WorldWideScience

Sample records for fast muscle fibres

  1. The role of Six1 in muscle progenitor cells and the establishment of fast-twitch muscle fibres

    OpenAIRE

    Nord, Hanna

    2014-01-01

    Myogenesis is the process of skeletal muscle tissue formation where committed muscle progenitor cells differentiate into skeletal muscle fibres. Depending on the instructive cues the muscle progenitor cells receive they will differentiate into specific fibre types with different properties. The skeletal muscle fibres can be broadly classified as fast-twitch fibres or slow-twitch fibres, based on their contractile speed. However, subgroups of fast- and slow-twitch fibres with different metabol...

  2. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    Science.gov (United States)

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  3. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  4. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  5. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    2001-01-01

    The effects of a ramp stretch (amplitude muscle fibre length (L0), speed twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in

  6. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    1998-04-01

    1. The tension and sarcomere length responses induced by ramp stretches (at amplitudes of 1-3 % fibre length (Lo) and speeds of 0.01-12 Lo s-1) were examined at different temperatures (range, 10-35 degrees C) in resting intact muscle fibre bundles isolated from the soleus (a slow-twitch muscle) and extensor digitorum longus (a fast-twitch muscle) of the rat. Some observations are also presented on the effects of chemical skinning on passive viscoelasticity at 10 degrees C. 2. As previously reported, the tension response to a ramp stretch, in different preparations and under various conditions, could be resolved into a viscous (P1), a viscoelastic (P2) and an elastic (P3) component and showed characteristic differences between slow and fast muscle fibres. 3. Chemical skinning of the muscle fibres led to a decrease in the amplitude of all three tension components. However, the fast-slow fibre differences remained after skinning. For example, the viscosity coefficient derived from P1 tension data decreased from 0.84 +/- 0.06 before skinning to 0.44 +/- 0.06 kN s m-2 after skinning in fast fibres; the corresponding values in slow fibres were 2.1 +/- 0.08 and 0.87 +/- 0.09 kN s m-2, respectively. 4. Increasing the experimental temperature from 10 to 35 degrees C led to a decrease in all the tension components in both fast and slow muscle fibre bundles. The decrease of P1 (viscous) tension was such that the viscosity coefficient calculated using P1 data was reduced from 0.84 +/- 0.1 to 0.43 +/- 0.05 kN s m-2 in fast fibres and from 2.0 +/- 0.1 to 1.0 +/- 0.1 kN s m-2 in slow fibres (Q10 of approximately 1.3 in both). 5. In both fast and slow muscle fibre preparations, the plateau tension of the viscoelastic component (P2) decreased by 60-80 % as the temperature was increased from 10 to 35 degrees C giving P2 tension a Q10 of approximately 1.4 in slow fibres and approximately 1.7 in the fast fibres. Additionally, the relaxation time of the viscoelasticity decreased from

  7. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  8. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    Science.gov (United States)

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  9. Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods.

    Science.gov (United States)

    Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J

    2010-10-01

    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.

  10. New Insights into Muscle Fibre Types in Casertana Pig

    Directory of Open Access Journals (Sweden)

    Salvatore Velotto

    2010-01-01

    Full Text Available Little is known about the Casertana pig. The aim of this study was to evaluate the effect of sex on histochemical and morphometrical characteristics of muscle fibres (myocytes in this pure breed and to verify the presence of giant fibres as well as vascularity of the muscle. Finally, maximum shortening velocity and isometric tension were measured in single muscle fibres. Sixteen Casertana pigs (8 males, 8 females from a farm in Campania (Italy were slaughtered at one year of age. Muscle tissues were obtained from psoas minor, rhomboideus and longissimus dorsi. Myofibres were stained for myosin adenosine triphosphatase, succinic dehydrogenase, and α-amylase-periodic acid schiff. For all fibre types, the area and perimeter were measured. Slowtwitch oxidative fibres, fast-twitch glycolytic fibres and fast-twitch oxidative-glycolytic fibres were histochemically differentiated; an image-analyzing system was used. The results showed significant differences between the sexes in the size of all three fibre types. The psoas minor muscle had a high percentage of slow-twitch oxidative fibres and contained more capillaries per fibre and per mm2 than rhomboideus and longissimus dorsi, in which fast-twitch glycolytic fibres dominated. The cross-sectional area of all fibre types was larger in longissimus dorsi than in rhomboideus and psoas minor muscles; the giant fibres were present in the longissimus dorsi muscle only. Besides, isometric tension values were higher in fast-twitch glycolytic fibres than in the other ones. Variations in fibre type composition may contribute to meat quality.

  11. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.

    OpenAIRE

    Salviati, G; Betto, R; Danieli Betto, D

    1982-01-01

    Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide 'maps' published in Cleveland. Fisch...

  12. Altered myoplasmic Ca(2+) handling in rat fast-twitch skeletal muscle fibres during disuse atrophy.

    Science.gov (United States)

    Weiss, Norbert; Andrianjafiniony, Tina; Dupré-Aucouturier, Sylvie; Pouvreau, Sandrine; Desplanches, Dominique; Jacquemond, Vincent

    2010-03-01

    Calcium-dependent signalling pathways are believed to play an important role in skeletal muscle atrophy, but whether intracellular Ca(2+) homeostasis is affected in that situation remains obscure. We show here that there is a 20% atrophy of the fast-type flexor digitorum brevis (FDB) muscle in rats hind limb unloaded (HU) for 2 weeks, with no change in fibre type distribution. In voltage-clamp experiments, the amplitude of the slow Ca(2+) current was found similar in fibres from control and HU animals. In fibres loaded with the Ca(2+) dye indo-1, the value for the rate of [Ca(2+)] decay after the end of 5-100-ms-long voltage-clamp depolarisations from -80 to +10 mV was found to be 30-50% lower in fibres from HU animals. This effect was consistent with a reduced contribution of both saturable and non-saturable components of myoplasmic Ca(2+) removal. However, there was no change in the relative amount of parvalbumin, and type 1 sarco-endoplasmic reticulum Ca(2+)-ATPase was increased by a factor of three in the atrophied muscles. Confocal imaging of mitochondrial membrane potential showed that atrophied FDB fibres had significantly depolarized mitochondria as compared to control fibres. Depolarization of mitochondria in control fibres with carbonyl cyanide-p-trifluoromethoxyphenylhydrazone induced a slowing of the decay of [Ca(2+)] transients accompanied by an increase in resting [Ca(2+)] and a reduction of the peak amplitude of the transients. Overall results provide the first functional evidence for severely altered intracellular Ca(2+) removal capabilities in atrophied fast-type muscle fibres and highlight the possible contribution of reduced mitochondrial polarisation.

  13. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes.

    Science.gov (United States)

    Zhong, Wendy W H; Withers, Kerry W; Hoh, Joseph F Y

    2010-04-01

    Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.

  14. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  15. Distribution of fast myosin heavy chain-based muscle fibres in the gluteus medius of untrained horses: mismatch between antigenic and ATPase determinants

    Science.gov (United States)

    LINNANE, LINDA; SERRANO, A. L.; RIVERO, J. L. L.

    1999-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in muscle biopsies from the gluteus medius of adult untrained horses by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies and standard myofibrillar ATPase (mATPase) histochemistry. Percutaneous needle biopsies were taken at 3 depths (20, 40 and 60 mm) from 4 4-y-old Andalusian stallions. The percentage of ‘pure’ I MHC fibres increased whereas that for pure IIX MHC fibres decreased from the most superficial to the deepest sampling site. Within the fast fibres, types IIA and IIAX MHC-classified fibres were proportionately more abundant in the deepest sampling site than in the superficial region of the muscle. The immunohistochemical and histochemical characterisation of a large number of single fibres (n=1375) was compared and correlated on a fibre-to-fibre basis. The results showed that 40% of the fibres analysed were pure type I (expressing only MHC-I); they showed correct matching between their antigenic and mATPase determinants. In contrast, within the fast fibres, a considerable proportion of fibres were found showing a mismatch between their immunohistochemical and mATPase profiles. The most common mismatched fibre phenotypes comprised fibres displaying coexpression of both fast MHCs when analysed by immunocytochemistry, but showing an mATPase profile similar to typical IIX fibres (moderate mATPase reaction after preincubation at pH 4.4). Considered altogether, the total mismatched fibres represented only 4.2% of the whole fast fibre population in the superficial region of the muscle, but their proportion increased to 15.6% and 38.4% in the middle and deep regions, respectively, of gluteus medius. It is concluded that a considerable number of hybrid fast MHC IIAX fibres are present in the gluteus medius of untrained horses, suggesting that equine type II fibres have probably been misclassified in

  16. A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre

    Directory of Open Access Journals (Sweden)

    Ting Tao

    2007-06-01

    Full Text Available Abstract Background Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established. Results Between E11.5 and E15.5 fast Myosin (FMyHC localises to secondary myotubes evenly distributed throughout the embryonic musculature and gradually increasing in number so that by E15.5 around half contain FMyHC. The Igf-2 pattern closely correlates with FMyHC from E13.5 and peaks at E15.5 when over 90% of FMyHC+ myotubes also contain Igf-2. Igf-2 lags FMyHC and it is absent from muscle myotubes until E13.5. Igf-2 strongly down-regulates by E17.5. A striking feature of the FMyHC pattern is its increased heterogeneity and attenuation in many fibres from E15.5 to day one after birth (P1. Transgenic mice (MIG which express Igf-2 in all of their myotubes, have increased FMyHC staining, a higher proportion of FMyHC+ myotubes and loose their FMyHC staining heterogeneity. In Igf-2 deficient mice (MatDi FMyHC+ myotubes are reduced to 60% of WT by E15.5. In vitro, MIG induces a 50% excess of FMyHC+ and a 30% reduction of SMHyC+ myotubes in C2 cells which can be reversed by Igf-2-targeted ShRNA resulting in 50% reduction of FMyHC. Total number of myotubes was not affected. Conclusion In WT embryos the appearance of Igf-2 in embryonic myotubes lags FMyHC, but by E15.5 around 45% of secondary myotubes contain both proteins. Forced expression of Igf-2 into all myotubes causes an excess, and absence of Igf-2 suppresses, the FMyHC+ myotube component in both embryonic muscle and differentiated myoblasts. Igf-2 is thus required, not for

  17. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  18. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2+) ]cyto (28 nm-1.3 μm) to Ca(2+) -depleted fibres generated t-system Ca(2+) uptake rates dependent on [Ca(2

  19. The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat.

    OpenAIRE

    Cairns, S. P.; Dulhunty, A. F.

    1993-01-01

    1. The aim of the experiments was to examined the effects of beta-adrenoceptor activation on twitch and tetanic contractions in fast- and slow-twitch mammalian skeletal muscle fibres. Isometric force was recorded from bundles of intact fibres isolated from the normal and denervated slow-twitch soleus and normal fast-twitch sternomastoid muscles of the rat. 2. Terbutaline (10 microM), a beta 2-adrenoceptor agonist, induced an average 15% potentiation of peak twitch and peak tetanic force in no...

  20. Nox4 Is Dispensable for Exercise Induced Muscle Fibre Switch.

    Directory of Open Access Journals (Sweden)

    Juri Vogel

    Full Text Available By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice.Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice.Thus, exercise-induced muscle fibre switch is Nox4-independent.

  1. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  2. The expression of NFATc1 in adult rat skeletal muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  3. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism

    Science.gov (United States)

    Lee, Kevin Y.; Singh, Manvendra K.; Ussar, Siegfried; Wetzel, Petra; Hirshman, Michael F.; Goodyear, Laurie J.; Kispert, Andreas; Kahn, C. Ronald

    2015-01-01

    Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. PMID:26299309

  4. S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans.

    Science.gov (United States)

    Mollica, J P; Dutka, T L; Merry, T L; Lamboley, C R; McConell, G K; McKenna, M J; Murphy, R M; Lamb, G D

    2012-03-15

    Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2′-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP–GSH and GSSG–pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP–GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP–GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP–GSH nor any S

  5. Neuromuscular organization of avian flight muscle: architecture of single muscle fibres in muscle units of the pectoralis (pars thoracicus) of pigeon (Columba livia)

    Science.gov (United States)

    Sokoloff, A. J.

    1999-01-01

    The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap 'in-series'. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.

  6. Specific fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle

    Science.gov (United States)

    2010-01-01

    Background An important variability of contractile and metabolic properties between muscles has been highlighted. In the literature, the majority of studies on beef sensorial quality concerns M. longissimus thoracis. M. rectus abdominis (RA) is easy to sample without huge carcass depreciation and may appear as an alternative to M. longissimus thoracis for fast and routine physicochemical analysis. It was considered interesting to assess the muscle fibres of M. rectus abdominis in comparison with M. longissimus thoracis (LT) and M. triceps brachii (TB) on the basis of metabolic and contractile properties, area and myosin heavy chain isoforms (MyHC) proportions. Immuno-histochemical, histochemical, histological and enzymological techniques were used. This research concerned two populations of Charolais cattle: RA was compared to TB in a population of 19 steers while RA was compared to LT in a population of 153 heifers. Results RA muscle had higher mean fibre areas (3350 μm2 vs 2142 to 2639 μm2) than the two other muscles. In RA muscle, the slow-oxidative fibres were the largest (3957 μm2) and the fast-glycolytic the smallest (2868 μm2). The reverse was observed in TB muscle (1725 and 2436 μm2 respectively). In RA muscle, the distinction between fast-oxidative-glycolytic and fast-glycolytic fibres appeared difficult or impossible to establish, unlike in the other muscles. Consequently the classification based on ATPase and SDH activities seemed inappropriate, since the FOG fibres presented rather low SDH activity in this muscle in comparison to the other muscles of the carcass. RA muscle had a higher proportion of I fibres than TB and LT muscles, balanced by a lower proportion either of IIX fibres (in comparison to TB muscle) or of IIA fibres (in comparison to LT muscle). However, both oxidative and glycolytic enzyme activities were lower in RA than in TB muscle, although the LDH/ICDH ratio was higher in RA muscle (522 vs 340). Oxidative enzyme activities were

  7. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  8. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  9. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    Science.gov (United States)

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  10. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  11. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    Science.gov (United States)

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  12. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  13. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    Science.gov (United States)

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

  14. Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements.

    Science.gov (United States)

    Chalmers, Gordon R

    2008-01-01

    Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.

  15. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; Joanisse, Sophie; Leenders, Marika; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2017-04-01

    Adequate muscle fibre perfusion is critical for the maintenance of muscle mass; it is essential in the rapid delivery of oxygen, nutrients and growth factors to the muscle, stimulating muscle fibre growth. Muscle fibre capillarization is known to decrease substantially with advancing age. However, whether (relative) low muscle fibre capillarization negatively impacts the muscle hypertrophic response following resistance exercise training in older adults is unknown. Twenty-two healthy older men (71 ± 1 years) performed 24 weeks of progressive resistance type exercise training. To assess the change in muscle fibre characteristics, percutaneous biopsies from the vastus lateralis muscle were taken before and following 12 and 24 weeks of the intervention programme. A comparison was made between participants who had a relatively low type II muscle fibre capillary-to-fibre perimeter exchange index (CFPE; LOW group) and high type II muscle fibre CFPE (HIGH group) at baseline. Type I and type II muscle fibre size, satellite cell, capillary content and distance between satellite cells to the nearest capillary were determined by immunohistochemistry. Overall, type II muscle fibre size (from 5150 ± 234 to 6719 ± 446 µm 2 , P muscle fibre, P muscle fibre capillarization, whereas muscle fibre size (from 5170 ± 390 to 7133 ± 314 µm 2 , P muscle fibre, P muscle fibre capillarization were observed in response to 12 and 24 weeks of resistance exercise training in both the LOW and HIGH group. Type II muscle fibre capillarization at baseline may be a critical factor for allowing muscle fibre hypertrophy to occur during prolonged resistance exercise training in older men. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  16. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  17. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    Science.gov (United States)

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  18. Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres.

    Science.gov (United States)

    Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W

    2005-01-01

    We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.

  19. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P ... at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation....

  20. Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres.

    Science.gov (United States)

    Takekura, Hiroaki; Tamaki, Hiroyuki; Nishizawa, Tomie; Kasuga, Norikatsu

    2003-01-01

    We have studied the effects of short term denervation followed by reinnervation on the ultrastructure of the membrane systems and on the content of and distribution of key proteins involved in calcium regulation of fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus (SOL) muscle fibres. Ischiadic nerve freezing resulted in total lack of neuromuscular transmission for 3 days followed by a slow recovery, but no decline in twitch force elicited by direct stimulation. The latter measurements indicate no significant atrophy within this time frame. The membrane systems of skeletal muscle fibres were visualized using Ca92+)-K3Fe(CN)6-OsO4 techniques and observed using a high voltage electron microscope. [3H]nitrendipine binding was used to detect levels of dihydropyridine receptor (DHPR) expression. The Ca2+ pumping free sarcoplasmic reticulum domains were not affected by the denervation, but the Ca2+ release domains were dramatically increased, particularly in the FT-EDL muscle fibres. The increase is evidenced by a doubling up of the areas of contacts between SR and transverse (t-) tubules, so that in place of the normal triadic arrangement, pentadic and heptadic junctions, formed by multiple interacting layers of ST and t-tubules are seen. Frequency of pentads and heptads increases and declines in parallel to the denervation and reinnervation but with a delay. Immunofluorecence and electron microscopy observations show presence of DHPR and ryanodine receptor clusters at pentads and heptads junctions. A significant (P muscle fibres indicating that overexpression of DHPRs accompanies the build up extra junctional contacts. The results indicate that denervation reversibly affects the domains of the membrane systems involved in excitation-contraction coupling.

  1. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    Science.gov (United States)

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P fast twitch fibres (P fast twitch fibres by 24 +/- 5 % (P slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P slow twitch fibres, compared to control (no H(2)O(2); P fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  2. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size.

    Science.gov (United States)

    Liu, Jing-Xia; Höglund, Anna-Stina; Karlsson, Patrick; Lindblad, Joakim; Qaisar, Rizwan; Aare, Sudhakar; Bengtsson, Ewert; Larsson, Lars

    2009-01-01

    This comparative study of myonuclear domain (MND) size in mammalian species representing a 100,000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the beta/slow (type I; r = 0.84, P fast IIA MyHC isoform (r = 0.90; P muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.

  3. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  4. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Science.gov (United States)

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.

  5. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  6. Capillarity, oxidative capacity and fibre composition of the soleus and gastrocnemius muscles of rats in hypothyroidism.

    Science.gov (United States)

    Sillau, A H

    1985-01-01

    Muscle capillarity, mean and maximal diffusion distances and muscle fibre composition were evaluated in frozen sections stained for myosin ATPase of the soleus and the white area of the gastrocnemius medial head (gastrocnemius) of rats made hypothyroid by the injection of propylthiouracil (PTU) (50 mg kg-1) every day for 21 or 42 days. Oxygen consumption in the presence of excess ADP and Pi with pyruvate plus malate as substrates and the activity of cytochrome c oxidase were measured in muscle homogenates. Treatment with PTU decreased body oxygen consumption and the concentration of triiodothyronine in plasma. The capacity of the soleus and gastrocnemius muscles' homogenates to oxidize pyruvate plus malate and their cytochrome c oxidase activity were reduced after 21 or 42 days of treatment with PTU. Fibre composition in the soleus muscle was changed by treatment with PTU. There was a decrease in the proportion of type IIa or fast glycolytic oxidative fibres and an increase in type I or slow oxidative fibres. After 21 days of PTU administration there was also an increase in the proportion of fibres classified as IIc. The changes in fibre composition are believed to be the result of changes in the types of myosin synthesized by the fibres. Therefore, the fibres classified as IIc are, most probably, IIa fibres in the process of changing their myosin to that of the type I fibres. No changes in fibre composition were evident in the white area of the gastrocnemius medial head, an area made up of IIb or fast glycolytic fibres. The indices of capillarity: capillary density and capillary to fibre ratio, as well as mean and maximal diffusion distances from the capillaries, were not changed by the treatment with PTU in the muscles studied. The lack of changes in capillarity in spite of significant changes in oxidative capacity indicates that in skeletal muscle capillarity is not necessarily related to the oxidative capacity of the fibres. PMID:3989729

  7. Capillary network in slow and fast muscles and in oxidative and glycolytic muscle fibres

    Czech Academy of Sciences Publication Activity Database

    Čebašek, V.; Kubínová, Lucie; Ribarič, S.; Eržen, I.

    2005-01-01

    Roč. 24, March (2005), s. 51-58 ISSN 1580-3139 Grant - others:SI-CZ(CZ) KONTAKT 19/2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillaries * skeletal muscle fibre s-oxidative and glycolytic * stereology Subject RIV: EA - Cell Biology

  8. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus)

    Science.gov (United States)

    West, T.G.; Toepfer, Christopher N.; Woledge, Roger C.; Curtin, N.A.; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M.

    2015-01-01

    SUMMARY Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were “skinned” to remove all membranes leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (Type I) or fast (Type II). The power output of cheetah Type II fibre segments was 92.5 ± 4.3 W kg−1 (mean ±s.e., 14 fibres) during shortening at relative stress 0.15 (=stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably Type IIX) the corresponding value was significantly higher (Pcheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah. PMID:23580727

  9. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus).

    Science.gov (United States)

    West, Timothy G; Toepfer, Christopher N; Woledge, Roger C; Curtin, Nancy A; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M

    2013-08-01

    Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were 'skinned' to remove all membranes, leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature-jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (type I) or fast (type II). The power output of cheetah type II fibre segments was 92.5±4.3 W kg(-1) (mean ± s.e., 14 fibres) during shortening at relative stress 0.15 (the stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably type IIX) the corresponding value was significantly higher (Pcheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah.

  10. EFFECT OF REARING SYSTEM ON THE MUSCLE FIBRE CHARACTERISTICS OF CHICKEN BREEDS WITH DIFFERENT GROWTH SPEED

    Directory of Open Access Journals (Sweden)

    P. Avellini

    2009-06-01

    Full Text Available The study was conducted to evaluate the influence of the rearing system on the muscle fibre characteristics of two meat chicken breeds such as the Ross and the Livorno characterized by extremely fast and extremely slow growth speed respectively. No differences between the breeds were found in the conventional rearing system except for muscle fibre area. On the other hand, in the free range rearing system, differences in muscle fibre composition were evidenced between the breeds especially in the Ileotibialis lateralis muscle with the Livorno having a greater percentage of αR fibres (57,71 vs 36,65. A higher percentage of αR fibres (57,71 vs 46,90 was found in the Ileotibialis lateralis of the free range reared Livorno chickens compared to the conventionally reared ones.

  11. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S

    2003-08-15

    Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.

  12. Fast and slow myosins as markers of muscle injury.

    Science.gov (United States)

    Guerrero, M; Guiu-Comadevall, M; Cadefau, J A; Parra, J; Balius, R; Estruch, A; Rodas, G; Bedini, J L; Cussó, R

    2008-07-01

    The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making.

  13. Muscle architecture and fibre characteristics of rat gastrocnemius and semimembranosus muscles during isometric contractions.

    Science.gov (United States)

    Huijing, P A; van Lookeren Campagne, A A; Koper, J F

    1989-01-01

    Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.

  14. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  15. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  16. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres.

    Science.gov (United States)

    Wendowski, Oskar; Redshaw, Zoe; Mutungi, Gabriel

    2017-02-01

    Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100-900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.

  17. Tetanic Ca2+ transient differences between slow- and fast-twitch mouse skeletal muscle fibres: a comprehensive experimental approach.

    Science.gov (United States)

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo

    2014-12-01

    One hundred and eighty six enzymatically dissociated murine muscle fibres were loaded with Mag-Fluo-4 AM, and adhered to laminin, to evaluate the effect of modulating cytosolic Ca(2+) buffers and sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), mitochondria, and Na(+)/Ca(2+) exchanger (NCX) on the differential tetanic Ca(2+) transient kinetics found in different fibre types. Tetanic Ca(2+) transients were classified as morphology type I (MT-I) or type II (MT-II) according to their shape. The first peak of the MT-I (n = 25) and MT-II (n = 23) tetanic Ca(2+) transients had an amplitude (∆F/F) of 0.41 ± 0.03 and 0.83 ± 0.05 and a rise time (ms) of 1.35 and 0.98, respectively. MT-I signals had a time constant of decay (τ1, ms) of 75.9 ± 4.2 while MT-II transients showed a double exponential decay with time constants of decay (τ1 and τ2, ms) of 18.3 ± 1.4 and 742.2 ± 130.3. Sarcoendoplasmic reticulum Ca(2+) ATPase inhibition demonstrated that the decay phase of the tetanic transients mostly rely on SERCA function. Adding Ca(2+) chelators in the AM form to MT-I fibres changed the morphology of the initial five peaks to a MT-II one, modifying the decay phase of the signal in a dose-dependent manner. Mitochondria and NCX function have a minor role in explaining differences in tetanic Ca(2+) transients among fibre types but still help in removing Ca(2+) from the cytosol in both MT-I and MT-II fibres. Cytoplasmic Ca(2+) buffering capacity and SERCA function explain most of the different kinetics found in tetanic Ca(2+) transients from different fibre types, but mitochondria and NCX have a measurable role in shaping tetanic Ca(2+) responses in both slow and fast-twitch muscle fibre types. We provided experimental evidence on the mechanisms that help understand the kinetics of tetanic Ca(2+) transients themselves and explain kinetic differences found among fibre types.

  18. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres.

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2010-02-01

    It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.

  19. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.

    Science.gov (United States)

    Bátkai, S; Rácz, I B; Ivanics, T; Tóth, A; Hamar, J; Slaaf, D W; Reneman, R S; Ligeti, L

    1999-10-01

    The understanding of the regulation of the free cytosolic [Ca2+] ([Ca2+]i) in skeletal muscle is hampered by the lack of techniques for quantifying free [Ca2+]i in muscle fibres in situ. We describe a model for studying the dynamics of free [Ca2+]i in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus (SOL) muscles of the rat in vivo using caffeine superfusion to induce changes in free [Ca2+]i. We assumed that differences in sensitivity between the two muscle types for this substance reflect differences in intracellular Ca2+ handling in the fibres of which these muscles consist. The Indo-1 ratiometric method, using intravital microscopy with incident light, was adapted to measure free [Ca2+]i in vivo. Fluorescence images were collected by means of a digital camera. Caffeine superfusion at 37 degrees C for 2 min, at concentrations of 1, 2, 5, 10 or 20 mmol/l, induced a concentration-dependent increase in free [Ca2+]i and revealed differences in caffeine sensitivity between the muscle types, with the SOL being more sensitive. In a separate set of experiments the contracture threshold, as assessed by topical application of caffeine, was determined in both muscle types. EDL had a higher threshold for developing contracture than SOL. These finding are in agreement with previous in vitro studies. We may conclude that the dynamics of free [Ca2+]i can be assessed reliably in intact mammalian muscle in vivo.

  20. GLUT11, but not GLUT8 or GLUT12, is expressed in human skeletal muscle in a fibre type-specific pattern

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Schürmann, A

    2004-01-01

    or amyotrophic lateral sclerosis (ALS) were studied. GLUT8 and 12 immunoreactivity was below detection level in both developing and adult muscle fibres. GLUT11 immunoreactivity, however, was present in slow-twitch muscle fibres, but not in fast twitch fibres. Since, in contrast, GLUT4 was expressed in all...... exclusively in slow-twitch muscle fibres and is unaffected by physiological and pathophysiological conditions except in primary myopathy. GLUT8 and GLUT12 do not appear to be of importance in human muscle under physiological and pathophysiological conditions....... to induce GLUT8 or -12 expression. Likewise, the fibre type-dependent pattern of GLUT11 immunoreactivity was unaltered. However, some slow muscle fibres lose their GLUT11 immunoreactivity under regeneration. Our results indicate that GLUT11 immunoreactivity, in contrast to that of GLUT4, is expressed...

  1. Electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induces involuntary reflex contraction of the frontalis muscles.

    Science.gov (United States)

    Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya

    2013-02-01

    The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.

  2. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.

    Science.gov (United States)

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-06-01

    Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western

  3. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.

    Science.gov (United States)

    Macdonald, W A; Stephenson, D G

    2006-05-15

    Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.

  4. Muscle Fibre Types, Ubiquinone Content and Exercise Capacity in Hypertension and Effort Angina

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Folkers, Karl

    1991-01-01

    Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone......Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone...

  5. An electron microscopic investigation into the possible source of new muscle fibres in teleost fish.

    Science.gov (United States)

    Stoiber, W; Sänger, A M

    1996-12-01

    This study is based on transmission electron microscopic (TEM) investigations of deep (fast, 'white') teleost fish muscle proliferation in early developmental stages of three European cyprinid species and the rainbow trout. Our fine structural findings provide evidence that early myotomal growth in these animals may utilize different mechanisms that are activated in close succession during early life history. First, initial enlargement of the deep muscle bulk in the embryo seems to be due to hypertrophy of the somite-cell derived stock of muscle fibres. Second, we suggest that deep muscle growth becomes additionally powered by attachment of presumptive myogenic cells that originate from and proliferate within the adjacent mesenchymal tissue lining. Third, mesenchyme-derived muscle cell precursors are thought to enter the myotomes via the myosepta. After migration between the pre-established muscle fibres these cells may function as myosatellite cells, thus at least partly providing the stem cell population for subsequent rapid hyperplastic growth. Finally, there is evidence that presumptive deep muscle satellite cells also proliferate by mitotic division in situ. A similar process of myogenic cell migration and proliferation may foster intermediate fibre differentiation. The model of myogenic cell migration is discussed in view of in vitro and in vivo data on satellite cell migratory power and with respect to temperature-induced and species dependent differences. As for the latter, our results indicate that patterns of muscle differentiation may diverge between a fast growing salmonid species and a moderately growing cyprinid species of similar final size. The model is compatible with the well-established idea that teleost muscle growth may rely on different subclasses of myosatellite cells.

  6. New Insights into Muscle Fibre Types in Casertana Pig

    OpenAIRE

    Salvatore Velotto; Claudia Vitale; Tommaso Stasi; Antonio Crasto

    2010-01-01

    Little is known about the Casertana pig. The aim of this study was to evaluate the effect of sex on histochemical and morphometrical characteristics of muscle fibres (myocytes) in this pure breed and to verify the presence of giant fibres as well as vascularity of the muscle. Finally, maximum shortening velocity and isometric tension were measured in single muscle fibres. Sixteen Casertana pigs (8 males, 8 females) from a farm in Campania (Italy) were slaughtered at one year of age. Muscle ti...

  7. Heart size and mean muscle fibre cross-sectional area related to birth weight in pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available One of the aims in domestic pig breeding has been to increase the size of litters resulting in variation in birth weight of piglets. Pig breeding has also resulted in increased body muscle mass. Muscles with the same size can consist either of large number of thin muscle fibres or small number of thick muscle fibres. Larger body muscle content means that in living animal the heart must pump blood to larger muscle mass than earlier. Our interest in this study was to investigate the relationship between the pig’s birth weight and (i growth performance and carcass composition, (ii the size of organs, and (iii the mean muscle fibre cross-sectional area at slaughter. The study consisted of twenty pigs slaughtered at the age of 165±2 days. The day after the slaughter, the carcass composition was determined by dissecting the chilled carcass into lean, fat, bones, and skin and organs were weighed. The average cross sectional area of muscle fibres was determined from three fast-twitch muscles longissimus dorsi, semimembranosus, gluteus superficialis, and two slow-twitch muscles infraspinatus and masseter. The birth weight of pigs ranged from 0.9 to 2.2 kg. We found no clear relationships between the birth weight and the pig’s growth performance from birth to slaughter. When the birth weight increased the heart weight at slaughter increased as well (P < 0.01. The heart weight was higher in those pigs with high carcass weight (P < 0.05 and with the high weight of total muscle mass in the carcass (P < 0.001. The cross sectional area of muscle fibres in M. longissimus dorsi (P < 0.05, M. semimembranosus (P < 0.10, and M. gluteus superficialis (P < 0.05 was larger in those pigs with low birth weight compared to those found in pigs with high birth weight.;

  8. Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres.

    Science.gov (United States)

    Dulhunty, A F; Gage, P W; Valois, A A

    1981-12-23

    There are fewer indentations on the flat surfaces of terminal cisternae in soleus (slow-twitch) than in extensor digitorum longus (EDL, fast-twitch) muscle fibres of rats. Following mid-thoracic spinal cord transection, there is an increase in the number of indentations in soleus fibres but no change in EDL fibres. The increase in the numbers of indentations after spinal cord transections is correlated with changes in the contractile and charge movement properties of the soleus fibres so that they resemble normal EDL fibres. The indentations appear to have an important role in excitation-contraction coupling.

  9. Two functionally different muscle fibre types in some salps?

    Directory of Open Access Journals (Sweden)

    Q. Bone

    1998-12-01

    Full Text Available This paper describes the structure and operation of the fibres in the locomotor muscle bands of several salp species. In many species, for example Thalia democratica or Pegea confoederata, all the muscle fibres of the locomotor muscle bands are similar in width and structure. In others, for example Salpa fusiformis and S. maxima, although fibre structure is similar, the marginal fibres edging the bands may be some 3-4 times the width of those in the centre of the band. In Ihlea punctata, not only is there a more striking difference in width between the marginal and central fibres of the bands, but also the two differ in structure. The marginal fibres are up to 10 times the width of the central fibres and the two differ in myofibrillar and mitochondrial content. Intracellular recordings from the fibres show that the normally compound spike potentials do not overshoot resting potentials (up to -70 mV, and are decremental. The two types of fibre may be separately activated. It is suggested that in Ihlea punctata, the wide marginal fibres may be involved in slow swimming, the central narrow fibres in `escape´ swimming.

  10. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.

    Science.gov (United States)

    Knuth, S T; Dave, H; Peters, J R; Fitts, R H

    2006-09-15

    Historically, an increase in intracellular H(+) (decrease in cell pH) was thought to contribute to muscle fatigue by direct inhibition of the cross-bridge leading to a reduction in velocity and force. More recently, due to the observation that the effects were less at temperatures closer to those observed in vivo, the importance of H(+) as a fatigue agent has been questioned. The purpose of this work was to re-evaluate the role of H(+) in muscle fatigue by studying the effect of low pH (6.2) on force, velocity and peak power in rat fast- and slow-twitch muscle fibres at 15 degrees C and 30 degrees C. Skinned fast type IIa and slow type I fibres were prepared from the gastrocnemius and soleus, respectively, mounted between a force transducer and position motor, and studied at 15 degrees C and 30 degrees C and pH 7.0 and 6.2, and fibre force (P(0)), unloaded shortening velocity (V(0)), force-velocity, and force-power relationships determined. Consistent with previous observations, low pH depressed the P(0) of both fast and slow fibres, less at 30 degrees C (4-12%) than at 15 degrees C (30%). However, the low pH-induced depressions in slow type I fibre V(0) and peak power were both significantly greater at 30 degrees C (25% versus 9% for V(0) and 34% versus 17% for peak power). For the fast type IIa fibre type, the inhibitory effect of low pH on V(0) was unaltered by temperature, while for peak power the inhibition was reduced at 30 degrees C (37% versus 18%). The curvature of the force-velocity relationship was temperature sensitive, and showed a higher a/P(0) ratio (less curvature) at 30 degrees C. Importantly, at 30 degrees C low pH significantly depressed the ratio of the slow type I fibre, leading to less force and velocity at peak power. These data demonstrate that the direct effect of low pH on peak power in both slow- and fast-twitch fibres at near-in vivo temperatures (30 degrees C) is greater than would be predicted based on changes in P(0), and that the

  11. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  12. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2003-01-01

    The effects of adding either 25 mM inorganic phosphate (Pi) or its structural analogue arsenate (ASi) on both the maximum Ca2+ activated tension (Po) and passive muscle visco-elasticity (P2 tension) were investigated at 10 degrees C, using segments of single, chemically skinned rat muscle fibres. Whilst the results confirmed some previous findings on the effects of Pi on Po, they also showed that the addition of 25 mM ASi led to a large (approximately 50%) but completely reversible depression of Po in both the fast and slow twitch rat muscle fibres. Moreover, the depression of Po by ASi was greater at low than at high pH values. Examined in the presence of Dextran T-500, the passive tension and sarcomere length responses to a ramp stretch were found to be qualitatively and quantitatively similar to those previously reported in intact rat muscle fibres. Thus, the tension response to a ramp stretch, in the presence and absence of either 25 mM Pi or ASi, consisted of a viscous (P1), a visco-elastic (P2) and an elastic (P3) tension. However, the addition of either 25 mM Pi or ASi led to approximately 15-18% increase in the amplitude of the visco-elastic (P2) tension but had little or no effect on the amplitudes of the other two tension components (viscous, P1 and elastic, P3 tensions). Furthermore, neither compound significantly altered the relaxation rate of the passive muscle visco-elasticity (P2 tension). These results show that Po (arising from cycling cross-bridges) and passive muscle visco-elasticity (P2 tension) are affected differently by both Pi and ASi and suggest that they may not share a common structural basis. The possibility that passive muscle visco-elasticity (P2 tension) arises from the gap-(titin) filament (as suggested previously by Mutungi and Ranatunga, 1996b J Physiol 496: 827-837) and that Pi and ASi increase its amplitude by interacting with the PEVK region of the filament are discussed.

  13. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs.

    Science.gov (United States)

    Qaisar, Rizwan; Renaud, Guillaume; Hedstrom, Yvette; Pöllänen, Eija; Ronkainen, Paula; Kaprio, Jaakko; Alen, Markku; Sipilä, Sarianna; Artemenko, Konstantin; Bergquist, Jonas; Kovanen, Vuokko; Larsson, Lars

    2013-05-01

    Ageing is associated with a decline in muscle mass and strength leading to increased physical dependency in old age. Postmenopausal women experience a greater decline than men of similar age in parallel with the decrease in female sex steroid hormone production. We recruited six monozygous female twin pairs (55-59 years old) where only one twin pair was on hormone replacement therapy (HRT use = 7.8 ± 4.3 years) to investigate the association of HRT with the cytoplasmic volume supported by individual myonuclei (myonuclear domain (MND) size,) together with specific force at the single fibre level. HRT use was associated with a significantly smaller (∼27%; P muscle fibres expressing the type I but not the IIa myosin heavy chain (MyHC) isoform. In comparison to non-users, higher specific force was recorded in HRT users both in muscle fibres expressing type I (∼27%; P fibre-type dependent, i.e. the higher specific force in fast-twitch muscle fibres was primarily caused by higher force per cross-bridge while slow-twitch fibres relied on both a higher number and force per cross-bridge. HRT use had no effect on fibre cross-sectional area (CSA), velocity of unloaded shortening (V0) and relative proportion of MyHC isoforms. In conclusion, HRT appears to have significant positive effects on both regulation of muscle contraction and myonuclei organization in postmenopausal women.

  14. GLUT4 expression at the plasma membrane is related to fibre volume in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gaster, M; Vach, W; Beck-Nielsen, H

    2002-01-01

    In this study we examined the relationship between GLUT4 expression at the plasma membrane and muscle fibre size in fibre-typed human muscle fibres by immunocytochemistry and morphometry in order to gain further insight into the regulation of GLUT4 expression. At the site of the plasma membrane...

  15. Increased mitochondrial energy efficiency in skeletal muscle after long-term fasting: its relevance to animal performance.

    Science.gov (United States)

    Bourguignon, Aurore; Rameau, Anaïs; Toullec, Gaëlle; Romestaing, Caroline; Roussel, Damien

    2017-07-01

    In the final stage of fasting, skeletal muscle mass and protein content drastically decrease when the maintenance of efficient locomotor activity becomes crucial for animals to reactivate feeding behaviour and survive a very long period of starvation. As mitochondrial metabolism represents the main physiological link between the endogenous energy store and animal performance, the aim of this study was to determine how a very long, natural period of fasting affected skeletal muscle mitochondrial bioenergetics in king penguin ( Aptenodytes patagonicus ) chicks. Rates of mitochondrial oxidative phosphorylation were measured in pectoralis permeabilized fibres and isolated mitochondria. Mitochondrial ATP synthesis efficiency and the activities of respiratory chain complexes were measured in mitochondria isolated from pectoralis muscle. Results from long-term (4-5 months) naturally fasted chicks were compared with those from short-term (10 day) fasted birds. The respiratory activities of muscle fibres and isolated mitochondria were reduced by 60% and 45%, respectively, on average in long-term fasted chicks compared with short-term fasted birds. Oxidative capacity and mitochondrial content of pectoralis muscle were lowered by long-term fasting. Bioenergetic analysis of pectoralis muscle also revealed that mitochondria were, on average, 25% more energy efficient in the final stage of fasting (4-5 months) than after 10 days of fasting (short-term fasted birds). These results suggest that the strong reduction in respiratory capacity of pectoralis muscle was partly alleviated by increased mitochondrial ATP synthesis efficiency. Such oxidative phosphorylation optimization can impact animal performance, e.g. the metabolic cost of locomotion or the foraging efficiency. © 2017. Published by The Company of Biologists Ltd.

