WorldWideScience

Sample records for fast neutron doses

  1. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  2. Fast neutron flux and intracranial dose distribution at a neutron irradiation facility

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Aizawa, Otohiko; Nozaki, Tetsuya

    1981-01-01

    A head phantom filled with water was used to measure the fast neutron flux using 115 In(n, n')sup(115m)In and 103 Rh(n, n')sup(103m)Rh reactions. γ-ray from sup(115m)In and x-ray from sup(103m)Rh were detected by a Ge(Li) and a Na(Tl)I counter, respectively. TLD was used to investigate the γ-dose rate distribution inside the phantom. Flux of fast neutron inside the phantom was about 1 x 10 6 n/cm 2 sec, which was 3 order smaller than that of thermal neutron. The fast neutron flux decreased to 1/10 at 15 cm depth, and γ-dose rate was about 200 R/h at 100 kW inside the phantom. Total dose at the surface was 350 rad/h, to which, fast neutrons contributed more than γ-rays. The rate of fast neutron dose was about 10% of thermal neutron's in Kerma dose unit (rad), however, the rate was highly dependent on RBE value. (Nakanishi, T.)

  3. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  4. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, A.; Baccaro, S.; Cemmi, A. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Colli, V.; Gambarini, G. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy); Rosi, G. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Scolari, L. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy)

    2004-07-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF{sub 2}:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH{sub 3}CH(NH{sub 2})COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT. (authors)

  5. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  6. Transportable, Low-Dose Active Fast-Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  7. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  8. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  9. Calculation of fast neutron dose in plastic-coated optical fibers

    International Nuclear Information System (INIS)

    Siebert, B.R.L.; Henschel, H.

    1998-01-01

    The dose of fast neutrons in optical fibers with hydrogen-containing coating materials is considerably increased by energetic recoil protons. Their contribution to the dose in a SiO 2 fiber core is calculated by the Monte Carlo method for different fiber geometries and a fiber optic cable. With 14 MeV neutrons the dose in a single fiber is increased by about 21%, whereas in fiber bundles the dose increase can reach about 170%. Maximum dose enhancement in fiber bundles (about 610%) occurs at neutron energies around 5.5 MeV. The dose increase caused by 14 MeV neutrons in the fiber of a typical laboratory cable is about 124%

  10. Fast Neutron Dose Distribution in a Linac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Al-Othmany, D.Sh.; Abdul-Majid, S.; Kadi, M.W.

    2011-01-01

    CR-39 plastic detectors were used for fast neutron dose mapping in the radiotherapy facility at King AbdulAziz University Hospital (KAUH). Detectors were calibrated using a 252 Cf neutron source and a neutron dosimeter. After exposure chemical etching was performed using 6N NaOH solution at 70 degree C. Tracks were counted using an optical microscope and the number of tracks/cm 2 was converted to a neutron dose. 15 track detectors were distributed inside and outside the therapy room and were left for 32 days. The average neutron doses were 142.3 mSv on the accelerator head, 28.5 mSv on inside walls, 1.4 mSv beyond the beam shield, and 1 mSv in the control room

  11. Experimental possibilities and fast neutron dose map of the fast neutron fields at the RB reactor facility

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1993-01-01

    The RB is an unshielded, zero power nuclear facility with natural and enriched uranium fuel (2% and 80%) and D 2 O as moderator. It is possible to create different configurations of non-reflected and partially reflected critical systems and to make experiments in the fields of thermal neutrons. The fields of fast neutrons with 'softened' fission spectrum are made by modifying the system: modified experimental fuel channel EFC, coupled fast-thermal system in two configurations CFTS-1 and CFTS-2, coupled fast-thermal core HERBE. The intermediate and fast neutron absorbed doses in fast neutron fields are given. In first configuration of RB reactor it was almost impossible to perform dosimetric and other experiments. By creating these fields, with in our circumstances available fuel elements, the possibilities for different experiments are greatly improved. Now we can irradiate food samples, soil samples, electronic devices, study material properties, perform various dosimetry experiments, etc. (1 tab.)

  12. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  13. Influence of Neutron Spectra Unfolding Method on Fast Neutron Dose Determination

    International Nuclear Information System (INIS)

    Marinkovic, P.

    1991-01-01

    Full text: Accuracy of knowing the fast neutron spectra has great influence on equivalent dose determination. In usual fast neutron spectrum measurements with scintillation detectors based on proton recoil, the main difficulty is confidence of unfolding method. In former ones variance of obtained result is usually great and negative values are possible too, which does means that we don't now exactly is obtained neutron spectrum real one. The new unfolding method based on Shanon's information theory, which gives non-negative spectrum and relative low variance, is obtained and appropriate numerical code for application in fast neutron spectrometry based on proton recoil is realized. In this method principle of maximum entropy and maximum likelihood are used together. Unknown group density distribution functions, which are considered as desired normalized mean neutron group flux, are constl u cted using only constrain of knowing mean value. Obtained distributions are consistent to available information (counts in NCA from proton recoil), while being maximally noncommittal with respect to all other unknown circumstances. For maximum likelihood principle, distribution functions around mean value of counts in the channels of MCA are taken to be Gauss function shape. Optimal non-negative solution is searched by means of Lagrange parameter method. Nonlinear system of equations, is solved using gradient and Newton iterative algorithm. Error covariance matrix is obtained too. (author)

  14. Dose distributions in thorax inhomogeneity for fast neutron beam from NIRS cyclotron

    International Nuclear Information System (INIS)

    Kutsutani-Nakamura, Yuzuru; Furukawa, Shigeo; Iinuma, T.A.; Kawashima, Katsuhiro; Hoshino, Kazuo; Hiraoka, Takeshi; Maruyama, Takashi; Sakashita, Kunio; Tsunemoto, Hiroshi

    1990-01-01

    The power law tissue-air ratio (TAR) method developed by Batho appears to be practical use for inhomogeneity corrections to the dose calculated in a layered media for photon beam therapy. The validity was examined in applying the modified power law TAR and the isodose shift methods to the dose calculation in thorax tissue inhomogeneity containing the boundary region for fast neutron beam. The neutron beam is produced by bombarding a thick beryllium target with 30 MeV deuterons. Lung phantom was made of granulated tissue equivalent plastic, which resulted in density of 0.30 and 0.60 g/cm 3 . Depth dose distributions for neutron beam were measured in thorax phantom by an air-filled cylindrical ionization chamber with TE plastic wall. The power law TAR method considering TAR of zero depth at boundary was compared with the measured data and a good result was obtained that the calculated dose was within ±3 % against the measured. But the isodose shift method is not so good for dose calculation in thorax tissue inhomogeneity using fast neutron beam. (author)

  15. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1977-01-01

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF 2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF 2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 350 0 C after different doses of neutrons and gamma rays of 60 Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated [pt

  16. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1988-11-01

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  17. Dose Calibration of the ISS-RAD Fast Neutron Detector

    Science.gov (United States)

    Zeitlin, C.

    2015-01-01

    The ISS-RAD instrument has been fabricated by Southwest Research Institute and delivered to NASA for flight to the ISS in late 2015 or early 2016. ISS-RAD is essentially two instruments that share a common interface to ISS. The two instruments are the Charged Particle Detector (CPD), which is very similar to the MSL-RAD detector on Mars, and the Fast Neutron Detector (FND), which is a boron-loaded plastic scintillator with readout optimized for the 0.5 to 10 MeV energy range. As the FND is completely new, it has been necessary to develop methodology to allow it to be used to measure the neutron dose and dose equivalent. This talk will focus on the methods developed and their implementation using calibration data obtained in quasi-monoenergetic (QMN) neutron fields at the PTB facility in Braunschweig, Germany. The QMN data allow us to determine an approximate response function, from which we estimate dose and dose equivalent contributions per detected neutron as a function of the pulse height. We refer to these as the "pSv per count" curves for dose equivalent and the "pGy per count" curves for dose. The FND is required to provide a dose equivalent measurement with an accuracy of ?10% of the known value in a calibrated AmBe field. Four variants of the analysis method were developed, corresponding to two different approximations of the pSv per count curve, and two different implementations, one for real-time analysis onboard ISS and one for ground analysis. We will show that the preferred method, when applied in either real-time or ground analysis, yields good accuracy for the AmBe field. We find that the real-time algorithm is more susceptible to chance-coincidence background than is the algorithm used in ground analysis, so that the best estimates will come from the latter.

  18. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  19. Evaluation of mixed energy neutron doses using TLD NG-67 type

    International Nuclear Information System (INIS)

    Akhadi, Mukhlis; Thoyib Thamrin, M; Usmiyati Dewi, K.

    2000-01-01

    A research has been carried out to develop dose evaluation method of mixed neutron source with its neutron doses can be classified to two groups, I.e neutron doses with energy ≥ 0.5 eV and thermal neutron doses with energy less than 0.5 e V consist of epithermal and fast neutron, but in this research they were classified as fast neutron. Development of this dose evaluation method was carried out by sensitivity (S) intercomparison of TLD-600 to fast neutron, mixed energy neutron of nuclear rectors, and thermal neutron. From the experiment it was obtained that the value of Sfast : Sreactor : Sthermal = 0.005 : 0.010 : 1. Calibration factor (CF) of TLD is defined as 1/S. from the sensitivity data it can be obtained that the value of Cffast : Cfreactor : Cfthermal = 200 :100 : 1. The value of Cfreactor can be applied for mixed energy neutron doses evaluation of TLD-600. Key word : dosemeter, neutron dose, calibration factor, fast neutron, thermal neutron, nuclear reactor

  20. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd→Be) for normal tissues. Pt. 3

    International Nuclear Information System (INIS)

    Rezvani, M.; Hopewell, J.W.; Robbins, M.E.C.; Hamlet, R.; Barnes, D.W.H.; Sansom, J.M.; Adams, P.J.V.

    1990-01-01

    The effect of single and fractionated doses of fast neutrons (42 MeV d→Bc ) on the early and late radiation responses of the pig lung have been assessed by the measurement of changes in lung function using a 133 Xe washout technique. The results obtained for irradiation schedules with fast neutrons have been compared with those after photon irradiation. There was no statistically significant difference between the values for the relative biological effectiveness (RBE) for the early and late radiation response of the lung. The RBE of the neutron beam increased with decreasing size of dose/fraction with an upper limit value of 4.39 ± 0.94 for infinitely small X-ray doses per fraction. (author)

  1. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  2. Effects of split fast neutron doses on the liver cells of albino Swiss mice

    International Nuclear Information System (INIS)

    Abdelmeguid, N.; Ramadan, A.A.; El-Khatib, A.M.

    1990-01-01

    The effect of neutron doses from a compact D-T neutron generator on the liver cells of adult male and female albino Swiss mice was investigated. Fast neutrons (14.5 MeV) were delivered to the whole body in a single dose or in two, four, six or eight equal doses separated by 3-day intervals. The lowest dose, 100 rem, was given over an exposure time of 6 hours and was then steadily raised to 912 rem over an exposure time of 48 hours. During exposure the neutron flux was controlled by the activation foil technique. The animals were killed for testing after each irradiation. Histological examination of the hepatocytes with a light microscope showed marked degenerative changes only after the longer irradiation periods (24, 36 and 48 h). Electron microscopy showed cytological (cytoplasmic and nuclear) changes in the hepatocytes after only 12 hours' irradiation. Densitometric scans of electron micrographs of control and 12 h-irradiated livers indicated that the control hepatocyte interphase nucleus contains approximately 72% heterochromatin, while the irradiated nucleus contains only 64% heterochromatin. (author). 13 figs., 1 tab., 18 refs

  3. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-01-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ''white'' source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report

  4. A silicon diode for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The effect of fast neutrons on both animate and inanimate objects, including human beings, can be extremely serious and cumulative. There is thus a need for a small, simple and cheap component which will provide a permanent or semi-permanent record of the accumulated fast neutron dose

  5. Hair {sup 32}P measurement for body dose mapping in non-fatal exposures to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Mianji, Fereidoun A. [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Iran Nuclear Regulatory Authority, Tehran (Iran, Islamic Republic of); Jafari, Sheyda; Zaryouni, Saiedeh [Bu-Ali Sina University, Faculty of Science, Hamedan (Iran, Islamic Republic of); Hajizadeh, Bardia [Iran Nuclear Regulatory Authority, Tehran (Iran, Islamic Republic of)

    2015-03-15

    Dosimetry bioassay methods are the backbone of a personal dosimetry in criticality accidents. Although methods like hair dosimetry and the use of activation foils (e.g., {sup 32}S) have been employed for decades, capabilities of different techniques, effects of hair type and neutron spectrum on the dose response, sensitivity and uncertainties of different techniques, etc., need more investigations. For this reason, the use of the {sup 32}S(n,p){sup 32}P reaction and hair samples for estimating non-fatal doses from fast neutrons was studied. The experiments were carried out with the hair samples attached on a RANDO phantom in a Cf-252 neutron field, in the dose range of about 0.05-1.15 Gy. In addition, the adequate post-accident preparation for hair samples including optimum conditioning and timing were investigated. Experimental results prove the good sensitivity and merit of the method for neutron quantification in the mentioned dose range for which other bioassay methods are of poor resolution and sensitivity. A rough estimation of the dose-response curve for Iranian hair was also derived. (orig.)

  6. Damages to gladiolu corm caused by fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Zheng Chun

    2007-01-01

    Gladiolus corms were irradiated to 100-500kGy by fast neutrons in the CFBR-II pulsed reactor, Scanning electron microscope images of the irradiated samples revealed significant radiation damages to the gladiolus corms, and the mutagenic effects were studied by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Within the dose range, radiation damage to the corm increased with the dose, with corm epidermis of the samples irradiated in vertical incidence being more serious than those irradiated in side-incidence to the same dose. Biological characters were investigated via field experiments, and the bands of protein subunit were analyzed by SDS-PAGE. The results showed that the fast neutrons irradiation inhibited growth of M1 generation seedling significantly. Protein expression was obviously inhibited by the irradiation. The study indicates that fast neutron induction is an effective way for gladiolus breeding. And the results may lay a foundation for studies on fast neutron mutation breeding. (authors)

  7. The Biological Effect of Fast Neutrons and High-Energy Protons

    International Nuclear Information System (INIS)

    Moskalev, Ju.I.; Petrovich, I.K.; Strel'cova, V.N.

    1964-01-01

    The paper gives the results of comparative experiments on the effects of fast neutrons and high-energy protons (500 MeV) on life expectancy, peripheral blood, incidence and rate of appearance of tumours in the rat as a function of administered dose and time of observation. The neutron experiment was performed on 573 and the proton experiment on 490 white rats. The animals irradiated with fast neutrons were given doses between 8.5 and 510 rad, and those irradiated with protons received doses between 28 and 1008 rad. The effective doses for the acute, sub-acute and chronic forms of sickness were established for fast neutrons and for protons. LD 50/30 for neutrons was 408 and for protons 600 rad, and the corresponding LD 50 / 120 values were 380 and 600 rad. The conditions governing rat mortality were analysed both in the early and the later stages of the experiment. It is shown that the average life expectancy of rats irradiated with fast neutrons does not depend on sex. The shape of the dose-effect curve for the various peripheral-blood indexes is strongly dependent not only on the radiosensitivity of the blood cells in question but also on the time of observation. It may change greatly in time for one and the same index. A considerable time after irradiation with either fast neutrons or protons, benign and malignant tumours appear in different tissues of the rats, including the haemopoeitic tissues, mammary glands, pituitary, uterus, ovaries, prostate gland, testicles, liver, kidneys, lungs, gastro-intestinal tract, subcutaneous tissue, lymph nodes, urinary bladder, etc. The over-all incidence of tumours and the number of cases of multi centred neoplasms in females are two to three times higher than in males. The minimum tumour dose for the mammary glands with neutron irradiation is apparently rather less than 42.5 rad. The maximum incidence of tumours of the pituitary is found after irradiation with a dose of 42.5 rad.- At this same dose leucosis and tumour of the

  8. Effect of low level doses of fast neutrons on the activity of the snake venom

    International Nuclear Information System (INIS)

    Hanafy, Magda S.; Amin, Aida M.

    1998-01-01

    In this work, the effect of low level doses of fast neutrons from 252 Cf on snake venom (Cerastes cerastes) was studied through measurements of biophysical and haematological changes. The absorption spectrum (200-700 nm) of haemoglobin (Hb) collected from the blood of rats after 3 and 24 hours post injection with irradiated and non-irradiated snake venom with neutron fluences of 3x10 6 , 2.8x10 7 and 3X10 8 n/cm 2 was measured. The results indicated that injection of animals with either non- irradiated or irradiated venom ( with different neutron fluences) resulted into the decrease of the absorption band intensities of Hb. These changes in the properties of the characteristic band showed to be a marker for irradiated venom and is dose dependent. It was concluded that neutron irradiation of the venom leads to the decrease of its toxicity and, consequently, to the increase of the chance of repair mechanism in livings. Obvious changes of most haematological erythrocytic values of Hb, packed cell volume (PCV), red blood counts (RBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCHb) and mean corpuscular haemoglobin concentration (MCHC) were observed in the blood of the rats injected with non-irradiated venom (as a first group) and those injected with the irradiated venom (as a second group). The microcytic haemolytic anemia was more acute in the first group than in the second one which showed lesser extent. It is concluded from this study that low level doses of fast neutrons could postpone and lower acute haematological action induced by the venom. (authors)

  9. Method for measuring and evaluation dose equivalent rate from fast neutrons in mixed gamma-neutron fields around particles accelerators

    International Nuclear Information System (INIS)

    Cruceru, I.; Sandu, M.; Cruceru, M.

    1994-01-01

    A method for measuring and evaluation of doses and dose equivalent rate in mixed gamma- neutron fields is discussed in this paper. The method is basedon a double detector system consist of an ionization chamber with components made from a plastic scintillator, coupled to on photomultiplier. Generally the radiation fields around accelerators are complex, often consisting of many different ionizing radiations extending over a broad range of energies. This method solve two major difficulties: determination of response functions of radiation detectors; interpretation of measurement and determination of accuracy. The discrimination gamma-fast neutrons is assured directly without a pulse shape discrimination circuit. The method is applied to mixed fields in which particle energies are situated in the energy range under 20 MeV and an izotropic emision (Φ=10 4 -10 11 n.s -1 ). The dose equivalent rates explored is 0.01mSV--0.1SV

  10. Fast neutron dosimetry: [Progress report, 1986-1987

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Gould, M.N.; Meisner, L.F.; Pearson, D.W.

    1987-01-01

    A new research area was initiated in ultrasoft x-rays with the University of Wisconsin 1-GeV electron storage ring used as a radiation source. A new beam line and irradiation apparatus was designed and constructed. Amongst the distinguishing features are an irradiation vessel of considerable generality allowing many types of radiological/biological experiments to be performed; the ability to maintain low-pressure, high humidity environments with good control; and a computer controlled sample slide for [X,Y,Z] motions of high precision that allows fully controlled velocities and accelerations for complex sample irradiations. Work in the area of chromosomal aberration studies has continued after the completion of the investigation into the possible synergistic effects of mixed beams of neutrons and photons. Of special interest is the damage dependence on absorbed dose and dose rate for low-dose and low-dose rate exposures to high LET radiation. A unique microdosimetric instrument was employed in the continuing effort to measure dose distribution in LET from fast neutron irradiation of metal-metal oxide walls. Our purpose is to determine this distribution for oxygen, an element of critical importance to fast neutron dosimetry. 31 refs., 7 figs., 2 tabs

  11. Silicon Diode Dosimeter for Fast Neutrons

    International Nuclear Information System (INIS)

    Svansson, L.; Widell, C.O.; Swedberg, P.; Wik, M.

    1968-11-01

    The change of the current-voltage characteristics of a small silicon diode is used as a measure of fast neutron dose in the Fast Neutron Dosimeter 5422. This change is permanent and therefore it is possible to integrate doses over a long period of time. Doses from some rad up to 1000 rad can be measured and the information stored is not destroyed during readout. Considerable research work in this field has previously been carried out by the Swedish Institute for National Defence in collaboration with the Institute of Semiconductor Research Stockholm. The present investigation has been made in order to establish the possibilities of the dosimeter for practical applications and to study the variations of important parameters as a function of the production process. In particular the following parameters have been studied: - dose sensitivity, - energy dependence; - fading effect; - temperature influence; - maximum measurable dose. In general one might conclude that the dosimeter 5422 well fulfills requirements usually specified for a dosimeter for field service. Temperature influence and fading effect are of little practical importance within the recommended range of measurement

  12. Silicon Diode Dosimeter for Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Svansson, L; Widell, C O; Swedberg, P [The Inst. of Semiconductor Researc h, Stockholm (Sweden); Wik, M [The Swedish Institute for National Defence, Sun dbyberg (Sweden)

    1968-11-15

    The change of the current-voltage characteristics of a small silicon diode is used as a measure of fast neutron dose in the Fast Neutron Dosimeter 5422. This change is permanent and therefore it is possible to integrate doses over a long period of time. Doses from some rad up to 1000 rad can be measured and the information stored is not destroyed during readout. Considerable research work in this field has previously been carried out by the Swedish Institute for National Defence in collaboration with the Institute of Semiconductor Research Stockholm. The present investigation has been made in order to establish the possibilities of the dosimeter for practical applications and to study the variations of important parameters as a function of the production process. In particular the following parameters have been studied: - dose sensitivity, - energy dependence; - fading effect; - temperature influence; - maximum measurable dose. In general one might conclude that the dosimeter 5422 well fulfills requirements usually specified for a dosimeter for field service. Temperature influence and fading effect are of little practical importance within the recommended range of measurement.

  13. Fast neutron biological effects on normal and tumor chromatin

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, Roxana; Paunica, Tatiana; Radu, Liliana

    1997-01-01

    Growing interest in neutron therapy and radioprotection requires complex studies on the mechanisms of neutron action on biological systems, especially on chromatin (the complex of deoxyribonucleic acid-DNA- with proteins in eukaryotic cells). Our study aims to investigate the fast neutrons induced damages in normal and tumor chromatin, studying thermal transition, intrinsic fluorescence and fluorescence of chromatin-ethidium bromide complexes behavior versus irradiation dose. The Bucharest U-120 variable energy Cyclotron was employed as an intense source of fast neutrons produced by 13.5 MeV deuterons on a thick beryllium target (166.5 mg/cm 2 ) placed at 20 angle against the incident beam. The average energy is 5.24 MeV. The total yield at 0 angle is 6.7 x 10 16 n/sr·C·MeV. To determine neutron and gamma irradiation doses, home made thermoluminescent detectors-TLD(γ) and TLD (γ + n) were used: for gamma MgF 2 : Mn mixed with Teflon pellets (φ 12.5 mm, 0.6±0.1 mm thick) and for gamma plus neutrons MgF 2 :Mn mixed with 6 LiF and Teflon pellets (same dimensions). Using a 8.022 x 10 -2 albedo factor value and the equivalence 1Gy (n)=2·10 10 fast neutron/cm 2 , the dose for the irradiation of 1.2 x 10 2 Gy/μC, with an estimated precision of 15% C for neutrons and 7.8 x 10 -4 Gy/μC for gamma, at 10 cm behind Be target, was found, respectively. A diminution of the negative fluorescence intensity for chromatin-ethidium bromide complexes with the increasing of neutron dose (from 0.98 at 5 Gy to 0.85 at 100 Gy) was observed for normal chromatin. This fact reflects chromatin DNA injuries, with the decrease of double helix DNA proportion. To study the influence of gyrostan, thyroxine and D3 vitamin treatments on fast neutron radiolysis in tumor chromatin,10 mg/kg of anticancer drug gyrostan, 40μg/kg of hormonal compound thyroxine and 30,000 IU/kg of D3 vitamin were administrated, separately or associated, to Wistar rats bearing Walker carcinosarcoma. Representing

  14. Chromosome aberrations in human lymphocytes after irradiation with NIRS-cyclotron fast neutrons in vitro

    International Nuclear Information System (INIS)

    Muramatsu, Susumu; Maruyama, Takashi

    1977-01-01

    The dose-response relationships for inducing chromosome aberrations (dicentrics) in human lymphocytes were studied by whole-blood microculture following in vitro exposures at various doses either 200 kVp x-rays or NIRS-cyclotron fast neutrons. The yields of dicentrics induced were dependent on the exposure dose of two types of radiations between 48 to 384 rad and 25 to 400 rad by x-rays and fast neutrons, respectively. The dicentrics yields gave the best fit to the linear quadratic function Y=αD + βD 2 ; namely Y sub(X)=3.66 x 10 -4 D + 8.01 x 10 -6 D 2 for x-rays and Y sub(N)=28.90 x 10 -4 D + 4.04 x 10 -6 D 2 for fast neutrons. The RBE value of NIRS-cyclotron fast neutrons versus 200 kVP x-rays decreased with increasing neutron doses, for example from 2.3 at 50 rad to 1.2 at doses up to 300 rad. (auth.)

  15. Medical use of fast neutrons in radiotherapy and radiography

    International Nuclear Information System (INIS)

    Bewley, D.K.

    1975-01-01

    Over 400 patients have been treated with fast neutrons from a cyclotron at Hammersmith Hospital, London, using 16 MeV deuterons on beryllium. A large variety of malignant disease is included in this trial. A randomized trial of fast neutron therapy for cancer of the mouth and throat is in progress and preliminary results will be given. Fast neutron radiographs are often taken to check the positions of the fields used on the patients. These show no contrast from bone, but demonstrate only the presence of gas-filled cavities. As a diagnostic method, fast neutron radiography suffers from a number of disadvantages, the main ones being lack of sensitivity of the image-forming system and the hazard to the patient due to a large Quality Factor. Estimation of the absorbed dose given to different types of tissue is an important factor in the medical use of fast neutrons. More data are needed on the processes whereby fast neutrons impart energy to matter, particularly for neutrons above 15 MeV

  16. Spectroscopic study of fast-neutron-irradiated chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Gazdaru, D.; Constantinescu, B.

    2004-01-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [ 1 H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [ 1 H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  17. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  18. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and 60 Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al 2 O 3

  19. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  20. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)

  1. Fast neutron dosimetry using CaSO4:Dy thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Azorin, N.G.; Salvi, C.R.; Rubio, J.L.; Gutierrez, C.A.

    1980-01-01

    The use of CaSO 4 :Dy phosphor powder in fast neutron dose measurements using the activation of sulphur from the 32 S(n,p) 32 P reaction is described. The thermoluminescence induced during the irradiation and that due to the decay of short-lived activation products, is erased by annealing the dosimeters after a post-irradiation time of 3 days. The self-induced thermoluminescence measured at different intervals of post-irradiation time, gives an estimation of the fast neutron dose to which the dosimeters were exposed

  2. Fast neutron radiography using photoluminescent imaging plates

    International Nuclear Information System (INIS)

    Rant, J.; Kristof, E.; Balasko, M.; Stade, J.

    1999-01-01

    Fast neutron radiography (FNR) and resonance neutron radiography (RNR) are complementary to the conventional radiography with high energy gamma-rays or brems-strahlung radiation used for the inspection of thick metal objects. In both non-destructive methods, the contrast sensitivity and the penetration power can be improved by using higher energy neutrons. At present direct techniques based either n Solid State Nuclear Track detectors (SSNTDs) or scintillating screens and transfer techniques using activation threshold detectors and radiographic films are applied for the detection of fast neutron images. Rather low detection sensitivity of film and SSNTD based fast neutron imaging methods and also rather poor inherent image contrast of SSNTD pose a problem for FNR in the fast neutron energy region 1-15 MeV interesting for NDT. For more efficient detection of fast neutron images the use of novel highly sensitive photoluminescent imaging plates (IP) in combination with threshold at the KFKI research reactor. The conventional IP produced by FUJI Photo Film Co. for the detection of beta and X-ray radiation were used. The threshold activation detectors were the reactions 115 In(n, n') 115m In, 64 Zn(n,p) 64 Cu, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na and 27 Al(n, α) 24 Na. These threshold reactions cover the fast neutron energy region between 0,7 MeV and 12 MeV. Pure, commercially available metals 0,1 mm to 0,25 mm thick made of In, Zn, Fe, Mg and Al were used as converter screens. The very high sensitivity of IP, the linearity of their response over 5 decades of exposure dose and the high dynamic digitalisation latitude enabled fast neutron radiography of image quality comparable to the quality of thermal NR. In our experimental conditions (φ n ∼ 10 8 n/cm 2 s, R Cd ∼ 2) the neutron exposure and IP exposure periods were still practical and comparable to the half life of the corresponding reaction products (half an hour to several hours). Even with the 27 Al(n.α) 24

  3. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  4. Effects of secondary interactions on the dose calculation in treatments with Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Monteiro, E.

    2004-01-01

    The aimed of this work consists of evaluating the influence of the secondary contributions of dose (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head head phantom.A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary contributions of dose can contribute more in the direction to raise the dose in the fabric healthy that in the tumor, thus reducing the treatment efficiency. (author)

  5. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeV sub d yields Be ) for normal tissues. Pt. 3; Effects on lung function

    Energy Technology Data Exchange (ETDEWEB)

    Rezvani, M.; Hopewell, J.W.; Robbins, M.E.C.; Hamlet, R. (Churchill Hospital, Oxford (UK)); Barnes, D.W.H.; Sansom, J.M.; Adams, P.J.V. (Medical Research Council, Harwell (UK). Radiobiological Research Unit)

    1990-11-01

    The effect of single and fractionated doses of fast neutrons (42 MeV{sub d{yields}Bc}) on the early and late radiation responses of the pig lung have been assessed by the measurement of changes in lung function using a {sup 133}Xe washout technique. The results obtained for irradiation schedules with fast neutrons have been compared with those after photon irradiation. There was no statistically significant difference between the values for the relative biological effectiveness (RBE) for the early and late radiation response of the lung. The RBE of the neutron beam increased with decreasing size of dose/fraction with an upper limit value of 4.39 {plus minus} 0.94 for infinitely small X-ray doses per fraction. (author).

  6. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  7. Dosimetric properties of the fast neutron therapy beams at TAMVEC

    International Nuclear Information System (INIS)

    Almond, P.R.; Smith, A.R.; Smathers, J.R.; Otte, V.A.

    1975-01-01

    In October 1972, M.D. Anderson Hospital and Tumor Institute of the University of Texas System Cancer Center initiated a clinical trial of fast neutron radiotherapy using the cyclotron at Texas A and M University. Initially, the study used neutrons produced by bombarding beryllium with 16 MeV deuterons, but since March, 1973, neutrons from 50 MeV deuterons have been used. The dosimetric properties of the 30 MeV beams have also been measured for comparison with the neutron beams from D-T generators. The three beams are compared in terms of dose rate, skin sparing, depth dose and field flatness. Isodose curves for treatment planning were generated using the decrement line method and compared to curves measured by a computer controlled isodose plotter. This system was also used to measure the isodose curves for wedge fields. Dosimetry checks on various patients were made using silicon diodes as in vivo fast neutron dosimeters

  8. Direct Fast-Neutron Detection

    International Nuclear Information System (INIS)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here

  9. Effect of Gamma Rays on Fast Neutron Registration in CR-39

    CERN Document Server

    Kobzev, A P; El-Halem, A A; Abdul-Ghaphar, U S; Salama, T A

    2002-01-01

    A set of CR-39 plastic detectors with front PE radiator was exposed to Am-Be neutron source, which has an emission rate of 0.86\\cdot 10^{7} sec^{-1}, and the neutron dose equivalent rate 1 m apart from the source is equal to 11 mrem/hr. Another set of samples was irradiated by a neutron dose of 4 rem, then exposed to different gamma-ray doses using ^{60}Co source. It was found that the track density grows with the increase of neutron dose and etching time. It was also found that the bulk etching rate V_{B}, the track diameter and the sensitivity of the CR-39 plastic detector with respect to the neutron irradiation increased with increasing gamma-ray dose in the range 1?10 Mrad. These results show that CR-39 can be considered as a promising fast neutron dosimeter and gamma-ray dosimeter.

  10. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    Science.gov (United States)

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  11. Dose levels due to neutrons in the vicinity of high energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.; Wood, M.; Sohrabi, M.; Mills, M.; Rodriguez, R.

    1976-01-01

    High energy photons are generated for use in radiation therapy by the decelleration of electrons in metal targets. Fast neutrons are also generated as a result of (γ, n) and (e, e'n) interactions in the target, beam compensator filter, and collimator material. In this work the adsorbed dose to neutrons was measured at the center of a 10 x 10 cm photon beam and 5 cm outside of the beam edge for a number of treatment units. Dose levels due to slow and fast neutrons were also established outside of the treatment rooms and a Bonner sphere neutron spectrometer system was employed to determine the neutron energy spectrum due to stray neutron radiation at each accelerator. For the linac it was found that the neutron dose at the beam center was 0.0039% of the photon dose and values of 0.049% and 0.053% were observed for the Allis Chalmers betatron and the Brown Boveri Betatron. Dose equivalent rates in the range of 0.3 to 22.5 mrem/hr were measured for points outside the treatment rooms when the accelerators were operated at a photon dose rate of 100 rad/min at the treatment position

  12. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, Lori A., E-mail: layoung@uw.edu; Sandison, George [Department of Radiation Oncology, University of Washington, Seattle, Washington 98115 (United States); Yang, Fei [Sylvester comprehensive Cancer Center, University of Miami, Miami, Florida 33124 (United States); Woodworth, Davis [Department of Physics, University of Reno, Reno, Nevada 89557 (United States); McCormick, Zephyr [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2016-01-15

    Purpose: Clinical in vivo dosimeters intended for use with photon and electron therapies have not been utilized for fast neutron therapy because they are highly susceptible to neutron damage. The objective of this work was to determine if a commercial optically stimulated luminescence (OSL) in vivo dosimetry system could be adapted for use in fast neutron therapy. Methods: A 50.5 MeV fast neutron beam generated by a clinical neutron therapy cyclotron was used to irradiate carbon doped aluminum oxide (Al{sub 2}O{sub 3}:C) optically simulated luminescence dosimeters (OSLDs) in a solid water phantom under standard calibration conditions, 150 cm SAD, 1.7 cm depth, and 10.3 × 10.0 cm field size. OSLD fading and electron trap depletion studies were performed with the OSLDs irradiated with 20 and 50 cGy and monitored over a 24-h period to determine the optimal time for reading the dosimeters during calibration. Four OSLDs per group were calibrated over a clinical dose range of 0–150 cGy. Results: OSLD measurement uncertainties were lowered to within ±2%–3% of the expected dose by minimizing the effect of transient fading that occurs with neutron irradiation and maintaining individual calibration factors for each dosimeter. Dose dependent luminescence fading extended beyond the manufacturer’s recommended 10 min period for irradiation with photon or electron beams. To minimize OSL variances caused by inconsistent fading among dosimeters, the observed optimal time for reading the OSLDs postirradiation was between 30 and 90 min. No field size, wedge factor, or gantry angle dependencies were observed in the OSLDs irradiated by the studied fast neutron beam. Conclusions: Measurements demonstrated that uncertainties less than ±3% were attainable in OSLDs irradiated with fast neutrons under clinical conditions. Accuracy and precision comparable to clinical OSL measurements observed with photons can be achieved by maintaining individual OSLD calibration factors and

  13. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  14. Investigation of the reflection of fast neutrons

    International Nuclear Information System (INIS)

    Devillers, Christian; Hasselin, Gilbert

    1964-10-01

    The authors report the study of the reflection of fast neutrons on a plane plate having a finite and varying thickness and an infinite width. Calculations are performed by using a Monte-Carlo method which allows the number, the energy, the direction, the emergence point of neutrons reflected on a plate, to be computed with respect to the energy and direction of incident neutrons. The author present how paths, elastic and inelastic shocks, direction after shock are calculated. Different information are calculated: the numbers of elastic shocks, inelastic shocks and transmitted neutrons, the number, energy and dose albedo, the spectrum and angular distribution, the distribution of neutron in terms of energy and direction

  15. A comparison of mutagenic effects of common wheat by electron beam, fast neutron and 60Co gamma ray irradiation

    International Nuclear Information System (INIS)

    An Daochang; Wang Linqing

    1988-02-01

    After winter wheat was irradiated by electron beam, fast neutron and γ-rays, respectively, the RBE value of electron beam to both fast neutrons and γ-rays was less than one, the RBE value of fast neutron to γ-rays was largely more than one. This results indicated that biological effect of M 1 generation induced by electron beam was less than that of fast neutrons very much, and similar to γ-ray irradiation. With electron beam irradiation, the half-lethal doses of M 1 generation were from 185 to 370 Gy, closer to 370 Gy, the lethal doses from 740 to 925 Gy. M 2 mutation efficiency with electron beam treatment was larger as compared with that with both fast neutrons and γ-rays. A wider mutation spectrum and higher mutation efficiency compared with other physical mutagens can be obtained with electron beam irradiation, about 30% higher than that with γ-ray irradiation. The best doses of irradiation with electron beam were 370 to 555 Gy. Fast neutrons, a better dose of which was 25 Gy, could induce more mutants than that with γ-rays in M 2 generation. The dose in which biological injury reached to 50% was the best dose for M 2 mutants by electron beam irradiation

  16. Microdosimetric studies using a Filtered Fast Neutron Irradiation System of research reactor to application in radiation biology

    International Nuclear Information System (INIS)

    Rodrigues, Pedro Pereira

    2007-01-01

    In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C 3 H 8 at 5.6 kPa (42 Torr) pressure, which is equivalent to 1.3 μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A and M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during 1h for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation system (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray. (author)

  17. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  18. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  19. Development of neutron dosimeter using CR-39 for measurement of ambient dose equivalent

    International Nuclear Information System (INIS)

    Maki, Daisuke; Shinozaki, Wakako; Ohguchi, Hiroyuki; Yamamoto, Takayoshi; Nakamura, Takayoshi

    2010-01-01

    A CR-39 has good advantages such as cumulative type dosimeter, small fading effect and gamma-ray insensitive. Therefore, we developed the wide energy-range environmental neutron dosimeter using eight CR-39s for area monitoring in this study. This dosimeter is made of octagonal columnar polyethylene block which height is 60 mm and bottom side is 25 mm. The dosimeter contains two types of CR-39s for fast neutron detection and slow neutron detection. Four CR-39s for fast neutron detection are used for detection of recoil protons produced by H (n, p) reactions. Four CR-39s for slow neutron detection are used with boron nitride converter to detect alpha-rays produced by 10 B (n, α) 7 Li reactions. Ambient dose equivalent is obtained by adding the number of etch-pits observed in four CR-39s for fast neutron detection to the number of etch-pits observed in four CR-39s for slow neutron detection with appropriate constants respectively. Dosimeters were irradiated with some energetic neutrons and evaluated results of ambient dose equivalent were compared with results from neutron transport calculations. Energy response of dosimeter shows good agreement with neutron fluence to ambient dose equivalent conversion coefficients. Directional dependence of dosimeter is at the same level as the rem-counter. (author)

  20. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    Zoetelief, J.

    1981-01-01

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  1. Fast neutron response of coumarin in water and heavy water

    International Nuclear Information System (INIS)

    Krishnan, D.; Kher, R.K.; Gopakumar, K.; Bhandari, N.S.

    1979-01-01

    Response of coumarin in aqueous solution has been studied earlier for gamma rays and fast neutrons by fluorescence measurement. For further fast neutron studies, two systems viz coumarin in H 2 0 and coumarin in D 2 0, were irradiated with fast neutrons in SNIF facility in the swimming pool type APSARA reactor at Trombay. Neutron fluence was estimated by measuring induced activity in sulphur pellet and associated gamma radiation was estimated using CaS0 4 :Dy TLD powder. The KERMA values were calculated for H 2 0 and D 2 0, assuming modified fission spectrum for fast neutron in SNIF position, and they were in the ratio of 2:1. Response of a chemical dosimetric system is expected to be proportional to the absorbed dose in the respective system for the same neutron fluence. This was experimentally found to be the case for coumarin in H 2 0 or D 2 0. These results are likely to be true in general for any aqueous chemical system. The limitations of using such a dual system for dosimetry in a mixed field is discussed. (author)

  2. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-01-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO 4 , as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses. (UK)

  3. Personal fast neutrons dosimetry using radiophotoluminescent glass

    International Nuclear Information System (INIS)

    Salem, Y. O.; Nachab, A.; Nourreddine, A.; Roy, C.

