WorldWideScience

Sample records for fast mhd waves

  1. Are "EIT Waves" Fast-Mode MHD Waves?

    CERN Document Server

    Wills-Davey, M J; Stenflo, J O

    2007-01-01

    We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.

  2. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  3. Sunspot seismic halos generated by fast MHD wave refraction

    CERN Document Server

    Khomenko, E

    2009-01-01

    We suggest an explanation for the high-frequency power excess surrounding active regions known as seismic halos. The idea is based on numerical simulations of magneto-acoustic waves propagation in sunspots. We propose that such an excess can be caused by the additional energy injected by fast mode waves refracted in the higher atmosphere due to the rapid increase of the Alfven speed. Our model qualitatively explains the magnitude of the halo and allows to make some predictions of its behavior that can be checked in future observations.

  4. Realistic Modeling of Fast MHD Wave Trains in Coronal Active Regions

    Science.gov (United States)

    Ofman, Leon; Sun, Xudong

    2017-08-01

    Motivated by recent SDO/AIA observations we have developed realistic modeling of quasi-periodic, fast-mode propagating MHD wave trains (QFPs) using 3D MHD model initiated with potential magnetic field extrapolated from the solar coronal boundary. Localized quasi-periodic pulsations associated with C-class flares that drive the waves (as deduced from observations) are modeled with transverse periodic displacement of magnetic field at the lower coronal boundary. The modeled propagating speed and the form of the wave expansions matches the observed fast MHD waves speed >1000 km/s and topology. We study the parametric dependence of the amplitude, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, and the location of the flaring site within the active region. We investigate the interaction of multiple QFP wave trains excited by adjacent flaring sources. We use the model results to synthesize EUV intensities in multiple AIA channels and obtain the model parameters that best reproduce the properties of observed QFPs, such as the recent DEM analysis. We discuss the implications of our modeling results for the seismological application of QFPs for the diagnostic of the active region field, flare pulsations, end estimate the energy flux carried by the waves.

  5. Linear and nonlinear MHD mode coupling of the fast magnetoacoustic wave about a 3D magnetic null point

    Science.gov (United States)

    Thurgood, J. O.; McLaughlin, J. A.

    2012-09-01

    Context. Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfvén mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, β = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently decoupled from the Alfvén mode both linearly and nonlinearly for both proper and improper 3D null points. The pure fast mode also generates and sustains a nonlinear disturbance aligned along the equilibrium magnetic field. The resulting pure fast magnetoacoustic pulse has transient behaviour, which is found to be governed by the (equilibrium) Alfvén-speed profile, and a refraction effect focuses all the wave energy towards the null point. Conclusions: Thus, the main results from previous 2D work do indeed carry over to the fully 3D magnetic null points and so we conclude that 3D null points are locations for preferential heating in the corona by 3D fast magnetoacoustic waves.

  6. Linear and nonlinear MHD mode coupling of the fast magnetoacoustic wave about a 3D magnetic null point

    CERN Document Server

    Thurgood, J O; 10.1051/0004-6361/201219850

    2012-01-01

    Context: Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfv\\'en mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, {\\beta} = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently d...

  7. MHD waves in sunspots

    CERN Document Server

    Sych, Robert

    2015-01-01

    The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.

  8. NONLINEAR MHD WAVES IN A PROMINENCE FOOT

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2015-11-10

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  9. Alfven Wave Tomography for Cold MHD Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  10. Simulation of wave interactions with MHD

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)

    2008-07-15

    The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  11. Simulation of wave interactions with MHD

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  12. MHD Shallow Water Waves: Linear Analysis

    CERN Document Server

    Heng, Kevin

    2009-01-01

    We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.

  13. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    Science.gov (United States)

    Afanasyev, A. N.; Uralov, A. M.

    2012-10-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  14. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    CERN Document Server

    Afanasyev, Andrey N

    2012-01-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  15. Benchmarking Fast-to-Alfv\\'en Mode Conversion in a Cold MHD Plasma. II. How to get Alfv\\'en waves through the Solar Transition Region

    CERN Document Server

    Hansen, Shelley C

    2012-01-01

    Alfv\\'en waves may be difficult to excite at the photosphere due to low ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfv\\'enic transition region reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation, with implications for the practical seismic probing of active regions.

  16. Nonlinear MHD waves in a Prominence Foot

    CERN Document Server

    Ofman, Leon; Kucera, Therese; Schmieder, Brigitte

    2015-01-01

    We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...

  17. Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation

    CERN Document Server

    Nariyuki, Y; Kumashiro, T; Hada, T

    2009-01-01

    Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.

  18. Review article: MHD wave propagation near coronal null points of magnetic fields

    CERN Document Server

    McLaughlin, J A; De Moortel, I; 10.1007/s11214-010-9654-y

    2010-01-01

    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a $\\beta=0$ plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the di...

  19. Review Article: MHD Wave Propagation Near Coronal Null Points of Magnetic Fields

    Science.gov (United States)

    McLaughlin, J. A.; Hood, A. W.; de Moortel, I.

    2011-07-01

    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfvén speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfvén wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfvén-speed profile. In a β=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfvén wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfvén wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfvén wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.

  20. MHD Waves and Coronal Seismology: an overview of recent results

    CERN Document Server

    De Moortel, Ineke

    2012-01-01

    Recent observations have revealed that MHD waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology which have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves and (iv) the rapidly developing topic of quasi-periodic pulsations (QPP) in solar flares.