  16. Relationships between myonuclear domain size and fibre properties in the muscles of Thoroughbred horses.

    Science.gov (United States)

    Kawai, M; Kuwano, A; Hiraga, A; Miyata, H

    2010-11-01

    The myonuclear domain (MND) is the region of cytoplasm governed by a single myonucleus. Myonuclear domain size is an important factor for muscle fibre plasticity because each myonucleus has limitations in the capacity of protein synthesis. Previous studies have demonstrated that differences in MND size exist in different fibre types in several species, including horses. To understand the basic mechanism of muscle plasticity, the relationships between MND size, muscle fibre type population and metabolic properties of skeletal muscles throughout the whole body in Thoroughbred horses were examined. Post mortem samples were taken from 20 muscles in 3 Thoroughbred horses aged 3-5 years of age. Fibre type population was determined on serial cross sections of each muscle sample, stained for monoclonal antibodies to each myosin heavy chain isoform. Oxidative (succinic dehydrogenase; SDH) and glycolytic (phosphofructokinase; PFK) enzyme activities were determined spectrophotometrically in each muscle sample. Furthermore, 30 single fibres were isolated from each muscle under stereomicroscopy and then fibre volume and myonuclear number for a given length analysed under confocal microscopy. The MND size of each single fibre was measured after normalisation of sarcomere length to 2.8 µm by staining with membrane-specific dye. Immunohistochemical staining indicated that soleus, vastus lateralis and gluteus medius muscles had the highest percentage of type I, IIa and IIx muscle fibre, respectively. Biochemical analysis indicated highest activities of SDH and PFK in diaphragm and longissimus lumborum muscles, respectively. MNDs were largest in the splenius muscle and smallest in the soleus and masseter muscles. Myonuclear domain size is significantly related to type I muscle fibre population, but not to SDH activities of the muscles. The MND size of muscle fibre depends on fibre type population rather than mitochondrial enzyme activities. © 2010 EVJ Ltd.

  17. Regional organization of fibre types in normal and reinnervated hindlimb muscles

    NARCIS (Netherlands)

    Wang, Liangchun

    2001-01-01

    The present thesis concerns the spatial distribution of the "slow" type I fibres within muscles of the hindlimb. It is known since long ago that some muscles may have strikingly heterogeneous distributions of type I and II fibres, but this phenomenon of "fibre type regionalization" has still not

  18. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  19. Morphology of lesions in striated muscle fibres from the beige mouse

    DEFF Research Database (Denmark)

    Kirkeby, S

    1982-01-01

    Lesions in striated muscle fibres from the beige mouse are described at both the light- and electronmicroscopical levels. The muscles have two types of lesions, one is well defined cores in the fibres and the other is diffusely enlarged intermyofibrillar spaces (IMS). The cores can be filled...... with membrane-like structures or a fluffy unstructured material. In the areas with enlarged IMS comparatively few organelles are present and the muscle fibres seem to be fragmented....

  20. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    Science.gov (United States)

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  1. Orthogonal muscle fibres have different instructive roles in planarian regeneration.

    Science.gov (United States)

    Scimone, M Lucila; Cote, Lauren E; Reddien, Peter W

    2017-11-30

    The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

  2. A simplified immunohistochemical classification of skeletal muscle fibres in mouse

    Directory of Open Access Journals (Sweden)

    M. Kammoun

    2014-06-01

    Full Text Available The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC antibodies in order to choose a minimum number of antibodies to implement a semi-automatic classification. Then, we compared the classification of fibres to the MyHC electrophoretic pattern on the same samples. Only two anti MyHC antibodies on serial sections with the fluorescent labeling of the Laminin were necessary to classify properly fibre types in Tibialis Anterior and Soleus mouse muscles in normal physiological conditions. This classification was virtually identical to the classification realized by the electrophoretic separation of MyHC. This immunohistochemical classification can be applied to the total area of Tibialis Anterior and Soleus mouse muscles. Thus, we provide here a useful, simple and time-efficient method for immunohistochemical classification of fibres, applicable for research in mouse

  3. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Science.gov (United States)

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  4. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  5. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama.

    Science.gov (United States)

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-08-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama's characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major - TM and M. deltoideus, pars scapularis - DS and pars acromialis - DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the support

  6. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama

    Science.gov (United States)

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-01-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama’s characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major – TM and M. deltoideus, pars scapularis – DS and pars acromialis – DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the

  7. Histochemical and functional fibre typing of the rabbit masseter muscle

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Moorman, A. F.; Brugman, P.

    1990-01-01

    The fibre-type distribution of the masseter muscle of the rabbit was studied by means of the myosin-ATPase and succinate dehydrogenase reactions. Six different fibre types were found and these were unequally distributed between and within the anatomical compartments of the muscle. Most of the

  8. Redox responses are preserved across muscle fibres with differential susceptibility to aging.

    Science.gov (United States)

    Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian

    2018-04-15

    Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two

  9. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  10. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres.

    Science.gov (United States)

    Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel

    2013-10-15

    Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.

  11. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    Science.gov (United States)

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  12. Effect of controlled exercise on middle gluteal muscle fibre composition in Thoroughbred foals.

    Science.gov (United States)

    Eto, D; Yamano, S; Kasashima, Y; Sugiura, T; Nasu, T; Tokuriki, M; Miyata, H

    2003-11-01

    Most racehorses are trained regularly from about age 18 months; therefore, little information is available on the effect of training in Thoroughbred foals. Well-controlled exercise could improve muscle potential ability for endurance running. Thoroughbred foals at age 2 months were separated into control and training (treadmill exercise) groups and samples obtained from the middle gluteal muscle at 2 and 12 months post partum. Muscle fibre compositions were determined by histochemical and electrophoretical techniques and succinic dehydrogenase (SDH) activity was analysed in each fibre type. All fibre types were hypertrophied with growth and type I and IIA fibres were significantly larger in the training than the control group at age 12 months. A significant increase of SDH activity was found in type IIX muscle fibres in the training group. Training in young Thoroughbred horses can facilitate muscle fibre hypertrophy and increase the oxidative capacity of type IIX fibres, which could potentially enhance stamina at high speeds. To apply this result to practical training, further studies are needed to determine more effective and safe intensities of controlled exercise.

  13. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2011-01-01

    Abstract Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression. PMID:21606113

  14. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    Science.gov (United States)

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  15. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions. Key points This paper provides a comprehensive electrophysiological characterization of the external [K+] dependence and inward rectifying properties of Kir channels in fast skeletal muscle fibres of adult mice. Two isoforms of inward rectifier K channels (IKir2.1 and IKir2.2) are expressed in both the surface and the transverse tubular system (TTS) membranes of these fibres. Optical measurements demonstrate that Kir currents (IKir) affect the membrane potential changes in the TTS membranes, and result in a reduction in luminal [K+]. A model of the muscle fibre assuming that functional Kir channels are equally distributed between the surface and TTS membranes accounts for both the electrophysiological and the optical data. Model simulations demonstrate that the more than 70% of IKir arises from the TTS membranes. [K+] increases in the lumen of the TTS resulting from the activation of K delayed rectifier channels (Kv) lead to drastic enhancements of IKir, and to right-shifts in their reversal potential. These changes are predicted by the model. PMID:25545278

  16. The GLUT4 density in slow fibres is not increased in athletes. How does training increase the GLUT4 pool originating from slow fibres?

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Beck-Nielsen, H

    2001-01-01

    % of the fraction in the control group. Thus, GLUT4 originating from slow-twitch fibres was increased by 30% (Pincreases slow-twitch fibre GLUT4 expression by means of an elevated slow-twitch fibre mass in human skeletal muscle.......The influence of training on GLUT4 expression in slow- and fast-twitch skeletal muscle fibres was studied in male endurance-trained athletes and control subjects. The trained state was ensured by elevated maximal oxygen uptake (29%), as well as citrate synthase (60%) and 3-hydroxy......-acyl-CoA dehydrogenase (38%) activities in muscle biopsy samples of the vastus lateralis. GLUT4 densities in slow- and fast-twitch fibres were measured by the use of a newly developed, sensitive method combining immunohistochemistry with morphometry, and no effect of training was found. GLUT4 density was higher in slow...

  17. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging

    OpenAIRE

    Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian

    2014-01-01

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres...

  18. Muscle fibre type composition and body composition in hammer throwers.

    Science.gov (United States)

    Terzis, Gerasimos; Spengos, Konstantinos; Kavouras, Stavros; Manta, Panagiota; Georgiadis, Giorgos

    2010-01-01

    Aim of the present study was to describe the muscle fibre type composition and body composition of well-trained hammer throwers. Six experienced hammer throwers underwent the following measurements: one repetition maximum in squat, snatch, and clean, standing broad jump, backward overhead shot throw and the hammer throw. Dual x-ray absorptiometry was used for body composition analysis. Fibre type composition and cross sectional area was determined in muscle biopsy samples of the right vastus lateralis. Eight physical education students served as a control group. One repetition maximum in squat, snatch and clean for the hammer throwers was 245 ± 21, 132 ± 13 and 165 ± 12kg, respectively. Lean body mass was higher in hammer throwers (85.9 ± 3. 9kg vs. 62.7 ± 5.1kg (p hammer throwers and 51 ± 8% in the control group (p Hammer throwers had significantly larger type IIA fibres (7703 ± 1171 vs. 5676 ± 1270μm(2), p Hammer throwing performance correlated significantly with lean body mass (r = 0.81, p hammer throwers have larger lean body mass and larger muscular areas occupied by type II fibres, compared with relatively untrained subjects. Moreover, it seems that the enlarged muscle mass of the hammer throwers contributes significantly to the hammer throwing performance. Key pointsWell-trained hammer throwers had increased lean body mass, higher type IIA muscle fibres cross sectional areas, as well as higher bone mineral density, compared to controls.Increased lean body mass was closely related with hammer throwing performance.The relative high percentage of type IIX muscle fibres in vastus lateralis in hammer throwers warrants further investigation.

  19. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...... lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...

  20. Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish.

    Science.gov (United States)

    Johnston, I A; Altringham, J D

    1985-09-01

    Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.

  1. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    Science.gov (United States)

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion

    DEFF Research Database (Denmark)

    Krustrup, Peter; Söderlund, Karin; Relu, Mihai U.

    2009-01-01

    temperature increase (DeltaT(m)) in RF was 0.52+/-0.09 degrees C, which was 57% and 73% higher (Pmuscle CP in slow twitch (ST) and fast......The involvement of quadriceps femoris muscle portions and fibre type recruitment was studied during submaximal knee-extensor exercise without and with thigh occlusion (OCC) and compared with responses during intense exercise. Six healthy male subjects performed 90-s of moderate exercise without...... twitch (FT) fibres was 81% and 91% of resting levels, respectively, with lower (Pfibres had CP levels below mean-1 SD, respectively, with corresponding values for FT fibres being 41...

  3. Muscle fibre types of fishes : structural and functional specialization

    NARCIS (Netherlands)

    Akster, H.A.

    1984-01-01

    Muscles of fishes are active in a variety of movements that differ in velocity, duration and excursion length. To investigate how muscles meet the, often conflicting, demands imposed upon them by these movements, the fibre type composition of several muscles was determined. The ultrastructural and

  4. Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis

    DEFF Research Database (Denmark)

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby

    2007-01-01

    of age-, gender- and BMI-matched untrained control subjects. The aerobic work capacity of the patients was also determined. Results. The MHC composition for I, IIA and IIX isoforms was found to be 35.3%±18.2%, 35.9%±7.1% and 28.9%±15.6%, respectively, findings supported by the ATPase histochemically...... determined fibre-type composition of the vastus lateralis muscle. The mean fibre area of type 1 and 2 fibres was 3283±873 and 3594±1483 µm2, respectively. The MHC composition and the size of the type 1 fibres of the patients on HD were significantly different from those of the control subjects. Conclusions....... The data demonstrate relatively fewer type 1 and consequently more type 2x fibres, with a corresponding change in MHC isoforms (MHC I and MHC IIX) in the skeletal muscle of patiens on HD. Several patients on HD were found to have type 1 (or relative percentage of MHC I) fibres. Such a low percentage...

  5. Glucose intolerance in the West African Diaspora: a skeletal muscle fibre type distribution hypothesis.

    Science.gov (United States)

    Nielsen, J; Christensen, D L

    2011-08-01

    In the United States, Black Americans are largely descendants of West African slaves; they have a higher relative proportion of obesity and experience a higher prevalence of diabetes than White Americans. However, obesity rates alone cannot explain the higher prevalence of type 2 diabetes. Type 2 diabetes is characterized by insulin resistance and beta-cell dysfunction. We hypothesize that the higher prevalence of type 2 diabetes in African Americans (as compared to White Americans) is facilitated by an inherited higher percentage of skeletal muscle fibre type II and a lower percentage of skeletal muscle fibre type I. Skeletal muscle fibre type II is less oxidative and more glycolytic than skeletal muscle fibre type I. Lower oxidative capacity is associated with lower fat oxidation and a higher disposal of lipids, which are stored as muscular adipose tissue in higher amounts in Black compared to White Americans. In physically active individuals, the influence of muscle fibre composition will not be as detrimental as in physically inactive individuals. This discrepancy is caused by the plasticity in the skeletal muscle fibre characteristics towards a higher activity of oxidative enzymes as a consequence of physical activity. We suggest that a higher percentage of skeletal muscle fibre type II combined with physical inactivity has an impact on insulin sensitivity and high prevalence of type 2 diabetes in Blacks of West African ancestry. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  6. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  7. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat.

    Science.gov (United States)

    Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D

    2009-01-15

    Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results

  8. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  9. Comparison of collagen fibre architecture between slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi.

    Science.gov (United States)

    Nakamura, Y N; Iwamoto, H; Tabata, S; Ono, Y

    2003-07-01

    1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.

  10. Different β-adrenergic receptor density in different rat skeletal muscle fibre types

    International Nuclear Information System (INIS)

    Jensen, J.; Dahl, H.A.; Broers, O.

    1995-01-01

    The effects of adrenaline on skeletal muscle differ between fibre types. The aim of the present study was to investigate the β-adrenoceptor density, affinity and subtype in rat skeletal muscles with different fibre type composition. β-Adrenoceptors were determined in cryostat sections to avoid methodological problems with variable recovery, using the non-selective βadrenoceptor ligand [ 3 H]CGP-12177 and β 1 - and β 2 -selective cold ligands CGP 20712A and ICI 118,551. In the presence of protease inhibitors [ 3 H]CGP-12177 binding was stable, saturable, reversible, and displaceable. Scatchard analysis of binding saturation data was compatible with a single class of specific binding sites. Binding site density (B max ) was higher (P -1 ) than in adult extensor digitorum longus (4.74±0.39 fmol x mg protein -1 ), whereas the dissociation constants (K d ), 0.37±0.05 and 0.31±0.04 nM for soleus and extensor digitorum longus, respectively, were not significantly different. For young rats (5-6 weeks), B max was 11.21±0.33 and 5.45±0.11 fmol x mg protein -1 (P d was 0.27±0.02 and 0.24±0.04 nM for soleus and epitrochlearis, respectively. These results correspond to a receptor density of 2 and 1 pmol x g w.wt. -1 in muscles containing mainly type I and type II fibres, respectively. Displacement studies with CGP 20712A and ICI 118,551 were compatible with mainly β 2 -adrenoceptors, but 7-10% β 1 -adrenoceptors were present in both types of muscle. In conclusion, the receptor density is twice as high in muscles containing mainly type I muscle fibres compared to muscles containing mainly type II fibres, and this may explain some of the different effects of adrenaline between the two muscle fibre types. (au)

  11. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo.

    Science.gov (United States)

    Wang, XinGang; Ono, Yosuke; Tan, Swee Chuan; Chai, Ruth JinFen; Parkin, Caroline; Ingham, Philip W

    2011-10-01

    Sox6 has been proposed to play a conserved role in vertebrate skeletal muscle fibre type specification. In zebrafish, sox6 transcription is repressed in slow-twitch progenitors by the Prdm1a transcription factor. Here we identify sox6 cis-regulatory sequences that drive fast-twitch-specific expression in a Prdm1a-dependent manner. We show that sox6 transcription subsequently becomes derepressed in slow-twitch fibres, whereas Sox6 protein remains restricted to fast-twitch fibres. We find that translational repression of sox6 is mediated by miR-499, the slow-twitch-specific expression of which is in turn controlled by Prdm1a, forming a regulatory loop that initiates and maintains the slow-twitch muscle lineage.

  12. Effect of Age and Sex on Histomorphometrical Characteristics of Two Muscles of Laticauda Lambs

    Directory of Open Access Journals (Sweden)

    Salvatore Velotto

    2010-01-01

    Full Text Available The aim of the present experiment was to determine the effect of sex and age on histochemical and morphometric characteristics of muscle fibres (myocytes in lambs born by single, twin, triplet and quadruplet birth. Thirty lambs were slaughtered at 60 days of age; thirty were weaned at 60 days and fed until 120 days with flakes (60% and food supplements, and then slaughtered. Muscle tissues were obtained from two muscles, namely m. semitendinosus and m. longissimus dorsi of all lambs. For each fibre type, area perimeter and diameter (maximum and minimum were measured and slow-twitch oxidative fibres, fast-twitch glycolytic fibres, fast-twitch oxidative-glycolytic fibres were histochemically differentiated. The muscles were stained for myosin ATPase, and succinic dehydrogenase. At 60 days, females had fibres larger than males, whereas the opposite was observed at 120 days. Besides, at 60 days, the lambs born by single birth had fibres larger than those born by multiple birth, whereas the opposite was observed at 120 days. Single lambs were heavier than twin lambs and multiple lambs. Fast-twitch glycolytic fibres had the largest size, followed by slow-twitch oxidative and fast-twitch oxidative glycolytic fibres. The dimensions of fibre types in m. longissimus dorsi were larger than in m. semitendinosus (P < 0.001.These muscle fibre characteristics are thought to be important factors influencing meat quality, which is often related to metabolic and contractile properties as determined by the muscle fibre type distribution.

  13. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    DEFF Research Database (Denmark)

    Hvid, L G; Gejl, Kasper Degn; Bech, R D

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  14. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures.

    Science.gov (United States)

    Gray, Stuart R; Söderlund, Karin; Ferguson, Richard A

    2008-05-01

    In this study, we examined the effect of muscle temperature (Tm) on adenosine triphosphate (ATP) and phosphocreatine utilization in single muscle fibres during the development of maximal power output in humans. Six male participants performed a 6-s maximal sprint on a friction-braked cycle ergometer under both normal (Tm = 34.3 degrees C, s = 0.6) and elevated (T(m) = 37.3 degrees C, s = 0.2) muscle temperature conditions. During the elevated condition, muscle temperature of the legs was raised, passively, by hot water immersion followed by wrapping in electrically heated blankets. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise. Freeze-dried single fibres were dissected, characterized according to myosin heavy chain composition, and analysed for ATP and phosphocreatine content. Single fibres were classified as: type I, IIA, IIAX25 (1 - 25% IIX isoform), IIAX50 (26 - 50% IIX), IIAX75 (51 - 75% IIX), or IIAX100 (76 - 100% IIX). Maximal power output and pedal rate were both greater (P < 0.05) during the elevated condition by 258 W (s = 110) and 22 rev . min(-1) (s = 6), respectively. In both conditions, phosphocreatine content decreased significantly in all fibre types, with a greater decrease during the elevated condition in type IIA fibres (P < 0.01). Adenosine triphosphate content was also reduced to a greater (P < 0.01) extent in type IIA fibres during the elevated condition. The results of the present study indicate that after passive elevation of muscle temperature, there was a greater decrease in ATP and phosphocreatine content in type IIA fibres than in the normal trial, which contributed to the higher maximal power output.

  15. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity.

    Science.gov (United States)

    Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W

    2008-06-01

    The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.

  16. Hypertrophy of mature xenopus muscle fibres in culture induced by synergy of albumin and insulin

    NARCIS (Netherlands)

    Jaspers, R.T.; van Beek-Harmsen, B.J.; Blankenstein, M.A.; Goldspink, G.; Huijing, P.A.J.B.M.; van der Laarse, W.J.

    2008-01-01

    The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres

  17. Quantitative analysis of single muscle fibre action potentials recorded at known distances

    NARCIS (Netherlands)

    Albers, B.A.; Put, J.H.M.; Wallinga, W.; Wirtz, P.

    1989-01-01

    In vivo records of single fibre action potentials (SFAPs) have always been obtained at unknown distance from the active muscle fibre. A new experimental method has been developed enabling the derivation of the recording distance in animal experiments. A single fibre is stimulated with an

  18. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Science.gov (United States)

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  19. Chaperone-mediated autophagy components are upregulated in sporadic inclusion-body myositis muscle fibres.

    Science.gov (United States)

    Cacciottolo, M; Nogalska, A; D'Agostino, C; Engel, W K; Askanas, V

    2013-12-01

    Sporadic inclusion-body myositis (s-IBM) is an age-associated degenerative muscle disease. Characteristic features are muscle-fibre vacuolization and intramuscle-fibre accumulations of multiprotein aggregates, which may result from the demonstrated impairments of the 26S proteasome and autophagy. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal degradation targeting proteins carrying the KFERQ motif. Lysosome-associated membrane protein type 2A (LAMP2A) and the heat-shock cognate protein 70 (Hsc70) constitute specific CMA components. Neither CMA components nor CMA activity has been studied in normal or disease human muscle, to our knowledge. We studied CMA components by immunocytochemistry, immunoblots, real-time PCR and immunoprecipitation in: (a) 16 s-IBM, nine aged-matched normal and nine disease control muscle biopsies; and (b) cultured human muscle fibres (CHMFs) with experimentally inhibited activities of either the 26S proteasome or autophagy. Compared with age-matched controls, in s-IBM muscle, LAMP2A and Hsc70 were on a given transverse section accumulated as aggregates in approximately 5% of muscle fibres, where they (a) colocalized with each other and α-synuclein (α-syn), a CMA-targeted protein; and (b) were bound to each other and to α-syn by immunoprecipitation. By immunoblots, LAMP2A was increased sevenfold P pathogenic aspect in s-IBM. © 2013 British Neuropathological Society.

  20. The effect of exercise on skeletal muscle fibre type distribution in obesity: From cellular levels to clinical application.

    Science.gov (United States)

    Pattanakuhar, Sintip; Pongchaidecha, Anchalee; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    Skeletal muscles play important roles in metabolism, energy expenditure, physical strength, and locomotive activity. Skeletal muscle fibre types in the body are heterogeneous. They can be classified as oxidative types and glycolytic types with oxidative-type are fatigue-resistant and use oxidative metabolism, while fibres with glycolytic-type are fatigue-sensitive and prefer glycolytic metabolism. Several studies demonstrated that an obese condition with abnormal metabolic parameters has been negatively correlated with the distribution of oxidative-type skeletal muscle fibres, but positively associated with that of glycolytic-type muscle fibres. However, some studies demonstrated otherwise. In addition, several studies demonstrated that an exercise training programme caused the redistribution of oxidative-type skeletal muscle fibres in obesity. In contrast, some studies showed inconsistent findings. Therefore, the present review comprehensively summarizes and discusses those consistent and inconsistent findings from clinical studies, regarding the association among the distribution of skeletal muscle fibre types, obese condition, and exercise training programmes. Furthermore, the possible underlying mechanisms and clinical application of the alterations in muscle fibre type following obesity are presented and discussed. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  1. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.

    Science.gov (United States)

    Clausen, T; Overgaard, K; Nielsen, O B

    2004-02-01

    Muscles containing predominantly fast-twitch (type II) fibres [ext. dig. longus (EDL)] show considerably lower contractile endurance than muscles containing mainly slow-twitch (type I) fibres (soleus). To assess whether differences in Na+-K+ fluxes and excitability might contribute to this phenomenon, we compared excitation-induced Na+-K+ leaks, Na+ channels, Na+-K+ pump capacity, force and compound action potentials (M-waves) in rat EDL and soleus muscles. Isolated muscles were mounted for isometric contractions in Krebs-Ringer bicarbonate buffer and exposed to direct or indirect continuous or intermittent electrical stimulation. The time-course of force decline and concomitant changes in Na+-K+ exchange and M-waves were recorded. During continuous stimulation at 60-120 Hz, EDL showed around fivefold faster rate of force decline than soleus. This was associated with a faster loss of excitability as estimated from the area and amplitude of the M-waves. The net uptake of Na+ and the release of K+ per action potential were respectively 6.5- and 6.6-fold larger in EDL than in soleus, which may in part be due to the larger content of Na+ channels in EDL. During intermittent stimulation with 1 s 60 Hz pulse trains, EDL showed eightfold faster rate of force decline than soleus. The considerably lower contractile endurance of fast-twitch compared with slow-twitch muscles reflects differences in the rate of excitation-induced loss of excitability. This is attributed to the much larger excitation-induced Na+ influx and K+ efflux, leading to a faster rise in [K+]o in fast-twitch muscles. This may only be partly compensated by the concomitant activation of the Na+-K+ pumps, in particular in fibres showing large passive Na+-K+ leaks or reduced content of Na+-K+ pumps. Thus, endurance depends on the leak/pump ratio for Na+ and K+.

  2. McArdle disease does not affect skeletal muscle fibre type profiles in humans

    Directory of Open Access Journals (Sweden)

    Tertius Abraham Kohn

    2014-11-01

    Full Text Available Patients suffering from glycogen storage disease V (McArdle disease were shown to have higher surface electrical activity in their skeletal muscles when exercising at the same intensity as their healthy counterparts, indicating more muscle fibre recruitment. To explain this phenomenon, this study investigated whether muscle fibre type is shifted towards a predominance in type I fibres as a consequence of the disease. Muscle biopsies from the Biceps brachii (BB (n = 9 or Vastus lateralis (VL (n = 8 were collected over a 13-year period from male and female patients diagnosed with McArdle disease, analysed for myosin heavy chain (MHC isoform content using SDS-PAGE, and compared to healthy controls (BB: n = 3; VL: n = 10. All three isoforms were expressed and no difference in isoform expression in VL was found between the McArdle patients and healthy controls (MHC I: 33±19% vs. 43±7%; MHC IIa: 52±9% vs. 40±7%; MHC IIx: 15±18% vs. 17±9%. Similarly, the BB isoform content was also not different between the two groups (MHC I: 33±14% vs. 30±11%; MHC IIa: 46±17% vs. 39±5%; MHC IIx: 21±13% vs. 31±14%. In conclusion, fibre type distribution does not seem to explain the higher surface EMG in McArdle patients. Future studies need to investigate muscle fibre size and contractility of McArdle patients.

  3. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials

    Science.gov (United States)

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-01-01

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573

  4. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...... IIa: young 18% and old 25%; P selective decrease in Ca(2+) sensitivity in MHC IIa fibres of young (P ....05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca(2+) sensitivity that were dependent on age and MHC isoform....

  5. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.

    2013-01-01

    heavy chain (MyHC) isoforms has not been previously investigated. Oxidation of myosin isolated from muscle fibres originating from various porcine muscles with a different metabolic profile was studied using a single muscle fibre in-vitro motility assay, allowing measurements of catalytic properties...... (motility speed) and force-generation capacity of specific MyHC isoforms. In the experimental procedure, single muscle fibres were split in different segments and each segment was exposed to a different concentration of hydrogen peroxide. Speed and force measurements were recorded and compared, to assess...... the effect of myosin oxidation on motility and force. The MyHC isoform expression in the single muscle fibre was subsequently determined on silver-stained gel SDS-PAGE. Preliminary results indicate a decrease of directionality and speed of the in-vitro motility as a result of an oxidative environment...

  6. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.

    Science.gov (United States)

    Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim

    2017-05-01

    Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg -1  min -1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0

  7. Postnatal changes in electromyographic signals during piglet growth, and in relation to muscle fibre types

    DEFF Research Database (Denmark)

    Andersen, Ninette Kieme; Ravn, L.S.; Guy, J.H.

    2008-01-01

    This study uses non-invasive evoked surface electromyography (SEMG) to investigate postnatal muscle development in pigs, and to assess any correlation between recorded signal parameters and muscle fibre types in two different skeletal muscles. Four litters (n=43) of Large White x Landrace pigs were...... used. Evoked SEMG mesurements were taken on days 2, 5, 14, 26, 60 and 151 post partum from m. Longissimus dorsi (LD) and on days 14, 26, 60 and 151 post partum from m. Biceps femoris (BF). A third of each litter was slaughtered at days 27, 61 and 153 post partum. Biopsy samples for LD and BF were taken...... to categorize day 5 post partum, whilst for BF significant increases occurred from days 14 to 26 post partum. Fibre type development in both muscles showed a significant decrease in type IIA fibre number (Ptype IIB fibre number (P

  8. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    Science.gov (United States)

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  9. Proximo-distal organization and fibre type regionalization in rat hindlimb muscles

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Five muscles of the rat's lower hindlimb were compared with regard to their histochemical fibre type distribution at seven different proximo-distal levels. The muscles were: extensor digitorum longus (ED), flexor digitorum and hallucis longus (FD), gastrocnemius medialis (GM), peroneus longus (PE)

  10. Comparison of muscle fibre characteristics and production traits among offspring from Meishan dams mated to different sires

    Directory of Open Access Journals (Sweden)

    Ki-Chang Hong

    2010-01-01

    Full Text Available This study evaluated how various porcine sires affected muscle fibre characteristics, with respect to production traits. Sires from Berkshire, Duroc, Meishan, and Yorkshire pigs were mated to Meishan dams (BM, DM, MM, and YM offspring, respectively. A total of 96 pigs were evaluated for muscle fibre characteristics and production traits. The progeny from Duroc and Yorkshire sires had the greatest number of total fibres (P<0.05 and exhibited less backfat thickness (P<0.001 and larger loin muscle areas (P<0.05 than BM pigs. The DM and BM crossbreds showed higher marbling (P<0.01, and colour scores (P<0.05, as well as lower shear force scores (P<0.001. The MM pigs had greater proportional area of type IIb muscle fibres (P<0.05, and also displayed higher drip loss (P<0.01, higher lightness (P<0.001, and a greater incidence of PSE pork (pale, soft, and exudative; 25% than DM, BM, and YM. These results showed that a greater number of total muscle fibres without increasing the cross sectional area of fibres improved lean meat production, and that a lower proportion of type IIb fibres was associated with better meat quality. For these reasons, the Duroc sire × Meishan dam crossbreed emerged as the most appropriate mating type examined herein to simultaneously enhance both lean meat production and meat quality.

  11. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibres and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609

    DEFF Research Database (Denmark)

    Grunnet, Louise Groth; Brøns, Charlotte; Jacobsen, Stine

    2009-01-01

    9939609 A-allele was associated with elevated fasting blood glucose and plasma insulin, hepatic insulin resistance and shorter recovery halftimes of phosphocreatine (PCr) and inorganic phosphate (Pi) after exercise in a primarily type I muscle. These relationships - except for fasting insulin - remained...... or mitochondrially encoded genes in skeletal muscle during rest. Conclusion. Increased energy efficiency - and potentially increased mitochondrial coupling - as suggested by faster recovery rates of PCr and Pi in oxidative muscle fibres may contribute to the increased risk of obesity and type 2 diabetes...

  12. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    Science.gov (United States)

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days

  13. Sensitivity of different types of fibres in rabbit skeletal muscle to pneumatic compression by tourniquet and to ischaemia.

    Science.gov (United States)

    Fridén, J; Pedowitz, R A; Thornell, L E

    1994-06-01

    Morphometric properties (distribution of types of fibre and fibre areas) in the non-necrotic regions of four different rabbit muscles (superficial portions of semimembranosus, biceps femoris, tibialis anterior, and soleus muscles) were measured 48 hours after a tourniquet had been applied around the thigh for two hours at either 125 or 350 mmHg. There was an considerable increase of the relative numbers of both large and small fibres as well as changes in the proportions of the types of fibre. The most dramatic percentage change in type of fibre was in the semimembranosus when compressed at 350 mmHg, which showed an increase of the relative frequency of fibres with type 2AB staining characteristics from 10.2% to 18.0% (p < 0.001). Extreme changes in fibre area were found exclusively in semimembranosus and biceps femoris. Most fibres of abnormal size were of type 2, type 2B fibre areas being the most affected. This study shows that morphometry is a valuable tool in the assessment of the more subtle indications of injury. Compression and ischaemia together have a more dramatic effect on muscle morphology and morphometric properties in the non-necrotic regions than ischaemia alone. These data also show that muscles are differentially sensitive to compression and ischaemia. This information may be useful into the understanding of more complex functional deficits observed after the use of tourniquet.

  14. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  15. Histochemistry profile of the biceps brachii muscle fibres of capuchin monkeys (Cebus apella, Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    CHF Bortoluci

    Full Text Available A general analysis of the behaviour of “Cebus” shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG, Fast Twitch Oxidative Glycolitic (FOG and Slow Twitc (SO. In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.

  16. Histochemistry profile of the biceps brachii muscle fibres of capuchin monkeys (Cebus apella, Linnaeus, 1758).

    Science.gov (United States)

    Bortoluci, C H F; Simionato, L H; Rosa Junior, G M; Oliveira, J A; Lauris, J R P; Moraes, L H R; Rodrigues, A C; Andreo, J C

    2014-08-01

    A general analysis of the behaviour of "Cebus" shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral) and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG), Fast Twitch Oxidative Glycolitic (FOG) and Slow Twitc (SO). In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.

  17. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions

    DEFF Research Database (Denmark)

    Nielsen, J S; Sahlin, K; Ørtenblad, N

    2007-01-01

    AIM: The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity....... METHODS: Isolated rat soleus muscles performed 30 EC bouts. Single fibres were isolated from the muscle and after mechanical removal of sarcolemma used to measure eSRCa2+, rate of SR Ca2+ loading and myofibrillar Ca2+ sensitivity. RESULTS: Following EC maximal force in whole muscle was reduced by 30......% and 16/100 Hz force ratio by 33%. The eSRCa2+ in fibres from non-stimulated muscles was 45 +/- 5% of the maximal loading capacity. After EC, eSRCa2+ per fibre CSA decreased by 38% (P = 0.05), and the maximal capacity of SR Ca2+ loading was depressed by 32%. There were no effects of EC on either...

  18. A mini-overview of single muscle fibre mechanics: the effects of age, inactivity and exercise in animals and humans.

    Science.gov (United States)

    Jee, Hyunseok; Kim, Jong-Hee

    2017-09-05

    Many basic movements of living organisms are dependent on muscle function. Muscle function allows for the coordination and harmonious integrity of movement that is necessary for various biological processes. Gross and fine motor skills are both regulated at the micro-level (single muscle fibre level), controlled by neuronal regulation, and it is therefore important to understand muscle function at both micro- and macro-levels to understand the overall movement of living organisms. Single muscle mechanics and the cellular environment of muscles fundamentally allow for the harmonious movement of our bodies. Indeed, a clear understanding of the functionality of muscle at the micro-level is indispensable for explaining muscular function at the macro-(whole gross muscle) level. By investigating single muscle fibre mechanics, we can also learn how other factors such Ca2+ kinetics, enzyme activity and contractile proteins can contribute to muscle mechanics at the micro- and macro-levels. Further, we can also describe how aging affects the capacity of skeletal muscle cells, as well as how exercise can prevent aging-based sarcopenia and frailty. The purpose of this review is to introduce and summarise the current knowledge of single muscle fibre mechanics in light of aging and inactivity. We then describe how exercise mitigates negative muscle adaptations that occur under those circumstances. In addition, single muscle fibre mechanics in both animal and human models are discussed.

  19. Wearing of complete dentures reduces slow fibre and enhances hybrid fibre fraction in masseter muscle

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Eržen, I.

    2012-01-01

    Roč. 39, č. 8 (2012), s. 608-614 ISSN 0305-182X R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : human masseter * MyHC isoforms * muscle fibre types Subject RIV: FH - Neurology Impact factor: 2.344, year: 2012

  20. Patient-specific fibre-based models of muscle wrapping

    Science.gov (United States)

    Kohout, J.; Clapworthy, G. J.; Zhao, Y.; Tao, Y.; Gonzalez-Garcia, G.; Dong, F.; Wei, H.; Kohoutová, E.

    2013-01-01

    In many biomechanical problems, the availability of a suitable model for the wrapping of muscles when undergoing movement is essential for the estimation of forces produced on and by the body during motion. This is an important factor in the Osteoporotic Virtual Physiological Human project which is investigating the likelihood of fracture for osteoporotic patients undertaking a variety of movements. The weakening of their skeletons makes them particularly vulnerable to bone fracture caused by excessive loading being placed on the bones, even in simple everyday tasks. This paper provides an overview of a novel volumetric model that describes muscle wrapping around bones and other muscles during movement, and which includes a consideration of how the orientations of the muscle fibres change during the motion. The method can calculate the form of wrapping of a muscle of medium size and visualize the outcome within tenths of seconds on commodity hardware, while conserving muscle volume. This makes the method suitable not only for educational biomedical software, but also for clinical applications used to identify weak muscles that should be strengthened during rehabilitation or to identify bone stresses in order to estimate the risk of fractures. PMID:24427519

  1. Fibre composition and enzyme activities in six muscles of the Swedish reindeer (Rangifer tarandus tarandus

    Directory of Open Access Journals (Sweden)

    K-H. Kiessling

    1983-05-01

    Full Text Available Six skeletal muscles have been studied as regards fibre properties and enzyme activities. The muscles are cranial part of M. gluteobiceps, M. semitendinosus, M. semimembranosus, M. longissimus dorsi, M. brachiocephalicus and M. sternocephalicus. Two histochemical methods were used for fibre identification, one based on myosin ATPase activities after preincubation at pH 4.3 and 4.6 and the other on oxidative capacity measured as NADH dehydrogenase activity. The two methods gave slightly differing results but allowed the general conclusion that of the three fibre types (I, II A and II B the type II B fibres, which are fast-twitch, glycolytic, make up some 40 - 60 % (mean 50 % of the muscles. Type I fibres, which are slow-twitch, oxidative, account for 30% of the total muscle volume in the two neck muscles but for only 20% or less in the rest. The third type, II A, which is fast-twitch, oxidative, glycolytic, accounts for only 20% of the volume in the neck muscles but as much as 40% in M. longissimus dorsi. Oxidative capacity is high throughout. This is valid also to the capacity to oxidize fatty acids, though reaching only half the activity previously found in the Svalbard reindeer (Kiessling and Kiessling, 1983. Lactate dehydrogenase activity is comparatively low in all muscles. The high respiratory chain activity and fatty acid oxidation and the low lactate dehydrogenase activities do not fit at all well with the high content of type II B fibres in the muscles. This high II B content is also unexpected when considering the activity pattern of the reindeer. An altogether different role for the type II B fibres, besides the traditional one, is therefore discussed.Fibersammansåttning och enzymaktiviteter i sex muskler från svensk tamren (Rangifer tarandus tarandus.Abstract in Swedish / Sammandrag: Sex skelettmuskler har undersokts med avseende på fiberegenskaper och enzymaktiviteter. De sex musklerna år kranial del av M. gluteobiceps. M

  2. Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.

    Science.gov (United States)

    Ross, Jacob A; Pearson, Adam; Levy, Yotam; Cardel, Bettina; Handschin, Christoph; Ochala, Julien

    2017-06-01

    Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND size remains unclear. In the present study, we aimed to test the hypothesis that the level of expression of the transcriptional coactivator PGC-1α and subsequent activation of the mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when PGC-1α is lacking, no change occurs. In the diaphragm, no clear difference was noted. This indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND volumes that can support an increased mitochondrial density. J. Cell. Physiol. 232: 1270-1274, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Power output and force-velocity relationship of red and white muscle fibres from the Pacific blue marlin (Makaira nigricans).

