktur kristal yang lebih sempurna dibandingkan film CdTe tanpa doping. Hasil analisis spektrometer fotoluminisensi menunjukkan bahwa film CdTe dan CdTe(2% mempunyai puncak fotoluminisensi pada tiga panjang gelombang yang identik yaitu 685 nm (1,81 eV, 725 nm (1,71 eV dan 740 nm (1,67 eV. Film CdTe dengan doping Cu(2% memiliki intensitas puncak fotoluminisensi yang lebih tajam pada pita energi 1,81 eV dibandingkan dengan film CdTe tanpa doping. Pengukuran arus dan tegangan (I-V menunjukkan bahwa pemberian doping Cu(2% dapat menurunkan resistivitas film dari 8,40x109 Ωcm menjadi 6,92x105 Ωcm. Sebagai absorber sel surya, kualitas film tipis CdTe telah berhasil ditingkatkan dengan pemberian doping Cu(2%.CdTe:Cu(2% thin film has been successfully grown on Indium Tin Oxide (ITO substrates by using dc magnetron sputtering. This study was carried out in order to investigate the effect of Cu(2% doping on the morphologycal structure, crystal structure, photoluminesence, and resistivity of CdTe thin film. Scanning Electron Microscopy (SEM  images and X-Ray Diffraction (XRD results showed that CdTe:Cu(2% thin film has morphologycal and crystal structures more perfect than undoped CdTe film. Photoluminesence spectroscopy results showed that CdTe and CdTe:Cu(2% thin films have luminesence peak at three identical wevelength regions i.e. 685 nm (1.81 eV, 725 nm (1.71 eV and 740 nm (1.67 eV however CdTe:Cu(2% film shows sharper photoluminescence peak at band

  13. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao, E-mail: tsong241@gmail.com; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523 (United States); Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-06-21

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C}. These

  14. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA; Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA

    2016-06-17

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted

  15. Photoluminescence of CdTe nanocrystals grown by pulsed laser ablation on a template of Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guillen-Cervantes, A.; Silva-Lopez, H.; Becerril-Silva, M.; Arias-Ceron, J.S.; Campos-Gonzalez, E.; Zelaya-Angel, O. [CINVESTAV-IPN, Physics Department, Apdo. Postal 14-740, Mexico (Mexico); Medina-Torres, A.C. [Escuela Superior de Fisica y Matematicas del IPN, Mexico (Mexico)

    2014-11-12

    CdTe nanocrystals were grown on eroded Si (111) substrates at room temperature by pulsed laser ablation. Before growth, Si substrates were subjected to different erosion time in order to investigate the effect on the CdTe samples. The erosion process consists of exposition to a pulsed high-voltage electric arc. The surface consequence of the erosion process consists of Si nanoparticles which acted as a template for the growth of CdTe nanocrystals. CdTe samples were studied by X-ray diffraction (XRD), room temperature photoluminescence (RT PL) and high-resolution transmission electron microscopy (HRTEM). CdTe nanocrystals grew in the stable cubic phase, according to XRD spectra. A strong visible emission was detected in photoluminescence (PL) experiments. The PL signal was centered at 540 nm (∝2.34 eV). With the effective mass approximation, the size of the CdTe crystals was estimated around 3.5 nm. HRTEM images corroborated the physical characteristics of CdTe nanocrystals. These results could be useful for the development of CdTe optoelectronic devices. (orig.)

  16. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions.

    Science.gov (United States)

    Miao, Yanping; Yang, Ping; Zhao, Jie; Du, Yingying; He, Haiyan; Liu, Yunshi

    2015-06-01

    CdTe quantum dots (QDs) were synthesized by 3-mercaptopropionic acid (MPA) and thioglycollic acid (TGA) as capping agents. It is confirmed that TGA and MPA molecules were attached on the surface of the QDs using Fourier transform infrared (FT-IR) spectra. The movement of the QDs in agarose gel electrophoresis indicated that MPA-capped CdTe QDs had small hydrodynamic diameter. The photoluminescence (PL) intensity of TGA-capped QDs is higher than that of MPA-capped QDs at same QD concentration because of the surface passivation of TGA. To systemically investigate the photodegradation, CdTe QDs with various PL peak wavelengths were dispersed in phosphate buffered saline (PBS) and Tris-borate-ethylenediaminetetraacetic acid (TBE) buffer solutions. It was found that the PL intensity of the QDs in PBS decreased with time. The PL peak wavelengths of the QDs in PBS solutions remained unchanged. As for TGA-capped CdTe QDs, the results of PL peak wavelengths in TBE buffer solutions indicated that S(2-) released by TGA attached to Cd(2+) and formed CdS-like clusters layer on the surface of aqueous CdTe QDs. In addition, the number of TGA on the CdTe QDs surface was more than that of MPA. When the QDs were added to buffer solutions, agents were removed from the surface of CdTe QDs, which decreased the passivation of agents thus resulted in photodegradation of CdTe QDs in buffer solutions.

  17. Native Defect Control of CdTe Thin Film Solar Cells by Close-Spaced Sublimation

    Science.gov (United States)

    Okamoto, Tamotsu; Kitamoto, Shinji; Yamada, Akira; Konagai, Makoto

    2001-05-01

    The control of native defects in the CdTe thin film solar cells was investigated using a novel source for close-spaced sublimation (CSS) process which was prepared by vacuum evaporation with elemental Cd and Te (evaporated source). The evaporated sources were prepared on glass substrates at room temperature, and the Cd/Te ratio was controlled by varying the Cd and Te beam equivalent pressures. In the cells using the Te-rich source, the conversion efficiency was less than 0.2% because of the extremely low shunt resistance. On the other hand, a conversion efficiency above 15% was obtained by using the Cd-rich source. Capacitance-voltage (C-V) characteristics revealed that the acceptor concentration in the CdTe layer increased with increasing Cd/Te ratio of the evaporated source. Furthermore, photoluminescence spectra implied that the formation of the Cd vacancies in the CdTe layer was suppressed using the Cd-rich source.

  18. In vitro and in vivo toxicity of CdTe nanoparticles.

    Science.gov (United States)

    Zhang, Yongbin; Chen, Wei; Zhang, Jun; Liu, Jing; Chen, Guangping; Pope, Carey

    2007-02-01

    Cadmium telluride (CdTe) nanoparticles exhibit strong and stable fluorescence that is attractive for many applications such as biological probing and solid state lighting. The evaluation of nanoparticle toxicity is important for realizing these practical applications. However, no systematic studies of CdTe nanoparticle toxicity have been reported. We investigated and compared the size- and concentration-dependent cytotoxicity of CdTe nanoparticles in human hepatoma HepG2 cells using the MTT assay. CdTe nanoparticles elicited cytotoxicity in a concentration- and size-dependent manner, with smaller-sized particles exhibiting somewhat higher potency. Lesser cytotoxicity of partially purified CdTe-Red particles (following methanol precipitation and resuspension) suggested that free cadmium ions may contribute to cytotoxicity. We also evaluated the acute toxicity of CdTe-Red particles following intravenous exposure in male rats (2 micromol/kg). Few signs of functional toxicity or clinical (urinary or blood) changes were noted. Interestingly, motor activity was transiently reduced (2 hours after treatment) and then significantly increased at a later timepoint (24 hours after dosing). These studies provide a framework for further characterizing the in vitro and in vivo toxic potential of different types of CdTe nanoparticles and suggest that the nervous system may be targeted by these nanoparticles under some conditions.

  19. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    Directory of Open Access Journals (Sweden)

    M. M. Aliyu

    2012-01-01

    Full Text Available This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS, electrodeposition (ED, magnetic sputtering (MS, and high vacuum thermal evaporation (HVE have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS, ease of constituent control (ED, high material incorporation (MS, and low temperature process (MS, HVE, ED. These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.

  20. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Shamara [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Vatavu, Sergiu, E-mail: svatavu@usm.md [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Evani, Vamsi; Khan, Md; Bakhshi, Sara; Palekis, Vasilios [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Rotaru, Corneliu [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Ferekides, Chris [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States)

    2015-05-01

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios.

  1. The Role of Dopant Concentration on Conductivity and Mobility of CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    Ala J. Al-Douri

    2011-01-01

    Full Text Available Films of CdTe pure and doped with various atomic percentages of Al and Sb (0.5, 1.5 & 2.5 were prepared, and their electrical properties were investigated. The films were prepared by thermal evaporation on glass substrates at two substrate temperatures (Ts=RT & 423 K. The results showed that the conduction phenomena of all the investigated CdTe thin films on glass substrates are caused by two distinct mechanisms. Room temperature DC conductivity increases by a factor of four for undoped CdTe thin films as Ts increases and by 1-2 orders of magnitude with increasing dopant percentage of Al and Sb. In general, films doped with Sb are more efficient than Al-doped films. The activation energy (Ea2 decreases with increasing Ts and dopant percentage for both Al and Sb. Undoped CdTe films deposited at RT are p-type convert to n-type with increasing Ts and upon doping with Al at more than 0.5%. The carrier concentration decreases as Ts increases while it increases with increasing dopant percentage. Hall mobility decreases more than three times as Al increases whereas it increases about one order of magnitude with increasing Sb percentage in CdTe thin films deposited at 423 K and RT, respectively.

  2. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    Science.gov (United States)

    Luo, H.; Ma, L. G.; Xie, W. M.; Wei, Z. L.; Gao, K. G.; Zhang, F. M.; Wu, X. S.

    2016-04-01

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na2TeO3 instead of the usually used TeO2. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells.

  3. Optical and electrical properties of hydrothermally prepared CdTe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hadia, N.M.A.; Awad, M.A.; Mohamed, S.H.; Ibrahim, E.M.M. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2016-10-15

    The hydrothermal process was used to synthesize CdTe nanowires (NWs). Various analytical techniques were used to characterize the obtained NWs. The wire diameters were in the range 35-60 nm, and the lengths were >5 μm. The CdTe NWs had zinc-blende crystal structure. The NWs had high uniformity and high yield. FTIR analysis revealed the presence of the characteristic vibrational spectra of oxygen and hydrogen bounded to Cd and Te in CdTe NWs. The optical band gap value was 2.09 eV. The CdTe NWs showed a strong red emission band centered around 620.3 nm. The conductivity measurements were carried out in the temperature range 300-500 K and in air atmosphere. Two types of conduction mechanisms were observed with activation energies of 0.27 and 0.17 eV at high and low temperature regions, respectively. These results validate the potential of CdTe NWs for optoelectronic applications. (orig.)

  4. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes.

    Science.gov (United States)

    Jin, Dongri; Seo, Min-Ho; Huy, Bui The; Pham, Quoc-Thai; Conte, Maxwell L; Thangadurai, Daniel; Lee, Yong-Ill

    2016-03-15

    A convenient enzymatic optical method for uric acid detection was developed based on the fluorescence quenching of ligand-capped CdTe nanoparticles by H2O2 which was generated from the enzymatic reaction of uric acid. The interactions between the CdTe nanoparticles capped with different ligands (glutathione, 3-mercaptopropionic acid, and thioglycerol) and H2O2 were investigated. The fluorescence quenching studies of GSH-capped CdTe nanoparticles demonstrated an excellent sensitivity to H2O2. The effects of uric acid, uricase and H2O2 on the fluorescence intensity of CdTe nanoparticles were also explored. The detection conditions, reaction time, pH value, incubation period and the concentration of uricase and uric acid were optimized. The detection limit of uric acid was found to be 0.10 µM and the linear range was 0.22-6 µM under the optimized experimental conditions. These results typify that CdTe nanoparticles could be used as a fluorescent probe for uric acid detection.

  5. Luminescent behavior of CdTe quantum dots: Neodymium(III) complex-capped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Margarida S. [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Algarra, Manuel, E-mail: magonzal@fc.up.pt [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Jimenez-Jimenez, Jose; Rodriguez-Castellon, Enrique [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos s/n 29071, Malaga (Spain); Campos, Bruno B.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal)

    2013-02-15

    A water soluble complex of neodymium(III) with CdTe quantum dots nanoparticles was synthesized. The obtained homogeneous solutions were characterized by fluorescence, X-ray photoelectron and energy dispersive X-ray spectroscopies. The effect of the refluxing time of the reaction on the fluorescence intensity and emission wavelength has been studied. It was found that the emission wavelength of the solutions of neodymium(III) complex capped CdTe QDs nanoparticles shifted from about 540 to 735 nm. For an emission wavelength of 668 nm, the most reproducible nanoparticles obtained, the pH effect over the fluorescence emission and its intensity were studied. The purified and lyophilized solid obtained was morphologically characterized by transmission electron microscopy (TEM). The quantitative composition was determined by fluorescence X-ray spectroscopy (EDAX) and the X-ray photoelectron analysis (XPS) confirmed the presence of neodymium(III) at the surface of the CdTe nanoparticles forming a complex with the carboxylate groups from 3-mercaptopropanoic acid of the CdTe QDs. Due to the optical behavior of this complex, it could be of potential interest as a light source in optical devices. - Highlights: Black-Right-Pointing-Pointer CdTe quantum dots nanoparticles. Black-Right-Pointing-Pointer Neodymium(III) complexed quantum dots. Black-Right-Pointing-Pointer Strong red fluorescent emission nanomaterial soluble in water.

  6. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, H.; Ma, L.G.; Xie, W.M.; Wei, Z.L.; Gao, K.G.; Zhang, F.M.; Wu, X.S. [Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Lab of Solid State Microstructures, School of Physics, Nanjing (China)

    2016-04-15

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na{sub 2}TeO{sub 3} instead of the usually used TeO{sub 2}. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells. (orig.)

  7. Two distinct photoluminescence responses of CdTe quantum dots to Ag (I)

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yunsheng; Cao Chun [Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China); Zhu Changqing [Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China)], E-mail: zhucq625@163.com

    2008-01-15

    Four sizes of water-soluble thiol-capped CdTe quantum dots (QDs) have been synthesized and used to investigate the photoluminescence (PL) responses to Ag{sup +} ions. For small particles, the CdTe QDs exhibit PL enhancement in the presence of lower concentration of Ag{sup +} but show obvious quenching with the further increase of Ag{sup +}; for larger particles, however, PL of CdTe QDs is quenched all the time with the Ag{sup +} addition, no PL enhancement is observed. Mechanism study shows that small QDs with more traps on the particle surface are effectively passivated by initial adsorbed Ag{sup +}, which accounts for the PL enhancement observed; after the initial traps are saturated, the excess Ag{sup +} facilitates nonradiative recombination, resulting in PL quenching. For larger particles, the nonradiative recombination dominates the whole process even for the lower concentration of Ag{sup +}, due to the fewer traps on the QD surface. Compared with larger particles, the small CdTe QDs are more suitable for sensing Ag{sup +} because of the more sensitive and selective PL response. To our best knowledge, this is the first systematical study on the interaction of Ag{sup +} with different-sized CdTe QDs.

  8. Determination of grain boundary impurity effects in polycrystalline silicon

    Science.gov (United States)

    Kazmerski, L. L.; Dick, J. R.

    1984-06-01

    An analysis is made of the relationships existing between the chemistry and composition of the intergrain regions in polycrystalline silicon, the electrooptical properties of the grain boundaries, and the performance of polycrystalline Si solar cells. The following two impurity mechanisms are emphasized: segregation of oxygen to grain boundaries during heat treatments and the passivation of grain boundaries by incorporation of hydrogen. It is shown that hydrogen is localized at the defects; the effects of hydrogen localization on the electrical characteristics of the grain boundary and of the solar cell are discussed.