  1. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  2. Fast magnetohydrodynamic density waves in spiral galaxies

    Science.gov (United States)

    Lou, Yu-Qing; Han, J. L.; Fan, Zuhui

    1999-09-01

    The newly observed large-scale structures of a southern grand-design spiral galaxy NGC 2997 in total and polarized radio-continuum emission together with their overall correlations with the known optical spiral structure are physically interpreted in terms of fast magnetohydrodynamic (MHD) density waves in contrast to slow MHD density waves in NGC 6946. The global spiral pattern of such fast MHD density waves extends from the very centre, where the disc rotates almost rigidly within ~0.5arcmin, all the way to the outer disc with a more or less flat rotation curve. To strengthen the case, several known features of spiral galaxies M51 and IC 342 are referred to and their pattern identifications discussed. It is emphasized that the nature of a magnetized spiral galaxy would be much better appreciated by examining large-scale structures in optical, atomic hydrogen Hi, total and polarized radio-continuum and infrared emission together. As various star-formation processes occur concurrently and/or sequentially in spiral arms of high gas concentration, relatively broad and fuzzy Hi arms, roughly coincident with optical arms in the inner disc, are expected to extend from the extremities of fading optical arms further into the outer gas disc. We predict that the south-east `magnetic arm', apparently isolated from any optical features, in total and polarized radio-continuum intensity maps of NGC 2997 should be associated with an Hi gas arm yet to be detected in 21-cm line emission.

  3. Coronal Heating and Acceleration of the High/Low-Speed Solar Wind by Fast/Slow MHD Shock Trains

    CERN Document Server

    Suzuki, T K

    2004-01-01

    We investigate coronal heating and acceleration of the high- and low-speed solar wind in the open field region by dissipation of fast and slow magnetohydrodynamical (MHD) waves through MHD shocks. Linearly polarized \\Alfven (fast MHD) waves and acoustic (slow MHD) waves travelling upwardly along with a magnetic field line eventually form fast switch-on shock trains and hydrodynamical shock trains (N-waves) respectively to heat and accelerate the plasma. We determine one dimensional structure of the corona from the bottom of the transition region (TR) to 1AU under the steady-state condition by solving evolutionary equations for the shock amplitudes simultaneously with the momentum and proton/electron energy equations. Our model reproduces the overall trend of the high-speed wind from the polar holes and the low-speed wind from the mid- to low-latitude streamer except the observed hot corona in the streamer. The heating from the slow waves is effective in the low corona to increase the density there, and plays ...

  4. Achieving Fast Reconnection in Resistive MHD Models via Turbulent Means

    CERN Document Server

    Lapenta, Giovanni

    2011-01-01

    Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for the models of magnetic reconnection which are attepmted to be applied to astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both theoretical model and numerical evidence that magnetic reconnection gets fast in the approximation of resistive MHD. We consider the relation between the Lazarian & Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

  5. Damping of Linear Nonadiabatic MHD Waves in a Flowing Prominence Medium

    Directory of Open Access Journals (Sweden)

    Nagendra Kumar

    2014-01-01

    Full Text Available We study the effect of shear flow on the time damping of linear nonadiabatic magnetoacoustic waves in a solar prominence. We consider a homogeneous, isothermal, and unbounded medium permeated by a uniform magnetic field. The adiabaticity is removed by including the optically thin radiative losses, thermal conduction, and heating term in energy equation. We present a local theory of MHD waves to obtain a dispersion relation. The dispersion relation is solved numerically to study the time damping of these waves. It is found that flow influences the damping time and damping per period of both the slow and fast waves significantly. Damping time and damping per period of slow waves are very much higher than the damping time and damping per period of fast waves.

  6. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  7. MHD waves generated by high-frequency photospheric vortex motions

    Directory of Open Access Journals (Sweden)

    V. Fedun

    2011-06-01

    Full Text Available In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.

  8. A Complete 2D Stability Analysis of Fast MHD Shocks in an Ideal Gas

    Science.gov (United States)

    Trakhinin, Yuri

    An algorithm of numerical testing of the uniform Lopatinski condition for linearized stability problems for 1-shocks is suggested. The algorithm is used for finding the domains of uniform stability, neutral stability, and instability of planar fast MHD shocks. A complete stability analysis of fast MHD shock waves is first carried out in two space dimensions for the case of an ideal gas. Main results are given for the adiabatic constant γ=5/3 (mono-atomic gas), that is most natural for the MHD model. The cases γ=7/5 (two-atomic gas) and γ>5/3 are briefly discussed. Not only the domains of instability and linear (in the usual sense) stability, but also the domains of uniform stability, for which a corresponding linearized stability problem satisfies the uniform Lopatinski condition, are numerically found for different given angles of inclination of the magnetic field behind the shock to the planar shock front. As is known, uniform linearized stability implies the nonlinear stability, that is local existence of discontinuous shock front solutions of a quasilinear system of hyperbolic conservation laws.

  9. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  10. Dispersive MHD waves and alfvenons in charge non-neutral plasmas

    Directory of Open Access Journals (Sweden)

    K. Stasiewicz

    2008-08-01

    Full Text Available Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.