    Science.gov (United States)

    Johnston, I A; Salamonski, J

    1984-07-01

    Single white fibres and small bundles (two to three) of red fibres were isolated from the trunk muscle of Pacific Blue Marlin (50-121 kg body weight). Fibres were chemically skinned with 1% Brij. Maximum Ca2+-activated force production (Po) was 57 kN m-2 for red fibres and 176 kN m-2 for white fibres at 25 degrees C. The force-velocity (P-V) characteristics of these fibres were determined at 15 and 25 degrees C. Points below 0.6 Po on the P-V curve could be fitted to a linear form of Hill's equation. The degree of curvature of the P-V curve was similar at 15 and 25 degrees C (Hill's constant a/Po = 0.24 and 0.12 for red and white fibres respectively). Extrapolated maximum contraction velocities (Vmax) were 2.5 muscle lengths s-1 (Lo S-1) (red fibres) and 5.3 Lo S-1 (white fibres) at 25 degrees C. Q10(15-25 degrees C) values for Vmax were 1.4 and 1.3 for red and white fibres respectively. Maximum power output had a similar low temperature dependence and amounted to 13 W kg-1 for red and 57 W kg-1 for white muscle at 25 degrees C. The results are briefly discussed in relation to the locomotion and ecology of marlin.

  4. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse.

    Science.gov (United States)

    Wright, Craig Robert; Allsopp, Giselle Larissa; Addinsall, Alex Bernard; McRae, Natasha Lee; Andrikopoulos, Sofianos; Stupka, Nicole

    2017-01-01

    Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD). There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S ( Seps1 ) are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion ( mdx : Seps1 -/+ ) were generated. The mdx:Seps1 -/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL) muscles, mRNA expression of monocyte chemoattractant protein 1 ( Mcp-1 ) ( P = 0.034), macrophage marker F4/80 ( P = 0.030), and transforming growth factor-β1 ( Tgf-β1 ) ( P = 0.056) were increased in mdx:Seps1 -/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  5. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    DEFF Research Database (Denmark)

    Kristensen, Dorte Enggaard; Albers, Peter Hjorth; Prats, Clara

    2015-01-01

    are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of m. vastus lateralis from healthy men before and after two exercise trials; A) continuous cycling......AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been proven. We hypothesized that AMPK subunits...... (CON) 30 min at 69 ± 1% VO2peak or B) interval cycling (INT) 30 min with 6 × 1.5 min high-intense bouts peaking at 95 ± 2% VO2peak . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (-71%) was found. α1 , α2 , β2 and γ1 AMPK expression was similar between fibre types...

  6. Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle.

    Science.gov (United States)

    Del Vecchio, A; Negro, F; Felici, F; Farina, D

    2018-02-01

    Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R 2  = 0.7 (0.09), P motor units), which supported the hypothesis that fibre diameter is associated with RT. The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  8. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    Science.gov (United States)

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  9. Methods for demonstration of enzyme activity in muscle fibres at the muscle/bone interface in demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1981-01-01

    A method for demonstration of activity for ATPase and various oxidative enzymes (succinic dehydrogenase, alpha-glycerophosphate dehydrogenase, and lactic dehydrogenase) in muscle/bone sections of fixed and demineralized tissue has been developed. It was found that it is possible to preserve...... considerable amounts of the above mentioned enzymes in the muscle fibres at the muscle/bone interfaces. The best results were obtained after 20 min fixation, and 2-3 weeks of storage in MgNa2EDTA containing media. As the same technique previously has been used to describe patterns of resorption and deposition...

  10. Muscle fibre type composition of a number of limb muscles in different types of horse.

    Science.gov (United States)

    Snow, D H; Guy, P S

    1980-03-01

    Skeletal muscle of the equine was differentiated into three fibre types according to myosin ATPase (pH 9.4) and succinic dehydrogenase activity. The percentage of these types was determined in the musculus deltoideus, m triceps brachii caput longum, m gluteus medius, m semitendinosis, m biceps femoris and m vastus lateralis of the thoroughbred, Shetland pony, pony, heavy hunter and donkey. In addition the m gluteus medius was examined in the arab and American racing quarterhorse. High myosin ATPase activity fibres varied from a mean of 93.2 per cent in the m gluteus medius of the quarterhorse to 58.2 per cent in the m vastus lateralis of the donkey. In the m gluteus medius it was found that the percentage of high mycosin ATPase (pH 9.4) fibres varied significantly among breeds and these differences were related to the sprinting speed of the breed.

  11. Gene gun bombardment-mediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Reynet, Christine; Schjerling, Peter

    2002-01-01

    the enhanced green fluorescent protein (EGFP) labelling technique with physical transfection methods in vivo: intramuscular plasmid injection or gene gun bombardment. During optimisation experiments with plasmid coding for the EGFP reporter alone EGFP-positive muscle fibres were counted after collagenase...... treatment of in vivo transfected flexor digitorum brevis (FDB) muscles. In contrast to gene gun bombardment, intramuscular injection produced EGFP expression in only a few fibres. Regardless of the transfection technique, EGFP expression was higher in muscles from 2-week-old rats than in those from 6-week......Cellular protein trafficking has been studied to date only in vitro or with techniques that are invasive and have a low time resolution. To establish a gentle method for analysis of glucose transporter-4 (GLUT4) trafficking in vivo in fully differentiated rat skeletal muscle fibres we combined...

  12. Quantification of fibre type regionalisation : an analysis of lower hindlimb muscles in the rat

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Newly developed concepts and methods for the quantification of fibre type regionalisation were used for comparison between all muscles traversing the ankle of the rat lower hindlimb (n = 13). For each muscle, cross-sections from the proximodistal midlevel were stained for myofibrillar ATPase and

  13. Eccentric Contraction-Induced Muscle Fibre Adaptation

    Directory of Open Access Journals (Sweden)

    Arabadzhiev T. I.

    2009-12-01

    Full Text Available Hard-strength training induces strength increasing and muscle damage, especially after eccentric contractions. Eccentric contractions also lead to muscle adaptation. Symptoms of damage after repeated bout of the same or similar eccentrically biased exercises are markedly reduced. The mechanism of this repeated bout effect is unknown. Since electromyographic (EMG power spectra scale to lower frequencies, the adaptation is related to neural adaptation of the central nervous system (CNS presuming activation of slow-non-fatigable motor units or synchronization of motor unit firing. However, the repeated bout effect is also observed under repeated stimulation, i.e. without participation of the CNS. The aim of this study was to compare the possible effects of changes in intracellular action potential shape and in synchronization of motor units firing on EMG power spectra. To estimate possible degree of the effects of central and peripheral changes, interferent EMG was simulated under different intracellular action potential shapes and different degrees of synchronization of motor unit firing. It was shown that the effect of changes in intracellular action potential shape and muscle fibre propagation velocity (i.e. peripheral factors on spectral characteristics of EMG signals could be stronger than the effect of synchronization of firing of different motor units (i.e. central factors.

  14. Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres

    Science.gov (United States)

    Hernández-Ochoa, Erick O.; Schneider, Martin F.

    2012-01-01

    Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655

  15. A quantitative description of tubular system Ca2+ handling in fast‐ and slow‐twitch muscle fibres

    Science.gov (United States)

    Cully, Tanya R.; Edwards, Joshua N.; Murphy, Robyn M.

    2016-01-01

    Key points Current methods do not allow a quantitative description of Ca2+ movements across the tubular (t‐) system membrane without isolating the membranes from their native skeletal muscle fibre.Here we present a fluorescence‐based method that allows determination of the t‐system [Ca2+] transients and derivation of t‐system Ca2+ fluxes in mechanically skinned skeletal muscle fibres. Differences in t‐system Ca2+‐handling properties between fast‐ and slow‐twitch fibres from rat muscle are resolved for the first time using this new technique.The method can be used to study Ca2+ handling of the t‐system and allows direct comparisons of t‐system Ca2+ transients and Ca2+ fluxes between groups of fibres and fibres from different strains of animals. Abstract The tubular (t‐) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca2+ gradient and exchanges Ca2+ between the extracellular and intracellular environments. Little is known of the Ca2+‐handling properties of the t‐system as the small Ca2+ fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t‐system‐trapped rhod‐5N inside skinned fibres from rat and [Ca2+]t‐sys, allowing confocal measurements of Ca2+‐dependent changes in rhod‐5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca2+] transients in the t‐system ([Ca2+]t‐sys (t)). Furthermore, t‐system Ca2+‐buffering power was determined so that t‐system Ca2+ fluxes could be derived from [Ca2+]t‐sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca2+ induced a robust store‐operated Ca2+ entry (SOCE) in fast‐ and slow‐twitch fibres, reducing [Ca2+]t‐sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg2+ and [Ca2+]cyto (28 nm–1.3 μm) to Ca2+‐depleted fibres generated t‐system Ca2+ uptake rates

  16. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    Science.gov (United States)

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  17. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse

    Directory of Open Access Journals (Sweden)

    Craig Robert Wright

    2017-01-01

    Full Text Available Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD. There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S (Seps1 are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion (mdx:Seps1−/+ were generated. The mdx:Seps1−/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL muscles, mRNA expression of monocyte chemoattractant protein 1 (Mcp-1 (P=0.034, macrophage marker F4/80 (P=0.030, and transforming growth factor-β1 (Tgf-β1 (P=0.056 were increased in mdx:Seps1−/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  18. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  19. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men.

    Science.gov (United States)

    Zoladz, J A; Semik, D; Zawadowska, B; Majerczak, J; Karasinski, J; Kolodziejski, L; Duda, K; Kilarski, W M

    2005-01-01

    Muscle fibre profile area (Af), volume density (Vv), capillary-to-fibre ratio (CF) and number of capillaries per fibre square millimetre (CD) were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background. Seven subjects were untrained students (group A), nine were national and sub-national level endurance athletes (group B) with the background of 7.8+/-2.9 years of specialised training, and eight subjects were sprint-power athletes (group C) with 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6%) and C (50.5%; 26.4%). However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%). There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD) was 245 (group A), 308 (group B) and 325 (group C). Significant differences (Pski-jumping, volleyball, soccer and modern dance.

  20. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    Science.gov (United States)

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  1. Comparative data from young men and women on masseter muscle fibres, function and facial morphology

    DEFF Research Database (Denmark)

    Tuxen, A.; Bakke, M.; Pinholt, E. M.

    1999-01-01

    The primary aim was to relate information about masseter muscle fibres and function to aspects of facial morphology in a group of healthy young men. The secondary aim was to investigate possible sex differences using data previously obtained from a comparable group of age-matched, healthy women......, and the tissue examined for myosin ATPase activity. Further, the cross-sectional areas of the different fibre types were measured. In spite of using age-matched healthy men and women with a full complement of teeth, statistically significant sex differences were found among measures related to muscle function...... and some measures of facial morphology. Thus data from men and women should not be pooled uncritically. The greater bite force in men than women corresponded with the greater diameter and cross-sectional area of type II fibres. Further, the males had more anteriorly inclined mandibles and shorter anterior...

  2. Lion (Panthera leo) and caracal (Caracal caracal) type IIx single muscle fibre force and power exceed that of trained humans.

    Science.gov (United States)

    Kohn, Tertius A; Noakes, Timothy D

    2013-03-15

    This study investigated for the first time maximum force production, shortening velocity (Vmax) and power output in permeabilised single muscle fibres at 12°C from lion, Panthera leo (Linnaeus 1758), and caracal, Caracal caracal (Schreber 1776), and compared the values with those from human cyclists. Additionally, the use and validation of previously frozen tissue for contractile experiments is reported. Only type IIx muscle fibres were identified in the caracal sample, whereas type IIx and only two type I fibres were found in the lion sample. Only pure type I and IIa, and hybrid type IIax fibres were identified in the human samples - there were no pure type IIx fibres. Nevertheless, compared with all the human fibre types, the lion and caracal fibres were smaller (Plion: 3008±151 μm(2), caracal: 2583±221 μm(2)). On average, the felid type IIx fibres produced significantly greater force (191-211 kN m(-2)) and ~3 times more power (29.0-30.3 kN m(-2) fibre lengths s(-1)) than the human IIax fibres (100-150 kN m(-2), 4-11 kN m(-2) fibre lengths s(-1)). Vmax values of the lion type IIx fibres were also higher than those of human type IIax fibres. The findings suggest that the same fibre type may differ substantially between species and potential explanations are discussed.

  3. Coordination Mechanism in Fast Human Movements - Experimental and Modelling Studies. Volume 2.

    Science.gov (United States)

    1982-02-01

    the involved muscle . Knapik and Ramos (33) have proposed that fast twitch muscle fiber may be responsible for a maximun speed move- ment, while slow ...repetition with submaximun weight (low intensity), Wolcott (56) attempted to selectively fatigue the fast and slow twitch muscle fiber. Both intensities of...B. "Enzyme Activity and Fibre Composition in Skeletal Muscle of Trained and Untrained Men." Journal of Applied Physiology 33: 312-319, 1972. 40

  4. Nandrolone decanoate treatment affects sarcoplasmic reticulum Ca(2+) ATPase function in skinned rat slow- and fast-twitch fibres.

    Science.gov (United States)

    Bouhlel, Aicha; Joumaa, Wissam H; Léoty, Claude

    2003-09-01

    The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg x kg(-1)) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca(2+) loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca(2+) leakage depended on the quantity of Ca(2+) loaded. Furthermore, for similar SR Ca(2+) contents, the Ca(2+) leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca (2+) uptake by the SR in a fibre-type dependent manner.

  5. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2008-04-01

    PT, Zhang, CY, Wu, Z, Boss, O et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow - twitch muscle fibres . Nature...Calcineurin and CaMK signaling pathways in fast -to- slow fiber type transformation of cultured mouse skeletal muscle fibers Xiaodong Mu, PhD The John...Surgery”). 3. Ectopic bone formation in fast and slow skeletal muscle (Meszaros L., “Influence of vascularity on muscle regeneration, fibrosis and

  6. Healthy and diseased striated muscle studied by analytical scanning electron microscopy with special reference to fibre type

    International Nuclear Information System (INIS)

    Wroblewski, R.

    1982-01-01

    X-ray microanalytical investigations of striated muscles in the scanning electron microscope are reviewed. The main part of the studies was performed on cryosections cut with a conventional cryostat operating at -20 degrees C to -40 degrees C. The preparation procedure including different types of attachment of the sections to the specimen holder is described in detail. The elemental changes in muscle are related to the muscle fibre type as demonstrated by histochemical methods or to histochemically demonstrated inclusions in diseased muscles. This is of great importance, because muscle disorders are often characterised by selective involvement of different muscle fibre types. The preparation methods of muscle for analytical scanning electron microscopy and the obtained results are compared with studies performed on thin cryo and epoxy sections, analysed in the transmission and scanning-transmission electron microscope. It is evident that X-ray microanalysis performed on thick cryosections provide a quick survey of the elemental composition of whole cells, and should be followed in interesting cases by close examination on the organelle level studied in thin cryosections in the transmission and scanning-transmission electron microscope

  7. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  8. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  9. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis.

    Science.gov (United States)

    Gosker, Harry R; Zeegers, Maurice P; Wouters, Emiel F M; Schols, Annemie M W J

    2007-11-01

    Skeletal muscle dysfunction is a common feature in chronic obstructive pulmonary disease (COPD) which is associated with intrinsic muscular abnormalities. One of the most consistently reported alterations is a shift from fibre type I to II in the vastus lateralis of these patients. Surprisingly, the relationship between this shift and the severity and phenotype of COPD remains unclear. A study was conducted to determine whether vastus lateralis muscle fibre type proportions are associated with COPD disease severity and to provide reference values for the proportions of fibre types in the vastus lateralis in COPD. A systematic review and a meta-analysis were conducted in which muscle fibre type data and markers of disease severity were collected from the literature. The forced expiratory volume in 1 s (FEV(1)), the ratio of FEV(1) to forced vital capacity (FVC) and body mass index were positively associated with the proportion of type I fibres in COPD. A proportion of 51% for vastus lateralis fibre type I and 13% for fibre type IIX were calculated from the combined data as normal values for patients with typical GOLD stage 3-4 COPD aged 60-70 years. Based on these reference values, a proportion of fibre type I 29% were defined as pathologically abnormal. This review sheds new light on the relationship between skeletal muscle abnormalities and important hallmarks of the disease in severe COPD, and identifies absence of data in GOLD stages 1-2. This review also provides reference values on fibre type composition for diagnostic purposes in COPD.

  10. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    Science.gov (United States)

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  11. Objectivity of two methods of differentiating fibre types and repeatability of measurements by application of the TEMA image analysis system.

    Science.gov (United States)

    Henckel, P; Ducro, B; Oksbjerg, N; Hassing, L

    1998-01-01

    The objectivity of two of the most widely used methods for differentiation of fibre types, i.e. 1) the myosin ATP-ase method (Brooke and Kaiser, 1970a,b) and 2) the combined method, by which the myosin ATP-ase reaction is used to differentiate between fast and slow twitch fibres and NADH-tetrazolium reductase activity is used to identify the subgroups of fast twitch fibres (Ashmore and Doerr, 1970, Peter et al., 1972), was assessed in muscle samples from horses, calves and pigs. We also assessed the objectivity of the alpha-amylase-PAS preparation for the visualisation of capillaries (Andersen, 1975) in these species. For the purpose of reducing the time costs of histochemical analysis of muscle samples, we have developed an interactive image analysis system which is described. All analyses are performed on this system. In accordance with several other investigations, differences between the two methods of differentiating fibre types were found only for the relative distribution of the fast-twitch fibre subgroups (p 87%), the impact of differences in pre-requisites (varied degrees of overlap between the fibre types) for performing the differentiation by the combined method raises a question of the reliability of this method. Apparently, no general rules for comparison of results of distribution of the two subgroups of fast twitch fibres by the two methods are applicable. The alpha-amylase-PAS method was found to be a fairly objective method to identify capillaries in muscles from horses, calves and pigs. However, as capillarity described in combination with other traits to give an indication of diffusion characteristics is significantly influenced by person, it is recommended that the same person perform all the analysis of a project. In addition to the methodological results in this study, we have shown that by application of the TEMA image analysis system, which is more rapid compared with the time-consuming traditional method for evaluation of histochemical

  12. A Muscle Fibre Conduction Velocity Tracking ASIC for Local Fatigue Monitoring.

    Science.gov (United States)

    Koutsos, Ermis; Cretu, Vlad; Georgiou, Pantelis

    2016-12-01

    Electromyography analysis can provide information about a muscle's fatigue state by estimating Muscle Fibre Conduction Velocity (MFCV), a measure of the travelling speed of Motor Unit Action Potentials (MUAPs) in muscle tissue. MFCV better represents the physical manifestations of muscle fatigue, compared to the progressive compression of the myoelectic Power Spectral Density, hence it is more suitable for a muscle fatigue tracking system. This paper presents a novel algorithm for the estimation of MFCV using single threshold bit-stream conversion and a dedicated application-specified integrated circuit (ASIC) for its implementation, suitable for a compact, wearable and easy to use muscle fatigue monitor. The presented ASIC is implemented in a commercially available AMS 0.35 [Formula: see text] CMOS technology and utilizes a bit-stream cross-correlator that estimates the conduction velocity of the myoelectric signal in real time. A test group of 20 subjects was used to evaluate the performance of the developed ASIC, achieving good accuracy with an error of only 3.2% compared to Matlab.

  13. Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle.

    Science.gov (United States)

    Meznaric, M; Eržen, I; Karen, P; Cvetko, E

    2018-03-01

    The myosin heavy chain (MyHC) composition of ageing limb muscles is transformed into a slower phenotype and expresses fast-twitch fibre type atrophy, presumably due to age-related motor unit remodelling and a change in the patterns of physical activity. It is not known if ageing affects the sternocleidomastoid muscle (SCM) in a similar way. The goal of the study was to analyze the MyHC composition and the size of muscle fibres in the ageing SCM by immunohistochemical methods and quantitative analysis and stereology using our own software for morphometry. We hypothesize that with ageing the MyHC composition of SCM transforms similarly as in ageing limb muscles, but the size of the muscle fibres is less effected as in limb muscles. The study was performed on the autopsy samples of the SCM in 12 older males. The results were compared with those published in our previous study on 15 young adult males. An ageing SCM transforms into a slower MyHC profile: the percentage of slow-twitch fibres is enhanced (numerical proportion 44.6 vs. 31.5%, Pfibres is diminished (numerical proportion 14.1 vs. 26.8%, Pfast-twitch fibres expressing MyHC-2a and 2x is smaller (50.6 vs. 63.5%, Pfibres expressing the fastest myosin isoform MyHC-2x is smaller too (19.0 vs. 34.5%, Pfibres expressing the fastest MyHC-2x provide circumstantial evidence for: (i) more fast-twitch than slow-twitch motor units being lost; and (ii) reinnervation by the surviving motor units. There appears to be no significant influence on muscle fibre size, which is congruent with relatively unchanged SCM activity during life. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Directory of Open Access Journals (Sweden)

    Peter Steinbacher

    Full Text Available PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2. Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak. Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  15. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Science.gov (United States)

    Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne

    2015-01-01

    PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  16. Moderate exercise of rainbow trout induces only minor differences in fatty acid profile, texture, white muscle fibres and proximate chemical composition of fillets

    DEFF Research Database (Denmark)

    Rasmussen, Richard Skøtt; Heinrich, Maike Timm; Hyldig, Grethe

    2011-01-01

    when the lipid content in the fillet increased (R2≥0.85, Pb1·10−6). Fillet texture measured instrumentally as shear force (g) after 72 h of ice storage did not differ between the two experimental groups, and neither did the content of lipid, protein or dry matter in the fillet. Muscle fibre sizes have...... a possible role in textural characteristics and were determined by histological analyses of white, glycolytic muscle tissue. These data showed that although differences in average fibre diameters were small (excF: 75.04 (s.d.=48.96)μm; ctrlF: 74.50 (46.21)μm) the general fibre size distribution differed...... significantly among the two groups (Pb0.01). Moreover, moderate exercise induced small but significant changes in fibre circularity (excF: circ.=0.724; ctrlF:=0.720, Pb0.05) but neither muscle fibre diameter nor circularity was significantly related to fillet texture. Altogether, the results suggest...

  17. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  18. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ørtenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effect of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...

  19. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training.

    Science.gov (United States)

    Wyckelsma, Victoria L; Levinger, Itamar; McKenna, Michael J; Formosa, Luke E; Ryan, Michael T; Petersen, Aaron C; Anderson, Mitchell J; Murphy, Robyn M

    2017-06-01

    Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole

  20. Does the sequence of onset of rigor mortis depend on the proportion of muscle fibre types and on intra-muscular glycogen content?

    Science.gov (United States)

    Kobayashi, M; Takatori, T; Nakajima, M; Saka, K; Iwase, H; Nagao, M; Niijima, H; Matsuda, Y

    1999-01-01

    We examined the postmortem changes in the levels of ATP, glycogen and lactic acid in two masticatory muscles and three leg muscles of rats. The proportion of fibre types of the muscles was determined with NIH image software. The ATP levels in the white muscles did not decrease up to 1 h after death, and the ATP levels 1 and 2 h after death in the white muscles were higher than those in the red muscles with a single exception. The glycogen level at death and 1 h after death and the lactic acid level 1 h after death in masticatory muscles were lower than in the leg muscles. It is possible that the differences in the proportion of muscle fibre types and in glycogen level in muscles influences the postmortem change in ATP and lactic acid, which would accelerate or retard rigor mortis of the muscles.

  1. GLUT4 expression in human muscle fibres is not correlated with intracellular triglyceride (TG) content. Is TG a maker or a marker of insulin resistance?

    DEFF Research Database (Denmark)

    Gaster, M; Ottosen, P D; Vach, W

    2003-01-01

    diabetic subjects, and young lean controls. TG density was significantly higher in slow compared to fast fibres in all studied subjects (pslow twitch fibres of obese diabetic subjects compared to obese (p...We have recently reported a progressive decline in the expression of glucose transporter isoform 4 (GLUT4) from control subjects through obese non-diabetics to obese type 2 diabetic subjects, indicating that the reduced GLUT4 in slow twitch fibres could be secondary to obesity. In this study we...... densities in slow and fast fibres did not correlate with the corresponding GLUT4 density in the same fibres in our study groups (p>0.05). Plasma TG and FFA did not correlate with GLUT4 expression in slow or fast fibres (p>0.05). In conclusion, TG content was increased in diabetic slow fibres with a reduced...

  2. A physico-mathematical analysis of elliptical nerve and muscle fibres

    International Nuclear Information System (INIS)

    Bonsignori, F.

    1977-01-01

    In the framework of the tridimensional core conductor model, the current flow field of an elliptical nerve or muscle fibre in a volume conductor is studied. As the quasi-static conditions are valid, the Laplace equation applies. Expressions for the intracellular and extra cellular potential fields and the membrane current are exactly derived. As a limit the solutions for the circular case are recovered. Finally a sketch of an approximate method of calculation is outlined and the first elliptical correction to the usual membrane current is evaluated

  3. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  4. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  5. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men

    Directory of Open Access Journals (Sweden)

    W. M. Kilarski

    2011-08-01

    Full Text Available Muscle fibre profile area (Af, volume density (Vv, capillary-to-fibre ratio (CF and number of capillaries per fibre square millimetre (CD were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean ± SD: age 25.4±5.8 years, height 178.6±5.5 cm, body mass 72.1±7.7 kg of different training background. Seven subjects were untrained students (group A, nine were national and sub-national level endurance athletes (group B with the background of 7.8±2.9 years of specialised training, and eight subjects were sprint-power athletes (group C with 12.8±8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6% and C (50.5%; 26.4%. However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%. There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD was 245 (group A, 308 (group B and 325 (group C. Significant differences (P<0.05 in CF and CD, were found only between group A (1.9; 245 and both groups of trained men, B and C (2.1; 308 and 325. However, endurance athletes (group B, such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance.

  6. Fast readout of scintillating fibres using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Akchurin, N.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Dufournaud, J.; Dyachenko, V.A.; Giacomich, R.; Gorin, A.M.; Kuroda, K.; Magaudda, D.; Newsom, C.; Okada, K.; Onel, Y.; Penzo, A.; Rakhmatov, V.Ye.; Rykalin, V.I.; Salvato, G.; Savin, A.A.; Schiavon, P.; Sillou, D.; Solovyov, Yu.A.; Takeutchi, F.; Tareb-Reyes, M.; Vasilchenko, V.G.; Yoshida, T.; Zaychenko, A.A.

    1994-01-01

    Major progress has recently been achieved in the fast readout of scintillating fibres using position-sensitive photomultipliers (PSPMs). Experimental results obtained with commercially available PSPMs already show a space resolution better than 200 μm, a time resolution of about 1.5 ns with a detection efficiency higher than 90%, and the possibility of separating double hits with a minimum distance of ∼3 mm. An upgrade of PSPMs based on new dynode structures is also in progress. Results obtained with one new PSPM prototype in a magnetic field are also presented. (orig.)

  7. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  8. Local depletion of glycogen with supra-maximal exercise in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gejl, Kasper Degn; Ørtenblad, Niels; Andersson, Erik

    2017-01-01

    importance to muscle function. The present study was designed to investigate the depletion of these three sub-cellular glycogen compartments during repeated supra-maximal exercise in elite athletes. Ten elite cross-country skiers (age: 25 ± 4 yrs., VO2 max : 65 ± 4 ml kg(-1) min(-1) , mean ± SD) performed...... four ∼4-minute supra-maximal sprint time trials (STT 1-4) with 45 min recovery. The sub-cellular glycogen volumes in m. triceps brachii were quantified from electron microscopy images before and after both STT 1 and STT 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type I...... fibres (-52% [-89:-15%]) than type 2 fibres (-15% [-52:22%]) (P = 0.02), while the depletion of intermyofibrillar glycogen (main effect: -19% [-33:0], P = 0.006) and subsarcolemmal glycogen (main effect: -35% [-66:0%], P = 0.03) was similar between fibre types. In contrast, only intermyofibrillar...

  9. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres

    Science.gov (United States)

    Widrick, J. J.; Knuth, S. T.; Norenberg, K. M.; Romatowski, J. G.; Bain, J. L.; Riley, D. A.; Karhanek, M.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.; hide

    1999-01-01

    1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact

  10. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  11. Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production.

    Science.gov (United States)

    Rescan, Pierre-Yves; Le Cam, Aurelie; Rallière, Cécile; Montfort, Jérôme

    2017-06-07

    Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia

  12. Test of Fibre Bragg Gratings samples under High Fast Neutrons Fluence

    Science.gov (United States)

    Cheymol, G.; Remy, L.; Gusarov, A.; Kinet, D.; Mégret, P.; Laffont, G.; Blanchet, T.; Morana, A.; Marin, E.; Girard, S.

    2018-01-01

    Optical fibre sensors (OFS) are worthy of interest for measurements in nuclear reactor thanks to their unique features, particularly compact size and remote multi-point sensing for some of them. But besides non negligible constraints associated with the high temperature environment of the experiments of interest, it is well known that the performances of OFS can be severely affected by high level of radiations. The Radiation Induced Attenuation (RIA) in the fibre is probably most known effect, which can be to some extent circumvented by using rad hard fibres to limit the dynamic loss. However, when the fast neutron fluence reaches 1018 to 1019 n/cm2, the density and index variations associated to structural changes may deteriorate drastically the performances of OFS even if they are based on rad hard fibres, by causing direct errors in the measurements of temperature and/or strain changes. The aim of the present study is to access the effect of nuclear radiations on the Fabry Perot (FP) and of Fibre Bragg Grating (FBG) sensors through the comparison of measurements made on these OFS - or part of them - before and after irradiation [1]. In the context of development of OFS for high irradiation environment and especially for Material Testing Reactors (MTRs), Sake 2 experiment consists in an irradiation campaign at high level of gamma and neutron fluxes conducted on samples of fibre optics - bare or functionalised with FBG. The irradiation was performed at two levels of fast neutron fluence: 1 and 3.1019 n/cm2 (E>1MeV), at 250°± 25°C, in the SCK•CEN BR2 reactor (Mol Belgium). An irradiation capsule was designed to allow irradiation at the specified temperature without active control. The neutron fluence was measured with activation dosimeters and the results were compared with MCPN computations. Investigation of bare samples gives information on the density changes, while for the FBGs both density and refractive index perturbation are involved. Some results for

  13. Analysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres.

    Science.gov (United States)

    Medler, Scott; Mykles, Donald L

    2003-10-01

    Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype

  14. Functional effects of the DCM mutant Gly159Asp troponin C in skinned muscle fibres

    DEFF Research Database (Denmark)

    Preston, Laura C; Lipscomb, Simon; Robinson, Paul

    2006-01-01

    We recently reported a dilated cardiomyopathy (DCM) causing mutation in a novel disease gene, TNNC1, which encodes cardiac troponin C (TnC). We have determined how this mutation, Gly159Asp, affects contractile regulation when incorporated into muscle fibres. Endogenous troponin in rabbit skinned...

  15. Composition and cross-sectional area of muscle fibre types in relation to daily gain and lean and fat content of carcass in Landrace and Yorkshire pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available The muscle fibre-type properties of longissimus were compared between Landrace and Yorkshire breeds and between the sexes in an attempt to shed light on the relationship of these histochemical parameters to animal growth and carcass composition. Muscle fibres were classified into three groups, type I, type IIA and type IIB, using the myosin ATPase method. At a given live weight, the cross-sectional area of type I fibres (CSA I was smaller (p

  16. "Fast" and "slow" skeleto-fusimotor innervation in cat tenuissimus spindles; a study with the glycogen-depletion method.

    Science.gov (United States)

    Jami, L; Lan-Couton, D; Malmgren, K; Petit, J

    1978-07-01

    The glycogen-depletion method was used to investigate the motor supply to tenuissimus with respect to the presence of fast beta axons and to assess the total proportion of both fast and slow beta-innervated spindles in this muscle. In a first series of 5 expts., groups of motor axons with conduction velocities higher than 85 m/s were repetitively stimulated so as to produce glycogen depletion in the muscle fibres they innervated. The whole muscle was then quick-frozen, serially cut, stained to demonstrate glycogen and examined for intrafusal glycogen depletion. Zones of glycogen depletion were found in 16 of the 46 examined spindles; they were most frequently located in the longest of the chain intrafusal muscle fibres. Since it is known that there are no purely fusimotor axons to tenuissimus with conduction velocities above 50 m/s, it was concluded that beta axons are present among the fastest axons to this muscle. In a second series of 5 expts. as many motor axons as possible with conduction velocities above 60 m/s were stimulated. Zones of glycogen depletion were found in 19 of the 47 examined spindles. They affected chain fibres in about half of the instances and bag1 fibers in the others. As this latter location is characteristic of slow dynamic beta axons, it was concluded that both slow and fast beta axons occur regularly in the motor supply to tenuissimus. beta-innervation is present in at least 40% of tenuissimus spindles with almost no convergence of fast and slow beta axons onto the same spindle.

  17. Effect of ascorbic acid on fatigue of skeletal muscle fibres in long term cold exposed sprague dawley rats

    International Nuclear Information System (INIS)

    Rashid, A.; Ayub, M.

    2011-01-01

    On exposure to prolonged cold temperature, the body responds for effective heat production both by shivering and non-shivering thermo genesis. Cold exposure increases the production of reactive oxygen species which influence the sarcoplasmic reticulum Ca/sup ++/ release from the skeletal muscles and affect their contractile properties. The role of ascorbic acid supplementation on force of contraction during fatigue of cold exposed skeletal muscles was evaluated in this study. Method: Ninety healthy, male Sprague Dawley rats were randomly divided into three groups of control, cold exposed, and cold exposed with ascorbic acid 500 mg/L supplementation mixed in drinking water. Group II and III were given cold exposure by keeping their cages in ice-filled tubs for 1 hr/day for one month. After one month, the extensor digitorum longus muscle was dissected out and force of contraction during fatigue in the skeletal muscle fibres was analysed on a computerised data acquisition system. Results: The cold exposed group showed a significant delay in the force of contraction during fatigue of skeletal muscle fibres compared to control group. Group III showed easy fatigability and a better force of contraction than the cold exposed group. Conclusions: Ascorbic acid increases the force of contraction and decreases resistance to fatigue in the muscles exposed to chronic cold. (author)

  18. Culturing muscle fibres in hanging drop: a novel approach to solve an old problem.

    Science.gov (United States)

    Archacka, Karolina; Pozzobon, Michela; Repele, Andrea; Rossi, Carlo Alberto; Campanella, Michelangelo; De Coppi, Paolo

    2014-02-01

    The satellite cells (SCs) associated with muscle fibres play a key role in postnatal growth and regeneration of skeletal muscle. Commonly used methods of isolation and in vitro culture of SCs lead to the mixture of their subpopulations that exist within muscle. To solve this problem, we used the well established technique, the hanging drop system, to culture SCs in a three-dimensional environment and thus, to monitor them in their original niche. Using hanging drop technique, we were able to culture SCs associated with the fibre at least for 9 days with one transfer of fibres to the fresh drops. In comparison, in the classical method of myofibres culture, that is, on the dishes coated with Matrigel, SCs leave the fibres within 3 days after the isolation. Cells cultured in both systems differed in expression of Pax7 and MyoD. While almost all cells cultured in adhesion system expressed MyoD before the fifth day of the culture, the majority of SCs cultured in hanging drop still maintained expression of Pax7 and were not characterised by the presence of MyoD. Among the cells cultured with single myofibre for up to 9 days, we identified two different subclones of SCs: low proliferative clone and high proliferative clone, which differed in proliferation rate and membrane potential. The hanging drop enables the myofibres to be kept in suspension for at least 9 days, and thus, allows SCs and their niche to interact each other for prolonged time. In a consequence, SCs cultured in hanging drop maintain expression of Pax7 while those cultured in a traditional adhesion culture, that is, devoid of signals from the original niche, activate and preferentially undergo differentiation as manifested by expression of MyoD. Thus, the innovative method of SCs culturing in the hanging drop system may serve as a useful tool to study the fate of different subpopulations of these cells in their anatomical location and to determine reciprocal interactions between them and their niche.

  19. Sensitivity of the amplitude of the single muscle fibre action potential to microscopic volume conduction parameters

    NARCIS (Netherlands)

    Alberts, B.A.; Rutten, Wim; Wallinga, W.; Boom, H.B.K.

    1988-01-01

    A microscopic model of volume conduction was applied to examine the sensitivity of the single muscle fibre action potential to variations in parameters of the source and of the volume conductor, such as conduction velocity, intracellular conductivity and intracellular volume fraction. The model

  20. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    Science.gov (United States)

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P fast rate constant of relaxation in soleus muscle (P fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  1. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    Science.gov (United States)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  2. Women at Altitude: Voluntary Muscle Exercise Performance with and Without a-Adrenergic Receptor Blockage

    Science.gov (United States)

    1999-02-01

    proportion of active muscle volume occupied by slow - twitch fibers (a consequence of women having a smaller, fast - twitch fiber cross-sectional area (11,27...oxidative metabolism and in the ratio of slow -to- fast twitch fiber area must be considered with caution, however, since the proportion of slow fatiguing...ventilatory acclimatization to 4300m. Respir.Physiol. 70: 195-204,1987. 27. Nygaard, E. Skeletal muscle fibre characteristics in young women. Acta

  3. Effects of finishing diet and pre-slaughter fasting time on meat quality in crossbred pigs

    Directory of Open Access Journals (Sweden)

    K. PARTANEN

    2008-12-01

    Full Text Available The effects of the carbohydrate composition of finishing diet (fed from 80 to 107 kg of body weight and the length of pre-slaughter fasting on pork quality were studied in a 2 × 2 factorial experiment with 80 crossbred pigs. The control finishing diet was based on barley and soybean meal, and the fibrous finishing diet was based on barley, barley fibre, faba beans, and rapeseed cake. These diets contained 465 and 362 g starch and 177 and 250 g dietary fibre per kg, respectively. The fasting times of 25 and 41 h were obtained by giving the pigs their last meal at different times. Longer fasting lowered the glycolytic potential of the longissimus lumborum muscle (P = 0.01, whereas the finishing diet had no effect. Different muscles responded differently to the treatments. Longer fasting increased the ultimate pH of the semimembranosus muscle (P = 0.02, but did not affect that of the longissimus lumborum and semispinalis capitis muscles. The finishing diets did not affect the ultimate pH of the investigated muscles. A diet × fasting time interaction was seen in the lightness of the semimembranosus muscle (P = 0.05. The fibrous diet resulted in darker meat than the control diet did in pigs that were fasted for 25 h (P < 0.05. Longer fasting darkened the meat colour in pigs fed the fibrous diet (P < 0.05 but not in those fed the control diet. The meat from the semispinalis capitis muscle was darker in pigs fed the fibrous than those fed the control diet (P = 0.04. The treatments did not affect the colour of the longissimus lumborum muscle. Longer fasting decreased drip loss from the meat of pigs fed the control diet (P < 0.05. The eating quality of the pork was not influenced by the finishing diets or the fasting time. The pigs also grew equally fast on both finishing diets. In conclusion, a moderate alteration in the carbohydrate composition of a finishing diet or longer pre-slaughter fasting can have some effects on pork quality in crossbred pigs

  4. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    Science.gov (United States)

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lactate Accumulation in Muscle and Blood during Submaximal Exercise

    Science.gov (United States)

    1981-09-21

    exercise, fast and slow twitch fibers Short title: Lactate in muscle and blood P.A. Tesch, W.L. Daniels and D.S. Sharp Exercise Physiology Division, U.S...KIRBY, R.L. & BELCASTRO, A.N. 1978. Relationship between slow - twitch muscle fibres and lactic acid removal. Can J Appl Sports Sci 3:160-162. BRODAL, P...oxygen uptake (Karlsson 1971, Knuttgen & Saltin 1972). It is generally agreed that the main muscle fiber type to be recruited below this level is the slow

  6. Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting.

    Science.gov (United States)

    Heemstra, Karen A; Soeters, Maarten R; Fliers, Eric; Serlie, Mireille J; Burggraaf, Jacobus; van Doorn, Martijn B; van der Klaauw, Agatha A; Romijn, Johannes A; Smit, Johannes W; Corssmit, Eleonora P; Visser, Theo J

    2009-06-01

    The iodothyronine deiodinases D1, D2, and D3 enable tissue-specific adaptation of thyroid hormone levels in response to various conditions, such as hypothyroidism or fasting. The possible expression of D2 mRNA in skeletal muscle is intriguing because this enzyme could play a role in systemic as well as local T3 production. We determined D2 activity and D2 mRNA expression in human skeletal muscle biopsies under control conditions and during hypothyroidism, fasting, and hyperinsulinemia. This was a prospective study. The study was conducted at a university hospital. We studied 11 thyroidectomized patients with differentiated thyroid carcinoma (DTC) on and after 4 wk off T4( replacement and six healthy lean subjects in the fasting state and during hyperinsulinemia after both 14 and 62 h of fasting. D2 activity and D2 mRNA levels were measured in skeletal muscle samples. No differences were observed in muscle D2 mRNA levels in DTC patients on and off T4 replacement therapy. In healthy subjects, muscle D2 mRNA levels were lower after 62 h compared to 14 h of fasting. Insulin increased mRNA expression after 62 h, but not after 14 h of fasting. Skeletal muscle D2 activities were very low and not influenced by hypothyroidism and fasting. Human skeletal muscle D2 mRNA expression is modulated by fasting and insulin, but not by hypothyroidism. The lack of a clear effect of D2 mRNA modulation on the observed low D2 activities questions the physiological relevance of D2 activity in human skeletal muscle.