    2013-06-01

    In a previous paper we described a new ambient RPL dosimeter that detects fast neutrons in a mixed n-γ field via (n, p) reactions in a polyethylene converter. In the present study, a personal dosimeter is introduced to enable evaluating the individual dose equivalent H p (10) taking into account the albedo. A calibration factor for estimating H p (10) has been determined from the diminishing angular response as the angle of neutron incidence increases to 60 deg from the normal. MCNPX simulations for 241 Am-Be and 252 Cf neutrons, together with a series of monoenergetic neutron beams from 0.144 to 5 MeV, have been used to characterize the dosimeter response, which agrees well with the experimental 241 Am-Be response. (authors)

  4. Review of clinical results of fast neutron therapy in the USA

    International Nuclear Information System (INIS)

    Peters, L.J.; Maor, M.H.; Laramore, G.E.; Griffin, T.W.; Hendrickson, F.R.

    1986-01-01

    Fast neutron radiotherapy in the United States is entering a new era in which dedicated hospital-based generators with isocentric beam capability are replacing treatment facilities based on fixed beams extracted from physics accelerators. All available clinical data, however, come from the older facilities. The majority of randomized trials conducted in the U.S. have used neutrons in a mixed schedule with photons, in which the aim was to deliver two-fifths of the total dose with neutrons; the neutron dose per fraction was set as the estimated equivalent of 2 Gy photons in terms of late normal tissue injury. Overall treatment time was held constant compared with the control photon therapy regimens (usually 6-8 weeks). Random studies of this type showed no evidence of a therapeutic gain in the treatment of advanced primary carcinomas of the head and neck, lung, uterine cervix, or pancreas. Based on a reassessment of all the available clinical and radiobiological data, and taking advantage of the greater technical flexibility offered by hospital-based facilities, the strategy of fast neutron therapy for future trials has been changed. In these trials neutrons are being used in a 12 fraction, 4 week regimen to treat gross disease, with elective therapy given wherever possible using low LET irradiation. Concomitantly, research is proceeding to define predictors of tumor response to high LET radiations in order to better select patients for fast neutron radiotherapy

  5. Micronuclei induced by fast neutrons versus 60Co gamma-rays in human peripheral blood lymphocytes.

    Science.gov (United States)

    Vral, A; Verhaegen, F; Thierens, H; De Ridder, L

    1994-03-01

    Here we compared the effectiveness of neutrons ( = 5.5 MeV) versus 60Co gamma-rays in producing micronuclei (MN) in human lymphocytes. To obtain dose-response data, blood samples of six donors were irradiated with doses ranging from 0.1 to 5 Gy for gamma-rays and 0.1-3 Gy for neutrons. A linear dependence of MN yield with dose was found for fast neutrons while for gamma-rays a nonlinear dependence existed. For both radiation qualities no significant interindividual differences were found. Derived relative biological effectiveness values decreased with increasing dose. The MN frequency distributions were overdispersed with respect to the Poisson distribution, with neutrons showing higher dispersion values than with gamma-rays. To compare the repair kinetics of both radiation qualities split-dose experiments were performed. A dose of 4 Gy gamma-rays (3 Gy neutrons) was delivered either as a single exposure or in two equal fractions separated by time intervals ranging from 30 min to 10 h (30 min to 7 h for neutrons). The data showed for gamma-rays a significant decline (30% +/- 10%) in MN yield with interfraction time due to repair of DNA damage. This repair is a continuous process starting almost immediately after the first of the two doses and lasting 3-5 h. For fast neutrons no decline was observed indicating irreparable damage.

  6. Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeo, E-mail: neutron@keyaki.cc.u-tokai.ac.jp [Department of Energy Science and Engineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Murata, Isao [Division of Electrical, Electronic and Information Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Nakagawa, Tsutomu; Saito, Isao [Nuclear Professional School, School of Engineering, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-10-01

    The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.

  7. Thermal neutron equivalent doses assessment around KFUPM neutron source storage area using NTDs

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fazal-ur-Rehman; Al-Haddad, M.N.; Al-Jarrallah, M.I.; Nassar, R

    2002-07-01

    Area passive neutron dosemeters based on nuclear track detectors (NTDs) have been used for 13 days to assess accumulated low doses of thermal neutrons around neutron source storage area of the King Fahd University of Petroleum and Minerals (KFUPM). Moreover, the aim of this study is to check the effectiveness of shielding of the storage area. NTDs were mounted with the boron converter on their surface as one compressed unit. The converter is a lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) layer for thermal neutron detection via {sup 10}B(N,{alpha}){sup 7}Li and {sup 6}Li(n,{alpha}){sup 3}H nuclear reactions. The area passive dosemeters were installed on 26 different locations around the source storage area and adjacent rooms. The calibration factor for NTD-based area passive neutron dosemeters was found to be 8.3 alpha tracks.cm{sup -2}.{mu}Sv{sup -1} using active snoopy neutron dosemeters in the KFUPM neutron irradiation facility. The results show the variation of accumulated dose with locations around the storage area. The range of dose rates varied from as low as 40 nSv.h{sup -1} up to 11 {mu}Sv.h{sup -1}. The study indicates that the area passive neutron dosemeter was able to detect accumulated doses as low as 40 nSv.h{sup -1}, which could not be detected with the available active neutron dosemeters. The results of the study also indicate that an additional shielding is required to bring the dose rates down to background level. The present investigation suggests extending this study to find the contribution of doses from fast neutrons around the neutron source storage area using NTDs through proton recoil. The significance of this passive technique is that it is highly sensitive and does not require any electronics or power supplies, as is the case in active systems. (author)

  8. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.

    1981-01-01

    The use of a spherical tissue-equivalent proportional counter for measurements of the lineal energy (y) and derivations of the linear energy transfer (LET) for fast neutrons has the advantage of giving distributions of dose and dose equivalent as functions of either LET or y. A measurement next to the target shielding of the neutron therapy facility at the University of Chicago Hospitals and Clinics (UCHC) is described, and the data processing is outlined. The distributions are presented and compared to those from measurements in the neutron beam. The average quality factors are presented

  9. Neutron doses to personnel from a 24 MeV betatron

    International Nuclear Information System (INIS)

    Beckham, W.A; Entwistle, R.F.

    1987-01-01

    Neutrons are produced by bombardment of most materials by high-energy photons. Because the x-ray shielding around high-energy x-ray generators may not have been designed with neutrons in mind there may be unexpected contributions to the radiation doses of staff working in the immediate vicinity. Neutron fluxes in the working area close to an Allis-Chalmers 24 MeV betatron have been measured using a lithium-6-loaded scintillator and the dose rates calculated. Hazard of staff has been found to be low; typical dose-equivalent rates in occupied areas range from 0.0042 to 0.012 mrem/hour. The flux of fast neutrons in the treatment room was found to be essentially zero. Measurements of neutron flux may be routinely performed using the scintillation detector (NE 912) described, and could usefully form part of the acceptance protocol for any new accelerator

  10. Fast neutron dosimetry using CR-39 track detectors with polyethylene as radiator

    International Nuclear Information System (INIS)

    Castillo, F.; Espinosa, G.; Golzarri, J.I.; Osorio, D.; Rangel, J.; Reyes, P.G.; Herrera, J.J.E.

    2013-01-01

    The chemical etching parameters (etching time, temperature, normality of etchant, etc.) for the use of CR-39 (allyl diglycol carbonate – Lantrack ® ) as a fast neutron dosimeter have been optimized. The CR-39 chips, placed under a 1.5 mm polyethylene radiator, were exposed for calibration to an 241 Am-Be source at different time intervals for a given neutron fluence. After several chemical etching processes of the detectors with different conditions, the optimum characteristics for the chemical etching were found at 6N KOH solution, 60 ± 1 °C, for 12 h. An accurate relationship between the dose and fluence calculations was obtained as a function of the track density. - Highlights: ► Optimum etching time for fast neutron irradiated CR-39 track detectors is found. ► Relationship between dose and fluence obtained as a function of the track density. ► Results are consistent with those reported elsewhere, and extend the dose range

  11. Inhomogeneous strain induced by fast neutron irradiation in NaKSO/sub 4/ crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-11-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO/sub 4/ crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO/sub 4/, as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses.

  12. Results of neutron dose measurements at the Rossendorf research reactors taking the actual neutron spectra into account

    International Nuclear Information System (INIS)

    Rimpler, A.; Kneschke, H.

    1985-01-01

    Based on a systematic evaluation of area dose studies at the beginning of the seventies, no individual routine neutron monitoring has been performed at the Rossendorf research reactors. To check this decision, a limited number of persons has been monitored with solid-state nuclear track detectors for several years. The dosemeters were calibrated on the basis of neutron spectra determined at the working places by means of the Bonner sphere method. Intermediate neutrons with a 1/E/sup α/ Fermi distribution were dominating. The fraction of fast neutrons was practically negligible. The obtained spectra, radiation, field quantities and results of individual dose measurements are presented. The dosemeter most appropriate for such neutron fields would be a 12-inch Bonner sphere rem counter. As the mean annual neutron exposure of research workers at the reactor amounted to only 2% of the maximum permissible dose, individual routine monitoring will, also in the future, not be neccessary. (author)

  13. Fast neutron dosimeter with wide base silicon diode

    International Nuclear Information System (INIS)

    Ma Lu

    1986-01-01

    This paper briefly introduces a wide base silicon diode fast neutron dosimeter with wide measuring range and good energy response to fast neutron. It is suitable to be used to detect fast neutrons in the mixed field of γ-ray, thermal neutrons and fast neutrons

  14. A Study on the Neutron Dose Distribution in Case of 10 MV X-rays Radiotherapy

    International Nuclear Information System (INIS)

    Park, Cheol Soo; Shin, Seong Soo; Lim, Cheong Hwan; Jung, Hong Ryang

    2008-01-01

    This study is to measure the radiation dose of neutrons generated by the particle accelerator during X-ray (photon) treatment with a neutron detection method by using CR-39, and to research how the generation of neutrons may incur problems associated with radiation doses for patient treatment when using high energy photons for cancer treatment as a clinical application. The findings are summarized as follows : The results showed that average 0.35 mSv was measured with exposure of 1 Gy photon in case of fast neutron, 0.65 mSv with exposure of 2 Gy photon, 1.82 mSv exposure of 5 Gy, 0.26 mSv with exposure of 1 Gy photon in case of thermal neutron, 0.56 mSv with exposure of 2 Gy photon, and 1.23 mSv with exposure of 5 Gy of photon. By measuring the occurrence of neutron by using Wedge Filter, it has been confirmed that the occurrence of neutrons increased when using Wedge Filter. The results also showed that more neutrons were detected over the existing experiments when using an SRS Cone requiring high doses of radiation. Total 2.85 mSv neutrons were found on the average with exposure of 5 Gy photon in case of fast neutron and 1.37 mSv neutrons were found on the average with exposure of 5 Gy photon in case of thermal neutron. During the general treatment, about 1.6 times more neutrons over 5 Gy photon were found in case of fast neutron and about 1.12 time more neutrons over 5 Gy photon were found in case of thermal neutron.

  15. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  16. Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters in a pool-type research reactor

    International Nuclear Information System (INIS)

    Santos, J.P.; Marques, J.G.; Fernandes, A.C.; Osvay, M.

    2007-01-01

    Al 2 O 3 :Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in the mixed radiation field of the Portuguese Research Reactor. The dosemeters were irradiated in core positions under a photon dose rate of the order of 10 4 Gy/h and a fast neutron flux in the range of 10 9 -10 11 n/cm 2 /s. In order to evaluate the ability of the TL dosemeters for mixed field dosimetry at the research reactor, the measurements were compared with results obtained via conventional methods. The agreement between the different methods is better than 13% for the determination of photon doses and within 5% for the determination of neutron fluxes in mixed fields

  17. Fast neutron therapy in advanced malignant tumour treatment

    International Nuclear Information System (INIS)

    Avinc, A.

    1998-01-01

    In this report the fast neutron therapy applications were examined by thoroughly consideration of the fast neutron sources and the interactions of the fast neutron by the medium. The efficacy of fast neutron radiotherapy with that of patients with locally advanced tumours were compared. Radiological data indicate that fast neutrons could bring benefit in the treatment of some tumour types especially salivary glands, paranasal sinuses, soft tissue sarcomas, prostatic adenocarcinomas, palliative treatment of melanoma and rectum. There is a significant improvement in local/regional control for the neutron group, but no improvement in the survival. The neutron therapy is suggested through which this benefit could be achieved

  18. Fast neutron personnel dosimetry by CR-39 plastics a new electrochemical etching procedure

    International Nuclear Information System (INIS)

    Djeffal, S.

    1984-07-01

    In the first part of this work a brief description of solid state nuclear track detectors, the principles of track registration and the different reading techniques are given. In the experimental part of the present work we systematically analysed different etching procedures and set a new electrochemical etching method, which enables us to develop a new fast neutron dosimeter. This fast neutron dosimeter makes possible the measurement of low neutron doses in the energy range from 10 Kev to 20 Mev with a reasonably flat energy response. These new developments are very attractive in personnel neutron dosimetry where nuclear emulsions are still used despite their insensitivity to neutron energies down to 500 Kev (i.e. the energy range one often encounters around nuclear facilities)

  19. Fast neutron activation analysis by means of low voltage neutron generator

    Directory of Open Access Journals (Sweden)

    M.E. Medhat

    Full Text Available A description of D-T neutron generator (NG is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given. Keywords: Neutron generator, Fast neutron activation analysis, Elemental analysis

  20. Cell inactivation and chromosomal aberrations induced by X-rays and fast neutrons in cells of the Chinese hamster. 1

    International Nuclear Information System (INIS)

    Tolkendorf, E.

    1979-01-01

    Asynchronously grown cultures of Chinese hamster cells V79-4 were irradiated in suspension with 180 kV X-rays and fast neutrons (average energy of 6.2 MeV). The damage was assessed by measuring cell survival and frequencies of chromosome aberrations in the first post-irradiation metaphases. The experimental data for survival and chromosome aberrations were fitted by computer programmes. From the fitted curves the relative biological effectiveness (RBE) of fast neutrons was calculated. The RBE shows a similar dose dependence for killed and aberrant cells. The RBE decreases with increasing dose and amounts to approximately 5 for both effects for small neutron doses. The highest RBE is found for asymmetrical chromosomal exchanges and is dependent on the neutron dose, too. However, for isochromatid deletions the RBE is dose independent with a value of 3.6. (author)

  1. Fast neutron induced increase of flowering in portulaca grandiflora linn

    International Nuclear Information System (INIS)

    Abraham, V.; Desai, B.M.

    1975-01-01

    Unbranched cuttings were exposed to fast neutron doses of 71-284 rads and planted along with unirradiated controls. There was a significant increase in the numbers of flowers in the treated populations due to the increased production of primary and secondary branches. (MG) [de

  2. Medical radiography with fast neutrons

    International Nuclear Information System (INIS)

    Duehmke, E.

    1980-01-01

    Neutron radiography is important in medicine for two reasons. On the one hand, macroradiographical findings are different from X-ray findings, i.e. new information may be gained on the morphology of humans and animals. On the other hand, there is a direct practical application in the radiotherapy of malignant tumours if one considers the assessment of the growth of malignant processes. Fast neutrons are required for neutron radiographies of biological objects with a diameter of more than 2 cm. In addition sensitive, two-dimensional detectors must be used which are selective for fast neutrons. The book describes the optimisation and sensitisation of a detector using the example of cellulose nitrate foil for fast reactor neutrons. Images of human spinal chords with tumours proved by pathological and anatomical examinations give a better picture of the dimensions of the tumour than comparative X-ray pictures. For examinations of living patients, neutron radiography should be applied only in those tumour-bearing parts of the bodies in which radiation treatment is required for therapeutical purposes anyway. (orig./MG) [de

  3. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    International Nuclear Information System (INIS)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Paul M. Jr.

    2000-01-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue

  4. Contraband detection with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, Andy E-mail: abuffler@science.uct.ac.za

    2004-11-01

    Recent terror events and the increase in the trade of illicit drugs have fuelled the exploration of the use of fast neutrons as probes for the detection of hidden contraband, especially explosives, in packages ranging in size from small mail items to cargo containers. The various approaches using fast neutrons for contraband detection, presently under development, are reviewed. The role that a neutron system might play in the non-intrusive interrogation of airline luggage is discussed.

  5. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2000-01-01

    The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)

  6. Radiation protection aspects of a high flux, fast neutron generator

    International Nuclear Information System (INIS)

    DeLuca, P.M.; Torti, R.P.; Chenevert, G.M.; Tesmer, J.R.; Kelsey, C.A.

    1976-01-01

    During the development and operation of a gas target, DT neutron generator for use in cancer therapy, two radiation hazards were routinely encountered - personnel exposure to neutrons and to tritium. The principal hazard was irradiation by fast neutrons. By assembling the source below ground level, adding shielding and the use of a controlled access, key identification interlock, the neutron hazard has been reduced. With the present source strength of 2 x 10 12 n/sec, an average neutron dose rate in the control room of 20 mrem/hr was measured- a level compatible with a limited run schedule. The second hazard was exposure to tritium in both gaseous and solid forms. A target inventory of 90 Ci, and overall inventory of 500 Ci, and the need to modify and repair the generator present significant potential hazard due to tritium exposure. The use of protective gloves, wipe tests, urine assays, continuous room air monitoring, and equipment decontamination minimized personnel exposure and effectively confined contamination. The dose due to tritium has been ∼ 0.5 rem/year and negligible spread of contamination has occurred

  7. {sup 10}B-augmented fast neutron radiosurgery for brain tumor treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Chen, J. [Georgia Institute of Technology, Atlanta, GA (United States); Halpern, D.; Moore, C. [Isotron Inc., Alpharetta, GA (United States)

    2000-10-01

    We have investigated a new {sup 10}B-enhanced fast neutron treatment modality based on a concept similar to the x-ray radiosurgery or gamma knife. The results from our proof-of-principle Monte Carlo calculations clearly indicate that the dose-volume-histogram (DVH) of a 5-cm-deep tumor treated with multiple converging neutron beams is superior to that treated with a single broad neutron beam. To find out if the idea of neutron radiosurgery is practical, we have designed a small neutron beam based on 1-mA of 7-MeV deuterons bombarding a thick beryllium target, i.e. via Be(d,n) reactions. Such a deuteron beam is already achievable based on the existing accelerator technology, and it is also inexpensive. The Monte Carlo results show that the Be(d,n)-based facility produces an average dose rate of 1.9 Gy min{sup -1} in the tumor volume. For a typical tumor dose of 20 Gy, the treatment time would be 10.5 minutes. The results also show that the preferential loading of 100 ppm of {sup 10}B will produce in average an additional 8% of dose to tumor cells via {sup 10}B(n,{alpha}){sup 7}Li reactions. (author)

  8. Fast Neutrons - LET Distributions and the Response of Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bewley, D. K. [Medical Research Council Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)

    1968-03-15

    Distributions of stopping power (LET) are given for four beams of fast neutrons, namely, neutrons of 14.6 MeV, neutrons produced by bombarding a thick beryllium target with 15 MeV deuterons, neutrons of 3 MeV, and fast neutrons produced by bombardment of a {sup 235}U converter plate with thermal neutrons. The track average LET is correlated with mean neutron energy, but the dose average is approximately constant. However, neither of these types of average is expected to have much relevance to radiobiology. Further, specification of a ''biologically effective LET'' depends on the biological test used, and is not solely a function of the radiation quality. An attempt has been made to calculate the response of T.I. kidney cells in tissue culture to these four beams of neutrons, based on their response to charged particles using the track-segment method. The calculated RBE's of the neutron beams are lower than the observed values and the calculated values of the oxygen enhancement ratio are higher. These differences seem too great to be explained by errors in dosimetry and in the calculated LET spectra. The suggestion is made that LET is not an adequate criterion of radiation quality, and that the discrepancies may be explained by more detailed consideration of the part played by delta rays and by heavy recoil tracks of short range. (author)

  9. Fast neutron dosimetry. Progress report, 30 August 1992--1 September 1993

    Energy Technology Data Exchange (ETDEWEB)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-12-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ``white`` source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report.

  10. Computerized tomography using fast neutrons

    International Nuclear Information System (INIS)

    Maier-Schuler, P.

    1992-03-01

    The equipment is transportable and can be used at different neutron sources. CT-images are presented showing that it is possible to get good results by using CT with fast neutrons in non destructive testing. Small defects with high contrasts can be detected as well as larger defects with small differences in material density. Since the neutrons interact with the nuclei and not with the electron density the CT-images contain different information compared with X-ray or γ images. As neutron sources always emit γ-radiation too, this radiation can be detected simultaneously with the neutrons. Therefore one can get a γ CT-image along with the neutron image. For the examination of small samples or objects containing materials with great differences in the linear attenuation coefficients like Al and H 2 thermal neutrons have been used for CT-measurements too. A spatial resolution and a density resolution of 0.1 mm and about 5% respectively could be achieved in the CT-images with fast neutrons and 0.04 mm with thermal neutrons. (orig./HP) [de

  11. Neutrons in active proton therapy. Parameterization of dose and dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Haelg, Roger A. [Univ. of Zurich (Switzerland). Dept. of Physics; Radiotherapy Hirslanden AG, Aarau (Switzerland); Lomax, Tony [Paul Scherrer Institute, Villigen (Switzerland). Center for Proton Therapy

    2017-08-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85 cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138 MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160 MeV or 177 MeV instead of 138 MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy.

  12. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  13. Monte Carlo evaluation of a photon pencil kernel algorithm applied to fast neutron therapy treatment planning

    Science.gov (United States)

    Söderberg, Jonas; Alm Carlsson, Gudrun; Ahnesjö, Anders

    2003-10-01

    When dedicated software is lacking, treatment planning for fast neutron therapy is sometimes performed using dose calculation algorithms designed for photon beam therapy. In this work Monte Carlo derived neutron pencil kernels in water were parametrized using the photon dose algorithm implemented in the Nucletron TMS (treatment management system) treatment planning system. A rectangular fast-neutron fluence spectrum with energies 0-40 MeV (resembling a polyethylene filtered p(41)+ Be spectrum) was used. Central axis depth doses and lateral dose distributions were calculated and compared with the corresponding dose distributions from Monte Carlo calculations for homogeneous water and heterogeneous slab phantoms. All absorbed doses were normalized to the reference dose at 10 cm depth for a field of radius 5.6 cm in a 30 × 40 × 20 cm3 water test phantom. Agreement to within 7% was found in both the lateral and the depth dose distributions. The deviations could be explained as due to differences in size between the test phantom and that used in deriving the pencil kernel (radius 200 cm, thickness 50 cm). In the heterogeneous phantom, the TMS, with a directly applied neutron pencil kernel, and Monte Carlo calculated absorbed doses agree approximately for muscle but show large deviations for media such as adipose or bone. For the latter media, agreement was substantially improved by correcting the absorbed doses calculated in TMS with the neutron kerma factor ratio and the stopping power ratio between tissue and water. The multipurpose Monte Carlo code FLUKA was used both in calculating the pencil kernel and in direct calculations of absorbed dose in the phantom.

  14. A study of television imaging system for fast neutron radiography

    International Nuclear Information System (INIS)

    Yoshii, Koji

    1992-01-01

    The neutron radiography with fast neutron beam is a very useful imaging technique for thicker objects, especially those composed of hydrogen-rich materials which are sometimes difficult to image by thermal neutron radiography. The fast neutron radiography has not been studied so much as the thermal neutron radiography. The fast neutron radiography has been studied at the fast neutron source reactor 'Yayoi' of the University of Tokyo built in Tokai-mura. The average neutron energy of the Yayoi is about 1 MeV, and the peak neutron flux at the core center is 0.8 x 10 12 at the maximum operating power of 2 kW. In the experiment on fast neutron radiography, a CR39 nuclear track detector has been used successfully. But in the Yayoi radiography procedure, about 24 hours were required for obtaining an imaging result. To get a prompt imaging result and a real-time imaging result, it is necessary to develop a fast neutron television system, and in this paper, a new fast neutron TV system is proposed. The main difference is the converter material sensitive to fast neutrons. The study on the fast neutron TV system was carried out by using the Baby Cyclotron of Japan Steel Works, and the good images were realized. (K.I.)

  15. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    Directory of Open Access Journals (Sweden)

    A Ghasemi

    2015-01-01

    Full Text Available Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF 3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER utilizing conversion factors of American Association of Physicist in Medicine′s (AAPM report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10 -6 (3 m from isocenter in +Y direction, 0 × 0 field size and 8.36 × 10 -8 Sv/min (in maze, 40 × 40 field size, respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10 -5 and 1.74 × 10 -5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size, respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  16. Development of Optical Fiber Detector for Measurement of Fast Neutron

    International Nuclear Information System (INIS)

    YAGI, Takahiro; KAWAGUCHI, Shinichi; MISAWA, Tsuyoshi; PYEON, Cheol Ho; UNESAKI, Hironobu; SHIROYA, Seiji; OKAJIMA, Shigeaki; TANI, Kazuhiro

    2008-01-01

    Measurement of fast neutron flux is important for investigation of characteristic of fast reactors. In order to insert a neutron detector in a narrow space such as a gap of between fuel plates and measure the fast neutrons in real time, a neutron detector with an optical fiber has been developed. This detector consists of an optical fiber whose tip is covered with mixture of neutron converter material and scintillator such as ZnS(Ag). The detector for fast neutrons uses ThO 2 as converter material because 232 Th makes fission reaction with fast neutrons. The place where 232 Th can be used is limited by regulations because 232 Th is nuclear fuel material. The purpose of this research is to develop a new optical fiber detector to measure fast neutrons without 232 Th and to investigate the characteristic of the detector. These detectors were used to measure a D-T neutron generator and fast neutron flux distribution at Fast Critical Assembly. The results showed that the fast neutron flux distribution of the new optical fiber detector with ZnS(Ag) was the same as it of the activation method, and the detector are effective for measurement of fast neutrons. (authors)

  17. Japanese experience with clinical trials of fast neutrons

    International Nuclear Information System (INIS)

    Tsunemoto, H.; Arai, T.; Morita, S.; Ishikawa, T.; Aoki, Y.; Takada, N.; Kamata, S.

    1982-01-01

    Between November, 1975 and November, 1981, 825 patients were treated with 30 MeV (d-Be) neutrons at the National Institute of Radiological Sciences, Chiba. At the Institute of Medical Science, Tokyo, 302 patients were referred to the Radiation Therapy department and were treated with 16 MeV (d-Be) neutrons. The emphasis of these clinical trials with fast neutrons was placed on the estimation of the effect of fast neutrons for locally advanced cancers or radioresistant cancers, and on evaluation of the rate of complication of normal tissues following irradiation with fast neutrons. Results were evaluated for patients with previously untreated cancer; local control of the tumor was observed in 59.1%. Complications requiring medical care developed in only 32 patients. Late reaction of soft tissue seemed to be more severe than that observed with photon beams. The results also suggest that for carcinoma of the larynx, esophagus, uterine cervix, Pancoast's tumor of the lung and osteosarcoma, fast neutrons were considered to be effectively applied in this randomized clinical trial. For carcinoma of the larynx, a fast neutron boost was effectively delivered, although an interstitial implant was necessarily combined with fast neutrons for carcinoma of the tongue. The cumulative survival rate of the patients with carcinoma of the esophagus treated with fast neutrons of 26% compared to the survival rate of 10.5% obtained using photons. The results also indicate that local control and relief of the symptom related to Pancoast's tumor of the lung seemed to be better with neutrons than with photons. For patients suffering from osteosarcoma, the surgical procedures preserving the function of the leg and arm were studied according to the better local control rate of the tumor following fast neutron beam therapy

  18. Fast neutron boost for the treatment of grade IV astrocytomas

    International Nuclear Information System (INIS)

    Breteau, N.; Destembert, B.; Favre, A.; Pheline, C.; Schlienger, M.

    1989-01-01

    A previous study, on grade IV astrocytomas, compared a combination of photons and fast neutron boost to photons only, both treatments being delivered following a concentrated irradiation schedule. A slight improvement in survival was observed after neutron boost for non operated patients, but not for operated patients. Since death was always related to local recurrence and since no complication occurred after neutron boost, the neutron dose was increased from 6 to 7 Gy in January 1985. No improvement in survival was observed for patients treated with neutron boost after complete resection. After subtotal resection, the group that was treated with the higher neutron boost (7 Gy) showed a significant benefit in survival at twelve months. When patients had only a biopsy before irradiation, there was a benefit in survival after neutron boost, but no additional benefit was gained when the size of the neutron boost was increased from 6 to 7 Gy. (orig.) [de

  19. Optimization of CR-39 for fast neutron dosimetry applications

    International Nuclear Information System (INIS)

    Vilela, E.; Fantuzzi, E.; Giacomelli, G.; Giorgini, M.; Morelli, B.; Patrizii, L.; Serra, P.; Togo, V.

    1999-01-01

    We present the results of an experimental work aimed at improving the performances of the CR-39[reg] (Registered Trademark of PPG Industries Inc.) nuclear track detector for neutron dosimetry applications. The work was done in collaboration with the Intercast Europe S.p.A., producer of CR-39 for commercial and scientific applications. We compare the CR-39 made with different additives concentrations and different polymerization processes. We evaluate the response of the CR-39 to fast neutrons from three sources: 241 Am-Be, 252 Cf and 238 Pu-Li. Particular attention was paid to background fluctuations that limit the lower detectable dose

  20. Thermal and fast neutron dosimetry using artificial single crystal diamond detectors

    International Nuclear Information System (INIS)

    Angelone, M.; Pillon, M.; Prestopino, G.; Marinelli, Marco; Milani, E.; Verona, C.; Verona-Rinati, G.; Aielli, G.; Cardarelli, R.; Santonico, R.; Bedogni, R.; Esposito, A.

    2011-01-01

    In this work we propose the artificial Single Crystal Diamond (SCD) detector covered with a thin layer (0.5 μm/4 μm) of 6 LiF as a simultaneous thermal and fast neutron fluence monitor. Some interesting properties of the diamond response versus the neutron energy are evidenced thanks to Monte Carlo simulation using the MCNPX code which allows to propose the diamond detector also as an ambient dose equivalent (H∗(10)) monitor (REM counter).

  1. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    International Nuclear Information System (INIS)

    Brady, Samuel L; Fallin, Brent; Gunasingha, Rathnayaka; Yoshizumi, Terry T; Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P; Dewhirst, Mark W

    2010-01-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2 H(d,n) 3 He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  2. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  3. Effect of 2-Mercaptopropionyl-Glycine on the hemoglobin of rats exposed to low doses of fast neutrons

    International Nuclear Information System (INIS)

    Selim, N.S.; Ashry, H.A.

    2001-01-01

    Adult male rats weighing 150± 10 gm, were divided into six groups: one group was kept untreated as normal control, one group received single administration of 20 mg/kg body weight 2-mercapto-propionyl glycine, commercially called thiola, the remaining four groups were injected with thiola and exposed to different doses of fast neutrons (4.32, 36, 70 and 140 mSv) 30 minutes after injection. The analysis of the hemoglobin molecule was performed 24 hours after irradiation. The UV-visible spectrum of the hemoglobin was recorded from 200 to nm using CECIL-3041 UV-Vis spectrophotometer. The following parameters were calculated for the evaluation of the hemoglobin spectrum: 1- The maximum absorbance at 271, 340, 410, 540 and 574 nm, 2- The full width at half maximum of each peak (FWHM), 3-evaluation of the ratio between different peaks as follows: a) A 41 0/A 271 (iron to globin ratio) c) A 574 / A 271 : (heme to globin ratio), d)- A 574 /A 540 (spin state of the iron) and 4- recording the appearance of new peaks or the disappearance of normally occurring peaks. The injection of thiola, only, was found to affect the spatial distribution of the hemoglobin molecule. Also, it was shown to minimize the damaging effects of fast neutrons on the hemoglobin and decreased environmental perturbations

  4. Genes involved in yeast survival after irradiation with fast neutrons

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M.J.

    2001-01-01

    Life on the Earth has evolved against a continuous background of ionizing radiation. It would be expected, therefore, that all possible mutations have been produced at some time or another; man-made radiation from medical or industrial sources will not result in any new types of mutation but will simply increase the whole spectrum of mutations that occur spontaneously. Any such lesion can be mutagenic and, in principle, lethal. To counteract the consequences of DNA damage, evolution has equipped all living cells with an intricate network of defense and repair systems. Together, these systems act as a kind of nuclear 'immune system' that is able to recognize and eliminate many types of DNA lesions. In the case of the yeast Saccharomyces cerevisiae, in these processes over 30 RAD genes participate. We tested the survival of haploid and diploid rad1 yeast mutant strains at a dose of 15 Gy of γ or fast neutron radiation. We demonstrated that the lethality of rad1 mutants both haploid and diploid are significantly higher after fast neutron irradiation. The results indicate to the role and position of these genes in the DNA repair of damages specifically induced by fast neutrons. (authors)

  5. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  6. Effects of fast neutrons on chromatin: dependence on chromatin structure

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.

    2002-01-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  7. Development of fast neutron radiography system based on portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, THAILAND 10330 (Thailand)

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  8. Effect of Fast Neutron to MA/PU Burning/Transmutation Characteristic Using a Fast Reactor

    International Nuclear Information System (INIS)

    Marsodi; Lasman, As Natio; Kimamoto, A.; Marsongkohadi; Zaki, S.

    2003-01-01

    MA/Pu burning/transmutation has been studied and evaluated using fast neutrons. Generally, neutron density at this fast burner reactor and transmutation has spectrum energy level around 0.2 MeV with wide enough variation, i.e. from low neutron spectrum to its peak is 0.2 MeV. This neutron spectrum energy level depends on the kind of cooler material or fuel used. Neutron spectrum higher than fast power reactor neutron spectrum is found by means of changing oxide fuel by metallic fuel and changing natrium cooler material by metallic or gas cooler material. This evaluation is conducted by various variations in accordance with the kind of fuel or cooler, MA/Pu fractions and fuel comparison fraction with respect to its cooler in order to get better neutron usage and MA/Pu burning speed. Reactor calculation evaluation in this paper was conducted with 26-group nuclear data cross section energy spectrum. The main purpose of the discussion is to know the effect of fast neutrons to burning/transmutation MA/Pu using fast neutrons

  9. Japanese experience with clinical trails of fast neutrons

    International Nuclear Information System (INIS)

    Tsunemoto, H.; Arai, T.; Morita, S.; Ishikawa, T.; Aoki, Y.; Takada, N.; Kamata, S.

    1982-01-01

    Between November, 1975 and November, 1981, 825 patients were treated with 30 MeV (d-Be) neutrons at the National Institute of Radiological Sciences, Chiba. At the Institute of Medical Science, Tokyo, 302 patients were referred to the Radiation Therapy department and were treated with 16 MeV (d-Be) neutrons. The emphasis of these clinical trials with fast neutrons was placed on the estimation of the effect of fast neutrons for locally advanced cancers or radioresistant cancers, and on evaluation of the rate of complication of normal tissues following irradiaton with fast neutrons. Results were evaluated for patients with previously untreated cancer; local control of the tumor was observed in 59.1%. Complications requiring medical care developed in only 32 patients. Patients who had received pre- or postoperative irradiation were excluded from this evaluation. Late reaction of soft tissue seemed to be more severe than that observed with photon beams. The results also suggest that for carcinoma of the larynx, esophagus, uterine cervix, Pancoasts's tumor of the lung and osteosarcoma, fast neutrons were considered to be effectively applied in this randomized clinical trial. For carcinoma of the larynx, a fast nuetron boost was effectively delivered, although an interstitial implant was necessarily combined with fast neutrons for carcinoma of the tongue. The cumulative survival rate of the patients with carcinoma of the esophagus treated with fast neutrons was 26% compared to the survival rate of 10.5% obtained using photons. This was supported by evidence from the pathological studies that showed that the tumor cells which had deeply invaded into the esophagus were effectively destroyed when fast neutrons were applied

  10. A 'hybrid' neutron area survey instrument for the determination of neutron dose quantities in the workplace

    International Nuclear Information System (INIS)

    Tanner, R.J.; Jenkins, R.; Lowe, T.; Silvie, J.; Joyce, M.J.; Winsby, A.; Molinos, C.

    2005-01-01

    Full text: Neutron survey instruments are used routinely to determine the dose rates in areas where persons may be occupationally exposed. With a few exceptions, these instruments generally use a proportional counter with a high thermal neutron response located in a moderating sphere of CH 2 . The moderating sphere in such designs contains a thermal neutron absorber to reduce the over-response to thermal and intermediate energy neutrons. However, the commercially available examples of such instruments tend to have strongly energy dependent ambient dose equivalent response characteristics. In particular, they often over-respond in the energy range between 1 eV and 10 keV. A prototype of a novel design has been produced that uses seven detectors located in a moderating sphere of CH 2 , six near the surface to detect thermal and epithermal neutrons, and one in the centre to detect fast neutrons. This has been characterized using a combination of MCNP modelling and measurements to produce an instrument that has improved energy dependence of response characteristics. Additionally, the use of seven detectors offers direction and field hardness information. The design and calibration of the instrument are described and its response in workplaces calculated. (author)

  11. Preliminary experiment of fast neutron imaging with direct-film method

    International Nuclear Information System (INIS)

    Pei Yuyang; Tang Guoyou; Guo Zhiyu; Zhang Guohui

    2005-01-01

    A preliminary experiment is conducted with direct-film method under the condition that fast neutron is generated by the reaction of 9 Be(d, n) on the Beijing University 4.5 MV Van de Graaff, whose energy is lower than 7 MeV. Basic characteristics of direct-film neutron radiography system are investigated with the help of samples in different materials, different thickness and holes of different diameter. The fast neutron converter, which is vital for fast neutron imaging, is produced with the materials made in China. The result indicates that fast neutron converter can meet the requirement of fast neutron imaging; further research of fast neutron imaging can be conducted on the accelerator and neutron-generator in China. (authors)

  12. A scatter model for fast neutron beams using convolution of diffusion kernels

    International Nuclear Information System (INIS)

    Moyers, M.F.; Horton, J.L.; Boyer, A.L.

    1988-01-01

    A new model is proposed to calculate dose distributions in materials irradiated with fast neutron beams. Scattered neutrons are transported away from the point of production within the irradiated material in the forward, lateral and backward directions, while recoil protons are transported in the forward and lateral directions. The calculation of dose distributions, such as for radiotherapy planning, is accomplished by convolving a primary attenuation distribution with a diffusion kernel. The primary attenuation distribution may be quickly calculated for any given set of beam and material conditions as it describes only the magnitude and distribution of first interaction sites. The calculation of energy diffusion kernels is very time consuming but must be calculated only once for a given energy. Energy diffusion distributions shown in this paper have been calculated using a Monte Carlo type of program. To decrease beam calculation time, convolutions are performed using a Fast Fourier Transform technique. (author)

  13. Recent advances in fast neutron radiography for cargo inspection

    International Nuclear Information System (INIS)

    Sowerby, B.D.; Tickner, J.R.

    2007-01-01

    Fast neutron radiography techniques are attractive for screening cargo for contraband such as narcotics and explosives. Neutrons have the required penetration, they interact with matter in a manner complementary to X-rays and they can be used to determine elemental composition. Compared to neutron interrogation techniques that measure secondary radiation (neutron or gamma-rays), neutron radiography systems are much more efficient and rapid and they are much more amenable to imaging. However, for neutron techniques to be successfully applied to cargo screening, they must demonstrate significant advantages over well-established X-ray techniques. This paper reviews recent developments and applications of fast neutron radiography for cargo inspection. These developments include a fast neutron and gamma-ray radiography system that utilizes a 14 MeV neutron generator as well as fast neutron resonance radiography systems that use variable energy quasi-monoenergetic neutrons and pulsed broad energy neutron beams. These systems will be discussed and compared with particular emphasis on user requirements, sources, detector systems, imaging ability and performance

  14. Changes of Dielectric Properties induced by Fast neutrons in Tissue Equivalent Plastic A-150

    International Nuclear Information System (INIS)

    Abdou, M.S.