  11. Striations in molecular clouds: Streamers or MHD waves?

    CERN Document Server

    Tritsis, A

    2016-01-01

    Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taur...

  12. Modelling observed decay-less oscillations as resonantly enhanced Kelvin-Helmholtz vortices from transverse MHD waves and their seismological application

    CERN Document Server

    Antolin, Patrick; Van Doorsselaere, Tom; Yokoyama, Takaaki

    2016-01-01

    In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfv\\'en waves. Due to its localised nature, a direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction, recent observations indicate that in the low amplitude regime such transverse MHD waves can also appear decay-less, a yet unsolved phenomenon. Recent numerical work has shown that Kelvin-Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modelling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant abs...

  13. Two-fluid MHD Regime of Drift Wave Instability

    Science.gov (United States)

    Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong

    2015-11-01

    Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.

  14. Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma

    CERN Document Server

    Cally, Paul S

    2011-01-01

    Alfv\\'en waves may be generated via mode conversion from fast magneto-acoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helio-seismology. In active regions this reflection typically occurs high enough that the Alfv\\'en speed $a$ greatly exceeds the sound speed $c$, well above the $a=c$ level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfv\\'en conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold MHD model $c\\to0$. This provides a benchmark for fast-to-Alfv\\'en mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfv\\'en speed profile with density scale height $h$, the Alfv\\'en conversion coefficient depends on three variables only; the dimensionless transverse-to-the-stratification wavenumber $\\kappa=kh$, the magnetic field ...

  15. Simulation of the interaction between Alfven waves and fast particles

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Tamas Bela

    2014-02-18

    There is a wide variety of Alfven waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this wave-particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of Alfven waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the Alfven waves is derived by combining the reduced MHD equations. The Alfven wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the Alfven waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer

  16. Resonant behavior of MHD waves on magnetic flux tubes. IV - Total resonant absorption and MHD radiating eigenmodes

    Science.gov (United States)

    Goossens, Marcel; Hollweg, Joseph V.

    1993-01-01

    Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.

  17. Linear MHD Wave Propagation in Time-Dependent Flux Tube. III. Leaky Waves in Zero-Beta Plasma

    Science.gov (United States)

    Williamson, A.; Erdélyi, R.

    2016-01-01

    In this article, we evaluate the time-dependent wave properties and the damping rate of propagating fast magneto-hydrodynamic (MHD) waves when energy leakage into a magnetised atmosphere is considered. By considering a cold plasma, initial investigations into the evolution of MHD wave damping through this energy leakage will take place. The time-dependent governing equations have been derived previously in Williamson and Erdélyi (2014a, Solar Phys. 289, 899 - 909) and are now solved when the assumption of evanescent wave propagation in the outside of the waveguide is relaxed. The dispersion relation for leaky waves applicable to a straight magnetic field is determined in both an arbitrary tube and a thin-tube approximation. By analytically solving the dispersion relation in the thin-tube approximation, the explicit expressions for the temporal evolution of the dynamic frequency and wavenumber are determined. The damping rate is, then, obtained from the dispersion relation and is shown to decrease as the density ratio increases. By comparing the decrease in damping rate to the increase in damping for a stationary system, as shown, we aim to point out that energy leakage may not be as efficient a damping mechanism as previously thought.

  18. Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves

    Science.gov (United States)

    Zhai, Xiang

    This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and

  19. Ionospheric conductance distribution and MHD wave structure: observation and model

    Directory of Open Access Journals (Sweden)

    F. Budnik

    Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.

    Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.

  20. Global 3D MHD Simulations of Waves in Accretion Discs

    Directory of Open Access Journals (Sweden)

    Romanova M.M.

    2013-04-01

    Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  1. Nonlinear Alfvén wave propagating in ideal MHD plasmas

    Science.gov (United States)

    Zheng, Jugao; Chen, Yinhua; Yu, Mingyang

    2016-01-01

    The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.

  2. MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: igorsok@umich.edu [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2013-02-10

    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  3. Fast Deflagration Waves.

    Science.gov (United States)

    1980-07-01

    Fendell (1970) to finite Mach numbers, and uncovered the existence of very slow deflagration waves. JI.. -2- 2. The governing equations The governing...FlapmSI,$ Cambridge University Press. 2. Buckmaster, J. 1976. The quenching of deflagration vaves. Combust. Flme. 26, 151-162. 3. Bush, W.B. & Fendell , F.E

  4. Three-Dimensional MHD Models of Waves and Flows in Coronal Active Region Loops

    Science.gov (United States)

    Ofman, L.; Wang, T.; Davila, J. M.

    2011-12-01

    Recent observations show that slow magnetosonic waves are present in active region loops, and are often associated with subsonic up-flows of coronal material. In order to study the relation between up-flows and waves we develop a 3D MHD model of an idealized bi-polar active region with flows in coronal loops. The model is initiated with a dipole magnetic field and gravitationally stratified isothermal atmosphere. To model the effects of flares, coronal material is injected in small-scale regions at the base of the model active region. The up-flows have sub-sonic speeds of ˜100 km/s and are steady or periodic, producing higher density loops by filling magnetic flux-tubes with injected material. We find that the up-flows produce fast and slow magnetosonic waves that propagate in the coronal loops. We perform a parametric study of up-flow magnitude and periodicity, and the relation with the resulting waves. As expected, we find that the up-flow speed decreases with loop height due to the diverge of the flux tubes, while the slow magnetosonic speed is independent of height. When the amplitude of the driving pulses is increased above the sound speed, we find that slow shocks are produced in the loops. Using the results of the 3D MHD model we show that observed slow magnetosonic waves in active region loops can be driven by impulsive flare-produced up-flows at the transition region/corona interface of active regions.