  7. Anatomical and Physiological Characteristics of the Ferret Lateral Rectus Muscle and Abducena Nucleus

    Science.gov (United States)

    2007-01-25

    from the ferret LR Slow Resistant group is larger than the typically powerful Fast Fatigable motor units in the cat. Whole Muscle Contractile...623-632, 1990. 21. HESS A and PILAR G. SLOW FIBRES IN THE EXTRAOCULAR MUSCLES OF THE CAT. J Physiol 169: 780-798, 1963. 22. Jacoby J, Chiarandini DJ...were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch

  8. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity

    DEFF Research Database (Denmark)

    Juel; Pilegaard

    1998-01-01

    muscles, muscles of old rats and rats that had been subjected to high-intensity training, endurance training, repeated exposure to hypoxia, and hypothyroid or hyperthyroid treatments. The lactate/H+ transport capacity of red muscles was greater than that of white muscles, and this difference...... and hypothyroidism was due to a decrease in Vmax. The denervation-induced decline in lactate/H+ transport capacity resulted from both an increased Km and a reduced Vmax. The present data show that muscle type differences and most changes in the lactate/H+ transport capacity are mediated by modifications in Vmax......, which is expected to represent the number of membrane transporter molecules. Km is unaffected by most treatments and appears to be independent of fibre type....

  9. Differences between glycogen biogenesis in fast- and slow-twitch rabbit muscle

    DEFF Research Database (Denmark)

    Cussó, R; Lerner, L R; Cadefau, J

    2003-01-01

    Skeletal muscle glycogen is an essential energy substrate for muscular activity. The biochemical properties of the enzymes involved in de novo synthesis of glycogen were analysed in two types of rabbit skeletal muscle fiber (fast- and slow-twitch). Glycogen concentration was higher in fast...

  10. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    Science.gov (United States)

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  11. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  12. Associations of the variation in the porcine myogenin gene with muscle fibre characteristics, lean meat production and meat quality traits.

    Science.gov (United States)

    Kim, J M; Choi, B D; Kim, B C; Park, S S; Hong, K C

    2009-04-01

    Pig breeding is aimed at improving lean meat production ability as well as meat quality, and muscle fibre characteristics may be important for enhancing these traits. Therefore, new molecular markers have been demanded for selecting lean meat production ability and meat quality in live animals. Myogenin belongs to the MyoD gene family, and is a candidate gene responsible for muscle fibre characteristics. We identified a new single nucleotide polymorphism (SNP) site in the 5' upstream region of the myogenin gene (nucleotides C and T). A total of 252 pigs of three breeds were genotyped by polymerase chain reaction-restriction fragment length polymorphism using BspCNI. Additionally, they were genotyped for the previously detected MspI site in the 3'-flanking region (alleles A and B). The CCBB diplotype had the highest frequency over breeds, followed by TCBB and CCAB. The other diplotypes were not found in studied pigs. Association analysis performed for the markers found that the TCBB diplotype has desirable effects on the total number of fibres (p lean meat production ability with good meat quality.

  13. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  14. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    Science.gov (United States)

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  15. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    Science.gov (United States)

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  16. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    Science.gov (United States)

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  17. Effects of pregnancy and fasting on muscle glucose utilization in the rabbit.

    Science.gov (United States)

    Hauguel, S; Leturque, A; Gilbert, M; Girard, J

    1988-05-01

    The effects of fasting on maternal glucose metabolism were investigated in nonpregnant and 29-day pregnant conscious rabbits. Pregnancy decreased the glucose metabolic index by 60% in maternal red postural muscles. Fasting induced similar modifications in nonpregnant rabbits and exaggerated the changes observed in fed pregnant animals. These data suggest that the decreased glucose utilization by maternal red muscles observed during pregnancy and fasting is related to the increase in circulating fat-derived substrates, because the fall in plasma insulin concentration is a specific adaptation to fasting.

  18. Reflexive contraction of the levator palpebrae superioris muscle to involuntarily sustain the effective eyelid retraction through the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle: verification with evoked electromyography.

    Science.gov (United States)

    Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke

    2010-01-01

    We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.

  19. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  20. Molecular regulation of high muscle mass in developing Blonde d'Aquitaine cattle foetuses

    Directory of Open Access Journals (Sweden)

    Isabelle Cassar-Malek

    2017-10-01

    Full Text Available The Blonde d'Aquitaine (BA is a French cattle breed with enhanced muscularity, partly attributable to a MSTN mutation. The BA m. Semitendinosus has a faster muscle fibre isoform phenotype comprising a higher proportion of fast type IIX fibres compared to age-matched Charolais (CH. To better understand the molecular network of modifications in BA compared to CH muscle, we assayed the transcriptomes of the m. Semitendinosus at 110, 180, 210 and 260 days postconception (dpc. We used a combination of differential expression (DE and regulatory impact factors (RIF to compare and contrast muscle gene expression between the breeds. Prominently developmentally regulated genes in both breeds reflected the replacement of embryonic myosin isoforms (MYL4, MYH3 with adult isoforms (MYH1 and the upregulation of mitochondrial metabolism (CKMT2, AGXT2L1 in preparation for birth. However, the transition to a fast, glycolytic muscle phenotype in the MSTN mutant BA is detectable through downregulation of various slow twitch subunits (TNNC1, MYH7, TPM3, CSRP3 beyond 210 dpc, and a small but consistent genome-wide reduction in mRNA encoding the mitoproteome. Across the breeds, NRIP2 is the regulatory gene possessing a network change most similar to that of MSTN.

  1. Development temperature has persistent effects on muscle growth responses in gilthead sea bream.

    Directory of Open Access Journals (Sweden)

    Daniel Garcia de la serrana

    Full Text Available Initially we characterised growth responses to altered nutritional input at the transcriptional and tissue levels in the fast skeletal muscle of juvenile gilthead sea bream. Fish reared at 21-22°C (range were fed a commercial diet at 3% body mass d(-1 (non-satiation feeding, NSF for 4 weeks, fasted for 4d (F and then fed to satiation (SF for 21d. 13 out of 34 genes investigated showed consistent patterns of regulation between nutritional states. Fasting was associated with a 20-fold increase in MAFbx, and a 5-fold increase in Six1 and WASp expression, which returned to NSF levels within 16h of SF. Refeeding to satiation was associated with a rapid (<24 h 12 to 17-fold increase in UNC45, Hsp70 and Hsp90α transcripts coding for molecular chaperones associated with unfolded protein response pathways. The growth factors FGF6 and IGF1 increased 6.0 and 4.5-fold within 16 h and 24 h of refeeding respectively. The average growth in diameter of fast muscle fibres was checked with fasting and significant fibre hypertrophy was only observed after 13d and 21d SF. To investigate developmental plasticity in growth responses we used the same experimental protocol with fish reared at either 17.5-18.5°C (range (LT or 21-22°C (range (HT to metamorphosis and then transferred to 21-22°C. There were persistent effects of development temperature on muscle growth patterns with 20% more fibres of lower average diameter in LT than HT group of similar body size. Altering the nutritional input to the muscle to stimulate growth revealed cryptic changes in the expression of UNC45 and Hsp90α with higher transcript abundance in the LT than HT groups, whereas there were no differences in the expression of MAFbx and Six1. It was concluded that myogenesis and gene expression patterns during growth are not fixed, but can be modified by temperature during the early stages of the life cycle.

  2. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation.

    Science.gov (United States)

    Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek; Tilser, Ivan; Holecek, Milan

    2008-02-01

    The aim of our study was to evaluate the differences in protein and amino acid metabolism after subcutaneous turpentine administration in the soleus muscle (SOL), predominantly composed of red fibres, and the extensor digitorum longus muscle (EDL) composed of white fibres. Young rats (40-60 g) were injected subcutaneously with 0.2 ml of turpentine oil/100 g body weight (inflammation) or with the same volume of saline solution (control). Twenty-four hours later SOL and EDL were dissected and incubated in modified Krebs-Heinseleit buffer to estimate total and myofibrillar proteolysis, chymotrypsin-like activity of proteasome (CHTLA), leucine oxidation, protein synthesis and amino acid release into the medium. The data obtained demonstrate that in intact rats, all parameters measured except protein synthesis are significantly higher in SOL than in EDL. In turpentine treated animals, CHTLA increased and protein synthesis decreased significantly more in EDL. Release of leucine was inhibited significantly more in SOL. We conclude that turpentine-induced inflammation affects more CHTLA, protein synthesis and leucine release in EDL compared to SOL.

  3. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    Science.gov (United States)

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.

  4. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.

    Science.gov (United States)

    Lindinger, Michael I; Leung, Matthew; Trajcevski, Karin E; Hawke, Thomas J

    2011-06-01

    Controversy exists as to whether mammalian skeletal muscle is capable of volume regulation in response to changes in extracellular osmolarity despite evidence that muscle fibres have the required ion transport mechanisms to transport solute and water in situ. We addressed this issue by studying the ability of skeletal muscle to regulate volume during periods of induced hyperosmotic stress using single, mouse extensor digitorum longus (EDL) muscle fibres and intact muscle (soleus and EDL). Fibres and intact muscles were loaded with the fluorophore, calcein, and the change in muscle fluorescence and width (single fibres only) used as a metric of volume change. We hypothesized that skeletal muscle exposed to increased extracellular osmolarity would elicit initial cellular shrinkage followed by a regulatory volume increase (RVI) with the RVI dependent on the sodium–potassium–chloride cotransporter (NKCC). We found that single fibres exposed to a 35% increase in extracellular osmolarity demonstrated a rapid, initial 27–32% decrease in cell volume followed by a RVI which took 10-20 min and returned cell volume to 90–110% of pre-stimulus values. Within intact muscle, exposure to increased extracellular osmolarity of varying degrees also induced a rapid, initial shrinkage followed by a gradual RVI, with a greater rate of initial cell shrinkage and a longer time for RVI to occur with increasing extracellular tonicities. Furthermore, RVI was significantly faster in slow-twitch soleus than fast-twitch EDL. Pre-treatment of muscle with bumetanide (NKCC inhibitor) or ouabain (Na+,K+-ATPase inhibitor), increased the initial volume loss and impaired the RVI response to increased extracellular osmolarity indicating that the NKCC is a primary contributor to volume regulation in skeletal muscle. It is concluded that mouse skeletal muscle initially loses volume then exhibits a RVI when exposed to increases in extracellular osmolarity. The rate of RVI is dependent on the

  5. Inward flux of lactate⁻ through monocarboxylate transporters contributes to regulatory volume increase in mouse muscle fibres.

    Directory of Open Access Journals (Sweden)

    Michael I Lindinger

    Full Text Available Mouse and rat skeletal muscles are capable of a regulatory volume increase (RVI after they shrink (volume loss resultant from exposure to solutions of increased osmolarity and that this RVI occurs mainly by a Na-K-Cl-Cotransporter (NKCC-dependent mechanism. With high-intensity exercise, increased extracellular osmolarity is accompanied by large increases in extracellular [lactate⁻]. We hypothesized that large increases in [lactate⁻] and osmolarity augment the NKCC-dependent RVI response observed with a NaCl (or sucrose-induced increase in osmolarity alone; a response that is dependent on lactate⁻ influx through monocarboxylate transporters (MCTs. Single mouse muscle fibres were isolated and visualized under light microscopy under varying osmolar conditions. When solution osmolarity was increased by adding NaLac by 30 or 60 mM, fibres lost significantly less volume and regained volume sooner compared to when NaCl was used. Phloretin (MCT1 inhibitor accentuated the volume loss compared to both NaLac controls, supporting a role for MCT1 in the RVI response in the presence of elevated [lactate⁻]. Inhibition of MCT4 (with pCMBS resulted in a volume loss, intermediate to that seen with phloretin and NaLac controls. Bumetanide (NKCC inhibitor, in combination with pCMBS, reduced the magnitude of volume loss, but volume recovery was complete. While combined phloretin-bumetanide also reduced the magnitude of the volume loss, it also largely abolished the cell volume recovery. In conclusion, RVI in skeletal muscle exposed to raised tonicity and [lactate⁻] is facilitated by inward flux of solute by NKCC- and MCT1-dependent mechanisms. This work demonstrates evidence of a RVI response in skeletal muscle that is facilitated by inward flux of solute by MCT-dependent mechanisms. These findings further expand our understanding of the capacities for skeletal muscle to volume regulate, particularly in instances of raised tonicity and lactate

  6. Plasticity of human skeletal muscle: gene expression to in vivo function.

    Science.gov (United States)

    Harridge, Stephen D R

    2007-09-01

    Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.

  7. Twitchin can regulate the ATPase cycle of actomyosin in a phosphorylation-dependent manner in skinned mammalian skeletal muscle fibres.

    Science.gov (United States)

    Avrova, Stanislava V; Rysev, Nikita A; Matusovsky, Oleg S; Shelud'ko, Nikolay S; Borovikov, Yurii S

    2012-05-01

    The effect of twitchin, a thick filament protein of molluscan muscles, on the actin-myosin interaction at several mimicked sequential steps of the ATPase cycle was investigated using the polarized fluorescence of 1.5-IAEDANS bound to myosin heads, FITC-phalloidin attached to actin and acrylodan bound to twitchin in the glycerol-skinned skeletal muscle fibres of mammalian. The phosphorylation-dependent multi-step changes in mobility and spatial arrangement of myosin SH1 helix, actin subunit and twitchin during the ATPase cycle have been revealed. It was shown that nonphosphorylated twitchin inhibited the movements of SH1 helix of the myosin heads and actin subunits and decreased the affinity of myosin to actin by freezing the position and mobility of twitchin in the muscle fibres. The phosphorylation of twitchin reverses this effect by changing the spatial arrangement and mobility of the actin-binding portions of twitchin. In this case, enhanced movements of SH1 helix of the myosin heads and actin subunits are observed. The data imply a novel property of twitchin incorporated into organized contractile system: its ability to regulate the ATPase cycle in a phosphorylation-dependent fashion by changing the affinity and spatial arrangement of the actin-binding portions of twitchin. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans

    DEFF Research Database (Denmark)

    De Bock, K.; Richter, Erik; Russell, A.P.

    2005-01-01

    g (kg bw)-1 h-1) exercise. In both conditions, subjects ingested 5 g carbohydrates per kg body weight during recovery. Fibre type-specific relative IMTG content was determined by Oil red O staining in needle biopsies from m. vastus lateralis before, immediately after and 4 h after exercise. During F...... sessions with an interval of 3 weeks. In each session subjects performed 2 h of constant-load bicycle exercise (~75% VO2,max), followed by 4 h of controlled recovery. On one occasion they exercised after an overnight fast (F), and on the other (CHO) they received carbohydrates before (~150 g) and during (1...... but not during CHO, the exercise bout decreased IMTG content in type I fibres from 18 ± 2% to 6 ± 2% (P = 0.007) area lipid staining. Conversely, during recovery, IMTG in type I fibres decreased from 15 ± 2% to 10 ± 2% in CHO, but did not change in F. Neither exercise nor recovery changed IMTG in type IIa fibres...

  9. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Directory of Open Access Journals (Sweden)

    Zizhen Yao

    2013-04-01

    The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  10. Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling.

    Science.gov (United States)

    Raffaello, Anna; Laveder, Paolo; Romualdi, Chiara; Bean, Camilla; Toniolo, Luana; Germinario, Elena; Megighian, Aram; Danieli-Betto, Daniela; Reggiani, Carlo; Lanfranchi, Gerolamo

    2006-03-13

    Denervation deeply affects muscle structure and function, the alterations being different in slow and fast muscles. Because the effects of denervation on fast muscles are still controversial, and high-throughput studies on gene expression in denervated muscles are lacking, we studied gene expression during atrophy progression following denervation in mouse tibialis anterior (TA). The sciatic nerve was cut close to trochanter in adult CD1 mice. One, three, seven, and fourteen days after denervation, animals were killed and TA muscles were dissected out and utilized for physiological experiments and gene expression studies. Target cDNAs from TA muscles were hybridized on a dedicated cDNA microarray of muscle genes. Seventy-one genes were found differentially expressed. Microarray results were validated, and the expression of relevant genes not probed on our array was monitored by real-time quantitative PCR (RQ-PCR). Nuclear- and mitochondrial-encoded genes implicated in energy metabolism were consistently downregulated. Among genes implicated in muscle contraction (myofibrillar and sarcoplasmic reticulum), genes typical of fast fibers were downregulated, whereas those typical of slow fibers were upregulated. Electrophoresis and Western blot showed less pronounced changes in myofibrillar protein expression, partially confirming changes in gene expression. Isometric tension of skinned fibers was little affected by denervation, whereas calcium sensitivity decreased. Functional studies in mouse extensor digitorum longus muscle showed prolongation in twitch time parameters and shift to the left in force-frequency curves after denervation. We conclude that, if studied at the mRNA level, fast muscles appear not less responsive than slow muscles to the interruption of neural stimulation.

  11. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  12. Skeletal Myocyte Types and Vascularity in the Black Sicilian Pig

    Directory of Open Access Journals (Sweden)

    S. Velotto

    2007-01-01

    Full Text Available The objective of this study was to verify the presence of giant fibres in the Black Sicilian pig skeletal muscle and to evaluate the effect of sex on histochemical and morphometric characteristics of the myocytes (myofibres as well as vascularity of the muscle. Twenty Black Sicilian pigs (10 males, 10 females from a farm in Sicily (Italy were slaughtered at two years of age. Muscle tissues were obtained from three muscles: psoas major, longissimus dorsi, and trapezius. Myofibres were stained for myosin ATPase, succinic dehydrogenase, and α-amylase-PAS. For all fibre types, area and perimeter were measured. Slow-twitch oxidative fibres, fast-twitch glycolytic fibres and fast-twitch oxidative-glycolytic fibres were histochemically differentiated; an image-analyzing system was used. The results showed no differences between males and females in percentage of the fibre types, but there were significant differences between sexes in size of all the three fibre types. Psoas major muscle had a high percentage of slow-twitch oxidative fibres and contained more capillaries per fibre and per mm2 than trapezius and longissimus dorsi, in which fast-twitch glycolytic fibres dominated. The cross-sectional area of all fibres types was larger in longissimus dorsi than in trapezius and psoas major muscles; the giant fibres were absent in all the muscles studied. Fibre type composition may contribute to the variation of meat quality.

  13. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    Directory of Open Access Journals (Sweden)

    Richard T. Jaspers

    2014-07-01

    Full Text Available Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH (10% air/90%N2 saturated water. We analyzed cross-sectional area (CSA, succinate dehydrogenase (SDH activity, capillarization, myonuclear density, myoglobin (Mb concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001. Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001. In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  14. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise

    Science.gov (United States)

    Gundersen, Kristian

    2011-01-01

    Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine

  15. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    Energy Technology Data Exchange (ETDEWEB)

    Remy, L.; Cheymol, G. [CEA, French Nuclear Energy Commission, Nuclear Energy Division, DPC/SEARS/LISL Bat 467 CEA Saclay 91191 Gif/Yvette Cedex (France); Gusarov, A. [SCK.CEN - Belgian Nuclear Research center, Boeretang 200 2400 Mol (Belgium); Morana, A.; Marin, E.; Girard, S. [Universite de Saint-Etienne, Laboratoire Hubert Curien, UMR CNRS5516, 18, rue du Pr. Lauras, F-42000 Saint-Etienne (France)

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensor design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison

  16. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle

    DEFF Research Database (Denmark)

    Christiansen, Danny; Murphy, Robyn M; Bangsbo, Jens

    2018-01-01

    AIM: This study explored the effects of blood flow restriction (BFR) on mRNA responses of PGC-1α (total, 1α1, and 1α4) and Na+ ,K+ -ATPase isoforms (NKA; α1-3 , β1-3 , and FXYD1) to an interval running session, and determined if these effects were related to increased oxidative stress, hypoxia......). A muscle sample was collected before (Pre) and after exercise (+0h, +3h) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I...... of oxidative stress and type-I fibre ACC Ser221 /ACC ratio, but dissociated from muscle hypoxia, lactate, and CaMKII signalling. CONCLUSION: Blood flow restriction augmented exercise-induced increases in muscle FXYD1 and PGC-1α mRNA in men. This effect was related to increased oxidative stress and fibre type...

  17. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  18. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  19. Scintillating fibre detectors using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Drevenak, R.

    1995-01-01

    Scintillating fibre technology has made substantial progress, and has demonstrated great potential for fast tracking and triggering in high luminosity experiments in Particle Physics. Some recent issues of the RD-17 project at CERN are presented for fast and precise readout of scintillating fibre arrays, as well as for upgrade of position-sensitive photomultipliers. Excellent matching of the scintillating fibre and the position-sensitive photomultiplier, in particular in time characteristics, allowed to achieve excellent detector performances, typically a spatial resolution of ∼ 125 μm with time resolution better than 1 ns and detection efficiency greater than 95%. (author)10 refs.; 25 figs.; 1 tab

  20. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  1. Actin Nemaline Myopathy Mouse Reproduces Disease, Suggests Other Actin Disease Phenotypes and Provides Cautionary Note on Muscle Transgene Expression

    Science.gov (United States)

    Ravenscroft, Gianina; Jackaman, Connie; Sewry, Caroline A.; McNamara, Elyshia; Squire, Sarah E.; Potter, Allyson C.; Papadimitriou, John; Griffiths, Lisa M.; Bakker, Anthony J.; Davies, Kay E.; Laing, Nigel G.; Nowak, Kristen J.

    2011-01-01

    Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ∼30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations. PMID:22174871

  2. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  3. miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-01-01

    Full Text Available Denervation often results in skeletal muscle atrophy. Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy. At the epigenetic level, miRNAs are thought to be highly involved in the pathophysiological progress of denervated muscles. We used miRNA microarrays to determine miRNA expression profiles from a typical slow muscle (soleus muscle and a typical fast muscle (tibialis anterior muscle at an early denervation stage in a rat model. Results showed that miR-206, miR-195, miR-23a, and miR-30e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles. Additionally, certain miRNA molecules (miR-214, miR-221, miR-222, miR-152, miR-320, and Let-7e could be key regulatory factors in the denervated atrophy process involved in fast muscle. Analysis of signaling pathway networks revealed the miRNA molecules that were responsible for regulating certain signaling pathways, which were the final targets (e.g., p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/mTOR pathway regulates atrogin-1 and MuRF1 expression via FoxO phosphorylation. Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.

  4. A novel electrical model of nerve and muscle using Pspice

    CERN Document Server

    Peasgood, W; Lam, C K; Armstrong, A G; Wood, W

    2003-01-01

    In this work, a model is developed to simulate the biological processes involved in nerve fibre transmission and subsequent muscle contraction. The model has been based on approximating biological structure and function to electrical circuits and as such was implemented on an electronics simulation software package called Pspice. Models of nerve, the nerve-muscle interface and muscle fibre have been implemented. The time dependent ionic properties of the nerve and muscle membranes have been simulated using the Hodgkin-Huxley equations and for the muscle fibre, the implementation of the Huxley sliding filament theory for muscular contraction. The results show that nerve may be considered as a fractal transmission line and that the amplitude of the nerve membrane depolarization is dependent on the dimensions of the fibre. Additionally, simulation of the nerve-muscle interface allows the fractal nerve model to be connected to the muscle fibre model and it is shown that a two sarcomere molecular simulation can pr...

  5. Histochemical and functional parameters in Nordic combination athletes.

    Science.gov (United States)

    Matolín, S; Vaverka, F; Lunák, J; Novák, J; Horák, V; Krejcí, P

    1994-01-01

    Bioptic samples from the vastus lateralis muscle were analyzed in a group of Czechoslovak representatives in the Nordic combination (ski-jumping and 15 km cross-country skiing). The distribution of individual muscle fibre types (FG, FOG and SO) was detected and correlated with values obtained by motor and functional performance tests. Histochemical analysis of the bioptic samples revealed a considerably heterogeneous distribution of muscle fibre types in the group studied. No typical profilation for this sport discipline was found. Weak correlation between the proportion of fast muscle fibres and explosive strength parameters was ascertained. The correlation between the proportion of slow muscle fibres and the capacity of O2 utilization (VO2max) was statistically significant. Strong correlation between the proportion of fast twitch fibres and relative maximal strength of knee extensors (N/kg) was disclosed. A non-linear relation between the area of fast twitch fibres and vigour of take-off was found.

  6. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    Directory of Open Access Journals (Sweden)

    Mireia Rovira

    2017-12-01

    Full Text Available Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest

  7. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle

    DEFF Research Database (Denmark)

    Rakus, Dariusz; Gizak, Agnieszka; Deshmukh, Atul

    2015-01-01

    . Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process......Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion...... and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles...

  8. Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging.

    Science.gov (United States)

    Barnouin, Yoann; McPhee, Jamie S; Butler-Browne, Gillian; Bosutti, Alessandra; De Vito, Giuseppe; Jones, David A; Narici, Marco; Behin, Anthony; Hogrel, Jean-Yves; Degens, Hans

    2017-08-01

    As muscle capillarization is related to the oxidative capacity of the muscle and the size of muscle fibres, capillary rarefaction may contribute to sarcopenia and functional impairment in older adults. Therefore, it is important to assess how ageing affects muscle capillarization and the interrelationship between fibre capillary supply with the oxidative capacity and size of the fibres. Muscle biopsies from healthy recreationally active young (22 years; 14 men and 5 women) and older (74 years; 22 men and 6 women) people were assessed for muscle capillarization and the distribution of capillaries with the method of capillary domains. Oxidative capacity of muscle fibres was assessed with quantitative histochemistry for succinate dehydrogenase (SDH) activity. There was no significant age-related reduction in muscle fibre oxidative capacity. Despite 18% type II fibre atrophy (P = 0.019) and 23% fewer capillaries per fibre (P age and sex. Based on SDH, the maximal oxygen consumption supported by a capillary did not differ significantly between young and old people. The similar quantitative and qualitative distribution of capillaries within muscle from healthy recreationally active older people and young adults indicates that the age-related capillary rarefaction, which does occur, nevertheless maintains the coupling between skeletal muscle fibre size and capillarization during healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  9. Antioxidant Supplement Inhibits Skeletal Muscle Constitutive Autophagy rather than Fasting-Induced Autophagy in Mice

    Directory of Open Access Journals (Sweden)

    Zhengtang Qi

    2014-01-01

    Full Text Available In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD and TP53-induced glycolysis and apoptosis regulator (TIGAR, both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity.

  10. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Boushel, R; Gnaiger, E; Schjerling, P

    2007-01-01

    AIMS/HYPOTHESIS: Insulin resistance and type 2 diabetes are associated with mitochondrial dysfunction. The aim of the present study was to test the hypothesis that oxidative phosphorylation and electron transport capacity are diminished in the skeletal muscle of type 2 diabetic subjects......, as a result of a reduction in the mitochondrial content. MATERIALS AND METHODS: The O(2) flux capacity of permeabilised muscle fibres from biopsies of the quadriceps in healthy subjects (n = 8; age 58 +/- 2 years [mean+/-SEM]; BMI 28 +/- 1 kg/m(2); fasting plasma glucose 5.4 +/- 0.2 mmol/l) and patients...... with type 2 diabetes (n = 11; age 62 +/- 2 years; BMI 32 +/- 2 kg/m(2); fasting plasma glucose 9.0 +/- 0.8 mmol/l) was measured by high-resolution respirometry. RESULTS: O(2) flux expressed per mg of muscle (fresh weight) during ADP-stimulated state 3 respiration was lower (p type 2...

  11. Histological study of rat masseter muscle following experimental occlusal alteration.

    Science.gov (United States)

    Nishide, N; Baba, S; Hori, N; Nishikawa, H

    2001-03-01

    It has been suggested that occlusal interference results in masticatory muscle dysfunction. In our previous study, occlusal interference reduced the rat masseter energy level during masticatory movements. The purpose of this study was to investigate the histological alterations of rat masseter muscles following experimental occlusal alteration with unilateral bite-raising. A total of eight male adult Wistar rats were equally divided into control and experimental groups. The experimental rats wore bite-raising splints on the unilateral upper molar. However, 4 weeks after the operation, the anterior deep masseter muscles were removed and then stained for succinic acid dehydrogenase (SDH), haematoxylin eosin (HE) and myofibrillar ATPase. Most of the muscle fibres in experimental rats remained intact, although partial histological changes were observed, such as extended connective tissue, appearance of inflammatory cells in the muscle fibres and existence of muscle fibres with central nuclei and central cores. Moreover, the fibre area-fibre frequency histograms of experimental muscle indicated a broad pattern than that of controls. These results indicated that occlusal interference caused histological changes in masseter muscles and that this may be related to the fact that the masseter energy level was reduced during masticatory movements in unilateral bite-raised rats.

  12. The influence of stress on substrate utilization in skeletal muscle fibres of reindeer (Rangifer tarandus L

    Directory of Open Access Journals (Sweden)

    B. Essén-Gustavsson

    1984-05-01

    Full Text Available Moderate stress in connection with handling, sampling and herding of reindeer caused a very pronounced depletion of glycogen in mainly type IIA and IIB fibres. Also intramuscular triglyceride levels decreased but mainly in type I fibres. Muscle lactate levéls increased in all animals but not to the levels found in pigs exposed to stress or exertion. Reindeer muscles appeared to have a great capacity to oxidize both carbohydrates and lipids. All animals showed increased Cortisol, urea and AS AT values. A marked depletion of glycogen and lipids in many of the fibres may be a factor involved in the development of skeletal muscle degeneration in connection with mental stress and exertion as there seems to be a correlation between high ASAT values and substrate depleted musclefibres. A connection may therefore exist between high instramuscular substrate stores and the ability of a muscle to tolerate stress.Av stress påverkat substratutnyttjande i skelettmuskelfibrer hos renAbstract in Swedish / Sammanfattning: Måttlig stress betingad av hantering, provtagning och drivning av ren orsakade en mycket kraftig minskning av muskelglykogen i fråmst typ IIA och typ IIB fibrer. Aven triglycerider minskade framfor allt i typ I fibrer. Muskellaktatnivåerna okade i samtliga undersokta djur, men inte till nivåer som ses hos gris utsatta for stress eller fysisk anstrångning.Renens muskler uppvisade en mycket hog kapacitet att oxidera, forbranna, både kolhydrat och fett. Alla djur uppvisade forhojda Cortisol, urea och ASAT varden. Den mycket kraftiga tomningen av kolhydrat och fett i många muskelfibrer kan vara en faktor medverkande till muskeldegeneration i samband med mental stress och anstrangning då hoga ASAT-vården synes vara korrelerade till uttomda muskelfibrer. Ett samband mellan hog instramuskulår substratupplagring och formåga att tåla stress kan således foreligga.Stressin vaikuttaneen poron substraattihyvåk-sikåytto luurangon lihaksiston

  13. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    Science.gov (United States)

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  14. Steel fibre corrosion in cracks:durability of sprayed concrete

    OpenAIRE

    Nordström, Erik

    2000-01-01

    Steel fibre reinforced sprayed concrete is common practice for permanent linings in underground construction. Today there is a demand on "expected technical service life" of 120 years. Thin steel fibres could be expected to discontinue carrying load fast with a decrease of fibre diameter caused by corrosion, especially in cracks. The thesis contains results from inspections on existing sprayed concrete structures and a literature review on corrosion of steel fibres in cracked concrete. To stu...

  15. Disturbances of the sarcoplasmic reticulum and transverse tubular system in 24-h electrostimulated fast-twitch skeletal muscle

    DEFF Research Database (Denmark)

    Frías, J A; Cadefau, J A; Prats, C

    2005-01-01

    Chronic low-frequency stimulation of rabbit tibialis anterior muscle over a 24-h period induces a conspicuous loss of isometric tension that is unrelated to muscle energy metabolism (J.A. Cadefau, J. Parra, R. Cusso, G. Heine, D. Pette, Responses of fatigable and fatigue-resistant fibres of rabbit...... muscle to low-frequency stimulation, Pflugers Arch. 424 (1993) 529-537). To assess the involvement of sarcoplasmic reticulum and transverse tubular system in this force impairment, we isolated microsomal fractions from stimulated and control (contralateral, unstimulated) muscles on discontinuous sucrose...... of muscles stimulated for 24 h underwent acute changes in the pattern of protein bands. First, light fractions from longitudinal sarcoplasmic reticulum, enriched in Ca2+-ATPase activity, R1 and R2, were greatly reduced (67% and 51%, respectively); this reduction was reflected in protein yield of crude...

  16. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.

    Science.gov (United States)

    Bunda, Jordan; Gittings, William; Vandenboom, Rene

    2018-01-30

    Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK -/- ) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK -/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK -/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK -/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK -/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK -/- muscles without RLC phosphorylation. © 2018. Published by The Company of Biologists Ltd.

  17. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  18. Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training.

    Science.gov (United States)

    Snijders, T; Smeets, J S J; van Kranenburg, J; Kies, A K; van Loon, L J C; Verdijk, L B

    2016-02-01

    Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury

    Directory of Open Access Journals (Sweden)

    Kitipong Uaesoontrachoon

    2013-01-01

    Osteopontin is secreted by skeletal muscle myoblasts and stimulates their proliferation. Expression of osteopontin in skeletal muscle is upregulated in pathological conditions including Duchenne muscular dystrophy, and recent evidence suggests that osteopontin might influence the course of this disease. The current study was undertaken to determine whether osteopontin regulates skeletal muscle regeneration. A whole muscle autografting model of regeneration in osteopontin-null and wild-type mice was used. Osteopontin expression was found to be strongly upregulated in wild-type grafts during the initial degeneration and subsequent early regeneration phases that are observed in this model. Grafted muscle from osteopontin-null mice degenerated more slowly than that of wild-type mice, as determined by histological assessment, fibre diameter and fibre number. The delayed degeneration in osteopontin-null grafts was associated with a delay in neutrophil and macrophage infiltration. Centrally nucleated (regenerating muscle fibres also appeared more slowly in osteopontin-null grafts than in wild-type grafts. These results demonstrate that osteopontin plays a non-redundant role in muscle remodelling following injury.

  20. Muscle glycogen depletion patterns during draught work in Standardbred horses.

    Science.gov (United States)

    Gottlieb, M

    1989-03-01

    Muscle fibre recruitment was investigated during draught loaded exercise by studying glycogen depletion patterns from histochemical stains of muscle biopsies from the gluteus and semitendinosus muscles. Three Standardbred trotters performed several intervals of draught loaded exercise on a treadmill with 34 kp at a trot (7 m/sec) and with 34 and 80 kp, respectively at a walk (2m/sec). Exercise was continued until the horses were unwilling to continue. Glycogen depletion was seen in all three fibre types when trotting with 34 kp for 5 or 10 mins. When an equal weight resistance was pulled at a walk, glycogen depletion was first seen in type I fibres only, then followed by a small percentage of type IIA fibres after at least 1 h. When 80 kp was pulled at a walk both type I and IIA fibres showed glycogen depletion, and after at least 30 mins exercise a small percentage of type IIB fibres was also depleted. These results indicate that the muscle fibres are depleted, in order, from type I through IIA to IIB as the intensity or duration of draught work increases.

  1. Muscle dysmorphia symptomatology during a period of religious fasting: a case report.

    Science.gov (United States)

    Murray, Stuart B; Rieger, Elizabeth; Touyz, Stephen W

    2011-01-01

    We present a case of muscle dysmorphia in a Muslim male, whose muscle dysmorphia symptomatology markedly escalated during a period of religious fasting, in which abstinence from food and liquid during daylight hours was endorsed. This case represents the first attempt to delineate the relative centrality of eating versus exercise practices in muscle dysmorphia presentations, and suggests that the maintenance of muscle dysmorphia is inclusive of a central eating component, irrespective of exercise status, lending support to the notion of conceptualising muscle dysmorphia within an eating disorder spectrum. Implications and further research are discussed. Copyright © 2010 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. Humidity insensitive step-index polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2015-01-01

    We have fabricated and characterised a humidity insensitive step index(SI) polymer optical fibre(POF) Bragg grating sensors. The fibre was made based on the injection molding technique, which is an efficient method for fast, flexible and cost effective preparation of the fibre preform. The fabric...... poly-methyl-methacrylate (PMMA) based SIPOFs. The fibre has a minimum loss of similar to 6dB/m at 770nm....

  3. Inter- and Intrasubject Similarity of Muscle Synergies During Bench Press With Slow and Fast Velocity.

    Science.gov (United States)

    Samani, Afshin; Kristiansen, Mathias

    2018-01-01

    We investigated the effect of low and high bar velocity on inter- and intrasubject similarity of muscle synergies during bench press. A total of 13 trained male subjects underwent two exercise conditions: a slow- and a fast-velocity bench press. Surface electromyography was recorded from 13 muscles, and muscle synergies were extracted using a nonnegative matrix factorization algorithm. The intrasubject similarity across conditions and intersubject similarity within conditions were computed for muscle synergy vectors and activation coefficients. Two muscle synergies were sufficient to describe the dataset variability. For the second synergy activation coefficient, the intersubject similarity within the fast-velocity condition was greater than the intrasubject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector. We concluded that the activation coefficients are robust within conditions, indicating a robust temporal pattern of muscular activity across individuals, but the muscle synergy vector seemed to be individually assigned.

  4. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2014-01-01

    Full Text Available We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL and soleus (SOL muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS and subjected to fibre typing and measures for costameric (FAK and FRNK, mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1, and MHCI protein and RNA content. Mean cross-sectional area (MCSA of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05≤P<0.10. FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P=0.029. SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012. Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  5. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Science.gov (United States)

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  6. Histomorphometrical aspects of the postnatal development of masticatory muscle in the muscular dystrophic mouse

    DEFF Research Database (Denmark)

    Vilmann, H; Kirkeby, S

    1991-01-01

    amount of connective tissue between the fibres. The histomorphometrical observations revealed an increase in mean size of the fibres with age, both in normal and dystrophic masticatory muscles. The fibre size variance which has been shown to be a reliable parameter for description of degree of affection...... criteria to separate dystrophic muscles from normal muscles at birth. From 2 weeks onwards marked differences between the affected and unaffected muscles appeared, as the affected fibres from this age are rounded with marked variations in size. Central nucleation is frequent and there is an increased...

  7. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  8. A re-examination of the biphasic theory of skeletal muscle growth.

    Science.gov (United States)

    Levine, A S; Hegarty, P V

    1977-01-01

    Because of the importance of fibre diameter measurements it was decided to re-evaluate the biphasic theory of skeletal muscle growth and development. This theory proposes an initial memophasic distribution of muscle fibres which changes to a biphasic distribution during development. The theory is based on observations made on certain muscles in mice, where two distinct populations of fibre diameters (20 and 40 micronm) contribute to the biphasic distribution. In the present investigation corss sections of frozen biceps brachii of mice in rigor mortis were examined. The rigor state was used to avoid complications produced by thaw-rigor contraction. The diameters of the outermost and innermost fibres were found to be significantly different. However, if the outer and inner fibres were combined to form one group, no significant difference between this group and other random groups was found. The distributions of all groups were monophasic. The diameters of isolated fibres from mice and rats also displayed a monophasic distribution. This evidence leads to the conclusion that the biphasic theory of muscle growth is untenable. Some of the variables which may occur in fibre size and shape are discussed. Images Fig. 1 PMID:858691

  9. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    International Nuclear Information System (INIS)

    Rai, Mamta; Nongthomba, Upendra

    2013-01-01

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization

  10. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Mamta; Nongthomba, Upendra, E-mail: upendra@mrdg.iisc.ernet.in

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  11. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men...... expression of MHC isoforms within histochemical type II fibres of human skeletal muscle with body building. Furthermore, in human skeletal muscle differences in expression of MHC isoforms may not always be reflected in the traditional histochemical classification of types I, IIa, IIb and IIc fibres....