    2000-01-01

    Tissue equivalent plastic A-150 (TEP A-150) samples are exposed to fast neutrons. Dielectric studies for TEP A-150 are carried out in the frequency range from 40 Hz to 4 MHz in the temperature range 295-343 K. The obtained data revealed that, both the dielectric properties and conductivity sigma ac (omega) of TEP A-150 are altered when irradiated by a relatively high fast neutron dose (15 Sv). The values of dielectric constant and conductivity are increased for the irradiated samples to about 24% than the blank samples

  15. DIANE, a simulation code for the interaction of neutrons with living tissues. Application to low doses of fast neutrons on human tumoral cells

    International Nuclear Information System (INIS)

    Nenot, M.L.

    2003-07-01

    Our work deals with the irradiation of cells and living tissues by 14 MeV neutrons at very low doses (a few 10 -2 Gy). Such experiments require an accurate knowledge of the values of neutron dose rates and fluences at the level of cell cultures. We have performed measurements of fluence rates through an activation method applied to gold and copper foils. The fluence rate is deduced from the gamma rays emitted by the irradiated foils. Neutron doses and dose rates have been measured through varied methods: PIN diodes, ionization tissue equivalent chambers, and Geiger-Mueller counters. We have designed the DIANE code to simulate the impact of energetic neutrons on cells. This code can be used with isolated cells or macroscopic tissues, it takes into account the roles of the ionisation electrons produced by recoil nuclei entering the cell. This point is all the more important since recent works have highlighted the impact of very low energy electrons on DNA. (A.C.)

  16. An improved fast neutron radiography quantitative measurement method

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2004-01-01

    The validity of a fast neutron radiography quantification method, the Σ-scaling method, which was originally proposed for thermal neutron radiography was examined with Monte Carlo calculations and experiments conducted at the YAYOI fast neutron source reactor. Water and copper were selected as comparative samples for a thermal neutron radiography case and a dense object, respectively. Although different characteristics on effective macroscopic cross-sections were implied by the simulation, the Σ-scaled experimental results with the fission neutron spectrum cross-sections were well fitted to the measurements for both the water and copper samples. This indicates that the Σ-scaling method could be successfully adopted for quantitative measurements in fast neutron radiography

  17. Influence of gamma radiation and fast neutrons on the growth of Haplopappus gracilis (Nutt) A. Gray callus

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Wajda, L.; Korzonek, M.; Polska Akademia Nauk, Krakow. Inst. Fizjologii Roslin)

    1979-01-01

    The sensitivity of the callus of Haplopappus gracilis to gamma radiation and fast neutrons was studied. High doses of radiation cause inhibition of callus growth. At small doses the effect is less pronounced. Stimulation of callus growth was seen. Apart from morphological changes, ionizing radiations lowered the fresh weight ratio of the callus. The RBE value for 5.5 MeV neutrons depended on the dose rate of radiation and the combination of growth medium. (author)

  18. Fast neutron fluxes distribution in Egyptian ilmenite concrete

    International Nuclear Information System (INIS)

    Megahed, R.M.; Abou El-Nasr, T.Z.; Bashter, I.I.

    1978-01-01

    This work is concerned with the study of the distribution of fast neutron fluxes in a new type of heavy concrete made from Egyptian ilmenite ores. The neutron source used was a collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. Measurements were carried-out using phosphorous activation detectors. Iso-flux curves were represented which give directly the shape and thickness required to attenuate the emitted fast neutron flux to a certain value. The relaxation lengths were also evaluated from the measured data for both disc monodirectional source and infinite plane monodirectional source. The obtained values were compared with that calculated using the derived values of relative number densities and microscopic removal cross-sections of the different constituents. The obtained data show that ilmenite concrete attenuates fast neutron flux more strongly than ordinary concrete. A semiemperical formula was derived to calculate the fast neutron flux at different thicknesses along the beam axis. Another semiemperical formula was also derived to calculate the fast neutron flux in ordinary concrete along the beam axis using the corresponding value in ilmenite concrete

  19. The effect of gamma and fast neutron irradiations on M1 seedling growth in soybean

    International Nuclear Information System (INIS)

    Hassan, S.; Mohammad, T.; Khan, S.

    1985-01-01

    Seeds of three varieties of soybean, i.e. Bragg, Hodgson and Lee-74, having a moisture content of 11-13% were irradiated with doses of gamma, 100,200,300,400 and 500 Gray and fast neutron, 5,10,20,25 and 30 Gray, to study the effect on M1 seedling growth. The parameters studied were germination, seedling height and epicotyl length. Growth inhibition was found to increase with increasing radiation doses and the effect on germination was observed only at higher doses. Among early assessable M1 parameters for radio-sensitivity, epicotyl length has proved to be most sensitive, and hence most useful. The Relative Biological Effectiveness (RBE) values for the three varieties differed slightly for epicotyl length and the difference was more pronounced for seedling height. A dose range of 150-300 Gray of gamma rays and 10-15 Gray of fast neutron might prove useful for efficient induced mutation. (authors)

  20. Measurement of fast neutron background in SAGE

    International Nuclear Information System (INIS)

    Abdurashitov, J.N.; Gavrin, V.N.; Kalikhov, A.V.; Matushko, V.L.; Shikhin, A.A.; Yants, V.E.; Zaborskaia, O.S.

    2002-01-01

    The spectrometer intended for direct measurements of ultra low fluxes of fast neutrons is described. It is sensitive to neutron fluxes of 10 -7 cm -2 s -1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11 ± 0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5 ± 2.1) x 10 -7 cm -2 s -1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4700 meters of water equivalent was measured to be (7.3 ± 2.4) x 10 -7 cm -2 s -1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be -7 cm -2 s -1 in 1.0-11.0 MeV energy range

  1. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-01-01

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, α)7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,γ)2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning

  2. Calculation of gamma-rays and fast neutrons fluxes with the program Mercure-4

    International Nuclear Information System (INIS)

    Baur, A.; Dupont, C.; Totth, B.

    1978-01-01

    The program MERCURE-4 evaluates gamma ray or fast neutron attenuation, through laminated or bulky three-dimensionnal shields. The method used is that of line of sight point attenuation kernel, the scattered rays being taken into account by means of build-up factors for γ and removal cross sections for fast neutrons. The integration of the point kernel over the range of sources distributed in space and energy, is performed by the Monte-Carlo method, with an automatic adjustment of the importance functions. Since it is operationnal the program MERCURE-4 has been intensively used for many various problems, for example: - the calculation of gamma heating in reactor cores, control rods and shielding screens, as well as in experimental devices and irradiation loops; - the evaluation of fast neutron fluxes and corresponding damage in structural materials of reactors (vessel steels...); - the estimation of gamma dose rates on nuclear instrumentation in the reactors, around the reactor circuits and around spent fuel shipping casks

  3. Clinical application of fast neutrons

    International Nuclear Information System (INIS)

    Battermann, J.J.

    1981-01-01

    The results of treatments and clinical experiments with neutrons (from a medical d+T neutron generator with an output of 10 12 neutrons per second) are reported and discussed. Data on RBE values are presented after single doses and multiple fractions of neutrons and 60 Co-gamma rays on pulmonary metastases. The results of pilot studies on head and neck tumours, brain tumours and pelvic tumours are discussed. The accuracy of the calculated dose is tested with some in-vivo experiments during neutron irradiation of the pelvis. Estimations of RBE values for tumour control, skin damage and intestinal damage after fractionated neutron therapy are dealt with and the results obtained in treatment of sarcomas are discussed. The preliminary results are given of some clinical trials in Amsterdam. Also some data from other centres are reviewed. From these data some remarks about the future of neutron therapy are made. (Auth.)

  4. NEUTRON AND PHOTON DOSE MAPPING OF A DD NEUTRON GENERATOR.

    Science.gov (United States)

    Metwally, Walid A; Taqatqa, Osama A; Ballaith, Mohammed M; Chen, Allan X; Piestrup, Melvin A

    2017-11-01

    Neutron generators are an excellent tool that can be effectively utilized in educational institutions for applications such as neutron activation analysis, neutron radiography, and profiling and irradiation effects. For safety purposes, it is imperative that appropriate measures are taken in order to minimize the radiation dose from such devices to the operators, students and the public. This work presents the simulation and measurement results for the neutron and photon dose rates in the vicinity of the neutron generator installed at the University of Sharjah. A very good agreement is found between the simulated and measured dose rates. All of the public dose constraints were found to be met. The occupational dose constraint was also met after imposing a 200 cm no entry zone around the generator room. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Fast neutron analysis code SAD1

    International Nuclear Information System (INIS)

    Jung, M.; Ott, C.

    1985-01-01

    A listing and an example of outputs of the M.C. code SAD1 are given here. This code has been used many times to predict responses of fast neutrons in hydrogenic materials (in our case emulsions or plastics) towards the elastic n, p scattering. It can be easily extended to other kinds of such materials and to any kind of incident fast neutron spectrum

  6. Fast neutron (14.5 MeV) radiography: a comparative study

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    Fast neutron (14.5 MeV) radiography is a type of non-destructive analysis tool that offers its own benefits and drawbacks. Because cross-sections vary with energy, a different range of materials can be examined with fast neutrons than can be studied with thermal neutrons, epithermal neutrons, or x-rays. This paper details these differences through a comparative study of fast neutron radiography to the other types of radiography available. The most obvious difference among the different types of radiography is in the penetrability of the sources. Fast neutrons can probe much deeper and can therefore obtain details of the internals of thick objects. Good images have been obtained through as much as 15 cm of steel, 10 cm of water, and 15 cm of borated polyethylene. In addition, some objects were identifiable through as much as 25 cm of water or 30 cm of borated polyethylene. The most notable benefit of fast neutron radiography is in the types of materials that can be tested. Fast neutron radiography can view through materials that simply cannot be viewed by X rays, thermal neutrons, or epithermal neutrons due to the high cross-sections or linear attenuation coefficients involved. Cadmium was totally transparent to the fast neutron source. Fast neutron radiography is not without drawbacks. The most pronounced drawback has been in the quality of radiograph produced. The image resolution is only about 0.8 mm for a 1.25 cm thick object, whereas, other forms of radiography have much better resolution

  7. Novel applications of fast neutron interrogation methods

    International Nuclear Information System (INIS)

    Gozani, Tsahi

    1994-01-01

    The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA - Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below. ((orig.))

  8. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Zavaljevski, N.

    1992-01-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (orig.)

  9. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Avdic, S.; Pesic, M.; Zavaljevski, N

    1992-09-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (author)

  10. Fast and epithermal neutron radiography using neutron irradiator

    International Nuclear Information System (INIS)

    Oliveira, Karol A.M. de; Crispim, Verginia R.; Ferreira, Francisco J.O.

    2013-01-01

    The neutron radiography technique (NR) with neutrons in the energy range fast to epithermal is a powerful tool used in no-destructive inspection of bulky objects of diverse materials, including those rich in hydrogen, oxygen, nitrogen ad carbon. Thus, it can be used to identify, inclusions, voids and thickness differences in materials such as explosive artifacts and narcotics. Aiming at using NR with fast and epithermal neutrons, an Irradiator was constructed by: a 241 Am-Be source, with 5 Ci activity, a collimator with adjustable collimation rate, L/D; and a shield device composed by plates of borated paraffin and iron. The test specimens chosen were a Beam Purity Indicator (BPI) and an Indicator of Visual Resolution (IVR). The neutron radiography images obtained had a resolution of 444.4 μm and 363.6 μm respectively when registered in: 1) the sheet of the nuclear track solid detector, CR-39 type, through X (n,p) Y nuclear reaction; and 2) Kodak Industrex M radiographic film plate in close contact with a boron converter screen, both stored in a Kodak radiographic cassette. (author)

  11. The Effect of Radiator on CR-39 Registration of Fast Neutrons

    International Nuclear Information System (INIS)

    El-Badrya, B.A.; Hegazya, T.M.; Morsya, A.A.; Zaki, M.F.

    2008-01-01

    Three different configurations of a personal neutron dosimeter using CR-39 plastic detector were placed in Plastiplast pouch composed from inside to outside of Aluminum ( 27 Al, 40 Ξ m), polyethylene (PE, 20 Ξ m), Cellulose Nitrate (CN, 40 Ξ m). One dosimeter was composed of a CR-39 detector and a PE radiator (1 mm thick), another of two CR-39 detectors with one serving as radiator, and the other of CR-39 alone (without radiator). These dosimeters have been irradiated with fast neutrons of average energy 4.5 MeV with neutron fluence ranging from 5.5 x 10 6 to 0.5 x 10 8 cm - 2 emitted from 241 Am-Be neutron source. The polymeric materials have been chosen on the basis of their hydrogen contents, which are as followed: CR-39, 48%, Polyethylene, 66.7% and CN, 32% by atomic ratio to produce protons via (n, p) elastic scattering with hydrogen and increasing the detection efficiency of CR-39. After irradiation, the dose equivalent response of the detectors has been studied by using conventional etching for two periods, 6h and 8h for these configurations. The thicknesses and compositions of the radiators are chosen so as to suppress the CR-39 response below 4 MeV by preventing the recoils of hydrogen nuclei, out of the hydrogen-rich radiators (PE, CR-39), from reaching the post-etch surface of the detector. Track counting was performed using an automated system. It was found that the dosemeter responses were linear as a function of a neutron equivalent dose and that the CR-39 detector has the same response with radiator or without radiator and thus appears as a promising fast neutron dosimeter. The results are discussed and compared with the literature

  12. Optimization of CR-39 for fast neutron dosimetry applications

    CERN Document Server

    Vilela, E; Giacomelli, G; Giorgini, M; Morelli, B; Patrizii, L; Serra, P; Togo, V

    1999-01-01

    We present the results of an experimental work aimed at improving the performances of the CR-39[reg] (Registered Trademark of PPG Industries Inc.) nuclear track detector for neutron dosimetry applications. The work was done in collaboration with the Intercast Europe S.p.A., producer of CR-39 for commercial and scientific applications. We compare the CR-39 made with different additives concentrations and different polymerization processes. We evaluate the response of the CR-39 to fast neutrons from three sources: sup 2 sup 4 sup 1 Am-Be, sup 2 sup 5 sup 2 Cf and sup 2 sup 3 sup 8 Pu-Li. Particular attention was paid to background fluctuations that limit the lower detectable dose.

  13. Optimized choice of method for determining proliferation response of peripheral lymphocytes to mitogens in low dose irradiation with cyclotron fast neutrons

    International Nuclear Information System (INIS)

    Refka, Z.; Svec, M.; Aganov, P.; Svoboda, V.; Podzimek, F.

    1989-01-01

    Heparinized venous blood sampled from seven donors was irradiated with doses of 0.1; 0.25; 0.5; 1.0; 2.0 and 3.0 Gy of fast neutrons of a mean energy of 7.6 MeV using the U 120 M isochronous cyclotron. A non-irradiated control sample was also prepared. A lymphoblastic transformation test was conducted with both the intact and irradiated samples. The samples were cultivated in the RPMI-1640 medium with and without a mitogen addition, this in five time variants, viz., for 48, 72, 90, 96 and 120 hours. The proliferation was monitored of lymphocytes stimulated with mitogens PHA, CON-A and PWM in dependence on the time of cultivation and on the radiation dose. The dose dependent relative response was also studied of the irradiated lymphocytes. (E.J.). 8 figs., 1 tab., 18 refs

  14. Metal ion protection of DNA to fast neutron irradiation

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, R.; Radulescu, I.; Radu, L.

    1998-01-01

    The most important effects of the ionising radiation are the single and double strand breaks (SSB and DBS), modifications of the DNA bases and deoxyribose, as well as the occurrence of alkali and heat labile sites (revealed as strand breaks after alkaline or thermic treatment of irradiated DNA). The ionising particles can have either direct effects on the DNA constituents or indirect effects, mediated by the OH - radicals, produced by water radiolysis. The occurrence of SSB and DSB in the chromatin DNA strands is supposed to hinder the DNA-dye complex formation. Usually, the dyes present different fluorescence parameters in the two possible states, so one can correlate the lifetime or the quantum yield with the extent of the damage. We took into account the protective effect offered both by histones, which behave as 'scavenger molecules' for OH - radicals and by the high compactness of DNA chromatin. Similar protective effects might be the results of the metallic ion addition which triggers some conformational transitions of the chromatin DNA towards a highly compacted structure. In this paper we present a study of the complexes of fast neutron irradiated chromatin with proflavine. Fluorimetric and time resolved spectroscopic determinations (single photon counting method) of chromatin-Pr complexes were realised. Information regarding the chromatin protein damage were obtained by monitoring the fluorescence of Trp. The chromatin was irradiated (20-100 Gy) with fast neutrons, obtained by the reaction of 13.5 MeV deuterons on a thick beryllium target at the IFIN-HH U-120 Cyclotron. The dose mean lineal energy in water at the point of interest was 50 keV/m and the mean dose rate was 1.5 Gy/min. By fluorescence determinations, changes of the Pr intercalation parameters in fast neutron irradiated chromatin DNA have been observed. Fluorescence techniques provide valuable information on the binding equilibrium by considering the radiation deexcitation of the complex. The

  15. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period

  16. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Malcolm J., E-mail: m.joyce@lancaster.ac.uk [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Agar, Stewart [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Aspinall, Michael D. [Hybrid Instruments Ltd., Gordon Manley Building, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW (United Kingdom); Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom)

    2016-10-21

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×10{sup 7} per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm{sup 3} concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  17. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  18. Generation of laser-induced fast neutron and its application

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kwon, D. H.; Nam, S. M.

    2010-04-01

    The supply of high-efficiency neutron source is still problematic even though a fast neutron source is being accepted increasingly for industrial applications. Radioisotopes and a neutron tube are typically being used, but their neutron flux, lifetime, and price are the limiting factors for more diverse applications. As ultra high power, short pulse laser technologies have been developed, a neutron source generated via laser induced nuclear reaction comes to the fore. The laser induced neutron source has a high peak flux in comparison to the traditional neutron source and is like a point source with its diameter less than 1 mm. These properties can be utilized effectively for the analysis of pulsed fast neutron activation or the studies of a fast neutron material damage and/or recover. The purpose of R and D here is to develop a robust neutron source with a yield of 10 7 neutrons/s, and to carry out a preliminary research for application study in the next research stage

  19. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; El Gamal, M.A.; El Khatib, A.; El Wahidy, E.F.

    1987-06-01

    The effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals was studied around the phase transition temperature T c =453 K. The thermal expansion coefficient as well as the phase transition temperature were found to be dependent upon the irradiation dose. The specific heat, C p , showed multiple peaks in the phase transition temperature region. An explanation of this behaviour was based on the induced inhomogeneous strain in the crystal casued by the neutron irradiation process. (author). 10 refs, 3 figs

  20. Preliminary examination of the applicability of imaging plates to fast neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2001-01-01

    Fast neutron radiography is an attractive non-destructive inspection technique because of the excellent penetration characteristics of fast neutrons in matter. However, the difficulty of detecting fast neutrons reduces this attractive feature. As an experiment to overcome the difficulty, imaging plates were applied to fast neutron radiography. A simple combination of two sheets of imaging plates and a sheet of polyethylene as a proton emitter was examined with the (fast neutron, thermal neutron and gamma ray) FTG discriminator proposed by Yoneda et al. . The experimental results showed that the method could be applicable to fast neutron radiography with effective discrimination of γ-rays

  1. Energy dependence of fast neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Morgan, K.Z.

    1978-01-01

    Registration of fast-neutron induced recoil tracks by the electrochemical etching technique as applied to sensitive Lexan polycarbonate foils provides a simple and inexpensive means of fast neutron personnel dosimetry. The sensitivity (tracks/neutron) of recoil particle registration is given as a function of neutron energy. Neutrons of 7 Li (p,n) 7 Be, 3 T (d,n) 4 He and 9 B, respectively. Results are compared with other studies using other neutron sources and conventional etching method

  2. Pathologic effects of fractionated fast neutrons or photons on canine liver

    International Nuclear Information System (INIS)

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Hitzelberg, R.A.; Rogers, C.C.

    1981-01-01

    Thirty-nine adult male purebred beagles received either fast neutron or photon irradiation to the right thorax to determine the effects on pulmonary tissue. The right half of the liver was included in the field of radiation. Twenty-four dogs (six/group) received fast neutrons with a mean energy of 15 MeV to total doses of 1000, 1500, 2250, or 3375 rads in four fractions per week for 6 weeks. Fifteen dogs received 3000, 4500, or 6750 total rads of photons (five dogs/group) in an identical fractionation pattern. All neutron-irradiated dogs receiving 3375 and 2250 rads and one receiving 1500 rads developed clinical signs, hepatic enzyme, and bilirubin elevations, and the dogs died or were euthanized in extremis on postirradiation day 47-291. Signs of liver injury, other than enzyme changes, have not developed to date (1200 to 1300 days) in the remaining dogs, except in one 6750-rad photon dog that died of hepatic failure on postirradiation day 708. At necropsy, the irradiated right lobes of the liver were atrophic and the nonirradiated left lobes underwent compensatory hypertrophy. Hepatic arterioles and bile ducts were injured in every dog, but no obstructive lesions were observed in hepatic veins. Portal fibroplasia, bile retention, and proliferation of bile ductules was common; the latter two changes also occurred in the nonirradiated lobes. No qualitative differences were observed between hepatic lesions in neutron-versus photon-irradiated dogs. The relative biological effectiveness of fast neutrons for liver damage appears to be no less than 4.5

  3. Pathologic effects of fractionated fast neutrons or photons on canine liver

    International Nuclear Information System (INIS)

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Hitzelberg, R.A.; Rogers, C.C.

    1981-01-01

    Thirty-nine adult male purebred beagles received either fast neutron or photon irradiation to the right thorax to determine the effects on pulmonary tissue. The right half of the liver was included in the field of radiation. Twenty-four dogs (six/group) received fast neutrons with a mean energy of 15 MeV to total doses of 1000, 1500, 2250, or 3375 rads in four fractions per week for 6 weeks. Fifteen dogs received 3000, 4500, or 6750 total rads of photons (five dogs/group) in an identical fractionation pattern. All neutron-irradiated dogs receiving 3375 and 2250 rads and one receiving 1500 rads developed clinical signs, hepatic enzyme, and bilirubin elevations, and the dogs died or were euthanized in extremis on postirradiation day 47-291. Signs of liver injury, other than enzyme changes, have not developed to date (1200-1300 days) in the remaining dogs, except in one 6750-rad photon dog that died of hepatic failure on postirradiation day 708. At necropsy, the irradiated right lobes of the liver were atrophic and the nonirradiated left lobes underwent compensatory hypertrophy. Hepatic arterioles and bile ducts were injured in every dog, but no obstructive lesions were observed in hepatic veins. Portal fibroplasia, bile retention, and proliferation of bile ductules was common; the latter two changes also occurred in the nonirradiated lobes. No qualitative differences were observed between hepatic lesions in neutron- versus photon-irradiated dogs. The relative biological effectiveness of fast neutrons for liver damage appears to be no less than 4.5

  4. System design considerations for fast-neutron interrogation systems

    International Nuclear Information System (INIS)

    Micklich, B.J.; Curry, B.P.; Fink, C.L.; Smith, D.L.; Yule, T.J.

    1993-01-01

    Nonintrusive interrogation techniques that employ fast neutrons are of interest because of their sensitivity to light elements such as carbon, nitrogen, and oxygen. The primary requirement of a fast-neutron inspection system is to determine the value of atomic densities, or their ratios, over a volumetric grid superimposed on the object being interrogated. There are a wide variety of fast-neutron techniques that can provide this information. The differences between the various nuclear systems can be considered in light of the trade-offs relative to the performance requirements for each system's components. Given a set of performance criteria, the operational requirements of the proposed nuclear systems may also differ. For instance, resolution standards will drive scanning times and tomographic requirements, both of which vary for the different approaches. We are modelling a number of the fast-neutron interrogation techniques currently under consideration, to include Fast Neutron Transmission Spectroscopy (FNTS), Pulsed Fast Neutron Analysis (PFNA), and its variant, 14-MeV Associated Particle Imaging (API). The goals of this effort are to determine the component requirements for each technique, identify trade-offs that system performance standards impose upon those component requirements, and assess the relative advantages and disadvantages of the different approaches. In determining the component requirements, we will consider how they are driven by system performance standards, such as image resolution, scanning time, and statistical uncertainty. In considering the trade-offs between system components, we concentrate primarily on those which are common to all approaches, for example: source characteristics versus detector array requirements. We will then use the analysis to propose some figures-of-merit that enable performance comparisons between the various fast-neutron systems under consideration. The status of this ongoing effort is presented

  5. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Kong, E.Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S.H.; Yu, K.N.

    2015-01-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis. - Highlights: • Neutron dose response was determined for embryos of the zebrafish, Danio rerio. • Neutron doses of 0.6, 1 and 2.5 mGy led to neutron hormetic effects. • Neutron doses of 70 and 100 mGy accompanied by gamma rays led to gamma-ray hormesis

  6. Effectiveness of fast neutrons irradiation for the stimulation and induction of genetic changes in soybean (Glycine max L. Merrill) genome

    International Nuclear Information System (INIS)

    Sodkiewicz, T.; Sodkiewicz, W.

    1999-01-01

    Air-dry seeds of soybean cv. Warszawska were irradiated with fast neutrons (Nf) using the U-120 cyclotron (at the Institute of Nuclear Physics in Cracow) at the doses of 500, 1000, 1500 R. Additionally, each of the irradiation doses was combined with the selected effective chemical mutagen N-nitroso-N-methylurea - in three concentrations: 0.5, 1.5 and 2.5 mM, to evaluate synergistic effect of these two different mutagenic agents. The results showed some of protection effect of radiation on the level of somatic damage of soybean plants. In addition, the phenomenon of the 'delaying effect' was noted, because the protection effect of fast neutron radiation in the combined treatments with chemomutagen was observed in the emergence and plant survival in the M 2 generation as well. From the point of view of genetic changes induced in the soybean genome, the most effective dose of fast neutron irradiation was 500 R. The number of soybean mutants with earlier ripening obtained (in comparison with original 'mother' variety) at this irradiation dose was higher, than with the highest effective concentration of chemical mutagen (1.0 -1.5 mM MNUA). (author)

  7. Computer dosimetry for flattened and wedged fast-neutron beams

    International Nuclear Information System (INIS)

    Hogstrom, K.R.; Smith, A.R.; Almond, P.R.; Otte, V.A.; Smathers, J.B.

    1976-01-01

    Beam flattening by the use of polyethylene filters has been developed for the 50-MeV d→Be fast-neutron therapy beam at the Texas AandM Variable-Energy Cyclotron (TAMVEC) as a result of the need for a more uniform dose distribution at depth within the patient. A computer algorithm has been developed that allows the use of a modified decrement line method to calculate dose distributions; standard decrement line methods do not apply because of off-axis peaking. The dose distributions for measured flattened beams are transformed into distributions that are physically equivalent to an unflattened distribution. In the transformed space, standard decrement line theory yields a distribution for any field size which, by applying the inverse transformation, generates the flattened dose distribution, including the off-axis peaking. A semiempirical model has been constructed that allows the calculation of dose distributions for wedged beams from open-beam data

  8. Fast-neutron, coded-aperture imager

    International Nuclear Information System (INIS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-01-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  9. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  10. MONDO: A tracker for the characterization of secondary fast and ultrafast neutrons emitted in particle therapy

    Science.gov (United States)

    Mirabelli, R.; Battistoni, G.; Giacometti, V.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Traini, G.; Marafini, M.

    2018-01-01

    In Particle Therapy (PT) accelerated charged particles and light ions are used for treating tumors. One of the main limitation to the precision of PT is the emission of secondary particles due to the beam interaction with the patient: secondary emitted neutrons can release a significant dose far from the tumor. Therefore, a precise characterization of their flux, production energy and angle distribution is eagerly needed in order to improve the Treatment Planning Systems (TPS) codes. The principal aim of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is the development of a tracking device optimized for the detection of fast and ultra-fast secondary neutrons emitted in PT. The detector consists of a matrix of scintillating square fibres coupled with a CMOS-based readout. Here, we present the characterization of the detector tracker prototype and CMOS-based digital SPAD (Single Photon Avalanche Diode) array sensor tested with protons at the Beam Test Facility (Frascati, Italy) and at the Proton Therapy Centre (Trento, Italy), respectively.

  11. Measurement of fast neutron background in SAGE

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The spectrometer intended for direct measurements of ultra low fluxes of fast neutrons is described. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11 +- 0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5 +- 2.1) x 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4700 meters of water equivalent was measured to be (7.3 +- 2.4) x 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be < 2.3 x 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  12. Status report on treatment planning with the fast neutron beam at Hamburg-Eppendorf

    International Nuclear Information System (INIS)

    Hess, A.; Schmidt, R.; Franke, H.D.

    1981-01-01

    For treatment planning with the fast neutron beam (DT, 14 MeV) at the Radiotherapy Department of the University Hospital Hamburg-Eppendorf the decrement line method is applied to compute isodose curves (total beam or neutrons and gamma-rays separately). The isodose curves are generated by a measured depth dose distribution and one lateral dose distribution at 10 cm phantom depth assuming two crossing points of the decrement lines at the edges of the collimator. By this method isodose charts have been generated for all available field sizes at 80 cm SSD. For the determination of depth dose values at different SSD a modified inverse square law has to be taken into account. Computerized treatment plans are calculated with the same technique used by the SIDOS-U1 (Siemens) planning system. (orig.)

  13. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    Science.gov (United States)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  14. Conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at SINQ

    International Nuclear Information System (INIS)

    Zanini, L.; Baluc, N.; Simone, A. De; Eichler, R.; Joray, S.; Manfrin, E.; Pouchon, M.; Rabaioli, S.; Schumann, D.; Welte, J.; Zhernosekov, K.

    2011-12-01

    This comprehensive, illustrated report by the Paul Scherrer Institute PSI in Switzerland documents the proposals concerning the conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at the PSI's Swiss Spallation Neutron Source SINQ facility. The need for fast neutron irradiation is discussed and the possibility of using SINQ as a fast neutron irradiation facility is considered. The production of isotopes, tracers and medical isotopes is discussed, as are fission and fusion reactor technologies. The characteristics of the neutron spectrum in SINQ are discussed. The neutronic and radioprotection calculations for an irradiation station at SINQ are looked at in detail and extensive examples of work done and results obtained are presented and discussed. Radioprotection issues are also looked at. Further contributions in the report cover the hot/cold irradiation station in the SINQ target. An appendix provides detailed drawings of the facility's pneumatic delivery system

  15. Generation of laser-induced fast neutron and its application

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Lee, S.; Kwon, D.; Nam, S.; Park, S.; Rhee, Y.; Jung, Y.; Lee, K.; Cha, Y.; Kwon, S.; Lim, C.; Han, J.; Park, S.; Chung, C.

    2012-04-01

    The supply of high-efficiency neutron source is still problematic even though a fast neutron source is being accepted increasingly for industrial applications. Radioisotopes and a neutron tube are typically being used, but their neutron flux, lifetime, and price are the limiting factors for more diverse applications. As ultra high power, short pulse laser technologies have been developed, a neutron source generated via laser induced nuclear reaction comes to the fore. The laser induced neutron source has a high peak flux in comparison to the traditional neutron source and is like a point source with its diameter less than 1 mm. These properties can be utilized effectively for the analysis of pulsed fast neutron activation or the studies of a fast neutron material damage and/or recover. The purpose of R and D here is to develop a robust neutron source with a yield of 107 neutrons/s during 1st R and D stage ('07 ∼ '09) and to construct a stable laser neutron source in longer operation and to demonstrate its usefulness for a neutron activation analysis of explosive materials and a neutron impact analysis of crystalline in the second R and D stage ('10 ∼ '11)

  16. Design of hyper-thermal neutron irradiation fields for neutron capture therapy in KUR-heavy water neutron irradiation facility. Mounting of hyper-thermal neutron converter in therapeutic collimator

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2001-01-01

    Neutron capture therapy (NCP) using thermal neutron needs to improve of depth dose distribution in a living body. Epi-thermal neutron following moderation of fast neutron is usually used for improving of the depth dose distribution. The moderation method of fast neutron, however, gets mixed some of high energy neutron which give some of serious effects to a living body, and involves the difficulty for collimation of thermal neutron to the diseased part. Hyper-thermal neutrons, which are in an energy range of 0.1-3 eV at high temperature side of thermal neutron, are under consideration for application to the NCP. The hyper-thermal neutrons can be produced by up-scattering of thermal neutron in a high temperature material. Fast neutron components in collimator for the NCP reduce on application of the up-scattering method. Graphite at high temperature (>1000k) is used as a hyper-thermal neutron converter. The hyper-thermal neutron converter is planted to mount on therapeutic collimator which is located at the nearest side of patient for the NCP. Total neutron flux, ratio of hyper-thermal neutron to total neutron, and ratio of gamma-ray dose to neutron flux are calculated as a function of thickness of the graphite converter using monte carlo code MCNP-V4B. (M. Suetake)

  17. Fast neutron activation analysis in metallurgy

    International Nuclear Information System (INIS)

    Sterlinski, S.

    1981-01-01

    Article discusses the usage of a 14 MeV neutron generator for producing fast neutrons of different energies and intensities. A complete instrumental set-up for the neutron activation analysis (NAA) is given. In metallurgy the device is mainly used in the determination of oxygen and silicon in steel and non-ferrous metal, including different alloys

  18. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  19. Accelerator requirements for fast-neutron interrogation of luggage and cargo

    International Nuclear Information System (INIS)

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1995-01-01

    Several different fast-neutron based techniques are being studied for the detection of contraband substances in luggage and cargo containers. The present work discusses the accelerator requirements for fast-neutron transmission spectroscopy (FNTS), pulsed fast-neutron analysis (PFNA), and 14-MeV neutron interrogation. These requirements are based on the results of Monte-Carlo simulations of neutron or gamma detection rates. Accelerator requirements are driven by count-rate considerations, spatial resolution and acceptable uncertainties in elemental compositions. The authors have limited their analyses to luggage inspection with FNTS and to cargo inspection with PFNA or 14-MeV neutron interrogation

  20. Late biological effects in the lung of C3H inbred mice following exposure to fast neutrons and 60Co-γ-rays

    International Nuclear Information System (INIS)

    Magdon, E.

    1980-01-01

    Histological changes in the lung tissue following local irradiation of the thorax of C 3 H inbred mice were analyzed. The investigation was continued up to 500 d following irradiation with 2 - 8 Gy neutrons and 4 - 30 Gy 60 Co γ-rays, respectively. The study revealed a clear dose dependence and higher effectivity of fast neutrons as to the late effects of the lungs. An increase of the portion of affected connective tissue in the lung was demonstrable already after a dose of 2.5 Gy neutrons and 5 Gy 60 Co γ-rays, respectively. The RBE of fast neutrons for late biological effects on the lung is discussed in connection with previous findings for the RBE of acute effects on tumor and normal tissue. (author)

  1. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  2. New statistical model of inelastic fast neutron scattering

    International Nuclear Information System (INIS)

    Stancicj, V.

    1975-07-01

    A new statistical model for treating the fast neutron inelastic scattering has been proposed by using the general expressions of the double differential cross section in impuls approximation. The use of the Fermi-Dirac distribution of nucleons makes it possible to derive an analytical expression of the fast neutron inelastic scattering kernel including the angular momenta coupling. The obtained values of the inelastic fast neutron cross section calculated from the derived expression of the scattering kernel are in a good agreement with the experiments. A main advantage of the derived expressions is in their simplicity for the practical calculations

  3. Measurements of Relative Biological Effectiveness and Oxygen Enhancement Ratio of Fast Neutrons of Different Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barendsen, G. W.; Broerse, J. J. [Radiobiological Institute of the Health Research Council TNO, Rijswijk (ZH) (Netherlands)

    1968-03-15

    Impairment of the reproductive capacity of cultured cells of human kidney origin (T-l{sub g} cells) has been measured by the Puck cloning technique. From the dose-survival curves obtained in these experiments by irradiation of cells in equilibrium with air and nitrogen, respectively, the relative biological effectiveness (RBE) and the oxygen enhancement ratios (OER) were determined for different beams of fast neutrons. Monoenergetic neutrons of 3 and 15 MeV energy, fission spectrum fast neutrons (mean energy about 1.5 MeV), neutrons produced by bombarding Be with cyclotron-accelerated 16 MeV deuterons (mean energy about 6 MeV) and neutrons produced by bombarding Be with cyclotron- accelerated 20 MeV {sup 3}He ions (mean energy about 10 MeV) have been compared with 250 kVp X-rays as a standard reference. The RBE for 50% cell survival varies from 4.7 for fission-spectrum fast neutrons to 2.7 for 15 MeV monoenergetic neutrons. The OER is not strongly dependent on the neutron energy for the various beams investigated. For the neutrons with the highest and lowest energies used OER values of 1.6 {+-} 0.2 and 1.5 {+-} 0.1 were measured. An interpretation of these data on the basis of the shapes of the LET spectra is proposed and an approximate verification of this hypothesis is provided from measurements in which secondary particle equilibrium was either provided for or deliberately eliminated. (author)

  4. Biological effects of fast neutron irradiation on callus tissues of Tecoma stans Juss. and Ammi visnaga Lam

    International Nuclear Information System (INIS)

    Supniewska, J.H.; Dohnal, B.; Cebulska Wasilewska, A.; Huczkowski, J.

    1982-01-01

    Callus tissues of Tecoma stans Juss. and Ammi visnaga Lam. were subjected to fast neutron irradiation. Nine doses were applied within the range of 100 - 10.000 cGy. Small doses caused growth stimulation. Intermediate and high doses caused morphological changes, reduced growth and biosynthesis of biologically active substances (monoterpene alkaloids in T. stans, furanochromones in A. visnaga). In A. visnaga neutron irradiation considerably decreased the chlorophyll content in callus tissues. The radiosensitivity of A. visnaga at 50% growth reduction level was 1.5 times higher than that of the callus of T. stans. The recovery of the tissues takes place during a subculturing course. Three to 7 months after neutron exposure growth and biosynthesis reach the control level. (author)

  5. Seminar on Heat-transfer fluids for fast neutron reactors

    International Nuclear Information System (INIS)

    Brechet, Yves; Dautray, Robert; Friedel, Jacques; Brezin, Edouard; Martin, Georges; Pineau, Andre; Carre, Francois; Gauche, Francois; Rodriguez, Guillaume; Latge, Christian; Cabet, Celine; Garnier, Jean-Claude; Bamberger, Yves; Sauvage, Jean-Francois; Buisine, Denis; Agostini, Pietro; Ulyanov, Vladimir; Auger, Thierry; Heuer, Daniel; Ghetta, Veronique; Bubelis, Evaldas; Charlaix, Elisabeth; Barrat, Jean-Louis; Boquet, Lyderic; Glickman, Evgueny; Escaravage, Claude

    2014-03-01

    This book reports the content of a two-day meeting held by the Academy of Sciences on the use of heat-transfer fluids in fast neutron reactors. After a first part which proposes an overview of scientific and technical problems related to these heat-transfer fluids (heat transfer process, nuclear properties, chemistry, materials, risks), a contribution proposes a return on experience on the use of heat-transfer fluids in the different design options of reactors of fourth generation: from mercury to NaK in the first fast neutron reactor projects, specific assets and constraints of sodium used as heat-transfer fluid, concepts of fast neutron reactors cooled by something else than sodium, perspectives for projects and research in fast neutron reactors. The next contribution discusses the specifications of future fast-neutron reactors: expectations for fourth-generation reactors, expectations in terms of performance and of safety, specific challenges. The last contribution addresses actions to be undertaken in the field of research and development: actions regarding all reactor types or specific types as sodium-cooled reactors, lead cooled reactors, molten salt reactors, and gas-cooled fast reactors

  6. Combination TLD/TED dose assessment

    International Nuclear Information System (INIS)

    Parkhurst, M.A.