  5. Spectral Line Non-thermal Broadening and MHD Waves in the Solar Corona

    Science.gov (United States)

    Zaqarashvili, T. V.

    2009-04-01

    The rapid temperature rise from the solar surface (6000 K) up to the corona (1 MK) and acceleration of solar wind particles still are unresolved problems in solar physics. The energy source for the coronal heating and the wind acceleration probably lies in the solar photosphere. MHD waves are believed to carry the photospheric energy into the corona. Recent observations from space based telescopes made significant progress in understanding the process of MHD wave propagation from the solar surface towards the corona. Some of MHD wave modes have been observed through intensity variations and Doppler shift oscillations in spectral lines. Another powerful mechanism is to detect the waves through the non-thermal broadening of spectral lines. The lecture gives the basic points of wave induced effects in solar coronal spectral lines and recent progress in wave observations through spectral line non-thermal broadening.

  6. Comment on "Dispersion relation for MHD waves in homogeneous plasma"

    CERN Document Server

    Chandra, Suresh; Kumthekar, B K; Sharma, Monika

    2009-01-01

    Pandey & Dwivedi (2007) again tried to claim that the dispersion relation for the given set of equations must be a sixth degree polynomial. Through a series of papers, they are unnecessarily creating confusion. In the present communication, we have shown how Pandey & Dwivedi (2007) are introducing an additional root, which is insignificant. Moreover, five roots of both the polynomials are common and they are sufficient for the discussion of propagation of slow-mode and fast-mode waves.

  7. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    Science.gov (United States)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  8. Finite Larmor radius influence on MHD solitary waves

    Directory of Open Access Journals (Sweden)

    E. Mjølhus

    2009-04-01

    Full Text Available MHD solitons are studied in a model where the usual Hall-MHD model is extended to include the finite Larmor radius (FLR corrections to the pressure tensor. The resulting 4-dimensional set of differential equations is treated numerically. In this extended model, the point at infinity can be of several types. Necessary for the existence of localized solutions is that it is either a saddle-saddle, a saddle-center, or, possibly, a focus-focus. In cases of saddle-center, numerical solutions for localized travelling structures have been obtained, and compared with corresponding results from the Hall-MHD model.

  9. A mode filter for plasma waves in the Hall-MHD approximation

    Directory of Open Access Journals (Sweden)

    C. Vocks

    Full Text Available A filter method is presented which allows a qualitative and quantitative identification of wave modes observed with plasma experiments on satellites. Hitherto existing mode filters are based on the MHD theory and thus they are restricted to low frequencies well below the ion cyclotron frequency. The present method is generalized to cover wave modes up to the characteristic ion frequencies. The spectral density matrix determined by the observations is decomposed using the eigenvectors of the linearized Hall-MHD equations. As the wave modes are dispersive in this formalism, a precise determination of the k->-vectors requires the use of multi-point measurements. Therefore the method is particularly relevant to multi-satellite missions. The method is tested using simulated plasma data. The Hall-MHD filter is able to identify the modes excited in the model plasma and to assign the correct energetic contributions. By comparison with the former method it is shown that the simple MHD filter leads to large errors if the frequency is not well below the ion cyclotron frequency. Further the range of validity of the linear theory is examined rising the simulated wave amplitudes.

    Key words. Magnetospheric physics (MHD waves and instabilities; plasma waves and instabilities

  10. Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes

    Science.gov (United States)

    Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.

    1995-01-01

    The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.

  11. On The Role of MHD Waves in Heating Localised Magnetic Structures

    Science.gov (United States)

    Erdélyi, R.; Nelson, C. J.

    2016-04-01

    Satellite and ground-based observations from e.g. SOHO, TRACE, STEREO, Hinode, SDO and IRIS to DST/ROSA, IBIS, CoMP, STT/CRISP have provided a wealth of evidence of waves and oscillations present in a wide range of spatial scales of the magnetised solar atmosphere. Our understanding about localised solar structures has been considerably changed in light of these high spatial and time resolution observations. However, MHD waves not only enable us to perform sub-resolution magneto-seismology of magnetic waveguides but are also potential candidates to carry and damp the necessary non-thermal energy in these localised waveguides. First, we will briefly outline the basic recent developments in MHD wave theory focussing on linear waves. Next, we discuss the role of the most frequently studied wave classes, including the Alfven, and magneto-acoustic kink and sausage waves. The current theoretical (and often difficult) interpretations of the detected solar atmospheric wave and oscillatory phenomena within the framework of MHD will be shown. Last, the latest reported observational findings of potential MHD wave flux, in terms of localised plasma heating, in the solar atmosphere is discussed, bringing us closer to solve the coronal heating problem.