  9. Improved transport properties of polycrystalline YBCO thin-films

    Science.gov (United States)

    Azoulay, J.; Verdyan, A.; Lapsker, I.

    1994-12-01

    Resistive evaporation technique was used to fabricate polycrystalline YBaCuO and YBaNaCuO thin films on MgO substrates. Heat treatment was carried out in a low oxygen partial pressure. Polycrystalline YBCO and Na doped YBCO thin films samples were thus obtained using the same technique and conditions. The critical current density of Na doped YBCO sample was measured to be significantly higher than that of the undoped YBCO one. The results are discussed in terms of the Na contribution to the intragrain conductivity.

  10. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods

    Science.gov (United States)

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  11. Effects of processing temperature on the thickness of CdS and the performance of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.; Tetali, B.; Marinskiy, D.; Marinskaya, S.; Morel, D. [Department of Electrical Engineering, Center for Clean Energy and Vehicles, University of South Florida, Tampa, Florida 33620 (United States)

    1997-02-01

    CdTe cells have been fabricated on soda lime glass substrates. The effect of the CdS thickness and CdTe deposition temperature on the spectral response (SR) and solar cell parameters has been studied. The CdTe deposition temperature has been found to be a key processing parameter in determining the extent of interdiffusion at the CdTe and CdS interface. When the deposition of CdTe is carried out at high temperatures a significant portion of the CdS films is {open_quotes}lost{close_quotes} due to interdiffusion which leads to enhancement of the blue response of the solar cells. Devices with identical blue response (400{endash}500 nm) have been fabricated even though the starting CdS thicknesses were different; the cells for which the starting CdS thickness was greater exhibited higher open-circuit voltages and fill factors. {copyright} {ital 1997 American Institute of Physics.}

  12. Time-Resolved Photoluminescence Spectroscopy Evaluation of CdTe and CdTe/CdS Quantum Dots

    OpenAIRE

    Yuan, Zhimin; Yang, Ping; Cao, Yongqiang

    2012-01-01

    CdTe and CdTe/CdS quantum dots (QDs) were prepared in aqueous solutions using thioglycolic acid as a stabilizing agent. The photoluminescence (PL) wavelength of the QDs depended strongly on the size of CdTe cores and the thickness of CdS shells. Being kept at room temperature for 130 days, the PL wavelength of CdTe and CdTe/CdS QDs was red-shifted. However the red-shifted degree of CdTe QDs is larger than that of CdTe/CdS QDs. The size of CdTe QDs and the thickness of CdS play important roles...

  13. Structural and AC conductivity study of CdTe nanomaterials

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  14. Recombination by grain-boundary type in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, John, E-mail: john.moseley@nrel.gov; Ahrenkiel, Richard K. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401 (United States); Metzger, Wyatt K.; Moutinho, Helio R.; Guthrey, Harvey L.; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Paudel, Naba; Yan, Yanfa [Department of Physics & Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2015-07-14

    We conducted cathodoluminescence (CL) spectrum imaging and electron backscatter diffraction on the same microscopic areas of CdTe thin films to correlate grain-boundary (GB) recombination by GB “type.” We examined misorientation-based GB types, including coincident site lattice (CSL) Σ = 3, other-CSL (Σ = 5–49), and general GBs (Σ > 49), which make up ∼47%–48%, ∼6%–8%, and ∼44%–47%, respectively, of the GB length at the film back surfaces. Statistically averaged CL total intensities were calculated for each GB type from sample sizes of ≥97 GBs per type and were compared to the average grain-interior CL intensity. We find that only ∼16%–18% of Σ = 3 GBs are active non-radiative recombination centers. In contrast, all other-CSL and general GBs are observed to be strong non-radiative centers and, interestingly, these GB types have about the same CL intensity. Both as-deposited and CdCl{sub 2}-treated films were studied. The CdCl{sub 2} treatment reduces non-radiative recombination at both other-CSL and general GBs, but GBs are still recombination centers after the CdCl{sub 2} treatment.

  15. Ion implantation of CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Wiecek Tomasz

    2017-01-01

    Full Text Available Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2. The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  16. CdTe detector based PIXE mapping of geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, P.C., E-mail: cchaves@ctn.ist.utl.pt [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal); Taborda, A. [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal); Oliveira, D.P.S. de [Laboratório Nacional de Energia e Geologia (LNEG), Apartado 7586, 2611-901 Alfragide (Portugal); Reis, M.A. [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal)

    2014-01-01

    A sample collected from a borehole drilled approximately 10 km ESE of Bragança, Trás-os-Montes, was analysed by standard and high energy PIXE at both CTN (previous ITN) PIXE setups. The sample is a fine-grained metapyroxenite grading to coarse-grained in the base with disseminated sulphides and fine veinlets of pyrrhotite and pyrite. Matrix composition was obtained at the standard PIXE setup using a 1.25 MeV H{sup +} beam at three different spots. Medium and high Z elemental concentrations were then determined using the DT2fit and DT2simul codes (Reis et al., 2008, 2013 [1,2]), on the spectra obtained in the High Resolution and High Energy (HRHE)-PIXE setup (Chaves et al., 2013 [3]) by irradiation of the sample with a 3.8 MeV proton beam provided by the CTN 3 MV Tandetron accelerator. In this paper we present results, discuss detection limits of the method and the added value of the use of the CdTe detector in this context.

  17. Ion implantation of CdTe single crystals

    Science.gov (United States)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2016-12-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  18. CdTe reflection anisotropy line shape fitting

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Contreras, J.R., E-mail: rmolina@correo.ita.mx [Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1801 Ote. Fracc. Bona Gens, Aguascalientes, Ags, 20256 (Mexico)

    2010-10-25

    In this paper, an empirical novel plane-wave time dependent ensemble is introduced to fit the RA, the reflectance (R) and the imaginary part of the dielectric function oscillation measured around the E{sub 1} and E{sub 1} + {Delta}{sub 1} transition region in II-VI semiconductors. By applying the new plane-wave time dependent ensemble to the measured spectrum for a (0 0 1) oriented CdTe undoped commercial wafer, crystallized in a zinc-blende structure, a very good agreement was found between the measured spectrum and the fitting. In addition to this, the reliability of the plane-wave time dependent ensemble was probed, by comparing the results with the calculated fitting in terms of a Fourier series and in terms of a six-order polynomial fit. Our analysis suggests, that the experimental oscillation in the line shape of the RA cannot be fitted with a Fourier series using harmonics multiples of the number which dominates the measured RA spectra in the argument of the plane-wave ensemble.

  19. Study on temperature coefficient of CdTe detector used for X-rays detection

    CERN Document Server

    Guo, Si-Ming; Zhang, Jian; Li, Xu-Fang; Liu, Cong-Zhan; Zhang, Shuai; Li, Cheng-Ze; Huo, Bin-Bin; Liao, Zhen-Yu

    2016-01-01

    The temperature of the working environment is a key factor in determining the properties of semiconductor detectors, and it affects the absolute accuracy and stability of the standard detector. In order to determine the temperature coefficient of CdTe detector used for X-rays detection, a precise temperature control system was designed. In this experiment, detectors and radiographic source were set inside the thermostat with temperature of 0-40 Celsius degree, so that the temperature can be regulated for the test of the temperature coefficient of CdTe detector. Studies had shown that, with the increase of the temperature, the energy resolution and detection efficiency of the CdTe detector would deteriorate, and under 10 Celsius degree the detectors have better performance with the 8 keV X-rays.

  20. Spectrum-per-Pixel Cathodoluminescence Imaging of CdTe Thin-Film Bevels

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, John; Al-Jassim, Mowafak M.; Burst, James; Guthrey, Harvey L.; Metzger, Wyatt K.

    2016-11-21

    We conduct T=6 K cathodoluminescence (CL) spectrum imaging with a nano-scale electron beam on beveled surfaces of CdTe thin-films at different critical stages of standard CdTe device fabrication. The through-thickness total CL intensity profiles are consistent with a reduction in grain boundary recombination due to the CdCl2 treatment. Color-coded maps of the low-temperature luminescence transition energies reveal that CdTe thin films have remarkably non-uniform opto-electronic properties, which depend strongly on sample processing history. The grain-to-grain S content in the interdiffused CdTe/CdS region is estimated from a sample size of thirty-five grains, and the S content in adjacent grains varies significantly in CdCl2-treated samples. A low-temperature luminescence model is developed to interpret spectral behavior at grain boundaries and grain interiors.

  1. Advances in the In-House CdTe Research Activities at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, T.; Wu, X.; Dhere, R.; Moutinho, H.; Smith, S.; Romero, M.; Zhou, J.; Duda, A.; Corwine, C.

    2005-01-01

    NREL in-house CdTe research activities have impacted a broad range of recent program priorities. Studies aimed at industrially relevant applications have produced new materials and processes that enhance the performance of devices based on commercial materials (e.g., soda-lime glass, SnO2:F). Preliminary tests of the effectiveness of these novel components using large-scale processes have been encouraging. Similarly, electro- and nano-probe techniques have been developed and used to study the evolution and function of CdTe grain boundaries. Finally, cathodoluminescence (CL) and photoluminescence (PL) studies on single-crystal samples have yielded improved understanding of how various processes may combine to produce important defects in CdTe films.

  2. Characterization of Smooth CdTe(111) Films by the Conventional Close-Spaced Sublimation Technique

    Science.gov (United States)

    Escobedo, A.; Quinones, S.; Adame, M.; McClure, J.; Zubia, D.; Brill, G.

    2010-04-01

    Thin epitaxial CdTe films were grown on CdTe(111)B substrates by the close-spaced sublimation (CSS) technique and were characterized over a range of experimental parameters. The source temperature was varied between 480°C and 540°C, maintaining an average constant source-substrate temperature difference Δ T of ˜130°C. Helium was used as a carrier gas at pressures between 2 Torr and 10 Torr. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to analyze the film morphology and structure. Growth rates ranging from 1 μm/h to 4 μm/h were observed, based on profilometer thickness measurements. The addition of a pre-growth heat treatment step and post-growth annealing treatment resulted in smooth CdTe(111) films. An evolution in growth morphology was demonstrated with SEM images and film quality was confirmed with XRD.

  3. Recent Progress on Solution-Processed CdTe Nanocrystals Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Xue

    2016-07-01

    Full Text Available Solution-processed CdTe nanocrystals (NCs photovoltaic devices have many advantages, both in commercial manufacture and daily operation, due to the low-cost fabrication process, which becomes a competitive candidate for next-generation solar cells. All solution-processed CdTe NCs solar cells were first reported in 2005. In recent years, they have increased over four-fold in power conversion efficiency. The latest devices achieve AM 1.5 G power conversion efficiency up to 12.0%, values comparable to those of commercial thin film CdTe/CdS solar cells fabricated by the close-space sublimation (CSS method. Here we review the progress and prospects in this field, focusing on new insights into CdTe NCs synthesized, device fabrication, NC solar cell operation, and how these findings give guidance on optimizing solar cell performance.

  4. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2013-01-01

    Full Text Available This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs by using poly(acrylic acid grafted onto salep (salep-g-PAA as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR spectrum, thermogravimetric (TG analysis, and transmission electron microscopy (TEM. The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical properties of CdTe QDs. The results showed that the optical properties of CdTe QDs were significantly enhanced by using salep-g-PAA-based biopolymer.

  5. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  6. Simulation of active-edge pixelated CdTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, D.D., E-mail: diana.duarte@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lipp, J.D.; Schneider, A.; Seller, P.; Veale, M.C.; Wilson, M.D. [STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Baker, M.A.; Sellin, P.J. [Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-01-11

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  7. The next generation CdTe technology- Substrate foil based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, Chris [Univ. of South Florida, Tampa, FL (United States)

    2017-03-22

    The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal of this project) a roll-to-toll high throughput technology could be developed.

  8. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  9. The use of CdTe detectors for dental X-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcus Aurelio P. dos; Fragoso, Maria da Conceicao F.; Oliveira, Mercia L.; Lima, Ricardo de A.; Hazin, Clovis A. [Centro Regional de Ciencias Nucleares (CRCN/CNEN-PE), Recife, PE (Brazil)]. E-mails: masantos@cnen.gov.br; mariacc05@yahoo.com.br; mercial@cnen.gov.br; ralima@cnen.gov.br; chazin@cnen.gov.br

    2007-07-01

    he cadmium telluride (CdTe) semiconductor detector provides high detection efficiency for use in the diagnostic x-rays energy range, because of the high atomic number and high density of the crystal. Moreover, it has the great advantage of working at room temperature, in contrast to the germanium detector, which operates in liquid nitrogen temperature. The CdTe detector has been utilized in diagnostic x-ray spectroscopy, but only scarce information about its use in dental X-ray beams has been published. In this way, a portable 3x3x1 mm{sup 3} CdTe solid state detector (XR-100T CdTe by Amptek, Inc.) with tungsten pinhole collimators, alignment device and associated software was utilized in this work for measuring the photon spectra in the dental x-ray kVp range. A single-phase dental unit with adjustable kVp and mA was employed and the x-ray spectra were experimentally determined at 50, 60 and 70 kVp with 0.5 mA tube current. The pulse height distribution obtained with this detector, however, does not represent the 'true' photon spectra. For this reason, a stripping procedure was implemented to correct the distribution in order to determine the real photon spectra. The x-ray spectra obtained with the CdTe detector were compared with the ones measured with a high-purity germanium detector (EGP200-13-TR by Eurisys Mesures). The reasonable agreement between the results obtained with both detectors for the 50 to 70 keV range show that CdTe detectors can be utilized for dental x-ray spectrometry. (author)

  10. Facile method to prepare CdS nanostructure based on the CdTe films

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ligang; Chen, Yuehui; Wei, Zelu; Cai, Hongling; Zhang, Fengming; Wu, Xiaoshan, E-mail: xswu@nju.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • CdS nanostructure is directly fabricated on CdTe film only by heating treatment under H{sub 2}S/N{sub 2} mixed atmosphere at a relatively low temperature (450 °C) with gold layer as the intermediate. • Nanostructure of CdS layer, varying from nanowires to nanosheets, may be controlled by the thickness of gold film. • The change of morphology adjusts its luminescence properties. - Abstract: Nanostructured cadmium sulfide (CdS) plays critical roles in electronics and optoelectronics. In this paper, we report a method to fabricate CdS nanostructure directly on CdTe film, via a thermal annealing method in H{sub 2}S/N{sub 2} mixed gas flow at a relatively low temperature (450 °C). The microstructure and optical properties of CdS nanostructure are investigated by X-ray diffraction, transmission electron microscopy, Raman, and photoluminescence. The morphology of CdS nanostructure, evolving from nanowires to nanosheets, can be controlled by the thickness of Au film deposited on the CdTe film. And CdS nanostructures are single crystalline with the hexagonal wurtzite structure. Raman spectroscopy under varying the excitation wavelengths confirm that synthesized CdS-CdTe films contain two layers, i.e., CdS nanostructure (top) and CdTe layer (bottom). The change of morphology modifies its luminescence properties. Obviously, through simply thermal annealing in H{sub 2}S/N{sub 2} mixed gas, fabricating CdS nanostructure on CdTe film can open up the new possibility for obtaining high efficient CdTe solar cell.