    1992-11-01

    During the early 1980s, an appraisal of dosimetry programs at US Department of Energy (DOE) facilities identified a significant weakness in dose assessment in fast neutron environments. Basing neutron dose equivalent on thermoluminescence dosimeters (TLDS) was not entirely satisfactory for environments that had not been well characterized. In most operational situations, the dosimeters overrespond to neutrons, and this overresponse could be further exaggerated with changes in the neutron quality factor (Q). Because TLDs are energy dependent with an excellent response to thermal and low-energy neutrons but a weak response to fast neutrons, calibrating the dosimetry system to account for mixed and moderated neutron energy fields is a difficult and seldom satisfactory exercise. To increase the detection of fast neutrons and help improve the accuracy of dose equivalent determinations, a combination dosimeter was developed using TLDs to detect thermal and low-energy neutrons and a track-etch detector (TED) to detect fast neutrons. By combining the albedo energy response function of the TLDs with the track detector elements, the dosimeter can nearly match the fluence-to-dose equivalent conversion curve. The polymer CR-39 has neutron detection characteristics superior to other materials tested. The CR-39 track detector is beta and gamma insensitive and does not require backscatter (albedo) from the body to detect the exposure. As part of DOE's Personnel Neutron and Upgrade Program, we have been developing a R-39 track detector over the past decade to address detection and measurement of fast neutrons. Using CR-39 TEDs in combination with TLDs will now allow us to detect the wide spectrum of occupational neutron energies and assign dose equivalents much more confidently

  7. Gastrocutaneous fistula as a late complication of fast neutron therapy for carcinoma of the stomach

    International Nuclear Information System (INIS)

    Griffith, C.D.M.; Arnott, S.J.

    1984-01-01

    A brief report is presented of a case of gastrocutaneous fistula in a 36-year-old housewife, who had been treated a year previously for carcinoma of the stomach with fast neutron therapy at a dose of 1500 cGy delivered in 20 daily treatments. The maximum tissue dose delivered to the skin surface was 1780 cGy. (U.K.)

  8. Boron neutron capture therapy (BNCT) using fast neutrons: Effects in two human tumor cell lines

    International Nuclear Information System (INIS)

    Sauerwein, W.; Ziegler, W.; Szypniewski, H.; Streffer, C.

    1990-01-01

    The results demonstrate that the effect of fast neutrons on cell survival in cell culture can be enhanced by boron neutron capture reaction. Even with lower enhancement ratios, the concept of NCT assisted fast neutron therapy may successfully be applied for tumor treatment with the Essen cyclotron. (orig.)

  9. Induced effects of gamma-rays and fast neutrons on the D.C. electric resistivity of polyethylene for high level dosimetry

    International Nuclear Information System (INIS)

    Youssef, S.K.; Mashad, A.M.; Osiris, W.C.; Adawi, M.A.

    1988-01-01

    The effects of gamma- and neutron-irradiations on the D.C. electric resistivity of polyethylene were investigated. The results showed that, the D.C. electric resistivity of polyethylene decreased as the samples irradiation by gamma doses as well as fast neutron fluences over the ranges 10 2 -6x10 6 Gy, and 10 8 -10 11 n/cm 2 , respectively. Moreover, electric resistivity of the polyethylene samples indicated more sensitivity change when irradiated by fast neutrons in comparison with equivalent doses of gamma-radiation. Semi-empirical formulae were deduced for the calculation of gamma-dose and/or neutron fluence from the changes in the electric resistivity of the detector. Storage of the irradiated specimens at room decay temperature showed a continuous increase in the relative fade of electric resistivity by recovery with time. The retained electric resistivity by recovery showed values of about 47% and 33% for post specimens irradiated by 6x10 6 Gy and 1x10 11 n/cm 2 , respectively, after 80 hours

  10. Comparative study on fast neutrons radiobiological effect on Chinese hamster cells in culture depending on regime of irradiation

    International Nuclear Information System (INIS)

    Elisova, T.V.; Feoktistova, T.P.; Stavrakova, N.M.

    1988-01-01

    Comparative study of regularities of fast neutron radiobiological effect on Chinese hamster cells in culture under pulse and statistic irradiation regimes that was estimated by reproductive death of cells and induced frequency of resistence mutations to 6-tioguanine is carried out. It is stated that with the dose rate increase approximately by 6 orders radiobiological efficiency of fast neutrons decreases. It is suggested that one of the causes of decreasing pulse irradiation efficiency are processes on radiation-chemical level. 9 refs.; 3 figs

  11. Measurement of fast neutron spectra. 1-2

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1976-01-01

    The present status of the techniques for the measurement of fast neutron spectra is reviewed with particular attention to the recent activities in Japan. The first section of this report defines the energy range of fast neutrons, and various techniques are classified into four groups. In the following sections, recent development in each group is reviewed. The first part is the integral method represented mainly by the activation method. The variation of this method is shortly reviewed, and some results of the spectrum measurement for JRR-4 (a thermal research reactor) and YAYOI (a fast neutron source reactor) are presented together with the results of computed spectra. The second part is the method of proton recoil. The improvement of a proportional counter by Ichimori is shortly reviewed. The use of liquid scintillator is also discussed together with the experimental and computational results of YAYOI benchmark spectra of fast neutrons transmitted through the layers of iron. The utilization of n-α or n-p reaction as a sandwitch counter is discussed in the third part. Measured and calculated spectra in the FCA (a fast critical assembly) core are presented as examples. The method of time-of-flight is discussed in the fourth part. Recent developments in Japan such as the method with a double-scintillation counter are shortly presented together with its block diagram. (Aoki, K.)

  12. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the Gallium-Germanium Solar Neutrino Experiment

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11+-0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5+-2.1)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 m of water equivalent was measured to be (7.3+-2.4)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be <2.3x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  13. Determination of contraband using fast neutron resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Whang, J. [Kyunghee Univ., Dept. of Nuclear Engineering, Yongin-shi, Kyongki-do (Korea, Republic of)

    2004-07-01

    'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)

  14. Determination of contraband using fast neutron resonance technique

    International Nuclear Information System (INIS)

    Bae, J.; Whang, J.

    2004-01-01

    'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)

  15. Fast Neutron Dosimetry Using CR-39 Nuclear Track Detector

    International Nuclear Information System (INIS)

    ZAKI, M.; ABDEL-NABY, A.; MORSY, A.

    2010-01-01

    Measurement of the neutron dose in and around the neutron sources is important for the purpose of personnel and environmental neutron dosimetry. In the present study, a method for the measurement of neutron dose using the UV-Vis spectra of CR-39 plastic track detector was investigated. A set of CR-39 plastic detectors was exposed to 252 Cf neutron source, which had the yield of 0.68x10 8 /s, and neutron dose equivalent rate 1m apart from the source is equal to 3.8 mrem/h. The samples were etched for 10 h in 6.25 N NaOH at 70 o C. The absorbance of the etched samples was measured using UV-visible spectrophotometer as a function of neutron dose. It was observed that there was a linear relationship between the optical absorption of these detectors and neutron dose. This means that the exposure dose of neutron can be determined by knowing the optical absorption of the sample. These results were compared with previous study. It was found that there was a matching and good agreement with their investigations.

  16. Calorimetric and ionometric dosimetry for cyclotron produced fast neutrons

    International Nuclear Information System (INIS)

    McDonald, J.C.; Ma, I.C.; Laughlin, J.S.

    1977-01-01

    A portable tissue equivalent (TE) calorimeter, constructed of A-150 plastic, has been employed for the measurement of absorbed dose in two fast neutron fields produced by the 9 Be( 3 He,n) and 9 Be(d,n) interactions. A disc shaped ionization chamber has also been constructed of A-150 plastic and has a collecting volume geometrically equivalent to the calorimeter core (2 cm in diameter and 0.2 cm thick). A flow of methane compounded TE gas was maintained through the chamber at a rate of approximately 5 cc/min during the measurements. The ionization chamber was mounted within an irradiation enclosure which simulated the outer dimensions of the calorimeter housing. In this way, both detectors were placed at the same depth in TE plastic and each received approximately the same scattered radiation. The gamma-ray component of absorbed dose has been determined by the use of a miniature Geiger-Mueller dosimeter. It was found that the response sensitivity ratio for the TE ionization chamber in the two neutron fields relative to the 60 Co gamma-ray field, when normalized to the absorbed dose measured by the TE calorimeter, was approximately 1.07. Uncertainties in these calorimetric and ionometric methods for the measurements of the absorbed dose will be discussed along with measurements of the thermal defect for A-150 TE plastic

  17. Environmental protection problems from the standpoint of regeneration of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Gedeonov, L.I.; Lazarev, L.N.; Suprunenko, A.N.

    The discussion of the problem of environmental protection is based on two principles: a strict observance of legislatively established standards for permissible concentrations of radionuclides in objects of the environment and for dose loads for the population; all possible steps to reduce the contamination to a level justified in practice. Environmental protection steps are considered from the points of view of a systematic analysis. A survey of the environmental protection system near sources of radioactive discharges is given. The basic interactions and feedbacks are indicated. Characteristics differentiating the discharges of the fuel cycle of fast neutron breeder reactors from discharges of the slow neutron cycle are discussed. It is shown that it is necessary to study the overall regional and global interactions of discharges of the atomic power industry. The characteristics of situations at nuclear fuel cycle facilities of fast neutron reactors are discussed. The necessity of additional technical steps to prevent accidents and eliminate their effects if they take place is emphasized

  18. Experimental evaluation of neutron dose in radiotherapy patients: Which dose?

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Expósito, M., E-mail: mariateresa.romero@uab.cat; Domingo, C.; Ortega-Gelabert, O.; Gallego, S. [Grup de Recerca en Radiacions Ionizants (GRRI), Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Sánchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009 (Spain); Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41009 (Spain)

    2016-01-15

    Purpose: The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter “immeasurable” by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor w{sub R}, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with w{sub R}. Methods: Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. Results: The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. Conclusions: Quality factor can be replaced by the radiation weighting factor in the evaluation of dose

  19. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the gallium-germanium solar neutrino experiment (SAGE)

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Gavrin, V.N.; Kalikhov, A.V.; Matushko, V.L.; Shikhin, A.A.; Yants, V.E.; Zaborskaya, O.S.

    2001-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra-low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 -7 cm -2 · s -1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11 ± 0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5 ± 2.1) · 10 -7 cm -2 · s -1 in the range of 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 meters of water equivalent was measured to be (7.3 ± 2.4) · 10 -7 cm -2 · s -1 in the interval 1.0 -11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be 2.3 · 10 -7 cm -2 · s -1 in 1.0 - 11.0 MeV energy range

  20. Effect of Fast Neutron Irradiation on Current Transport Properties of HTS Materials

    CERN Document Server

    Ballarino, A; Kruglov, V S; Latushkin, S T; Lubimov, A N; Ryazanov, A I; Shavkin, S V; Taylor, T M; Volkov, P V

    2004-01-01

    The effect of fast neutron irradiation with energy up to 35 MeV and integrated fluence of up to 5 x 10**15 cm-2 on the current transport properties of HTS materials Bi-2212 and Bi-2223 has been studied, both at liquid nitrogen and at room temperatures. The samples irradiated were selected after verification of the stability of their superconducting properties after temperature cycling in the range of 77 K - 293 K. It has been found that the irradiation by fast neutrons up to the above dose does not produce a significant degradation of critical current. The effect of room temperature annealing on the recovery of transport properties of the irradiated samples is also reported, as is a preliminary microstructure investigation of the effect of irradiation on the soldered contacts.

  1. A neutron dose equivalent meter at CAEP

    International Nuclear Information System (INIS)

    Tian Shihai; Lu Yan; Wang Heyi; Yuan Yonggang; Chen Xu

    2012-01-01

    The measurement of neutron dose equivalent has been a widespread need in industry and research. In this paper, aimed at improving the accuracy of neutron dose equivalent meter: a neutron dose counter is simulated with MCNP5, and the energy response curve is optimized. The results show that the energy response factor is from 0.2 to 1.8 for neutrons in the energy range of 2.53×10 -8 MeV to 10 MeV Compared with other related meters, it turns that the design of this meter is right. (authors)

  2. Radiosensitivity and repair capacity of two xenografted human soft tissue sarcomas to photons and fast neutrons

    International Nuclear Information System (INIS)

    Budach, V.; Stuschke, M.; Budach, W.; Krause, U.; Streffer, C.; Sack, H.

    1989-01-01

    The radiation response, the relative biological effectiveness (RBE) and sublethal damage repair of two xenografted human soft tissue sarcomas after single doses and fractionated irradiation with 60 Co and 5.8 MeV fast neutrons are presented. (author)

  3. Risk from fast neutron exposure

    International Nuclear Information System (INIS)

    Bond, V.P.

    1978-01-01

    The recommendations made by Rossi and Mays imply that the risk associated with the current annual dose equivalent limit of 5 rem for all radiations is unacceptably high, that this limit must be reduced by a factor of 10 or more, and that the conservative linear, no threshold hypothesis must be abandoned. It is shown here that these recommendations are not supported by the newly-analyzed neutron data, and certainly cannot be applied selectively to the annual absorbed dose limit for neutrons. In particular, the judgment that the risk of an annual exposure from 0.5 rad (5 rem) of neutrons is unacceptable high, although perhaps defensible as a personal opinion of the authors, does not follow either from the assumption of a linear-quadratic dose effect relation for low-LET radiation or from other radiobiological considerations. At issue is the level of risk that is to be considered acceptable, a question that is societal and thus not resolvable on purely technical or scientific grounds

  4. METHODS OF ASSESSMENT OF THE RELATIVE BIOLOGICAL EFFECTIVENESS OF NEUTRONS IN NEUTRON THERAPY

    Directory of Open Access Journals (Sweden)

    V. A. Lisin

    2017-01-01

    Full Text Available The relative biological effectiveness (RBE of fast neutrons is an important factor influencing the quality of neutron therapy therefore, the assessment of RBE is of great importance. Experimental and clinical studies as well as different mathematical and radiobiological models are used for assessing RBE. Research is conducted for neutron sources differing in the method of producing particles, energy and energy spectrum. Purpose: to find and analyze the dose-dependence of fast neutron RBE in neutron therapy using the U-120 cyclotron and NG-12I generator. Material and methods: The optimal method for assessing the relative biological effectiveness of neutrons for neutron therapy was described. To analyze the dependence of the RBE on neutron dose, the multi-target model of cell survival was applied. Results: The dependence of the RBE of neutrons produced from the U-120 cyclotron and NG-120 generator on the dose level was found for a single irradiation of biological objects. It was shown that the function of neutron dose was consistent with similar dependencies found by other authors in the experimental and clinical studies.

  5. High-Dose Neutron Detector Development Using 10B Coated Cells

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detection efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.

  6. Fast-neutron, coded-aperture imager

    Science.gov (United States)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  7. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    International Nuclear Information System (INIS)

    Kroc, T.K.

    2009-01-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  8. Some neutronics of innovative subcritical assembly with fast neutron spectrum

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Fokov, Yu.; Rutkovskaya, Ch.; Sadovich, S.; Kasuk, D.; Gohar, Y.; Bolshinsky, I.

    2013-01-01

    Conclusion: • New assembly can be used to: • develop the experimental techniques and adapt the existing ones for monitoring the sub-criticality level, neutron spectra measurements, etc; • study the spatial kinetics of sub-critical and critical systems with fast neutron spectra; • measure the transmutation reaction rates of minor-actinides etc

  9. SU-E-T-108: Development of a Novel Clinical Neutron Dose Monitor for Proton Therapy Based On Twin TLD500 Chips in a Small PE Moderator

    International Nuclear Information System (INIS)

    Hentschel, R; Mukherjee, B

    2014-01-01

    Purpose: In proton therapy, it could be desirable to measure out-of-field fast neutron doses at critical locations near and outside the patient body. Methods: The working principle of a novel clinical neutron dose monitor is verified by MCNPX simulation. The device is based on a small PE moderator of just 5.5cm side length for easy handling covered with a thermal neutron suppression layer. In the simulation, a polystyrene phantom is bombarded with a standard proton beam. The secondary thermal neutron flux produced inside the moderator by the impinging fast neutrons from the treatment volume is estimated by pairs of α-Al2O3:C (TLD500) chips which are evaluated offline after the treatment either by TL or OSL methods. The first chip is wrapped with 0.5mm natural Gadolinium foil converting the thermal neutrons to gammas via (n,γ) reaction. The second chip is wrapped with a dummy material. The chip centers have a distance of 2cm from each other. Results: The simulation shows that the difference of gamma doses in the TLD500 chips is correlated to the mean fast neutron dose delivered to the moderator material. Different outer shielding materials have been studied. 0.5mm Cadmium shielding is preferred for cost reasons and convenience. Replacement of PE moderator material by other materials like lead or iron at any place is unfavorable. The spatial orientation of the moderator cube is uncritical. Using variance reduction techniques like splitting/Russian roulette, the TLD500 gamma dose simulation give positive differences up to distances of 0.5m from the treatment volume. Conclusion: Applicability and basic layout of a novel clinical neutron dose monitor are demonstrated. The monitor measures PE neutron doses at locations outside the patient body up to distances of 0.5m from the treatment volume. Tissue neutron doses may be calculated using neutron kerma factors

  10. A review of the scientific basis for the quality factor for fast neutrons

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1986-04-01

    Recently, the ICRP has recommended that the quality factor for fast neutrons be increased by a factor of two. They did not give a detailed explanation of the reasons for their recommendations, but indicated that the reasons would be developed as part of a much larger review of the quality factor for all radiations. Since it is AECB's policy to follow ICRP's recommendations unless there is good reason not to do so, and since the changing of the quality factor for neutrons has not been generally accepted by other countries a review of the scientific basis for the neutron quality factor was requested. This report gives results of that review. The report reviews the available published information on the relative biological effectiveness (RBE) of neutrons and on the physical basis for the neutron quality factor for use in personnel dosimetry programs. It is concluded that some, but by no means all, of the RBE data supports an increased quality factor, but the relevance of this data to the quality factor for use in radiaton protection is not clear for two reasons. Firstly, the biological endpoints are not all directly extrapolatable to late stochastic effects in humans, and secondly, the current conservative selection of a quality factor for neutrons, and the conservative practise of equating whole body dose to the maximum dose equivalent, leads to a factor of about 10 conservatism in the assignment of neutron dose equivalents. The overall conclusion of the review is that there is no compelling reason to increase the quality factor for neutrons at least until the ICRP has completed its comprehensive review of the subject. 58 refs

  11. Delayed neutron yield from fast neutron induced fission of 238U

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Roshchenko, V.A.; Goverdovski, A.A.; Tertytchnyi, R.G.

    2002-01-01

    The measurements of the total delayed neutron yield from fast neutron induced fission of 238 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of 238 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant. (author)

  12. Application of semiconductor MOSFET and pin diode dosimeters to epithermal neutron beam dose distribution measurements in phantoms

    International Nuclear Information System (INIS)

    Carolan, M.G.; Wallace, S.A.; Allen, B.J.; Rosenfeld, A.B.; Mathur, J.N.

    1996-01-01

    For any clinical application of Boron Neutron Capture Therapy (BNCT) fast and accurate dose calculations will be required for treatment planning. Such calculations are also necessary for the planning and interpretation of results from pre-clinical and clinical trials where the speed of calculation is not so critical. A dose calculation system based on the MCNP Monte Carlo Neutron transport code has been developed by Wallace. This system takes image data from CT scans and constructs a voxel based geometrical model for input into MCNP. To validate the calculations, a number of phantoms were constructed and exposed in the HB11 epithermal neutron beam at the HFR of the CEC Joint Research Centre in Petten. The doses recorded by arrays of PIN diode neutron dosimeters and MOSFET gamma dosimeters in these phantoms were compared with the calculated results from the MCNP dose planning system. Initial results have been reported elsewhere. Poster 197. (author)

  13. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    International Nuclear Information System (INIS)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-01-01

    The recently developed Cs 2 LiYCl 6 :Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6 Li(n,α)t reaction while for the fast neutrons the 35 Cl(n,p) 35 S and 35 Cl(n,α) 32 P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9–3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35 Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7 LiF target. We tested a CLYC detector 6 Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7 Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  14. An energy and direction independent fast neutron dosemeter based on electrochemically etched CR-39 nuclear track detectors

    International Nuclear Information System (INIS)

    James, K.; Matiullah; Durrani, S.A.

    1987-01-01

    A computer-based model is presented, which simulates the dose equivalent response of electrochemically etched CR-39 to fast neutrons of various energies and angles of incidence. Most previous calculations of the response of CR-39 have neglected the production of recoiling oxygen and carbon nuclei as well as α particles in the CR-39. We calculate that these 'heavy recoils' and α particles are the major source of electrochemically etchable tracks in bare CR-39 at neutron energies above approx. 2 MeV under typical etching conditions. Our calculations have been extended to predict the response of CR-39 used in conjunction with various combinations of polymeric front radiators and we have determined the radiator stack configuration with produces the most energy independent response. Again, the heavy recoils and α particles cannot be neglected and, for energies above approx. 2 MeV, these produce typically about 20% of the total response of our optimum stack. This type of fast neutron dosemeter is, however, strongly direction dependent. We have integrated the response over all appropriate angles to predict the dose equivalent response for two representative neutron fields, and we suggest a method for minimising the angular dependence. (author)

  15. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, L [UniversityWashington, Seattle, WA (United States); Yang, F; Sandison, G [University of Washington, Seattle, WA (United States); Woodworth, D [University of California, Santa Barbara, Santa Barbara, CA (United States); McCormick, Z [University of Nevada - Reno, Reno, Nevada (United States)

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  16. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  17. The experimental method for neutron dose-equivalent detection

    International Nuclear Information System (INIS)

    Ji Changsong

    1992-01-01

    A new method, for getting neutron dose-equivalent Cd rode absorption method is described. The method adopts Cd-rode-swarm buck absorption, which greatly improved the neutron sensitivity and simplified the adjustment method. By this method, the author has developed BH3105 model neutron dose equivalent meter, the sensitivity of this instrument reach 10 cps/μSvh -1 . γ-ray depression rate reaches 4000:1, the measurement range is 0.1 μSv/h-10 6 μSv/h. The energy response is good (from thermal neutron-14 MeV neutron), this instrument can be used to measure the dose equivalent of the neutron areas

  18. Dosimetry intercomparisons between fast neutron radiotherapy facilities

    International Nuclear Information System (INIS)

    Almond, P.R.; Smith, A.R.; Smathers, J.B.; Otte, V.A.

    1975-01-01

    Neutron dosimetry intercomparisons have been made between M.D. Anderson Hospital and Tumor Institute, Naval Research Laboratory, University of Washington Hospital, and Hammersmith Hospital. The parameters that are measured during these visits are: tissue kerma in air, tissue dose at depth of dose maximum, depth dose, beam profiles, neutron/gamma ratios and photon calibrations of ionization chambers. A preliminary report of these intercomparisons will be given including a comparison of the calculation and statement of tumor doses for each institution

  19. A new neutron noise technique for fast reactors

    International Nuclear Information System (INIS)

    Zhuo Fengguan; Jin Manyi; Yao Shigui; Su Zhuting

    1987-12-01

    This paper gives a new neutron noise technique for fast reactors, which is known as thermalization measurement technique of the neutron noise. The theoretical formulas of the technique were developed, and a digital delayed coincidence time analyzer consisted of TTL integrated circuits was constructed for the study of this technique. The technique has been tested and applied practically at Df-VI fast zero power reactor. It was shown that the provided technique in this work has a number of significant advantages in comparison with the conventional neutron noise method

  20. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F. [CNRS-IN2P3-IPN Orsay, Orsay (France)

    2007-07-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators ({approx}24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: {approx}20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T{approx}4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35{mu}A) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose ({approx}20%): a neutrons fluence of more than 10{sup 14} n/cm{sup 2} is achieved in {approx}20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T{approx}4.2 K. This new apparatus allows on-line automatic measurements

  1. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    International Nuclear Information System (INIS)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F.

    2007-01-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators (∼24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: ∼20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T∼4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35μA) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose (∼20%): a neutrons fluence of more than 10 14 n/cm 2 is achieved in ∼20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T∼4.2 K. This new apparatus allows on-line automatic measurements of actuators characteristics and the

  2. Triple GEM gas detectors as real time fast neutron beam monitors for spallation neutron sources

    International Nuclear Information System (INIS)

    Murtas, F; Claps, G; Croci, G; Tardocchi, M; Pietropaolo, A; Cippo, E Perelli; Rebai, M; Gorini, G; Frost, C D; Raspino, D; Rhodes, N J; Schooneveld, E M

    2012-01-01

    A fast neutron beam monitor based on a triple Gas Electron Multiplier (GEM) detector was developed and tested for the ISIS spallation neutron source in U.K. The test on beam was performed at the VESUVIO beam line operating at ISIS. The 2D fast neutron beam footprint was recorded in real time with a spatial resolution of a few millimeters thanks to the patterned detector readout.

  3. Thermoluminescence fast neutron dosimetry by laser heating

    International Nuclear Information System (INIS)

    Mathur, V.K.; Brown, M.D.; Braeunlich, P.

    1984-01-01

    Heating rates in excess of 10 4 K.sec -1 have been achieved for thin layers of TL dosemeters by laser heating. The high heating rate improves the signal to noise ratio up to a factor of 10 3 . Thus sensitive thin film fast neutron dosemeters with negligible self-shielding have become a practical reality. Thin samples of CaSO 4 :Dy have been investigated for their response to fast neutrons from a Pu-Be source and a 14.6 MeV neutron generator by using a hydrogenous radiator. A 15 watt CO 2 laser was focussed on the thin TLD layer to a spot size of less than 1 mm to heat it. An exposure of a few tens of milliseconds was sufficient to obtain a TLD curve, which was displayed and processed by a wave form digitiser. The laser spot could be scanned over the TLD sample by a x-y positioner and a large number of observations were obtained on each sample. Preliminary results show that it is possible to obtain a figure of merit of approx. 5% in a mixed n, γ field. A practical design for a fast neutron dosemeter is proposed. (author)

  4. Elemental analysis of fertilizer by fast neutron activation

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.

    1977-01-01

    A simple and accurate technique has been developed to analyse commercial fertilizers for phosphorus, potassium, chlorine, magnesium and silicon. The method is based on fast-neutron activation using a neutron flux of 2x10 11 neutrons/second. The optimum analytical conditions are tabulated. After irradiation, the sample is measured on a conventional counting system including a Ge(Li) detector (10% efficiency and 2 keV resolution for 60 Co) and a multichannel analyser. Monitor foils radioactivity are measured separately at the same time with a 2''x2''NaI detector coupled with a single channel analyser and a scaler. Fast neutron activation has proved to be a fast, simple, reliable and low cost analytical technique for the determination of phosphorus, silicon, potassium, magnesium and chlorine in fertilizers. Not less than five phosphorus determinations are possible in one hour, while two potassium, magnesium and chlorine determinations are made at the same time. (T.G.)

  5. Illicit substance detection using fast-neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d, n) source (E d =5 MeV). The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification. ((orig.))

  6. Illicit substance detection using Fast-Neutron Transmission Spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d,n) source [E d = 5 MeV]. The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification

  7. An empirical formula for scattered neutron components in fast neutron radiography

    International Nuclear Information System (INIS)

    Dou Haifeng; Tang Bin

    2011-01-01

    Scattering neutrons are one of the key factors that may affect the images of fast neutron radiography. In this paper, a mathematical model for scattered neutrons is developed on a cylinder sample, and an empirical formula for scattered neutrons is obtained. According to the results given by Monte Carlo methods, the parameters in the empirical formula are obtained with curve fitting, which confirms the logicality of the empirical formula. The curve-fitted parameters of common materials such as 6 LiD are given. (authors)

  8. Study of Material Moisture Measurement Method and Instrument by the Combination of Fast Neutron Absorption and γ Absorption

    International Nuclear Information System (INIS)

    Hou Chaoqin; Gong Yalin; Zhang Wei; Shang Qingmin; Li Yanfeng; Gou Qiangyuan; Yin Deyou

    2010-01-01

    To solve the problem of on-line sinter moisture measurement in the iron making plant, we developed material moisture measurement method and instrument by the combination of fast neutron absorption and y-absorption. It overcomes the present existed problems of other moisture meters for the sinter. Compare with microwave moisture meter, the measurement dose not affected by conductance and magnetism of material; to infrared moisture meter, the measurement result dose not influenced by colour and light-reflect performance of material surface, dose not influenced by changes of material kind; to slow neutron scatter moisture meter, the measurement dose not affected by density of material and thickness of hopper wall; to the moisture measurement meter which combined by slow neutron penetrate through and y-absorption, there are definite math model and good linear relation between the measurement values, and the measurement dose not affected by material thickness, changes of material form and component. (authors)

  9. A new online detector for estimation of peripheral neutron equivalent dose in organ

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L., E-mail: leticia@us.es; Sanchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain and Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Lorenzoli, M.; Pola, A. [Departimento di Ingegneria Nuclear, Politecnico di Milano, Milano 20133 (Italy); Bedogni, R. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Frascati Roma 00044 (Italy); Terrón, J. A. [Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Sanchez-Nieto, B. [Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 4880 (Chile); Expósito, M. R. [Departamento de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Lagares, J. I.; Sansaloni, F. [Centro de Investigaciones Energéticas y Medioambientales y Tecnológicas (CIEMAT), Madrid 28040 (Spain)

    2014-11-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  10. A new online detector for estimation of peripheral neutron equivalent dose in organ

    International Nuclear Information System (INIS)

    Irazola, L.; Sanchez-Doblado, F.; Lorenzoli, M.; Pola, A.; Bedogni, R.; Terrón, J. A.; Sanchez-Nieto, B.; Expósito, M. R.; Lagares, J. I.; Sansaloni, F.

    2014-01-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  11. Fast Neutron Damage Studies on NdFeB Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.; Spencer, J.; Wolf, Z.; /SLAC; Baldwin, A.; Pellett, D.; Boussoufi, M.; /UC, Davis

    2005-05-17

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and {gamma}'s over the life of the facility [1]. While the linacs will be superconducting, there are still many uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the situation for rare earth, permanent magnet materials was presented at PAC03 [2]. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC04 [3]. We have extended the doses, included other manufacturer's samples, and measured induced radioactivities which are discussed in detail.

  12. Television imaging system for fast neutron radiography using baby cyclotron

    International Nuclear Information System (INIS)

    Yoshii, Koji; Miya, Kenzo; Katoh, Norihiko.

    1993-01-01

    A television imaging system for fast neutron radiography (FNR-TV) developed using the fast neutron source reactor YAYOI was applied to the baby-cyclotron based fast neutron source to get images of thick objects quickly. In the system the same technique as a current television imaging system of thermal neutron radiography was applied, while the luminescent converter was used to detect fast neutrons. Using the CR39 track etch method it took about 7 h to get an image, while the FNR-TV only 20 s enough for taking the same object. However the FNR-TV imaging result of the simulation model of a large explosive device for the space launch vehicle of H-2 type was not so good as the image taken with the CR39 track etch method. The reason was that the luminescence intensity of the FNR-TV converter was a quarter of that in the YAYOI. (author)

  13. Radiation therapy with fast neutrons: A review

    International Nuclear Information System (INIS)

    Jones, D.T.L.; Wambersie, A.

    2007-01-01

    Because of their biological effects fast neutrons are most effective in treating large, slow-growing tumours which are resistant to conventional X-radiation. Patients are treated typically 3-4 times per week for 4-5 weeks (sometimes in combination with X-radiation) for a variety of conditions such as carcinomas of the head and neck, salivary gland, paranasal sinus and breast; soft tissue, bone and uterine sarcomas and malignant melanomas. It is estimated that about 27,000 patients have undergone fast neutron therapy to date

  14. SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

    Directory of Open Access Journals (Sweden)

    SANG IN KIM

    2014-04-01

    Full Text Available The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software ‘K-SWR’. The detectors’ response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403. The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the 241Am-Be sources held in a graphite pile, a bare 241Am-Be source, and a DT neutron generator. Fluence-average energy (Eave varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [H*(10/h] varied from 0.99 to 16.5 mSv/h.

  15. In-Pile Qualification of the Fast-Neutron-Detection-System

    Science.gov (United States)

    Fourmentel, D.; Villard, J.-F.; Destouches, C.; Geslot, B.; Vermeeren, L.; Schyns, M.

    2018-01-01

    In order to improve measurement techniques for neutron flux assessment, a unique system for online measurement of fast neutron flux has been developed and recently qualified in-pile by the French Alternative Energies and Atomic Energy Commission (CEA) in cooperation with the Belgian Nuclear Research Centre (SCK•ECEN). The Fast-Neutron-Detection-System (FNDS) has been designed to monitor accurately high-energy neutrons flux (E > 1 MeV) in typical Material Testing Reactor conditions, where overall neutron flux level can be as high as 1015 n.cm-2.s-1 and is generally dominated by thermal neutrons. Moreover, the neutron flux is coupled with a high gamma flux of typically a few 1015 γ.cm-2.s-1, which can be highly disturbing for the online measurement of neutron fluxes. The patented FNDS system is based on two detectors, including a miniature fission chamber with a special fissile material presenting an energy threshold near 1 MeV, which can be 242Pu for MTR conditions. Fission chambers are operated in Campbelling mode for an efficient gamma rejection. FNDS also includes a specific software that processes measurements to compensate online the fissile material depletion and to adjust the sensitivity of the detectors, in order to produce a precise evaluation of both thermal and fast neutron flux even after long term irradiation. FNDS has been validated through a two-step experimental program. A first set of tests was performed at BR2 reactor operated by SCK•CEN in Belgium. Then a second test was recently completed at ISIS reactor operated by CEA in France. FNDS proved its ability to measure online the fast neutron flux with an overall accuracy better than 5%.

  16. Application of fast neutrons in the mutagenesis of peas

    International Nuclear Information System (INIS)

    Huczkowski, J.; Kubajak, A.

    1976-01-01

    Air dry seeds of two varieties of peas were irradiated with fast neutrons of average energy of 5,6 MeV obtained in the U-120 cyclotron at the Cracow Institute of Nuclear Physics. The doses varied from 60 to 1600 rads. It was found that even very low doses (less than 100 rads) cause a conspicuous delay of germination; a significant decrease of seedling height was only observed at doses higher than 200 rads. In the 170-620 rad range seedling height diminished lineraly with increase of dose. On the basis of the greenhouse experiment five doses were chosen for field experiments: 200, 300, 500, 800 and 1000 rads. It was found that a dose of about 500 rads was the maximum that could be applied for breeding purposes: the survival and fertility rate at that dose was about 40% of the control, doses of 800 to 900 rads caused full mortality. The M2 seeds were sown in the greenhouse and the frequency of chlorophyl mutations was examined in generation M2. It was found to be very high: for doses of 200 t0 300 rads the mutations ocurred in about 4% of M2 seedlings. (author)

  17. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Habob, Moinul

    2005-12-15

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design.

  18. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    International Nuclear Information System (INIS)

    Habib, Moinul

    2005-12-01

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design

  19. Dose inhomogeneities for photons and neutrons near interfaces

    International Nuclear Information System (INIS)

    Broerse, J. J.; Zoetelief, J.

    2004-01-01

    Perturbations of charged particle equilibrium (CPE) at interfaces of materials of different atomic composition can lead to considerable differences in the energy deposition by photons and neutrons. Specific examples of these interface perturbations are encountered during irradiation of body cavities and soft tissue adjacent to bone or metallic implants and irradiation of cells in monolayer on the bottom of culture dishes. Another example is the build-up of CPE at air-tissue interfaces, referred to in radiotherapy as the skin sparing effect. For photon irradiation excess production of secondary electrons in high-Z materials, such as glass, bone or gold, will induce appreciably higher doses and decreased cell survival compared to the equilibrium situation. The energy dissipation of fast neutrons in biological materials occurs through recoil protons, heavy recoil nuclei and products of nuclear reactions. Owing to the large contribution from recoil protons to the neutron kerma, the hydrogen content of the biological material mainly determines the energy deposition. For neutron irradiation of cells in monolayer, CPE can be established or deliberately avoided by mounting tissue-equivalent plastic or carbon discs in front of the cells, respectively. This approach makes it possible to distinguish the biological effects of the low- and high-LET radiation components. (authors)

  20. Structure and Spatial Distribution of Ge Nanocrystals Subjected to Fast Neutron Irradiation

    Directory of Open Access Journals (Sweden)

    Alexander N. Ionov

    2011-07-01

    Full Text Available The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS, High Resolution Transmission Electron Microscopy (HR-TEM and X-ray photoelectron spectroscopy (XPS. The irradiation of Ge- NC samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 8000C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of Ge-NC changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region.

  1. Modern methods to improve the accuracy in fast neutron dosimetry

    International Nuclear Information System (INIS)

    Baers, B.; Karnani, H.; Seren, T.

    1985-01-01

    In order to improve the quality of fast neutron dose estimates at the reactor pressure vessel (PV) some modern methods are presented. In addition to basic principles, some error reduction procedures are also presented based on the combined use of relative measurements, direct sample taking from the pressure vessel and the use of iron and niobium as dosimeters. The influence of large systematic errors could be significantly reduced by carrying out relative measurements. This report also presents the successful use of niobium as a dosimeter by destructive treatment of PV samples. (author)

  2. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  3. Fast neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    Blaize, S.; Ailloud, J.; Mariani, J.; Millot, J.P.

    1958-01-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author) [fr

  4. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Sohrabi, M.; Morgan, K.Z.

    1975-11-01

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  5. The investigation of fast neutron Threshold Activation Detectors (TAD)

    International Nuclear Information System (INIS)

    Gozani, T; King, M J; Stevenson, J

    2012-01-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ''flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major

  6. The investigation of fast neutron Threshold Activation Detectors (TAD)

    Science.gov (United States)

    Gozani, T.; King, M. J.; Stevenson, J.

    2012-02-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major

  7. Response of E. coli AB2463 recA to fast neutron beams with mean energies in the range 4 to 27 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Redpath, J L [Michael Reese Hospital, Chicago, Ill. (USA)

    1978-07-01

    The radiosensitivity of E.coli AB2463 recA, given as the reciprical of the mean lethal dose, Do/sup -1/, has been shown to be the same for four fast neutron beams with widely different energy spectra. It is proposed that this organism can be used to intercompare dosimetry on fast neutron beams with mean energies in the range 4 to 25 MeV with an accuracy of +- 5%.

  8. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10 10 neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10 7 to 3.8x10 8 n/cm 2 depending on the type of screen and film

  9. Fast neutron damage in germanium detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1979-10-01

    The effects of fast neutron radiation damage on the performance of both Ge(Li) and Ge(HP) detectors have been studied during the past decade and will be summarized. A review of the interaction processes leading to the defect structures causing trapping will be made. The neutron energy dependence of observable damage effects will be considered in terms of interaction and defect production cross sections

  10. DNA biosynthesis content and intensiveness in mice thymus at early periods following fast neutron irradiation with different energy rate

    International Nuclear Information System (INIS)

    Indyk, V.M.; Antonenko, G.I.; Parnovskaya, N.V.

    1988-01-01

    Biosynthesis of dna of the thymic glands of animals irradiated by fast neutrons with different energy values in the early post-irradiation period is investigated. It is shown that the rate of mass recovery in organs, their cellular nature, dna content and indices of their specific activity have the dose and time dependences, as well as they considerably differ at different neutron energies and different quality radiation. With the increase of neutron energy value their biological effectiveness decreases

  11. Induction of mutations in antibiotic-producing microorganisms by fast neutrons from the U-120 cyclotron

    International Nuclear Information System (INIS)

    Wolf, J.; Huczkowski, J.; Siejka, D.; Krasnowolski, S.; Brodowicz, M.

    1976-01-01

    The purpose of this study was to investigate the activity of fast neutrons from a U-120 cyclotron in the induction of mutations in streptomycetes, resulting in strains with enhanced antibiotic production. Three streptomycete strains producing the antibiotics: lincomycin, moenomycin, and demethylchlorotetracycline were used. Correlation between the survival rate of spores of the examined strains and neutron dose was determined. Several morphological and physiological features (particularly production of antibiotics for 1543 variants derived from the parent strains) and their distribution within the population were also studied. The survival rate of the streptomycetes spores after irradiation with fast neutrons was found to be an individual strain property. Several variants with considerably increased antibiotic yield were isolated. The results are compared with those obtained after treatment with other mutagens. Several variants of one of the strains with a strongly enhanced antibiotic yield (200-220%) were isolated. No such variants were found after UV irradiation. (author)

  12. Effect of low level Doses of fast neutrons on the toxicity of snake venom through measuring some biophysical properties of blood serum of rats

    International Nuclear Information System (INIS)

    Hanafy, M.S.; Metwali, R.