  12. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  13. Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [ORNL; Bernholdt, David E [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, Randall B [ORNL; Breslau, Joshua [ORNL; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Klasky, Scott A [ORNL; Kruger, Scott E [ORNL; Ku, Long-Poe [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, David P [ORNL; Schnack, Dalton D [ORNL

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  14. Advances in Simulation of Wave Interaction with Extended MHD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; Abla, Gheni [ORNL; D' Azevedo, Ed F [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, Joshua [ORNL; Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  15. Advances in simulation of wave interactions with extended MHD phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D; D' Azevedo, E; Bernholdt, D E; Berry, L; Elwasif, W; Jaeger, E [Oak Ridge National Laboratory (United States); Abla, G; Choi, M [General Atomics (United States); Bateman, G [Lehigh University (United States); Bonoli, P [Plasma Science and Fusion Center, Massachusetts Institute of Technology (United States); Bramley, R; Foley, S [Indiana University (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory (United States); Harvey, R [CompX International (United States); Jenkins, T [University of Wisconsin (United States); Keyes, D, E-mail: batchelordb@ornl.go [Columbia University (United States)

    2009-07-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  16. Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Houlberg, Wayne A [ORNL; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Schissel, D. [General Atomics; Schnack, D. [University of Wisconsin; Wright, J. C. [Massachusetts Institute of Technology (MIT)

    2007-06-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).

  17. Integrated physics advances in simulation of wave interactions with extended MHD phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D B [ORNL (United States); D' Azevedo, E [ORNL (United States); Bateman, G [Lehigh (United States)] (and others)

    2007-07-15

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP)

  18. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-02-01

    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  19. Observational signatures of numerically simulated MHD waves in small-scale fluxtubes

    CERN Document Server

    Khomenko, E; Felipe, T

    2008-01-01

    We present some results obtained from the synthesis of Stokes profiles in small-scale flux tubes with propagating MHD waves. To that aim, realistic flux tubes showing internal structure have been excited with 5 min period drivers, allowing non-linear waves to propagate inside the magnetic structure. The observational signatures of these waves in Stokes profiles of several spectral lines that are commonly used in spectropolarimetric measurements are discussed.

  20. Shock-associated MHD waves - A model for interstellar density fluctuations

    Science.gov (United States)

    Spangler, Steven R.

    1988-01-01

    The possibility that the density fluctuations responsible for radio scintillations could be due to ion-beam-generated MHD waves near interstellar shock waves is discussed. This suggestion is inspired by spacecraft observations which reveal these phenomena near shocks in the solar system. The model quite naturally accounts for the scale on which these fluctuations occur; it is dictated by the wavelength of the unstable waves.

  1. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    Science.gov (United States)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  2. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as bein...... similar to that of the hull alone, but with higher wave amplitudes. Conventional propellers will cause increased wave heights of about 10%, whereas water jets will cause increased wave heights of 20-40% as compared to those of the naked monohull....

  3. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    Indian Academy of Sciences (India)

    M. K. Griffiths; V. Fedun; R.Erdélyi

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1–3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  4. Frequency and damping rate of fast sausage waves

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, S. Vasheghani; Van Doorsselaere, T.; Goossens, M. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Hornsey, C. [Centre for Fusion, Space, and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-02-01

    We investigate the frequency and damping rate of fast axisymmetric waves that are subject to wave leakage for a one-dimensional magnetic cylindrical structure in the solar corona. We consider the ideal magnetohydrodynamic (MHD) dispersion relation for axisymmetric MHD waves superimposed on a straight magnetic cylinder in the zero β limit, similar to a jet or loop in the solar corona. An analytic study accompanied by numerical calculations has been carried out to model the frequency, damping rate, and phase speed of the sausage wave around the cut-off frequency and in the long wavelength limit. Analytic expressions have been obtained based on equations around the points of interest. They are linear approximations of the dependence of the sausage frequency on the wave number around the cut-off wavelength for both leaky and non-leaky regimes and in the long wavelength limit. Moreover, an expression for the damping rate of the leaky sausage wave has been obtained both around the cut-off frequency and in the long wavelength limit. These analytic results are compared with numerical computations. The expressions show that the complex frequencies are mainly dominated by the density ratio. In addition, it is shown that the damping eventually becomes independent of the wave number in the long wavelength limit. We conclude that the sausage mode damping directly depends on the density ratios of the internal and external media where the damping declines in higher density contrasts. Even in the long wavelength limit, the sausage mode is weakly damped for high-density contrasts. As such, sausage modes could be observed for a significant number of periods in high-density contrast loops or jets.

  5. On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

    Directory of Open Access Journals (Sweden)

    L.-N. Hau

    2007-09-01

    Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

  6. Dispersive Magnetosonic Waves and Turbulence in the Heliosheath: Multi-Fluid MHD Reconstruction of Voyager 2 Observations

    Science.gov (United States)

    Zieger, B.; Opher, M.; Toth, G.