  11. Development of Substrate Structure CdTe Photovoltaic Devices with Performance Exceeding 10%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Gessert, T. A.

    2012-08-01

    Most work on CdTe-based solar cells has focused on devices with a superstrate structure. This focus is due to the early success of the superstrate structure in producing high-efficiency cells, problems of suitable ohmic contacts for lightly doped CdTe, and the simplicity of the structure for manufacturing. The development of the CdCl2 heat treatment boosted CdTe technology and perpetuated the use of the superstrate structure. However, despite the beneficial attributes of the superstrate structure, devices with a substrate structure are attractive both commercially and scientifically. The substrate structure eliminates the need for transparent superstrates and thus allows the use of flexible metal and possibly plastic substrates. From a scientific perspective, it allows better control in forming the junction and direct access to the junction for detailed analysis. Research on such devices has been limited. The efficiency of these devices has been limited to around 8% due to low open-circuit voltage (Voc) and fill factor. In this paper, we present our recent device development efforts at NREL on substrate-structure CdTe devices. We have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. We have worked on a variety of contact materials including Cu-doped ZnTe and CuxTe. We will present a comparative analysis of the performance of these contacts. In addition, we have studied the influence of fabrication parameters on junction properties. We will present an overview of our development work, which has led to CdTe devices with Voc values of more than 860 mV and NREL-confirmed efficiencies approaching 11%.

  12. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanni; Liu, Jianjun, E-mail: jjliu717@aliyun.com; Yu, Yingchun; Zuo, Shengli

    2015-10-25

    A new simple route was presented for the preparation of stable fluorescent CdTe/polymethylmethacrylate (CdTe/PMMA) composite films by using hydrophilic thioglycolic acid capped CdTe quantum dots (TGA-CdTe QDs) and polymethylmethacrylate (PMMA) as raw materials. The TGA-CdTe QDs were firstly exchanged with n-dodecanethiol (DDT) to become hydrophobic DDT-CdTe QDs via a ligand exchange strategy, and then incorporated into PMMA matrix to obtain fluorescent CdTe/PMMA composite films. The structure and optical properties of DDT-CdTe QDs and CdTe/PMMA composite films were investigated by XRD, IR, UV and PL techniques. The results indicated that the obtained DDT-CdTe QDs well preserved the intrinsic structure and the maximum emission wavelength of the initial water-soluble QDs and the resulting 6.10 wt% CdTe/PMMA composite film exhibited significantly enhanced PL intensity. Furthermore, the multicolored composite films with green, yellow-green, yellow and orange light emissions were well tuned by incorporating the CdTe QDs of various maximum emission wavelengths. The TEM image demonstrated that the CdTe QDs were well-dispersed in the PMMA matrix without aggregation. Superior photostability of QDs in the composite film was confirmed by fluorescence lifetime measurement. Thermo-gravimetric analysis of CdTe/PMMA composite films showed no obvious enhancement of thermal stability compared with pure PMMA. - Highlights: • Ligand-exchange strategy was used to render CdTe QDs oil-soluble. • CdTe QDs were incorporated into PMMA matrix to fabricate fluorescent films. • The resulting 6.10 wt% CdTe/PMMA film exhibited significantly enhanced PL intensity. • Fluorescent colors of films were tuned by varying the λ{sub em} of incorporated CdTe QDs.

  13. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2013-01-01

    Full Text Available This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures. A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF to reduce minority carrier recombination loss at the back contact in ultra-thin CdTe cells. In this analysis the highest conversion efficiency of CdTe based PV cell without BSF has been found to be around 17% using CdTe absorber thickness of 5 μm. However, the proposed structures with different BSF have shown acceptable efficiencies with an ultra-thin CdTe absorber of only 0.6 μm. The proposed structure with As2Te3 BSF showed the highest conversion efficiency of 20.8% ( V,  mA/cm2, and . Moreover, the proposed structures have shown improved stability in most extents, as it was found that the cells have relatively lower negative temperature coefficient. However, the cell with ZnTe BSF has shown better overall stability than other proposed cells with temperature coefficient (TC of −0.3%/°C.

  14. High-resolution CdTe detectors with application to various fields (Conference Presentation)

    Science.gov (United States)

    Takeda, Shin'ichiro; Orita, Tadashi; Arai, Yasuo; Sugawara, Hirotaka; Tomaru, Ryota; Katsuragawa, Miho; Sato, Goro; Watanabe, Shin; Ikeda, Hirokazu; Takahashi, Tadayuki; Furenlid, Lars R.; Barber, H. Bradford

    2016-10-01

    High-quality CdTe semiconductor detectors with both fine position resolution and high energy resolution hold great promise to improve measurement in various hard X-ray and gamma-ray imaging fields. ISAS/JAXA has been developing CdTe imaging detectors to meet scientific demands in latest celestial observation and severe environmental limitation (power consumption, vibration, radiation) in space for over 15 years. The energy resolution of imaging detectors with a CdTe Schottky diode of In/CdTe/Pt or Al/CdTe/Pt contact is a highlight of our development. We can extremely reduce a leakage current of devises, meaning it allows us to supply higher bias voltage to collect charges. The 3.2cm-wide and 0.75mm-thick CdTe double-sided strip detector with a strip pitch of 250 µm has been successfully established and was mounted in the latest Japanese X-ray satellite. The energy resolution measured in the test on ground was 2.1 keV (FWHM) at 59.5 keV. The detector with much finer resolution of 60 µm is ready, and it was actually used in the FOXSI rocket mission to observe hard X-ray from the sun. In this talk, we will focus on our research activities to apply space sensor technologies to such various imaging fields as medical imaging. Recent development of CdTe detectors, imaging module with pinhole and coded-mask collimators, and experimental study of response to hard X-rays and gamma-rays are presented. The talk also includes research of the Compton camera which has a configuration of accumulated Si and CdTe imaging detectors.

  15. Post-growth CdCl₂ treatment on CdTe thin films grown on graphene layers using a close-spaced sublimation method.

    Science.gov (United States)

    Jung, Younghun; Yang, Gwangseok; Chun, Seungju; Kim, Donghwan; Kim, Jihyun

    2014-05-05

    We investigated the morphological, structural and optical properties of CdCl₂-treated cadmium telluride (CdTe) thin films deposited on defective graphene using a close-spaced sublimation (CSS) system. Heat treatment in the presence of CdCl₂ caused recrystallization of CSS-grown CdTe over the as-deposited structures. The preferential (111) orientation of as-deposited CdTe films was randomized after post-growth CdCl₂ treatment. New small grains (bumps) on the surface of CdCl₂-treated CdTe films were ascribed to nucleation of the CdTe grains during the CdCl₂ treatment. The properties of as-deposited and CdCl₂-treated CdTe films were characterized by room temperature micro-photoluminescence, micro-Raman spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. Our results are useful to demonstrate a substrate configuration CdTe thin film solar cells.

  16. Anomalous photoelectric effect of a polycrystalline topological insulator film.

    Science.gov (United States)

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-07-29

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators.

  17. The decoration of vicinal copper polycrystalline surface by Antimony

    CSIR Research Space (South Africa)

    Ndlovu, GF

    2011-07-01

    Full Text Available An Ultra-high Vacuum Variable Temperature Scanning Tunnelling Microscope was used to study the growth mechanism of Antimony on vicinal Cu polycrystalline samples. The STM data after deposition of 0.3 ML Sb at 300°C showed localization of Sb atoms...

  18. Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus

    Science.gov (United States)

    Cao, Pinqiang; Wu, Jianyang; Zhang, Zhisen; Ning, Fulong

    2017-01-01

    The mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus (MBP) are systematically investigated using classic molecular dynamic simulations. For monocrystalline MBP, it is found that the shear strain rate, sample dimensions, temperature, atomic vacancies and applied statistical ensemble affect the shear behaviour. The wrinkled morphology is closely connected with the direction of the in-plane shear, dimensions of the samples, and applied ensembles. Particularly, small samples subjected to loading/unloading of the shear deformation along the armchair direction demonstrate a clear mechanical hysteresis loop. For polycrystalline MBP, the maximum shear stress as a function of the average grain size follows an inverse pseudo Hall-Petch type relationship under an isothermal-isobaric (NPT) ensemble, whereas under a canonical (NVT) ensemble, the maximum shear stress of polycrystalline MBP exhibits a ‘flipped’ behaviour. Furthermore, polycrystalline MBP subjected to uniaxial tension also exhibits a strongly grain size-dependent mechanical response, and it can fail by brittle intergranular and transgranular fractures because of its weaker grain boundary structures and the direction-dependent edge energy, respectively. These findings provide useful insight into the mechanical design of BP for nanoelectronic devices.

  19. System of polarization correlometry of biological liquids layers polycrystalline structure

    Science.gov (United States)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.

    2013-09-01

    A model of generalized optical anisotropy of human bile is suggested and a method of polarimetric of the module and phase Fourier of the image of the field of laser radiation is analytically substantiated, that is generated by the mechanisms of linear and circular birefringence of polycrystalline networks with a diagnosis and differentiation of cholelithiasis against a background of chronic cholecystitis.

  20. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    Science.gov (United States)

    Chen, Xiao; Ding, Jianning; Jiang, Cunhua; Liu, Zunfeng; Yuan, Ningyi

    2017-06-01

    Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110), (111), and (112) planes were extruded by the (100) plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  1. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-06-01

    Full Text Available Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110, (111, and (112 planes were extruded by the (100 plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  2. Radiation-hard polycrystalline mercuric iodide semiconductor particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ., Jerusalem (Israel)]|[Sandia National Laboratories, Livermore Ca 94556 (United States); Zuck, A.; Melekhov, L.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)

    1998-06-01

    Mercuric iodide polycrystalline radiation detectors, which can act as nuclear particle counters and for large area imaging devices, have been fabricated using three different methods. Response to X- and gamma rays, beta particles and to 100GeV muons, as well as radiation hardness results are briefly described. (orig.) 8 refs.

  3. Characterization and simulation of a CdTe detector for use in PET

    OpenAIRE

    Ariño Estrada, Gerard; Chmeissani, Mokhtar; Lorenzo, Gianluca De

    2012-01-01

    The Voxel Imaging PET (VIP) Path nder project got the 4 year European Research Council FP7 grant in 2010 to prove the feasibility of using CdTe detectors in a novel conceptual design of PET scanner. The work presented in this thesis is a part of the VIP project and consists of, on the one hand, the characterization of a CdTe detector in terms of energy resolution and coincidence time resolution and, on the other hand, the simulation of the setup with the single detector in order to extend the...

  4. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Y Calderón; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  5. Electronic structure, structural and optical properties of thermally evaporated CdTe thin films

    OpenAIRE

    S Lalitha; Karazhanov, S. Zh.; Ravindran, P.; Senthilarasu, S.; Sathyamoorthy, R.; Janabergenov, J.

    2006-01-01

    Thin films of CdTe were deposited on glass substrates by thermal evaporation. From the XRD measurements itis found that the films are of zinc-blende-type structure. Transmittance, absorption, extinction, and refractive coefficients are measured. Electronic structure, band parameters and optical spectra of CdTe were calculated from ab initio studies within the LDA and LDA+U approximations. It is shown that LDA underestimates the band gap, energy levels of the Cd-4d states, s-d coupling and ban...

  6. Induced recrystallization of CdTe thin films deposited by close-spaced sublimation

    Science.gov (United States)

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Mayo, B.; Levi, D. H.; Kazmerski, L. L.

    1999-03-01

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl2 treatment at 350 °C and completely recrystallized after the same treatment at 400 °C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  7. Recent Progress on Solution-Processed CdTe Nanocrystals Solar Cells

    OpenAIRE

    Hao Xue; Rongfang Wu; Ya Xie; Qiongxuan Tan; Donghuan Qin; Hongbin Wu; Wenbo Huang

    2016-01-01

    Solution-processed CdTe nanocrystals (NCs) photovoltaic devices have many advantages, both in commercial manufacture and daily operation, due to the low-cost fabrication process, which becomes a competitive candidate for next-generation solar cells. All solution-processed CdTe NCs solar cells were first reported in 2005. In recent years, they have increased over four-fold in power conversion efficiency. The latest devices achieve AM 1.5 G power conversion efficiency up to 12.0%, values compar...

  8. Fabrication, Electrical Characterization and Simulation of Thin Film Solar Cells: CdTe and CIGS Materials

    OpenAIRE

    Es'haghi Gorji, Nima

    2014-01-01

    CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized wat...

  9. Properties of CdTe layers deposited by a novel method -Pulsed Plasma Deposition

    OpenAIRE

    Ancora, C.; Nozar, P.; Mittica, G.; Prescimone, F.; A. Neri; Contaldi, S.; Milita, S.; Albonetti, C.; Corticelli, F.; Brillante, A.; Bilotti, I.; Tedeschi, G.; Taliani, C.

    2011-01-01

    CdTe and CdS are emerging as the most promising materials for thin film photovoltaics in the quest of the achievement of grid parity. The major challenge for the advancement of grid parity is the achievement of high quality at the same time as low fabrication cost. The present paper reports the results of the new deposition technique, Pulsed Plasma Deposition (PPD), for the growth of the CdTe layers on CdS/ZnO/quartz and quartz substrates. The PPD method allows to deposit at low temperature. ...

  10. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L. (National Renewable Energy Laboratory); Mayo, B. (Southern University and A& M College, Baton Rouge, LA)

    1998-10-26

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl2 treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  11. Rf sputtering of CdTE and CdS for thin film PV

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Tabory, C.N.; Shao, M.; Fischer, A.; Feng, Z.; Bohn, R.G. (Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States))

    1994-06-30

    In late 1992 we demonstrated the first rf sputtered CdS/CdTe photovoltaic cell with efficiency exceeding 10%. In this cell both CdS and CdTe layers were deposited by rf sputtering. In this paper we report preliminary measurements of (1) optical emission spectroscopy of the rf plasma, (2) the width of the phonon Raman line as a function of deposition temperature for CdS, and (3) studies of oxygen doping during pulsed laser deposition of CdTe.

  12. The Role of Dopant Concentration on Conductivity and Mobility of CdTe Thin Films

    OpenAIRE

    Al-Douri, Ala J.; Al-Shakily, F. Y.; Alnajjar, Abdalla A.; Maysoon F. A. Alias

    2011-01-01

    Films of CdTe pure and doped with various atomic percentages of Al and Sb (0.5, 1.5 & 2.5) were prepared, and their electrical properties were investigated. The films were prepared by thermal evaporation on glass substrates at two substrate temperatures (Ts=RT & 423 K). The results showed that the conduction phenomena of all the investigated CdTe thin films on glass substrates are caused by two distinct mechanisms. Room temperature DC conductivity increases by a factor of four for undoped CdT...

  13. Determination of dispersion parameters of thermally deposited CdTe thin film

    Science.gov (United States)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2016-05-01

    Cadmium Telluride (CdTe) thin film was deposited onto glass substrates under a vacuum of 5 × 10-6 torr by using thermal evaporation technique. The prepared film was characterized for dispersion analysis from reflectance spectra within the wavelength range of 300 nm - 1100 nm which was recorded by using UV-Visible spectrophotometer. The dispersion parameters (oscillator strength, oscillator wavelength, high frequency dielectric constant, long wavelength refractive index, lattice dielectric constant and plasma resonance frequency) of CdTe thin film were investigated using single sellimeir oscillator model.