    2001-01-01

    This study was conducted to investigate the effect of low level doses of fission neutrons from Cf 252 source on sublethal doses (low medium) of snake venom cerastes cerastes by injecting albino eats with unirradiated or irradiated venom and measuring the biophysical alterations in the blood serum of the rats. The biophysical properties of the total serum proteins were studied through measuring their dielectric relaxation and the electric conductivity in the frequency range 0.1→5 MHz at 4 degree C. The absorption spectra of the extracted total serum protein were also measured. The results indicated that there are pronounced changes in the molecular constructions of the total serum protein such as the molecular radii, shape, the relaxation time and dielectric increment for the rats injected with unirradiated venom but for the rats injected with irradiated venom (3x10 8 n/cm 2 ) corresponding values approach the control value. These changes in the molecular constructions of the total serum protein indicate changes in its biochemical properties. This fact was revealed in a previous work, where the irradiation with the fast neutrons were found to decrease the toxicity of the venom

  13. Fast neutron radiotherapy for soft tissue and cartilaginous sarcomas at high risk for local recurrence

    International Nuclear Information System (INIS)

    Schwartz, David L.; Einck, John; Bellon, Jennifer; Laramore, George E.

    2001-01-01

    Purpose: The practice policy at the University of Washington has been to employ fast neutron radiotherapy for soft tissue sarcoma lesions with prognostic features predictive for poor local control. These include gross residual disease/inoperable disease, recurrent disease, and contaminated surgical margins. Cartilaginous sarcomas have also been included in this high-risk group. This report updates and expands our previously described experience with this approach. Methods and Materials: Eighty-nine soft tissue sarcoma lesions in 72 patients were treated with neutron radiotherapy in our department between 1984 and 1996. Six patients, each with solitary lesions, were excluded from analysis due to lack of follow-up. Seventy-three percent were treated with fast neutron radiation alone, the rest with a combination of neutrons and photons. Median neutron dose was 18.3 nGy (range 4.8-22). Forty-two patients with solitary lesions were treated with curative intent. Thirty-one patients (including 7 previously treated with neutrons) with 41 lesions were treated with the goal of local palliation. Tumors were predominantly located in the extremity and torso. Thirty of 35 (85%) of curative group patients treated postoperatively had close or positive surgical margins. Thirty-four (82%) lesions treated for palliation were unresectable. Thirty-five patients (53%) were treated at the time of recurrence. Median tumor size at initial presentation was 8.0 cm (range 0.6-29), median treated gross disease size was 5.0 cm (range 1-22), and 46/69 evaluable lesions (67%) were judged to be of intermediate to high histologic grade. Fourteen patients (21%) had chondrosarcomas. Results: Median follow-up was 6 months (range 2-47) and 38 months (range 2-175) for the palliative and curative groups, respectively. Kaplan-Meier estimates were obtained for probability of local relapse-free survival (68%), distant disease-free survival (59%), cause-specific survival (68%), and overall survival (66%) at

  14. High energy fast neutrons from the Harwell variable energy cyclotron. II. Biologic studies in mammalian systems

    International Nuclear Information System (INIS)

    Berry, R.J.; Bance, D.A.; Barnes, D.W.H.; Cox, R.; Goodhead, D.T.; Sansom, J.M.; Thacker, J.

    1977-01-01

    A high energy fast neutron beam potentially suitable for radiotherapy has been described in a companion paper. Its biologic effects have been studied in the following experimental systems: clonal survival and mutation induction after irradiation in vitro in Chinese hamster cells and human diploid fibroblasts; survival of reproductive capacity in vivo of murine hemopoietic colony-forming cells and murine intestinal crypts after irradiation in vivo; survival of reproductive capacity in vivo after irradiation in vitro or in vivo of murine lymphocytic leukemia cells; acute intestinal death following total body irradiation of mice and guinea pigs; and hemopoietic death following total body irradiation of mice and guinea pigs. The relative biologic effectiveness of these high energy neutrons varied among the different biologic systems, and in several cases varied with the size of the radiation dose. The oxygen enhancement ratio was studied in murine lymphocytic leukemia cells irradiated under aerobic or hypoxic conditions in vitro and assayed for survival of reproductive capacity in vivo. Compared with x-rays, the potential therapeutic gain factor for these neutrons was about 1.5. This work represents a ''radiobiologic calibration'' program which it is suggested should be undertaken before new and unknown fast neutron spectra are used for experimental radiotherapy. The results are compared with biologic studies carried out at high energy fast neutron generators in the United States

  15. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  16. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  17. Bulk moisture determination in building materials by fast neutron/gamma technique

    International Nuclear Information System (INIS)

    Padron Diaz, I.; Felipe Desdin, L.; Martin Hernandez, G.; Shtejer, K.; Perez Tamayo, N.; Ceballos, C.; Lemus, O.

    1998-01-01

    Fast Neutron/Gamma Transmission technique has been improved to allow to measure moisture content in building materials. In order to improve fast neutron/gamma discrimination in the transmission system employing the NE-213 scintillation detector a pulse shape discrimination system was constructed at the CEADEN. A separate neutron/gamma detection approach was used with neutron transmission measurement using an Am-Be neutron source and a BF 3 detector and gamma transmission measurement using a collimated 137 Cs source and a NaI scintillator

  18. A measurement of the response to fast neutrons of several materials dosemeters

    International Nuclear Information System (INIS)

    Jones, L.T.; Kitching, S.J.; Lewis, T.A.; Playle, T.S.

    1986-07-01

    The response to fast neutrons was measured for three types of materials testing dosemeters: fast neutron dosimetry silicon diodes; beryllia, alumina and calcium fluoride TLDs; graphite walled ionisation chambers. The calibrations were made using a 3MW positive ion accelerator. The arrangement of the target, beam monitor and devices is described, and the measured fast neutron sensitivities are presented. (UK)

  19. Application of the alanine detector to gamma-ray, X-ray and fast neutron dosimetry

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Hansen, J.W.; Byrski, E.

    1987-01-01

    A dosimeter based on alanine has been developed at the INP in Krakow and at Risoe National Laboratory. Due to its near tissue-equivalence and stability of signal, measured using ESR spectrometry at room temperature, this free-radical amino-acid dosimetric system is particularly suitable for measuring X-ray, gamma-ray and fast neutron doses in the range 10-10 5 Gy. The relative effectiveness (with respect to 60 Co γ-rays) of the alanine dosimeter to 250 kVp X-rays and to cyclotron-produced fast neutrons (mean neutron energy 5.6 MeV) is measured to be 0.76± 0.06 and 0.60±0.05, respectively. The suitability of the alanine dosimeter for intercomparison gamma-ray dosimetry is also shown. The estimated absolute difference between 60 Co dosimetry at Risoe National Laboratory and at the Centre of Oncology in Krakow is about 5%, somewhat more than the experimental uncertainty. These results are based on ESR measurements performed in Krakow on about 25% of the exposed detectors. 28 refs., 2 figs., 3 tabs. (author)

  20. Fast neutron radiotherapy: for equal or for better

    International Nuclear Information System (INIS)

    Broerse, J.J.; Battermann, J.J.

    1981-01-01

    The renewed application of fast neutrons in clinical radiotherapy has been stimulated by fundamental radiobiological findings. The biological effects of high LET radiation, including fast neutrons, are different from those obtained with x rays in at least three respects: the oxygen enhancement ratio, the sensitivity of cells at different phases of the cell cycle, and the contribution of sublethal damage to cell reproductive death. Furthermore, wide variations in relative biological effectiveness (RBE) have been observed for different tumors and normal tissues. Measurements of volume changes in human pulmonary metastases indicate that the RBE for slowly growing tumors which are generally well-differentiated is higher than that for poorly differentiated lesions. Six thousand patients have now been treated with fast neutron beams. The results of the clinical applications vary according to the method of application and to the type of cancer involved: treatment of inoperable malignancies of the salivary gland is very encouraging: the therapeutic gain is rather small for bladder and rectal cancers, soft tissue sarcomas and advanced carcinomas of the cervix; the responses of brain tumors are very disappointing. Most neutron radiotherapy applications have been less than optimal because of inadequate physical and technical conditions. Despite these difficulties, some interesting clinical data have become available. Due to the technical shortcomings, the possible advantages of fast neutrons are probably underestimated for many tumor sites. Well-designed clinical trials, preferably performed with high energy cyclotrons in clinical environments, will provide a decisive answer to the question of the usefulness of the new radiation modality

  1. Fast neutron sensitivity of polymer dosemeters

    International Nuclear Information System (INIS)

    Harper, M.W.; Pearson, D.W.; Moran, P.R.

    1975-01-01

    The responses of polymer thermocurrent dosemeters to fission spectrum and 14 MeV neutrons were measured. The dosemeters are in the form of disks 1 cm diam by 0.5 mm thick. Relative to Cobalt 60 gamma responses, teflon PTFE dosemeters show a 6 percent response to 14 MeV neutrons and a 5 percent response to fission neutrons on a tissue rad basis. Polymethylpentene dosemeters show a 49 percent response to 14 MeV neutrons and a 40 percent response to fission neutrons on a tissue rad basis when provided with adequate recoil proton buildup. The sensitivity of these dosemeters is limited to neutron doses greater than 10 rads by spurious background currents

  2. The mechanical behavior and reliability prediction of the HTR graphite component at various temperature and neutron dose ranges

    International Nuclear Information System (INIS)

    Fang, Xiang; Yu, Suyuan; Wang, Haitao; Li, Chenfeng

    2014-01-01

    Highlights: • The mechanical behavior of graphite component in HTRs under high temperature and neutron irradiation conditions is simulated. • The computational process of mechanical analysis is introduced. • Deformation, stresses and failure probability of the graphite component are obtained and discussed. • Various temperature and neutron dose ranges are selected in order to investigate the effect of in-core conditions on the results. - Abstract: In a pebble-bed high temperature gas-cooled reactor (HTR), nuclear graphite serves as the main structural material of the side reflectors. The reactor core is made up of a large number of graphite bricks. In the normal operation case of the reactor, the maximum temperature of the helium coolant commonly reaches about 750 °C. After around 30 years’ full power operation, the peak value of in-core fast neutron cumulative dose reaches to 1 × 10 22 n cm −2 (EDN). Such high temperature and neutron irradiation strongly impact the behavior of graphite component, causing obvious deformation. The temperature and neutron dose are unevenly distributed inside a graphite brick, resulting in stress concentrations. The deformation and stress concentration can both greatly affect safety and reliability of the graphite component. In addition, most of the graphite properties (such as Young's modulus and coefficient of thermal expansion) change remarkably under high temperature and neutron irradiations. The irradiation-induced creep also plays a very important role during the whole process, and provides a significant impact on the stress accumulation. In order to simulate the behavior of graphite component under various in-core conditions, all of the above factors must be considered carefully. In this paper, the deformation, stress distribution and failure probability of a side graphite component are studied at various temperature points and neutron dose levels. 400 °C, 500 °C, 600 °C and 750 °C are selected as the

  3. Method and apparatus for determining the dose value of neutrons

    International Nuclear Information System (INIS)

    Burgkhardt, B.; Piesch, E.

    1976-01-01

    A method is provided for determining the dose value of neutrons leaving a body as thermal and intermediate neutrons after having been scattered in the body. A first dose value of thermal and intermediate neutrons is detected on the surface of the body by means of a first detector for neutrons which is shielded against thermal and intermediate neutrons not emerging from the body. A second detector is used to measure a second dose value of the thermal and intermediate neutrons not emerging from the body. A first correction factor based on the first and second values is obtained from a calibration diagram and is applied to the first dose value to determine a first corrected first dose value. 21 Claims, 6 Drawing Figures

  4. DIANE, a simulation code for the interaction of neutrons with living tissues. Application to low doses of fast neutrons on human tumoral cells; DIANE, un code de simulation de l'interaction des neutrons avec la matiere vivante. Applications aux faibles doses de neutrons rapides sur des cellules tumorales humaines

    Energy Technology Data Exchange (ETDEWEB)

    Nenot, M.L

    2003-07-15

    Our work deals with the irradiation of cells and living tissues by 14 MeV neutrons at very low doses (a few 10{sup -2} Gy). Such experiments require an accurate knowledge of the values of neutron dose rates and fluences at the level of cell cultures. We have performed measurements of fluence rates through an activation method applied to gold and copper foils. The fluence rate is deduced from the gamma rays emitted by the irradiated foils. Neutron doses and dose rates have been measured through varied methods: PIN diodes, ionization tissue equivalent chambers, and Geiger-Mueller counters. We have designed the DIANE code to simulate the impact of energetic neutrons on cells. This code can be used with isolated cells or macroscopic tissues, it takes into account the roles of the ionisation electrons produced by recoil nuclei entering the cell. This point is all the more important since recent works have highlighted the impact of very low energy electrons on DNA. (A.C.)

  5. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with 252Cf Source

    Directory of Open Access Journals (Sweden)

    Firoozabadi M. M.

    2017-03-01

    Full Text Available Background: In neutron interaction with matter and reduction of neutron energy due to multiple scatterings to the thermal energy range, increasing the probability of thermal neutron capture by neutron captures makes dose enhancement in the tumors loaded with these materials. Objective: The purpose of this study is to evaluate dose distribution in the presence of 10B, 157Gd and 33S neutron capturers and to determine the effect of these materials on dose enhancement rate for 252Cf brachytherapy source. Methods: Neutron-ray flux and energy spectra, neutron and gamma dose rates and dose enhancement factor (DEF are determined in the absence and presence of 10B, 157Gd and 33S using Monte Carlo simulation. Results: The difference in the thermal neutron flux rate in the presence of 10B and 157Gd is significant, while the flux changes in the fast and epithermal energy ranges are insensible. The dose enhancement factor has increased with increasing distance from the source and reached its maximum amount equal to 258.3 and 476.1 cGy/h/µg for 157Gd and 10B, respectively at about 8 cm distance from the source center. DEF for 33S is equal to one. Conclusion: Results show that the magnitude of dose augmentation in tumors containing 10B and 157Gd in brachytherapy with 252Cf source will depend not only on the capture product dose level, but also on the tumor distance from the source. 33S makes dose enhancement under specific conditions that these conditions depend on the neutron energy spectra of source, the 33S concentration in tumor and tumor distance from the source.

  6. Pathologic changes in the hearts of beagles irradiated with fractionated fast neutrons or photons

    International Nuclear Information System (INIS)

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Rogers, C.C.

    1981-01-01

    Thirty-nine adult male purebred beagles received either fast-neutron or photon irradiation to the right thorax to determine the effects on pulmonary tissue. The right atrium, a small portion of the right ventricle, and the right anterior abdomen were included in the field. Twenty-four dogs (six/group) received fast neutrons with a mean energy of 15 MeV to doses of 1000, 1500, 2250, or 3375 rad in four fractions per week for 6 weeks. Fifteen dogs received 3000, 4500, or 6750 rad of photons (five/group) in an identical fractionation pattern. Fourteen dogs died or were euthanatized in extremis between 47 and 708 days after radiation because of radiation damage to digestive organs. Six other dogs died of anesthetic accidents between 196 and 1144 days after radiation; these deaths were probably related to hepatic dysfunction. Two neutron-irradiated dogs developed cardiac neoplasms after 396 and 1624 days. One dog died of a myocardial infarct and one died of an unrelated infection. The major atrial lesions were hemorrhage and necrosis of myocardial cells in dogs that died 47-109 days postirradiation. Myocardial and endocardial fibrosis were most extensive in dogs that died 84 or more days following irradiation. All beagles had degenerative and occlusive vascular changes associated with atrial lesions. The relative biological effectiveness of fast neutrons for pathologic injury of the heart was estimated to be between 4 and 5

  7. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  8. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  9. nGEM fast neutron detectors for beam diagnostics

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-01-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σ x =14.35 mm, σ y =15.75 mm), nGEM counting efficiency (around 10 -4 for 3 MeV n <15 MeV), detector stability (≈4.5%) and the effect of filtering the beam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool

  10. Fast neutron measurements at the nELBE time-of-flight facility

    Directory of Open Access Journals (Sweden)

    Junghansa A. R.

    2015-01-01

    Full Text Available The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits.

  11. The Primary Origin of Dose Rate Effects on Microstructural Evolution of Austenitic Alloys During Neutron Irradiation

    International Nuclear Information System (INIS)

    Okita, Taira; Sato, Toshihiko; Sekimura, Naoto; Garner, Francis A.; Greenwood, Lawrence R.

    2002-01-01

    The effect of dose rate on neutron-induced microstructural evolution was experimentally estimated. Solution-annealed austenitic model alloys were irradiated at approximately 400 degrees C with fast neutrons at seven different dose rates that vary more than two orders difference in magnitude, and two different doses were achieved at each dose rate. Both cavity nucleation and growth were found to be enhanced at lower dose rate. The net vacancy flux is calculated from the growth rate of cavities that had already nucleated during the first cycle of irradiation and grown during the second cycle. The net vacancy flux was found to be proportional to (dpa/sec) exp (1/2) up to 28.8 dpa and 8.4 x 10 exp (-7) dpa/sec. This implies that mutual recombination dominates point defect annihilation, in this experiment even though point defect sinks such as cavities and dislocations were well developed. Thus, mutual recombination is thought to be the primary origin of the effect of dose rate on microstructural evolution

  12. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    International Nuclear Information System (INIS)

    Yavar, A.R.; Sarmani, S.B.; Wood, A.K.; Fadzil, S.M.; Radir, M.H.; Khoo, K.S.

    2011-01-01

    Determination of thermal to fast neutron flux ratio (f fast ) and fast neutron flux (φ fast ) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f fast and subsequently φ fast were determined using the absolute method. The f fast ranged from 48 to 155, and the φ fast was found in the range 1.03x10 10 -4.89x10 10 n cm -2 s -1 . These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  13. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  14. A new electret dosimeter for fast neutrons

    International Nuclear Information System (INIS)

    Campos, L.L.; Suarez, A.A.; Mascarenhas, S.

    1982-01-01

    A new electret for fast-neutron personnel dosimetry is described and calibration curves obtained. Its performance may be improved by changes in the wall composition and geometric parameters. The advantages of electrets over TL and film are the non-erasure of information, low cost, fast reading and portability. (U.K.)

  15. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations

  16. A neutron survey of a 25 MV x-ray clinical linac treatment room

    International Nuclear Information System (INIS)

    Price, Kenneth W.; Holeman, George R.; Nath, Ravinder

    1978-01-01

    Neutron production in high energy x-ray radiotherapy machines results in unnecessary dose to patients and has been of recent interest to private and Federal agencies. An activation technique has been used to measure fast and thermal neutron fluxes in the high energy x-ray beam, and at radial distances of 1 and 2 meters from the beam axis of the 25 MV Sagittaire Linear Accelerator located at the Yale-New Haven Hospital's Cancer Therapy Center. Phosphorous pentoxide activation detectors were used to monitor the thermal flux and the fast neutron flux above 0.7 MeV neutron energy. Unlike other techniques for measuring neutrons, this detector has been shown to be insensitive to high energy photon interference at the photon dose rates present in the beam. Neutron spectra at various distances from the accelerator target were computed for the treatment room geometry using the Morse Monte Carlo Code (R.C. McCall, SLAC, Personal Communication). Normalization of these spectra provided the means by which the activation products measured in the phosphorous were converted to fast neutron fluxes. Dose equivalent conversion factors were applied to each energy of the calculated neutron spectra and integrated, resulting in fast neutron flux to dose equivalent conversion factors at various locations in the treatment room. Fast neutron dose equivalent was found to maximize in the photon beam, (0.005 - .007 neutron Rem/photon Rad) and decrease with distance thereafter. Thermal neutron dose equivalent was found to be essentially constant through- out the treatment room (∼ 3.35x10 -5 neutron Rem/ photon Rad). (author)

  17. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  18. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes procedures for measuring reaction rates by the activation reaction 93Nb(n,n′)93mNb. 1.2 This activation reaction is useful for monitoring neutrons with energies above approximately 0.5 MeV and for irradiation times up to about 30 years. 1.3 With suitable techniques, fast-neutron reaction rates for neutrons with energy distribution similar to fission neutrons can be determined in fast-neutron fluences above about 1016cm−2. In the presence of high thermal-neutron fluence rates (>1012cm−2·s−1), the transmutation of 93mNb due to neutron capture should be investigated. In the presence of high-energy neutron spectra such as are associated with fusion and spallation sources, the transmutation of 93mNb by reactions such as (n,2n) may occur and should be investigated. 1.4 Procedures for other fast-neutron monitors are referenced in Practice E 261. 1.5 Fast-neutron fluence rates can be determined from the reaction rates provided that the appropriate cross section information ...

  19. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  20. The fluence research of filter material for fast neutron fluence measurement

    International Nuclear Information System (INIS)

    Tang Xiding

    2010-01-01

    When the fast neutron fluence is measured by radioactivation techniques in the nuclear reactor the fast neutron is also filtered a little by the thermal neutron filter material, and if the filter material thickness increase the filtered fast neutron increases therewith. For fast neutron fluenc measurement, there are only cadmium, boron and gadolinium three elements filtering fluence can be calculated ordinarily. In order to calculate the filtered fast neutron fluence of the all elements in the filter material, the many total cross sections of nuclides had checked out from nuclear cross section data library, converted them into the same energy group structure, then element's total cross section, compound's total cross section and multilayer filters' total cross section had calculated from these total cross sections with same energy group structure, a new cross section data library can be obtained lastly through merging these cross sections into the old cross section data library used for neutron fluence measurement. The calculation analysis indicates that the results of the unit 2 surveillance capsule U of DAYA Bay NPP and the unit 1 surveillance capsule A of the Second Nuclear Power Plant of Qinshan by considering the all elements subtracting iron are smaller about 1.5% and 2.6% respectively than the ones only to consider cadmium, boron. The old measured results accord with the new values under the measurement uncertainty, are reliable. The new results are more accuracy. (authors)

  1. Real‑time, fast neutron detection for stimulated safeguards assay

    International Nuclear Information System (INIS)

    Joyce, Malcolm J.; Adamczyk, Justyna; Plenteda, Romano; Aspinall, Michael D.; Cave, Francis D.

    2015-01-01

    The advent of low‑hazard organic liquid scintillation detectors and real‑time pulse‑shape discrimination (PSD) processing has suggested a variety of modalities by which fast neutrons, as opposed to neutrons moderated prior to detection, can be used directly to benefit safeguards needs. In this paper we describe a development of a fast‑neutron based safeguards assay system designed for the assessment of 235 U content in fresh fuel. The system benefits from real‑time pulse‑shape discrimination processing and auto‑calibration of the detector system parameters to ensure a rapid and effective set‑up protocol. These requirements are essential in optimising the speed and limit of detection of the fast neutron technique, whilst minimising the intervention needed to perform the assay.

  2. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    Najzer, M.; Pauko, M.; Glumac, B.; Acquah, I.N.; Moskon, F.

    1977-01-01

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  3. Dosimetry Characteristics of Coupled Fast-Thermal Core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Milosevic, M.; Milovanovic, S.

    1996-01-01

    The 'HERBE' is new coupled fast-thermal core, designed in 1991, at the 'RB' reactor in the 'Vinca' Institute. It is used for verification of designed oriented computer codes developed in the Institute, training and sample irradiation in fast neutron field. For the last purpose a vertical experimental channel (VCH) is placed in the central axis of the fast core. Neutron spectrum in the centre of the VCR is calculated in 44 energy groups. Space distributions of two energy group neutron flux in the 'HERBE' are measured using gold foils and converted into the neutron absorbed dose (in air and tissue) using group flux-dose conversion factors. Gamma absorption doses in the air in the centre of the VCH are measured using calibrated small ionisation chamber filled with air. Determined dose rates are related to the reactor power. The first preliminary irradiations of silicon diodes (designed for production of the neutron dosemeters) in the centre of the VCH of the 'HERBE' fast core are carried out in 1994 and 1995. This paper describes calculation methods and measurement techniques applied to determination of the irradiation performance and dosimetry characteristics of the 'HERBE' system. (author)

  4. Neutron fluence-to-dose conversion coefficients for embryo and fetus

    International Nuclear Information System (INIS)

    Chen, J.; Meyerhof, D.; Vlahovich, S.

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. (authors)

  5. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    Science.gov (United States)

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  6. Semi-insulating GaAs detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sagatova, A.; Sedlackova, K.; Necas, V.; Zatko, B.; Dubecky, F.; Bohacek, P.

    2012-01-01

    The present work deals with the technology of HDPE neutron conversion layer application on the surface of semi-insulating (SI) GaAs detectors via developed polypropylene (PP) based glue. The influence of glue deposition on the electric properties of the detectors was studied as well as the ability of the detectors to register the fast neutrons from "2"3"9Pu-Be neutron source. (authors)

  7. A Direction Sensitive Fast Neutron Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Antolkovic, B; Holmqvist, B; Wiedling, T

    1964-06-15

    A direction sensitive fast neutron monitor is described and its properties are discussed in some detail. The counter is a modification of the standard long counter of the Hanson and McKibben type. Directional sensitivity is obtained by increasing the shielding of the counter and providing it with a 70 cm long collimator channel. The behaviour of this long counter monitor is compared with that of a standard long counter when both are used in neutron experiments.

  8. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    International Nuclear Information System (INIS)

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  9. Transparent fast neutron shielding material and shielding method

    International Nuclear Information System (INIS)

    Nashimoto, Tetsuji; Katase, Haruhisa.

    1993-01-01

    Polyisobutylene having a viscosity average molecular weight of 20,000 to 80,000 and a hydrogen atom density of greater than 7.0 x 10 22 /cm 3 is used as a fast neutron shielding material. The shielding material is excellent in the shielding performance against fast neutrons, and there is no worry of leakage even when holes should be formed to a vessel. Further, it is excellent in fabricability, relatively safe even upon occurrence of fire and, in addition, it is transparent to enable to observe contents easily. (T.M.)

  10. Present status of fast neutron therapy for the malignant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tsunemoto, H; Morita, S; Honke, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    1980-04-01

    Fast neutron therapy has been applied to the treatment of cancer of the head and the neck, prostatic cancer, osteosarcoma, and malignant melanoma, and the basic treatment schedule for this therapy for them has been almost established. The effectiveness of this therapy for squamous cell carcinoma of the uterus will be established by the results of future clinical application of this therapy. It is expected that postoperative irradiation of fast neutron will decrease local recurrence of adenocarcinoma of the uterus. Treatment schedule for fast neutron therapy for esophageal cancer and lung cancer must be established, and moreover, it is necessary to apply this therapy to the treatment of gastric and pancreatic cancer.

  11. Wide-range scintillation spectrometer of fast neutrons

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Saidgareev, V.M.; Tyurin, G.P.

    1984-01-01

    A spectrometer of fast neutrons developed on the base of stilbene crystas and permitting to detect neutrons simultaneously by time-of-flight and recoil protons with analysis of pulse shape in the 0.5-50 MeV energy range is described. The detecting part is performed in the CAMAC standard. The ''Minsk-32'' computer was used for data storage and preliminary processing

  12. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  13. How resilient is the soybean genome? Insights from fast neutron mutagenesis

    Science.gov (United States)

    Previously, we described the development of a fast neutron mutant population resource in soybean and identified mutations of interest through phenotypic screening. Here, we consider the resiliency of the soybean genome by examining genomic rearrangements and mutations that arise from fast neutron ra...

  14. Indoor Fast Neutron Generator for Biophysical and Electronic Applications

    Science.gov (United States)

    Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.

    2018-05-01

    This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.

  15. A fast neutron detector with IP by track measurement

    International Nuclear Information System (INIS)

    Miao Zhengqiang; Yang Jun; Zhang Qiang; Zhao Xiangfeng; Wang Daohua

    2004-01-01

    Imaging Plate(IP) is very sensitive to electric particles, especially to heavy ions. As we know, the recoiling protons are produced while fast neutrons scattered in light material containing hydrogen. When the recoiling proton enters in the sensitive layer of IP, a track will be recorded by IP. In this paper, a fast neutron detector based on IP and (n, p) reaction is described in detail, the detector's efficiency is studied also. (authors)

  16. Effect of fast neutrons and gamma radiation on germination, pollen and ovule sterility and leaf variations in mung bean

    International Nuclear Information System (INIS)

    Avinash Chandra; Tewari, S.N.

    1978-01-01

    The seeds of mung bean (Phaseolus aureus Roxb.) varieties S-8 and Pusa Baisakhi were irradiated with 15, 30, 45 and 60 k rads of gamma-rays and 500, 1000, 2000 and 3000 rads of fast neutrons. The results showed that there is a gradual reduction in amount of germination of seeds, pollen and ovule fertility with increasing doses of both mutagens. These mutagens also cause leaf abnormalities such as unifoliate, bifoliate, trifoliate, tetrafoliate and pentafoliate. Both tetra and pentafoliate leaves observed on the same plant of S-8 variety under fast neutron irradiation appear to have been associated with enhanced luxuriance of the plant resulting in satisfactory pod formation. (author)

  17. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  18. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  19. Development of a neutron personal dose equivalent detector

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.; Momose, T.; Nunomiya, T.; Aoyama, K.

    2007-01-01

    A new neutron-measuring instrument that is intended to measure a neutron personal dose equivalent, H p (10) was developed. This instrument is composed of two parts: (1) a conventional moderator-based neutron dose equivalent meter and (2) a neutron shield made of borated polyethylene, which covers a backward hemisphere to adjust the angular dependence. The whole design was determined on the basis of MCNP calculations so as to have response characteristics that would generally match both the energy and angular dependencies of H p (10). This new instrument will be a great help in assessing the reference values of neutron H p (10) during field testing of personal neutron dosemeters in workplaces and also in interpreting their readings. (authors)

  20. The risk from fast neutron exposure

    International Nuclear Information System (INIS)

    Bond, V.P.

    1979-01-01

    The conclusions and recommendations made by Rossi and Mays in recent papers (Rad. Res. 71, 1, 1977; Rad. Environ. Biophys. 14, 275, 1977; Health Phys. 34, 353, 1978), based on their analysis of recent Japanese data are discussed. They imply that the risk associated with the current annual dose equivalent limit of 5 rem for all radiations is unacceptably high, that this limit must be reduced by a factor of 10 or more, and that the conservative linear, no threshold hypothesis must be abandoned. It is shown in this paper that these recommendations are not supported by the newly-analyzed neutron data, and certainly cannot be applied selectively to the annual absorbed dose limit for neutrons. In particular the judgement that the risk of an annual exposure from 0.5 rad (5 rem) of neutrons is unacceptably high, is a personal opinion of the authors, and does not necessarily follow either from the assumption of a linear-quadratic dose effect relation for low-LET radiation or from other radiobiological considerations. At issue is the level of risk that is to be considered 'acceptable', a question that is societal and thus not resolvable on purely technical or scientific grounds. (author)

  1. Fast neutron activation analysis of Kalewa (Myanmar) coal

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Naing, W [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-06-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab.

  2. Fast neutron activation analysis of Kalewa (Myanmar) coal

    International Nuclear Information System (INIS)

    Myint, U.; Naing, W.

    1994-01-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab

  3. Induced mutation breeding by fast neutron

    International Nuclear Information System (INIS)

    Chen Zhengba; You Risheng

    1988-09-01

    The high-yield and long-grain new variety 'Zhongtie 31' was developed through five generations after irradiation of the rice variety 'Tieqiu 15' dried seeds by 14 MeV fast neutrons with a fluence of (1.33 ∼ 3.33) x 10 11 neutrons cm -2 . It matured earlier 3 to 5 days, the plant is higher 10 cm, bigger ear, more grain than its original variety 'tieqiu 15', and the yield increased by 19.2% to 30.7%. The source of new variety 'Zhongtie 31' was proved by the isoenzyme genetics. In field test, it increased by 7% to 10% as compared with high-yield variety 'Guichao No.2' and the hybrid rive 'Shanyou No.2', and is more palatable. The new variety was initiated by irradiation mutagensis routine rice, its well-grown and bumper-yield performances may be compared favourably with hybrid rice variety. In July 1986, the new variety 'Zhongtie 31' was obtained by inducing mutation with fast neutron. The same year, the planted area of 'Zhongtie 31' has achieved upto 250 thousand mu (1.67 x 10 8 cm 2 )

  4. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons

    International Nuclear Information System (INIS)

    Giaz, A.; Pellegri, L.; Camera, F.; Blasi, N.; Brambilla, S.; Ceruti, S.; Million, B.; Riboldi, S.; Cazzaniga, C.; Gorini, G.; Nocente, M.; Pietropaolo, A.; Pillon, M.; Rebai, M.; Tardocchi, M.

    2016-01-01

    The crystal Cs 2 LiYCl 6 :Ce (CLYC) is a very interesting scintillator material because of its good energy resolution and its capability to identify γ-rays and fast/thermal neutrons. The crystal Cs 2 LiYCl 6 :Ce contains 6 Li and 35 Cl isotopes, therefore, it is possible to detect thermal neutrons through the reaction 6 Li(n, α)t while 35 Cl ions allow to measure fast neutrons through the reactions 35 Cl(n, p) 35 S and 35 Cl(n, α) 32 P. In this work two CLYC 1″×1″ crystals were used: the first crystal, enriched with 6 Li at 95% (CLYC-6) is ideal for thermal neutron measurements while the second one, enriched with 7 Li at >99% (CLYC-7) is suitable for fast neutron measurements. The response of CLYC scintillators was measured with different PMT models: timing or spectroscopic, with borosilicate glass or quartz window. The energy resolution, the neutron-γ discrimination and the internal activity are discussed. The capability of CLYC scintillators to discriminate γ rays from neutrons was tested with both thermal and fast neutrons. The thermal neutrons were measured with both detectors, using an AmBe source. The measurements of fast neutrons were performed at the Frascati Neutron Generator facility (Italy) where a deuterium beam was accelerated on a deuterium or on a tritium target, providing neutrons of 2.5 MeV or 14.1 MeV, respectively. The different sensitivity to thermal and fast neutrons of a CLYC-6 and of a CLYC-7 was additionally studied.

  5. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  6. The neutron dose equivalent around high energy medical electron linear accelerators

    Directory of Open Access Journals (Sweden)

    Poje Marina

    2014-01-01

    Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.

  7. Fast Neutron Damage Studies on NdFeB Materials

    CERN Document Server

    Spencer, James; Baldwin, A; Boussoufi, Moe; Pellet, David; Volk, James T; Wolf, Zachary

    2005-01-01

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas over the life of the facility. Although the linacs will be superconducting, there are still many potential uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the radiation damage situation for rare earth permanent magnet materials was presented at PAC2003 and our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC2004 where the damage appeared proportional to the distances between the effective operating points and Hc. Here we have extended those doses and included more commercial samples together with the induced radioactivities associated with their respective dopants. Hall probe data for the external induction distributions are compared with vector magnetizatio...

  8. Theoretical and Experimental Analysis of Fast Neutron Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, H.; Kleijn, H. R. [Reactor Instituut, Delft (Netherlands)

    1968-04-15

    The reactor physics division of the Inter-Academic Reactor Institute at Delft is concentrating its efforts in the field of fast reactor physics on problems of a more fundamental nature. The object of the programme is to determine experimentally a number of microscopic reactor physics parameters such as conversion potentials, fission ratios and Doppler coefficients for simple geometries and material compositions. Because of the extreme importance of knowledge of the neutron spectrum for the interpretation of the results, attention has initially been concentrated on both the measurement and the calculation of fast neutron spectra. The transport of neutrons in absorbing and non-absorbing heavy atom materials is studied by solving the Boltzmann equation. Both isotropic and anisotropic scattering are considered. Anisotropic scattering is treated by the P{sub n}-approximation, while flux-anisotropy is handled with the S{sub N}-method. In the code FAST-DELFT, scattering is treated up to the P{sub 4} component, a further extension of which is useless because of the lack of available cross-section data. By using this method, the effect of scattering anisotropy on the spectrum formation has been studied. In addition the influence of group cross-section inaccuracies was determined. The experimental work has been concentrated on methods to determine in-core spectra. Using home-made proportional counters with gamma-ray discrimination provisions fast neutron spectra have been measured in simple geometries. These experiments were complemented by foil measurements in the lower energy region. The results of this work are presented in this paper. (author)

  9. Neutron spectrum determination by activation method in fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)

  10. Neutron dose to patients treated with high-energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.

    2001-01-01

    The neutron dose equivalent received by patients treated with high energy x-ray beams was measured in this research. A total of 13 different medical accelerators were evaluated in terms of the neutron dose equivalent in the patient plane and at the beam center. The neutron dose equivalent at the beam center was found to ranged from 0.02 to 9.4 mSv per Sv of x-ray dose and values from 0.029 to 2.58 mSv per Sv of x-ray were measured in the patient plane. It was concluded that the neutron levels meet the International Electrotechnical Commission standard for the patient plane. It was also concluded that when intensity modulated radiation treatment is conducted the neutron dose equivalent received by the patient will increase by a factor of 2 to 10. (author)

  11. Measurement of the fast neutron flux in the MNSR inner irradiation site

    International Nuclear Information System (INIS)

    Khattab, K.

    2007-01-01

    The WIMSD4 code was used to calculate the fast neutron flux spectrum and the fast neutron fission cross sections for 238 U, using six energy groups ranging from 0.5 to 10 MeV. These results, with the measured radioactivities of the 140 Ba, 131 I, 103 Ru, 95 Zr and 97 Zr fission products emerging from the fission of the 238 U foil covered with a cadmium filter, were used to measure the fast neutron flux in the Syrian MNSR inner irradiation site. (author)

  12. Benchmark test of evaluated nuclear data files for fast reactor neutronics application

    International Nuclear Information System (INIS)

    Chiba, Go; Hazama, Taira; Iwai, Takehiko; Numata, Kazuyuki

    2007-07-01

    A benchmark test of the latest evaluated nuclear data files, JENDL-3.3, JEFF-3.1 and ENDF/B-VII.0, has been carried out for fast reactor neutronics application. For this benchmark test, experimental data obtained at fast critical assemblies and fast power reactors are utilized. In addition to comparing of numerical solutions with the experimental data, we have extracted several cross sections, in which differences between three nuclear data files affect significantly numerical solutions, by virtue of sensitivity analyses. This benchmark test concludes that ENDF/B-VII.0 predicts well the neutronics characteristics of fast neutron systems rather than the other nuclear data files. (author)

  13. Activation measurements for fast neutrons. Part E. Evaluation of fast neutron 63Ni transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    The 63 Ni measurements for fast neutrons in copper samples are compared to the calculated free-in-air 63 Ni neutron activation given in Chapter 3 by use of transmission factors. Transmission factors were calculated to account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the untilted free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. Examples of the application of TF's will be provided in this section. (author)

  14. Out‐of‐field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators

    Science.gov (United States)

    Cardenas, Carlos E.; Nitsch, Paige L.; Kudchadker, Rajat J.; Howell, Rebecca M.

    2016-01-01

    Out‐of‐field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high‐energy electron beams. To better understand the extent of these exposures, we measured out‐of‐field dose characteristics of electron applicators for high‐energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out‐of‐field dose profiles and percent depth‐dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out‐of‐field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out‐of‐field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central‐axis, which was found to be higher than typical out‐of‐field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for

  15. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  16. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    Science.gov (United States)

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Fast neutron fields at the RB reactor; Polja brzih neutron na reacktoru RB

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Pesic, M; Dasic, N [Institut za nuklearne nauke Boris Kidric Vinca, Beograd (Yugoslavia)

    1984-07-01

    Paper deals with the reasons and methods of realization of the RB neutron converters. The methods and results of neutron flux intensities and spectra measurements as well as gamma dose determination are presented. (author)

  18. Albedo-adjusted fast-neutron diffusion coefficients in reactor reflectors

    International Nuclear Information System (INIS)

    Terney, W.B.