  12. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle

    DEFF Research Database (Denmark)

    Cantó, Carles; Jiang, Lake Q; Deshmukh, Atul S

    2010-01-01

    During fasting and after exercise, skeletal muscle efficiently switches from carbohydrate to lipid as the main energy source to preserve glycogen stores and blood glucose levels for glucose-dependent tissues. Skeletal muscle cells sense this limitation in glucose availability and transform...... and lipid utilization genes. Deficient AMPK activity compromises SIRT1-dependent responses to exercise and fasting, resulting in impaired PGC-1alpha deacetylation and blunted induction of mitochondrial gene expression. Thus, we conclude that AMPK acts as the primordial trigger for fasting- and exercise...

  13. The role of Sox6 in zebrafish muscle fiber type specification.

    Science.gov (United States)

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation

  14. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  15. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  16. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  17. Pronounced limb and fibre type differences in subcellular lipid droplet content and distribution in elite skiers before and after exhaustive exercise.

    Science.gov (United States)

    Koh, Han-Chow E; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer; Ørtenblad, Niels

    2017-09-01

    Although lipid droplets in skeletal muscle are an important energy source during endurance exercise, our understanding of lipid metabolism in this context remains incomplete. Using transmission electron microscopy, two distinct subcellular pools of lipid droplets can be observed in skeletal muscle - one beneath the sarcolemma and the other between myofibrils. At rest, well-trained leg muscles of cross-country skiers contain 4- to 6-fold more lipid droplets than equally well-trained arm muscles, with a 3-fold higher content in type 1 than in type 2 fibres. During exhaustive exercise, lipid droplets between the myofibrils but not those beneath the sarcolemma are utilised by both type 1 and 2 fibres. These findings provide insight into compartmentalisation of lipid metabolism within skeletal muscle fibres. Although the intramyocellular lipid pool is an important energy store during prolonged exercise, our knowledge concerning its metabolism is still incomplete. Here, quantitative electron microscopy was used to examine subcellular distribution of lipid droplets in type 1 and 2 fibres of the arm and leg muscles before and after 1 h of exhaustive exercise. Intermyofibrillar lipid droplets accounted for 85-97% of the total volume fraction, while the subsarcolemmal pool made up 3-15%. Before exercise, the volume fractions of intermyofibrillar and subsarcolemmal lipid droplets were 4- to 6-fold higher in leg than in arm muscles (P exercise, intermyofibrillar lipid droplet volume fraction was 53% lower (P = 0.0082) in both fibre types in arm, but not leg muscles. This reduction was positively associated with the corresponding volume fraction prior to exercise (R 2  = 0.84, P exercise-induced change in the subsarcolemmal pool could be detected. These findings indicate clear differences in the subcellular distribution of lipid droplets in the type 1 and 2 fibres of well-trained arm and leg muscles, as well as preferential utilisation of the intermyofibrillar pool

  18. 1H-NMR and HPLC studies of the changes involved in volume regulation in the muscle fibres of the crab, Hemigrapsus edwardsi.

    Science.gov (United States)

    Bedford, J J; Smith, R A; Thomas, M; Leader, J P

    1991-01-01

    1. The process of cell volume readjustment, during adaptation to salinity changes, in muscle fibres of the euryhaline New Zealand shore crab, Hemigrapsus edwardsi, involve large changes in the amounts of free amino acid. 2. These are taurine, proline, alanine, arginine, glutamic acid, glycine and serine. 3. These changes may be quantified by High Performance Liquid Chromatography, and qualitatively demonstrated by proton nuclear magnetic resonance spectroscopy.

  19. A second look into fibre typing--relation to meat quality.

    Science.gov (United States)

    Lefaucheur, L

    2010-02-01

    Despite intensive research, a large variation in meat quality is still observed in most meat producing species. It is widely accepted that myofibre type composition is an important source of variation in meat quality. However, the identification of specific and universal relationships between myofibre characteristics, growth performance and meat quality traits remains a challenge. After the presentation of recent knowledge underlying fibre typing, this review describes the involvements of Ca2+-dependent mechanisms, and the energy state of the myofibres in the control of contractile and metabolic properties, with a special attention to the AMP-activated protein kinase pathway and mitochondrial compartment. In order to identify muscle components which could mask specific relationships between fibre type composition and meat quality, an analysis of the interactions between myofibres and other muscle cellular components is presented. After a brief description of myogenesis, the significance of the total number of fibres, myofibre cross-sectional area and fibre type composition for growth performance and meat quality is presented. Then, some genetic and environmental factors are proposed as possible tools to control meat quality trough the modulation of fibre type characteristics. Finally, a conclusion makes the point on bottlenecks still preventing the identification of specific relationships between fibre characteristics, growth performance and meat quality, and suggests future perspectives such as direct selection on fibre traits and study of correlated responses, the development of in vitro approaches using cell cultures, manipulation of myogenesis during the fetal period, and the production and use of genetically modified animals.

  20. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter....

  1. Alterations in the muscle-to-capillary interface in patients with different degrees of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Abdel-Halim Samy M

    2010-07-01

    Full Text Available Abstract Background It is hypothesized that decreased capillarization of limb skeletal muscle is implicated in the decreased exercise tolerance in COPD patients. We have recently demonstrated decreased number of capillaries per muscle fibre (CAF but no changes in CAF in relation to fibre area (CAFA, which is based on the diffusion distance between the capillary and muscle fibre. The aim of the current study is to investigate the muscle-to-capillary interface which is an important factor involved in oxygen supply to the muscle that has previously been suggested to be a more sensitive marker for changes in the capillary bed compared to CAF and CAFA. Methods 23 COPD patients and 12 age-matched healthy subjects participated in the study. Muscle-to-capillary interface was assessed in muscle biopsies from the tibialis anterior muscle using the following parameters: 1 The capillary-to-fibre ratio (C:Fi which is defined as the sum of the fractional contributions of all capillary contacts around the fibre 2 The ratio between C:Fi and the fibre perimeter (CFPE-index 3 The ratio between length of capillary and fibre perimeter (LC/PF which is also referred to as the index of tortuosity. Exercise capacity was determined using the 6-min walking test. Results A positive correlation was found between CFPE-index and ascending disease severity with CFPE-index for type I fibres being significantly lower in patients with moderate and severe COPD. Furthermore, a positive correlation was observed between exercise capacity and CFPE-index for both type I and type IIa fibres. Conclusion It can be concluded that the muscle-to-capillary interface is disturbed in the tibialis anterior muscle in patients with COPD and that interface is strongly correlated to increased disease severity and to decreased exercise capacity in this patient group.

  2. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle

    NARCIS (Netherlands)

    Zuurbier, C. J.; Huijing, P. A.

    1992-01-01

    The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of

  3. Porous structure evolution of cellulose carbon fibres during heating in the initial activation stage

    Energy Technology Data Exchange (ETDEWEB)

    Babel, Krzysztof [Institute of Chemical Wood Technology, Agricultural Academy of Poznan, Ul. Wojska Polskiego 38/42, 60-637 Poznan (Poland)

    2004-01-15

    This paper is focused on the description of changes in the porous structure during fast heating to the activation temperature of the viscose fibres, pyrolysed to different final temperatures. Standard regenerated cellulose fibre structures were tested. Fabrics were subjected to pyrolysis, the samples being heated to final temperatures of 400, 600 and 850 C. Carbon fibres were subsequently heated to activation temperature (850 C) at a rate of 100 C/min, and then the samples were cooled down. The characteristics of obtained carbon preparations were examined. We have defined a level of restructuring and internal ordering of fibres which originated during slow pyrolysis as well as the range of temperature differences of pyrolysis and activation where fast increase of carbon fibre temperature before activation is advantageous for the development of porous structure. It allows for partial release of pores and fast rebuilding of structure accompanied by a considerable number of defects in the carbon matrix with higher reactivity to oxidiser which, in turn, promotes the development of pores in active carbon during oxidation. Temperature difference for viscose carbon fibres is approximately 150-300 C at pyrolysis temperature of 550-700 C.

  4. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  5. Type grouping in skeletal muscles after experimental reinnervation: another explanation

    NARCIS (Netherlands)

    Vleggeert-lankamp, C.L.A.M.; de Ruiter, G.C.W.; Wolfs, J.F.C.; Pêgo, A.P.; Feirabend, H.K.P.; Lakke, E.A.J.F.; Malessy, M.J.A.

    2005-01-01

    Type grouping signifies clustering of muscle fibres of the same metabolic type, and is a frequent finding in reinnervated muscles. To elucidate the mechanism behind it, the rat sciatic nerve was either autografted or grafted with hollow synthetic nerve grafts. Twelve weeks later the number and fibre

  6. Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule

    Directory of Open Access Journals (Sweden)

    Esquerré Diane

    2007-11-01

    Full Text Available Abstract Background Recovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones. Results Significance analysis of microarrays (SAM and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery. Conclusion Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth

  7. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    Science.gov (United States)

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  8. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    Science.gov (United States)

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  9. Increased technetium uptake is not equivalent to muscle necrosis: scintigraphic, morphological and intramuscular pressure analyses of sore muscles after exercise

    Science.gov (United States)

    Crenshaw, A. G.; Friden, J.; Hargens, A. R.; Lang, G. H.; Thornell, L. E.

    1993-01-01

    A scintigraphic technique employing technetium pyrophosphate uptake was used to identify the area of skeletal muscle damage in the lower leg of four runners 24 h after an ultramarathon footrace (160 km). Most of the race had been run downhill which incorporated an extensive amount of eccentric work. Soreness was diffuse throughout the posterior region of the lower leg. In order to interpret what increased technetium uptake reflects and to express extreme endurance related damages, a biopsy was taken from the 3-D position of abnormal uptake. In addition, intramuscular pressures were determined in the deep posterior compartment. Scintigraphs revealed increased technetium pyrophosphate uptake in the medial portion of the gastrocnemius muscle. For 3698 fibres analysed, 33 fibres (1%) were necrotic, while a few other fibres were either atrophic or irregular shaped. A cluster of necrotic fibres occurred at the fascicular periphery for one subject and fibre type grouping occurred for another. Ultrastructural analysis revealed Z-line streaming near many capillaries and variously altered subsarcolemmal mitochondria including some with paracrystalline inclusions. The majority of the capillaries included thickened and irregular shaped endothelial cells. Intramuscular pressures of the deep posterior compartment were slightly elevated (12-15 mmHg) for three of the four subjects. Increased technetium uptake following extreme endurance running does not just reflect muscle necrosis but also subtle fibre abnormalities. Collectively, these pathological findings are attributed to relative ischaemia occurring during the race and during pre-race training, whereas, intramuscular pressure elevations associated with muscle soreness are attributed to mechanical stress caused by extensive eccentric work during the race.

  10. Mercury correlations among blood, muscle, and hair of northern elephant seals during the breeding and molting fasts

    Science.gov (United States)

    Peterson, Sarah; Ackerman, Joshua T.; Costa, Daniel P.

    2016-01-01

    Mercury (Hg) biomonitoring and toxicological risk assessments for marine mammals commonly sample different tissues, making comparisons to toxicity benchmarks and among species and regions difficult. Few studies have examined how life history events, such as fasting, influence the relationship between total Hg (THg) concentrations in different tissues. We evaluated the relationships between THg concentrations in blood, muscle, and hair of female and male northern elephant seals (Mirounga angustirostris) at the start and end of the breeding and molting fasts. The relationships between tissues varied among tissue pairs and differed by sampling period and sex. Blood and muscle were generally related at all time periods; however, hair, an inert tissue, did not strongly represent the metabolically active tissues (blood and muscle) at all times of year. The strongest relationships between THg concentrations in hair and those in blood or muscle were observed during periods of active hair growth (end of the molting period) or during time periods when internal body conditions were similar to those when the hair was grown (end of the breeding fast). Our results indicate that THg concentrations in blood or muscle can be translated to the other tissue type using the equations we developed, but that THg concentrations in hair were generally a poor index of internal THg concentrations except during the end of fasting periods.

  11. Inter- and intrasubject similarity of muscle synergies during bench press with slow and fast velocity

    DEFF Research Database (Denmark)

    Samani, Afshin; Kristiansen, Mathias

    2018-01-01

    We investigated the effect of low and high bar velocity on inter- and intra-subject similarity of muscle synergies during bench press. Thirteen trained male subjects underwent two exercise conditions, i.e. a slow and a fast velocity bench press. Surface electromyography was recorded from thirteen...... to describe the dataset variability. For the second activation coefficient, the inter-subject similarity within the fast velocity condition was greater than the intra-subject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector...

  12. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    Science.gov (United States)

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Ferulic Acid Promotes Hypertrophic Growth of Fast Skeletal Muscle in Zebrafish Model.

    Science.gov (United States)

    Wen, Ya; Ushio, Hideki

    2017-09-26

    As a widely distributed and natural existing antioxidant, ferulic acid and its functions have been extensively studied in recent decades. In the present study, hypertrophic growth of fast skeletal myofibers was observed in adult zebrafish after ferulic acid administration for 30 days, being reflected in increased body weight, body mass index (BMI), and muscle mass, along with an enlarged cross-sectional area of myofibers. qRT-PCR analyses demonstrated the up-regulation of relative mRNA expression levels of myogenic transcriptional factors (MyoD, myogenin and serum response factor (SRF)) and their target genes encoding sarcomeric unit proteins involved in muscular hypertrophy (skeletal alpha-actin, myosin heavy chain, tropomyosin, and troponin I). Western blot analyses detected a higher phosphorylated level of zTOR (zebrafish target of rapamycin), p70S6K, and 4E-BP1, which suggests an enhanced translation efficiency and protein synthesis capacity of fast skeletal muscle myofibers. These changes in transcription and translation finally converge and lead to higher protein contents in myofibers, as confirmed by elevated levels of myosin heavy chain (MyHC), and an increased muscle mass. To the best of our knowledge, these findings have been reported for the first time in vivo and suggest potential applications of ferulic acid as functional food additives and dietary supplements owing to its ability to promote muscle growth.

  14. Live changes in muscle glycogen concentration of steers due to feeding and fasting as determined through serial biopsies of the Longissimus dorsi muscle

    Directory of Open Access Journals (Sweden)

    Ariel Apaoblaza

    2014-03-01

    Full Text Available Insufficient glycogen content in bovine muscle at slaughter produces meat with high final pH (> 5.8 which is undesirable. The objective of this study was to determine through biopsies the live changes in muscle glycogen concentration (MGC of housed steers fed on hay or hay plus energy concentrate for 30 d and then determine the effect of food deprivation (fasting for 24 h on the same variable. Ten steers of similar age, weight, and phenotypic characteristics were housed in individual pens and randomly assigned to two feeding treatments: ad libitum hay only (H, n = 5 and ad libitum hay plus flaked corn (Zea mays L. (HC, n = 5. Biopsies (B were taken from the Longissimus dorsi muscle at four occasions: the day before the start of experiment (B0, after 15 d (Bl, after 30 d (B2, and fasted for 24 h after B2 (B3. Before each biopsy, steers were sedated with xylazine (0.03 mL kg-1 and lidocaine was applied locally; samples were frozen in liquid nitrogen to determine MGC. Results showed a significant (P H and also of time (B2 > Bl on MGC; the decrease in MGC of steers due to fasting (B2 vs. B3 was not significant (P > 0.05. It was concluded that muscle biopsies allowed to detect a difference in the increase of MGC in steers fed an energy supplementation compared to steers fed hay only, and that fasting for 24 h tended to reduce MGC in both groups.

  15. The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system.

    Science.gov (United States)

    Budelmann, B U; Young, J Z

    1993-04-29

    Fourteen extraocular eye muscles are described in the decapods Loligo and Sepioteuthis, and thirteen in Sepia; they are supplied by four eye muscle nerves. The main action of most of the muscles is a linear movement of the eyeball, only three muscles produce strong rotations. The arrangement, innervation and action of the decapod eye muscles are compared with those of the seven eye muscles and seven eye muscle nerves in Octopus. The extra muscles in decapods are attached to the anterior and superior faces of the eyes. At least, the anterior muscles, and presumably also the superior muscles, are concerned with convergent eye movements for binocular vision during fixation and capture of prey by the tentacles. The remaining muscles are rather similar in the two cephalopod groups. In decapods, the anterior muscles include conjunctive muscles; these cross the midline and each presumably moves both eyes at the same time during fixation. In the squids Loligo and Sepioteuthis there is an additional superior conjunctive muscle of perhaps similar function. Some of the anterior muscles are associated with a narrow moveable plate, the trochlear cartilage; it is attached to the eyeball by trochlear membranes. Centripetal cobalt fillings showed that all four eye muscle nerves have fibres that originate from somata in the ipsilateral anterior lateral pedal lobe, which is the oculomotor centre. The somata of the individual nerves show different but overlapping distributions. Bundles of small presumably afferent fibres were seen in two of the four nerves. They do not enter the anterior lateral pedal lobe but run to the ventral magnocellular lobe; some afferent fibres enter the brachio-palliovisceral connective and run perhaps as far as the palliovisceral lobe.

  16. Differential response of early and late phases of skeletal muscle regeneration to exogenous supply of testosterone and insulin

    International Nuclear Information System (INIS)

    Qazi, I.; Riaz, S.

    2005-01-01

    Effect of insulin and testosterone, separately and in combination on the regeneration of skeletal fibres within intact extensor digitorum longus (EDL) muscle grafts was studied in mice. It was found that intraperitoneal supply of 2 mg/100 g body weight/day of testosterone accelerated skeletal muscle regeneration within ten days of grafting. The regenerated muscle fibres in such grafts attained significantly higher % recovery of average cross-sectional area (ACSA) than in the controls grafts. Later on, provision of the hormone did not further promote growth of the regenerated muscle fibres. In the insulin-supplemented animals (2 units/100 g body weight/day) the grafts showed hyperplasia and atrophy of the regenerating muscle fibres during the first and the last study periods, respectively. Histological and morphometric analysis of 20-day old EDL muscle regenerates that were supplied with either insulin or testosterone during the first 10-days of transplantation followed by hormone administration in reverse sequence revealed valuable differences. Supply of testosterone and then insulin escalated the process of regeneration and growth so that the ACSA of the regenerated muscle fibres in such grafts turned out to be significantly higher that in the corresponding stages of control, or when only insulin and only testosterone were administered. Reverse sequence of the administration of the hormones exerted negative effects and the regenerated muscle fibres showed various levels of atrophy. These results indicate the importance of identification of particular phases of the process of skeletal muscle regeneration that may be more responsive to anabolic agents. Proper sequence of administration of the hormones to promote the regeneration of skeletal muscle fibres in whole EDL muscle autotransplants is also explained. (author)

  17. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation

    Science.gov (United States)

    Vandenboom, Rene; Hannon, James D; Sieck, Gary C

    2002-01-01

    We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dtR). The influence of isotonic force on +dF/dtR was assessed by imposing uniform amplitude (2.55 to 2.15 μm sarcomere−1) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 ± 0.11 μm half-sarcomere−1 s−1) to 0.30 of maximum unloaded shortening velocity (Vu), thereby modulating isotonic force from 0 to 0.34 Fo, respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dtR increased by 81 ± 6% (P < 0.05) as fibre shortening speed was reduced from 1.00 Vu. The +dF/dtR after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence Vu (mean: 2.84 ± 0.10 μm half-sarcomere−1 s−1, P < 0.05). We conclude that isotonic force modulates +dF/dtR independent of change in Vu, an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate. PMID:12205189

  18. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    Science.gov (United States)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  19. Studies of avalanche photodiodes for scintillating fibre tracking readout

    International Nuclear Information System (INIS)

    Fenker, H.; Thomas, J.

    1993-01-01

    Avalanche Photodiodes (APDs) operating in ''Geiger Mode'' have been studied in a fibre tracking readout environment. A fast recharge circuit has been developed for high rate data taking, and results obtained from a model fibre tracker in the test beam at Brookhaven National Laboratory are presented. A high rate calibrated light source has been developed using a commercially available laser diode and has been used to measure the efficiency of the devices. The transmission of the light from a 1mm fibre onto a 0.5mm diameter APD surface has been identified as the main problem in the use of these particular devices for scintillating fibre tracking in the Superconducting Supercollider environment. Solutions to this problem are proposed

  20. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    International Nuclear Information System (INIS)

    Zijta, F.M.; Froeling, M.; Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J.; Lakeman, M.M.E.; Montauban van Swijndregt, A.D.; Strijkers, G.J.

    2011-01-01

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 ± 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 ± 0.02 to 0.30 ± 0.04, MD values from 1.30 ± 0.08 to 1.73 ± 0.12 x 10- 3 mm 2 /s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  1. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Zijta, F.M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Froeling, M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands); Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Lakeman, M.M.E. [University of Amsterdam, Department of Gynaecology, Academic Medical Center, Amsterdam (Netherlands); Montauban van Swijndregt, A.D. [Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Strijkers, G.J. [Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands)

    2011-06-15

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 {+-} 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues ({lambda}1, {lambda}2, {lambda}3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 {+-} 0.02 to 0.30 {+-} 0.04, MD values from 1.30 {+-} 0.08 to 1.73 {+-} 0.12 x 10-{sup 3} mm{sup 2}/s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  2. Mitochondrial-related proteomic changes during obesity and fasting in mice are greater in the liver than skeletal muscles.

    Science.gov (United States)

    Nesteruk, Monika; Hennig, Ewa E; Mikula, Michal; Karczmarski, Jakub; Dzwonek, Artur; Goryca, Krzysztof; Rubel, Tymon; Paziewska, Agnieszka; Woszczynski, Marek; Ledwon, Joanna; Dabrowska, Michalina; Dadlez, Michal; Ostrowski, Jerzy

    2014-03-01

    Although mitochondrial dysfunction is implicated in the pathogenesis of obesity, the molecular mechanisms underlying obesity-related metabolic abnormalities are not well established. We performed mitochondrial quantitative proteomic and whole transcriptome analysis followed by functional annotations within liver and skeletal muscles, using fasted and non-fasted 16- and 48-week-old high-fat diet (HFD)-fed and normal diet-fed (control group) wild-type C56BL/6J mice, and hyperphagic ob/ob and db/db obese mice. Our study identified 1,675 and 704 mitochondria-associated proteins with at least two peptides in liver and muscle, respectively. Of these, 221 liver and 44 muscle proteins were differentially expressed (adjusted p values ≤ 0.05) between control and all obese mice, while overnight fasting altered expression of 107 liver and 35 muscle proteins. In the liver, we distinguished a network of 27 proteins exhibiting opposite direction of expression changes in HFD-fed and hyperphagic mice when compared to control. The network centered on cytochromes P450 3a11 (Cyp3a11) and 4a14 (Cyp4a14), and fructose-bisphosphate aldolase B (Aldob) proteins which bridged proteins cluster involved in Metabolism of xenobiotics with proteins engaged in Fatty acid metabolism and PPAR signaling pathways. Functional annotations revealed that most of the hepatic molecular alterations, which characterized both obesity and fasting, related to different aspects of energy metabolism (such as Fatty acid metabolism, Peroxisome, and PPAR signaling); however, only a limited number of functional annotations could be selected from skeletal muscle data sets. Thus, our comprehensive molecular overview revealed that both obesity and fasting states induce more pronounced mitochondrial proteome changes in the liver than in the muscles.

  3. Automated image segmentation of haematoxylin and eosin stained skeletal muscle cross-sections

    DEFF Research Database (Denmark)

    Liu, F; Mackey, AL; Srikuea, R

    2013-01-01

    of two major steps: (1) A learning-based seed detection method to find the geometric centres of the muscle fibres, and (2) a colour gradient repulsive balloon snake deformable model that adopts colour gradient in Luv colour space. Automatic quantification of muscle fibre cross-sectional areas using...

  4. Electromyographic analysis of exercise resulting in symptoms of muscle damage.

    Science.gov (United States)

    McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W

    2000-03-01

    Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P exercise. Similarly, the median frequency increased during eccentric (P exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P unit torque was lower for eccentric than concentric contractions (P exercise resulted in significant isometric strength loss (P exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.

  5. Regulation and role of hormone-sensitive lipase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    the effects of contractions and adrenaline on HSL activity are partially additive. In line with the view that the two stimuli act by different mechanisms, training increases contraction-mediated HSL activation but diminishes adrenaline-mediated HSL activation in muscle. In conclusion, HSL is present...... fibre types, being higher in oxidative fibres than in glycolytic fibres. When analysed under conditions optimal for HSL, neutral lipase activity in muscle can be stimulated by adrenaline as well as by contractions. These increases are abolished by the presence of anti-HSL antibody during analysis....... Moreover, immunoprecipitation with affinity-purified anti-HSL antibody causes similar reductions in muscle HSL protein concentration and in measured neutral lipase responses to contractions. The immunoreactive HSL in muscle is stimulated by adrenaline via beta-adrenergic activation of c...

  6. FibreBags vs. FibreCaps for acid and neutral detergent fibre analysis

    OpenAIRE

    Koivisto , Jason

    2003-01-01

    International audience; A new procedure for determining acid detergent fibre and neutral detergent fibre (ADF and NDF) was developed to reduce the need for filtration and to allow for batch processing of forage samples. The FibreBag system is an economically necessary evolution of the earlier FibreCap system. The purpose of this enquiry was to determine if the FibreBag is a suitable replacement for the FibreCap. The FibreBag method produced very similar results to the FibreCap system of analy...

  7. Time course in calpain activity and autolysis in slow and fast skeletal muscle during clenbuterol treatment.

    Science.gov (United States)

    Douillard, Aymeric; Galbes, Olivier; Rossano, Bernadette; Vernus, Barbara; Bonnieu, Anne; Candau, Robin; Py, Guillaume

    2011-02-01

    Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21 days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4 mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9 days of treatment, while hypertrophy was observed only in EDL after 9 days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14 days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.

  8. Development of rigor mortis is not affected by muscle volume.

    Science.gov (United States)

    Kobayashi, M; Ikegaya, H; Takase, I; Hatanaka, K; Sakurada, K; Iwase, H

    2001-04-01

    There is a hypothesis suggesting that rigor mortis progresses more rapidly in small muscles than in large muscles. We measured rigor mortis as tension determined isometrically in rat musculus erector spinae that had been cut into muscle bundles of various volumes. The muscle volume did not influence either the progress or the resolution of rigor mortis, which contradicts the hypothesis. Differences in pre-rigor load on the muscles influenced the onset and resolution of rigor mortis in a few pairs of samples, but did not influence the time taken for rigor mortis to reach its full extent after death. Moreover, the progress of rigor mortis in this muscle was biphasic; this may reflect the early rigor of red muscle fibres and the late rigor of white muscle fibres.

  9. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    Science.gov (United States)

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  10. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans

    DEFF Research Database (Denmark)

    Xu, G.; Hansen, J S; Zhao, Jian-xin

    2016-01-01

    BACKGROUND: Plasma acylcarnitine levels are elevated by physiological conditions such as fasting and exercise but also in states of insulin resistance and obesity. AIM: To elucidate the contribution of liver and skeletal muscle to plasma acylcarnitines in the fasting state and during exercise...... in humans. METHODS: In 2 independent studies, young healthy males were fasted overnight and performed an acute bout of exercise to investigate either acylcarnitines in skeletal muscle biopsies and arterial-to-venous plasma differences over the exercising and resting leg (n = 9) or the flux over the hepato......-splanchnic bed (n = 10). RESULTS: In the fasting state, a pronounced release of C2- and C3-carnitines from the hepato-splanchnic bed and an uptake of free carnitine by the legs were detected. Exercise further increased the release of C3-carnitine from the hepato-splanchnic bed and the uptake of free carnitine...

  11. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  12. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carlo C Lazado

    Full Text Available The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2, RAR-related orphan receptor A (rora and timeless (tim displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2, and period 2a and 2b (per2a and per2b. Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded domain-containing protein (npas1 and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock, npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1, and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5 and muscleblind-like 1 (mbnl1 strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.

  13. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  14. Improved method for fibre content and quality analysis and their application to flax genetic diversity investigations

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Bas, N.; Soest, van L.J.M.; Melis, C.; Dam, van J.E.G.

    2003-01-01

    Evaluation for fibre content and quality in a breeding selection program is time consuming and costly. Therefore, this study aims to develop a method for fast and reproducible fibre content analysis on small flax straw samples. A protocol has been developed and verified with fibre screening methods

  15. Fast and Powerful: Biomechanics and Bite Forces of the Mandibles in the American Cockroach Periplaneta americana.

    Directory of Open Access Journals (Sweden)

    Tom Weihmann

    Full Text Available Knowing the functionality and capabilities of masticatory apparatuses is essential for the ecological classification of jawed organisms. Nevertheless insects, especially with their outstanding high species number providing an overwhelming morphological diversity, are notoriously underexplored with respect to maximum bite forces and their dependency on the mandible opening angles. Aiming for a general understanding of insect biting, we examined the generalist feeding cockroach Periplaneta americana, characterized by its primitive chewing mouth parts. We measured active isometric bite forces and passive forces caused by joint resistance over the entire mandibular range with a custom-built 2D force transducer. The opening angle of the mandibles was quantified by using a video system. With respect to the effective mechanical advantage of the mandibles and the cross-section areas, we calculated the forces exerted by the mandible closer muscles and the corresponding muscle stress values. Comparisons with the scarce data available revealed close similarities of the cockroaches' mandible closer stress values (58 N/cm2 to that of smaller specialist carnivorous ground beetles, but strikingly higher values than in larger stag beetles. In contrast to available datasets our results imply the activity of faster and slower muscle fibres, with the latter becoming active only when the animals chew on tough material which requires repetitive, hard biting. Under such circumstances the coactivity of fast and slow fibres provides a force boost which is not available during short-term activities, since long latencies prevent a specific effective employment of the slow fibres in this case.

  16. Effect of thoracic x-irradiation on glucose-6-phosphate dehydrogenase activity of the pectoral muscle of guinea pig

    International Nuclear Information System (INIS)

    Bhatavdekar, J.M.; Shah, V.C.

    1981-01-01

    The histochemical distribution of glucose-6-phosphate dehydrogenase (G6PD) was observed in the major pectoral muscle of a guinea pig that had received 240 R thoracic X-irradiation. The irradiation effects were studied at 24, 48 and 72 hrs after X-irradiation. Type I fibres of the pectoral muscle were deeply stained showing high activity whereas type II fibres demonstrated minimum enzyme activity. The intermediate fibres had medium levels of G6PD activity. Type II fibres showed more staining at 24 and 48 hrs as compared with control muscle. However, at 72 hrs all three fibre types showed a marked inhibition of G6PD activity. The significance of these changes suggests that muscle G6PD metabolism generally altered after irradiation, but the specific nature of these changes and their causes still remain unclear. (author)

  17. Morphometry, ultrastructure, myosin isoforms, and metabolic capacities of the "mini muscles" favoured by selection for high activity in house mice.

    Science.gov (United States)

    Guderley, Helga; Houle-Leroy, Philippe; Diffee, Gary M; Camp, Dana M; Garland, Theodore

    2006-07-01

    Prolonged selective breeding of mice (Mus musculus) for high levels of voluntary wheel running has favoured an unusual phenotype ("mini muscles"), apparently caused by a single Mendelian recessive allele, in which most hind-limb muscles are markedly reduced in mass, but have increased mass-specific activities of mitochondrial enzymes. We examined whether these changes reflect changes in fibre size, number or ultrastructure in normal and "mini-muscle" mice within the two (of four) selectively bred lines (lab designations L3 and L6) that exhibit the phenotype at generations 26 and 27. In both lines, the gastrocnemius and plantaris muscles are smaller in mass (by >50% and 20%, respectively) in affected individuals. The mass-specific activities of mitochondrial enzymes in the gastrocnemius and plantaris muscles were increased in the mini phenotype in both lines, with stronger effects in the gastrocnemius muscle. In the gastrocnemius, the % myosin heavy chain (MHC) IIb was reduced by 50% in L3 and by 30% in L6, whereas the % MHC IIa and I were higher, particularly in L3. Fibre number in the plantaris muscle did not significantly differ between mini and normal muscles, although muscle mass was a significant positive correlate of fibre number. Small fibres were more abundant in mini than normal muscles in L3. Mitochondrial volume density was significantly higher in mini than normal muscle fibres in L3, but not in L6. Microscopy revealed a surprising attribute of the mini muscles: an abundance of small, minimally differentiated, myofibril-containing cells positioned in a disorderly fashion, particularly in the surface layer. We hypothesise that these unusual cells may be satellite cells or type IIb fibres that did not complete their differentiation. Together, these observations suggest that mice with the mini phenotype have reduced numbers of type IIb fibres in many of their hind-limb muscles, leading to a decrease in mass and an increase in mass-specific aerobic capacity

  18. Studies on Ytterbium-doped Fibre Laser Operating in Different Regimes

    International Nuclear Information System (INIS)

    Gan, Y; Xiang, W H; Zhang, G Z

    2006-01-01

    An ytterbium-doped fibre laser with a unidirectional ring cavity containing a polarizer placed between two in-line polarization controllers is presented. Depending on an equivalent saturable absorber, this laser operates in continuous, Q-switched mode-locked or CW mode-locked regimes. The passive method described here allowed us to choose the operating regime of the fibre laser by rotating the two polarization controllers and adjusting the pump power. Results of numerical simulations of pulse propagation in such a mode-locked fibre ring laser are presented, which reveals that the Q-switched mode-locked or CW modelocked regimes can be achieved by aligning the polarizer near the slow or the fast axes of the fibre

  19. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    Science.gov (United States)

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  20. The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2009-03-01

    Full Text Available Abstract Background Skeletal muscle is able to react in a rapid, dynamic way to metabolic and mechanical stimuli. In particular, exposure to either prolonged starvation or disuse results in muscle atrophy. At variance, in hibernating animals muscle atrophy may be scarce or absent after bouts of hibernation i.e., periods of prolonged (months inactivity and food deprivation, and muscle function is fully preserved at arousal. In this study, myocytes from the quadriceps muscle of euthermic and hibernating edible dormice were investigated by a combination of morphological, morphometrical and immunocytochemical analyses at the light and electron microscopy level. The focus was on cell nuclei and mitochondria, which are highly sensitive markers of changing metabolic rate. Results Findings presented herein demonstrate that: 1 the general histology of the muscle, inclusive of muscle fibre shape and size, and the ratio of fast and slow fibre types are not affected by hibernation; 2 the fine structure of cytoplasmic and nuclear constituents is similar in euthermia and hibernation but for lipid droplets, which accumulate during lethargy; 3 during hibernation, mitochondria are larger in size with longer cristae, and 4 myonuclei maintain the same amount and distribution of transcripts and transcription factors as in euthermia. Conclusion In this study we demonstrate that skeletal muscle cells of the hibernating edible dormouse maintain their structural and functional integrity in full, even after months in the nest. A twofold explanation for that is envisaged: 1 the maintenance, during hibernation, of low-rate nuclear and mitochondrial activity counterbalancing myofibre wasting, 2 the intensive muscle stimulation (shivering during periodic arousals in the nest, which would mimic physical exercise. These two factors would prevent muscle atrophy usually occurring in mammals after prolonged starvation and/or inactivity as a consequence of prevailing catabolism

  1. Type 2 Iodothyronine Deiodinase in Skeletal Muscle: Effects of Hypothyroidism and Fasting

    NARCIS (Netherlands)

    Heemstra, Karen A.; Soeters, Maarten R.; Fliers, Eric; Serlie, Mireille J.; Burggraaf, Jacobus; van Doorn, Martijn B.; van der Klaauw, Agatha A.; Romijn, Johannes A.; Smit, Johannes W.; Corssmit, Eleonora P.; Visser, Theo J.

    2009-01-01

    Context: The iodothyronine deiodinases D1, D2, and D3 enable tissue-specific adaptation of thyroid hormone levels in response to various conditions, such as hypothyroidism or fasting. The possible expression of D2 mRNA in skeletal muscle is intriguing because this enzyme could play a role in

  2. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.

    Directory of Open Access Journals (Sweden)

    Christopher J Lynch

    Full Text Available Second generation antipsychotics (SGAs, like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1, while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.

  3. Impact of fasting on growth hormone signaling and action in muscle and fat

    DEFF Research Database (Denmark)

    Moller, Louise; Dalman, Lisa; Norrelund, Helene

    2008-01-01

    CONTEXT: Whether GH promotes IGF-I production or lipolysis depends on nutritional status, but the underlying mechanisms remain unknown. OBJECTIVE: To investigate the impact of fasting on GH-mediated changes in substrate metabolism, insulin sensitivity, and signaling pathways. DESIGN: We conducted...... a randomized crossover study. SUBJECTS: Ten healthy men (age 24.3 +/- 0.6 yr, body mass index 23.1 +/- 0.4 kg/m(2)) participated. INTERVENTION: A GH bolus administered 1) postabsorptively and 2) in the fasting state (37.5 h). Skeletal muscle and adipose tissue biopsies were taken, and a hyperinsulinemic...... signaling protein 3 and IGF-I mRNA. RESULTS: Fasting was associated with reduced MCR of GH (P

  4. Application de la spectroscopie Raman à l’analyse de colorants sur fibres de coton dans le contexte de la criminalistique

    OpenAIRE

    Lepot, Laurent

    2011-01-01

    Forensic examination of textile fibres is based on fibre morphology and on fibre material and dyes characterization. Cotton is the most frequently used fibre in textiles but also the most encountered in casework. While man-made fibres show various morphologies and materials, cotton is a natural cellulosic fibre with constant morphology. Cotton fibres examination can consequently be summarized in the characterization of fibre dyes. However forensic needs require non-destructive, fast and sensi...

  5. Fast Torsional Artificial Muscles from NiTi Twisted Yarns.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-05-17

    Torsional artificial muscles made of multiwalled carbon nanotube/niobium nanowire yarns have shown remarkable torsional speed and gravimetric torque. The muscle structure consists of a twisted yarn with half of its length infiltrated with a stimuli-responsive guest material such as paraffin wax. The volumetric expansion of the guest material creates the torsional actuation in the yarn. In the present work, we show that this type of actuation is not unique to wax-infiltrated carbon multiwalled nanotube (MWCNT) or niobium nanowire yarns and that twisted yarn of NiTi alloy fibers also produces fast torsional actuation. By gold-plating half the length of a NiTi twisted yarn and Joule heating it, we achieved a fully reversible torsional actuation of up to 16°/mm with peak torsional speed of 10 500 rpm and gravimetric torque of 8 N·m/kg. These results favorably compare to those of MWCNTs and niobium nanowire yarns.

  6. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors.

    Science.gov (United States)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C A; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L

    2018-02-01

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

  7. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

    Science.gov (United States)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C. A.; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L.

    2018-02-01

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

  8. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men

    DEFF Research Database (Denmark)

    Mackey, Abigail; Karlsen, A; Couppé, C

    2014-01-01

    AIM: To investigate the influence of lifelong endurance running on the satellite cell pool of type I and type II fibres in healthy human skeletal muscle. METHODS: Muscle biopsies were collected from 15 healthy old trained men (O-Tr) who had been running 43 ± 16 (mean ± SD) kilometres a week for 28...... ± 9 years. Twelve age-matched untrained men (O-Un) and a group of young trained and young untrained men were recruited for comparison. Frozen sections were immunohistochemically stained for Pax7, type I myosin and laminin, from which fibre area, the number of satellite cells, and the relationship......-Un. A strong positive relationship between fibre size and satellite cell content was detected in trained individuals. In line with a history of myofibre repair, a greater number of fibres with centrally located myonuclei were detected in O-Tr. CONCLUSION: Lifelong endurance training (i) does not deplete...

  9. Extracellular adenosine initiates rapid arteriolar vasodilation induced by a single skeletal muscle contraction in hamster cremaster muscle.

    Science.gov (United States)

    Ross, G A; Mihok, M L; Murrant, C L

    2013-05-01

    Recent studies suggest that adenosine (ADO) can be produced extracellularly in response to skeletal muscle contraction. We tested the hypothesis that a single muscle contraction produces extracellular ADO rapidly enough and in physiologically relevant concentrations to be able to contribute to the rapid vasodilation that occurs at the onset of muscle contraction. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of arterioles at a site of overlap with the stimulated muscle fibres before and after a single contraction (stimulus frequencies: 4, 20 and 60 Hz; 250 ms train duration). Muscle fibres were stimulated in the absence and presence of non-specific ADO membrane receptor antagonists 8-phenyltheophylline (8-PT, 10(-6) M) or xanthine amine congener (XAC, 10(-6) M) or an inhibitor of an extracellular source of ADO, ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AMPCP, 10(-5) M). We observed that the dilatory event at 4 s following a single contraction was significantly inhibited at all stimulus frequencies by an average of 63.9 ± 2.6% by 8-PT. The 20-s dilatory event that occurred at 20 and 60 Hz was significantly inhibited by 53.6 ± 2.6 and 73.8 ± 2.3% by 8-PT and XAC respectively. Further, both the 4- and 20-s dilatory events were significantly inhibited by AMPCP by 78.6 ± 6.6 and 67.1 ± 1.5%, respectively, at each stimulus frequency tested. Our data show that ADO is produced extracellularly during a single muscle contraction and that it is produced rapidly enough and in physiologically relevant concentrations to contribute to the rapid vasodilation in response to muscle contraction. © 2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society.