  14. Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics

    Science.gov (United States)

    Mendis, B. G.; Gachet, D.; Major, J. D.; Durose, K.

    2015-11-01

    A novel time-resolved cathodoluminescence method, where a pulsed electron beam is generated via the photoelectric effect, is used to probe individual CdTe grain boundaries. Excitons have a short lifetime (≤100 ps ) within the grains and are rapidly quenched at the grain boundary. However, a ˜47 meV shallow acceptor, believed to be due to oxygen, can act as a long lifetime hole trap, even at the grain boundaries where their concentration is higher. This provides direct evidence supporting recent observations of hopping conduction across grain boundaries in highly doped CdTe at low temperature.

  15. Improvement of the energy resolution of CdTe detectors by pulse height correction from waveform

    CERN Document Server

    Kikawa, T; Hiraki, T; Nakaya, T

    2011-01-01

    Semiconductor detectors made of CdTe crystal have high gamma-ray detection efficiency and are usable at room temperature. However, the energy resolution of CdTe detectors for MeV gamma-rays is rather poor because of the significant hole trapping effect. We have developed a method to improve the energy resolution by correcting the pulse height using the waveform of the signal and achieved 2.0% (FWHM) energy resolution for 662keV gamma-rays. Best energy resolution was achieved at temperatures between -10 degrees C and 0 degrees C.

  16. The role of stress in CdTe quantum dot doped glasses

    Science.gov (United States)

    de Thomaz, A. A.; Almeida, D. B.; Pelegati, V. B.; Carvalho, H. F.; Moreira, S. G. C.; Barbosa, L. C.; Cesar, C. L.

    2016-11-01

    In this work, we unequivocally demonstrate the influence of matrix-related stresses on quantum dots by measuring, side by side, a CdTe quantum dot doped glass and a colloidal sample with similar sizes. We measured the fluorescence spectra and fluorescence lifetime for both samples as a function of the temperature. We show that the expansion coefficient mismatch between CdTe quantum dots and the glass host causes stresses and drastically changes its behavior compared to its colloidal counterpart, even leading to phase transitions. This finding indicates that most experimental data on glass-doped quantum dots used to validate confinement models should be revised, taking stress into account.

  17. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L. (National Renewable Energy Laboratory); Mayo, B. (Southern University and A& M College, LA)

    1998-10-29

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  18. Compensation models in chlorine doped CdTe based on positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, W.; Hofman, D.M.; Meyer, B.K. [Technische Universitaet Muenchen, Garching (Germany); Krause-Rehberg, R.; Polity, A.; Abgarjan, Th. [Martin-Luther Universitaet Halle-Wittenberg, FB Physik, Halle (Germany); Salk, M.; Benz, K.W. [Kristallographisches Institut, Universitaet Freiburg, Freiburg (Germany); Azoulay, M. [Soreq, Nuclear Research Centre, Yavne (Israel)

    1995-12-31

    In this investigation positron annihilation, photoluminescence and electron paramagnetic resonance techniques are employed to gain insight in the compensation of CdTe doped with the halogen Cl. We will demonstrate that the high resistivity of CdTe:Cl cannot be explain by the interaction between the shallow effective mass type donor Cl on Te site and the doping induced shallow acceptor complex, a Cd vacancy paired off with a nearest-neighbour Cl atom (A centre). From electron paramagnetic resonance investigations we conclude that the mid gap trap, often detected by electrical methods in CdTe, is not the isolated Cd vacancy. (author). 9 refs, 2 figs, 1 tab.

  19. Determination of Captopril Based on the Photoluminescence Quenching of the pH Sensitive Mercaptopropanoic Acid Capped CdTe Quantum Dots

    Science.gov (United States)

    Khan, S.; Lima, A. A.; Aucelio, R. Q.

    2017-01-01

    The determination of captopril was performed by measuring the photoluminescence quenching of pH sensitive mercaptopropanoic acid capped CdTe quantum dots. Under optimum conditions, the calibration model (log F0/F as a function of the concentration of captopril) was linear up to 8 × 10-6 mol/L (1.7 μg/mL) and the limit of detection (xb - 3sb) was 2.7 × 10-7 mol/L (18 ng/mL). A possible mechanism for quenching is proposed. The method was applied in the determination of captopril in two commercial pharmaceutical formulations, indicating that it can be used for simple and fast quantitative control of commercial medicines or pharmaceutical preparations.

  20. Electronic structure of nanocrystalline and polycrystalline hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Smardz, L. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 Street, 60-179 Poznan (Poland); Jurczyk, M.; Smardz, K.; Nowak, M.; Makowiecka, M.; Okonska, I. [Institute of Materials Science and Engineering, Poznan University of Technology, M. Sklodowska-Curie 5 Sq., 60-965 Poznan (Poland)

    2008-02-15

    To optimise the choice of the compounds for a selected application, a better understanding of the role of each alloy constituent on the electronic properties of the material is crucial. In this work, we study experimentally the electronic properties of nanocrystalline and polycrystalline (Mg{sub 1-x}M{sub x}){sub 2}Ni, (Mg{sub 1-x}M{sub x}){sub 2}Cu, La(Ni{sub 1-x}M{sub x}){sub 5}, and Ti(Ni{sub 1-x}M'{sub x}) (M = Mn, Al; M' = Fe, Mg, Zr) alloys. The nanocrystalline and polycrystalline samples were prepared by mechanical alloying (MA) followed by annealing and arc melting method, respectively. All X-ray photoelectron spectroscopy (XPS) spectra were measured immediately after cleaning of the sample surface in a vacuum of 8 x 10{sup -11} mbar. Furthermore, we have measured XPS spectra of in situ prepared nanocrystalline and polycrystalline LaNi{sub 5}, TiNi, and Mg{sub 2}Ni thin films and compared with those obtained for ex situ prepared bulk materials. The substitution of Mg in Mg{sub 2}Ni and Mg{sub 2}Cu, Ni in LaNi{sub 5} and TiNi by transition metals leads to significant modifications of the shape and width of the valence band of the nanocrystalline as well as polycrystalline samples. Especially, the valence bands of the MA nanocrystalline alloys are considerably broader compared to those measured for the polycrystalline samples. Results also showed that the strong modifications of the electronic structure of the nanocrystalline alloys could significantly influence on their hydrogenation properties. (author)

  1. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    Science.gov (United States)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  2. Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene

    Indian Academy of Sciences (India)

    Shugang Wang; Yaoxian Li; Jie Bai; Qingbiao Yang; Yan Song; Chaoqun Zhang

    2009-10-01

    The major objective of this work was to detect the change of photoluminescence (PL) intensity of CdTe nanoparticles (NPs) before and after transfer from liquid phase to polystyrene (PS) matrix by electrospinning technique. Thio-stabilized CdTe NPs were first synthesized in aqueous, then enwrapped by cetyltrimethylammonium bromide (CTAB), and finally, transferred into PS matrix to form CdTe/PS nanofibres by electrospinning. Then, CdTe/PS nanofibres were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM) to observe their morphology and distribution, respectively. The selective area electronic diffraction (SAED) pattern proved that the CdTe NPs were cubic lattice. The PL spectrum indicated that CdTe NPs have been transferred into PS nanofibres, and the PL intensity of CdTe NPs in the nanofibres was even higher than that before CdTe NPs were introduced into PS nanofibres. Moreover, X-ray photoelectron spectra (XPS) revealed that thiol-stabilized CdTe NPs were enwrapped by CTAB, and PS acted as a dispersant in the process of electrospinning.

  3. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    Science.gov (United States)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  4. MBE-Grown CdTe Layers on GaAs with In-assisted Thermal Deoxidation

    Science.gov (United States)

    Arı, Ozan; Bilgilisoy, Elif; Ozceri, Elif; Selamet, Yusuf

    2016-10-01

    Molecular beam epitaxy (MBE) growth of thin (˜2 μm) CdTe layers characterized by high crystal quality and low defect density on lattice mismatched substrates, such as GaAs and Si, has thus far been difficult to achieve. In this work, we report the effects of in situ thermal deoxidation under In and As4 overpressure prior to the CdTe growth on epiready GaAs(211)B wafers, aiming to enhance CdTe crystal quality. Thermally deoxidized GaAs samples were analyzed using in situ reflection high energy electron diffraction, along with ex situ x-ray photo-electron spectroscopy (XPS) and atomic force microscopy. MBE-grown CdTe layers were characterized using x-ray diffraction (XRD) and Everson-type wet chemical defect decoration etching. We found that In-assisted desorption allowed for easier surface preparation and resulted in a smoother surface compared to As-assisted surface preparation. By applying In-assisted thermal deoxidation to GaAs substrates prior to the CdTe growth, we have obtained single crystal CdTe films with a CdTe(422) XRD rocking curve with a full-width half-maximum value of 130.8 arc-s and etch pit density of 4 × 106 cm-2 for 2.54 μm thickness. We confirmed, by XPS analysis, no In contamination on the thermally deoxidized surface.

  5. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Correlation of Interfacial Transportation Properties of CdS/CdTe Heterojunction and Performance of CdTe Polycrystalline Thin-Film Solar Cells

    OpenAIRE

    Guanggen Zeng; Jingquan Zhang; Wenwu Wang; Lianghuan Feng

    2015-01-01

    The light and dark output performances of CdS/CdTe solar cells made by close-spaced sublimation (CSS) were investigated to elucidate the transportation properties of carriers at CdS/CdTe heterojunction interface. It has been found that the interfacial transportation properties were relatively sensitive to variations of the characteristics of heterojunction due to the series resistance and shunting effects. For the high quality cell with 12.1% efficiency, narrow depletion region of ~1.1 micron...

  7. CdTe多晶薄膜太阳电池的结构改进%IMPROVEMENT OF THE STRUCTURE OF CdTe POLYCRYSTALLINE THIN FILM SOLAR CELL

    Institute of Scientific and Technical Information of China (English)

    夏庚培; 蔡伟; 郑家贵; 冯良桓; 蔡亚平; 黎兵; 李卫; 武莉莉; 鄢强

    2005-01-01

    采用共蒸发法制备了ZnTe:Cu和Cd1-xZnXTe多晶薄膜,研究了薄膜的结构和性能.获得了Cd1-xZnXTe多晶薄膜的光能隙与锌含量的关系,ZnTe:Cu多晶薄膜光能隙随着掺Cu浓度的增加,光能隙减小.分别用ZnTe/ZnTe:Cu和Cd1-xZnXTe/ZnTe:Cu复合层作为背接触层,既能修饰异质结界面,改善电池的能带结构,又能防止Cu原子向电池内部扩散.获得了面积0.5cm2,转换效率为13.38%的CdTe多晶薄膜太阳电池.

  8. CdTe多晶薄膜的同质结与异质结%Homojunction and Heterojunction in Cdte Polycrystalline Thin Films

    Institute of Scientific and Technical Information of China (English)

    王宏臣

    2009-01-01

    衬底温度对CVD生长CdTe多晶薄膜导电性能有决定性影响,衬底温度高于560℃为p型,衬底温度愈高,空穴浓度愈大;低于520℃为n型,在一定温度范围内,衬底生长温度越低,电子浓度越大.采用CVD方法先在高温下生长p型CdTe膜,然后在较低温度下生长n型CdTe膜,首次研制了同质p-n结二极管.又采用在高温下先生长p-CdTe膜,然后在室温环境下暴露在空气中氧化,经数周后产生CdO和TeO2氧化层,再溅射ITO膜,制成n-ITO/i/p-CdTe异质结太阳能电池,与无氧化处理的n-ITO/p-CdTe比较,光电转换效率有明显提高.

  9. Correlation of Interfacial Transportation Properties of CdS/CdTe Heterojunction and Performance of CdTe Polycrystalline Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guanggen Zeng

    2015-01-01

    Full Text Available The light and dark output performances of CdS/CdTe solar cells made by close-spaced sublimation (CSS were investigated to elucidate the transportation properties of carriers at CdS/CdTe heterojunction interface. It has been found that the interfacial transportation properties were relatively sensitive to variations of the characteristics of heterojunction due to the series resistance and shunting effects. For the high quality cell with 12.1% efficiency, narrow depletion region of ~1.1 microns and large electric field intensity of ~1.3 V/μm allow the sufficient energy-band bending close to CdS layer at CdS/CdTe heterojunction, which changes the carrier transportation mechanism from emission to diffusion and leads to the optimal rectifying characteristics with small dark saturation current density ~6.4 × 10−10 A/cm2. As a result, the schematic diagram of heterojunction band structure corresponding to various performances of solar cells has also been presented.

  10. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior

    Directory of Open Access Journals (Sweden)

    Jeong Seok Lee

    2016-04-01

    Full Text Available Fast and accurate energy calibration of photon counting spectral detectors (PCSDs is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components.

  11. Prospects of Thickness Reduction of the CdTe Layer in Highly Efficient CdTe Solar Cells Towards 1 µm

    Science.gov (United States)

    Amin, Nowshad; Isaka, Takayuki; Okamoto, Tamotsu; Yamada, Akira; Konagai, Makoto

    1999-08-01

    This study focuses on the technique for the stable growth of CdTe (1.44 eV) with thickness near its absorption length, 1 µm, by close spaced sublimation (hereafter CSS) process, in order to achieve high conversion efficiency. X-ray diffraction (XRD) spectroscopy was carried out to examine the microstructure of the films. Current-voltage (I V) characteristics, spectral response and other features of the solar cells using these CdTe films were investigated to elucidate the optimum conditions for achieving the best performance in such thin (1 µm) CdTe solar cells. Thickness was found to be reduced by controlling the temperature profile used during CSS growth. The temperature profile was found to be an important factor in growing high-quality thin films. By controlling the growth parameters and optimizing the annealing temperature at different fabrication steps, we have succeeded, to date, in achieving cell efficiencies of 14.3% (open-circuit voltage (Voc): 0.82 V, short-circuit current (Jsc): 25.2 mA/cm2, fill factor (F.F.): 0.695, area: 1 cm2) with 5 µm, 11.4% (Voc: 0.77 V, Jsc: 23.7 mA/cm2, F.F.: 0.63, area: 1 cm2) with 1.5 µm and 11.2% (Voc: 0.77 V, Jsc: 23.1 mA/cm2, F.F.: 0.63, area: 1 cm2) with only 1 µm of CdTe layer thickness at an air mass of 1.5 without antireflection coatings. This is important for establishing a strong foundation before developing a new structure (e.g., glass/ITO/CdS/CdTe/ZnTe/Ag configuration) with a back surface field of wide-bandgap material (e.g., ZnTe).