    1975-01-01

    In the newer, larger pressurized-water reactor cores, the calculated power distributions are fairly sensitive to the number of neutron groups used and to the treatment of the reflector cross sections. Comparisons between transport and diffusion calculations show that the latter substantially underpredict the reflector albedos in the fast (top) group and that the power distribution is shifted toward the core center when compared to 4-group transport theory results. When the fast-neutron diffusion coefficients are altered to make the transport- and diffusion-theory albedos agree, the power distributions are also brought into agreement. An expression for the fast-neutron diffusion coefficients in reflector regions has been derived such that the diffusion calculation reproduces the albedo obtained from a transport solution. In addition, a correction factor for mesh effects applicable to coarse mesh problems is presented. The use of the formalism gives the correct albedos and improved power distributions. (U.S.)

  19. Estimated neutron dose to embryo and foetus during commercial flight

    International Nuclear Information System (INIS)

    Chen, J.; Lewis, B. J.; Bennett, L. G. I.; Green, A. R.; Tracy, B. L.

    2005-01-01

    A study has been carried out to assess the radiation exposure from cosmic-ray neutrons to the embryo and foetus of pregnant aircrew and air travellers in consideration of the radiation exposure from cosmic-ray neutrons to the embryo and foetus. A Monte Carlo analysis was performed to determine the equivalent dose from neutrons to the brain and body of an embryo at 8 weeks and to the foetus at the 3, 6 and 9 month periods. Neutron fluence-to-absorbed dose conversion coefficients for the foetal brain and for the entire foetal body (isotropic irradiation geometry) have been determined at the four developmental stages. The equivalent dose rate to the foetus during commercial flights has been further evaluated considering the fluence-to-absorbed dose conversion coefficients, a neutron spectrum measured at an altitude of 11.3 km and an ICRP-92 radiation-weighting factor for neutrons. This study indicates that the foetus can exceed the annual dose limit of 1 mSv for the general public after, for example, 15 round trips on commercial trans-Atlantic flights. (authors)

  20. Characteristics and calibration of the transmission-type fast neutron moisture meter

    International Nuclear Information System (INIS)

    Banzai, K.

    1984-01-01

    With the Transmission-type Fast Neutron Moisture Meter, we did some experiments for calibration and the effective range of fast neutron scattering, and observed soil moisture process before and after making artificial rainfall at a lysimeter filled by decomposed granite. A fast neutron source of this meter is 252 Cf and capacity of 100 μ Ci. The neutron detector is NE-213 liquid scintilator which recovers a little flux of neutron source. For the customary thermal neutron meter, the effective range of neutron scattering is variable by soil moisture values surrounding the observation point, but this fast neutron, insert and transmission-type meter shows soil moisture in small capacity between a source and a detector. Experimental Results; 1) The calibration curve, calculated statistically from the relation of soil moisture and the count ratio in a 200 l drum packed with beads, gravel, sand and Kanto loam, became only one line. The correlation coefficient of this curve was 0.996 and the standard error was 1.94% with volumetric water content. 2) Count ratio started to decrease as observation point approached soil surface from the boundary of 6 cm depth in soil. Volumetric water content increased more than fact with the previous calibration curve. 3) We limited the detectable range to fast neutron, but a little scattering was seen surrounding the soil of a observation point. The effective range of horizontal scattering was a width of 20 cm with the center line connected between a source and a detector, with a circle of 5 cm diameter surrounding the source, and a circle of 10-15 cm diameter surrounding the detector. 4) Soil moisture before and after artificial rainfall was observed with this meter and by the measurement of a 100 cm 3 oven dried sampling vessel. Volumetric water content by the latter measurement, was more variable because sampling points were at a distance from the center of observation site and sampling technique was bad. Otherwise soil moisture values

  1. Neutron spectrum determination by activation method in fast neutron fields at the RB reactors

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs

  2. Cosmogenic excess of 40K and the flux of fast neutrons in meteorites

    International Nuclear Information System (INIS)

    Stegmann, W.; Begemann, F.

    1975-01-01

    Results are reported of a mass spectrometric investigation of the content and isotopic composition of potassium from the mesosiderite Emery (silicate phase) and the chondrite Elenovka (bulk). Normalized to the Nier value of 39 K/ 41 K = 13.47, the 40 K in Emery (K-content 220 +- 25 ppm) was found to be enriched by (4.03 +- 0.30)%, the potassium from Elenovka (760 +- 50 ppm) to be indistinguishable from terrestrial potassium. Evidence is presented that the excess 40 K in the silicates from Emery (Ca-content 6.06 weight %) has been produced essentially by secondary cosmic ray neutrons via the 40 Ca(n,p)-reaction. The total excess of (2.57 +- 0.39) x 10 14 40 K-atoms/gCa together with the excitation function of the 40 Ca(n,p)-reaction and the neutron flux spectrum of Arnold, Honda and Lal yields a dose of fast neutrons (2 MeV 16 neutrons/cm 2 and an average flux during the cosmic ray exposure age T = (134 +- 12) Myrs of PHI = (17.4 +- 3.1) neutrons/cm 2 sec. (orig./BJ) [de

  3. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  4. Dose field research of analysis room for in-hospital neutron irradiator

    International Nuclear Information System (INIS)

    Zhang Zizhu; Song Mingzhe; Li Wei; Chen Jun; Yang Yong; Li Yiguo

    2012-01-01

    Neutron equivalent dose rate and y ray dose rate inside the analysis room of the in-hospital neutron irradiator (IHNI) and outdoor were measured. The results show that γ ray dose rate inside the analysis room exceeds calculation value many times and γ/ ray dose rate outdoor is higher than supervision region dose limit of 7.5 μSv/h. According to the measurement results and the Monte Carlo simulation, the following shielding plan was adopted. Lead shielding with thickness of 16 cm was installed on the wall, which faces the neutron beam, to shield γ ray, and lithium polyethylene plate with thickness of l cm was installed on all the wall (not including ceiling and floor) to shield scattering neutron. After shielding transformation, the highest γ ray dose rate point inside the analysis room decreased 277 times, the neutron equivalent dose rate decreased 5.8 times, and the outdoor γ/ray dose rate decreased nearly 90 times. (authors)

  5. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  6. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  7. Induction and disappearance of G2 chromatid breaks in lymphocytes after low doses of low LET γ - rays and high LET fast neutrons

    International Nuclear Information System (INIS)

    Vral, Anne; Thierens, Hubert; Baeyens, Ans; De Ridder, Leo

    2001-01-01

    In view of the potential importance of the G2 assay for detecting chromosomal radiosensitivity and possible predisposition to cancer the need to elucidate the mechanism underlying the formation of chromatid breaks, observed with the G2 assay after low dose irradiation, has been recognised. In this study we irradiated blood samples of 4 healthy donors with low LET γ-rays and high LET neutrons, which initially produce the same number of dsb but of a different quality. By means of the G2 assay, we determined the number of chromatid breaks induced by γ-rays and neutrons and compared the kinetics of chromatid break rejoining for radiations of different quality. In a first set of experiments a dose-response curve for the formation of chromatid breaks was carried out for γ-rays and neutrons with doses ranging between 0.1 and 0.5 Gy. In a second set of experiments the kinetics of chromatid break formation and disappearance was investigated after a dose of 0.5 Gy using post-irradiation times ranging between 0.5 h and 3.5 h. For the highest dose of 0.5 Gy the number of isochromatid breaks were also scored. No significant differences in the number of chromatid breaks were observed between low LET γ-rays and high LET neutrons for the 4 donors at any of the doses given. The dose response curves for the formation of chromatid breaks are linear for both radiation qualities and RBE values equal to one were obtained. Scoring of isochromatid breaks at the highest dose of 0.5 Gy revealed that high LET neutrons are however more effective at inducing isochromatid breaks (RBE of 6.2). The rejoining experiments further showed that the kinetics of disappearance of chromatid breaks following irradiation with low LET γ-rays or high-LET neutrons are not significantly different. T 1/2 0.92 h for γ-rays and t 1/2 = 0.84 h for neutrons were obtained. In conclusion, our results show that at low doses of radiation the induction as well as the disappearance of G2 chromatid breaks is LET

  8. On the problem of monitoring the neutron parameters of the Fast Energy Amplifier

    International Nuclear Information System (INIS)

    Behringer, K.; Wydler, P.

    1998-10-01

    The conceptual Fast Energy Amplifier, proposed by Rubbia et al. (1995), consists of a combination of a U-233/Th-232 fuelled fast-neutron subcritical facility with a proton accelerator. An intense beam of 1 GeV protons is injected into liquid lead at the core centre and drives the reactor by producing spallation neutrons. The burst of spallation neutrons produced by a single proton alters the basic neutron statistics which are well known for thermal neutrons in conventional nuclear reactors. A short assessment of standard neutron noise analysis methods is made with respect to monitoring neutron parameter data. (author)

  9. Low doses of neutrons induce changes in gene expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following γ-ray exposure in fibroblasts. Our past work had shown differences in the expression of β-protein kinase C and c-fos genes, both being induced following γ-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not γ-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to γ rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure

  10. Development of real time personal neutron dosimeter with two silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Tsujimura, N. [Tohoku Univ., Cyclotron and Radioisotope Center, Aoba, Aramaki, Aoba-ku (Japan); Yamano, T. [Tokyo Factory, Fuji Electric Co. Ltd., Tokyo (Japan)

    1992-07-01

    We developed a real time personal neutron dosimeter by using two types of silicon p-n junction detectors, thermal neutron sensor and fast neutron sensor. The thermal neutron sensor which is {sup 10}B doped n-type silicon with a polyethylene radiator mainly counts neutrons of energy front thermal to I MeV, and the fast neutron sensor which is p-type silicon with a polyethylene radiator is sensitive to neutrons above I MeV. The neutron sensitivity measurements revealed that the dosimeter has a rather flat response for dose equivalent from thermal to 15 MeV, excluding a drop from 50 keV to I MeV. In order to get conversion factor from counts to dose equivalent as accurately as possible, we performed the field test of the dosimeter calibration in several neutron-generating fields. By introducing the two-group dose estimation method, this dosimeter can give the neutron dose equivalent within about 50% errors. (author)

  11. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  12. Towards radiation hard converter material for SiC-based fast neutron detectors

    Science.gov (United States)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection

  13. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  14. Dosimetry methods in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; De Errico, F.; Borroni, M.; Carrara, M.; Burian, J.; Klupak, V.; Viererbl, L.; Marek, M.

    2014-08-01

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  15. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    DESIG: E 263 09 ^TITLE: Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron ^SIGNUSE: Refer to Guide E 844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. Refer to Practice E 261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. Pure iron in the form of foil or wire is readily available and easily handled. Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1). This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E 1018 for descriptions of recommended tabulated dosimetry cross sections. 54Mn has a half-life of 312.13 days (3) (2) and emits a gamma ray with an energy of 834.845 keV (5). (2) Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46)-h 56Mn, 44.95-d (8) 59Fe, and 5.27...

  16. Preliminary characterization of the passive neutron dose equivalent monitor with TLDs

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kanai, Katsuta; Momose, Takumaro; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Chen Erhu [Beijing Institute of Nuclear Engineering, Beijing (China)

    2001-02-01

    The passive neutron dose equivalent monitor with TLDs is composed of a cubic polyethylene moderator and TLDs at the center of moderator. This monitor was originally designed for measurements of neutron doses over long-term period of time around the nuclear facilities. In this study, the energy response of this monitor was calculated by Monte Carlo methods and experimentally obtained under {sup 241}Am-Be, {sup 252}Cf and moderated {sup 252}Cf neutron irradiation. Additionally, the responses of two types of conventional neutron dose equivalent meters (rem counters) were also investigated as comparison. The authors concluded that this passive neutron monitor with TLDs had a good energy response similar to conventional rem counters and could evaluate neutron doses within 10% of accuracy to the moderated fission spectra. (author)

  17. Fast neutron spectrometry and dosimetry; Spectrometrie et dosimetrie des neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Blaize, S; Ailloud, J; Mariani, J; Millot, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author)Fren. [French] Nous avons etudie la spectrometrie et la dosimetrie des neutrons rapides en utilisant les protons de recul qu'ils produisent dans une matiere hydrogenee. En spectrometrie, nous avons employe des emulsions nucleaires, en dosimetrie, du polyethylene recouvert de sulfure de zinc place devant un photomultiplicateur. (auteur)

  18. Calculation of the neutron parameters of fast thermal reactor

    International Nuclear Information System (INIS)

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  19. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D–D neutron generator

    International Nuclear Information System (INIS)

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1 cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D–T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D–D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2 mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a

  20. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  1. Evaluation of gamma and neutron irradiation effects on the properties of mica film capacitors

    International Nuclear Information System (INIS)

    Roy, Rajesh; Pandya, Arun

    2005-01-01

    We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 μm (0.7874 and 1.5748 mil) with two different areas, 01 and 04 cm 2 . The capacitance has been measured at room temperature in the frequency range 100 Hz-10 MHz. Negligible change in the capacitance due to high gamma dose of 60 Co, 15 kGy at dose rate 0.25 kGy/h, has been observed. However, appreciable change in the capacitance has been observed due to low doses of fast neutrons (cumulative dose, 115 cGy) with flux ∼ 9.925 X 10 7 neutrons/cm 2 h from 252 Cf neutron source of fluence, 2.5 x 10 7 neutrons/s. We have also observed that the impact of gamma and neutron irradiation is more at frequencies higher than 10 kHz, These results show that the mica capacitors do not show any radiation response below 10 kHz. The study shows the radiation response of mica film capacitors to gamma and fast neutron radiations. Mica capacitors show low gamma radiation response in comparison to fast neutron radiation, because a total dose of kGy order has been given by gamma source and only few cGy dose has been given by fast neutron source. (author)

  2. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    Science.gov (United States)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  3. Accuracy of neutron dose evaluation in the area monitoring for LHD experiments

    CERN Document Server

    Yamanishi, H; Uda, T; Tanahashi, S; Saitou, M; Handa, H

    2000-01-01

    The error in the evaluation of neutron dose during calculation of the neutron field around the large helical device (LHD) in D-D operation is discussed. The expected neutron dose at each monitoring point was derived from the dose conversion factor and neutron fluence data, which was calculated with the radiation transport code DOT-3.5. In contrast, the detected dose at the neutron counter was obtained from the fluence data and the detector response given by calculation with MCNP-4b. The neutron counter used in these calculations consisted of a helium-3 proportional counter with a cylindrical polyethylene moderator. According to the results of the calculations, the ratio of the detected dose to the expected dose was found to lie in the range 1.0-3.0 on the outdoor monitoring points. Since the response of a single neutron counter may lead to inconsistencies in the dose conversion factor, we attempted to minimize these inconsistencies by using a pair of counters with moderators of different thickness. The ratio ...

  4. Beyond KERMA - neutron data for biomedical applications

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.

    2003-01-01

    Presently, many new applications of fast neutrons are emerging or under development, like dose effects due to cosmic-ray neutrons for airplane crew, fast-neutron cancer therapy, studies of electronic failures induced by cosmic-ray neutrons, and accelerator-driven incineration of nuclear waste and energy production technologies. All these areas would benefit from improved neutron dosimetry. In this paper, the present rapid progress on measurements of double-differential neutron-induced nuclear reaction data are described. With such data at hand, the full response of, in principle, any system, including human tissue, can be calculated in detail. This could potentially revolutionise our understanding of biological effects in tissue due to fast neutrons. (author)

  5. The action of fast neutrons on Walker tumor chromatin in rats treated with thiotepa and lomustine cytostatics and with estradiol hormone

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gostian, O.

    1994-01-01

    Wistar rats bearing Walker carcinosarcoma were treated with thiotepa (1 mg) and lomustine (3 mg) cytostatics and with each of these cytostatics associated with estradiol hormone (0.15 mg). The extracted chromatins were subjected to fast neutrons (d(13 MeV)+Be thick target) at 30-100 Gy doses. The parameters estimated at chromatin samples were: the tyrosine and tryptophan intrinsic fluorescence, the fluorescence of chromatin - ethidium bromide complexes and thermal transition. A different and specific susceptibility to fast neutrons was observed in treated chromatin samples, when compared with controls. The chromatin acidic proteins destruction was greater in the case of estradiol - thiotepa association. (Author)

  6. Conventional sources of fast neutrons in 'cold fusion' experiments

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Favier, J.

    1989-04-01

    In 'cold fusion' experiments with heavy water a source of neutrons is the dissociation of deuterium induced by alpha particles emitted by natural occurring radioisotopes. We evaluate the rate of fast neutron emission as a function of the concentration of U, Th, Rn in contact with deuterium and discuss the possibility that the neutrons claimed to have been observed in 'cold fusion' experiments could be due to this conventional source

  7. Fast neutron dosimetry in research reactors

    International Nuclear Information System (INIS)

    Eckert, R.

    1960-01-01

    This work chiefly concerns the measurement of fast neutron fluxes by means of threshold detectors. It is shown first that the cross sections to use for measurements by threshold detectors depend largely on the neutron spectrum, that is the position in which the measurement is performed. The spectrum is determined by calculation for several positions in the piles EL2 and EL3; from this can be deduced the cross-sections to be used for the measurements carried out in these positions. In the last part of the report, possible methods for the experimental determination of the spectrum are indicated. (author) [fr

  8. Development of an anthropomorfic simulator for simulation and measurements of neutron dose and flux the facility for BNCT studies

    International Nuclear Information System (INIS)

    Muniz, Rafael Oliveira Rondon

    2010-01-01

    IPEN facility for researches in BNCT (Boron Neutron Capture Therapy) uses IEA-R1 reactor's irradiation channel number 3, where there is a mixed radiation field - neutrons and gamma. The researches in progress require the radiation fields, in the position of the irradiation of sample, to have in its composition maximized thermal neutrons component and minimized, fast and epithermal neutron flux and gamma radiation. This work was developed with the objective of evaluating whether the present radiation field in the facility is suitable for BNCT researches. In order to achieve this objective, a methodology for the dosimetry of thermal neutrons and gamma radiation in mixed fields of high doses, which was not available in IPEN, was implemented in the Center of Nuclear Engineering of IPEN, by using thermoluminescent dosimeters - TLDs 400, 600 and 700. For the measurements of thermal and epithermal neutron flux, activation detectors of gold were used applying the cadmium ratio technique. A cylindrical phantom composed by acrylic discs was developed and tested in the facility and the DOT 3.5. computational code was used in order to obtain theoretical values of neutron flux and the dose along phantom. In the position corresponding to about half the length of the cylinder of the phantom, the following values were obtained: thermal neutron flux (2,52 ± 0,06).10 8 n/cm 2 s, epithermal neutron flux (6,17 ± 0,26).10 7 .10 6 n/cm 2 s, absorbed dose due to thermal neutrons (4,2 ± 1,8)Gy and (10,1 ± 1,3)Gy due to gamma radiation. The obtained values show that the fluxes of thermal and epithermal neutrons flux are appropriate for studies in BNCT, however, the dose due to gamma radiation is high, indicating that the facility should be improved. (author)

  9. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  10. Phantom experiment of depth-dose distributions for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kato, K.; Sakuma, Y.; Tsuruno, A.; Matsubayashi, M.

    1993-01-01

    Depth-dose distributions in a tumor simulated phantom were measured for thermal neutron flux, capture gamma-ray and internal conversion electron dose rates for gadolinium neutron capture therapy. The results show that (i) a significant dose enhancement can be achieved in the tumor by capture gamma-rays and internal conversion electrons but the dose is mainly due to capture gamma-rays from the Gd(n, γ) reactions, therefore, is not selective at the cellular level, (ii) the dose distribution was a function of strongly interrelated parameters such as gadolinium concentrations, tumor site and neutron beam size (collimator aperture size), and (iii) the Gd-NCT by thermal neutrons appears to be a potential for treatment of superficial tumor. (author)

  11. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  12. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  13. An Emergency Dosimeter for Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J; Nilsson, R

    1960-05-15

    A neutron dosimeter suitable for single emergency exposures is described. The dosimeter is furnished with detectors for thermal, epi-thermal and fast neutrons. This means that three of the constants by which the spectrum of the incident neutron flux is approximated, can be determined. The dose calculated from these approximated spectra is compared to the dose from spectra obtained in different standard spectra of types which may be expected in a radiation accident.

  14. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  15. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    Klann, R.T.

    1997-01-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this system, objects as small as a coin and as large as a 19 liter container have been radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3 x 10[sup 10] neutrons/second with an average energy of 14. 5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available light-tight cassettes. The cassettes have been modified to include a thin sheet of plastic to produce protons from the neutron beam through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9 x 10[sup 7] n/cm[sup 2] to 3.8 x 10[sup 8] n/cm[sup 2] depending on the type of screen and film. The optimum source-to-film distance was found to be 150 cm. At this distance, the geometric unsharpness was determined to be approximately 2.2-2.3 mm and the smallest hole that could be resolved in a 1.25 cm thick sample had a diameter of 0.079 cm

  16. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  17. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    International Nuclear Information System (INIS)

    Langen, K.M.

    1997-01-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 ± 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e * and R, with field size and depth in tissue. Maximal variation in e * and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated

  18. Effects of thermal and fast neutrons and of ENU on generations M3 and M4 of Lens culinaris (medicus)

    International Nuclear Information System (INIS)

    Uhlik, J.; Urban, J.

    1976-01-01

    Plants in which the selection of the most fertile plants had not been made in the preceding generations showed a significantly lower emergence rate in the M3 and M4 generation after an ethyl nitroso urea (ENU) application, in comparison with material treated with neutrons. In the evaluation of the plants obtained after an exposure to the most effective doses in the induction of chlorophyll mutants, significant differences of the average values in relation to the control were found in the M3 generation in the number of seeds per plant after the application of both neutron radiations and ENU. In addition, after the application of thermal neutrons and ENU a significant difference was found in the average values of plant weight. A difference in the overall range of variability in relation to the control was found in plant weight after the application of neutrons and ENU, and in seed weight after the application of ENU and fast neutrons. The differences between the treated plants and controls in the M4 generation plants with fusarium disease were insignificant. The evaluation of the progenies exposed to various doses of the highest mutation effectiveness showed in the M3 generation significant differences (in relation to the control) in the mean values of plant height, seed weight, plant weight, seed proportion in plants, in the bottom-pod insertion level, and in the number of pods set. Despite a considerable attack by fusarium disease, the greatest number of plants having more seeds than 50 was selected in the M4 generation of the material exposed to the dose of 8 fast neutrons (0.95% of plants) while in the control the proportion of highly fertile plants was only 0.05%. The widest range of overall variability in the characteristics under study was found after irradiation with thermal neutrons. From this viewpoint they can be recommended for wide practical utilization. (author)

  19. Fast-neutron coincidence-counter manual

    International Nuclear Information System (INIS)

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report

  20. Development and characterization of real-time wide-energy range personal neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Tsujimura, Norio (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Yamano, Toshiya; Suzuki, Toshikazu; Okamoto, Eisuke

    1994-04-01

    The authors developed a real-time personal neutron dosimeter which could give neutron dose equivalent over wide energy region from thermal to 10 odd MeV by using 2 silicon detectors, fast neutron sensor and slow neutron sensor. The energy response of this dosimeter was evaluated under thermal neutron field, monoenergetic neutron field between 200 keV and 15 MeV, and moderated [sup 252]Cf neutron field. The neutron dose equivalent was estimated by adding neutron dose equivalent below 1 MeV given by slow neutron sensor and that above 1 MeV by fast neutron sensor. It was verified from various field tests that this dosimeter is able to give neutron dose equivalent within a factor of 2 margin of accuracy in reactor, accelerator, fusion research and nuclear fuel handling facilities. This dosimeter has more than one order higher sensitivity than conventional personal neutron dosimeters and is insensitive to [gamma]-rays up to about 500 mSv/h. This dosimeter will soon be commercially available as a personal dosimeter which gives neutron and [gamma]-ray dose equivalents simultaneously by installing [gamma]-ray silicon sensor. (author).

  1. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    Science.gov (United States)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  2. The influence of fast neutron irradiation through micropropagation, calli induction and cell aggregate suspension culture of tapak dara cultivate vinca rosea linn

    International Nuclear Information System (INIS)

    Wahid, Rosmiarty A.

    2000-01-01

    Study on the influence of fast neutron irradiation toward tissue induction of apical shoot, calli of leaf and corolla as well as development of bud micropropagation using variety of MS and Gamborg (B5) which were supplemented with growth hormone 2,4-D NAA, BAP and kinetin has been carried out. Cell aggregates were obtained from modified liquid media by mixing MS macro element and Gamborg vitamin. Influence of the iow level irradiation (0,5-10 Gy) was investigated for auxiliary bud micropropagation , middle (5 - 20 Gy) for calli induction, while for call aggregates higher doses (until 30 Gy) were used. Optimum growth of bud micropropagation was stimulate at dose range between 0,5-1Gy and grown on MS supplemented whit BAP and NAAN, while for leaf and corolla calli was at 5 Gy, on MS media which was supplemented whit 1 mg/L kinetin, 10mg/L BAP and 0,5 mg/L NAA. However, neutron dose of 10 Gy decreased the induction of leaf and corolla calli. The highest radioresistance was shown by cell aggregates of leaf calli that grew prosperously up to 20Gy. Key words : fast neutron, micropropagation, tissue culture, cell culture, vinca rosea L

  3. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P. C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  4. Neutronics methods for transient and safety analysis of fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Marco

    2017-07-01

    Modeling the evolution of possible or postulated accidents in nuclear reactors is fundamental in designing safe systems. For the next generation of reactors, in particular fast reactors, fuel movement during an accident can, in principle, drive an energetic event. Such is the issue of recriticality. The thermal energy produced during these events will, possibly, be converted into mechanical energy by some mechanisms. For example, the nuclear heat deposited in the fuel could cause fuel vaporization and its subsequent expansion. This movement would accelerate the surrounding sodium: part of the initial energy in the fuel is thus converted into sodium kinetic energy. This mechanical energy will finally be absorbed, in some way or another, by the reactor vessel. Providing an accurate estimate for the maximum mechanical work that any accidental sequence can do onto the reactor vessel is an essential step in designing a reactor containment that would withstand any load generated by any accident. That would assure accident containment, without consequences for the general public. Fast reactor accident modeling is a complicated task. The outcome of an accident is determined by different physical phenomena, all acting at almost the same time. Safety analysts must track all these different phenomena. Multi-physics codes have been developed for this task. They must contain accurate models for fluid-dynamics, neutronics, and structures. This work has to do with neutronics modeling of such accidents. Past and recent analyses have been limited to the approximate description of the neutronic field, for example by using a rough description of the energy and/or of the angular dependence of the neutron flux. In this work, different neutronic solvers are selected and coupled into a general multi-physics code for fast reactor accident analysis. Performances of each of them is then assessed. Some emphasis has been put also in assessing the speed of these solvers for determining the

  5. Recombination methods for boron neutron capture therapy dosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Tulik, P.; Zielczynski, M.

    2003-01-01

    The radiation effects of boron neutron capture therapy (BNCT) are associated with four-dose-compartment radiation field - boron dose (from 10 B(n,α) 7 Li) reaction), proton dose from 14 N(n,p) 14 C reaction, neutron dose (mainly fast and epithermal neutrons) and gamma-ray dose (external and from capture reaction 1 H(n,γ) 2 D). Because of this the relation between the absorbed dose and the biological effects is very complex and all the above mentioned absorbed dose components should be determined. From this point of view, the recombination chambers can be very useful instruments for characterization of the BNCT beams. They can be used for determination of gamma and high-LET dose components for the characterization of radiation quality of mixed radiation fields by recombination microdosimetric method (RMM). In present work, a graphite high-pressure recombination chamber filled with nitrogen, 10 BF 3 and tissue equivalent gas was used for studies on application of RMM for BNCT dosimetry. The use of these gases or their mixtures opens a possibility to design a recombination chamber for determination of the dose fractions due to gamma radiation, fast neutrons, neutron capture on nitrogen and high LET particles from (n, 10 B) reaction in simulated tissue with different content of 10 B. (author)

  6. Energy-resolved fast neutron resonance radiography at CSNS

    Science.gov (United States)

    Tan, Zhixin; Tang, Jingyu; Jing, Hantao; Fan, Ruirui; Li, Qiang; Ning, Changjun; Bao, Jie; Ruan, Xichao; Luan, Guangyuan; Feng, Changqin; Zhang, Xianpeng

    2018-05-01

    The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.

  7. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  8. Neutron personal dosimetry in criticality accidents

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1996-01-01

    In the present work an innovating method is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the method here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μ Gy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author)

  9. Fast neutron activating detectors for pulsed flow measurements

    International Nuclear Information System (INIS)

    Dyatlov, V.D.; Kunaev, G.T.; Popytaev, A.N.; Cheremukhov, B.V.

    1979-01-01

    The requirements to the activation detectors of the pulsed flows of the fast neutrons are considered; the criteria of optimum measurement time, geometrical moderator sizes and radioactive detector element properties have been obtained. On their analysis parameter selection has been carried out. The neutron detector to register the short pulses has been designed and calibrated. The ways of further increase of sensitivity and efficiency of such detectors are discussed

  10. Fast neutron capture cross section facility at Cadarache

    International Nuclear Information System (INIS)

    Le Rigoleur, C.; Arnaud, A.

    1975-01-01

    The total energy weighting technique has been applied to measure absolute fast neutron capture cross section at Cadarache. We use a non hydrogeneous liquid scintillator to detect the gamma from the cascade. The neutron flux is measured with a B 10 INa(Tl) detector or Li 6 glass scintillator of well known efficiency. Time of flight technique is used with on line digital computer data processing. (orig.) [de

  11. Fast and thermal neutron intensity measurements at the KFUPM PGNAA setup

    CERN Document Server

    Al-Jarallah, M I; Fazal-Ur-Rehman; Abu-Jarad, F A

    2002-01-01

    Fast and thermal neutron intensity distributions have been measured at an accelerator based prompt gamma ray neutron activation analysis (PGNAA) setup. The setup is built at the 350 keV accelerator laboratory of King Fahd University of Petroleum and Minerals (KFUPM). The setup is mainly designed to carry out PGNAA elemental analysis via thermal neutron capture. In this study relative intensity of fast and thermal neutrons was measured as a function of the PGNAA moderator assembly parameters using nuclear track detectors (NTDs). The relative intensity of the neutrons was measured inside the sample region as a function of front moderator thickness as well as sample length. Measurements were carried out at the KFUPM 350 keV accelerator using 2.8 MeV pulsed neutron beam from D(d,n) reaction. The pulsed deuteron beam with 5 ns pulse width and 30 kHz frequency was used to produce neutrons. Experimental results were compared with results of Monte Carlo design calculations of the PGNAA setup. A good agreement has bee...

  12. Fast and thermal neutron intensity measurements at the KFUPM PGNAA setup

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I.; Naqvi, A.A. E-mail: aanaqvi@kfupm.edu.sa; Fazal-ur-Rehman; Abu-jarad, F

    2002-10-01

    Fast and thermal neutron intensity distributions have been measured at an accelerator based prompt gamma ray neutron activation analysis (PGNAA) setup. The setup is built at the 350 keV accelerator laboratory of King Fahd University of Petroleum and Minerals (KFUPM). The setup is mainly designed to carry out PGNAA elemental analysis via thermal neutron capture. In this study relative intensity of fast and thermal neutrons was measured as a function of the PGNAA moderator assembly parameters using nuclear track detectors (NTDs). The relative intensity of the neutrons was measured inside the sample region as a function of front moderator thickness as well as sample length. Measurements were carried out at the KFUPM 350 keV accelerator using 2.8 MeV pulsed neutron beam from D(d,n) reaction. The pulsed deuteron beam with 5 ns pulse width and 30 kHz frequency was used to produce neutrons. Experimental results were compared with results of Monte Carlo design calculations of the PGNAA setup. A good agreement has been found between the experimental results and the calculations.

  13. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    Science.gov (United States)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  14. Fast-neutron activation analysis of manganese nodules

    International Nuclear Information System (INIS)

    Michaelis, W.; Fanger, H.U.; Mueller, A.; Pepelnik, R.

    1976-01-01

    The present paper describes the development of a new nuclear method that allows rapid determinations of the most relevant metals Ni and Cu without sample treatment, thus being particularly suited for quasi-continuous elemental analyses in mining and processing. The measurement is based on fast-neutron activation using Cockcroft-Walton generators, sealed neutron tubes or, possibly, (α,n)-type natural sources. Fast-neutron activation of manganese nodules is dominated by the (n,p)-reactions on Si, Al, Fe; the (n,α)-reaction on Mn and the (n,2n)-reaction on Cu. By choosing appropriate irradiation and cooling periods gamma-ray activities with comparatively simple spectral distributions are induced. From these spectra the Mn/Fe ratio in the nodules can be determined without the elaborate procedures usually required in absolute methods for eliminating systematic errors from fluctuations in sample and/or irradiation parameters. It is connected with the absolute Ni and Cu contents via well-known geochemical correlations which according to a lot of statistical data apply to quite different deposits and nodule types in the Pacific. Using these correlations the determination of the most important metals reduces to the evaluation of a peak area ratio. Measurements of the neutron flux distribution and the apparent sample density are unnecessary. The simple structure of the spectra allows the application of detectors with modest energy resolution, e.g. scintillation counters which can be manufactured as ruggedized crystal assemblies with great resistance to thermal and mechanical shock. The method is described in detail and possible interference, in particular from thermal and epithermal neutrons, are discussed. (orig.) [de

  15. Neoplastic and other pathologic effects of fractionated fast neutrons or photons on the thorax and anterior abdomen of beagles

    International Nuclear Information System (INIS)

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Rogers, C.C.

    1986-01-01

    Thirty-nine adult male beagle dogs received either fast-neutron or photon irradiation to the right hemithorax and right rostral abdomen. Twenty-four dogs (six per group) received fast neutrons (15 MeV) to total doses of 1000, 1500, 2250, or 3375 cGy in four fractions per week for six weeks. Fifteen dogs received 3000, 4500, or 6750 cGy of photons in an identical fractionation pattern. One photon-irradiated dog and 13 neutron-irradiated dogs died or were euthanatized because of hepatic and gastrointestinal disturbances 47 to 708 days after irradiation; 20 dogs died of other causes. These 34 dogs were necropsied and have been studied microscopically; the remaining five dogs are still alive seven years after irradiation. Neutron-induced lesions included hemorrhage, necrosis, fibrosis, and atrophy of the heart, liver, pancreas, pylorus, duodenum, and kidney. All lesions were associated with degenerative and occlusive vascular changes including coronary arteriosclerosis. The relative biological effectiveness (RBE) of fast neutrons, assessed by clinical signs and by gross and microscopic pathology, is between 3 and 4.5 for pancreas, ∼4.5 for heart, pylorus, duodenum, and kidney, and greater than 6.75 for liver. Ten malignancies and two benign tumors developed in the irradiated field of six of 12 neutron-exposed dogs that survived over one year after irradiation. Two malignancies and one benign tumor arose in three of 12 photon-exposed dogs surviving over one year postirradiation. Only one neoplasm developed in the same field in 11 nonirradiated controls or in 62 dogs irradiated at sites other than the thorax or abdomen. The neutron RBE for neoplasia is approximately 6.75. 85 refs., 8 figs., 3 tabs

  16. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  17. Fast neutron detection at near-core location of a research reactor with a SiC detector

    Science.gov (United States)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  18. Analysis of the fast-neutron spectrum inside the experimental cavity of the NRU Mk4 FN rod

    International Nuclear Information System (INIS)

    Leung, T.C.

    1995-01-01

    The fast-neutron (FN) rods in the NRU reactor provide a facility to study the effects of irradiation on CANDU reactor materials. The Mark 4 (Mk4) FN rods use natural uranium and supply fast-neutrons for experiments on irradiation creep and growth, and corrosion, for pressure- and calandria-tube materials. The neutron fluxes above 1 MeV are up to 2.7x10 17 n.m -2 .s -1 . This paper describes a calculation of the fast-neutron spectrum inside the NRU Mk4 FN rod cavity. The calculation was performed using the WIMS-AECL code, which is a multi-group transport code with two dimensional capabilities using the collision-probability method. Results for the fast-neutron spectrum above 1 MeV are presented in nine groups. The analysis confirms that the spectrum in the fast-neutron irradiation facility in NRU is representative of the actual irradiation spectrum for fast-neutron damage in a CANDU reactor. The effects of changes in specimen holder size, temperature, coolant density and fuel burnup on the fast neutron spectrum are also presented. (author). 9 refs., 3 tabs., 4 figs

  19. A Study on the Improvement of Switching Speed of NPT-IGBT by Fast Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Baek, H. N.; Sun, G. M.; Kim, J. S.; Hoang, S. M. T.; Jin, M. E.; Jin, S. B.; Ahn, S. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The insulated gate bipolar transistor (IGBT) has been widely used for high power switching devices due to low on-state forward voltage drop and fast switching speed. But, turn-off delay time occurs due to the tail current generated by the minority carrier existing in the n-drift region during turn-off, which reduces the switching speed. Recently, to mitigate this problem, studies on the control of the MCLT to improve the switching speed of IGBTs are carried out. A crystal defect is formed in the n-drift region of an IGBT to realize a deep energy level within the energy band. The deep level act as the recombination center of the minority carrier to reduce the turn-off delay time and control the lifetime by reducing the lifetime of the minority carrier injected during the device operation. The particle-beam irradiation method, such as electron, proton, fast neutron and others, has been used to control the lifetime of the minority carrier of a silicon power semiconductor device. To improve the switching speed of a IGBT, devices were produced by irradiating various doses of fast neutron, and electrical properties were comparatively analyzed with the IGBT device where before irradiated. The reduced in the lifetime of the minority carrier flowing into the n-drift region due to the crystal defect helps improve the switching speed of the IGBT. But, the resistance component increased due to the crystal defect generated by the fast neutron irradiation in the on-state, increasing of the forward voltage drop. So, to improve and optimize the IGBT performance, appropriate condition should be determined by trading off each electrical properties.

  20. A Study on the Improvement of Switching Speed of NPT-IGBT by Fast Neutron Irradiation

    International Nuclear Information System (INIS)

    Baek, H. N.; Sun, G. M.; Kim, J. S.; Hoang, S. M. T.; Jin, M. E.; Jin, S. B.; Ahn, S. H.

    2016-01-01

    The insulated gate bipolar transistor (IGBT) has been widely used for high power switching devices due to low on-state forward voltage drop and fast switching speed. But, turn-off delay time occurs due to the tail current generated by the minority carrier existing in the n-drift region during turn-off, which reduces the switching speed. Recently, to mitigate this problem, studies on the control of the MCLT to improve the switching speed of IGBTs are carried out. A crystal defect is formed in the n-drift region of an IGBT to realize a deep energy level within the energy band. The deep level act as the recombination center of the minority carrier to reduce the turn-off delay time and control the lifetime by reducing the lifetime of the minority carrier injected during the device operation. The particle-beam irradiation method, such as electron, proton, fast neutron and others, has been used to control the lifetime of the minority carrier of a silicon power semiconductor device. To improve the switching speed of a IGBT, devices were produced by irradiating various doses of fast neutron, and electrical properties were comparatively analyzed with the IGBT device where before irradiated. The reduced in the lifetime of the minority carrier flowing into the n-drift region due to the crystal defect helps improve the switching speed of the IGBT. But, the resistance component increased due to the crystal defect generated by the fast neutron irradiation in the on-state, increasing of the forward voltage drop. So, to improve and optimize the IGBT performance, appropriate condition should be determined by trading off each electrical properties

  1. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  2. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  3. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  4. Effect of whole-body irradiation by fast neutrons on mouse tissues. Pt. 1

    International Nuclear Information System (INIS)

    Kotb, M.A.; Abdel-Mawla, A.; El-Khatib, A.; Ramadan, M.I.A.; El-Bassiouni, E.A.