  10. Sarcoglycan complex in masseter and sternocleidomastoid muscles of baboons: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    G. Cutroneo

    2015-06-01

    Full Text Available The sarcoglycan complex consists of a group of single-pass transmembrane glycoproteins that are essential to maintain the integrity of muscle membranes. Any mutation in each sarcoglycan gene causes a series of recessive autosomal dystrophin-positive muscular dystrophies. Negative fibres for sarcoglycans have never been found in healthy humans and animals. In this study, we have investigated whether the social ranking has an influence on the expression of sarcoglycans in the skeletal muscles of healthy baboons. Biopsies of masseter and sternocleidomastoid muscles were processed for confocal immunohistochemical detection of sarcoglycans. Our findings showed that baboons from different social rankings exhibited different sarcoglycan expression profiles. While in dominant baboons almost all muscles were stained for sarcoglycans, only 55% of muscle fibres showed a significant staining. This different expression pattern is likely to be due to the living conditions of these primates. Sarcoglycans which play a key role in muscle activity by controlling contractile forces may influence the phenotype of muscle fibres, thus determining an adaptation to functional conditions. We hypothesize that this intraspecies variation reflects an epigenetic modification of the muscular protein network that allows baboons to adapt progressively to a different social status.

  11. Caspase-12 ablation preserves muscle function in the mdx mouse

    Science.gov (United States)

    Moorwood, Catherine; Barton, Elisabeth R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD. PMID:24879640

  12. The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men

    Science.gov (United States)

    Browning, Jeffrey D.; Baxter, Jeannie; Satapati, Santhosh; Burgess, Shawn C.

    2012-01-01

    Fasting promotes triglyceride (TG) accumulation in lean tissues of some animals, but the effect in humans is unknown. Additionally, fasting lipolysis is sexually dimorphic in humans, suggesting that lean tissue TG accumulation and metabolism may differ between women and men. This study investigated lean tissue TG content and metabolism in women and men during extended fasting. Liver and muscle TG content were measured by magnetic resonance spectroscopy during a 48-h fast in healthy men and women. Whole-body and hepatic carbohydrate, lipid, and energy metabolism were also evaluated using biochemical, calorimetric, and stable isotope tracer techniques. As expected, postabsorptive plasma fatty acids (FAs) were higher in women than in men but increased more rapidly in men with the onset of early starvation. Concurrently, sexual dimorphism was apparent in lean tissue TG accumulation during the fast, occurring in livers of men but in muscles of women. Despite differences in lean tissue TG distribution, men and women had identical fasting responses in whole-body and hepatic glucose and oxidative metabolism. In conclusion, TG accumulated in livers of men but in muscles of women during extended fasting. This sexual dimorphism was related to differential fasting plasma FA concentrations but not to whole body or hepatic utilization of this substrate. PMID:22140269

  13. The functional significance of hamstrings composition: is it really a "fast" muscle group?

    Science.gov (United States)

    Evangelidis, Pavlos E; Massey, Garry J; Ferguson, Richard A; Wheeler, Patrick C; Pain, Matthew T G; Folland, Jonathan P

    2017-11-01

    Hamstrings muscle fiber composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty-one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution [mean ± SD (min-max); 47.1 ± 9.1% (32.6-71.0%) MHC-I, 35.5 ± 8.5% (21.5-60.0%) MHC-IIA, 17.4 ± 9.1% (0.0-30.9%) MHC-IIX]. Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r = 0.62-0.76, P hamstrings strain injury. Hamstrings muscle volume explained 38-58% of the inter-individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The Action of Botulinum Toxin at the Neuromuscular Junction

    Science.gov (United States)

    1980-12-22

    fast - twitch " (gastrocnemius) and " slow - twitch " (soleus) muscles ... muscle fibers -"_re not significantly affected by the toxin. It is interesting to note that, although fast - twitch and slow - twitch mucles were...Duchen LW: An electron microscopic study of the changes induced by borulinum o::in in the motor end-plates of slow and fast skeletal muscle fibres of

  15. Reperfusion Strategies in the Management of Extremity Vascular Injury with Ischaemia

    Science.gov (United States)

    2012-01-01

    28: 1026–1031. 45 Gürke L, Marx A, Sutter PM, Stierli P, Harder F, Heberer M. Function of fast - and slow - twitch rat skeletal muscle following ischemia...influence muscle necrosis, including temperature, muscle fibre type, muscle location and residual blood flow15,16. The earliest effects of limb...Crawford et al.11 reported that in a murine model of limb ischaemia ethyl pyruvate pretreatment resulted in a lower percentage of injured muscle fibres

  16. Analysis of composition and microstructural uniformity of hybrid glass/carbon fibre composites

    Energy Technology Data Exchange (ETDEWEB)

    Beauson, J.; Markussen, C.M.; Madsen, Bo

    2013-09-01

    In hybrid fibre composites, the intermixing of the two types of fibres imposes challenges to obtain materials with a well-defined and uniform microstructure. In the present paper, the composition and the microstructural uniformity of hybrid glass/carbon fibre composites mixed at the fibre bundle level are investigated. The different levels of compositions in the composites are defined and experimentally determined. The composite volume fractions are determined using an image analysis based procedure. The global fibre volume fractions are determined using a gravimetrical based method. The local fibre volume fractions are determined using volumetric calculations. A model is presented to predict the interrelation of volume fractions in hybrid fibre composites. The microstructural uniformity of the composites is analysed by the determined variation in composite volume fractions. Two analytical methods, a standard deviation based method and a fast Fourier transform method, are used to quantify the difference in microstructural uniformity between composites, and to detect and quantify any repeating pattern in the composite microstructure. (Author)

  17. Meat physical quality and muscle fibre properties of rabbit meat as affected by the sire breed, season, parity order and gender in an organic production system

    Directory of Open Access Journals (Sweden)

    A. Dalle Zotte

    2016-06-01

    Full Text Available The aim of the study was to evaluate some meat physical quality and muscle fibre properties of rabbit meat when considering 2 sire breeds (SB: Vienna Blue [VB]; Burgundy Fawn [BF]; both coloured and slow-growing breeds, several parity orders (P: 1, 2, ≥3, gender (G, and 2 slaughter seasons (SS: spring, summer in an organic production system. The effect of storage time (ST at frozen state (2 mo at –20°C of Longissimus lumborum (LL meat was also evaluated. Animals were slaughtered when they reached 2.8 kg of live weight. Then, pH and L*a*b* colour values of Biceps femoris (BF and LL muscles, water loss and Warner-Bratzler shear force of LL and hind leg (HL meat, and the fibre typing and enzymatic activity of LL muscle were analysed. LL meat from females showed higher b* values than males (0.04 vs. –1.25; P<0.05. Significant (P<0.05 SB×P, SB×G and P×G interactions were observed for the b* value of LL: VB and BF crossbreds presented a higher b* value when born as P≥3 and P2 respectively, VB females showed higher b* value than VB males, and P2 and P≥3 produced males with a significantly lower b* value. HL thawing losses were significantly (P<0.05 higher in rabbits slaughtered in summer than in those slaughtered in spring, whereas the opposite result was obtained for LL meat (P<0.01. Cooking loss of LL meat was significantly lower in P2 group than P≥3 group (P<0.05. The lactate dehydrogenase activity in LL muscle was higher in VB than in BF crossbreds (930 vs. 830 IU; P<0.05, albeit not supported by differences in fibre type distribution. The ST significantly (P<0.01 reduced pH, a* and b* colour values, and increased lightness of LL meat. It was concluded that the crossbreeds derived from VB and BF genotypes and farmed organically did not show remarkable sexual dimorphism, considering their elder slaughter age than rabbits reared under intensive conditions. Physical quality of meat was mainly affected by slaughter season, indicating

  18. GH signaling in human adipose and muscle tissue during 'feast and famine': amplification of exercise stimulation following fasting compared to glucose administration.

    Science.gov (United States)

    Vendelbo, Mikkel H; Christensen, Britt; Grønbæk, Solbritt B; Høgild, Morten; Madsen, Michael; Pedersen, Steen B; Jørgensen, Jens O L; Jessen, Niels; Møller, Niels

    2015-09-01

    Fasting and exercise stimulates, whereas glucose suppresses GH secretion, but it is uncertain how these conditions impact GH signaling in peripheral tissues. To test the original 'feast and famine hypothesis' by Rabinowitz and Zierler, according to which the metabolic effects of GH are predominant during fasting, we specifically hypothesized that fasting and exercise act in synergy to increase STAT-5b target gene expression. Eight healthy men were studied on two occasions in relation to a 1 h exercise bout: i) with a concomitant i.v. glucose infusion ('feast') and ii) after a 36 h fast ('famine'). Muscle and fat biopsy specimens were obtained before, immediately after, and 30 min after exercise. GH increased during exercise on both examination days and this effect was amplified by fasting, and free fatty acid (FFA) levels increased after fasting. STAT-5b phosphorylation increased similarly following exercise on both occasions. In adipose tissue, suppressors of cytokine signaling 1 (SOCS1) and SOCS2 were increased after exercise on the fasting day and both fasting and exercise increased cytokine inducible SH2-containing protein (CISH). In muscle, SOCS2 and CISH mRNA were persistently increased after fasting. Muscle SOCS1, SOCS3, and CISH mRNA expression increased, whereas SOCS2 decreased after exercise on both examination days. This study demonstrates that fasting and exercise act in tandem to amplify STAT-5b target gene expression (SOCS and CISH) in adipose and muscle tissue in accordance with the 'feast and famine hypothesis'; the adipose tissue signaling responses, which hitherto have not been scrutinized, may play a particular role in promoting FFA mobilization. © 2015 European Society of Endocrinology.

  19. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways

    Directory of Open Access Journals (Sweden)

    Naomi Elisabeth Brooks

    2014-03-01

    Full Text Available Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilisation, disuse and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fibre attrition. Skeletal muscle stem cells (satellite cells and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signalling pathways activated in muscle fibres by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g. amino acids may further enhance recovery (or reduce atrophy despite unloading or ageing is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.

  20. Myosin heavy chain profile of equine gluteus medius muscle following prolonged draught-exercise training and detraining.

    Science.gov (United States)

    Serrano, A L; Rivero, J L

    2000-04-01

    Fourteen 4-year old Andalusian mares were used to examine the plasticity of myosin heavy chain (MHC) composition in horse skeletal muscle with heavy draught-exercise training and detraining. Seven horses underwent a training programme based on carriage exercises for 8 months. Afterwards, they were kept in paddocks for 3 months. The remaining seven animals were used as control horses. Three gluteus medius muscle biopsies were removed at depths of 20, 40 and 60 mm from each horse before (month 0), during the training (months 3 and 8) and after detraining (month 11). Myosin heavy chain composition was analysed by electrophoresis and immunohistochemically with anti-MHC monoclonal antibodies. Fibre areas, oxidative capacity and capillaries were studied histochemically. After 8 months of training, MHC-IIX and IIX fibres decreased whereas MHC-I and type I and I + IIA fibres increased. Neither MHC-IIA nor the percentage of IIA fibres changed when the data were considered as a whole, but the proportion of MHC-IIA increased in the superficial region of the muscle after 8 months of training. Mean areas of type II fibres were not affected by training and detraining, but the cross-sectional of type I fibres increased after 3 month of training and not further increases were recorded afterward. The percentage of high-oxidative capacity fibres and the number of capillaries per mm2 increased with training. Most of these muscular adaptations reverted after detraining. These results indicate that long term draught-exercise training induces a reversible transition of MHC composition in equine muscle in the order IIX --> IIA --> I. The physiological implication of these changes is an impact on the velocity of shortening and fatigue resistance of muscle fibres.

  1. A three-dimensional study of the musculotendinous and neurovascular architecture of the gracilis muscle: application to functional muscle transfer.

    Science.gov (United States)

    Fattah, A Y; Ravichandiran, K; Zuker, R M; Agur, A M R

    2013-09-01

    Muscle transfer is used to restore function typically using a single vector of contraction. Although its use with two independently functional muscular units has been employed, in order to refine this concept we endeavoured to detail the intramuscular anatomy of gracilis, a muscle commonly used for transfer. A novel method to capture intramuscular fibre bundle and neurovascular arrangement was used to create a three-dimensional (3D) digital model that allowed for accurate representation of the relationships between all the intramuscular structures to facilitate flap planning. Twenty gracilis muscles were harvested from 15 cadavers. All components of the muscle were digitised using a Microscribe G2 Digitiser. The data were exported to the 3D animation software Autodesk(®) Maya(®) 2012 whereupon it was rendered into a 3D model that can be exported as static images or videos. Neurovascular anatomy and muscle architecture were analysed from these models, and fibre bundle length, pennation angle and physiological cross-sectional area were calculated from digitised data. The muscle is composed of a variable number of distinct longitudinal segments with muscle fibres spiralling onto the tendon. The main artery to the muscle has three main intramuscular patterns of distribution. The venae comitantes drain discrete zones without intramuscular macroscopic anastomoses. The minor pedicles form an anastomotic chain along the anterior border of the muscle and all vessels were biased to the deep surface. The nerve is related to the vessels in a variable manner and both run between longitudinal muscular compartments. The digitisation technique may be used to advance knowledge of intramuscular architecture and it demonstrated that the gracilis muscle is comprised of four to seven muscular compartments, each representing a functional unit that may theoretically be differentially activated and could be harnessed for more sophisticated muscle transfers. Copyright © 2013 British

  2. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  3. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  4. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  5. The expression of the skeletal muscle force-length relationship in vivo: a simulation study.

    Science.gov (United States)

    Winter, Samantha L; Challis, John H

    2010-02-21

    The force-length relationship is one of the most important mechanical characteristics of skeletal muscle in humans and animals. For a physiologically realistic joint range of motion and therefore range of muscle fibre lengths only part of the force-length curve may be used in vivo, i.e. only a section of the force-length curve is expressed. A generalised model of a mono-articular muscle-tendon complex was used to examine the effect of various muscle architecture parameters on the expressed section of the force-length relationship for a 90 degrees joint range of motion. The parameters investigated were: the ratio of tendon resting length to muscle fibre optimum length (L(TR):L(F.OPT)) (varied from 0.5 to 11.5), the ratio of muscle fibre optimum length to average moment arm (L(F.OPT):r) (varied from 0.5 to 5), the normalised tendon strain at maximum isometric force (c) (varied from 0 to 0.08), the muscle fibre pennation angle (theta) (varied from 0 degrees to 45 degrees) and the joint angle at which the optimum muscle fibre length occurred (phi). The range of values chosen for each parameter was based on values reported in the literature for five human mono-articular muscles with different functional roles. The ratios L(TR):L(F.OPT) and L(F.OPT):r were important in determining the amount of variability in the expressed section of the force-length relationship. The modelled muscle operated over only one limb at intermediate values of these two ratios (L(TR):L(F.OPT)=5; L(F.OPT):r=3), whether this was the ascending or descending limb was determined by the precise values of the other parameters. It was concluded that inter-individual variability in the expressed section of the force-length relationship is possible, particularly for muscles with intermediate values of L(TR):L(F.OPT) and L(F.OPT):r such as the brachialis and vastus lateralis. Understanding the potential for inter-individual variability in the expressed section is important when using muscle models to

  6. Clinical classification of cancer cachexia: phenotypic correlates in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Neil Johns

    Full Text Available BACKGROUND: Cachexia affects the majority of patients with advanced cancer and is associated with a reduction in treatment tolerance, response to therapy, and duration of survival. One impediment towards the effective treatment of cachexia is a validated classification system. METHODS: 41 patients with resectable upper gastrointestinal (GI or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL and/or low muscularity (LM. Four diagnostic criteria were used >5%WL, >10%WL, LM, and LM+>2%WL. All patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, Western blots for markers of autophagy, SMAD signalling, and inflammation. FINDINGS: Compared with non-cachectic cancer patients, patients with LM or LM+>2%WL, mean muscle fibre diameter was reduced by about 25% (p = 0.02 and p = 0.001 respectively. No significant difference in fibre diameter was observed if patients had WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased in patients with either >5%WL or LM+>2%WL. Compared with non-cachectic patients, SMAD3 protein levels were increased in patients with >5%WL (p = 0.022 and with >10%WL, beclin (p = 0.05 and ATG5 (p = 0.01 protein levels were increased. There were no differences in phospho-NFkB or phospho-STAT3 levels across any of the groups. CONCLUSION: Muscle fibre size, biochemical composition and pathway phenotype can vary according to whether the diagnostic criteria for cachexia are based on weight loss alone, a measure of low muscularity alone or a combination of the two. For intervention trials where the primary end-point is a change in muscle mass or function, use of combined diagnostic criteria may allow identification of a more

  7. The age related slow and fast contributions to the overall changes in tibialis anterior contractile features disclosed by maximal single twitch scan.

    Science.gov (United States)

    Orizio, Claudio; Cogliati, Marta; Bissolotti, Luciano; Diemont, Bertrand; Gobbo, Massimiliano; Celichowski, Jan

    2016-01-01

    This work aimed to verify if maximal electrically evoked single twitch (STmax) scan discloses the relative functional weight of fast and slow small bundles of fibres (SBF) in determining the contractile features of tibialis anterior (TA) with ageing. SBFs were recruited by TA main motor point stimulation through 60 increasing levels of stimulation (LS): 20 stimuli at 2Hz for each LS. The lowest and highest LS provided the least ST and STmax, respectively. The scanned STmax was decomposed into individual SBF STs. They were identified when twitches from adjacent LS were significantly different and then subtracted from each other. Nine young (Y) and eleven old (O) subjects were investigated. Contraction time (CT) and STarea/STpeak (A/PT) were calculated per each SBF ST. 143 and 155 SBF STs were obtained in Y and O, respectively. Y: CT and A/PT range: 45-105ms and 67-183mNs/mN, respectively. Literature data set TA fast fibres at 34% so, from the arrays of CT and A/PT, 65ms and 100mNs/mN were identified as the upper limit for SBF fast ST classification. O: no SBF ST could be classified as fast. STmax scan reveals age-related changes in the relative contribution of fast and slow SBFs to the overall muscle mechanics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms...... of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  9. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  10. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. F...... engine and visualisation of gas flow behaviour in cylinder.......Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics....... Fast time-and spectral-resolved measurements in 1.5-5.1 μm spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H2O, CH4, CO2, CO) which is one of the key parameters...

  11. Natural fibre high-density polyethylene and lead oxide composites for radiation shielding

    CERN Document Server

    El-Sayed, A; Ismail, M R

    2003-01-01

    Study has been made of the radiation shielding provided by recycled agricultural fibre and industrial plastic wastes produced as composite materials. Fast neutron and gamma-ray spectra behind composites of fibre-plastic (rho = 1.373 g cm sup - sup 3) and fibre-plastic-lead (rho = 2.756 g cm sup - sup 3) have been measured using a collimated reactor beam and neutron-gamma spectrometer with a stilbene scintillator. The pulse shape discriminating technique based on the zero-cross-over method was used to discriminate between neutron and gamma-ray pulses. Slow neutron fluxes have been measured using a collimated reactor beam and BF sub 3 counter, leading to determination of the macroscopic cross-section (SIGMA). The removal cross-sections (SIGMA sub R) of fast neutrons have been determined from measured results and elemental composition of the composites. For gamma-rays, total linear attenuation coefficients (mu) and total mass attenuation coefficients (mu/rho) have been determined from use of the XCOM code and me...

  12. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Science.gov (United States)

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  13. A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    C. H. Lee

    2014-01-01

    Full Text Available Natural fibre is a well-known reinforcement fibre in polymer-matrix Composites (PMC lately. Natural fibre has fast growing and abundance properties which make it available at very low cost. For kenaf fibre there is long lists of research projects which have been done regarding its behaviour, and properties and modification made to it. In this paper, fire flammability is the main concern for natural fibre reinforced polymer (NFRP composites especially kenaf fibre. To estimate its flammability, a wide range of factors can be considered such as fibre content, type of matrices, pH conditions, treatment, and fire retardant (FR filler’s type. The most important criteria are the ignition time, rate of propagation, and fire behavior. thermogravimetric analysis (TGA, different scanning calorimetric (DSC, and dynamic mechanical analysis (DMA are the three most famous methods used to investigate the fire behaviour of composites.

  14. Type 2 iodothyronine deiodinase levels are higher in slow-twitch than fast-twitch mouse skeletal muscle and are increased in hypothyroidism.

    Science.gov (United States)

    Marsili, Alessandro; Ramadan, Waile; Harney, John W; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J Enrique; Larsen, P Reed

    2010-12-01

    Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P Hypothyroidism caused a 40% (P hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.

  15. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    Science.gov (United States)

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones.

  16. Surgery-induced changes and early recovery of hip-muscle strength, leg-press power, and functional performance after fast-track total hip arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Thorborg, Kristian; Husted, Henrik

    2013-01-01

    By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits.......By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits....

  17. A physiologically based, multi-scale model of skeletal muscle structure and function

    Directory of Open Access Journals (Sweden)

    Oliver eRöhrle

    2012-09-01

    Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.

  18. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  19.  Age-related changes of skeletal muscles: physiology, pathology and regeneration

    Directory of Open Access Journals (Sweden)

    Aleksandra Ławniczak

    2012-06-01

    Full Text Available  This review provides a short presentation of the aging-related changes of human skeletal muscles. The aging process is associated with the loss of skeletal muscle mass (sarcopenia and strength. This results from fibre atrophy and apoptosis, decreased regeneration capacity, mitochondrial dysfunction, gradual reduction of the number of spinal cord motor neurons, and local and systemic metabolic and hormonal alterations. The latter involve age-related decrease of the expression and activity of some mitochondrial and cytoplasmic enzymes, triacylglycerols and lipofuscin accumulation inside muscle fibres, increased proteolytic activity, insulin resistance and decreased serum growth hormone and IGF-1 concentrations. Aging of the skeletal muscles is also associated with a decreased number of satellite cells and their proliferative activity. The age-related reduction of skeletal muscle mass and function may be partially prevented by dietary restriction and systematic physical exercises.

  20. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women.

    Science.gov (United States)

    Gillen, Jenna B; Percival, Michael E; Ludzki, Alison; Tarnopolsky, Mark A; Gibala, Martin J

    2013-11-01

    To investigate the effects of low-volume high-intensity interval training (HIT) performed in the fasted (FAST) versus fed (FED) state on body composition, muscle oxidative capacity, and glycemic control in overweight/obese women. Sixteen women (27 ± 8 years, BMI: 29 ± 6 kg/m(2) , VO2peak : 28 ± 3 ml/kg/min) were assigned to either FAST or FED (n = 8 each) and performed 18 sessions of HIT (10× 60-s cycling efforts at ∼90% maximal heart rate, 60-s recovery) over 6 weeks. There was no significant difference between FAST and FED for any measured variable. Body mass was unchanged following training; however, dual energy X-ray absorptiometry revealed lower percent fat in abdominal and leg regions as well as the whole body level (main effects for time, P ≤ 0.05). Fat-free mass increased in leg and gynoid regions (P ≤ 0.05). Resting muscle biopsies revealed a training-induced increase in mitochondrial capacity as evidenced by increased maximal activities of citrate synthase and β-hydroxyacyl-CoA dehydrogenase (P ≤ 0.05). There was no change in insulin sensitivity, although change in insulin area under the curve was correlated with change in abdominal percent fat (r = 0.54, P ≤ 0.05). Short-term low-volume HIT is a time-efficient strategy to improve body composition and muscle oxidative capacity in overweight/obese women, but fed- versus fasted-state training does not alter this response. Copyright © 2013 The Obesity Society.

  1. Contrôle hormonal des caractéristiques des fibres musculaires après la naissance

    OpenAIRE

    Cassar-Malek, Isabelle; Listrat, Anne; Picard, Brigitte

    1998-01-01

    Après la naissance, la croissance et les propriétés contractiles et métaboliques des fibres musculaires sont soumises à une régulation endocrinienne complexe. A l’exception des glucocorticoïdes, la plupart des hormones présente une action anabolique sur le tissu musculaire. Leur influence sur les caractéristiques des fibres est cependant très différente. Ainsi, les hormones somatotropes affectent peu la composition en fibres des muscles. La GH, comme l’IGF-1, régulerait cependant l’expression...

  2. Chronic progressive external ophthalmoplegia: II. A qualitative and quantitative electronmicroscopy study of skeletal muscles

    Directory of Open Access Journals (Sweden)

    Elza Dias-Tosta

    1988-06-01

    Full Text Available This study quantifies the maior electron microscopic changes in limb muscle biopsies from 31 out of 34 patients with the syndrome of chronic progressive external ophthalmoplegia. Patients were divided into three clinical groups - A 10 sporadic cases with muscle weakness only; B 9 familial cases with muscle weakness only; C 15 cases with muscle weakness and one or more of the following features: pigmentary retinopathy, cerebellar ataxia, pyramidal signs and peripheral neuropathy. Electron microscopic mitochondrial abnormalities were found in all groups (8 patients from group A, 3 from group B, 14 from group C. Quantitative measurements of certain muscle fibre constituents, using a point-counting technique, revealed decreased myofibril volume-fractions and increased volume-fractions of mitochondria, glycogen and lipid in some biopsies from each group. Mitochondrial volume-fractions correlated positively with lipid content, the proportion of type 1 fibres, and the percentage of fibres with increased oxidative enzyme activity. The three groups defined clinically showed no significant differences in terms of the relative proportions of these measured constituents.

  3. (TNNC1) gene in goat

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... (soleus), but was not expressed in fast skeletal muscle (longissimus muscle, gluteus maximus) and brain, kidney, lung ... Muscle fibre can be classified according to their ... muscle and TNNC1 express in slow skeletal muscle and cardiac ..... and expression of the human slow twitch skeletal muscle/cardiac.

  4. Effect of the bendiocarb on the ultrastructure of rabbit skeletal muscle

    Directory of Open Access Journals (Sweden)

    Katarína Holovská

    2017-01-01

    Full Text Available Bendiocarb belongs to the group of carbamate insecticides that inhibit acetylcholinesterase. In agriculture, it is used to control a variety of insects, therefore it is important to examine every potential aspect of its toxicology. The aim of this study was to observe the effect of bendiocarb on the ultrastructure of the skeletal muscle in rabbits. Rabbits in all experimental groups received capsules of bendiocarb (96% Bendiocarb, Bayer, Germany per os daily at a dose of 5 mg/kg body weight. Samples of skeletal muscles were collected on days 10 and 20. On day 10 of the experiment, muscle fibres were not affected consistently. The observed changes were moderate and focal. Electron microscopy revealed dilatation of sarcoplasmic reticulum, and myofilament disorganization. On day 20 of the experiment, the ultrastructural changes in muscle fibres were more intense and more frequent. The most important alteration was the disruption of the sarcomeres due to the lysis of both thick and thin myofilaments. However, in the unchanged regions of muscle fibres a prominent mitochondrial swelling was observed. Many mitochondria lacked cristae and thus appeared as large membrane-bound cytoplasmic vesicles. The results presented in this study indicate that bendiocarb affects the ultrastructure of skeletal muscles. The intensity of damage (dissolution of myofilaments and disruption of sarcomeres was related to the duration of administration of bendiocarb.

  5. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training.

    Science.gov (United States)

    Łochyński, Dawid; Kaczmarek, Dominik; Mrówczyński, Włodzimierz; Warchoł, Wojciech; Majerczak, Joanna; Karasiński, Janusz; Korostyński, Michał; Zoladz, Jerzy A; Celichowski, Jan

    2016-10-01

    Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca 2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca 2+ -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca 2+ -handling genes. Copyright © 2016 the American Physiological Society.

  6. The action of ryanodine on rat fast and slow intact skeletal muscles.

    Science.gov (United States)

    Fryer, M W; Lamb, G D; Neering, I R

    1989-07-01

    1. The action of ryanodine on force development of bundles dissected from rat extensor digitorum longus (EDL) and soleus muscles has been examined. 2. Ryanodine (100-5000 nM) irreversibly depressed twitch and tetanic tension of both muscle types in a dose-related manner. 3. At concentrations above 250 nM, ryanodine induced a slowly developing, dose-dependent contracture which could not be blocked by 5 mM-Co2+. Increasing the stimulation rate or decreasing the oxygenation of the preparation accelerated the rate of contracture development while the total removal of extracellular Ca2+ was required to prevent it. 4. Following the relaxation of the initial contracture (IC) in Ca2+-free solution, a second type of contracture (SC) could be induced by the readdition of Ca2+. This contracture differed from IC in that it was dependent on Ca2+ in the millimolar range and was prevented by 5 mM-Co2+. Both IC and SC were relaxed by perfusion with Ca2+-free, EGTA-containing solution. 5. Subcontracture doses of ryanodine (100 nM) markedly potentiated caffeine contractures of both muscle types. 6. Asymmetric charge movement in EDL fibres was recorded with the Vaseline-gap technique. The amount of charge moved near threshold was virtually unaffected by the presence of 10 microM-ryanodine over the time examined. 7. The results are consistent with the suggestion that ryanodine locks the calcium release channels of the sarcoplasmic reticulum (SR) in an open subconductance state with reduced conductance. It appears that lowering the external calcium concentration might still inactivate the release channels after they have been blocked open by ryanodine, possibly by an effect on the T-tubular voltage sensor.

  7. Variations in motor unit recruitment patterns occur within and between muscles in the running rat (Rattus norvegicus).

    Science.gov (United States)

    Hodson-Tole, E F; Wakeling, J M

    2007-07-01

    Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (Pmotor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).

  8. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes?

    DEFF Research Database (Denmark)

    Larsen, Steen; Ara, I; Rabøl, R

    2009-01-01

    and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O(2) flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes...

  9. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  10. Properties of hemp fibre polymer composites - An optimisation of fibre properties using novel defibration methods and fibre characterisation

    DEFF Research Database (Denmark)

    Thygesen, Anders

    2006-01-01

    Characterization of hemp fibres was carried out with fibres obtained with low handling damage and defibration damage to get an indication of how strong cellulose based fibres that can be produced from hemp. Comparison was made with hemp yarn producedunder traditional conditions where damage...... obtained by steam explosion of hemp fibres prior defibrated with pectin degrading enzymes. The S2 layer in the fibre wall of the hemp fibres consisted of1-4 cellulose rich and lignin poor concentric layers constructed of ca. 100 nm thick lamellae. The microfibril angle showed values in the range 0......-10° for the main part of the S2-layer and 70-90° for the S1-layer. The microfibrils that are mainly parallelwith the fibre axis explain the high fibre stiffness, which in defibrated hemp fibres reached 94 GPa. The defibrated hemp fibres had higher fibre stiffness (88-94 GPa) than hemp yarn (60 GPa), which...

  11. Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms

    DEFF Research Database (Denmark)

    Marques, Carlos A. F.; Pospori, Andreas; Demirci, Gökhan

    2017-01-01

    In this work, fibre Bragg gratings (FBGs) were inscribed in two different undoped poly- (methyl methacrylate) (PMMA) polymer optical fibres (POFs) using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs......) were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process) have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary...... preform is not specifically pre-treated need longer inscription time than the fibres drawn where both preforms have been pre-annealed at 80 °C for 2 weeks. Using both UV lasers, for the latter fibre much less inscription time is needed compared to another homemade POF. The properties of a POF fabricated...

  12. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.Methods:Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling...... and the relative workload at which it occurred (FatMax) were higher in PO and O than in C. During arm cranking, peak fat oxidation was higher in O than in C, and FatMax was higher in O than in PO and C. Similar fibre-type composition was found between groups. Plasma adiponectin was higher in PO than in C and O...

  13. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines....... The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within...... the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal...

  14. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly.

    Directory of Open Access Journals (Sweden)

    Kendal Prill

    Full Text Available The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf, supporting SMYD1b as an assembly protein during sarcomere formation.

  15. Fibre tracking

    International Nuclear Information System (INIS)

    Gaillard, J.M.

    1994-03-01

    A large-size scintillating plastic fibre tracking detector was built as part of the upgrade of the UA2 central detector at the SPS proton-antiproton collider. The cylindrical fibre detector of average radius of 40 cm consisted of 60000 plastic fibres with an active length of 2.1 m. One of the main motivations was to improve the electron identification. The fibre ends were bunched to be coupled to read-out systems of image intensifier plus CCD, 32 in total. The quality and the reliability of the UA2 fibre detector performance exceeded expectations throughout its years of operation. A few examples of the use of image intensifiers and of scintillating fibres in biological instrumentation are described. (R.P.) 11 refs., 15 figs., 2 tabs

  16. Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms

    Directory of Open Access Journals (Sweden)

    Carlos A. F. Marques

    2017-04-01

    Full Text Available In this work, fibre Bragg gratings (FBGs were inscribed in two different undoped poly- (methyl methacrylate (PMMA polymer optical fibres (POFs using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary preform is not specifically pre-treated need longer inscription time than the fibres drawn where both preforms have been pre-annealed at 80 °C for 2 weeks. Using both UV lasers, for the latter fibre much less inscription time is needed compared to another homemade POF. The properties of a POF fabricated with both preforms thermally well annealed are different from those in which just one preform step process is thermally treated, with the first POFs being much less sensitive to thermal treatment. The influence of annealing on the strain and temperature sensitivities of the fibres prior to FBG inscription is also discussed, where it is observed that the fibre produced from a two-step drawing process with well-defined pre-annealing of both preforms did not produce any significant difference in sensitivity. The results indicate the impact of preform thermal pre-treatment before the PMMA POFs drawing, which can be an essential characteristic in the view of developing POF sensors technology.

  17. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    Science.gov (United States)

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  18. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers.

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    Full Text Available BACKGROUND: Skeletal muscle is a complex, versatile tissue composed of a variety of functionally diverse fiber types. Although the biochemical, structural and functional properties of myofibers have been the subject of intense investigation for the last decades, understanding molecular processes regulating fiber type diversity is still complicated by the heterogeneity of cell types present in the whole muscle organ. METHODOLOGY/PRINCIPAL FINDINGS: We have produced a first catalogue of genes expressed in mouse slow-oxidative (type 1 and fast-glycolytic (type 2B fibers through transcriptome analysis at the single fiber level (microgenomics. Individual fibers were obtained from murine soleus and EDL muscles and initially classified by myosin heavy chain isoform content. Gene expression profiling on high density DNA oligonucleotide microarrays showed that both qualitative and quantitative improvements were achieved, compared to results with standard muscle homogenate. First, myofiber profiles were virtually free from non-muscle transcriptional activity. Second, thousands of muscle-specific genes were identified, leading to a better definition of gene signatures in the two fiber types as well as the detection of metabolic and signaling pathways that are differentially activated in specific fiber types. Several regulatory proteins showed preferential expression in slow myofibers. Discriminant analysis revealed novel genes that could be useful for fiber type functional classification. CONCLUSIONS/SIGNIFICANCE: As gene expression analyses at the single fiber level significantly increased the resolution power, this innovative approach would allow a better understanding of the adaptive transcriptomic transitions occurring in myofibers under physiological and pathological conditions.

  19. An Accessory Muscle of Pectoral Region: A Case Report

    Science.gov (United States)

    Bannur, B.M.; Mallashetty, Nagaraj; Endigeri, Preetish

    2013-01-01

    Among the variations of pectoral muscles, this case appears to be unique in the literature. This was a case of an accessory pectoral muscle which was located between pectoralis major and pectoralis minor muscles, which was discovered during a routine anatomy dissection. The accessory muscle originated from 6th and 7th ribs at costo-chondral junction, which travelled supero-laterally and inserted by fusing with fibres of pectoralis minor. This unusual muscle holds importance for surgeons while they perform dissectomies, in avoiding complications. PMID:24179919

  20. Passive Muscle-Tendon Unit Gearing is Joint Dependent in Human Medial Gastrocnemius

    Directory of Open Access Journals (Sweden)

    Emma F Hodson-Tole

    2016-03-01

    Full Text Available Skeletal muscles change length and develop force both passively and actively. Gearing allows muscle fibre length changes to be uncoupled from those of the whole muscle-tendon unit. During active contractions this process allows muscles to operate at mechanically favorable conditions for power or economical force production. Here we ask whether gearing is constant in passive muscle; determining the relationship between fascicle and muscle-tendon unit length change in the bi-articular medial gastrocnemius and investigating the influence of whether motion occurs at the knee or ankle joint. Specifically, the same muscle-tendon unit length changes were elicited by rotating either the ankle or knee joint whilst simultaneously measuring fascicle lengths in proximal and distal muscle regions using B-mode ultrasound. In both the proximal and distal muscle region, passive gearing values differed depending on whether ankle or knee motion occurred. Fascicle length changes were greater with ankle motion, likely reflecting anatomical differences in proximal and distal passive tendinous tissues, as well as shape changes of the adjacent mono-articular soleus. This suggests that there is joint-dependent dissociation between the mechanical behaviour of muscle fibres and the muscle-tendon unit during passive joint motions that may be important to consider when developing accurate models of bi-articular muscles.

  1. Statistical Image Analysis of Tomograms with Application to Fibre Geometry Characterisation

    DEFF Research Database (Denmark)

    Emerson, Monica Jane

    The goal of this thesis is to develop statistical image analysis tools to characterise the micro-structure of complex materials used in energy technologies, with a strong focus on fibre composites. These quantification tools are based on extracting geometrical parameters defining structures from 2D...... with high resolution both in space and time to observe fast micro-structural changes. This thesis demonstrates that statistical image analysis combined with X-ray CT opens up numerous possibilities for understanding the behaviour of fibre composites under real life conditions. Besides enabling...

  2. The Influence of Fibre Content on the Performance of Steel Fibre ...

    African Journals Online (AJOL)

    The Influence of Fibre Content on the Performance of Steel Fibre Refractory Concrete. ... Little information is available on the effect of fibre content on refractory performance and in particular resistance to thermal shock. This study has examined the influence of fibre content of stainless steel melt extract fibres on the ...

  3. Measuring anisotropic muscle stiffness properties using elastography.

    Science.gov (United States)

    Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E

    2013-11-01

    Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX......)-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers....... Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon...

  5. Oxidation of lignin in hemp fibres by laccase: effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites

    DEFF Research Database (Denmark)

    Liu, Ming; Baum, Andreas; Odermatt, Jürgen

    2017-01-01

    Laccase activity catalyzes oxidation and polymerization of phenols. The effect of laccase treatment on the mechanical properties of hemp fibres and hemp fibre/epoxy composites was examined. Laccase treatment on top of 0.5% EDTA + 0.2% endo-polygalacturonase (EPG) treatments increased the mechanical...... properties of hemp fibres and fibre/epoxy composites. Comparing all fibre treatments, composites with 0.5% EDTA + 0.2% EPG + 0.5% laccase treated fibres had highest stiffness of 42 GPa and highest ultimate tensile strength (UTS) of 326 MPa at a fibre volume content of 50%. The thermal resistance of hemp...... hemp fibres and their composites were due to laccase catalyzed polymerization of lignin moieties in hemp fibres....

  6. Fibre Length Reduction in Natural Fibre-Reinforced Polymers during Compounding and Injection Moulding—Experiments Versus Numerical Prediction of Fibre Breakage

    Directory of Open Access Journals (Sweden)

    Katharina Albrecht

    2018-03-01

    Full Text Available To establish injection-moulded, natural fibre-reinforced polymers in the automotive industry, numerical simulations are important. To include the breakage behaviour of natural fibres in simulations, a profound understanding is necessary. In this study, the length and width reduction of flax and sisal fibre bundles were analysed experimentally during compounding and injection moulding. Further an optical analysis of the fibre breakage behaviour was performed via scanning electron microscopy and during fibre tensile testing with an ultra-high-speed camera. The fibre breakage of flax and sisal during injection moulding was modelled using a micromechanical model. The experimental and simulative results consistently show that during injection moulding the fibre length is not reduced further; the fibre length was already significantly reduced during compounding. For the mechanical properties of a fibre-reinforced composite it is important to overachieve the critical fibre length in the injection moulded component. The micromechanical model could be used to predict the necessary fibre length in the granules.