    2016-12-01

    Recently we demonstrated that our three-fluid MHD model of the solar wind plasma (where cold thermal solar wind ions, hot pickup ions, and electrons are treated as separate fluids) is able to reconstruct the microstructure of the termination shock observed by Voyager 2 [Zieger et al., 2015]. We constrained the unknown pickup ion abundance and temperature and confirmed the presence of a hot electron population at the termination shock, which has been predicted by a number of previous theoretical studies [e.g. Chasei and Fahr, 2014; Fahr et al., 2014]. We showed that a significant part of the upstream hydrodynamic energy is transferred to the heating of pickup ions and "massless" electrons. As shown in Zieger et al., [2015], three-fluid MHD theory predicts two fast magnetosonic modes, a low-frequency fast mode or solar wind ion (SW) mode and a high-frequency fast mode or pickup ion (PUI) mode. The coupling of the two ion populations results in a quasi-stationary nonlinear mode or oscilliton, which appears as a trailing wave train downstream of the termination shock. In single-fluid plasma, dispersive effects appear on the scale of the Debye length. However, in a non-equilibrium plasma like the solar wind, where solar wind ions and PUIs have different temperatures, dispersive effects become important on fluid scales [see Zieger et al., 2015]. Here we show that the dispersive effects of fast magnetosonic waves are expected on the scale of astronomical units (AU), and dispersion plays an important role producing compressional turbulence in the heliosheath. The trailing wave train of the termination shock (the SW-mode oscilliton) does not extend to infinity. Downstream propagating PUI-mode waves grow until they steepen into PUI shocklets and overturn starting to propagate backward. The upstream propagating PUI-mode waves result in fast magnetosonic turbulence and limit the downstream extension of the oscilliton. The overturning distance of the PUI-mode, where these waves

  7. Wave damping by MHD turbulence and its effect upon cosmic ray propagation in the ISM

    CERN Document Server

    Farmer, A J; Farmer, Alison J.; Goldreich, Peter

    2004-01-01

    Cosmic rays scatter off magnetic irregularities (Alfven waves) with which they are resonant, that is waves of wavelength comparable to their gyroradii. These waves may be generated either by the cosmic rays themselves, if they stream faster than the Alfven speed, or by sources of MHD turbulence. Waves excited by streaming cosmic rays are ideally shaped for scattering, whereas the scattering efficiency of MHD turbulence is severely diminished by its anisotropy. We show that MHD turbulence has an indirect effect on cosmic ray propagation by acting as a damping mechanism for cosmic ray generated waves. The hot (``coronal'') phase of the interstellar medium is the best candidate location for cosmic ray confinement by scattering from self-generated waves. We relate the streaming velocity of cosmic rays to the rate of turbulent dissipation in this medium, for the case in which turbulent damping is the dominant damping mechanism. We conclude that cosmic rays with up to 10^2 GeV could not stream much faster than the ...

  8. Determination of Transverse Density Structuring from Propagating MHD Waves in the Solar Atmosphere

    CERN Document Server

    Arregui, I; Pascoe, D J

    2013-01-01

    We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic (MHD) transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.

  9. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  10. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution < 0.1° and minimum spatial resolution ∼15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  11. Slow magnetosonic waves and fast flows in active region loops

    CERN Document Server

    Ofman, Leon; Davila, Joseph M

    2012-01-01

    Recent EUV spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (~100-300 km/s) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux-tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast mode waves. The phase speed of the slow magn...

  12. MHD oscillations and waves near a magnetic null line

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S.V.; Syrovatskii, S.I.

    1980-11-01

    An informative picture is drawn of the propagation of Alfven and magnetosonic waves in a two-dimensional magnetic field with a hyperbolic null point in the approximation of a cold plasma. The magnetosonic waves asymptotically transform into cylindrical waves. The wave amplitude increases toward the null point. A distortion of the plasma boundary produces excitation of noncylindrical magnetosonic waves. If the frequency of these waves is below the critical value, they will not penetrate into the plasma. Dissipation leads to a reflection of magnetosonic waves near the null line. Any arbitrarily slight dissipation leads to the appearance of a discrete spectrum of weakly damped Alfven oscillations. Oscillations of this type also occur in adiabatic confinement systems in which the magnetic field has null points. The nonlinear distortion of magnetosonic waves which leads to wave breaking and to the appearance of weak shock waves is studied. The amplitude of the magnetic field perturbations in a shock wave propagating toward the center asymptotically approaches a constant value.

  13. Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model

    Directory of Open Access Journals (Sweden)

    T. R. Sun

    2012-08-01

    Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.

  14. Active toroidal field ripple compensation and MHD feedback control coils in FAST

    Energy Technology Data Exchange (ETDEWEB)

    Ramogida, G., E-mail: giuseppe.ramogida@enea.it [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Calabrò, G.; Cocilovo, V.; Crescenzi, F.; Crisanti, F.; Cucchiaro, A. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Di Gironimo, G. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Fresa, R. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Fusco, V. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Martin, P. [Associazione Euratom-ENEA, Consorzio RFX, Corso Stati Uniti 4, I-35127, Padova (Italy); Mastrostefano, S. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Mozzillo, R. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Nuzzolese, F. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Renno, F. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Rita, C. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Villone, F. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: ► Active Ripple Compensating System (ARCS) consists of 18 off-centre poloidal coils between plasma and Toroidal Field Coils. ► The current in ARCS, adjustable and opposite to that in TFC, reduces the toroidal ripple below 0.2% at any toroidal fields. ► Feedback Active Control System (FACS) consists of two arrays of 9 in-vessel saddle coils fed by an MHD feedback controller. ► FACS allows robust feedback stabilization of low toroidal number MHD modes enabling plasma operations at low safety factor. ► ARCS and FACS are included in the whole FAST model and first engineering assessments show their feasibility and capability. -- Abstract: The Fusion Advanced Study Torus (FAST) has been proposed as a high magnetic field, compact size tokamak providing a flexible integrated environment to study physics and technology issues in ITER and DEMO relevant conditions. FAST has a quite large natural toroidal field ripple (around 1.5%) due to its compactness and to the number of access ports: this ripple must be lowered to an acceptable level to allow safe operations and a good confinement quality. An Active Ripple Compensating System (ARCS) has been designed, based on a set of poloidal coils placed between the plasma chamber and the Toroidal Field Coils (TFCs). These ARCS coils will be fed with adjustable currents, opposite in direction respect to the TFC currents, and will allow lowering the ripple up to zero and beyond. The CAD model of FAST including the ARCS coils has been completed and preliminary electromagnetic and thermal analyses have been carried out. Moreover, a Feedback Active Control System (FACS) composed of two arrays of in-vessel saddle coils has been designed to allow safe high plasma current, low safety factor operation and to mitigate possibly large ELMs effects in FAST. These FACS coils will be fed by a feedback system to control MHD modes: a first engineering assessment of the current requirements has been carried out.