    1991-01-01

    Groups of male Swiss albino mice were irradiated by single doses of either 7 rem or 14 rem of fast neutrons with 14 MeV average energy, corresponding to fluences of 1.27x10 8 n/cm 2 and 2.54x10 8 n/cm 2 , respectively. The activities of acid phosphatase (ACP) and succinic dehydrogenase (SDH) in kidney, lung and liver were determined at different time point up to seven days after irradiation. Lysosomal affection was represented by statistically significant increase of ACP activity in all cell types of the three tested organs immediately after irradiation with either of the doses used. The effect of SDH was represented by reduction in activity in all three organs. The activities of both enzymes showed tendencies to return to pre-irradiation levels with time in most cell types especially after the 7 rem dose. (orig.) [de

  5. A study on measurement of neutrons generated in radiation therapy – Measurement of neurons in CR-39 detection method

    International Nuclear Information System (INIS)

    Park, Cheol-Soo; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sun-Yeob; Jang, Hyon-Chol; Dong, Kyung-Rae; Chung, Woon-Kwan; Jin, Lee; Moon, Deog-Hwan; Lee, Kwang-Sung; Yang, Nam-Oh; Cho, Moo-Seong

    2013-01-01

    Highlights: ► To measure the neutrons generated in a linear accelerator. ► Both fast neutrons and thermal neutrons produced an increase in the dose of neutrons generated with increasing irradiation dose. ► The generation of neutrons increased when a wedge filter was used. ► When the SRS cone that required a high dose was used, more neutrons were detected. -- Abstract: The CR-39 [diethylene glycol bis-(allylcarbonate)] neuron detection method was used to measure the dose of neutrons generated in X-ray (photon) therapy conducted in a linear accelerator, and to use high-energy photons as part of the clinical applications to examine the problems associated with the dose for patients caused by the generation of neutrons from high-energy photons used for cancer therapy. According to the experimental results, 0.35 mSv, 0.65 mSv 1.82 mSv of fast neutrons on average were generated from 1 Gy, 2 Gy and 5 Gy of photon irradiation, respectively, whereas 0.26 mSv, 0.56 mSv and 1.23 mSv of thermal neutrons were generated. Both fast neutrons and thermal neutrons produced an increase in the dose of neutrons generated with increasing irradiation dose. With in regard to the dose generated within and around the irradiation area of the photon rays, it was confirmed that more neutrons were generated within the irradiation area. A wedge filer was used to measure the generation of neutrons. According to the measurement results, the generation of neutrons increased when a wedge filter was used. When the SRS cone that required a high dose was used, more neutrons were detected than those in the previous experiment. When fast neutrons were used, 2.85 mSv neutrons on average were generated from 5 Gy of photon irradiation. When thermal neutrons were used, 1.37 mSv neutrons on average were generated from 5 Gy of photon irradiation. Overall, approximately 1.6 times and 1.12 times more fast and thermal neutrons, respectively, were generated than in the case of a general treatment with 5 Gy

  6. Detection of fast neutrons in a plastic scintillator using digital pulse processing to reject gammas

    International Nuclear Information System (INIS)

    Reeder, P.L.; Peurrung, A.J.; Hansen, R.R.; Stromswold, D.C.; Hensley, W.K.; Hubbard, C.W.

    1999-01-01

    We report on neutron-gamma discrimination in a plastic scintillator based on the time delay inherent in second and third chance neutron scattering. Because of the time delay (∼3 ns) between the first and second scattering of a neutron, calculations of gammas and neutrons in a plastic scintillator predict that a neutron signal should be significantly broader than a pulse from a gamma event. Experimentally, we have used a fast digital oscilloscope coupled to a computer to examine individual pulses from neutron or gamma induced signals in fast scintillators coupled to a fast PMT. Individual neutron-induced signals were consistent with the predictions of our model, but gamma pulses were broader than expected. We present various tests to understand this phenomenon and discuss a way to overcome this problem

  7. Dosimetry of fast neutrons

    International Nuclear Information System (INIS)

    Jahr, R.

    1975-03-01

    Following an explanation of the physical fundamentals of neutron dosimetry, the special needs in medicine and biology are gone into. It is shown that the dose equivalent used in radiation protection simplifies in an undue manner the complicated dependence of the biological effects. The reason for this is the fact that the RBE for heavy recoil nuclei, amongst others, depends on the energy and sort of particle, whereas it is approximately equal to one for electrons independent of the energy. It is thus necessary in the fields of biology and medicine to have additional information on energy spectra of the neutrons as well as of all charged secondary particles as a function of the position in the phantom. These are obtained partly by calculation and partly by special dosemeters. The accuracy achieved so far is 5%. (ORU/LH) [de

  8. Estimation of dose distribution and neutron spectra in JCO critical accident by shielding calculations

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2001-01-01

    The information about neutrons at the surrounding of JCO site in the critical accident is limited to survey results by neutron Rem counter in the period of accident and activation data very near the test facility measured after the shut down of accident. This caused the big uncertainty in the dose estimation by detailed shielding calculation codes. On the other hand, environmental activity data measured by radiochemical researchers included the information about fast neutrons inside of JCO site and thermal neutrons up to 1 km from test facility. It is important to grasp the actual circumstance and examine the executed evaluation of the critical accident as scientifically as possible. Therefore, it is meaningful for different field researchers to corporate and exchange the information. In the Technical Divisions of Radiation Science and Technology in Atomic Energy Society of Japan, the information about neutron spectra are released from their home page and three groups of JAERI/CRC, Sumitomo Atomic Energy Industry and Nuclear Power Engineering Corp. (NUPEC)/Mitsubishi Research Institute Inc. (MRI), tried the shielding calculation by Monte Carlo Code MCNP-4B. The procedures and main results of shielding calculations were reviewed in this report. The main difference of shielding calculation by three groups was density and water content of autoclaved light-weight concrete (ALC) as the wall and ceiling. From the result by NUPEC/MRI, it was estimated that the water content in ALC was from 0.05 g/cm 3 to 0.10 g/cm 3 . The behavior of dose equivalent attenuation obtained by shielding calculation was very similar with the measured data from 250 m to 1,700 m obtained by survey meter, TLD and monitoring post. For more exact dose estimation, more detail examination of density and water content of ALC will be needed. (author)

  9. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Maughan, R.L.; Kota, C.

    2000-01-01

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  10. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am–Be neutron source

    International Nuclear Information System (INIS)

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am–Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am–Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. - Highlights: • The scope of the affected area for

  11. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D 2 O-moderated 252 Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs

  12. Monitor units are not predictive of neutron dose for high-energy IMRT

    Directory of Open Access Journals (Sweden)

    Hälg Roger A

    2012-08-01

    Full Text Available Abstract Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units.

  13. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    OpenAIRE

    Sunardi, Sunardi; Muryono, Muryono

    2010-01-01

    Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec).  At this research condition of neutron generator was set at...

  14. Neutron dose and energy spectra measurements at Savannah River Plant

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers, 3 He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs

  15. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  16. An Electromagnet for Precession of the Polarization of Fast-Neutrons

    International Nuclear Information System (INIS)

    Aspesund, O.; Bjorkman, J.; Trumpy, G.

    1965-05-01

    The advantages of using a transverse magnetic field for precessing the polarization of fast-neutrons are discussed. Design details of a powerful electromagnet supplying a transverse field of approximately 20 kGauss are given. Precession characteristics for polarized fast neutrons obtained at 50 deg (lab. syst.) from the Li 7 (p, n) Be 7 reaction are reported, using elastic scattering at 42 deg (lab. syst.) off natural carbon as an analyser. Correlation of the precession data with theoretical predictions presented elsewhere is made, and good agreement is found

  17. An Electromagnet for Precession of the Polarization of Fast-Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aspesund, O; Bjorkman, J; Trumpy, G

    1965-05-15

    The advantages of using a transverse magnetic field for precessing the polarization of fast-neutrons are discussed. Design details of a powerful electromagnet supplying a transverse field of approximately 20 kGauss are given. Precession characteristics for polarized fast neutrons obtained at 50 deg (lab. syst.) from the Li{sup 7} (p, n) Be{sup 7} reaction are reported, using elastic scattering at 42 deg (lab. syst.) off natural carbon as an analyser. Correlation of the precession data with theoretical predictions presented elsewhere is made, and good agreement is found.

  18. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  19. Microdosimetric investigation of a fast neutron radiobiology facility utilising the d(4)-9Be reaction.

    Science.gov (United States)

    Waker, A J; Maughan, R L

    1986-11-01

    For fast neutron therapy and radiobiology beams, knowledge of the primary neutron spectrum is the most fundamental requirement for the definition of radiation quality. However, microdosimetric measurements in the form of single-event spectra not only complement the primary neutron spectrum as a statement of radiation quality but also provide a sensitive method of detecting changes in the radiation field in situations where it is no longer possible to have precise knowledge of the primary neutron spectrum, for example after collimator changes and in positions where the radiation field consists of a large scattered component. For the various collimator arrangements employed at the Gray Laboratory facility small perturbations of the radiation field are observed which can be related to a softening of the primary neutron spectrum with increasing field size of the collimator. Gamma fraction determinations are in very good agreement with measurements employing the dual chamber technique and also show small changes with collimator field size giving rise to gamma components ranging from 0.09 to 0.12, the higher values being measured for the larger field sizes. Quality changes represented by the shape of the measured event-size spectra and the derived microdosimetric parameters were greatest for off axis and phantom measurements. With increasing depth in water, yD was found to decrease from 47.3 keV micron-1 at 5 cm to 35.6 keV micron-1 at 15 cm depth, and the gamma fraction was found to increase from 0.23 to 0.40. Although there is no generally accepted and agreed method of relating microdosimetric information to biological effectiveness, the dual radiation theory in its original form (Kellerer and Rossi 1972) has been shown to be a very useful model for the assessment of the biological effectiveness of fast neutrons (Kellerer et al 1976). The microdosimetric parameter which is used in the dual radiation model is the dose mean specific energy corrected for saturation zeta

  20. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  1. Estimation dose of secondary neutrons in proton therapy

    International Nuclear Information System (INIS)

    Urban, T.

    2014-01-01

    Most of proton therapy centers for cancer treatment are still based on the passive scattering, in some of them there is system of the active scanning installed as well. The aim of this study is to compare secondary neutron doses in and around target volumes in proton therapy for both treatment techniques and for different energies and profile of incident proton beam. The proton induced neutrons have been simulated in the very simple geometry of tissue equivalent phantom (imitate the patient) and scattering and scanning nozzle, respectively. In simulations of the scattering nozzle, different types of scattering filters and brass collimators have been used as well. 3D map of neutron doses in and around the chosen/potential target volume in the phantom/patient have been evaluated and compared in the context of the dose deposited in the target volume. Finally, the simulation results have been compared with published data. (author)

  2. BH3105 type neutron dose equivalent meter of high sensitivity

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Enshan; Yang Jianfeng; Zhang Hong; Huang Jiling

    1995-10-01

    It is noted that to design a neutron dose meter of high sensitivity is almost impossible in the frame of traditional designing principle--'absorption net principle'. Based on a newly proposed principle of obtaining neutron dose equi-biological effect adjustment--' absorption stick principle', a brand-new neutron dose-equivalent meter with high neutron sensitivity BH3105 has been developed. Its sensitivity reaches 10 cps/(μSv·h -1 ), which is 18∼40 times higher than one of foreign products of the same kind and is 10 4 times higher than that of domestic FJ342 neutron rem-meter. BH3105 has a measurement range from 0.1μSv/h to 1 Sv/h which is 1 or 2 orders wider than that of the other's. It has the advanced properties of gamma-resistance, energy response, orientation, etc. (6 tabs., 5 figs.)

  3. Neutron Dose Measurement Using a Cubic Moderator

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Mazor, T.; Cohen, Y.; Kadmon, Y.; Orion, I.

    2014-01-01

    The Bonner Sphere Spectrometer (BSS), introduced In July 1960 by a research group from Rice University, Texas, is a major approach to neutron spectrum estimation. The BSS, also known as multi-sphere spectrometer, consists of a set of a different diameters polyethylene spheres, carrying a small LiI(Eu) scintillator in their center. What makes this spectrometry method such widely used, is its almost isotropic response, covering an extraordinary wide range of energies, from thermal up to even hundreds of MeVs. One of the most interesting and useful consequences of the above study is the 12'' sphere characteristics, as it turned out that the response curve of its energy dependence, have a similar shape compared with the neutron's dose equivalent as a function of energy. This inexplicable and happy circumstance makes it virtually the only monitoring device capable providing realistic neutron dose estimates over such a wide energy range. However, since the detection mechanism is not strictly related to radiation dose, one can expect substantial errors when applied to widely different source conditions. Although the original design of the BSS included a small 4mmx4mmO 6LiI(Eu) scintillator, other thermal neutron detectors has been used over the years: track detectors, activation foils, BF3 filled proportional counters, etc. In this study we chose a Boron loaded scintillator, EJ-254, as the thermal neutron detector. The neutron capture reaction on the boron has a Q value of 2.78 MeV of which 2.34 MeV is shared by the alpha and lithium particles. The high manufacturing costs, the encasement issue, the installation efficiency and the fabrication complexity, led us to the idea of replacing the sphere with a cubic moderator. This article describes the considerations, as well as the Monte-Carlo simulations done in order to examine the applicability of this idea

  4. High resolution fast neutron spectrometry without time-of-flight

    International Nuclear Information System (INIS)

    Evans, A.E.; Brandenberger, J.D.

    1978-01-01

    Performance tests of a spectrometer tube of the type developed by Cuttler and Shalev show that the measurement of fast neutron spectra with this device can be made with an energy resolution previously obtainable only in large time-of-flight facilities. In preliminary tests, resolutions of 16.4 keV for thermal neutrons and 30.9 keV for 1-MeV neutrons were obtained. A broad-window pulse-shape discrimination (PSD) system is used to remove from pulse-height distributions most of the continua due to 3 He-recoil events, noise, and wall effect. Use of PSD improved the energy resolution to 12.9 keV for thermal neutrons and 29.2 keV for 1-MeV neutrons. The detector is a viable tool for neutron research at nominally equipped accelerator laboratories

  5. Structural elements for fast-neutron reactors

    International Nuclear Information System (INIS)

    Blin, J.C.; Sainfort, Gerard; Silvent, Alain; Silvestres, Georges.

    1974-01-01

    These elements are characterized in that they are obtained from a nickel-alloy and at least a material M, selected from the group comprising iron and silicon, in proportions, by weight, such that irradiation by fast neutrons leads to the generation of Ni 3 -M with no noticeable swelling of said elements. This can be applied to fuel assembly cladding [fr

  6. The development of BH3105E type neutron dose-equivalent meter

    International Nuclear Information System (INIS)

    Ji Changsong; Wang Tingting; Zhang Shuheng; Tan Baozeng

    2011-01-01

    A new BH3105E Type Neutron Dose-equivalent Meter has been developed. The 'multi-stick' ab- sorption method is used for thermal -14 MeV neutron equal dose-equivalent detection, what gives a high neutron sensitivity of 5 cps/μSv · h-1. RS-232 interface is accepted for signal communication (authors)

  7. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    International Nuclear Information System (INIS)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-01-01

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation

  8. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christopher; Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Farah, Jad [Institut de Radioprotection et de Sûreté Nucléaire, Service de Dosimétrie Externe, BP-17, 92262 Fontenay-aux-Roses (France)

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  9. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    International Nuclear Information System (INIS)

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; Snyderman, N. J.; Verbeke, J. M.

    2015-01-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutrons in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.

  10. Material classification by fast neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, A. E-mail: abuffler@physci.uct.ac.za; Brooks, F.D. E-mail: brooks@physci.uct.ac.za; Allie, M.S.; Bharuth-Ram, K.; Nchodu, M.R

    2001-02-01

    The scattering of a beam of fast monoenergetic neutrons is used to determine elemental compositions of bulk samples (0.2-0.8 kg) of materials composed from one or more of the elements H, C, N, O, Al, S, Fe and Pb. Scattered neutrons are detected by liquid scintillators placed at forward and at backward angles. Different elements are identified by their characteristic scattering signatures derived either from a combination of time-of-flight and pulse height measurements, or from pulse height measurements alone. Scattering signatures measured for multi-element samples are analysed to determine atom fractions for H, C, N, O and other elements in the sample. Atom fractions determined from scattering signatures are insensitive to neutron interactions in material surrounding the scattering sample, provided the amount of material is not excessive. The atom fraction data are used to classify scattering material into categories including 'explosives', 'illicit drugs' and 'other materials' for the purpose of contraband detection.

  11. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  12. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  13. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  14. Distinguishing Pu Metal from Pu Oxide and Determining alpha-ratio using Fast Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nakae, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-07

    We describe a new method for determining the ratio of the rate of (α, n) source neutrons to the rate of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α, n) neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for fissile assemblies, and also simultaneously determines keff along with the α-ratio.

  15. Fast Neutron Emission Tomography of Used Nuclear Fuel Assemblies

    Science.gov (United States)

    Hausladen, Paul; Iyengar, Anagha; Fabris, Lorenzo; Yang, Jinan; Hu, Jianwei; Blackston, Matthew

    2017-09-01

    Oak Ridge National Laboratory is developing a new capability to perform passive fast neutron emission tomography of spent nuclear fuel assemblies for the purpose of verifying their integrity for international safeguards applications. Most of the world's plutonium is contained in spent nuclear fuel, so it is desirable to detect the diversion of irradiated fuel rods from an assembly prior to its transfer to ``difficult to access'' storage, such as a dry cask or permanent repository, where re-verification is practically impossible. Nuclear fuel assemblies typically consist of an array of fuel rods that, depending on exposure in the reactor and consequent ingrowth of 244Cm, are spontaneous sources of as many as 109 neutrons s-1. Neutron emission tomography uses collimation to isolate neutron activity along ``lines of response'' through the assembly and, by combining many collimated views through the object, mathematically extracts the neutron emission from each fuel rod. This technique, by combining the use of fast neutrons -which can penetrate the entire fuel assembly -and computed tomography, is capable of detecting vacancies or substitutions of individual fuel rods. This paper will report on the physics design and component testing of the imaging system. This material is based upon work supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development within the National Nuclear Security Administration, under Contract Number DE-AC05-00OR22725.

  16. Evaluation of Dose: Comparative Effect of Fast Neutrons and other Types of Radiation on the Survival of E. Coli and S. Cerevisiae; Evaluation de la Dose Delivree et Actions Comparees des Neutrons Rapides et d'Autres Radiations sur la Survie de E. Coli et S. Cerevisiae; Otsenka dozy i sravnitel'noe vliyanie bystrykh nejtronov i drugikh vidov izlucheniya na vyzhivaemost' E. Coli i S. Cerevisiae; Evaluacion de la Dosis Suministrada y Comparacion de la Accion de los Neutrones Rapidos sobre la Supervivencia del E. Coli y del S. Cerevisiae con la de Otras Radiaciones

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, Y.; Bocquet, C. [Centre d' Etudes Nucleaires de Saclay (France)

    1964-05-15

    The EL-3 reactor is equipped with auranium converter by means of which fast neutrons can be obtained. A bank of fission chambers measures the flux and spectral distribution of the fast neutrons. These miniature detectors are placed at various points in the target zone and make possible the experimental evaluation of the absorbed tissue-dose. This apparatus and dosimetric technique can be used to compare the effect of fast neutrons and other types of ionizing radiation (e.g. X-rays) on unicellular organisms. The authors study the percentage of survivals and the frequency of a mutation in Saccharomyces cerevisiae. The survival curve for Escherichia coli is also determined for X-rays and neutrons. It is found that the RBE's of these various types of radiation depend not only on the species and the biological criterion adopted, but also on the irradiation dose-level at which the comparison is made. These experiments show the RBE to be also a function of dose. The effects of fast neutrons and X-rays are often brought about by differing radiobiological processes. It is arbitrary to establish linear relationships between the doses for these various types of radiation. (author) [French] Nous disposons aupres du reacteur EL3 d'un convertisseur a uranium permettant d'obtenir des neutrons rapides. Une batterie de chambres a fission mesure le flux et la repartition spectrale des neutrons rapides. Ces detecteurs miniatures sont places en divers points du volume a irradier et permettent d'evaluer experimentalement la dose absorbee dans les tissus. Ce dispositif et cette dosimetrie nous servent a comparer l'action des neutrons rapides et d'autres radiations ionisantes (X, {gamma}) sur des organismes monocellulaires. Nous etudions ici le pourcentage de survie et la frequence d'une mutation morphologique chez Saccharomyces cerevisiae. La courbe de survie d'Escherichia coli est aussi etablie pour les rayons X et les neutrons. On observe que les effets biologiques relatifs de ces

  17. Lethal and mutagenic effects of fast neutrons of different energy on Streptomyces griseus spores

    International Nuclear Information System (INIS)

    Podgorskaya, M.E.; Tulina, G.G.; Serdechnaya, A.I.; Matselyukh, B.P.

    1986-01-01

    A study was made of lethal and mutagenic effects of fast neutrons of different energy on spores of prototrophic and auxotrophic strains of Streptomyces griseus. Relative biological effectiveness of fast neutrons is higher than that of γ-rays and depends on beam energy. Neutrons of 22-50 MeV induce Streptomyces griseus mutations more frequently (by one order of magnitude) than neutrons of 1.4-1.6 MeV do. The obtained mutants can be used in studying Streptomyces griseus genetics

  18. Corrections on energy spectrum and scattering for fast neutron radiography at NECTAR facility

    International Nuclear Information System (INIS)

    Liu Shuquan; Thomas, Boucherl; Li Hang; Zou Yubin; Lu Yuanrong; Guo Zhiyu

    2013-01-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM-Ⅱ in Technische Universitaet Mounchen (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections. (authors)

  19. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    Science.gov (United States)

    Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu

    2013-11-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.

  20. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors; Visualisation ultrasonore rapide sous sodium. application aux reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Imbert, Ch

    1997-05-30

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  1. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  2. Fast neutron damage of silicon pin photodiodes

    International Nuclear Information System (INIS)

    Dabrowski, W.; Korbel, K.; Skoczen, A.

    1990-01-01

    A Hamamatsu Photonics photodiode S1723 was tested with respect to the fast neutron radiation. The device was irradiated with neutrons of energies in the range of 0.5 MeV to 12 MeV from a Po-Be source. The irradiation was performed in several steps starting from the relatively low fluence of 2.5 x 10 10 n x cm -2 . The following characteristics were measured: leakage current vs bias voltage, capacitance vs bias voltage and vs frequency, noise vs time constant of a quasigaussian shaper and spectral density of noise. Significant changes of the leakage current and of the noise were observed at the fluence of neutrons as low as 2.5 x 10 10 n x cm -2 . 8 figs., 3 tabs., 15 refs. (author)

  3. Neutron and gamma dose and spectra measurements on the Little Boy replica

    International Nuclear Information System (INIS)

    Hoots, S.; Wadsworth, D.

    1984-01-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30 0 close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables

  4. Specification of fast neutron radiation quality from cell transformation data

    International Nuclear Information System (INIS)

    Coppola, M.

    1992-01-01

    Experimental data on the neoplastic transformation of C3H 10T1/2 cells measured at Casaccia after neutron and X-ray irradiation were used to determine neutron RBE values for the RSV-Tapiro fast reactor energy spectrum and for monoenergetic neutrons of 0.5, 1, and 6 MeV. In parallel, micro-dosimetric measurements provided the actual lineal energy distributions and related mean parameters for the reactor radiation. From these experiments, values of the neutron quality factor were derived for the reactor neutron energy spectrum and, in turn, for the other neutron energies tested. A mathematical expression giving a smooth dependence on neutron energy was also determined for the effective quality factor in the entire energy range examined. The results were compared with other proposals

  5. Effects of gas chamber geometry and gas flow on the neutron production in a fast plasma focus neutron source

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Soto, Leopoldo

    2014-01-01

    This work reports that gas chamber geometry and gas flow management substantially affect the neutron production of a repetitive fast plasma focus. The gas flow rate is the most sensitive parameter. An appropriate design of the gas chamber combined with a suitable flow-rate management can lead to improvements in the neutron production of one order of magnitude working in a fast repetitive mode. (paper)

  6. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    International Nuclear Information System (INIS)

    Meadows, J.W.; Smith, D.L.

    1980-05-01

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables

  7. Nuclear characteristics of epoxy resin as a space environment neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Adeli, Ruhollah [Nuclear Science and Technology Research Institute, Yazd (Iran, Islamic Republic of). Central Iran Research Complex; Shirmardi, Seyed Pezhman [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Mazinani, Saideh [Amirkabir Nanotechnology Research Institute, Tehran (Iran, Islamic Republic of); Ahmadi, Seyed Javad [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2017-03-15

    In recent years many investigations have been done for choosing applicable light neutron shielding in space environmental applications. In this study, we have considered the neutron radiation-protective characteristics of neat epoxy resin, a thermoplastic polymer material and have compared it with various candidate materials in neutron radiation protection such as Al 6061 alloy and Polyethylene. The aim of this investigation is the effect of type of moderator for fast neutron, notwithstanding neutron absorbers fillers. The nuclear interactions and the effective dose at shields have been studied with the Monte Carlo N-Particle transport code (MCNP), using variance reductions to reduce the relative error. Among the candidates, polymer matrix showed a better performance in attenuating fast neutrons and caused a lower neutron and secondary photon effective dose.

  8. Scattering of fast neutrons from 103Rh

    International Nuclear Information System (INIS)

    Barnard, E.; Reitmann, D.

    1978-01-01

    The scattering of fast neutrons from 103 Rh was studied by means of (n, n), (n, n') and (n, n'γ) measurements at neutron energies up to 2 MeV. More than fifty unknown γ-transitions were identified and a level scheme established which includes fifteen unreported excited states. Branching ratios, spins and parities for these levels were deduced, as well as the effective activation cross sections for the 103 Rh(n, n')sup(103m)Rh reaction. The results are compared with existing data and with calculations based on the optical and statistical models. (Auth.)

  9. The Edinburgh experience of fast neutron therapy

    International Nuclear Information System (INIS)

    Duncan, W.; Arnott, S.J.; Orr, J.A.; Kerr, G.R.

    1982-01-01

    The Edinburgh experience is based on a d(15 + Be) neutron beam generated by a compact CS 30 Cyclotron. Neutron therapy alone given in 20 daily fractions over four weeks has been compared with photon therapy given in the same fractionation schedule. Since clinical studies began in March, 1977, over 500 patients have been treated by fast neutrons. Almost all patients are now admitted to randomly controlled trials. In the head and neck trial conducted in collaboration with collegues in Amsterdam and Essen, 192 patients are available for analysis. Most patients had T3 lesions and about 50% had involved nodes. The cumulative regression rate at six months is similar after neutrons and photons (75%). Later recurrence rates (36%) are also similar. The early radiation morbidity is similar in both groups, but the late reactions are greater after neutrons (15%) than photons (6%). Overall survival is better after photon therapy. A trial of patients with glioblastoma has also shown a better survival after photon therapy. Neutron therapy was associated with demyelinization in three of 18 patients. Patients with transitional cell cancer of the bladder have also been the subject of study. Local tumor control was similar (53%) after neutrons and photons. Late radiation morbidity was much greater after neutrons (20%), compared with photons (2%). In a trial of advanced carcinoma of the rectum, the local tumor control was also similar after neutrons and photons (30%), but morbidity was greater after neutrons. Soft tissue sarcomas have shown response rates (37%) that may be expected after photon therapy. Salivary gland tumors have shown a similar experience, although slow growing tumors such as adenoid cystic carcinoma may respond better to neutrons

  10. Features of the structural states of KNbO{sub 3} single crystals before and after fast-neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Stash, A. I., E-mail: astas@yandex.ru; Ivanov, S. A.; Stefanovich, S. Yu.; Mosunov, A. V.; Boyko, V. M.; Ermakov, V. S.; Korulin, A. V.; Kalyukanov, A. I. [State Scientific Center of the Russian Federation Karpov Institute of Physical Chemistry (Russian Federation)

    2017-01-15

    Neutron irradiation is a unique tool for forming new structural states of ferroelectrics, which cannot be obtained by conventional methods. The inf luence of the irradiation by two doses of fast neutrons (F = 1 × 10{sup 17} and 3 × 10{sup 17} cm{sup –2}) on the structure and properties of KNbO{sub 3} single crystals has been considered for the first time. The developed method for taking into account the experimental correction to the diffuse scattering has been used to analyze the structural changes occurring in KNbO{sub 3} samples at T = 295 K and their correlations with the behavior of dielectric and nonlinear optical characteristics. The irradiation to the aforementioned doses retains the KNbO{sub 3} polar structure, shifting Т{sub Ð}¡ to lower temperatures and significantly affecting only the thermal parameters and microstructure of single crystals. Neutron irradiation with small atomic displacements provides a structure similar to the high-temperature modification of an unirradiated KNbO{sub 3} crystal.

  11. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Saleh, Tarik A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eftink, Benjamin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, the synergies between ' and fine-scale and moderate-scale cavity formation is investigated.

  12. Cell transformation in vitro by fast neutrons of different energies: implications for mechanisms

    International Nuclear Information System (INIS)

    Barendsen, G.W.; Gaiser, J.F.

    1985-01-01

    Studies have been performed to analyse the dependence of the induction of cell transformation and cell reproductive death in cultures of C3H/10T1/2 cells, NBCH-3 cells and WAGR-2 cells on the energy of mono-energetic fast neutrons. The dose-effect relations for 300 kV, 4.2 MeV X rays, 15 MeV and 0.5 MeV neutrons have been analysed on the basis of the representations F(D) = t 1 D+t 2 D 2 and S(D)/S(0) = exp [-a 1 D+a 2 D 2 )] for transformation and survival respectively. The results show that a 1 values for all radiations are a factor of approximately 10 3 larger than corresponding t 1 values. The RBE values for cell reproductive death derived as ratios of a 1 for the various neutrons and 300 kV x rays are similar to the corresponding RBE values for cell transformation derived as ratios of t 1 values of neutrons and X rays. These similarities in the RBE values and differences in absolute values of a 1 and t 1 can be compared with results from published dose-effect relations for reproductive death and chromosome aberrations obtained for other cell lines. The insights obtained can be applied to derive a hypothesis about the induction of these effects, assuming similarities in energy requirements and physico-chemical primary mechanisms of the induction of damage in chromosomes and differences in the specificities of the sites and total size of the targets on chromosomes associated with the various endpoints observed. (author)

  13. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  14. Apparatus and method for detecting contraband using fast neutron activation

    International Nuclear Information System (INIS)

    Gozani, T.; Sawa, Z.P.; Shea, P.M.

    1992-01-01

    This patent describes a method of detecting contraband within an object under investigation. It comprises: generating a beam of case neutrons; irradiating the object with the beam of fast neutrons, the fast neutrons interacting with atomic nuclei of the elements contained within the object to produce a gamma-ray spectrum having spectral lines characteristic of the elements contained within the object; measuring the spectral lines of the gamma-ray spectrum using a multiplicity of gamma-ray detectors judiciously positioned around the object; detecting the number of neutrons that pass through the object without interacting substantially with atomic nuclei within the object; determining the spatial and density distributions of the atomic nuclei of the elements contained within the object from the measured gamma-ray spectrum obtained from the multiplicity of gamma-ray detectors and the number of neutrons that pass through the object; comparing the measured spatial and density distributions of the atomic nuclei of the elements within the object with known spatial and density distributions of atomic nuclei for elements characteristic of contraband; and determining that contraband is present within the object when the comparison indicates a substantial match

  15. Characterization of a fast to thermal neutron spectrum converter on PROSPERO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Authier, N.; Casoli, P.; Combacon, S. [CEA, Valduc Center, 21120 Is sur Tille (France); Calzavarra, Y. [ILL, Institut Laue Langevin, 38000 Grenoble (France)

    2009-07-01

    The PROSPERO reactor is located at CEA Valduc Center in France. The reactor is composed of an internal core made of High Enriched Uranium metal alloy surrounded by a reflector of depleted uranium. The reactor is used as a fast neutron spectrum source and is operated in delayed critical state with a continuous and steady power for several hours, which can vary from 3 mW to 3 kW, which is the nominal power. The flux at nominal power varies from 5.10{sup +10} n.cm{sup -2}/s at the reflector surface to 10{sup +7} n.cm{sup -2}/s at 5 meters from reactor axis. It has been decided to build a neutron energy converter allowing the production of a neutron thermal spectrum. As the core produces fast neutrons spectrum, we built a hollow cubic box of 50 cm x 50 cm x 50 cm with 10-cm-thick polyethylene bricks and placed one meter away from central reactor axis to moderate as much as possible neutrons to lower energies (E<0.6 eV). Analysis of the moderated flux inside the converter was performed using different activation foils such as indium or gold. We have developed a model of the experiment in the Monte Carlo neutron transport code TRIPOLI-4. A non-analogous transport calculation scheme was necessary to reproduce properly the experimental activities. The results of the calculated activations are within 4% of the experimental measurements given with 10% uncertainty (2 sigma). We show that the converter realizes thermalization of 80 % of the PROSPERO reactor fast neutrons below the cadmium threshold of 0.6 eV. Epithermal neutrons represent 15% of the spectrum and only 5% are in the fast neutron range above 1 MeV. The total flux at the center of the converter is 1.4 10{sup +9} n.cm{sup -2}/s at 3000 W

  16. Neutron spectrum and dose-equivalent in shuttle flights during solar maximum

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J E; Badhwar, G D; Lindstrom, D J [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1992-01-01

    This paper presents unambiguous measurements of the spectrum of neutrons found in spacecraft during spaceflight. The neutron spectrum was measured from thermal energies to about 10 MeV using a completely passive system of metal foils as neutron detectors. These foils were exposed to the neutron flux bare, covered by thermal neutron absorbers (Gd) and inside moderators (Bonner spheres). This set of detectors was flown on three U.S. Space Shuttle flights, STS-28, STS-36 and STS-31, during the solar maximum. We show that the measurements of the radioactivity of these foils lead to a differential neutron energy spectrum in all three flights that can be represented by a power law, J(E){approx equal}E{sup -0.765} neutrons cm{sup -2} day {sup -1} MeV{sup -1}. We also show that the measurements are even better represented by a linear combination of the terrestrial neutron albedo and a spectrum of neutrons locally produced in a aluminium by protons, computed by a previous author. We use both approximations to the neutron spectrum to produce a worst case and most probable case for the neutron spectra and the resulting dose-equivalents, computed using ICRP-51 neutron fluence-dose conversion tables. We compare these to the skin dose-equivalents due to charged particles during the same flights. (author).

  17. Fast neutron reactors: the safety point of view

    International Nuclear Information System (INIS)

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  18. Neutron dose measurements with the GSI ball at high energy accelerators

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Gutermuth, F.; Radon, T.; Kozlova, E.

    2005-01-01

    Full text: At high energy particle accelerators the production of neutron radiation dominates radiation protection. For the radiation survey at accelerators there is a need for reliable detection systems (passive radiation monitors), which can measure the dose for a wide range of neutron energies independently on the beam pulse structure of the produced radiation. In this work a passive neutron dosemeter for the measurement of the ambient dose equivalent is presented. The dosemeter is suitable for measurements of the emerging neutron radiation at accelerators for the whole energy range up to about 10 GeV. The dosemeter consists of a polyethylene sphere, TL elements (pairs of TLD600/700) and an additional lead layer (PE/Pb) in neutron fields at high energy accelerators is investigated in this work. Results of dose measurements which were performed in realistic neutron fields at the high energy accelerator SPS at CERN (CERF facility) and in Cave A at the heavy ion synchrotron SIS at GSI are presented. The results of these measurements are compared with the expected dose values from the neutron spectra determined for the measurement positions at CERF and in Cave A (FLUKA) and with the dosemeter response derived by the calculated response functions (FLUKA) folded with the neutron spectra. The comparisons show that the additional lead layer in the PE/Pb-sphere improves significantly the response of the dosemeter. The response of the PE/Pb-sphere is 40 to 50 % higher at CERF and Cave A in comparison to the bare PE-sphere. At CERF the dose values of the PE/Pb-sphere is about 25 % lower than the expected dose value, whilst for Cave A, a rather good agreement was found (2 % deviation). (author)

  19. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  20. Fast neutron spectroscopy by gas proton-recoil methods at the light water reactor pressure vessel simulator

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1980-10-01

    Fast neutron spectrum measurements were made in a Light Water Reactor (LWR) Pressure Vessel Simulator (PVS) to provide neutron spectral definition required to appropriately perform and interpret neutron dosimetry measurements related to fast neutron damage in LWR-PV steels. Proton-recoil proportional counter methods using hydrogen and methane gas-filled detectors were applied to obtain the proton spectra from which the neutron spectra were derived. Cylindrical and spherical geometry detectors were used to cover the neutron energy range between 50 keV and 2 MeV. Results show that the neutron spectra shift in energy distribution toward lower energy between the front and back of a PVS. The relative neutron flux densities increase in this energy range with increasing thickness of the steel. Neutron spectrum fine structure shapes and changes are observed. These results should assist in the generation of more accurate effective cross sections and fluences for use in LWR-PV fast neutron dosimetry and materials damage analyses

  1. Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL

    International Nuclear Information System (INIS)

    Radev, R.

    2009-01-01

    In June 2007, 10 CFR 835 (1) was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 (2). The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring (3,4,5) including the ambient dose equivalent H*(d) to be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of ±25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22%. The

  2. A study on the development of a fast neutron television converter

    International Nuclear Information System (INIS)

    Yoshii, Koji; Miya, Kenzo

    1993-01-01

    Experiments on fast neutron radiography (FNR) were carried out using the fast neutron source reactor YAYOI of the University of Tokyo. For a real time imaging technique using FNR, for a fast neutron television system (FNR-TV), it is essential to develop a highly sensitive luminescent converter in order to obtain good quality images. A new converter was recently developed and tested. It showed an about six times higher sensitivity compared with the first prototype converter. In this paper, the characteristics of the converter are discussed as well as the clearer images of a FNR-TV when using the converter. The FNR-TV images were obtained with 500 frames integrated. A small hole (1.0 mm in diameter and 10 mm in depth) in an acrylic plate was well imaged through a 50 mm thick iron block. A 0.15 mm thick aluminum spacer in the calibrated fuel pin was also discernible. (orig.)

  3. Analysis of some Egyptian cosmetic samples by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Ali, M.A.; Hassan, M.F.

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. The concentrations of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis

  4. Polarization of fast neutrons in VVR-M reactor

    International Nuclear Information System (INIS)

    Garusov, E.A.; Lifshits, E.P.; Petrov, Yu.V.

    1987-01-01

    Neutron polarization in the reactor leads to circular polarization of γ quanta emitted both in radiational capture of neutrons and in the transition of nuclei excited as a result of inelastic scattering to the ground state. This may be used to determine the polarization of reactor neutrons. The circular polarization of γ quanta at light-water and graphite targets at the center of the active zone of the VVR-M reactor at the B.P. Konstantinov Leningrad Institute of Nuclear Physics was recently measured. A simplified experimental scheme is shown. Fast neutrons leaving the active zone of the reactor were excited in the inelastic scattering at the target nuclei. The polarization of the γ quanta emitted by nuclei in transitions to the ground state was measured by a polarimeter positioned above the active zone. The reason for the circular polarization of γ quanta may also be nonconservation of P parity on account of weak interaction in the capture of a neutron by hydrogen

  5. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  6. A multi-group neutron noise simulator for fast reactors

    International Nuclear Information System (INIS)

    Tran, Hoai Nam; Zylbersztejn, Florian; Demazière, Christophe; Jammes, Christian; Filliatre, Philippe

    2013-01-01

    Highlights: • The development of a neutron noise simulator for fast reactors. • The noise equation is solved fully in a frequency-domain. • A good agreement with ERANOS on the static calculations. • Noise calculations induced by a localized perturbation of absorption cross section. - Abstract: A neutron noise simulator has been developed for fast reactors based on diffusion theory with multi-energy groups and several groups of delayed neutron precursors. The tool is expected to be applicable for core monitoring of fast reactors and also for other reactor types with hexagonal fuel assemblies. The noise sources are modeled through small stationary fluctuations of macroscopic cross sections, and the induced first order noise is solved fully in the frequency domain. Numerical algorithms are implemented for solving both the static and noise equations using finite differences for spatial discretization, where a hexagonal assembly is radially divided into finer triangular meshes. A coarse mesh finite difference (CMFD) acceleration has been used for accelerating the convergence of both the static and noise calculations. Numerical calculations have been performed for the ESFR core with 33 energy groups and 8 groups of delayed neutron precursors using the cross section data generated by the ERANOS code. The results of the static state have been compared with those obtained using ERANOS. The results show an adequate agreement between the two calculations. Noise calculations for the ESFR core have also been performed and demonstrated with an assumption of the perturbation of the absorption cross section located at the central fuel ring

  7. Neutron dose rate for {sup 252} Cf AT source in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, L.; Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Francois, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)

    2006-07-01

    The AAPM TG-43 modified protocol was used for the calculation of the neutron dose rate of {sup 252}Cf sources for two tissue substitute materials, five normal tissues and six tumours. The {sup 252}Cf AT source model was simulated using the Monte Carlo MCNPX code in spherical geometry for the following factors: a) neutron air kerma strength conversion factor, b) dose rate constant, c) radial dose function, d) geometry factor, e) anisotropy function and f) neutron dose rate. The calculated dose rate in water at 1 cm and 90 degrees from the source long axis, using the Watt fission spectrum, was D{sub n}(r{sub 0}, {theta}{sub 0})= 1.9160 cGy/h-{mu}g. When this value is compared with Rivard et al. calculation using MCNP4B code, 1.8730 cGy/h-{mu}g, a difference of 2.30% is obtained. The results for the reference neutron dose rate in other media show how small variations in the elemental composition between the tissues and malignant tumours, produce variations in the neutron dose rate up to 12.25%. (Author)

  8. Influence of Silicon on Swelling and Microstructure in Russian Austenitic Stainless Steels Irradiated to High Neutron Doses

    International Nuclear Information System (INIS)

    Porollo, S.I.; Shulepin, S.V.; Konobeev, Y.V.; Garner, F.