  7. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Science.gov (United States)

    Hopmann, Ch.; Weber, M.; van Haag, J.; Schöngart, M.

    2015-05-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material's properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  8. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M.

    2015-01-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA

  9. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M. [Institute of Plastics Processing (IKV) at RWTH Aachen University, Pontstr. 49, 52062 Aachen (Germany)

    2015-05-22

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  10. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle

    DEFF Research Database (Denmark)

    Christiansen, Danny; Murphy, Robyn M; Bangsbo, Jens

    2018-01-01

    ). A muscle sample was collected before (Pre) and after exercise (+0h, +3h) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I...

  11. Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.

    Science.gov (United States)

    Christensen, Kasper B; Günther, Michael; Schmitt, Syn; Siebert, Tobias

    2017-10-16

    In terrestrial locomotion, muscles undergo damped oscillations in response to limb impacts with the ground. Muscles are also actuators that generate mechanical power to allow locomotion. The corresponding elementary contractile process is the work stroke of an actin-myosin cross-bridge, which may be forcibly detached by superposed oscillations. By experimentally emulating rat leg impacts, we found that full activity and non-fatigue must meet to possibly prevent forcible cross-bridge detachment. Because submaximal muscle force represents the ordinary locomotor condition, our results show that forcible, eccentric cross-bridge detachment is a common, physiological process even during isometric muscle contractions. We also calculated the stiffnesses of the whole muscle-tendon complex and the fibre material separately, as well as Young's modulus of the latter: 1.8 MPa and 0.75 MPa for fresh, fully active and passive fibres, respectively. Our inferred Young's modulus of the tendon-aponeurosis complex suggests that stiffness in series to the fibre material is determined by the elastic properties of the aponeurosis region, rather than the tendon material. Knowing these stiffnesses and the muscle mass, the complex' eigenfrequency for responses to impacts can be quantified, as well as the size-dependency of this time scale of muscular wobbling mass dynamics.

  12. Skeletal muscle and hormonal adaptation to physical training in the rat

    DEFF Research Database (Denmark)

    Henriksson, J; Svedenhag, J; Richter, Erik

    1985-01-01

    The main purpose of the present study was to test the hypothesis that adrenergic stimulation of muscle fibres during exercise is a major stimulus for the training-induced enhancement of skeletal muscle respiratory capacity. Therefore, Sprague-Dawley rats either underwent bilateral surgical ablati...

  13. Fast-twitch glycolytic skeletal muscle is predisposed to age-induced impairments in mitochondrial function

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Díaz, Víctor; Soldini, Lavinia

    2013-01-01

    The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high-resolution respirom......The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high......-resolution respirometry and mitochondrial protein expression in soleus, quadricep, and lateral gastrocnemius skeletal muscles, which represent type 1 slow-twitch oxidative muscle (soleus) and type 2 fast-twitch glycolytic muscle (quadricep and gastrocnemius), respectively, in young (10-12 weeks) and mature (74-76 weeks......) mice. Electron transport through mitochondrial complexes I and III increases with age in quadricep and gastrocnemius, which is not observed in soleus. Mitochondrial coupling efficiency during respiration through complex I also deteriorates with age in gastrocnemius and shows a tendency (p = .085...

  14. Components of action potential repolarization in cerebellar parallel fibres.

    Science.gov (United States)

    Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten

    2014-11-15

    Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.

  15. Myosin heavy chain composition of the human sternocleidomastoid muscle

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Eržen, I.

    2012-01-01

    Roč. 194, č. 5 (2012), s. 467-472 ISSN 0940-9602 R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : immunohistochemistry * MyHC isoforms * muscle fibre types * sternocleidomastoid muscle Subject RIV: FH - Neurology Impact factor: 1.960, year: 2012

  16. Fast skeletal muscle transcriptome of the Gilthead sea bream (Sparus aurata determined by next generation sequencing

    Directory of Open Access Journals (Sweden)

    Garcia de la serrana Daniel

    2012-05-01

    Full Text Available Abstract Background The gilthead sea bream (Sparus aurata L. occurs around the Mediterranean and along Eastern Atlantic coasts from Great Britain to Senegal. It is tolerant of a wide range of temperatures and salinities and is often found in brackish coastal lagoons and estuarine areas, particularly early in its life cycle. Gilthead sea bream are extensively cultivated in the Mediterranean with an annual production of 125,000 metric tonnes. Here we present a de novo assembly of the fast skeletal muscle transcriptome of gilthead sea bream using 454 reads and identify gene paralogues, splice variants and microsatellite repeats. An annotated transcriptome of the skeletal muscle will facilitate understanding of the genetic and molecular basis of traits linked to production in this economically important species. Results Around 2.7 million reads of mRNA sequence data were generated from the fast myotomal of adult fish (~2 kg and juvenile fish (~0.09 kg that had been either fed to satiation, fasted for 3-5d or transferred to low (11°C or high (33°C temperatures for 3-5d. Newbler v2.5 assembly resulted in 43,461 isotigs >100 bp. The number of sequences annotated by searching protein and gene ontology databases was 10,465. The average coverage of the annotated isotigs was x40 containing 5655 unique gene IDs and 785 full-length cDNAs coding for proteins containing 58–1536 amino acids. The v2.5 assembly was found to be of good quality based on validation using 200 full-length cDNAs from GenBank. Annotated isotigs from the reference transcriptome were attributable to 344 KEGG pathway maps. We identified 26 gene paralogues (20 of them teleost-specific and 43 splice variants, of which 12 had functional domains missing that were likely to affect their biological function. Many key transcription factors, signaling molecules and structural proteins necessary for myogenesis and muscle growth have been identified. Physiological status affected the

  17. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle.

    Science.gov (United States)

    Zoll, J; Ventura-Clapier, R; Serrurier, B; Bigard, A X

    2001-01-01

    Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.

  18. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    Directory of Open Access Journals (Sweden)

    Francesca Magherini

    Full Text Available Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  19. Shrinkage Behaviour of Fibre Reinforced Concrete with Recycled Tyre Polymer Fibres

    Directory of Open Access Journals (Sweden)

    Marijana Serdar

    2015-01-01

    Full Text Available Different types of fibres are often used in concrete to prevent microcracking due to shrinkage, and polypropylene fibres are among the most often used ones. If not prevented, microcracks can lead to the development of larger cracks as drying shrinkage occurs, enabling penetration of aggressive substances from the environment and reducing durability of concrete structures. The hypothesis of the present research is that polypropylene fibres, used in concrete for controlling formation of microcracks due to shrinkage, can be replaced with recycled polymer fibres obtained from end-of-life tyres. To test the hypothesis, concrete mixtures containing polypropylene fibres and recycled tyre polymer fibres were prepared and tested. Experimental programme focused on autogenous, free, and restrained shrinkage. It was shown that PP fibres can be substituted with higher amount of recycled tyre polymer fibres obtaining concrete with similar shrinkage behaviour. The results indicate promising possibilities of using recycled tyre polymer fibres in concrete products. At the same time, such applications would contribute to solving the problem of waste tyre disposal.

  20. Stress concentrations in an impregnated fibre bundle with random fibre packing

    OpenAIRE

    Swolfs, Y.; Gorbatikh, L.; Romanov, V.; Orlova, S.; Lomov, S. V.; Verpoest, I.

    2013-01-01

    The stress redistribution after a single fibre break is a fundamental issue in longitudinal strength models for unidirectional composites. Current models assume hexagonal or square fibre packings. In the present work, random fibre packings were modelled using 3D finite element analysis and compared to ordered fibre packings. Significant differences in the stress redistribution are found. Compared to square and hexagonal packings, random fibre packings result in smaller stress concentration fa...

  1. Blast Resistance of Slurry Infiltrated Fibre Concrete with Waste Steel Fibres from Tires

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2018-01-01

    Full Text Available The utilization of waste steel fibres (coming from the recycling process of the old tires in production of blast resistant cement based panels was assessed. Waste fibres were incorporated in slurry infiltrated fibre concrete (SIFCON, which is a special type of ultra-highperformance fibre reinforced concrete with high fibre content. The technological feasibility (i.e. suitability of the waste fibres for SIFCON technology was assessed using homogeneity test. Test specimens were prepared with three volume fractions (5; 7.5 and 10 % by vol. of waste unclassified fibres. SIFCON with industrial steel fibres (10% by vol. and ultra-highperformance fibre concrete with industrial fibres were also cast and tested for comparison purposes. Quasi-static mechanical properties were determined. Real blast tests were performed on the slab specimens (500x500x40 mm according to the modified methodology M-T0-VTU0 10/09. Damage of the slab, the change of the ultrasound wave velocity propagation in the slab specimen before and after the blast load in certain measurement points, the weight of fragments and their damage potential were evaluated and compared. Realized tests confirmed the possibility of using the waste fibres for SIFCON technology. The obtained results indicate, that the usage of waste fibres does not significantly reduce the values of SIFCON flexural and compressive strength at quasi-static load - the values were comparable to the specimens with industrially produced fibres. With increasing fibre content, the mechanical parameters are increasing as well. Using of the waste fibres reduces fragmentation of SIFCON at blast load due to the fibre size parameters. Using of low diameter fibres means more fibres in the matrix and thus better homogeneity of the whole composite with less unreinforced areas. Regarding the blast tests, the specimen with waste steel fibres showed the best resistance and outperformed also the specimen with commercial fibres. Using of

  2. The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion.

    Science.gov (United States)

    Raikova, Rositsa; Aladjov, Hristo

    2003-06-01

    A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, the relationship between the developed force, the length and the contraction velocity of a muscle becomes important and rheological muscle models can be incorporated in the optimization tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was proposed. A muscle is considered as a mixture of motor units (MUs) with different peculiarities and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model with five muscles. It is concluded that the rheological models are suitable for calculation of the current maximal muscle forces that can be used as weight factors in the objective functions. The model based on MUs has many advantages for precise investigations of motor control. Such muscle presentation can explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between the MUs activation and the mechanical output is more clear and closer to the reality.

  3. Tracers as invisible evidence - The transfer and persistence of flock fibres during a car exchange.

    Science.gov (United States)

    Slot, Ana; van der Weerd, Jaap; Roos, Martin; Baiker, Martin; Stoel, Reinoud D; Zuidberg, Matthijs C

    2017-06-01

    This study assessed the recovery of flock fibres used as a tracer in a car exchange scenario. Flock fibres were deposited onto a car seat (or model thereof) and their transfer and persistence was investigated after a real or simulated car exchange. The overall aim of this study was to achieve an optimal use of flock fibres as tracers, i.e. to be able to select a fit-for-purpose flock fibre, to be able to predict the amount of flock fibres to be recovered from crime related items, and to be able to use these numbers to exclude accidental uptake. The effect of a number of variables on the transfer and persistence of flock fibres was studied, including flock fibre length, car upholstery, and trousers material. Laboratory based experiments were undertaken first, followed by realistic field based experiments. The flock fibres were captured in a non-destructive manner through fluorescence photography. A Matlab algorithm enabled fast automated counting of flock fibres on the images. Results indicate that an initial rapid loss of flock fibres from garments may be expected as a result of moderate movement. Although the amount of flock fibres to be recovered is affected by the flock fibre length, the type of car upholstery, and the type of trousers materials (if frictional force is taken into consideration), large numbers of flock fibres have been recovered from all target materials throughout the transfer route. These numbers are higher than the amount of flock fibres recovered due to accidental uptake. In conclusion, flock fibres can serve as invisible evidence to reconstruct a series of events. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials.

    Science.gov (United States)

    Haug, M; Reischl, B; Prölß, G; Pollmann, C; Buckert, T; Keidel, C; Schürmann, S; Hock, M; Rupitsch, S; Heckel, M; Pöschel, T; Scheibel, T; Haynl, C; Kiriaev, L; Head, S I; Friedrich, O

    2018-04-15

    We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca 2+ ion responses (force resolution 1µN, 0-10mN for the given sensor; [Ca 2+ ] range ~ 100nM-25µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca 2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1µm encoder resolution; stepper motors, 4µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers. Copyright © 2017 Elsevier B

  5. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  6. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans.

    Science.gov (United States)

    Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Vilmen, Christophe; Micallef, Jean-Paul; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David

    2009-06-01

    The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.

  7. Factors in Maximal Power Production and in Exercise Endurance Relative to Maximal Power

    Science.gov (United States)

    1988-10-13

    Mechanical efficiency of fast -and slow - twitch muscle fibers in mnan during cycling. J. ADLi Physiol.:Reespirat. Environ. Exercise Physiol. 47: 263- 267...R.S. Hikida, and F.C. Hagerman. Myofibrillar ATPase activity in hu-man muscle fast - twitch subtypes. Histochem. 78: 405-408, 1983. 31. Suzuki, Y...capacity and muscle fibre composition in mnan. J. Physiol (London) 354: 73P, 1984. 21. Margaria, R., P. Aghemo, and E. Rovelli. Measurement of muscular

  8. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice.

    Science.gov (United States)

    Hennebry, Alexander; Oldham, Jenny; Shavlakadze, Tea; Grounds, Miranda D; Sheard, Philip; Fiorotto, Marta L; Falconer, Shelley; Smith, Heather K; Berry, Carole; Jeanplong, Ferenc; Bracegirdle, Jeremy; Matthews, Kenneth; Nicholas, Gina; Senna-Salerno, Mônica; Watson, Trevor; McMahon, Christopher D

    2017-08-01

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null ( Mstn -/- ) mice with mice overexpressing Igf1 in skeletal muscle ( Igf1 + ) to generate six genotypes of male mice; wild type ( Mstn +/+ ), Mstn +/- , Mstn -/- , Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris ) by 19% over Mstn +/+ , 33% over Mstn +/- and 49% over Mstn -/- ( P  Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1 + independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P  myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6. © 2017 Society for Endocrinology.

  9. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    Science.gov (United States)

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  10. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  11. Abnormal muscle membrane function in fibromyalgia patients and its relationship to the number of tender points

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Zwarts, M.J.; ten Klooster, Peter M.; Rasker, Johannes J.

    2012-01-01

    Objective. Fibromyalgia (FM) is a disorder characterised by chronic widespreadpain in soft tissues, especially in muscles. Previous research has demonstrateda higher muscle fibre conduction velocity (CV) in painful muscles of FM patients. The primary goal of this study was to investigate whether

  12. EMG and oxygen uptake responses during slow and fast ramp exercise in humans.

    Science.gov (United States)

    Scheuermann, Barry W; Tripse McConnell, Joyce H; Barstow, Thomas J

    2002-01-01

    This study examined the relationship between muscle recruitment patterns using surface electromyography (EMG) and the excess O(2) uptake (Ex.V(O(2))) that accompanies slow (SR, 8 W min(-1)) but not fast (FR, 64 W min(-1)) ramp increases in work rate (WR) during exercise on a cycle ergometer. Nine subjects (2 females) participated in this study (25 +/- 2 years, +/- S.E.M.). EMG was obtained from the vastus lateralis and medialis and analysed in the time (root mean square, RMS) and frequency (median power frequency, MDPF) domain. Results for each muscle were averaged to provide an overall response and expressed relative to a maximal voluntary contraction (%MVC). Delta.V(O(2))/DeltaWR was calculated for exercise below (S(1)) and above (S(2)) the lactate threshold (LT) using linear regression. The increase in RMS relative to the increase in WR for exercise below the LT (DeltaRMS/DeltaWR-S(1)) was determined using linear regression. Due to non-linearities in RMS above the LT, DeltaRMS/DeltaWR-S(2) is reported as the difference in RMS (DeltaRMS) and the difference in WR (DeltaWR) at end-exercise and the LT. SR was associated with a higher (P exercise is not associated with the recruitment of additional motor units since Ex.V(O(2)) was observed during SR only. Compared to the progressive decrease in MDPF observed during FR, the MDPF remained relatively constant during SR suggesting that either (i) there was no appreciable recruitment of the less efficient type II muscle fibres, at least in addition to those recruited initially at the onset of exercise, or (ii) the decrease in MDPF associated with fatigue was offset by the addition of a higher frequency of type II fibres recruited to replace the fatigued motor units.

  13. Manufacturing of azimuthally symmetric long-period fibre gratings using a CO2 laser

    OpenAIRE

    2012-01-01

    M.Ing. The development of fibre optic technology as we know it today, has taken a giant leap forward since the introduction of Internet technology and other telecommunication devices. More recently, the need exists to retrieve and send huge amounts of data fast and efficiently by using fibre optic cable in computer networks, without the need of expensive equipment. Due to the large amounts of data (like video and audio) that has to be sent and received across a computer network at large di...

  14. Fibre illumination system

    DEFF Research Database (Denmark)

    2012-01-01

    Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end......-directional arrangement. The fibre illumination system comprises a fibre illumination module of the above-mentioned type. By the invention, daylight may be exploited for the illumination of remote interior spaces of buildings in order to save energy, and improve the well-being of users in both housing and working...

  15. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    Science.gov (United States)

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (Pglycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (PGlycogen synthase activity was 12% higher (Pglycogen branching enzyme activity was 70% lower (Pglycogen breakdown, glycogen phosphorylase, had 62% lower activity (Pglycogen debranching enzyme expression was 50% higher (Pglycogen (Pglycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; Pglycogen but reduced amounts of liver glycogen. PMID:24626262

  16. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance

    DEFF Research Database (Denmark)

    de Paoli, Frank Vincenzo; Ørtenblad, Niels; Pedersen, Thomas Holm

    2010-01-01

    Studies on rats have shown that lactic acid can improve excitability and function of depolarized muscles. The effect has been related to the ensuing reduction in intracellular pH causing inhibition of muscle fibre Cl- channels. Since, however, several carboxylic acids with structural similarities...... to lactate can inhibit muscle Cl- channels it is possible that lactate per se can increase muscle excitability by exerting a direct effect on these channels. We therefore examined effects of lactate on the function of intact muscles and skinned fibres together with effects on pH and Cl- conductance....... In muscles where extracellular compound action potentials (M-waves) and tetanic force response to excitation were reduced by 82±4 and 83±2 %, respectively, by depolarization with 11 mM extracellular K+, both M-waves and force exhibited an up to 4-fold increase when 20 mM lactate was added. This effect...

  17. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  18. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  19. Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Chiu, Yen-Hui; Hornsey, Mark A; Klinge, Lars

    2009-01-01

    in a mouse model of dysferlinopathy, with delayed removal of necrotic fibres, an extended inflammatory phase and delayed functional recovery. Satellite cell activation and myoblast fusion appear normal, but there is a reduction in early neutrophil recruitment in regenerating and also needle wounded muscle...... kinase levels and a prominent inflammatory infiltrate. We have observed that dysferlinopathy patient biopsies show an excess of immature fibres and therefore investigated the role of dysferlin in muscle regeneration. Using notexin-induced muscle damage, we have shown that regeneration is attenuated...... with the sarcolemma dysferlin is also involved in the release of chemotactic agents. Reduced neutrophil recruitment results in incomplete cycles of regeneration in dysferlinopathy which combines with the membrane repair deficit to ultimately trigger dystrophic pathology. This study reveals a novel pathomechanism...

  20. Surgical desensitisation of the mechanoreceptors in Müller's muscle relieves chronic tension-type headache caused by tonic reflexive contraction of the occipitofrontalis muscle in patients with aponeurotic blepharoptosis.

    Science.gov (United States)

    Matsuo, Kiyoshi; Ban, Ryokuya

    2013-02-01

    Proprioceptively innervated intramuscular connective tissues in Müller's muscle function as exterior mechanoreceptors to induce reflex contraction of the levator and occipitofrontalis muscles. In aponeurotic blepharoptosis, since the levator aponeurosis is disinserted from the tarsus, stretching of the mechanoreceptors in Müller's muscle is increased even on primary gaze to induce phasic and tonic reflexive contraction of the occipitofrontalis muscle. It was hypothesised that in certain patients with aponeurotic blepharoptosis, the presence of tonic reflexive contraction of the occipitofrontalis muscle due to the sensitised mechanoreceptors in Müller's muscle, can cause chronic tension-type headache (CTTH) associated with occipitofrontalis tenderness. To verify this hypothesis, this study evaluated (1) what differentiates patients with CTTH from patients without CTTH, (2) how pharmacological contraction of Müller's smooth muscle fibres as a method for desensitising the mechanoreceptors in Müller's muscle affects electromyographic activity of the frontalis muscle, and (3) how surgical aponeurotic reinsertion to desensitise the mechanoreceptors in Müller's muscle electromyographically or subjectively affects activities of the occipitofrontalis muscle or CTTH. It was found that patients had sustained CTTH when light eyelid closure did not markedly reduce eyebrow elevation. However, pharmacological contraction of Müller's smooth muscle fibres or surgery to desensitise the mechanoreceptor electromyographically reduced the tonic contraction of the occipitofrontalis muscle on primary gaze and subjectively relieved aponeurotic blepharoptosis-associated CTTH. Over-stretching of the mechanoreceptors in Müller's muscle on primary gaze may induce CTTH due to tonic reflexive contraction of the occipitofrontalis muscle. Therefore, surgical desensitisation of the mechanoreceptors in Müller's muscle appears to relieve CTTH.

  1. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  2. Effect of modified fasting therapy on body weight, fat and muscle mass, and blood chemistry in patients with obesity.

    Science.gov (United States)

    Kim, Koh-Woon; Song, Mi-Yeon; Chung, Seok-Hee; Chung, Won-Seok

    2016-02-01

    The aim of this study was to investigate the effects and safety of modified fasting therapy using fermented medicinal herbs and exercise on body weight, fat and muscle mass, and blood chemistry in obese subjects. Twenty-six patients participated in a 14-day fast, during which they ingested a supplement made from fermented medicinal herbs and carbohydrates (intake: 400-600 kcal/d). The schedule included 7 prefasting relief days and 14 days of stepwise reintroduction of food. The patients also took part in an exercise program that incorporated Qigong, weight training, and walking exercises. The efficacy of treatments was observed by assessing body fat mass and muscle mass, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides in each study period. Specific symptoms or side effects were reported. Body weight and body fat mass both decreased significantly by (5.16 ± 0.95) and (3.89 ± 0.79) kg (both P fasting therapy using fermented medicinal herbs and exercise could be effective and safe on obese patients.

  3. Expression of Na+/HCO3- co-transporter proteins (NBCs) in rat and human skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Kristensen, Michael; Juel, Carsten

    2004-01-01

    AIM: Sodium/bicarbonate co-transport (NBC) has been suggested to have a role in muscle pH regulation. We investigated the presence of NBC proteins in rat and human muscle samples and the fibre type distribution of the identified NBCs. METHODS AND RESULTS: Western blotting of muscle homogenates...... the T-tubules. The two NBCs localized in muscle have distinct fibre type distributions. CONCLUSIONS: Skeletal muscle possesses two variants of the sodium/bicarbonate co-transporter (NBC) isoforms, which have been called NBCe1 and NBCe2....... and sarcolemmal membranes (sarcolemmal giant vesicles) were used to screen for the presence of NBCs. Immunohistochemistry was used for the subcellular localization. The functional test revealed that approximately half of the pH recovery in sarcolemmal vesicles produced from rat muscle is mediated by bicarbonate...

  4. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  5. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    International Nuclear Information System (INIS)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-01-01

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  6. Influence of genotype on contractile protein differentiation in different bovine muscles during foetal life

    OpenAIRE

    Gagnière , Hélène; Ménissier , François; Geay , Yves; Picard , Brigitte

    2000-01-01

    International audience; The purpose of this work was to compare muscle fibre differentiation in two genetic types: "normal charolais" and double-muscled (DM) "INRA 95" cattles displaying muscle hypertrophy. Six muscles with different contractile and metabolic characteristics in adult animal: Masseter, Diaphragma (Di), Biceps femoris (BF), Longissimus thoracis, Semitendinosus and Cutaneus trunci (CT) were excised from 60 to 260-day-old fœtuses of both genotypes. These muscles present different...

  7. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  8. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  9. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

      Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle...... function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from...

  10. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    Science.gov (United States)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  11. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available Abaca fibre reinforced PP composites were fabricated with different fibre loadings (20, 30, 40, 50wt% and in some cases 35 and 45 wt%. Flax and jute fibre reinforced PP composites were also fabricated with 30 wt% fibre loading. The mechanical properties, odour emission and structure properties were investigated for those composites. Tensile, flexural and Charpy impact strengths were found to increase for fibre loadings up to 40 wt% and then decreased. Falling weight impact tests were also carried out and the same tendency was observed. Owing to the addition of coupling agent (maleated polypropylene -MAH-PP, the tensile, flexural and falling weight impact properties were found to increase in between 30 to 80% for different fibre loadings. When comparing jute and flax fibre composites with abaca fibre composites, jute fibre composites provided best tensile properties but abaca fibre polypropylene composites were shown to provide best notch Charpy and falling weight impact properties. Odours released by flax fibre composites were smaller than jute and abaca fibre composites.

  12. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  13. Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator

    Directory of Open Access Journals (Sweden)

    Alexander Hošovský

    2012-07-01

    Full Text Available Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.

  14. Muscle plasticity related to changes in tubulin and αB-crystallin levels induced by eccentric contraction in rat skeletal muscles.

    Science.gov (United States)

    Jee, H; Ochi, E; Sakurai, T; Lim, J-Y; Nakazato, K; Hatta, H

    2016-09-01

    We used the model of eccentric contraction of the hindlimb muscle by Ochi et al. to examine the role of eccentric contraction in muscle plasticity. This model aims to focus on stimulated skeletal muscle responses by measuring tissue weights and tracing the quantities of αB-crystallin and tubulin. The medial gastrocnemius muscle (GCM) responded to electrically induced eccentric contraction (EIEC) with significant increases in tissue weight (p muscle weight after EIEC. EIEC in the GCM caused contractile-induced sustenance of the traced proteins, but the soleus muscle exhibited a remarkable decrease in α-tubulin and a 19% decrease in αB-crystallin. EIEC caused fast-to-slow myosin heavy chain (MHC) isoform type-oriented shift within both the GCM and soleus muscle. These results have shown that different MHC isoform type-expressing slow and fast muscles commonly undergo fast-to-slow type MHC isoform transformation. This suggests that different levels of EIEC affected each of the slow and fast muscles to induce different quantitative changes in the expression of αB-crystallin and α-tubulin.

  15. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.

    Science.gov (United States)

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2018-01-30

    Skeletal myosin light chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wild-type, WT) and without (skMLCK ablated, skMLCK -/- ) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during, before and after isovelocity contractions in WT but not in skMLCK -/- muscles (i.e. 0.65 and 0.05 mol phosphate mol -1 RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes, the increase was significantly greater in WT than in skMLCK -/- muscles (1.51±0.03 versus 1.10±0.05, respectively; all data P economy calculated for WT muscles was similar to that calculated for skMLCK -/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J kg -1  μmol -1 P, respectively ( P economy. © 2018. Published by The Company of Biologists Ltd.

  16. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model

    Directory of Open Access Journals (Sweden)

    Liufeng Zheng

    2016-12-01

    Full Text Available Supplementation of branched-chain amino acids (BCAA has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses–fed gains in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1 and 28-day-old (Experiment 2 piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle

  17. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse.

    Science.gov (United States)

    Rooney, Mary F; Porter, Richard K; Katz, Lisa M; Hill, Emmeline W

    2017-01-01

    Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.

  18. Radiation effects on radiation-hardened KU and KS-4V optical fibres

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Tugarinov, S.N.; Kaschuck, Y.A.; Krasilnikov, A.V.; Bender, S.E.

    1999-01-01

    The aim of this work was to test the un-pretreated and the hardened (H 2 -loaded and pre-irradiated) KS-4V and KU optical fibres in reactor environment by in-situ measurements of both the radiation-induced loss and the luminescence in the visible spectral region. Both the radio-luminescent and the transmission spectra were in-situ detected during irradiation by charge-coupled-device (CCD) linear detector in the visible spectral region of 400 to 700 nm. The radiation induced loss spectra at the fast neutron fluence of 2*10 6 n/cm 2 shows the hardened, H 2 -loading and pre-irradiating effects in the both KU and KS-4V fibres. KU un-pretreated fibre shows a big radiation absorption band of non-bridging oxygen centered at the wavelength of 630 nm. It appears that the KS-4V hardened fibre has a specific point in the loss spectrum in the vicinity of 460 nm. Other measurements were performed, particularly after reactor shutdown and at 3 different neutron fluences with constant neutron flux after restarting

  19. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver

    2016-01-01

    Key points Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation–contraction coupling (ECC) of mammalian skeletal muscle remains unknown.We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+‐sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue.We demonstrate that CB1Rs are not connected to the inositol 1,4,5‐trisphosphate pathway either in myotubes or in adult muscle fibres.By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein‐mediated way in adult skeletal muscle fibres but not in myotubes.These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Abstract Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R‐mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+‐sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5‐trisphosphate (IP3)‐mediated Ca2+ transients, nor did they alter excitation–contraction coupling. By contrast, in isolated muscle fibres of wild‐type mice, although CB1R agonists did not evoke IP3

  20. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle.

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver; Csernoch, László

    2016-12-15

    Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca 2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca 2+ release and sarcoplasmic reticulum Ca 2+ ATPase during ECC in a G i/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca 2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP 3 )-mediated Ca 2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP 3 -mediated Ca 2

  1. Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery.

    Science.gov (United States)

    Hernández, B; Peña, E; Pascual, G; Rodríguez, M; Calvo, B; Doblaré, M; Bellón, J M

    2011-04-01

    The aims of this study are to experimentally characterize the passive elastic behaviour of the rabbit abdominal wall and to develop a mechanical constitutive law which accurately reproduces the obtained experimental results. For this purpose, tissue samples from New Zealand White rabbits 2150±50 (g) were mechanically tested in vitro. Mechanical tests, consisting of uniaxial loading on tissue samples oriented along the craneo-caudal and the perpendicular directions, respectively, revealed the anisotropic non-linear mechanical behaviour of the abdominal tissues. Experiments were performed considering the composite muscle (including external oblique-EO, internal oblique-IO and transverse abdominis-TA muscle layers), as well as separated muscle layers (i.e., external oblique, and the bilayer formed by internal oblique and transverse abdominis). Both the EO muscle layer and the IO-TA bilayer demonstrated a stiffer behaviour along the transversal direction to muscle fibres than along the longitudinal one. The fibre arrangement was measured by means of a histological study which confirmed that collagen fibres are mainly responsible for the passive mechanical strength and stiffness. Furthermore, the degree of anisotropy of the abdominal composite muscle turned out to be less pronounced than those obtained while studying the EO and IO-TA separately. Moreover, a phenomenological constitutive law was used to capture the measured experimental curves. A Levenberg-Marquardt optimization algorithm was used to fit the model constants to reproduce the experimental curves. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Microstructure, texture and colour development during crust formation on whole muscle chicken fillets.

    Science.gov (United States)

    Barbut, S

    2013-01-01

    1. The development of crust during a 22-min period was evaluated in an oven, and in previously cooked-in-bag products (no crust) placed in an oven for 10 min. The oven-roasted products started to develop a thin (2-4 μm) crust layer after 4 min. At that point, the colour of the fillets turned white but no browning was observed. As roasting time increased, crust thickness and shear force increased, the product turned brown and eventually black at certain spots. 2. Light microscopy revealed the shrinking of muscle fibres close to the surface, as they also lost water. At a certain point, tears between the different layers started to appear. The inner muscle fibres also progressively shrank and the spaces between them increased. Microscopy of cook-in-bag products revealed no crust formation during heating. Upon moving to the oven, crust started to form but was much faster compared with the other products. 3. Cook-in-the-bag samples showed a higher rate of cook loss during the first 12 min (to internal 70°C) compared with oven heating. This could have been due to the fast heating rate in water and/or no crust formation. 4. White colour was fully formed on water-cooked fillets within 2 min (L* = 83), while it was gradually forming on oven-roasted samples (max L* of 79 after 12 min). 5. Shear force measurements showed an increase in both treatments up to 18 min, with a decrease thereafter (when dry crust started to crack).

  3. Feasibility and repeatability of localized (31) P-MRS four-angle saturation transfer (FAST) of the human gastrocnemius muscle using a surface coil at 7 T.

    Science.gov (United States)

    Tušek Jelenc, Marjeta; Chmelík, Marek; Bogner, Wolfgang; Krššák, Martin; Trattnig, Siegfried; Valkovič, Ladislav

    2016-01-01

    Phosphorus ((31) P) MRS, combined with saturation transfer (ST), provides non-invasive insight into muscle energy metabolism. However, even at 7 T, the standard ST method with T1 (app) measured by inversion recovery takes about 10 min, making it impractical for dynamic examinations. An alternative method, i.e. four-angle saturation transfer (FAST), can shorten the examination time. The aim of this study was to test the feasibility, repeatability, and possible time resolution of the localized FAST technique measurement on an ultra-high-field MR system, to accelerate the measurement of both Pi -to-ATP and PCr-to-ATP reaction rates in the human gastrocnemius muscle and to test the feasibility of using the FAST method for dynamic measurements. We measured the exchange rates and metabolic fluxes in the gastrocnemius muscle of eight healthy subjects at 7 T with the depth-resolved surface coil MRS (DRESS)-localized FAST method. For comparison, a standard ST localized method was also used. The measurement time for the localized FAST experiment was 3.5 min compared with the 10 min for the standard localized ST experiment. In addition, in five healthy volunteers, Pi -to-ATP and PCr-to-ATP metabolic fluxes were measured in the gastrocnemius muscle at rest and during plantar flexion by the DRESS-localized FAST method. The repeatability of PCr-to-ATP and Pi -to-ATP exchange rate constants, determined by the slab-selective localized FAST method at 7 T, is high, as the coefficients of variation remained below 20%, and the results of the exchange rates measured with the FAST method are comparable to those measured with standard ST. During physical activity, the PCr-to-ATP metabolic flux decreased (from FCK  = 8.21 ± 1.15 mM s(-1) to FCK  = 3.86 ± 1.38 mM s(-1) ) and the Pi -to-ATP flux increased (from FATP  = 0.43 ± 0.14 mM s(-1) to FATP  = 0.74 ± 0.13 mM s(-1) ). In conclusion, we could demonstrate that measurements

  4. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  5. The influence of capillarization on satellite cell pool expansion and activation following exercise-induced muscle damage in healthy young men.

    Science.gov (United States)

    Nederveen, Joshua P; Joanisse, Sophie; Snijders, Tim; Thomas, Aaron C Q; Kumbhare, Dinesh; Parise, Gianni

    2018-03-15

    Skeletal muscle stem cells (satellite cells) play a crucial role in repair and remodelling of muscle in response to exercise. Satellite cells are in close spatial proximity to muscle capillaries and therefore may be influenced by them. In this study, we describe the activation and expansion of the satellite cell pool in response to eccentric contraction-induced muscle damage in individuals with significantly different levels of muscle capillarization. Individuals with greater capillarization and capacity for muscle perfusion demonstrated enhanced activation and/or expansion of the satellite cell pool allowing for an accelerated recovery of muscle function. These results provide insight into the critical relationship between muscle capillarization and satellite cells during skeletal muscle repair. Factors that determine the skeletal muscle satellite cell (SC) response remain incompletely understood. It is known, however, that SC activation status is closely related to the anatomical relationship between SCs and muscle capillaries. We investigated the impact of muscle fibre capillarization on the expansion and activation status of SCs following a muscle-damaging exercise protocol in healthy young men. Twenty-nine young men (21 ± 0.5 years) performed 300 unilateral eccentric contractions (180 deg s -1 ) of the knee extensors. Percutaneous muscle biopsies from the vastus lateralis and blood samples from the antecubital vein were taken prior to (Pre) exercise and at 6, 24, 72 and 96 h of post-exercise recovery. A comparison was made between subjects who had a relative low mixed muscle capillary-to-fibre perimeter exchange index (CFPE; Low group) and high mixed muscle CFPE index (High group) at baseline. Type I and type II muscle fibre size, myonuclear content, capillarization, and SC response were determined via immunohistochemistry. Overall, there was a significant correlation (r = 0.39; P < 0.05) between the expansion of SC content (change in total Pax7

  6. Effects of Endurance Training on A12 Acetyl Cholinesterase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Ali Gorzi

    2013-10-01

    Full Text Available Background: Endurance training improves the activity of G4 type acetylcholine esterase (AchE in muscle fibres. The purpose of this study was to investigate the effects of 8 weeks of endurance training (ET on activity of A12 type of AchE in Flexor Hallucis Longus (FHL and Soleus (SOL muscles of rats. Materials and Methods: 16 male wistar rats (age: 10 weeks and weight: 172.17±10.080 gr, were randomly divided in 2 groups (control; N=8 and ET; N=8. Training group carried out 8 weeks (5 session/week of endurance training on animal treadmill with speed of 10 m/min for 30 min at the first week which was gradually increased to 30 m/min for 60 min (70-80% of VO2max at the last week. Forty eight hours after last session of training, FHL and Sol muscles of animals were moved out under sterilized situation by cutting on posterio-lateral side of hind limb. For separating AchE subunits, homogenization and electrophoresis (0.06 non-denaturaing polyacrilamide methods were used. AchE activity was measured by Elisa kit.Results: The activity of this protein significantly (p=0.017 increased in SOL muscle of ET group by 119%, but did not changed in FHL. In both groups (ET and Con, FHL muscle had significantly (ET: p=0.028 and Con p=0.01 higher basic levels of AchE activity compared to SOL muscle. This significant increase in AchE of SOL might be indicative of responsiveness of AchE of this muscle following endurance training for improving acetylcholine (Ach cycle in neuromuscular junction.Conclusion: Endurance training might increase the A12 type AchE activity to improve the Ach cycle as part of the adaptation of neuromuscular junction to increased level of physical activity.

  7. Creep properties of discontinuous fibre composites with partly creeping fibres

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Lilholt, H.

    1977-05-01

    In a previous report (RISO-M-1810) the creep properties of discontinuous fibre composites with non-creeping fibres were analyzed. In the present report this analysis is extended to include the case of discontinuous composites with partly creeping fibres. It is shown that the creep properties of the composite at a given strain rate, epsilonsub(c), depend on the creep properties of the matrix at a strain rate higher than epsilonsub(c), and on the creep properties of the fibres at epsilonsub(c). The composite creep law is presented in a form which permits a graphical determination of the composite creep curve. This can be constructed on the basis of the matrix and the fibre creep curves by vector operations in a log epsilon vs. log sigma diagram. The matrix contribution to the creep strength can be evaluated by a simple method. (author)

  8. HIIT Augments Muscle Carnosine in the Absence of Dietary Beta-Alanine Intake.

    Science.gov (United States)

    Salles Painelli, Vitor de; Nemezio, Kleiner Márcio; Jéssica, Ana; Franchi, Mariana; Andrade, Isabel; Riani, Luiz Augusto; Saunders, Bryan; Sale, Craig; Harris, Roger Charles; Gualano, Bruno; Artioli, Guilherme Giannini

    2018-06-21

    Cross-sectional studies suggest that training can increase muscle carnosine (MCarn), although longitudinal studies have failed to confirm this. A lack of control for dietary β-alanine intake or muscle fibre type shifting may have hampered their conclusions. The purpose of the present study was to investigate the effects of high-intensity interval training (HIIT) on MCarn. Twenty vegetarian men were randomly assigned to a control (CON; n=10) or HIIT (n=10) group. HIIT was carried out on a cycle ergometer for 12 weeks, with progressive volume (6-12 series) and intensity (140-170% lactate threshold [LT]). MCarn was quantified in whole-muscle and individual fibres; expression of selected genes (CARNS, CNDP2, ABAT, TauT and PAT1) and muscle buffering capacity in vitro (βmin vitro) were also determined. Exercise tests were performed to evaluate total work done (TWD), VO2max, ventilatory thresholds (VT) and LT. TWD, VT, LT, VO2max and βmin vitro were improved in the HIIT group (all P0.05). MCarn (in mmol·kg dry muscle) increased in the HIIT (15.8±5.7 to 20.6±5.3; p=0.012) but not the CON group (14.3±5.3 to 15.0±4.9; p=0.99). In type I fibres, MCarn increased in the HIIT (from 14.4±5.9 to 16.8±7.6; p=0.047) but not the CON group (from 14.0±5.5 to 14.9±5.4; p=0.99). In type IIa fibres, MCarn increased in the HIIT group (from 18.8±6.1 to 20.5±6.4; p=0.067) but not the CON group (from 19.7±4.5 to 18.8±4.4; p=0.37). No changes in gene expression were shown. In the absence of any dietary intake of β-alanine, HIIT increased MCarn content. The contribution of increased MCarn to the total increase in βmin vitro appears to be small.