  12. Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact

    Energy Technology Data Exchange (ETDEWEB)

    Rimmaudo, Ivan; Salavei, Andrei; Xu, Bing Lei; Di Mare, Simone; Romeo, Alessandro, E-mail: alessandro.romeo@univr.it

    2015-05-01

    Due to its high scalability and low production cost, CdTe has shown a significant potential for high mass production, resulting to be one of the cheapest photovoltaic technologies available. Efficiencies exceeding 20% have been obtained by the application of high temperature CdTe deposition. However tellurium scarcity is a limitation for mass production and one of the possibilities to overcome this is the reduction of absorber thickness. We have already demonstrated efficiencies above 11% for devices with 1.5 μm thick CdTe. Nowadays we have fabricated ultra-thin absorber devices performing more than 13% efficiencies. But what is most interesting is that we have observed a different electrical operation and stability, connected to the fact that the depletion region takes a very large part of the device. In this work many CdTe solar cells with a standard Cu/Au back contact, made with different absorber thicknesses, were prepared, stored in dark and tested at different aging times, showing different reactions to the aging and in particular a remarkable stability as CdTe thickness reduces. - Highlights: • CdTe/CdS devices with 0.7, 1 and 1.8 μm thick absorbers have been prepared. • Superior stability in dark aging of ultra thin CdTe devices has been registered. • Electrical analysis shows different behaviors and nature of defects for thin CdTe samples. • For 6 μm CdTe samples degradation is driven mainly by defect compensation. • For ultra thin CdTe samples, degradation is dominated by impurities from the front contact.

  13. Simulation of the expected performance of a seamless scanner for brain PET based on highly pixelated CdTe detectors.

    Science.gov (United States)

    Mikhaylova, Ekaterina; De Lorenzo, Gianluca; Chmeissani, Mokhtar; Kolstein, Machiel; Cañadas, Mario; Arce, Pedro; Calderón, Yonatan; Uzun, Dilber; Ariño, Gerard; Macias-Montero, José Gabriel; Martinez, Ricardo; Puigdengoles, Carles; Cabruja, Enric

    2014-02-01

    The aim of this work is the evaluation of the design for a nonconventional PET scanner, the voxel imaging PET (VIP), based on pixelated room-temperature CdTe detectors yielding a true 3-D impact point with a density of 450 channels/cm(3), for a total 6 336 000 channels in a seamless ring shaped volume. The system is simulated and evaluated following the prescriptions of the NEMA NU 2-2001 and the NEMA NU 4-2008 standards. Results show that the excellent energy resolution of the CdTe detectors (1.6% for 511 keV photons), together with the small voxel pitch (1 × 1 × 2 mm(3)), and the crack-free ring geometry, give the design the potential to overcome the current limitations of PET scanners and to approach the intrinsic image resolution limits set by physics. The VIP is expected to reach a competitive sensitivity and a superior signal purity with respect to values commonly quoted for state-of-the-art scintillating crystal PETs. The system can provide 14 cps/kBq with a scatter fraction of 3.95% and 21 cps/kBq with a scatter fraction of 0.73% according to NEMA NU 2-2001 and NEMA NU 4-2008, respectively. The calculated NEC curve has a peak value of 122 kcps at 5.3 kBq/mL for NEMA NU 2-2001 and 908 kcps at 1.6 MBq/mL for NEMA NU 4-2008. The proposed scanner can achieve an image resolution of ~ 1 mm full-width at half-maximum in all directions. The virtually noise-free data sample leads to direct positive impact on the quality of the reconstructed images. As a consequence, high-quality high-resolution images can be obtained with significantly lower number of events compared to conventional scanners. Overall, simulation results suggest the VIP scanner can be operated either at normal dose for fast scanning and high patient throughput, or at low dose to decrease the patient radioactivity exposure. The design evaluation presented in this work is driving the development and the optimization of a fully operative prototype to prove the feasibility of the VIP concept.

  14. Assembly of light-emitting diode based on hydrophilic CdTe quantum dots incorporating dehydrated silica gel.

    Science.gov (United States)

    Du, Jinhua; Wang, Chunlei; Xu, Xiaojing; Wang, Zhuyuan; Xu, Shuhong; Cui, Yiping

    2016-03-01

    Stable photoluminescence QD light-emitting diodes (QD-LEDs) were made based on hydrophilic CdTe quantum dots (QDs). A quantum dot-inorganic nanocomposite (hydrophilic CdTe QDs incorporating dehydrated silica gel) was prepared by two methods (rotary evaporation and freeze drying). Taking advantage of its viscosity, plasticity and transparency, dehydrated silica gel could be coated on the surface of ultraviolet (UV) light LEDs to make photoluminescence QD-LEDs. This new photoluminescence QD-LED, which is stable, environmentally non-toxic, easy to operate and low cost, could expand the applications of hydrophilic CdTe QDs in photoluminescence. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Blanket and Patterned Growth of CdTe on (211)Si Substrates by Metal-Organic Vapor Phase Epitaxy

    Science.gov (United States)

    2012-05-15

    REPORT Blanket and Patterned Growth Of CdTE On (211)Si Substrates By Metal-Organic Vapor Phase Epitaxy 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Metalorganic vapor phase epitaxy (MOVPE) of (211)B CdTe on (211)Si using intermediate Ge and ZnTe layers has been achieved for use as substrates for the...growth of HgCdTe infrared detector materials. The best (211)B CdTe films grown in this study display a low X-ray diffraction (XRD) rocking-curve

  16. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires.

    Science.gov (United States)

    Neretina, S; Hughes, R A; Devenyi, G A; Sochinskii, N V; Preston, J S; Mascher, P

    2008-05-07

    Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires.

  17. Formation of DX-centers in indium doped CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Tuerker, M.; Kronenberg, J.; Deicher, M., E-mail: manfred.deicher@tech-phys.uni-sb.de; Wolf, H.; Wichert, Th. [Universitaet des Saarlandes, Technische Physik (Germany)

    2007-06-15

    In CdTe, the achievable n-type doping is limited by the formation of DX-centers. A characteristic feature of DX-centers is the 'persistent photoconductivity (PPC)' which is created by illumination at low temperatures and caused by a metastable state of the DX-center. The DX-center and the PPC effect in n-type CdTe are theoretically explained by the 'large lattice relaxation model'. PAC measurements on In doped CdTe using {sup 111}In/{sup 111}Cd and, in addition, resistivity measurements on the same samples have been performed. Below 150 K, the samples showed a PPC effect that was accompanied by an increase of about 20% of the carrier concentration. This effect is not accompanied by any changes of the observed EFG. Possible explanations of the EFG observed, originally assigned to the DX-center, will be discussed. Finally, first reports on the investigation of DX-centers in CdTe using the radioactive isotope {sup 117}Cd decaying to {sup 117}In are presented.

  18. Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line

    Energy Technology Data Exchange (ETDEWEB)

    Siepchen, B., E-mail: bastian.siepchen@ctf-solar.com [CTF Solar GmbH, Industriestraße 2, 65779 Kelkheim (Germany); Drost, C.; Späth, B.; Krishnakumar, V.; Richter, H.; Harr, M. [CTF Solar GmbH, Industriestraße 2, 65779 Kelkheim (Germany); Bossert, S.; Grimm, M. [Roth and Rau AG, An der Baumschule 6-8, 09337 Hohenstein-Ernstthal (Germany); Häfner, K.; Modes, T.; Zywitzki, O.; Morgner, H. [Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277 Dresden (Germany)

    2013-05-01

    CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb{sub 2}Te{sub 3} based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb{sub 2}Te{sub 3} back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section.

  19. Characterization of Highly Efficient CdTe Thin Film Solar Cells by Low-Temperature Photoluminescence

    Science.gov (United States)

    Okamoto, Tamotsu; Matsuzaki, Yuichi; Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    1998-07-01

    Highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) method with a glass/ITO/CdS/CdTe/Cu-doped carbon/Ag structure were characterized by low-temperature photoluminescence (PL) measurement. A broad 1.42 eV band probably due to VCd Cl defect complexes appeared as a result of CdCl2 treatment. CdS/CdTe junction PL revealed that a CdSxTe1-x mixed crystal layer was formed at the CdS/CdTe interface region during the deposition of CdTe by CSS and that CdCl2 treatment promoted the formation of the mixed crystal layer. Furthermore, in the PL spectra of the heat-treated CdTe after screen printing of the Cu-doped carbon electrode, a neutral-acceptor bound exciton (ACu0, X) line at 1.590 eV was observed, suggesting that Cu atoms were incorporated into CdTe as effective acceptors after the heat treatment.

  20. Studies of recrystallization of CdTe thin films after CdCl{sub 2} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H.R.; Al-Jassim, M.M.; Abulfotuh, F.A.; Levi, D.H.; Dippo, P.C.; Dhere, R.G.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    CdTe thin films deposited by physical vapor deposition (PVD) and close-spaced sublimation (CSS) have been treated with CdCl{sub 2} at 350 and 400 C. Atomic force microscopy (AFM) analysis showed that the films started recrystallizing during the 350 C CdCl{sub 2} treatment. These results were confirmed by the presence of two lattice parameters, detected in X-ray diffraction (XRD) analysis. The PVD films treated at 400 C were completely recrystallized and grain growth was observed. The formation of Cd(S{sub 1{minus}x}Te{sub x}) alloy in these films was evidenced by the appearance of extra peaks close to the CdTe peaks in the diffraction patterns. No major changes were observed in the structural properties of CSS CdTe films treated at the same conditions. It was concluded that the effect of the CdCl{sub 2} treatment in the CdTe films is to promote recrystallization and grain growth, but only if enough lattice-strain energy is available (as is the case for PVD films). Time-resolved photoluminescence (TRPL) analysis showed, for PVD and CSS films, an increase in minority-carrier lifetime with the treatment, mainly at 400 C, probably due to elimination of deep levels within the band gap.

  1. Spray Deposition of High Quality CuInSe2 and CdTe Films: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Leisch, J.; Hersh, P.; Nekuda, J.; Ginley, D. S.

    2008-05-01

    A number of different ink and deposition approaches have been used for the deposition of CuInSe2 (CIS), Cu(In,Ga)Se2 (CIGS), and CdTe films. For CIS and CIGS, soluble precursors containing Cu, In, and Ga have been developed and used in two ways to produce CIS films. In the first, In-containing precursor films were sprayed on Mo-coated glass substrates and converted by rapid thermal processing (RTP) to In2Se3. Then a Cu-containing film was sprayed down on top of the In2Se3 and the stacked films were again thermally processed to give CIS. In the second approach, the Cu-, In-, and Ga-containing inks were combined in the proper ratio to produce a mixed Cu-In-Ga ink that was sprayed on substrates and thermally processed to give CIGS films directly. For CdTe deposition, ink consisting of CdTe nanoparticles dispersed in methanol was prepared and used to spray precursor films. Annealing these precursor films in the presence of CdCl2 produced large-grained CdTe films. The films were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Optimized spray and processing conditions are crucial to obtain dense, crystalline films.

  2. Characterization of a pixelated CdTe Timepix detector operated in ToT mode

    Science.gov (United States)

    Billoud, T.; Leroy, C.; Papadatos, C.; Pichotka, M.; Pospisil, S.; Roux, J. S.

    2017-01-01

    A 1 mm thick CdTe sensor bump-bonded to a Timepix readout chip operating in Time-over-Threshold (ToT) mode has been characterized in view of possible applications in particle and medical physics. The CdTe sensor layer was segmented into 256 × 256 pixels, with a pixel pitch of 55 μm. This CdTe Timepix device, of ohmic contact type, has been exposed to alpha-particles and photons from an 241Am source, photons from a 137Cs source, and protons of different energies (0.8–10 MeV) delivered by the University of Montreal Tandem Accelerator. The device was irradiated on the negatively biased backside electrode. An X-ray per-pixel calibration commonly used for this type of detector was done and its accuracy and resolution were assessed and compared to those of a 300 μm thick silicon Timepix device. The electron mobility-lifetime product (μeτe) of CdTe for protons of low energy has been obtained from the Hecht equation. Possible polarization effects have been also investigated. Finally, information about the homogeneity of the detector was obtained from X-ray irradiation.

  3. Application of Lithium Chloride Dopant in Fabrication of CdTe Solar Cells

    Science.gov (United States)

    Xu, Hang; Zeng, Guanggen; Feng, Lianghuan; Wu, Lili; Liu, Cai; Ren, Shengqiang; Li, Kang; Li, Bing; Li, Wei; Wang, Wenwu; Zhang, Jingquan

    2017-02-01

    We report use of lithium chloride (LiCl) as a non-Cd dopant to deal with the environmental issues associated with use of traditional CdCl2 dopant in CdTe solar cells. It has been found that, after LiCl treatment, device performance parameters including external quantum efficiency and conversion efficiency were improved considerably, being comparable to those of a counterpart treated with CdCl2. The optimal efficiency of 9.58% was obtained at 405°C, and V oc as high as ˜737.3 mV was obtained at 385°C. Thorough study of the properties of the CdTe film treated by LiCl by x-ray diffraction analysis, scanning electron microscopy, x-ray photoelectron spectroscopy, and secondary-ion mass spectroscopy further verified the feasibility of posttreatment with nontoxic LiCl for fabrication of CdTe photovoltaic devices. The doping level of p-type CdTe thin film was improved by lithium. This represents a nontoxic approach for fabrication of commercial CdS/CdTe thin-film solar cells with better performance.

  4. Transparent Ohmic Contacts for Solution-Processed, Ultrathin CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kurley, J. Matthew; Panthani, Matthew G.; Crisp, Ryan W.; Nanayakkara, Sanjini U.; Pach, Gregory F.; Reese, Matthew O.; Hudson, Margaret H.; Dolzhnikov, Dmitriy S.; Tanygin, Vadim; Luther, Joseph M.; Talapin, Dmitri V.

    2017-01-13

    Recently, solution-processing became a viable route for depositing CdTe for use in photovoltaics. Ultrathin (~500 nm) solar cells have been made using colloidal CdTe nanocrystals with efficiencies exceeding 12% power conversion efficiency (PCE) demonstrated by using very simple device stacks. Further progress requires an effective method for extracting charge carriers generated during light harvesting. Here, we explored solution-based methods for creating transparent Ohmic contacts to the solution-deposited CdTe absorber layer and demonstrated molecular and nanocrystal approaches to Ohmic hole-extracting contacts at the ITO/CdTe interface. We used scanning Kelvin probe microscopy to further show how the above approaches improved carrier collection by reducing the potential drop under reverse bias across the ITO/CdTe interface. Other methods, such as spin-coating CdTe/A2CdTe2 (A = Na, K, Cs, N2H5), can be used in conjunction with current/light soaking to improve PCE further.

  5. Effects of heat treatment on diffusion of Cu atoms into CdTe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Y. L. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Huang, S. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Kim, S. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Kioseoglou, G. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Kao, Y. H. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Compaan, A. D. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Grecu, D. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Albin, D. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    2000-06-19

    Angular dependence of x-ray fluorescence and x-ray absorption fine structure techniques have been used to study the diffusion of Cu atoms into the photovoltaic material CdTe. Depth profile, effective valency, and local structure of Cu atoms in a Cu-doped single crystal of CdTe were investigated before and after a second heat treatment. Enhanced Cu diffusion into the CdTe single crystal was observed as a result of heating at a moderate temperature around 200 degree sign C, resulting in a redistribution of the Cu impurities through a broader depth profile. Some of the Cu atoms are believed either to form small complexes with Te or occupy interstitial sites in the host but accompanied by a large local lattice distortion while others substitute for Cd on the cation sites. The results thus demonstrate that these nondestructive x-ray characterization methods are useful for probing microstructural changes in CdTe photovoltaic materials/devices in which some Cu-containing compounds are used as back contacts. (c) 2000 American Institute of Physics.