  15. The generation and damping of propagating MHD kink waves in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R. J. [Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Hillier, A., E-mail: richard.morton@northumbria.ac.uk, E-mail: g.verth@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Kwasan and Hida Observatories, Kyoto University, 17 Ohmine-cho Kita Kazan, Yamashina-ku, Kyoto City, Kyoto 607-8471 (Japan)

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  16. Travelling Waves in Hall-MHD and the Ion-Acoustic Shock Structure

    CERN Document Server

    Hagstrom, George I

    2013-01-01

    Hall-MHD is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar travelling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, an...

  17. On the properties of slow mhd sausage waves within small-scale photospheric magnetic structures

    CERN Document Server

    Freij, N; Morton, R J; Ruderman, M S; Karlovsky, V; Erdekyi, R

    2015-01-01

    The presence of magneto-acoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magneto-acoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope (DOT) and Rapid Oscillations in the Solar Atmosphere (ROSA) instruments, we captured two series of high-resolution intensity images with short cadence of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to ...

  18. Nature and dynamics of overreflection of Alfven waves in MHD shear flows

    CERN Document Server

    Gogichaishvili, D; Chanishvili, R; Lominadze, J

    2014-01-01

    Our goal is to gain new insights into the physics of wave overreflection phenomenon in MHD nonuniform/shear flows changing the existing trend/approach of the phenomenon study. The performed analysis allows to separate from each other different physical processes, grasp their interplay and, by this way, construct the basic physics of the overreflection in incompressible MHD flows with linear shear of mean velocity, ${\\bf U}_0=(Sy,0,0)$, that contain two different types of Alfv${\\rm \\acute{e}}$n waves. These waves are reduced to pseudo- and shear shear-Alfv${\\rm \\acute{e}}$n waves when wavenumber along $Z$-axis equals zero (i.e., when $k_z=0$). Therefore, for simplicity, we labelled these waves as: P-Alfv${\\rm \\acute{e}}$n and S-Alfv${\\rm \\acute{e}}$n waves (P-AWs and S-AWs). We show that: (1) the linear coupling of counter-propagating waves determines the overreflection, (2) counter-propagating P-AWs are coupled with each other, while counter-propagating S-AWs are not coupled with each other, but are asymmetri...

  19. Determining the Importance of Energy Transfer between Magnetospheric Regions via MHD Waves using Constellations of Spacecraft

    Science.gov (United States)

    Cattell, Cynthia A.

    2004-01-01

    This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.

  20. Waves and Instabilities in Accretion Disks MHD Spectroscopic Analysis

    CERN Document Server

    Keppens, R; Goedbloed, J P

    2002-01-01

    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.

  1. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  2. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  3. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere

    Science.gov (United States)

    Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  4. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.

    Science.gov (United States)

    Claudepierre, S G; Toffoletto, F R; Wiltberger, M

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  5. Nonlinear mhd simulations of wave dissipation in flux tubes

    NARCIS (Netherlands)

    Poedts, S.; Toth, G.; Belien, A. J. C.; Goedbloed, J. P.

    1997-01-01

    The phase mixing and resonant dissipation of Alfven waves is studied in both the 'closed' magnetic loops and the 'open' coronal holes observed in the hot solar corona. The resulting energy transfer from large to small length scales contributes to the heating of these magnetic str

  6. MHD waves on solar magnetic flux tubes - Tutorial review

    Science.gov (United States)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  7. 3D WKB solution for fast magnetoacoustic wave behaviour around an X-line

    CERN Document Server

    McLaughlin, J A; Regnier, S; Spoors, D L

    2016-01-01

    We study the propagation of a fast magnetoacoustic wave in a 3D magnetic field created from two magnetic dipoles. The magnetic topology contains an X-line. We aim to contribute to the overall understanding of MHD wave propagation within inhomogeneous media, specifically around X-lines. We investigate the linearised, 3D MHD equations under the assumptions of ideal and cold plasma. We utilise the WKB approximation and Charpit's method during our investigation. It is found that the behaviour of the fast magnetoacoustic wave is entirely dictated by the local, inhomogeneous, equilibrium Alfv\\'en speed profile. All parts of the wave experience refraction during propagation, where the magnitude of the refraction effect depends on the location of an individual wave element within the inhomogeneous magnetic field. The X-line, along which the Alfv\\'en speed is identically zero, acts as a focus for the refraction effect. There are two main types of wave behaviour: part of the wave is either trapped by the X-line or esca...