  9. Aligned flax fibre/polylactate composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Thygesen, Anders

    2008-01-01

    The potential of biocomposites in engineering applications is demonstrated by using aligned flax fibre/polylactate composites as a materials model system. The failure stress of flax fibres is measured by tensile testing of single fibres and fibre bundles. For both fibre configurations, it is found...... that failure stress is decreased by increasing the tested fibre volume. Based on two types of flax fibre preforms: carded sliver and unidirectional non-crimp fabric, aligned flax fibre/polylactate composites were fabricated with variable fibre content. The volumetric composition and tensile properties...... of the composite were measured. For composites with a fibre content of 37 % by volume, stiffness is about 20 GPa and failure stress is about 180 MPa. The tensile properties of the composites are analysed with a modified rule of mixtures model, which includes the effect of porosity. The experimental results...

  10. Development of a scintillating-fibre detector for fast topological triggers in high-luminosity particle physics experiments

    CERN Document Server

    Agoritsas, V; Bing, O; Bravar, A; Cardini, A; Dreossi, D; Drevenak, R; Finger, M H; Flaminio, Vincenzo; Di Girolamo, B; Gorin, A; Kulikov, A; Kuroda, K; Manuilov, I V; Okada, K; Önel, Y M; Penzo, Aldo L; Rapin, D; Rappazzo, G F; Riazantsev, A V; Rykalin, V I; Slunecka, M; Takeutchi, F; Trusov, S V; Yoshida, T

    1998-01-01

    In the framework of the RD-17 project at CERN extensive work is in progresson the development of scintillating-fibre detectors using position-sensitive photomultipliers. With o.5 mm diameter fibres as spatial resolution of about 125 µm was obtained with a detection efficiency higher than 95%. The time resolution of the detector is about 600 ps, and the track position is properly digitized in real time in less than 10 ns by a peak sensing circuit. A simulation, based on experimental data, was also performed to compare different types of front-end electronics.

  11. Role of preoperative pain, muscle function, and activity level in discharge readiness after fast-track hip and knee arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Bandholm, Thomas; Lunn, Troels Haxholdt

    2014-01-01

    therefore investigated the role of preoperative pain and functional characteristics in discharge readiness and actual LOS in fast-track THA and TKA. METHODS: Before surgery, hip pain (THA) or knee pain (TKA), lower-extremity muscle power, functional performance, and physical activity were assessed...

  12. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.

    Science.gov (United States)

    Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre

    2017-09-01

    What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal

  13. New generation of optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, E M; Semjonov, S L; Bufetov, I A [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate. (invited paper)

  14. Adipophilin distribution and colocalization with lipid droplets in skeletal muscle.

    LENUS (Irish Health Repository)

    Shaw, Christopher S

    2009-05-01

    Intramyocellular lipids (IMCL) are stored as discrete lipid droplets which are associated with a number of proteins. The lipid droplet-associated protein adipophilin (the human orthologue of adipose differentiation-related protein) is ubiquitously expressed and is one of the predominant lipid droplet-proteins in skeletal muscle. The aim of this study was to investigate the subcellular distribution of adipophilin in human muscle fibres and to measure the colocalization of adipophilin with IMCL. Muscle biopsies from six lean male cyclists (BMI 23.4 +\\/- 0.4, aged 31 +\\/- 2 years, W (max) 346 +\\/- 8) were stained for myosin heavy chain type 1, IMCL, adipophilin and mitochondria using immunofluorescence and viewed with widefield and confocal fluorescence microscopy. The present study shows that like IMCL, the adipophilin content is ~twofold greater in type I skeletal muscle fibres and is situated in the areas between the mitochondrial network. Colocalization analysis demonstrated that 61 +\\/- 2% of IMCL contain adipophilin. Although the majority of adipophilin is contained within IMCL, 36 +\\/- 4% of adipophilin is not associated with IMCL. In conclusion, this study indicates that the IMCL pool is heterogeneous, as the majority but not all IMCL contain adipophilin.

  15. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    Science.gov (United States)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  16. Guava ( L. Powder as an Antioxidant Dietary Fibre in Sheep Meat Nuggets

    Directory of Open Access Journals (Sweden)

    Arun K. Verma

    2013-06-01

    Full Text Available This study was conducted to explore the antioxidant potential and functional value of guava (Psidium guajava L. powder in muscle foods. Guava powder was used as a source of antioxidant dietary fibre in sheep meat nuggets at two different levels i.e., 0.5% (Treatment I and 1.0% (Treatment II and its effect was evaluated against control. Guava powder is rich in dietary fibre (43.21%, phenolics (44.04 mg GAE/g and possesses good radical scavenging activity as well as reducing power. Incorporation of guava powder resulted in significant decrease (p<0.05 in pH of emulsion and nuggets, emulsion stability, cooking yield and moisture content of nuggets while ash and moisture content of emulsion were increased. Total phenolics, total dietary fibre (TDF and ash content significantly increased (p<0.05 in nuggets with added guava powder. Product redness value was significantly improved (p<0.05 due to guava powder. Textural properties did not differ significantly except, springiness and shear force values. Guava powder was found to retard lipid peroxidation of cooked sheep meat nuggets as measured by TBARS number during refrigerated storage. Guava powder did not affect sensory characteristics of the products and can be used as source of antioxidant dietary fibre in meat foods.

  17. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  18. Skeletal muscle growth dynamics and the influence of first-feeding diet in Atlantic cod larvae (Gadus morhua L.

    Directory of Open Access Journals (Sweden)

    Tu A. Vo

    2016-11-01

    Full Text Available Dynamics between hypertrophy (increase in cell size and hyperplasia (increase in cell numbers of white and red muscle in relation to body size [standard length (SL], and the influence of the first-feeding diets on muscle growth were investigated in Atlantic cod larvae (Gadus morhua. Cod larvae were fed copepod nauplii or rotifers of different nutritional qualities from 4 to 29 days post hatching (dph, Artemia nauplii from 20 to 40 dph and a formulated diet from 36 to 60 dph. The short period of feeding with cultivated copepod nauplii had a positive effect on both muscle hyperplasia and hypertrophy after the copepod/rotifer phase (19 dph, and a positive long term effect on muscle hypertrophy (60 dph. The different nutritional qualities of rotifers did not significantly affect muscle growth. We suggest here a model of the dynamics between hyperplasia and hypertrophy of red and white muscle fibre cells in relation to cod SL (4 to 30 mm, where the different red and white muscle growth phases clearly coincided with different metamorphosis stages in cod larvae. These shifts could be included as biomarkers for the different stages of development during metamorphosis. The main dietary muscle effect was that hypertrophic growth of red muscle fibres was stronger in cod larvae that were fed copepods than in larvae that were fed rotifers, both in relation to larval age and size. Red muscle fibres are directly involved in larval locomotory performance, but may also play an important role in the larval myogenesis. This can have a long term effect on growth potential and fish performance.

  19. Influence of fibre design and curvature on crosstalk in multi-core fibre

    International Nuclear Information System (INIS)

    Egorova, O N; Astapovich, M S; Semjonov, S L; Dianov, E M; Melnikov, L A; Salganskii, M Yu; Mishkin, S N; Nishchev, K N

    2016-01-01

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  20. Influence of fibre design and curvature on crosstalk in multi-core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Egorova, O N; Astapovich, M S; Semjonov, S L; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Melnikov, L A [Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov (Russian Federation); Salganskii, M Yu [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Mishkin, S N; Nishchev, K N [N.P. Ogarev Mordovia State University, Physics and Chemistry Institute, Saransk (Russian Federation)

    2016-03-31

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  1. Wheat-fibre-induced changes of postprandial peptide YY and ghrelin responses are not associated with acute alterations of satiety

    DEFF Research Database (Denmark)

    Weickert, Martin O; Spranger, Joachim; Holst, Jens Juul

    2006-01-01

    of plasma peptide YY (PYY), serum ghrelin and satiety as secondary outcome measures of a study investigating effects of cereal fibres on parameters of glucose metabolism. Fourteen healthy women were studied on six occasions in a randomized, single-blind, controlled crossover design. After 24 h run......-in periods and 10 h overnight fasts, subjects ingested isoenergetic and macronutrient matched portions of control white bread or fibre-enriched bread (wheat-fibre or oat-fibre) at 08.15 hours. Gut hormones and hunger scores were measured for 300 min. Basal PYY and ghrelin concentrations were not different...... between the test meals (P>0.15). Postprandial responses of PYY and ghrelin were blunted after the intake of wheat-fibre (total area under the curve (AUC) PYY, 177.9 (SEM 8.1) (pmol/l) min; P=0.016; ghrelin 51.0 (SEM 2.5) (pmol/l) min; P=0.003), but not after oat-fibre (PYY 226.7 (SEM 25.7) (pmol/l) min; P...

  2. Revisiting the anatomy and biomechanics of the anconeus muscle and its role in elbow stability.

    Science.gov (United States)

    Pereira, Barry P

    2013-07-01

    Recent studies have designated the anconeus muscle as an option for use as a pedicled flap for covering soft tissue defects about the elbow, with reported minimal risk of morbidity. This has raised the question as to the importance of the anconeus muscle and as to whether this is truly an accessory muscle that can be sacrificed, or whether the anconeus muscle significantly contributes to elbow and forearm stability? This study revisits the anatomy and biomechanics of the anconeus muscle and aims to investigate the neuromuscular compartments of the anconeus muscle and to determine the changes in the muscle length, fibre length and moment arm over a range of elbow flexion angles for each compartment. An anatomical study on 8 human cadavers (51-77 years of age) was done and a 2-dimensional kinematic elbow model developed to determine changes in the muscle length and moment arm of the muscle related to changes in elbow flexion angles. The muscle was modelled with two possible lines of action, one along the posterior and another on the anterior edge of the muscle as they had different muscle fibre lengths (posterior: average of 32 mm, anterior: average of 20 mm). The anterior edge also had an aponeurosis which was 70% of its length. From 0 to 120° elbow flexion, the length of the posterior and anterior edges increased with a maximum change recorded at 90° elbow flexion (31.7±1.0 mm and 65.3±1.4 mm, respectively). The moment arm is 14-mm at 0° flexion, but between the posterior and anterior edges it decreases at different rates with increasing elbow flexion angle. Beyond 80°, the anterior edge behaves as an elbow flexor, while the posterior edge remains an elbow extensor. The study demonstrates that the anconeus muscle has two neuromuscular compartments each with distinct intramuscular innervations and muscle fibre lengths. The posterior and deep aspect of the muscle functions as an elbow extensor decreasing in influence with increasing elbow flexion angle. The

  3. Fibre-Related Dietary Patterns: Socioeconomic Barriers to Adequate Fibre Intake in Polish Adolescents. A Short Report.

    Science.gov (United States)

    Krusinska, Beata; Kowalkowska, Joanna; Wadolowska, Lidia; Wuenstel, Justyna Weronika; Slowinska, Malgorzata Anna; Niedzwiedzka, Ewa

    2017-06-10

    There is no complete explanation for the association between socioeconomic status (SES), fibre, and whole diet described by dietary patterns. The aim of this short report was to increase the understanding of adolescent dietary patterns related to fibre in their social context. A cross-sectional study was conducted involving 1176 adolescents aged 13-18 years from central and north-eastern Poland. The overall SES was composed of five single factors: place of residence, self-declared economic situation of family, self-declared economic situation of household, paternal and maternal education. The consumption frequency of nine dietary fibre sources was collected using Block's questionnaire and was expressed in points. Fibre dietary patterns (DPs) were drawn by cluster analysis and odds ratios (ORs) adjusted for age, sex, and BMI were calculated. Three fibre-related DPs were identified: "High-fibre" (mean frequency of total fibre intake 22.7 points; range: 0-36), "Average-fibre" (17.7 points), "Low-fibre" (14.6 points). The "High-fibre" DP was characterized by a relatively higher frequency consumption of white bread, fruit, fruit or vegetable juices, potatoes, green salad and prepared vegetables, and a moderate frequency consumption of high-fibre or bran cereals and wholegrain bread compared to the "Low-fibre" DP. The "Average-fibre" DP was characterized by a relatively higher frequency consumption of wholegrain bread and high-fibre or bran cereals and a moderate frequency consumption of fruit, fruit or vegetable juices, green salad and prepared vegetables compared to the "Low-fibre" DP. Less likely to adhere to the "High-fibre" DP were adolescents with low SES (OR: 0.55, 95% CI: 0.39-0.77) or average SES (0.58, 95% CI: 0.41-0.81) in comparison with high SES (reference) as a result of elementary or secondary paternal or maternal education, rural residence, and lower household economic situation. Similar associations were found for the "Average-fibre" DP. Low and average

  4. Influence of fibre orientation on the performance of steel fibre-reinforced concrete

    OpenAIRE

    Grünewald, Steffen; Laranjeira de Oliveira, Filipe; Walraven, Joost; Aguado de Cea, Antonio; Molins i Borrell, Climent

    2012-01-01

    The performance of fibre-reinforced materials in the hardened state depends on the material behaviour, the production method and influences related to the structure. The position and the orientation of fibres in a structure can differ from the homogenous distribution and the random orientation in a mixer. Due to the flow of the concrete, fibres are able to orient which makes the prediction of the structural behaviour of fibre-reinforced concrete more complex, but it also offers the potential ...

  5. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  6. Advanced Development of an Active Neuromusculature Response to Mechanical Stress.

    Science.gov (United States)

    1984-10-31

    muscle (Hatze, 1981, p. 62) For slow motor units (n-0) m • 3-72 and for fast motor units (n-1) m » 18.5. Again an average value is used for...skeletal muscle fibre arrangement. z-disk I-band Fig. 2 Molecular substructure of mammalian skeletal muscle . 11 • • • • ••_» ’J. -J.-J... twitch ) motor units and Type II ( fast twitch ) motor units (Close, 1972). Type I motor units have slower contraction times, tend to be more aerobic and

  7. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; Andersen, Jesper L.

    2004-01-01

    growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA...... or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than...... in SLR (2.4+/-0.1 vs 3.6+/-0.2; PRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents....

  8. Naturally Protected Muscle Phenotypes: Development of Novel Treatment Strategies for Duchenne Muscular Dystrophy

    OpenAIRE

    Dowling, Paul; Doran, Philip; Lohan, James; Culligan, Kevin; Ohlendieck, Kay

    2004-01-01

    Primary abnormalities in the dystrophin gene underlie x-linked muscular dystrophy. However, the absence of the dystrophin isoform Dp427 does not necessarily result in a severe dystrophic phenotype in all muscle groups. Distal mdx muscles, namely extraocular and toe fibres, appear to represent a protected phenotype in muscular dystrophy. Thus, a comparative analysis of affected versus naturally protected muscle cells should lead to a greater knowledge of the molecular pathogenes...

  9. Hemp fibres: Enzymatic effect of microbial processing on fibre bundle structure

    DEFF Research Database (Denmark)

    Thygesen, Anders; Liu, Ming; Meyer, Anne S.

    2013-01-01

    The effects of microbial pretreatment on hemp fibres were evaluated after microbial retting using the white rot fungi Ceriporiopsis subvermispora and Phlebia radiata Cel 26 and water retting. Based on chemical composition, P. radiata Cel 26 showed the highest selectivity for pectin and lignin...... degradation and lowest cellulose loss (14%) resulting in the highest cellulose content (78.4%) for the treated hemp fibres. The pectin and lignin removal after treatment with P. radiata Cel 26 were of the order 82% and 50%, respectively. Aligned epoxy-matrix composites were made from hemp fibres defibrated...... with the microbial retting to evaluate the effects on their ultrastructure. SEM microscopy of the composites showed low porosity on the fibre surfaces after defibration with P. radiata Cel 26 and C. subvermispora indicating good epoxy polymer impregnation. In contrast, fibres treated by water retting and the raw...

  10. Vibrated and self-compacting fibre reinforced concrete: experimental investigation on the fibre orientation

    Science.gov (United States)

    Conforti, A.; Plizzari, G. A.; Zerbino, R.

    2017-09-01

    In addition to the fibre type and content, the residual properties of fibre reinforced concrete are influenced by fibre orientation. Consequently, the performance fibre reinforced concrete can be affected by its fresh properties (workability, flowing capacity) and by casting and compaction processes adopted. This paper focuses on the study of the orientation of steel or macro-synthetic fibres in two materials characterized by very different fresh properties: vibrated and self-compacting concrete. Four rectangular slabs 1800 mm long, 925 mm wide and 100 mm high were produced changing concrete and fibre type. From each slab, eighteen small prisms (550 mm long) were firstly cut either orthogonal or parallel to casting direction and, secondly, notched and tested in bending according to EN 14651. Experimental results showed that the toughness properties of a thin slab significantly varies both in vibrated and self-compacting concrete, even if in case of self-compacting concrete this variation resulted higher. Steel fibres led to greater variability of results compared to polymer one, underlining a different fibre orientation. A discussion on the relative residual capacity measured on the prisms sawn from the slabs and the parameters obtained from standard specimens is performed.

  11. FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy

    OpenAIRE

    Kemp, P; Lee, JY; lori, O; Wells, D

    2015-01-01

    Myostatin is a TGFβ family ligand that reduces muscle mass. In cancer cells, TGFβ signalling is increased by the protein FHL1. Consequently, FHL1 may promote signalling by myostatin. We therefore tested the ability of FHL1 to regulate myostatin function. FHL1 increased the myostatin activity on a SMAD reporter and increased myostatin dependent myotube wasting. In mice, independent expression of myostatin reduced fibre diameter whereas FHL1 increased fibre diameter, both consistent with previo...

  12. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2011-01-01

    Research highlights: → BFRP degradation process in seawater environment was first investigated. → The mass gain change includes two effects: absorption and extraction. → The interfacial adhesion of BFRP is bigger than GFRP. → After treated, the bending strength of BFRP is lower than GFRP. → Reducing the Fe 2+ in the basalt fibre could lead to a higher stability of BFRP. - Abstract: Epoxy resins reinforced, respectively, by basalt fibres and glass fibres were treated with a seawater solution for different periods of time. Both the mass gain ratio and the strength maintenance ratio of the composites were examined after the treatment. The fracture surfaces were characterized using scanning electron microscopy. The tensile and bending strengths of the seawater treated samples showed a decreasing trend with treating time. In general, the anti-seawater corrosion property of the basalt fibre reinforced composites was almost the same as that of the glass fibre reinforced ones. Based on the experimental results, possible corrosion mechanisms were explored, indicating that an effective lowering of the Fe 2+ content in the basalt fibre could lead to a higher stability for the basalt fibre reinforced composites in a seawater environment.

  13. Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex.

    NARCIS (Netherlands)

    Postel, R.; Vakeel, P.; Topczewski, J.; Knoll, R.; Bakkers, J.

    2008-01-01

    Mechanical instability of skeletal muscle cells is the major cause of congenital muscular dystrophy. Here we show that the zebrafish lost-contact mutant, that lacks a functional integrin-linked kinase (ilk) gene, suffers from mechanical instability of skeletal muscle fibres. With genetic and

  14. Dietary fibre as functional ingredient in meat products: a novel approach for healthy living - a review.

    Science.gov (United States)

    Verma, Arun Kumar; Banerjee, Rituparna

    2010-06-01

    There is a rapid change in our overall lifestyle due to impact of globalization. Every day hasty life has forced consumers to be dependent upon fast foods, which contain meagre amount of dietary fibre. Non-starch polysaccharides and resistant oligosaccharides, lignin, substances associated with NSP and lignin complex in plants, other analogous carbohydrates, such as resistant starch and dextrins, and synthesized carbohydrate compounds, like polydextrose are categorized as dietary fibre. They are mostly concentrated in cereals, pulses, fruits and vegetables. It has been proclaimed that daily dietary fibre intake helps in prevention of many nutritional disorders like gut related problems, cardiovascular diseases, type 2 diabetes, certain types of cancer and obesity. Meat is generally lacking this potential ingredient, which could be incorporated while products processing to make them more healthful. Various fibre rich sources have been attempted in different products attributed to their technological and health benefits and many are in the queue to be used in a variety of meat products. Selection of appropriate fibre rich ingredients and their proper incorporation can improve health image of meat products.

  15. Software for muscle fibre type classification and analysis

    Czech Academy of Sciences Publication Activity Database

    Karen, Petr; Števanec, M.; Smerdu, V.; Cvetko, E.; Kubínová, Lucie; Eržen, I.

    2009-01-01

    Roč. 53, č. 2 (2009), s. 87-95 ISSN 1121-760X R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) MEB090910 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscle fiber types * myosin heavy chain isoforms * image processing Subject RIV: JC - Computer Hardware ; Software Impact factor: 0.886, year: 2009

  16. Muscle satellite cells are activated after exercise to exhaustion in Thoroughbred horses.

    Science.gov (United States)

    Kawai, M; Aida, H; Hiraga, A; Miyata, H

    2013-07-01

    Although satellite cells are well known as muscle stem cells capable of adding myonuclei during muscle repair and hypertrophy, the response of satellite cells in horse muscles to a run to exhaustion is still unknown. To investigate the time course of satellite cell activation in Thoroughbred horse muscle after running to exhaustion. We hypothesised that this type of intense exercise would induce satellite cell activation in skeletal muscle similar to a resistance exercise. Nine de-trained Thoroughbred horses (6 geldings and 3 mares) aged 3-6 years were studied. Biopsy samples were taken from the gluteus medius muscle of the horses before and 1 min, 3 h, 1 day, 3 days, 1 week and 2 weeks after a treadmill run to exhaustion. The numbers of satellite cells for each fibre type were determined by using immunofluorescence staining. Total RNA was extracted from these samples, and the expressions of interleukin (IL)-6, paired box transcriptional factor (Pax) 7, myogenic differentiation 1 (MyoD), myogenin, proliferating cell nuclear antigen (PCNA), insulin-like growth factor (IGF)-I and hepatocyte growth factor (HGF) mRNA were analysed using real-time reverse transcription-PCR. The numbers of satellite cells were significantly increased in type I and IIa fibres at 1 week and in type IIa/x fibre at 2 weeks post exercise. The expression of IL-6 mRNA increased significantly by 3 h post exercise. The expression of PCNA mRNA also increased by 1 day after running, indicating that running can initiate satellite cell proliferation. The expression of Pax7, MyoD, myogenin, IGF-I and HGF mRNA peaked at 1 week post exercise. Satellite cell activation and proliferation could be enhanced after a run to exhaustion without detectable injury as assessed by the histochemical analysis. Understanding the response of satellite cell activation to running exercise provides fundamental information about the skeletal muscle adaptation in Thoroughbred horses. © 2012 EVJ Ltd.

  17. The Chemical Composition of Grape Fibre

    Directory of Open Access Journals (Sweden)

    Jolana Karovičová

    2015-05-01

    Full Text Available Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and dietary fibre in nourishment. The aim of this study was to determine the chemical composition of commercial fibres, obtained from different Grape sources concerning their chemical properties such as moisture, ash, fat, protein, total dietary fibre. The chemical composition of Grape fibre is known to vary depending on the Grape cultivar, growth climates, and processing conditions. The obliged characteristics of the fibre product are: total dietary fibre content above 50%, moisture lower than 9%, low content of lipids, a low energy value and neutral flavour and taste. Grape pomace represents a rich source of various high-value products such as ethanol, tartrates and malates, citric acid, Grape seed oil, hydrocolloids and dietary fibre. Used commercial Grape fibres have as a main characteristic, the high content of total dietary fibre. Amount of total dietary fibre depends on the variety of Grapes. Total dietary fibre content (TDF in our samples of Grape fibre varied from 56.8% to 83.6%. There were also determined low contents of moisture (below 9%. In the samples of Grape fibre were determined higher amount of protein (8.6 - 10.8%, mineral (1.3 - 3.8% and fat (2.8 - 8.6%. This fact opens the possibility of using both initial by-products as ingredients in the food industry, due to the effects associated with the high total dietary fibre content.

  18. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  19. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    , as well as a honeycomb bandgap fibre and the first analysis of semi-periodic layered air-hole fibres. Using the modelling framework established as a basis, we provide an analysis of microbend loss, by regarding displacement of a fibre core as a stationary stochastic process, inducing mismatch between......In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...

  20. T2 mapping of muscle activity using ultrafast imaging

    International Nuclear Information System (INIS)

    Tawara, Noriyuki; Nitta, Osamu; Kuruma, Hironobu; Niitsu, Mamoru; Itoh, Akiyoshi

    2011-01-01

    Measuring exercise-induced muscle activity is essential in sports medicine. Previous studies proposed measuring transverse relaxation time (T 2 ) using muscle functional magnetic resonance imaging (mfMRI) to map muscle activity. However, mfMRI uses a spin-echo (SE) sequence that requires several minutes for acquisition. We evaluated the feasibility of T 2 mapping of muscle activity using ultrafast imaging, called fast-acquired mfMRI (fast-mfMRI), to reduce image acquisition time. The current method uses 2 pulse sequences, spin-echo echo-planar imaging (SE-EPI) and true fast imaging with steady precession (TrueFISP). SE-EPI images are used to calculate T 2 , and TrueFISP images are used to obtain morphological information. The functional image is produced by subtracting the image of muscle activity obtained using T 2 at rest from that produced after exercise. Final fast-mfMRI images are produced by fusing the functional images with the morphologic images. Ten subjects repeated ankle plantar flexion 200 times. In the fused images, the areas of activated muscle in the fast-mfMRI and SE-EPI images were identical. The geometric location of the fast-mfMRI did not differ between the morphologic and functional images. Morphological and functional information from fast-mfMRI can be applied to the human trunk, which requires limited scan duration. The difference obtained by subtracting T 2 at rest from T 2 after exercise can be used as a functional image of muscle activity. (author)

  1. Surface analysis of glass fibres using XPS and AFM: case study of glass fibres recovered from the glass fibre reinforced polymer using chemical recycling

    Science.gov (United States)

    Nzioka, A. M.; Kim, Y. J.

    2018-01-01

    In this study, we present the results of an experimental study of the use of the X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) to characterise the coatings of the recovered E - glass fibres. The recovered E - glass fibres were obtained using chemical recycling process coupled with ultrasound cavitation. The objective of this study was to analyse the impact of chemical recycling and the ultrasound cavitation process on the sizing properties of the recovered fibres. We obtained the recovered fibres and sized using 1 wt% 3 - aminopropyltriethoxysilane (APS). Part of the sized fibres was washed with acetone and analysed all the sample fibres using AFM and XPS. Results showed the different composition of sizing after extraction using acetone. We compared the results of this study with that of virgin clean glass fibres.

  2. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.

    Science.gov (United States)

    Lu, T W; O'Connor, J J

    1996-01-01

    A computer graphics-based model of the knee ligaments in the sagittal plane was developed for the simulation and visualization of the shape changes and fibre recruitment process of the ligaments during motion under unloaded and loaded conditions. The cruciate and collateral ligaments were modelled as ordered arrays of fibres which link attachment areas on the tibia and femur. Fibres slacken and tighten as the ligament attachment areas on the bones rotate and translate relative to each other. A four-bar linkage, composed of the femur, tibia and selected isometric fibres of the two cruciates, was used to determine the motion of the femur relative to the tibia during passive (unloaded) movement. Fibres were assumed to slacken in a Euler buckling mode when the distances between their attachments are less than chosen reference lengths. The ligament shape changes and buckling patterns are demonstrated with computer graphics. When the tibia is translated anteriorly or posteriorly relative to the femur by muscle forces and external loads, some ligament fibres tighten and are recruited progressively to transmit increasing shear forces. The shape changes and fibre recruitment patterns predicted by the model compare well qualitatively with experimental results reported in the literature. The computer graphics approach provides insight into the micro behaviour of the knee ligaments. It may help to explain ligament injury mechanisms and provide useful information to guide the design of ligament replacements.

  3. Biological durability and oxidative potential of man-made vitreous fibres as compared to crocidolite asbestos fibres

    Energy Technology Data Exchange (ETDEWEB)

    Hippeli, S.; Dornisch, K.; Elstner, E.F. [Lehrstuhl fuer Phytopathologie, Technische Univ. Muenchen-Weihenstephan, Freising-Weihenstephan (Germany); Wiethege, T.; Mueller, K.M. [Berufsgenossenschaftliche Kliniken Bergmannsheil, Universitaetsklinik, Inst. fuer Pathologie, Bochum (Germany); Gillissen, A. [Medizinische Universitaetsklinik und Poliklinik II, Kardiologie, Pneumologie, Bonn (Germany)

    2001-08-01

    In this study we investigated relationships between redox properties and biodurability of crocidolite asbestos fibres and three different man-made vitreous fibres (MMVF): traditional stone wool fibres (MMVF 21), glass fibres (MMVF 11) and refractory ceramic fibres (RCF). Each fibre type was incubated up to 22 weeks in four different incubation media: gamble solution (GS) pH 5.0 and pH 7.4, representing blood plasma without proteins, and surfactant-like solution (SLS) pH 5.0 and pH 7.4. During incubation time aliquots of incubation mixtures were removed and analysed in a biochemical model reaction, mimicking activated phagocytes. In addition, changes of fibre morphology and chemical composition were examined using SEM- and EDX-technology. In the presence of crocidolite asbestos fibres and MMVF 21 the formation of OH-radicals according to the Haber-Weiss sequence could be demonstrated, whereas MMVF 11 and RCF showed no reactivity. Crocidolite asbestos fibres exhibited a significant higher activity compared with the stone wool fibres at the onset of incubation. The oxidative capacities of these fibre types were shown to depend on both specific surface area and iron content. The oxidative potentials of crocidolite asbestos fibres as well as MMVF 21 were not constant during incubation over several weeks in each incubation medium. The reactivities showed sinoidal curves including reactivities much higher than those at the onset of incubation time. These irregular changes of oxidative capacity may be explained by changes of the redox state of fibre surface-complexed iron. Furthermore our results showed clear differences between incubation of fibres in GS and SLS, respectively, indicating that phospholipids play an important part in fibre dissolution behaviour and oxidative reactivity. (orig.)

  4. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species.

    Science.gov (United States)

    Bonnet, M; Cassar-Malek, I; Chilliard, Y; Picard, B

    2010-07-01

    The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This

  5. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function

    NARCIS (Netherlands)

    Maganaris, C.N.; Baltzopoulos, V.; Sargeant, A.J.

    1998-01-01

    1. The objectives of this study were to (1) quantify experimentally in vivo changes in pennation angle, fibre length and muscle thickness in the triceps surae complex in man in response to changes in ankle position and isometric plantarflexion moment and (2) compare changes in the above muscle

  6. Effects of physical activity and inactivity on muscle fatigue

    Directory of Open Access Journals (Sweden)

    Gregory C. Bogdanis

    2012-05-01

    Full Text Available The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fibre composition, neuromuscular characteristics high energy metabolite stores, buffering capacity, ionic regulation, capillarization and mitochondrial density. Muscle fiber type transformation during exercise training is usually towards the intermediate type IIA at the expense of both type I and type IIx myosin heavy chain isoforms. High intensity training results in increases of both glycolyic and oxidative enzymes, muscle capilarization, improved phosphocreatine resynthesis and regulation of K+, H+ and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fibre cross-sectional area, decreased oxidative capacity and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high intensity exercise training in patients with different health conditions to demonstrate the powerful effect exercise on health and well

  7. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  8. Dietary fibre concentrate from Chilean algarrobo (Prosopis chilensis (Mol.) Stuntz) pods: purification and characterization.

    Science.gov (United States)

    Estévez, Ana María; Figuerola, Fernando; Bernuy, Enrique; Sáenz, Carmen

    2014-12-01

    Prosopis species are generally fast-growing, drought-resistant, nitrogen-fixing trees or shrubs. Fruits of Prosopis spp are indehiscent pods, where pericarp is formed by the epicarp, light brown in colour, and fibrous nature; the mesocarp known as pulp, which is rich in sugars; and the endocarp. The aim of this work was to obtain a fibre concentrate from the pods of Prosopis chilensis Mol. (Stuntz) and to determine the chemical, physical, and technological properties of the pod flour (PF) and of a fibre concentrate or pod purified flour (PPF). Acetone, ethanol, and water at different conditions of time and temperature were used in the purification process. PF showed 53.7 g/100 g of total sugar content, 4.2 g/100 g of reducing sugar content, 41.8 g/100 g of total dietary fibre, 35.8 g/100 g of insoluble fibre, and 6.0 g/100 g of soluble fibre content. The PPF has a total sugar content of 3.8 g/100 g, reducing sugar content of 2.2 g/100 g, total dietary fibre content of 80.8 g/100 g, insoluble fibre content of 75.1 g/100 g, and soluble fibre content of 5.7 g/100 g. The scanning electron microscopy analysis showed the existence of voids in the structure of PPF flour, which reveals the efficiency of the purification process with a high decrease in the total sugar content. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  10. The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system.

    Science.gov (United States)

    Wicaksana, F; Fan, A G; Chen, V

    2005-01-01

    Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.

  11. Altered mitochondrial regulation in quadriceps muscles of patients with COPD

    DEFF Research Database (Denmark)

    Naimi, Ashley I; Bourbeau, Jean; Perrault, Helene

    2011-01-01

    Evidence exists for locomotor muscle impairment in patients with chronic obstructive pulmonary disease (COPD), including fiber type alterations and reduced mitochondrial oxidative capacity. In this study high-resolution respirometry was used to quantify oxygen flux in permeabilized fibres from bi...

  12. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A

    2018-01-01

    Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).

  13. Picture frame fibres in a carrier of the trait for malignant hyperpyrexia

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H; Badenhorst, M [University of the Witwatersrand, Johannesburg (South Africa). Department of Physiology; Heffron, J J.A. [University of the Witwatersrand, Johannesburg (South Africa). Department of Physiological Chemistry

    1975-11-01

    A member of a family which was known to be susceptible to malignant hyperpyrexia, who was identified as a carrier by the presence of an elevated serum creatinephosphokinase, has been investigated further. Muscle was examined biochemically, and the study included the sarcoplasmic ATPase-activity, actinomycin, Mg2+ ATPase activity, ATP, phosphocreatine and glucose-6-phosphate. In addition, the calcium uptake by the sarcoplasmic reticulum was studied. The histochemical analysis of the muscle revealed the presence of a new fibre type characterized by a dense rim of ATPase activity, which gives the impression of a 'picture-frame'. Ultramicroscopic study revealed changes in the mitochondria and areas of myofibrillar disruption with swelling of the sarcoplasmic reticulum.

  14. Picture frame fibres in a carrier of the trait for malignant hyperpyrexia

    International Nuclear Information System (INIS)

    Isaacs, H.; Badenhorst, M.; Heffron, J.J.A.

    1975-01-01

    A member of a family which was known to be susceptible to malignant hyperpyrexia, who was identified as a carrier by the presence of an elevated serum creatinephosphokinase, has been investigated further. Muscle was examined biochemically, and the study included the sarcoplasmic ATPase-activity, actinomycin, Mg2+ ATPase activity, ATP, phosphocreatine and glucose-6-phosphate. In addition, the calcium uptake by the sarcoplasmic reticulum was studied. The histochemical analysis of the muscle revealed the presence of a new fibre type characterized by a dense rim of ATPase activity, which gives the impression of a 'picture-frame'. Ultramicroscopic study revealed changes in the mitochondria and areas of myofibrillar disruption with swelling of the sarcoplasmic reticulum

  15. From nanoparticles to fibres: effect of dispersion composition on fibre properties

    Science.gov (United States)

    Schirmer, Katharina S. U.; Esrafilzadeh, Dorna; Thompson, Brianna C.; Quigley, Anita F.; Kapsa, Robert M. I.; Wallace, Gordon G.

    2015-06-01

    A polyvinyl alcohol (PVA)-stabilized polypyrrole nanodispersion has been optimised for conductivity and processability by decreasing the quantity of PVA before and after synthesis. A reduction of PVA before synthesis leads to the formation of particles with a slight increase in dry particle diameter (51 ± 6 to 63 ± 3 nm), and conversely a reduced hydrodynamic diameter. Conductivity of the dried nanoparticle films was not measureable after a reduction of PVA prior to synthesis. Using filtration of particles after synthesis, PVA content was sufficiently reduced to achieve dried thin film conductivity of 2 S cm-1, while the electroactivity of the dispersed particles remained unchanged. The as-synthesized and PVA-reduced polypyrrole particles were successfully spun into all-nanoparticle fibres using a wet-extrusion approach without the addition of any polymer or gel matrix. Using nanoparticles as a starting material is a novel approach, which allowed the production of macro-scale fibres that consisted entirely of polypyrrole nanoparticles. Fibres made from PVA-reduced polypyrrole showed higher electroactivity compared to fibres composed of the dispersion high in PVA. The mechanical properties of the fibres were also improved by reducing the amount of PVA present, resulting in a stronger, more ductile and less brittle fibre, which could find potential application in various fields.

  16. Advanced Fibre Based Energy Storage

    Science.gov (United States)

    Reid, Daniel Oliver

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into many fabrics and clothes, further boosting their potential for use in wearable devices. Electrically conducting fibres were produced from a dispersion of carbon nanomaterials in a room temperature ionic liquid. Coagulation of this dispersion was achieved through manual injection into aqueous solutions of xanthan gum. The limitations of this method are highlighted by very low ultimate tensile strengths of these fibres, in the order of 3 MPa, with high variation within all of the fibres. Fibres were also produced via scrolling of bi-component films containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA). Chemical treatments were employed to impart water compatibility to these fibres, and their electrochemical, physical and electrical properties were analysed. Fibres were wet spun from two PEDOT:PSS sources, in several fibre diameters. The effect of chemical treatments on the fibres were investigated and compared. Short 5 min treatment times with dimethyl sulfoxide (DMSO) on 20 mum fibres produced from Clevios PH1000 were found to produce the best overall treatment. Up to a six-fold increase in electrical conductivity resulted, reaching 800 S cm-1, with up to 40 % increase in specific capacitance and no loss of mechanical strength (55 F g-1 and 150 MPa recorded). A wet spinning system to produce PEDOT:PSS fibres containing functionalised graphenes and carbon nanotubes, as well as birnessite nanotubes was subsequently developed

  17. Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions

    International Nuclear Information System (INIS)

    Melpomeni Prodromou; Ioannis Pashalidis

    2013-01-01

    The adsorption efficiency of Opuntia ficus indica fibres regarding the removal of hexavalent uranium [U(VI)] from aqueous solutions has been investigated prior and after the chemical treatment (e.g. phosphorylation and MnO 2 -coating) of the biomass. The separation/removal efficiency has been studied as a function of pH, uranium concentration, adsorbent mass, ionic strength, temperature and contact time. Evaluation of the experimental data shows that biosorption is strongly pH-depended and that the MnO 2 -coated product presents the highest adsorption capacity followed by the phosphorylated and non-treated material. Experiments with varying ionic strength/salinity don't show any significant effect on the adsorption efficiency, indicating the formation of inner-sphere surface complexes. The adsorption reactions are in all cases exothermic and relatively fast, particularly regarding the adsorption on the MnO 2 -coated product. The results of the present study indicate that adsorption of uranium from waters is very effective by cactus fibres and particularly the modified treated fibres. The increased adsorption efficiency of the cactus fibres is attributed to their primary and secondary fibrillar structure, which result in a relative relative high specific surface available for sorption. (author)

  18. Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha; Feng, Lin; Wasser, Martin

    2017-07-10

    Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle

  19. DETECTORS: scintillating fibres

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the continual search for improved detection techniques, new materials are continually proving profitable. A good example is scintillating plastic fibres - tiny transparent threads sometimes finer than a human hair which transmit light. The narrowness and flexibility of these fibres was a major breakthrough for endoscopy - non-invasive techniques for viewing the otherwise inaccessible in surgery or machine inspection. In a more sophisticated form, these fibres find ready application in communications technology, where the goal is to transmit information rather than electrical power, replacing conventional and unwieldy current-carrying wire conductors. In particle physics, fibres have long been used to take the tiny scintillations produced when high energy particles hit fluorescent materials and 'conduct' them to photosensitive detectors some distance away

  20. Special fibres and components

    DEFF Research Database (Denmark)

    Bunge, C.-A.; Woyessa, Getinet; Bremer, K.

    2017-01-01

    In this chapter we present more specific fibre types for particular applications. Starting with the multi-core fibre, which can be used as a substitution for ordinary SI-POF transmission fibres, but with better bending losses, over the ever increasing range of micro-structured POF for diverse sen...