  6. A direct solution deposition approach to CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Miskin, Caleb K.; Dubois-Camacho, Angela; Reese, Matthew O.; Agrawal, Rakesh

    2016-01-01

    A direct solution deposition approach to CdTe thin films is presented. The difficulty of co-dissolving Te and desirable Cd salts is overcome through a diamine-thiol solvent mixture. Thin films of densely-packed, micron-sized grains are achieved after annealing without the need for chalcogen or CdCl2 vapor treatments.

  7. Three-dimensional defects in CdTe films obtained by pulsed laser deposition

    NARCIS (Netherlands)

    Sagan, P; Virt, IS; Zawislak, J; Rudyj, IO; Kuzma, M

    2004-01-01

    The quality of Cd chalcodenides epitaxial films can be enhanced seriously by applying a pulsed (electron beam or laser beam) method for ablation of targets. The structure of laser deposited CdTe layers was investigated by transmission high energy electron diffraction. This method is very useful for

  8. Growth and fabrication method of CdTe and its performance as a radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyojeong [Korea Atomic Energy Research Institute, Jeong-eup (Korea, Republic of); Sungkyunkwan University, Suwon (Korea, Republic of); Jeong, Manhee; Kim, Hansoo; Kim, Youngsoo; Ha, Jangho [Korea Atomic Energy Research Institute, Jeong-eup (Korea, Republic of); Chai, Jong-Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-01-15

    A CdTe crystal ingot doped with 2000 ppm of Cl was grown by using the low-pressure Bridgman (LPB) method at the Korea Atomic Energy Research Institute (KAERI). A Semiconductor detector as a radiation detection sensor with a size of 7 (W) x 6.5 (D) x 2 (H) mm{sup 3} was fabricated from the CdTe ingot. In addition, the properties of the CdTe sample were observed through four kinds of experiments to analyze its performance. The resistivity was obtained as 1.41 x 10{sup 10} Ωcm by using a Keithley 6517A high-precision electrometer. The mobility-life time products for electrons and holes were 3.137 x 10{sup -}'4 cm{sup 2}/V and 4.868 x 10{sup -5} cm{sup 2}/V, respectively. Finally, we achieved a 16.8% energy resolution at 59.5 keV for the {sup 241}Am gamma-ray source. The CdTe semiconductor detector grown at KAERI has a performance good enough to detect low-energy gamma-rays.

  9. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots.

    Science.gov (United States)

    Rezaei, B; Shahshahanipour, M; Ensafi, Ali A

    2016-06-01

    A rapid, simple and sensitive label-free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water-soluble glutathione-capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X-ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione-capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0-200.0 ng mL(-1) with a low limit of detection, 2.0 ng mL(-1) . The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fengqin [Key Laboratory of Colloid, Interface Science and Chemical Thermodynamics, Molecular Science Center, Institute of Chemistry, Chinese Academy of Sciences, Zhong Guan Cun, Bei Yi Jie 2, Beijing 100080 (China); Ran Yuliang [Department of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Pan Jia Yuan, Chao Yang Qu, Beijing 100021 (China); Zhou Zhuan [Department of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Pan Jia Yuan, Chao Yang Qu, Beijing 100021 (China); Gao Mingyuan [Key Laboratory of Colloid, Interface Science and Chemical Thermodynamics, Molecular Science Center, Institute of Chemistry, Chinese Academy of Sciences, Zhong Guan Cun, Bei Yi Jie 2, Beijing 100080 (China)

    2006-06-28

    Highly fluorescent CdTe quantum dots (Q-dots) stabilized by 3-mercaptopropionic acid (MPA) were prepared by an aqueous solution approach and used as fluorescent labels in detecting a cancer marker, carcinoembryonic antigen (CEA), expressed on human colon carcinoma cell line LS 180. Nonspecific adsorptions of CdTe Q-dots on carcinoma cells were observed and effectively eliminated by replacing MPA with a thiolated PEG (poly(ethylene glycol), Mn = 750) synthesized according to literature. It was unexpectedly found out that the PEG-coated CdTe Q-dots exhibited very strong and specific affinity to anti-CEA monoclonal antibody rch 24 (rch 24 mAb). The resultant CdTe-(rch 24 mAb) conjugates were successfully used in detections of CEA expressed on the surface of cell line LS 180. Further experiments demonstrated that the fluorescent CdTe Q-dots exhibited much better photostability and a brighter fluorescence than FITC, which consequently led to a higher efficiency in the cancer marker detection.

  11. D. C. electrical properties of vacuum-deposited CdTe films

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, S.; Barua, K.

    1982-06-18

    The current-voltage characteristics of vacuum-deposited CdTe films were studied as a function of film thickness (2500-13 000 A) at various temperatures (0-110/sup 0/C). The d.c. conduction mechanism was explained using a modified Poole-Frenkel equation.

  12. Hydrogen passivation of polycrystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, Benjamin

    2010-12-15

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V{sub OC} of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V{sub brk} of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V{sub brk}. Plasma simulations were carried out, which indicate that best V{sub OC} corresponds to a minimum in ion energy. V{sub OC} was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range ({<=}400 C) is slow and takes several hours for the V{sub OC} to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V{sub OC}, which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T{sub dep}=200-700 C and were characterized by Raman, ESR and V{sub OC} measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration

  13. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)

    2016-05-15

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  14. Grain boundaries analysis in polycrystalline silicon by TEM

    Energy Technology Data Exchange (ETDEWEB)

    Komninou, F.; Karakostas, T.; Bleris, G.L.; Economou, N.A. (Aristoteles University, Thessaloniki (Greece))

    1982-01-01

    Polycrystalline Si interfaces were examined within the CSL's approach. The rotation relationship of every bicrystal has been analyzed with the technique of the instrumental system and the small angle description has been used for the CSL characterization. The most frequently occuring descriptions are CSL' ..sigma..=3 coherent and incoherent twins, the later being microscopically coherent. Cases of multiple boundaries were also examined and interelations were found between low or high angle boundaries for CSL's with ..sigma..>3. A special case of interest is a ..sigma..=39 CSL which is formed from a combination of ..sigma..=13b and ..sigma..=3 and is a triclinic CSL lacking 180/sup 0/ rotational operations. The results presented indicate that for polycrystalline Si the CSL model could be used in describing the interfaces occuring.

  15. New multiphase equation of state for polycrystalline quartz

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, J.C.; Lyon, S.P.

    1990-10-01

    We have generated separate equations of state (EOS's) for the alpha quartz, coesite, and stishovite phases of polycrystalline quartz (SiO{sub 2}) using the computer program GRIZZLY. We also modified the program GRIZZLY to combine two single-phase EOS's for a given material into a single two-phase EOS via minimization of the Gibbs free energy. This new version of GRIZZLY has been used to generate a three-phase SESAME type EOS for polycrystalline quartz using the three EOS's mentioned above. All four of the EOS's produced for SiO{sub 2} are now available on request. 17 refs., 4 figs., 1 tab.

  16. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar...... pressure at 2250°C in diffusion limited mass transport regime generating a convex shaped growth form of the solid-gas interface leading to lateral expansion of virtually [001] oriented crystallites. Growth at 2350°C led to the stabilization of 6H polytypic grains. The micropipe density in the bulk strongly......The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15...

  17. Real-time X-ray Diffraction Measurements of Shocked Polycrystalline Tin and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Dane V. Morgan, Don Macy, Gerald Stevens

    2008-11-22

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35-ns pulse. The characteristic Kα lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic Kβ line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3-mm by 6-mm spot and 1° full-width-half-maximum (FWHM) angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5°. A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device (CCD) camera through a coherent fiberoptic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1-mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic (fcc) aluminum lattice with no phase transformation.

  18. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    OpenAIRE

    Zain, R.M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pi...

  19. Cell and band structures in cold rolled polycrystalline copper

    DEFF Research Database (Denmark)

    Ananthan, V.S.; Leffers, Torben; Hansen, Niels

    1991-01-01

    The effect of plastic strain on the deformation microstructure has been investigated in polycrystalline copper rolled at room temperature to 5, 10, 20, and 30% reduction in thickness equivalent strain 0.06-0.42). Results from transmission electron microscopy (TEM) observations show that dense...... on {111}. Finally, the evolution of the deformation microstructure in copper is compared with that observed in other face centred cubic metals, especially aluminium....

  20. Modified Sachs's Model of Deformation of Polycrystalline Magnesium

    Science.gov (United States)

    Kesarev, A. G.; Vlasova, A. M.

    2017-09-01

    There are a large number of approaches to a description of work hardening of metal polycrystals with various crystal lattices. In the present work, Sachs's model is generalized to uniaxial tension/compression of polycrystalline magnesium with hexagonal densely packed crystal lattice. The tensile yield stress is estimated taking into account two deformation modes: (0001) easy basal slip and (10\\overline{1}2) twinning.

  1. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    OpenAIRE

    2014-01-01

    Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materia...

  2. EBIC AND DLTS MEASUREMENTS OF SI-AND POLYCRYSTALLINE SILICON

    OpenAIRE

    Bary, A.; Hamet, J.; Ihlal, A.; Chermant, J.; Nouet, G.

    1988-01-01

    Influence of grain boundaries on the electronic properties of silicon has been studied by electron-beam induced current (EBIC), thermally stimulated capacitance (TSCAP) and deep-level transient spectroscopy (DLTS). Low-angle grain boundaries taken from as-grown polycrystalline wafers for solar cells have been analyzed by EBIC and their behaviors have been compared after the junction diffusion treatment. This treatment gives a decrease of the local diffusion length and recombination velocity o...

  3. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    Science.gov (United States)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  4. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  5. Magnetostriction of permalloy epitaxial and polycrystalline thin films

    Directory of Open Access Journals (Sweden)

    Futamoto Masaaki

    2013-01-01

    Full Text Available Permalloy epitaxial films of (111, (100, and (110 orientations and a polycrystalline thin film are prepared. Sinusoidal waveforms of magnetostriction are observed when the polycrystalline and the (111oriented epitaxial films are measured under rotating magnetic fields ranging from 10 to 1000 Oe. On the contrary, the (100- and the (110-oriented films, respectively, show a triangle waveform and a waveform consisting of a mixture of triangular and sinusoidal shapes under low magnetic fields. The waveform variation is interpreted by considering the magnetization structure of magnetically unsaturated film with an in-plane magnetic symmetry related with the crystallographic orientation. The waveforms deformed from sinusoidal shape vary to sinusoidal with increasing the magnetic field. Magnetically saturated (100- and (110-oriented films show sinusoidal waveforms. The saturated magnetostriction values are determined as ʎs = 5 × 10–6, 4 × 10–6, 3 × 10–6, and 6 × 10–6 for the (111, the (100, the (110 epitaxial and the polycrystalline films, respectively.

  6. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130023 (China); Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu Dongdong [1st Hopstail affiliated to Jilin University, Jilin University, Changchun 130023 (China); Zhou Jianguang [Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310058 (China)], E-mail: liuxy@jlu.edu.cn, E-mail: jgzhou70@126.com

    2008-06-18

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  7. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    National Research Council Canada - National Science Library

    Dzhagan, Volodymyr; Lokteva, Irina; Himcinschi, Cameliu; Jin, Xiaoping; Kolny-Olesiak, Joanna; Zahn, Dietrich RT

    2011-01-01

    ...) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO...

  8. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe PV devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  9. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  10. Highly luminescent mono- and multilayers of immobilized CdTe nanocrystals: controlling optical properties through post chemical surface modification.

    Science.gov (United States)

    Tsuruoka, Takaaki; Takahashi, Rena; Nakamura, Toshihiro; Fujii, Minoru; Akamatsu, Kensuke; Nawafune, Hidemi

    2008-04-14

    The significant fluorescence enhancement of immobilized CdTe nanocrystals through chemical surface modifications is described, enabling us to fabricate stable, highly luminescent thin films and patterns of nanocrystal mono- and mutilayers.

  11. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Science.gov (United States)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi

    2016-10-01

    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  12. Hydrothermal synthesis of CdTe QDs: Their luminescence quenching in the presence of bio-molecules and observation of bistable memory effect in CdTe QD/PEDOT:PSS heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Khatei, Jayakrishna [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Koteswara Rao, K.S.R., E-mail: ksrkrao@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-17

    Highlights: {center_dot} CdTe QD has been prepared by modified hydrothermal method in room ambient. {center_dot} Luminescence quenching of CdTe QDs in the presence of bio-molecules demonstrated. {center_dot} The CdTe QDs shows memory effect (electrical bistability). - Abstract: We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots.

  13. Simultane Untersuchung der Diffusion von intrinsischen und extrinsischen Defekten in CdTe mittels ortsaufgelöster Photolumineszenzspektroskopie

    OpenAIRE

    2013-01-01

    Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von Diffusionsphänomenen in CdTe. Radiotracerexperimente, bei denen mit Gruppe-I-Elementen dotiertes CdTe unter Cd-Dampfdruck getempert wurde, ergaben Konzentrationsprofile, welche die Diffusion der Fremdatome gegen ihren Konzentrationsgradienten voraussetzen (Uphill-Diffusion). In früheren Arbeiten wurde ein Modell entwickelt, das diese Konzentrationsprofile quantitativ mit der Diffusion der intrinsischen Defekte des Cd-Untergitter...

  14. Interface Characterization of Single-Crystal CdTe Solar Cells With VOC > 950 mV

    Energy Technology Data Exchange (ETDEWEB)

    Burst, James M.; Duenow, Joel N.; Kanevce, Ana; Moutinho, Helio R.; Jiang, Chun Sheng; Al-Jassim, Mowafak M.; Reese, Matthew Owen; Albin, David S.; Aguiar, Jeffrey A.; Colegrove, Eric; Ablekim, Tursun; Swain, Santosh K.; Lynn, Kelvin G.; Kuciauskas, Darius; Barnes, Teresa M.; Metzger, Wyatt K.

    2016-11-01

    Advancing CdTe solar cell efficiency requires improving the open-circuit voltage (VOC) above 900 mV. This requires long carrier lifetime, high hole density, and high-quality interfaces, where the interface recombination velocity is less than about 104 cm/s. Using CdTe single crystals as a model system, we report on CdTe/CdS electrical and structural interface properties in devices that produce open-circuit voltage exceeding 950 mV.

  15. Band offsets for mismatched interfaces: The special case of ZnO on CdTe (001)

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, John E.; Kaspar, Tiffany C.; Droubay, Timothy C. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Varga, Tamas [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2013-11-15

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications. Although CdTe is zinc blende with cubic lattice constant a = 6.482 Å while ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å, (001)-oriented cubic zinc blende ZnO films could be stabilized epitaxially on a CdTe (001) surface in an √2 × √2 R45° configuration with a lattice mismatch of <0.5%. Modeling such a configuration allows density-functional total-energy electronic-structure calculations to be performed on several interface arrangements (varying terminations and in-plane fractional translations) to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe(001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a Type II alignment as needed, for example, in solar cells. To corroborate some of these predictions, thin layers of ZnO were deposited on CdTe(001) by pulsed laser deposition, and the band alignments of the resulting heterojunctions were determined from x-ray photoelectron spectroscopy measurements. Although zinc blende ZnO could not be confirmed, the measured valence band offset (2.0–2.2 eV) matched well with the predicted value.