    2007-01-01

    Full text of publication follows: For some applications in fusion devices austenitic stainless steels are still considered to be candidates for use as structural components, but high neutron exposures must be endured by the steels. Operational experience of fast reactors in Western Europe, USA and Japan provides evidence of the possible use of austenitic steels up to ∼ 150 dpa. Studies aimed at improvement of existing Russian austenitic steels are being carried out in Russia. For improvement of irradiation resistance of Russian steels it is necessary to understand the basic mechanisms responsible for deterioration of steel properties. This understanding can be achieved by continuing detailed investigations of the microstructure of cladding steels after irradiation to high doses. By investigating the evolution of radiation-induced microstructure in neutron irradiated steels of different chemical composition one can study the effect of chemical variations on steel properties. Silicon is one of the most important chemical elements that strongly influence the behavior of austenitic steel properties under irradiation. In this paper results are presented of investigations of the effect of silicon additions on void swelling and microstructure of base austenitic stainless steel EI-847 (0.06C-16Cr-15Ni- 3Mo-Nb) irradiated as fuel pin cladding of both regular and experimental assemblies in the BOR-60, BN-350 and BN-600 fast reactors to neutron doses up to 49 dpa. The possible mechanisms of silicon's effect on void swelling in austenitic stainless steels are presented and analyzed. (authors)

  9. Radiobiological response of fast neutrons on seedling growth of rice varieties with different amylose content

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.; Sugiyanto, T.; Rahayu, S.

    1978-01-01

    Many studies are reported on radiation effects and on factors modifying the biological response of radiation in rice. However, little attention was directed towards studying effects of fast neutrons on seedling growth response of rice as a function of chemical constituents (e.g. amylose content). Experiments were conducted to investigate the dependency of amylose content in 4 rice cultivars on radiosensitivity to fast neutrons. From the results obtained a clear relationship between amylose content and sensitivity to fast neutrons could be shown. (author)

  10. Practical consequences for the use of a personal dosimeter for fast neutrons based on CR39 exposed up to one year

    International Nuclear Information System (INIS)

    Boschung, Markus; Fiechtner, Annette; Mayer, Sabine; Wernli, Christian

    2008-01-01

    Full text: At the Paul Scherrer Institut a personal neutron dosimetry system based on chemically etched CR-39 detectors and automatic track counting is in routine use since 1998. In its original design, the dosimeter is sensitive to thermal neutrons and to neutrons in the energy range from 200 keV up to several MeV. The standard exposition period is 3 months. Recently, a novel concept for individual monitoring was implemented at CERN. In this concept, each worker who possibly enters a radiation zone is equipped with a combined dosimeter for the measurement of personal photon and neutron doses. The dosimeter for photon dose measurement has an instant readout capability and dose measurements are done monthly. The dosimeter for neutron measurement is based on CR-39 detectors and is sensitive to fast neutrons only. The CR-39 detector is only evaluated and a neutron dose determined if the monthly personal photon dose exceeds 2 mSv or if the exposition period of the neutron dosimeter exceeds one year. This novel regime of use of the neutron dosimeter has had some important consequences for its practical implementation. A priori, the wearing period of a neutron dosimeter is not known and can range from 1 month up to 12 or even more months. A good knowledge of the long-term behaviour and characteristics of the detector material is needed. But also organisational and administrative issues have to be considered. The paper will outline the adopted procedure covering not only technical but also organisational aspects. The long-term behaviour of background track density and response to 241 Am-Be over one year are described as well as calibrations performed with 241 Am-Be and 252 Cf sources and in the High-Energy Reference Field Facility at CERN (CERF). The concept of individual monitoring at CERN could be transferred to other locations with high energy accelerators such as PSI and DESY. The experience gained with the neutron dosimeter based on CR-39 since introduction of the

  11. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  12. The effect of fast neutrons, as compared with X-rays upon mutation spectrum and mutation frequency in Arabidopsis thaliana (L.) Heynh. and Hordeum vulgare L. in relation to evaluation of the BARN-reactor

    International Nuclear Information System (INIS)

    Dellaert, L.M.W.

    1980-01-01

    Explanations were sought for the 'saturation' in mutant frequency, observed after relatively high irradiation doses (fast neutrons and X-rays) in Arabidopsis thaliana (L.) Heynh, when scoring for mutants is done in the siliques (Mueller's embryotest) of the 'main' inflorescence of M 1 -plants. Studies have been carried out on the effect of the presence of dithiothreitol (DTT) during irradiation, on fast neutron and X-ray induced M 1 -ovule sterility, M 2 -embryonic lethals, M 2 -chlorophyll mutants and M 2 -viable mutants in Arabidopsis thaliana. It was found that DTT provides considerable protection against both fast neutron and X-ray induced genetic damage. (Auth.)

  13. Designing research of fast neutron radiation field based on the reactor

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Zhang Xiaomin

    2009-01-01

    Based on the Tsinghua University experimental nuclear reactor neutron source, this research designed moderate theory technical scheme, and the thickness of materials in the scheme were selected by means of Monte Carlo simulating method. An fast neutron radiation field was gained. (authors)

  14. A hepatectomized case of hepatocellular carcinoma after fast neutron irradiation therapy

    International Nuclear Information System (INIS)

    Nagashima, Tohru; Ryu, Takamasa; Watanabe, Yoshiji

    1985-01-01

    A 51-year-old male patient with hepatocellular carcinoma was treated preoperatively by fast neutron radiotherapy (910 rad/7 fractions/15 days) with a field of 8 x 6 cm. Radiation-associated liver function disturbance was scarcely observed. No side effect, such as loss of appetite and general fatigue, was encountered. According to the classification of Ohoshi and Shimosato, histological effect of radiation was graded as II sub(A). There is no preoperative fast neutron radiotherapy for hepatocellular carcinoma in Japan in the literature. (Namekawa, K.)

  15. Experimental Determination of the Neutron Radiation-Dose Distribution in the Human Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Stipcic, Neda [Institute Rudjer Bogkovic, Zagreb, Yugoslavia (Serbia)

    1967-01-15

    The quality of the radiation delivering the radiation dose to the human phantom is quite different from that of the incident neutron beam. This paper describes the experimental investigation of the variation of neutron dose related to the variation of neutron fluence with depth in the human phantom. The distribution of neutron radiation was determined in the human phantom - a cube of paraffin wax 25 cm x 25 cm x 50 cm with a density of 0.92 cm{sup -3}. Po-Be and Ra-Be point sources were used as neutron sources. Neutron fluences were measured using different types of detector: scintillation detector, BF{sub 3} counter, and nuclear-track emulsions. Since the fluence measurements with these three types of detectors were carried out under the same experimental conditions, it was possible to separate and analyse each part of the radiation dose in the paraffin. From the investigations, the distribution of the total radiation dose was obtained as a function of the paraffin depth. The maximum value of this dose distribution is constant with respect to the distance between the source and the paraffin phantom. From the results obtained, some conclusions may be drawn concerning the amount of absorbed radiation dose in the human phantom. (author)

  16. Reprocessing of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Bourgeois, M.

    1981-05-01

    A PUREX process specially adapted to fast neutron reactor fuels is employed. The results obtained indicate that the aqueous process can be applied to this type of fuel: almost 10 years operation at the AT 1 plant which processes fuel from RAPSODIE; the good results obtained at the MARCOULE pilot plant on large batches of reference fuels. The CEA is continuing its work to transfer this technology onto an industrial scale. Industrial prototypes and the launching of the TOR (traitement d'oxydes rapides) project will facilitate this transfer. In 1984, it is expected that fast fuels will be able to be processed on a significant scale and that supplementary R and D facilities will be available [fr

  17. SWAN - Detection of explosives by means of fast neutron activation analysis

    International Nuclear Information System (INIS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-01-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project “Accelerators & Detectors” (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  18. Development of fast neutron therapy worldwide. Radiobiological, clinical and technical aspects

    International Nuclear Information System (INIS)

    Wambersie, A.; Richard, F.; Breteau, N.

    1994-01-01

    Radiobiological data indicate that fast neutrons could bring a benefit in the treatment of some tumour types, and suggest mechanisms through which this benefit could be achieved. However, radiobiology also clearly indicates that there is a need for patient selection as well as for a high-physical selectivity. The main difficulty when interpreting the results of neutron therapy are the poor technical conditions in which the first treatments were applied. This explains why the value and the place of neutron therapy are not universally recognized, although more than 15000 patients have been treated so far worldwide. There are, however, clinical indications of fast neutrons bringing a benefit for the following tumour sites: salivary glands, paranasal sinuses, soft tissue sarcomas, prostatic adenocarcinomas, palliative treatment of melanoma and rectum. These tumours represent about 10-15% of all patients currently referred to the radiation therapy departments. (orig.)

  19. NeuLand submodules exposed to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gasparic, Igor [Technische Univ. Darmstadt (Germany); Rudjer Boskovic Institute, Zagreb (Croatia); Aumann, Thomas [Technische Univ. Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Boretzky, Konstanze; Heil, Michael; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Jaehrling, Simon [Technische Univ. Darmstadt (Germany); Collaboration: R3B-Collaboration

    2013-07-01

    Within the R{sup 3}B collaboration (Reactions with Relativistic Radioactive Beams), a new neutron detector NeuLAND (New Large Area Neutron Detector) is being developed. The technical design was finalized in November 2011, a fully active scintillator concept was chosen. It will be a box-shaped 2.5 x 2.5 x 3 m{sup 3} detector consisting of 3000 scintillator bars arranged in 60 planes with mutually orthogonal orientation. An array of 150 NeuLAND bars was exposed to fast ''mono-energetic'' neutrons stemming from quasi-free deuteron breakup reactions on a CH{sub 2} target (250 to 1500 AMeV). The experiment carried out at GSI in Nov. 2012 aims for determination of both time resolution and efficiency of NeuLAND submodules. Preliminary results of the analysis are presented.

  20. Neutron irradiation of seeds 2

    Energy Technology Data Exchange (ETDEWEB)

    1968-10-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs.

  1. Neutron irradiation of seeds 2

    International Nuclear Information System (INIS)

    1968-01-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs

  2. Experimental method research on neutron equal dose-equivalent detection

    International Nuclear Information System (INIS)

    Ji Changsong

    1995-10-01

    The design principles of neutron dose-equivalent meter for neutron biological equi-effect detection are studied. Two traditional principles 'absorption net principle' and 'multi-detector principle' are discussed, and on the basis of which a new theoretical principle for neutron biological equi-effect detection--'absorption stick principle' has been put forward to place high hope on both increasing neutron sensitivity of this type of meters and overcoming the shortages of the two traditional methods. In accordance with this new principle a brand-new model of neutron dose-equivalent meter BH3105 has been developed. Its neutron sensitivity reaches 10 cps/(μSv·h -1 ), 18∼40 times higher than that of all the same kinds of meters 0.23∼0.56 cps/(μSv·h -1 ), available today at home and abroad and the specifications of the newly developed meter reach or surpass the levels of the same kind of meters. Therefore the new theoretical principle of neutron biological equi-effect detection--'absorption stick principle' is proved to be scientific, advanced and useful by experiments. (3 refs., 3 figs., 2 tabs.)

  3. Comparison of Experiment and Simulation of the triple GEM-Based Fast Neutron Detector

    International Nuclear Information System (INIS)

    Wang Xiao-Dong; Luo Wen; Zhang Jun-Wei; Yang He-Run; Duan Li-Min; Lu Chen-Gui; Hu Rong-Jiang; Hu Bi-Tao; Zhang Chun-Hui; Yang Lei; Zhou Jian-Rong; An Lv-Xing

    2015-01-01

    A detector for fast neutrons based on a 10 × 10 cm"2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented. (paper)

  4. Scanning of Cargo Containers by Gamma-Ray and Fast Neutron Radiography

    International Nuclear Information System (INIS)

    Yousri, A.M.; Bashter, I.I.; Megahid, M.R.; Osman, A.M.; Kansouh, W.A.; Reda, A.M.

    2011-01-01

    This paper describes the combined systems which were installed and tested to detect contraband smuggled in cargo containers. These combined systems are based on radiographers work by gamma-rays emitted from point source 60 Co with 0.5 Ci activity and neutrons emitted from point isotopic sources of Pu-α-Be as well as 14 MeV neutrons emitted from sealed tube neutron generator. The transmitted gamma ray through the inspected object was measured by gamma detection system with NaI(Tl) detector while the transmitted fast neutron beam was measured by a neutron gamma detection system with stilbene organic scintillator. The later possess the capability of discrimination between between gamma and neutron pulses using a discrimination system based on pulse shape discrimination method. The measured intensities of primary incident and transmitted beams of gamma-rays and fast neutrons were used to construct 2D cross-sectional images of the inspected objects hidden directly within benign materials of the container and for object screened by high dense material to stop object detection by gamma or X-rays. The constructed images for the inspected objects show the good capability and effectiveness of the installed gamma and neutron radiographers to detect illicit materials hidden in air cargo containers and sea containers of med size. They have also indicated that the developed scanning systems possess the ease of mobility and low cost of scanning

  5. High sensitivity MOSFET-based neutron dosimetry

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Konstantakos, V.; Zamani, M.; Siskos, S.; Laopoulos, T.; Sarrabayrouse, G.

    2010-01-01

    A new dosemeter based on a metal-oxide-semiconductor field effect transistor sensitive to both neutrons and gamma radiation was manufactured at LAAS-CNRS Laboratory, Toulouse, France. In order to be used for neutron dosimetry, a thin film of lithium fluoride was deposited on the surface of the gate of the device. The characteristics of the dosemeter, such as the dependence of its response to neutron dose and dose rate, were investigated. The studied dosemeter was very sensitive to gamma rays compared to other dosemeters proposed in the literature. Its response in thermal neutrons was found to be much higher than in fast neutrons and gamma rays.

  6. The fast neutron response of 7LiF thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1990-02-01

    A series of experiments was performed in 1982 to determine the neutron energy response of the 7 LiF thermoluminescent dosemeter (TLD) employed in European zero power fast reactor gamma-ray energy deposition studies. Preliminary results of this work were included in a 1985 International experimental data-base of TLD neutron sensitivities and provided the most consistent set of data within the 7 LiF compilation. A more detailed interpretation of these data has improved the results still further, giving a mean relative neutron to gamma efficiency of 0.118±0.005. The main objective of this re-evaluation was to establish recommended neutron energy response values to replace a 1974 data set for the analysis of in-core fast reactor measurements. This was achieved by combining the mean experimental relative efficiency of 0.118 with calculated energy dependent kerma factors. The kerma factors for the TLD were based on US National Bureau of Standards values and a composition determined by chemical analysis. Adoption of the revised neutron energy response data set produces a small increase in the measured gamma-ray energy deposition of typically 2% relative to the 1974 data. However, more importantly, the detailed analysis of the experimental response data has significantly improved confidence in the neutron corrections applied to in-core TLD gamma-ray energy deposition measurements. (author)

  7. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  8. Fast-neutron-induced fission of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2017-01-01

    Full Text Available The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  9. Fast neutron activation analysis at Texas A and M University

    International Nuclear Information System (INIS)

    James, W.D.

    1997-01-01

    Fast neutron generators are used at Texas A and M University to provide a supply of high energy neutrons for nuclear analytical measurements. A series of neutron activation analysis procedures have been developed for determining various major, minor and trace constituents in a variety of materials. These procedures are primarily developed to compliment our reactor based NAA program, thereby expanding the list of determinable elements to include those difficult or impossible to measure using thermal neutrons. A few typical methods are discussed. The unique implementation of the methodologies at Texas A and M are explained. (author)

  10. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  11. Sensitivities and interferences in activation analysis with cyclotron-produced fast neutrons

    International Nuclear Information System (INIS)

    Esprit, M.; Vandecasteele, C.; Hoste, J.

    1985-01-01

    Fast neutrons are produced by irradiation of a thick beryllium target with deuterons from a cyclotron. The spatial neutron flux distribution was studied. Ge(Li) gamma-ray spectrometry was used to measure the radionuclides produced. Detection limits are tabulated along with the nuclear interferences. (author)

  12. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  13. Eurados trial performance test for neutron personal dosimetry

    DEFF Research Database (Denmark)

    Bordy, J.M.; Stadtmann, H.; Ambrosi, P.

    2001-01-01

    This paper reports on the results of a neutron trial performance test sponsored by the European Commission and organised by EURADOS. As anticipated, neutron dosimetry results were very dependent on the dosemeter type and the dose calculation algorithm. Fast neutron fields were generally well...

  14. Wide-range neutron dose determination with CR-39

    International Nuclear Information System (INIS)

    Arneja, A.R.; Waker, A.J.

    1995-01-01

    Optical density measurements of CR-30 irradiated with 252 Cf neutrons and chemically etched with 6.5 N KOH solution have been used to determine neutron absorbed doses between 0.1 and 10 Gy. Optimum etching conditions will depend upon the absorbed dose. Since it is not always possible to know the range of absorbed dose on a CR-39 dosemeter collected from personnel and area monitor stations in a criticality accident situation, a three-step two-hour chemical etch at 60 o C has been found to be appropriate. If after a total of six hours of chemical etching the optical density is found to be below 0.04 for 500 nm light (transmission > 90%) then further treatment in the form of electrochemical etching can be carried out to determine the lower absorbed dose. In this manner, absorbed doses below 0.1 Gy can be determined by counting tracks over a unit area. (author)

  15. Fast neutron irradiation effects on liver chromatin structure

    International Nuclear Information System (INIS)

    Constantinescu, B.; Radu, L.

    1996-01-01

    The growing interest in neutron therapy requires complex studies on the mechanisms of neutron action on biological systems, especially on chromatin. The chromatin was extracted from a normal tissue-livers of Wistar rats - and from a tumoral tissue - Walker tumour maintained on Wistar rats. Irradiation doses from 5 Gy to 100 Gy by fast neutron intense beams produced via d(13.5 MeV) +Be (thick target) reaction at Bucharest U-120 Classical Cyclotron were used. To study the post-irradiation effects, various methods were employed. So, the variation in the 260 nm absorbency in chromatin thermal transition was pursuit. The chromatin-ethidium bromide complexes fluorescence with λ ex =480 nm and λ em =600 nm was analyzed. To determine chromatin DNA strand breaks a fluorimetric method, with cells' suspensions as starting material was used. This method requires a partial treatment with alkali producing three components: T-estimating the total fluorescence of DNA double helix, P-assigning the untwisting rate and B-the blank, where DNA is completely unfolded The percentsge of DNA double strand,-D-, remaining after this treatment, is: %D=100x(P-B)/(T-B). The intrinsic chromatin fluorescence was determined for tyrosine (λ ex =280 nm, λ em =305 nm), specific for badic chromatin prooteins, and for tryptophane (λ ex =290 nm, λ em =345 nm) specific for acid chromatin proteins. Polyacrylamide gel electrophoresis was performed: The double fluorescent labelling of chromatin was realized with acridine orange for DNA and with dansyl chloride for chromatin proteins. Fluorescence intensity determinations were done with λ ex =505 nm, λ em =530 nm for acridine orange and with λ ex =323 nm, λ em =505 nm for dansyl chloride. A Pye Unicam SP 1800 spectrophotometer and a Aminco SPF 500 spectrofluorimeter were employed. (author)

  16. Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms

    International Nuclear Information System (INIS)

    Domingo, C.; Garcia-Fuste, M.J.; Morales, E.; Amgarou, K.; Terron, J.A.; Rosello, J.; Brualla, L.; Nunez, L.; Colmenares, R.; Gomez, F.; Hartmann, G.H.; Sanchez-Doblado, F.; Fernandez, F.

    2010-01-01

    A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above ∼8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

  17. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  18. SU-E-T-566: Neutron Dose Cloud Map for Compact ProteusONE Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Patel, B; Syh, J; Rosen, L; Wu, H [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: To establish the base line of neutron cloud during patient treatment in our new compact Proteus One proton pencil beam scanning (PBS) system with various beam delivery gantry angles, with or without range shifter (RS) at different body sites. Pencil beam scanning is an emerging treatment technique, for the concerns of neutron exposure, this study is to evaluate the neutron dose equivalent per given delivered dose under various treatment conditions at our proton therapy center. Methods: A wide energy neutron dose equivalent detector (SWENDI-II, Thermo Scientific, MA) was used for neutron dose measurements. It was conducted in the proton therapy vault during beam was on. The measurement location was specifically marked in order to obtain the equivalent dose of neutron activities (H). The distances of 100, 150 and 200 cm at various locations are from the patient isocenter. The neutron dose was measured of proton energy layers, # of spots, maximal energy range, modulation width, field radius, gantry angle, snout position and delivered dose in CGE. The neutron dose cloud is reproducible and is useful for the future reference. Results: When distance increased the neutron equivalent dose (H) reading did not decrease rapidly with changes of proton energy range, modulation width or spot layers. For cranial cases, the average mSv/CGE was about 0.02 versus 0.032 for pelvis cases. RS will induce higher H to be 0.10 mSv/CGE in average. Conclusion: From this study, neutron per dose ratio (mSv/CGE) slightly depends upon various treatment parameters for pencil beams. For similar treatment conditions, our measurement demonstrates this value for pencil beam scanning beam has lowest than uniform scanning or passive scattering beam with a factor of 5. This factor will be monitored continuously for other upcoming treatment parameters in our facility.

  19. Fast neutron dosimetry by means of different solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    1977-01-01

    The comparative study of three different types of fast neutron dosimeters based on solid state nuclear track detectors is presented; the dosimeters studied were: - microscopic soda glass in contact with 232 Th; - polycarbonate Makrofol E; and - cellulose nitrate Kodak LR 115. All detectors were evaluated by visual counting in a microscope. The authors have studied such properties as the background, angular as well as energetical dependences of detectors. The results obtained show that all studied detectors are suitable for fast neutron dosimetry; their application depends however on the concrete experimental conditions (neutron spectrum, fluence etc.). Both advantages and disadvantages of each of them are presented. (Auth.)

  20. Measurement and evaluation of fast neutron flux of CT and OR5 irradiation hole in HANARO

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Choo, Kee Nam; Lee, Seung-Kyu; Kim, Yong Kyun

    2012-01-01

    The irradiation test has been conducted to evaluate the irradiation performance of many materials by a material capsule at HANARO. Since the fast neutron fluence above 1 MeV is important for the irradiation test of material, it must be measured and evaluated exactly at each irradiation hole. Therefore, a fast neutron flux was measured and evaluated by a 09M-02K capsule irradiated in an OR5 irradiation hole and a 10M-01K capsule irradiated in a CT irradiation hole. Fe, Ni, and Ti wires as the fluence monitor were used for the detection of fast neutron flux. Before the irradiation test, the neutron flux and spectrum was calculated for each irradiation hole using an MCNP code. After the irradiation test, the activity of the fluence monitor was measured by an HPGe detector and the reaction rate was calculated. For the OR5 irradiation hole, the radial difference of the fast neutron flux was observed from a calculated data due to the OR5 irradiation hole being located outside the core. Furthermore, a control absorber rod was withdrawn from the core as the increase of the irradiation time at the same irradiation cycle, so the distribution of neutron flux was changed from the beginning to the end of the cycle. These effects were considered to evaluate the fast neutron flux. Neutron spectrums of the CT and OR5 irradiation hole were adjusted by the measured data. The fluxes of a fast neutron above 1 MeV were compared with calculated and measured value. Although the maximum difference was shown at 18.48%, most of the results showed good agreement. (author)

  1. Fast neutron irradiation effects on CR-39 nuclear track detector for dosimetric applications

    International Nuclear Information System (INIS)

    Kader, M.H.

    2005-01-01

    The effect of neutron irradiation on the dosimetric properties of CR-39 solid-state nuclear track detector have been investigated. CR-39 samples were irradiated with neutrons of energies follow a Maxwellian distribution centered about 2 MeV. These samples were irradiated with different doses in the range 0.1-1 Sv. The background and track density were measured as a function of etching time. In addition, the dependence of sensitivity of CR-39 detector on the neutrons dose has been investigated. The results show that the Sensitivity started to increase at 0.4 Sv neutrons dose, so this sample were chosen to be a subject for further study to investigate the effect of gamma dose on its properties. The sample irradiated with 0.4 Sv were exposed to different doses of gamma rays at levels between 10 and 80 kGy. The effect of gamma doses on the bulk etching rate VB, the track diameter and the sensitivity of the CR-39 samples was investigated. The results show that the dosimetric properties of CR-39 SSNTD are greatly affected by both neutron and gamma irradiation

  2. Preliminary research on measuring grease in petroleum pipeline using fast neutron transmission method

    International Nuclear Information System (INIS)

    Liu Qingwei; Liu Shengkang; Zhang Zhiping; Ding Xiaoping

    2006-01-01

    The principle, experiment and conclusion on the grease stain measurement using fast neutron are reported. The experiment equipment consist of 241 Am-Be fast neutron source, ZnS detector and BH1224 multichannel spectrometer. Paraffin is used instead of real grease stain. Steel plates are used instead of pipeline. The results of the experiment indicate that there is a good linearship between the logarithm of the reciprocal of the neutron transmissivity and the paraffin thickness. The measuring accuracy of the paraffin thickness is 0.6 mm in this experiment. (authors)

  3. Cr-39 fast neutron dosemeter based on A (n, α) converter

    International Nuclear Information System (INIS)

    Widayati, S.; Budiantari, T.

    1998-01-01

    The aim of this experiment is to obtained the response of Cr-39 as fast neutron dosemeter based on an (n, α) converter. Cr-39 was irradiated to AmBe fast neutron flux from 0.10 mSv to 2.5 mSv. Cr-39 processed by chemical etching with NaOH 20 % at temperature of 60 oC in six hours. The results of experiment showed that the response of Cr-39 based on an (n, α) converter is 6 times bigger than the response of Cr-39 without (n, α) converter. (author)

  4. Properties of SiC semiconductor detector of fast neutrons investigated using MCNPX code

    International Nuclear Information System (INIS)

    Sedlakova, K.; Sagatova, A.; Necas, V.; Zatko, B.

    2013-01-01

    The potential of silicon carbide (SiC) for use in semiconductor nuclear radiation detectors has been long recognized. The wide bandgap of SiC (3.25 eV for 4H-SiC polytype) compared to that for more conventionally used semiconductors, such as silicon (1.12 eV) and germanium (0.67 eV), makes SiC an attractive semiconductor for use in high dose rate and high ionization nuclear environments. The present work focused on the simulation of particle transport in SiC detectors of fast neutrons using statistical analysis of Monte Carlo radiation transport code MCNPX. Its possibilities in detector design and optimization are presented.(authors)

  5. Long-term prognosis of maxillary sinus malignant tumor patients treated by fast neutron radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Hirohisa; Numata, Tsutomu; Yuza, Jun; Suzuki, Haruhiko; Konno, Akiyoshi [Chiba Univ. (Japan). School of Medicine; Miyamoto, Tadaaki

    1995-03-01

    From 1976 through 1990, 19 patients with maxillary sinus malignant tumor were treated with combination therapy consisting of maxillectomy and radiation of fast neutron. Fast neutron radiotherapy was performed at National Institute of Radiological Sciences. Eight patients had adenoid cystic carcinomas, three patients squamous cell carcinomas, one patient a carcinoma in pleomorphic adenoma, four patients fibrosarcomas, one patient osteosarcoma, one patient chondrosarcoma and one patient rhabdomyosarcoma. Fast neutron therapy after/before surgery was effective in fresh cases with T2-3N0M0 adenoid cystic carcinomas and sarcomas (except for fibrosarcoma). Nine patients were alive more than three years after treatment. And serious complications of fast neutron radiation therapy appeared in six of these nine patients. Visual impairment of opposite side occurred in four patients. Bone necrosis occured in one patient and brain dysfunction in one patient. (author).

  6. Long-term prognosis of maxillary sinus malignant tumor patients treated by fast neutron radiation therapy

    International Nuclear Information System (INIS)

    Kishi, Hirohisa; Numata, Tsutomu; Yuza, Jun; Suzuki, Haruhiko; Konno, Akiyoshi; Miyamoto, Tadaaki.

    1995-01-01

    From 1976 through 1990, 19 patients with maxillary sinus malignant tumor were treated with combination therapy consisting of maxillectomy and radiation of fast neutron. Fast neutron radiotherapy was performed at National Institute of Radiological Sciences. Eight patients had adenoid cystic carcinomas, three patients squamous cell carcinomas, one patient a carcinoma in pleomorphic adenoma, four patients fibrosarcomas, one patient osteosarcoma, one patient chondrosarcoma and one patient rhabdomyosarcoma. Fast neutron therapy after/before surgery was effective in fresh cases with T2-3N0M0 adenoid cystic carcinomas and sarcomas (except for fibrosarcoma). Nine patients were alive more than three years after treatment. And serious complications of fast neutron radiation therapy appeared in six of these nine patients. Visual impairment of opposite side occurred in four patients. Bone necrosis occured in one patient and brain dysfunction in one patient. (author)

  7. Application of Van Hove theory to fast neutron inelastic scattering

    International Nuclear Information System (INIS)

    Stanicicj, V.

    1974-11-01

    The Vane Hove general theory of the double differential scattering cross section has been used to derive the particular expressions of the inelastic fast neutrons scattering kernel and scattering cross section. Since the considered energies of incoming neutrons being less than 10 MeV, it enables to use the Fermi gas model of nucleons. In this case it was easy to derive an analytical expression for the time-dependent correlation function of the nucleus. Further, by using an impulse approximation and a short-collision time approach, it was possible to derive the analytical expression of the scattering kernel and scattering cross section for the fast neutron inelastic scattering. The obtained expressions have been used for Fe nucleus. It has been shown a surprising agreement with the experiments. The main advantage of this theory is in its simplicity for some practical calculations and for some theoretical investigations of nuclear processes

  8. Determination of fast neutron fluence at WWER-1000 pressure vessel

    International Nuclear Information System (INIS)

    Valenta, V. et al.

    1989-01-01

    The influence function method is an effective tool making it possible, by means of tabulated values to rapidly perform three-dimensional calculations of fast neutron fluences for various reactor core loadings and for various nuclear power plant units. The procedure for determining the spatial dependence of the fast neutron fluences in a WWER-1000 pressure vessel is described. For this, the reactor core is divided into sufficiently fine volume elements within which the neutron source can be regarded as coordinate-independent. The influence functions point to a substantial role of sources lying at the reactor core periphery. In WWER-1000 reactors, only 1 or 2 rows of peripheral assemblies are important. The influence function method makes possible a rapid and easy determination of preconditions for the assessment of the residual lifetime of the pressure vessel based on the actual reactor core loadings. (Z.M.). 7 figs., 8 refs

  9. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-03-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  10. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2006-01-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  11. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    International Nuclear Information System (INIS)

    Blackston, Matthew A.; Hausladen, Paul

    2010-01-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  12. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    International Nuclear Information System (INIS)

    Verbeke, Jerome M.

    1999-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only

  13. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  14. The Edinburgh experience of fast neutron therapy

    International Nuclear Information System (INIS)

    Duncan, W.; Arnott, S.J.; Orr, J.A.; Kerr, G.R.

    1982-01-01

    The Edinburgh experience is based on a d(15 + Be) neutron beam generated by a compact CS 30 Cyclotron. The facility has an iso-center treatment head providing 240 0 of rotation. The most important limitation of the beam is its poor penetrating quality. We have compared neutron therapy alone given in 20 daily fractions over four weeks with photon therapy given in the same fractionation schedule. Since clinical studies began in March, 1977, over 500 patients have been treated by fast neutrons. Almost all patients are now admitted to randomly controlled trials. In the head and neck trial conducted in collaboraton with colleagues in Amsterdam and Essen, 92 patients are available for analysis. Most patients had T3 lesions and about 50% had involved nodes. The cumulative regression rate at six months is similar after neutrons and photons (75%). Later recurrence rates (36%) are also similar. The early radiation morbidity is similar in both groups, but the late reactions are greater after neutrons (15%) than photons (6%). Overall survival is better after photon therapy. A trial of patients with glioblastoma has also shown a better survival after photon therapy. Neutron therapy was associated with demelinization in three of 18 patients. Patients with transitional cell cancer of the bladder have also been the subject of study. Local tumor control was similar (53%) after neutrons and photons. Late radiation morbidity was much greater after neutrons (20%), compared with photons (2%). In a trial of advanced carcinoma of the rectum, the local tumor control was also similar after neutrons and photons (30%), but morbidity was greater after neutrons. Soft tissue sarcomas have shown response rates (37%) that may be expected after photon therapy

  15. SWAN - Detection of explosives by means of fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gierlik, M., E-mail: m.gierlik@ncbj.gov.pl; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-21

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project “Accelerators & Detectors” (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  16. Workshop on the next plan for the study of 'physics of fast neutron reactions and measurements'

    International Nuclear Information System (INIS)

    1985-03-01

    A work shop titled ''Physics of fast neutron reaction and measurements'' was held on 25 December 1984, where discussions were made on the new approach and techniques for neutron measurements. The possibilities of experimental tests with AVF cyclotron was also discussed. The followings are the list of papers presented at the work shop (all papers are written in Japanese except for the abstracts). (1) Monoenergetic neutron beam in Tohoku Cyclotron. (2) Spin-dependent response probed in (p,n) and (n,p) reactions. (3) Measurement of D(n,p) 2n reaction and instrumentation for (n,x) reactions in the 40 - 80 MeV region. (4) Two comments related to the neutron reaction. (5) High energy neutron production facilities in the world and a possibility of neutron induced reaction experiments at RCNP. (6) A neutron counter by detection of recoil protons with solid state detectors and development of neutron source by heavy ions. (7) The measurement of neutrons with the recoil detector. (8) Polarization transfer measurements (Py, Dss, Ds 1 , · · ·) with fast neutron beams. (9) Neutron elastic scattering. (10) Neutron capture gamma reaction and effective charge. (11) Comparison between neutron and charged particle induced reactions. (12) Study of giant resonances by fast neutrons. (Aoki, K.)

  17. Computer aided design of fast neutron therapy units

    International Nuclear Information System (INIS)

    Gileadi, A.E.; Gomberg, H.J.; Lampe, I.

    1980-01-01

    Conceptual design of a radiation-therapy unit using fusion neutrons is presently being considered by KMS Fusion, Inc. As part of this effort, a powerful and versatile computer code, TBEAM, has been developed which enables the user to determine physical characteristics of the fast neutron beam generated in the facility under consideration, using certain given design parameters of the facility as inputs. TBEAM uses the method of statistical sampling (Monte Carlo) to solve the space, time and energy dependent neutron transport equation relating to the conceptual design described by the user-supplied input parameters. The code traces the individual source neutrons as they propagate throughout the shield-collimator structure of the unit, and it keeps track of each interaction by type, position and energy. In its present version, TBEAM is applicable to homogeneous and laminated shields of spherical geometry, to collimator apertures of conical shape, and to neutrons emitted by point sources or such plate sources as are used in neutron generators of various types. TBEAM-generated results comparing the performance of point or plate sources in otherwise identical shield-collimator configurations are presented in numerical form. (H.K.)

  18. Personnel neutron dosimetry using TLD elements at PNC

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu

    1985-01-01

    The evaluation method of neutron dose equivalent was studied on the basis of the albedo type neutron dosimetory to design the personnel dosimeter. The dosimeter was composed of three 6 Li 2 10 B 4 O 7 (Cu) TL elements and one 7 Li 2 11 B 4 O 7 (Cu) element. The equations for assessing thermal, epithermal and fast neutron dose equivalents were derived by 252 Cf, 241 Am-Be and PuO 2 neutron sources. The minimum detectable amount of 6 Li 2 10 B 4 O 7 (Cu) element to thermal neutron was 0.02 m rem. The neutron dose equivalent and the gamma one were evaluated separately within about 20 % error in the mixed radiation field. (author)

  19. Detection of land mines using fast and thermal neutron analysis

    International Nuclear Information System (INIS)

    Bach, P.

    1998-01-01

    The detection of land mines is made possible by using nuclear sensor based on neutron interrogation. Neutron interrogation allows to detect the sensitive elements (C, H, O, N) of the explosives in land mines or in unexploded shells: the evaluation of characteristic ratio N/O and C/O in a volume element gives a signature of high explosives. Fast neutron interrogation has been qualified in our laboratories as a powerful close distance method for identifying the presence of a mine or explosive. This method could be implemented together with a multisensor detection system - for instance IR or microwave - to reduce the false alarm rate by addressing the suspected area. Principle of operation is based on the measurement of gamma rays induced by neutron interaction with irradiated nuclei from the soil and from a possible mine. Specific energy of these gamma rays allows to recognise the elements at the origin of neutron interaction. Several detection methods can be used, depending on nuclei to be identified. Analysis of physical data, computations by simulation codes, and experimentations performed in our laboratory have shown the interest of Fast Neutron Analysis (FNA) combined with Thermal Neutron Analysis (TNA) techniques, especially for detection of nitrogen 14 N, carbon 12 C and oxygen 16 O. The FNA technique can be implemented using a 14 MeV sealed neutron tube, and a set of detectors. The mines detection has been demonstrated from our investigations, using a low power neutron generator working in the 10 8 n/s range, which is reasonable when considering safety rules. A fieldable demonstrator would be made with a detection head including tube and detectors, and with remote electronics, power supplies and computer installed in a vehicle. (author)

  20. Direct fast neutron detection: A status report

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Hansen, R.R.; Craig, R.A.; Hensley, W.K.; Hubbard, C.W.; Keller, P.E.; Reeder, P.L.; Sunberg, D.S.

    1997-12-01

    This report describes the status of efforts to develop direct fast-neutron detection via proton recoil within plastic scintillator. Since recording proton recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the different pulse shapes that are to be expected primarily on the basis of the slower speed of the recoiling fission neutrons. Should this effort ultimately prove successful, the resulting novel technology will have the potential to significantly lower cost and increase capability for a number of critical neutron-detection applications. Considerable progress has been made toward a clear and compelling demonstration of this new technique. An exhaustive theoretical and numerical investigation of the method has been completed. The authors have been able to better understand the laboratory results and estimate the performance that could ultimately be achieved using the proposed technique. They have assessed the performance of a number of different algorithms for discriminating between neutron and gamma ray events. The results of this assessment will be critical when the construction of low-cost, field-portable neutron detectors becomes necessary. Finally, a laboratory effort to realize effective discrimination is well underway and has resulted in partial success

  1. Occupational dose due to neutrons in medical linear accelerators

    International Nuclear Information System (INIS)

    Larcher, Ana M.; Bonet Duran, Stella M.; Lerner, Ana M.

    2000-01-01

    This paper describes a semi-empirical method to calculate the occupational dose due to neutrons and capture gamma rays in medical linear accelerators. It compares theoretical dose values with measurements performed in several 15 MeV medical accelerators installed in the country. Good agreement has been found between calculations made using the