  16. Band offsets for mismatched interfaces. The special case of ZnO on CdTe (001)

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaspar, Tiffany C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Droubay, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Varga, Tamas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-02

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications, but appear difficult to achieve given the rather different crystal structures (CdTe is zinc blende with cubic lattice constant a = 6.482 Å, ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å.) However, ZnO has been reported to occur in some epitaxially stabilized films in the zinc blende structure with an fcc primitive lattice constant close to the hexagonal a value. Observing that this value equals half of the CdTe cubic lattice constant to within 1%, we propose that (001)-oriented cubic ZnO films could be grown epitaxially on a CdTe (001) surface in an R45° √2 x √2 configuration. Many terminations and alignments (in-plane fractional translations) are possible, and we describe density-functional total-energy electronic-structure calculations on several configurations to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe (001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a type II alignment as needed, for example, in solar cells. We also describe recent experiments that corroborate some of these predictions.

  17. Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing

    Energy Technology Data Exchange (ETDEWEB)

    Albin, D.; del Cueto, J.

    2011-03-01

    In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

  18. Kardar-Parisi-Zhang universality, anomalous scaling and crossover efects in the growth of CdTe thin films

    OpenAIRE

    Almeida, Renan Augusto Lisbôa

    2015-01-01

    A relation between the mound evolution and large-wavelength fluctuations at CdTe surface has been established. One finds that short-length scales are dictated by an interplay between the effects of the for- mation of defects at colided boundaries of neighboring grains and a relaxation process which stems from the diffusion and deposition of particles (CdTe molecules) torward these regions. A Kinetic Monte Carlo model corroborates these reasonings. As T is increased, that competition gives ris...

  19. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice.

    Science.gov (United States)

    Li, Xiaohui; Yang, Xiangrong; Yuwen, Lihui; Yang, Wenjing; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui

    2016-07-01

    Fluorescent quantum dots (QDs) are highly promising nanomaterials for various biological and biomedical applications because of their unique optical properties, such as robust photostability, strong photoluminescence, and size-tunable fluorescence. Several studies have reported the in vivo toxicity of QDs, but their effects on the male reproduction system have not been examined. In this study, we investigated the reproductive toxicity of cadmium telluride (CdTe) QDs at a high dose of 2.0 nmol per mouse and a low dose of 0.2 nmol per mouse. Body weight measurements demonstrated there was no overt toxicity for both dose at day 90 after exposure, but the high dose CdTe affected body weight up to 15 days after exposure. CdTe QDs accumulated in the testes and damaged the tissue structure for both doses on day 90. Meanwhile, either of two CdTe QDs treatments did not significantly affect the quantity of sperm, but the high dose CdTe significantly decreased the quality of sperm on day 60. The serum levels of three major sex hormones were also perturbed by CdTe QDs treatment. However, the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those mated with untreated male mice. These results suggest that CdTe QDs can cause testes toxicity in a dose-dependent manner. The low dose of CdTe QDs is relatively safe for the reproductive system of male mice. Our preliminary result enables better understanding of the reproductive toxicity induced by cadmium-containing QDs and provides insight into the safe use of these nanoparticles in biological and environmental systems.

  20. Solution-Processed, Ultrathin Solar Cells from CdCl3(-)-Capped CdTe Nanocrystals: The Multiple Roles of CdCl3(-) Ligands.

    Science.gov (United States)

    Zhang, Hao; Kurley, J Matthew; Russell, Jake C; Jang, Jaeyoung; Talapin, Dmitri V

    2016-06-22

    Solution-processed CdTe solar cells using CdTe nanocrystal (NC) ink may offer an economically viable route for large-scale manufacturing. Here we design a new CdCl3(-)-capped CdTe NC ink by taking advantage of novel surface chemistry. In this ink, CdCl3(-) ligands act as surface ligands, sintering promoters, and dopants. Our solution chemistry allows obtaining very thin continuous layers of high-quality CdTe which is challenging for traditional vapor transport methods. Using benign solvents, in air, and without additional CdCl2 treatment, we obtain a well-sintered CdTe absorber layer from the new ink and demonstrate thin-film solar cells with power conversion efficiency over 10%, a record efficiency for sub-400 nm thick CdTe absorber layer.

  1. Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    Science.gov (United States)

    Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.

    1984-01-01

    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.

  2. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Juan P Monrás

    Full Text Available The vast application of fluorescent semiconductor nanoparticles (NPs or quantum dots (QDs has prompted the development of new, cheap and safer methods that allow generating QDs with improved biocompatibility. In this context, green or biological QDs production represents a still unexplored area. This work reports the intracellular CdTe QDs biosynthesis in bacteria. Escherichia coli overexpressing the gshA gene, involved in glutathione (GSH biosynthesis, was used to produce CdTe QDs. Cells exhibited higher reduced thiols, GSH and Cd/Te contents that allow generating fluorescent intracellular NP-like structures when exposed to CdCl(2 and K(2TeO(3. Fluorescence microscopy revealed that QDs-producing cells accumulate defined structures of various colors, suggesting the production of differently-sized NPs. Purified fluorescent NPs exhibited structural and spectroscopic properties characteristic of CdTe QDs, as size and absorption/emission spectra. Elemental analysis confirmed that biosynthesized QDs were formed by Cd and Te with Cd/Te ratios expected for CdTe QDs. Finally, fluorescent properties of QDs-producing cells, such as color and intensity, were improved by temperature control and the use of reducing buffers.

  3. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe.

    Science.gov (United States)

    Bang, Jin Ho; Kamat, Prashant V

    2009-06-23

    CdSe and CdTe nanocrystals are linked to nanostructured TiO2 films using 3-mercaptopropionic acid as a linker molecule for establishing the mechanistic aspects of interfacial charge transfer processes. Both these quantum dots are energetically capable of sensitizing TiO2 films and generating photocurrents in quantum dot solar cells. These two semiconductor nanocrystals exhibit markedly different external quantum efficiencies ( approximately 70% for CdSe and approximately 0.1% for CdTe at 555 nm). Although CdTe with a more favorable conduction band energy (E(CB) = -1.0 V vs NHE) is capable of injecting electrons into TiO2 faster than CdSe (E(CB) = -0.6 V vs NHE), hole scavenging by a sulfide redox couple remains a major bottleneck. The sulfide ions dissolved in aqueous solutions are capable of scavenging photogenerated holes in photoirradiated CdSe system but not in CdTe. The anodic corrosion and exchange of Te with S dominate the charge transfer at the CdTe interface. Factors that dictate the efficiency and photostability of CdSe and CdTe quantum dots are discussed.

  4. High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices

    CERN Document Server

    Watanabe, Shin; Aono, Hiroyuki; Takeda, Shin'ichiro; Odaka, Hirokazu; Kokubun, Motohide; Takahashi, Tadayuki; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Onishi, Mitsunobu; Kuroda, Yoshikatsu

    2008-01-01

    We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was ob...

  5. Band diagrams and performance of CdTe solar cells with a Sb2Te3 back contact buffer layer

    Directory of Open Access Journals (Sweden)

    Songbai Hu

    2011-12-01

    Full Text Available Sb2Te3 thin films were prepared by vacuum co-evaporation and the crystallinity of the films was greatly improved after annealing at 573 K in N2 ambient. Then they were deposited on the CdTe thick films. Band diagrams of the as-deposited and annealed CdTe/Sb2Te3 interfaces were constructed. Consequently, Sb2Te3 was used as a back contact layer for CdTe thin film solar cells and the cell performance was investigated. It was found that the Sb impurities accumulated in the CdTe grain boundaries diffuse deeply in the CdTe layer, and more photogenerated electrons and holes are separated by the segregated SbCd+ donors into the GBs. What is more, the doping concentration in the vicinity of the CdTe/CdS heterojunction increases for the formation of substitutional SbTe- acceptors under the Cd-rich conditions. For the introduction of the p-type Sb2Te3 layers as the back contact to the CdTe thin film solar cells, the performance of CdTe thin film solar cells has been greatly improved and an efficiency of 13.1% (FF=62.3%, Jsc=25.8 mA/cm2, Voc= 815.8 mV obtained.

  6. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  7. First Principle Calculation for the Electronic Bands and Absorption of CdTe1-xSbx

    Institute of Scientific and Technical Information of China (English)

    WANG Long; HUANG Zheng; MA Huan-feng; QIANG Wei-rong; PAN Min

    2010-01-01

    The lattice parameters for the derivatives of cadmium telluride, CdTe1-xSbx, with the zinc blend crystal structure are calculated using the generalized gradient approximation method; which is based on the density functional theory (DFT). The effects of antimony (Sb) on the lattices, electric bands, electronic state density, absorption spectroscopy, and band gap between the valence band maximum (VBM) and the conduction band minimum (CBM) of CdTe1-xSbx are discussed. The results show that the antimonic atoms in the lattice are advantageous in promoting the hole concentration and conductivities of CdTe1-xSbx. The increase of the Sb content in CdTe1-xSbx reduces the interaction among Cd, Te, and Sb; resulting in a decreased binding energy within CdTe1-xSbx as well as an increase in the electronic gap. Also discussed are the mechanics for the lattice phase change of CdTe1-xSbx at x=0.5.

  8. Effect of Cadion 1B on the Spectrum of Mercaptoacetic Acid-stabilized CdTe Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WEN Li-Qun; ZHOU Xing-Wang; L(U) Jian-Quan

    2008-01-01

    The effect of cadion 1B (4-nitro-benzene-diazo-amino-azobenzene) on the fluorescent and absorption spectros- copy of mercaptoacetic acid-stabilized CdTe quantum dots (CdTe QD) in aqueous media was studied. Surfactant, medium, dosages of the cadion 1B, pH and thermodynamics parameters were also examined. The experimental re-sults showed that when cadion 1B was added into the CdTe QD solution, a new absorption peak was observed, and the fluorescence of CdTe QD was quenched to some extent, suggesting that there exist an interaction between cadion 1B and CdTe QD. The apparent equilibrium constant at room temperature was calculated to be 1.095×106 L·mol-1, and the coverage ratio of cadion IB on the surface of CdTe QD was estimated as 45%. Thermodynamic calculations revealed that the interaction was a spontaneous process in which electrostatic interactions play a major role.

  9. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Shi Lixin

    2011-01-01

    Full Text Available Abstract Cadmium telluride quantum dots (Cdte QDs have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  10. Highly refractory heat-insulating articles based on polycrystalline oxide fibers (review)

    Energy Technology Data Exchange (ETDEWEB)

    Dergaputskaya, L.A.; Degtyareva, E.V.; Dubinko, O.A.; Kalinovskaya, I.N.; Serova, L.V.

    1986-05-01

    The authors discuss the production of polycrystalline fibers from highly refractory oxides, mainly alumina and zirconium dioxide which are the most readily available and the cheapest materials, but highly refractory fibers may be obtained also from other oxides. The fibers are obtained in the monoand polycrystalline forms and the preparation methods for polycrystalline highly refractory fibers are described in some detail. The properties for the main types are given. An addition of small amounts of alumina, polycrystalline fibers to mullite-siliceous glass fiber has a significant influence on the reduction in the shrinkage.

  11. Nonradiative and Radiative Recombination in CdS Polycrystalline Structures

    Directory of Open Access Journals (Sweden)

    E. Gaubas

    2013-01-01

    Full Text Available Properties of polycrystalline CdS layers, employed in formation of the CdS-Cu2S heterostructures, have been studied by combining contactless techniques of the time and spectrally resolved photoluminescence (TR-PL spectroscopy and microwave-probed photoconductivity (MW-PC transients. The confocal microscopy has been employed to correlate the homogeneity of photoluminescence and grain size in CdS layers. Three types of samples with crystallite grain size of <1 μm (the I-type and of 2–10 μm of homogeneous (II-type and inhomogeneous (III-type grain distribution have been separated. The simultaneous record of MW-PC and TR-PL responses ensures the same sampling area on the layer under investigation, as both (MW-PC and TR-PL signals are generated by the same UV laser excitation beam. Two PL bands peaked at 500 and 700 nm were revealed. It has been demonstrated that photoluminescence intensity strongly depends on the properties of the polycrystalline 15–26 μm thick CdS layers with equilibrium carrier density of about 1.5×1013 cm−3, which serve as the substrates to form CdS-Cu2S junctions. The different carrier decay components were ascribed to different microareas with characteristic MW-PC and PL decay lifetimes of 2–10 ns, ascribed to microcrystallites with PL instantaneous decay lifetimes of 40–200 ns, and MW-PC decay lifetimes in the range of 100–1000 μs attributed to the inter-crystallite areas of CdS polycrystalline material.

  12. High performance p-i-n CdTe and CdZnTe detectors

    CERN Document Server

    Khusainov, A K; Ilves, A G; Morozov, V F; Pustovoit, A K; Arlt, R D

    1999-01-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35 deg. C cooling (by a Peltier cooler of 15x15x10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm sup 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm sup 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  13. Energy and coincidence time resolution measurements of CdTe detectors for PET

    Science.gov (United States)

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J. G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-02-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at -8°C with an applied bias voltage of -1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration.

  14. Structural phase transition of CdTe: an ab initio study.

    Science.gov (United States)

    Alptekin, Sebahaddin

    2013-01-01

    A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.

  15. CdTe detector efficiency calibration using thick targets of pure and stable compounds

    Science.gov (United States)

    Chaves, P. C.; Taborda, A.; Reis, M. A.

    2012-02-01

    Quantitative PIXE measurements require perfectly calibrated set-ups. Cooled CdTe detectors have good efficiency for energies above those covered by Si(Li) detectors and turn on the possibility of studying K X-rays lines instead of L X-rays lines for medium and eventually heavy elements, which is an important advantage in various cases, if only limited resolution systems are available in the low energy range. In this work we present and discuss spectra from a CdTe semiconductor detector covering the energy region from Cu (K α1 = 8.047 keV) to U (K α1 = 98.439 keV). Pure thick samples were irradiated with proton beams at the ITN 3.0 MV Tandetron accelerator in the High Resolution High Energy PIXE set-up. Results and the application to the study of a Portuguese Ossa Morena region Dark Stone sample are presented in this work.

  16. Induced recrystallization of CdTe thin films deposited by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Mayo, B. [Southern University and AM College, Harding Boulevard, Baton Rouge, Louisiana 70813 (United States)

    1999-03-01

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350&hthinsp;{degree}C and completely recrystallized after the same treatment at 400&hthinsp;{degree}C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures. {copyright} {ital 1999 American Institute of Physics.}

  17. Analyses of photoluminescence spectra of CdTe thin films at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad-Bitar, R. [University of Jordan, Amman (Jordan); Moutinho, H.; Abulfotuh, F.; Kazmerski, L. [Solar Energy Research Inst., Golden, CO (United States)

    1995-11-01

    Photoluminescence (PL) spectra of thin films of CdTe grown on glass by evaporation have been obtained at different laser powers and at different temperatures near and to the red end of the band gap. We suggest an analytical method which deconvolutes the PL spectrum into peaks corresponding to the main electronic transitions. Each spectrum was analytically fitted to eight Gaussian peaks. Gaussian peaks have been found to give the best fit to the spectrum. The quality of the fit can be checked by the fact that the positions and the widths of the eight peaks of each PL spectrum should agree with the fit to another spectrum taken at a different excitation power or a different sample temperature. These results may help to identify these peaks and suggest a model for the shallow electrically active states between the conduction and valance bands of CdTe thin films. (Author)

  18. CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form

    Science.gov (United States)

    Vaishnavi, E.; Renganathan, R.

    2013-11-01

    We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14 μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15 μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%.

  19. Temperature dependence of dc photoconductivity in CdTe thin films

    Indian Academy of Sciences (India)

    Pradip Kumar Kalita

    2003-06-01

    The temperature dependence of dc photoconductivity in the measuring range 303–417 K has been studied in CdTe thin films having thickness < 4000 Å. The photoactivation energy decreases in dark which is explained on the basis of grain boundary (GB) effect. The current lost to recombination at GB space charge region causes a negative effect on the photosensitivity of the films. A decrease in photosensitivity with increase in temperature is attributed to the reduction of photoexcitation process. It is observed that the minority carrier lifetime varies inversely with light intensity which supports the sublinear relationship of photoconductivity with the intensity of light and thereby confirms the defect-controlled photoconductivity in CdTe thin films.

  20. Improvement of the sensitivity of CdTe detectors in the high energy regions

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Hiroshi; Ikegami, Kazunori; Takashima, Kazuo; Usami, Teruo [Mitsubishi Electric Corp., Tokyo (Japan); Yamamoto, Takayoshi

    1996-07-01

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of {sup 137}Cs (662keV) and {sup 60}Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  1. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    OpenAIRE

    Matin, M.A.; Tomal, M. U.; A. M. Robin; N. Amin

    2013-01-01

    This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF) using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures). A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF ...

  2. Redetermination of Ba2CdTe3 from single-crystal X-ray data

    Directory of Open Access Journals (Sweden)

    Min Yang

    2012-10-01

    Full Text Available The previous structure determination of the title compound, dibarium tritelluridocadmate, was based on powder X-ray diffraction data [Wang & DiSalvo (1999. J. Solid State Chem. 148, 464–467]. In the current redetermination from single-crystal X-ray data, all atoms were refined with anisotropic displacement parameters. The previous structure report is generally confirmed, but with some differences in bond lengths. Ba2CdTe3 is isotypic with Ba2MX3 (M = Mn, Cd; X = S, Se and features 1∞[CdTe2/2Te2/1]4− chains of corner-sharing CdTe4 tetrahedra running parallel [010]. The two Ba2+ cations are located between the chains, both within distorted monocapped trigonal–prismatic coordination polyhedra. All atoms in the structure are located on a mirror plane.

  3. A TEM investigation of the lattice defects and exfoliation in hydrogen-implanted CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, P.R. [Department of Physics, University of Port Elizabeth, P.O. Box 1600, Port Elizabeth 6001 (South Africa)]. E-mail: pearl.berndt@upe.ac.za; Neethling, J.H. [Department of Physics, University of Port Elizabeth, P.O. Box 1600, Port Elizabeth 6001 (South Africa); Franklyn, C.B. [Radiation Utilisation Group, Nuclear Technology Department, NECSA, Pretoria (South Africa); Zandbergen, H.W. [National Centre for HREM, Delft University of Technology, Delft (Netherlands)

    2004-11-15

    This study focuses on characterizing the defects associated with 400 keV hydrogen-implantation of CdTe, at a dose of 1 x 10{sup 16} H{sup +} cm{sup -2} to 5 x 10{sup 16} H{sup +} cm{sup -2}, with subsequent annealing. Transmission electron microscopy (TEM) and a hybrid diffraction technique, large-angle convergent-beam electron diffraction (LACBED), were used in the characterization process. Extended defects resulting from the hydrogen-implantation and annealing process include dislocations, microcracks and bubbles. Microcrack and bubble formation occurs on the cleavage planes of CdTe. Exfoliation is achieved at the higher implantation dose. High-resolution electron microscopy was used in the microstructural analysis of the microcracks. LACBED of the implanted material containing bubbles revealed a highly strained lattice with evidence of lattice distortion in-plane and in the direction of implantation.

  4. Identification of critical stacking faults in thin-film CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Su-Hyun; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Soon, Aloysius [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Abbas, Ali; Walls, John M., E-mail: j.m.wall@loughborough.ac.uk [Centre for Renewable Energy Systems Technology, School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2014-08-11

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl{sub 2} is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

  5. Optical Properties of Al- and Sb-Doped CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Nondoped and (Al, Sb-doped CdTe thin films with 0.5, 1.5, and 2.5  wt.%, respectively, were deposited by thermal evaporation technique under vacuum onto Corning 7059 glass at substrate temperatures ( of room temperature (RT and 423 K. The optical properties of deposited CdTe films such as band gap, refractive index (n, extinction coefficient (, and dielectric coefficients were investigated as function of Al and Sb wt.% doping, respectively. The results showed that films have direct optical transition. Increasing and the wt.% of both types of dopant, the band gap decrease but the optical is constant as n, and real and imaginary parts of the dielectric coefficient increase.

  6. Effects of Stoichiometry in Undoped CdTe Heteroepilayers on Si

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, Timothy A.; Colegrove, Eric; Stafford, Brian; Gao, Wei; Sivananthan, Siva; Kuciauskas, Darius; Moutinho, Helio; Farrell, Stuart; Barnes, Teresa

    2015-06-14

    Crystalline CdTe layers have been grown heteroepitaxially onto crystalline Si substrates to establish material parameters needed for advanced photovoltaic (PV) device development and related simulation. These studies suggest that additional availability of the intrinsic anion (i.e., Te) during molecular beam epitaxy deposition can improve structural and optoelectronic quality of the epilayer and the interface between Si substrate and the epilayer. This is seen most notably for thin CdTe epitaxial films (<; ~10 micrometers). Although these observations are foundationally important, they are also relevant to envisioned high-performance multijunction II-VI alloy PV devices-where thin layers will be required to achieve production costs aligned with market constraints.

  7. Photoinduced interaction between MPA capped CdTe QDs and certain anthraquinone dyes

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeeswari, S.; Asha Jhonsi, M.; Kathiravan, A. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Renganathan, R., E-mail: rrengas@gmail.co [School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India)

    2011-04-15

    Photoinduced interaction of mercapto propionic acid (MPA) capped CdTe quantum dots (QDs) with certain anthraquinone dyes namely alizarin, alizarin red S, acid blue 129 and uniblue has been studied by steady state and time resolved fluorescence measurements. Addition of anthraquinone dyes to CdTe QDs results in the reduction of electron hole recombination has been observed (i.e., fluorescence quenching). The Stern-Volmer constant (K{sub SV}), quenching rate constant (k{sub q}) and association constants (K) were obtained from fluorescence quenching data. The interaction of anthraquinone dyes with QDs occurs through static quenching was confirmed by unaltered fluorescence lifetime. The occurrence of electron transfer quenching mechanism has been proved by the negative free energy change ({Delta}G{sub et}) obtained as per the Rehm-Weller equation.

  8. Recent Progress in Nanoelectrical Characterizations of CdTe and Cu(In,Ga)Se2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chun-Sheng; To, Bobby; Glynn, Stephen; Mahabaduge, Hasitha; Barnes, Teresa; Al-Jassim, Mowafak M.

    2016-11-21

    We report two recent nanoelectrical characterizations of CdTe and Cu(In, Ga)Se2 (CIGS) thin-film solar cells by developing atomic force microscopy-based nanoelectrical probes. Charges trapped at defects at the CdS/CdTe interface were probed by Kelvin probe force microscopy (KPFM) potential mapping and by ion-milling the CdTe superstrate device in a bevel glancing angle of ~0.5 degrees. The results show randomly distributed donor-like defects at the interface. The effect of K post-deposition treatment on the near-surface region of the CIGS film was studied by KPFM potential and scanning spreading resistance microscopy (SSRM) resistivity mapping, which shows passivation of grain-boundary potential and improvement of resistivity uniformity by the K treatment.

  9. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots

    Science.gov (United States)

    Kruse, Carsten; Pacuski, Wojciech; Jakubczyk, Tomasz; Kobak, Jakub; Gaj, Jan A.; Frank, Kristian; Schowalter, Marco; Rosenauer, Andreas; Florian, Matthias; Jahnke, Frank; Hommel, Detlef

    2011-07-01

    Micropillars of different diameters have been prepared by focused ion beam milling out of a planar ZnTe-based cavity. The monolithic epitaxial structure, deposited on a GaAs substrate, contains CdTe quantum dots embedded in a ZnTe λ-cavity delimited by two distributed Bragg reflectors (DBRs). The high refractive index material of the DBR structure is ZnTe, while for the low index material a short-period triple MgTe/ZnTe/MgSe superlattice is used. The CdTe quantum dots are formed by a novel Zn-induced formation process and are investigated by scanning transmission electron microscopy. Micro-photoluminescence measurements show discrete optical modes for the pillars, in good agreement with calculations based on a vectorial transfer matrix method. The measured quality factor reaches a value of 3100.

  10. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Carsten; Pacuski, Wojciech; Hommel, Detlef [Institute of Solid State Physics, Semiconductor Epitaxy, University of Bremen, PO Box 330 440, D-28334 Bremen (Germany); Jakubczyk, Tomasz; Kobak, Jakub; Gaj, Jan A [Institute of Experimental Physics, University of Warsaw, Hoza 69, PL-00-681 Warszawa (Poland); Frank, Kristian; Schowalter, Marco; Rosenauer, Andreas [Institute of Solid State Physics, Electron Microscopy, University of Bremen, PO Box 330 440, D-28334 Bremen (Germany); Florian, Matthias; Jahnke, Frank, E-mail: ckruse@ifp.uni-bremen.de [Institute of Theoretical Physics, University of Bremen, PO Box 330 440, D-28334 Bremen (Germany)

    2011-07-15

    Micropillars of different diameters have been prepared by focused ion beam milling out of a planar ZnTe-based cavity. The monolithic epitaxial structure, deposited on a GaAs substrate, contains CdTe quantum dots embedded in a ZnTe {lambda}-cavity delimited by two distributed Bragg reflectors (DBRs). The high refractive index material of the DBR structure is ZnTe, while for the low index material a short-period triple MgTe/ZnTe/MgSe superlattice is used. The CdTe quantum dots are formed by a novel Zn-induced formation process and are investigated by scanning transmission electron microscopy. Micro-photoluminescence measurements show discrete optical modes for the pillars, in good agreement with calculations based on a vectorial transfer matrix method. The measured quality factor reaches a value of 3100.

  11. Identification of Ag-acceptor related photoluminescence in $^{111}\\!$Ag doped CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Ostheimer, V; Schmitz, C; Wolf, H; Wichert, T

    1998-01-01

    Bridgman-grown, nominally undoped CdTe crystals were doped with Ag by implanting radioactive $^{111}\\!$Ag. Photoluminescence spectra of the crystals show a donor-acceptor pair (DAP) line at 1.491 eV. The decrease of the intensity of this line with a half life of T$_{1/2}$=(7.2$\\pm$0.4) d is in good agreement with the half life of the $\\beta\\!^{-}$-decay of $^{111}\\!$Ag to $^{111}\\!$Cd of 7.45 d. This decrease is not caused by the aging behavior of Ag which was reported in the literature. The data show that the involved acceptor defect contains exactly one Ag atom and confirm the earlier assignment of the acceptor to the AgCd defect. Based on the DAP line at 1.491 eV, the spectra did not reveal a contamination of the CdTe crystals by stable Ag.

  12. Admittance spectroscopy characterize graphite paste for back contact of CdTe thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    CdTe thin film solar cells with a doped-graphite paste back contact layer were studied using admittance spectroscopy technology.The positions and the capture cross sections of energy level in the forbidden band were calculated,which are the important parameters to affect solar cell performance.The results showed that there were three defects in the CdTe thin films solar cells with the doped-graphite paste back contact layer,whose positions in the forbidden band were close to 0.34,0.46 and 0.51 eV,respectively above the valence band,and capture cross sections were 2.23×10-16,2.41×10-14,4.38×10-13 cm2,respectively.

  13. CdTe and ZnTe metal interface formation and Fermi-level pinning

    Science.gov (United States)

    Wahi, A. K.; Carey, G. P.; Chiang, T. T.; Lindau, I.; Spicer, W. E.

    1989-01-01

    Interfacial morphology and Fermi-level pinning behavior at the interfaces of Al, Ag, and Pt with UHV-cleaved CdTe and ZnTe are studied using X-ray photoelectron and ultraviolet photoemission spectroscopies. Results are compared to metal/HgCdTe interface formation. For Al/CdTe, a case is found where significantly greater intermixing occurs in CdTe than seen on HgCdTe. The Al/ZnTe interface is also more abrupt than Al/CdTe. Band bending results for interfaces of all three metals with p-CdTe and p-ZnTe are presented and implications for metal/HgZnTe interface formation are considered.

  14. Polycrystalline gamma plutonium's elastic moduli versus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORCESTER POLYTECHNIC INSTITUTE

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  15. Valley Filtering and Electronic Optics Using Polycrystalline Graphene

    Science.gov (United States)

    Nguyen, V. Hung; Dechamps, S.; Dollfus, P.; Charlier, J.-C.

    2016-12-01

    In this Letter, both the manipulation of valley-polarized currents and the optical-like behaviors of Dirac fermions are theoretically explored in polycrystalline graphene. When strain is applied, the misorientation between two graphene domains separated by a grain boundary can result in a mismatch of their electronic structures. Such a discrepancy manifests itself in a strong breaking of the inversion symmetry, leading to perfect valley polarization in a wide range of transmission directions. In addition, these graphene domains act as different media for electron waves, offering the possibility to modulate and obtain negative refraction indexes.

  16. Laser annealing of thin film polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Chowdhury A.

    2013-11-01

    Full Text Available Performances of thin film polycrystalline silicon solar cell grown on glass substrate, using solid phase crystallization of amorphous silicon can be limited by low dopant activation and high density of defects. Here, we investigate line shaped laser induced thermal annealing to passivate some of these defects in the sub-melt regime. Effect of laser power and scan speed on the open circuit voltage of the polysilicon solar cells is reported. The processing temperature was measured by thermal imaging camera. Enhancement of the open circuit voltage as high as 210% is achieved using this method. The results are discussed.

  17. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  18. Progress and issues in polycrystalline thin-film PV technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.; Ullal, H.S.; Roedern, B. von [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  19. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Glowka, D.A.

    1989-06-01

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  20. IR and UV irradiations on ion bombarded polycrystalline silver

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Anwar, E-mail: anwarlatif@uet.edu.p [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Khaleeq-ur-Rahman, M.; Bhatti, K.A.; Rafique, M.S.; Rizvi, Z.H. [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan)

    2010-10-15

    Ion bombarded polycrystalline fine polished silver surfaces are exposed to Nd:YAG (1064 nm, 10 mJ, 12 ns) and KrF excimer (248 nm, 57 mJ, 20 ns) lasers to examine structural and morphological changes employing X-ray diffractometry and optical microscopy, respectively. Irradiation causes considerable changes in grain sizes. Hydrodynamic sputtering is found to be dominant in heat affected zones (HAZs). Craters with irregular boundary and non-uniform thermal conduction are resulted on laser ablated surfaces of ion bombarded specimens. No disturbance takes place in the d-spacing of the planes of irradiated samples.