  8. Resonant absorption of kink MHD waves by magnetic twist in coronal loops

    CERN Document Server

    Ebrahimi, Z

    2015-01-01

    There is ample evidences of twisted magnetic structures in the corona. This motivates us to consider the magnetic twist as the cause of Alfven frequency continuum in coronal loops, which can support the resonant absorption as the rapid damping mechanism for the observed coronal kink MHD oscillations. For a straight cylindrical compressible zero-beta thin flux tube with a magnetic twist in a thin boundary and straight magnetic field in the interior and exterior regions as well as a step-like radial density profile, we derive the dispersion relation and solve it analytically. Consequently, we obtain the frequencies and damping rates of the fundamental (l=1) and first/second overtones (l=2,3) kink (m=1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can achieve deviations from P_1/P_2=2 and P_1/P_3=3 of the same order of magnitude as in the observations.

  9. ON THE PROPERTIES OF SLOW MHD SAUSAGE WAVES WITHIN SMALL-SCALE PHOTOSPHERIC MAGNETIC STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Freij, N.; Ruderman, M. S.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Dorotovič, I. [Slovak Central Observatory, P.O. Box 42, SK-94701 Hurbanovo (Slovakia); Morton, R. J. [Mathematical Modelling Lab, Northumbria University, Pandon Building, Camden Street, Newcastle upon Tyne, NE1 8ST (United Kingdom); Karlovský, V., E-mail: n.freij@sheffield.ac.uk, E-mail: ivan.dorotovic@suh.sk, E-mail: richard.morton@northumbria.ac.uk, E-mail: m.s.ruderman@sheffield.ac.uk, E-mail: astrokar@hl.cora.sk, E-mail: robertus@sheffield.ac.uk [Hlohovec Observatory and Planetarium, Sládkovičova 41, SK-92001 Hlohovec (Slovakia)

    2016-01-20

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  10. On the Properties of Slow MHD Sausage Waves within Small-scale Photospheric Magnetic Structures

    Science.gov (United States)

    Freij, N.; Dorotovič, I.; Morton, R. J.; Ruderman, M. S.; Karlovský, V.; Erdélyi, R.

    2016-01-01

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  11. A global 3-D MHD model of the solar wind with Alfven waves

    Science.gov (United States)

    Usmanov, A. V.

    1995-01-01

    A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.

  12. Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow

    Science.gov (United States)

    Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi

    1992-01-01

    The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.

  13. Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models

    Science.gov (United States)

    Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.

    1997-01-01

    Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.

  14. "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    CERN Document Server

    Del Sarto, Daniele; Tenerani, Anna; Velli, Marco

    2015-01-01

    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfv\\`en time calculated on the macroscopic scale (Pucci and Velli (2014)). For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are...

  15. On Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves

    CERN Document Server

    Pelletier, Guy; Marcowith, Alexandre

    2008-01-01

    Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this paper then studies the amplification of a pre-existing magnetic field through the streaming of cosmic rays upstream of a relativistic shock wave. The magnetic field is assumed to be perpendicular in the shock front frame, as generally expected in the limit of large shock Lorentz factor. In the MHD regime, compressive instabilities seeded by the net cosmic-ray charge in the shock precursor (as seen in the shock front frame) develop on the shortest spatial scales but saturate at a moderate level $\\delta B/B \\sim 1$, which is not sufficient for Fermi acceleration. As we argue, it is possible that other instabilities outsid...

  16. Numerical Simulation of Excitation and Propagation of Helioseismic MHD Waves in Magnetostatic Models of Sunspots

    CERN Document Server

    Parchevsky, K; Khomenko, E; Olshevsky, V; Collados, M

    2010-01-01

    We present comparison of numerical simulations of propagation of MHD waves,excited by subphotospheric perturbations, in two different ("deep" and "shallow") magnetostatic models of the sunspots. The "deep" sunspot model distorts both the shape of the wavefront and its amplitude stronger than the "shallow" model. For both sunspot models, the surface gravity waves (f-mode) are affected by the sunspots stronger than the acoustic p-modes. The wave amplitude inside the sunspot depends on the photospheric strength of the magnetic field and the distance of the source from the sunspot axis. For the source located at 9 Mm from the center of the sunspot, the wave amplitude increases when the wavefront passes through the central part of the sunspot. For the source distance of 12 Mm, the wave amplitude inside the sunspot is always smaller than outside. For the same source distance from the sunspot center but for the models with different strength of the magnetic field, the wave amplitude inside the sunspot increases with...

  17. Fast wave heating in a mirror during plasma build-up

    OpenAIRE

    Moiseenko, Vladimir; Dreval, N.; Ågren, Olov; Stepanov, K.; A. Burdakov; Kalinin, P.; Tereshin, V.

    2010-01-01

    A heating method for partially ionized plasma has been described in reference [V.E. Moiseenko, Sov. J. Plasma Phys. 12, 427 (1986)]. It exploits the collisional damping of fast waves that is large owing to the high rate of charge exchange collisions. Since the time of heating is limited by the duration of neutral gas ionization, the heating needs to be strong enough to achieve a high final ion temperature. This heating method has been studied numerically in the framework of MHD-like (magneto-...

  18. Three-Dimensional Propagation of Magnetohydrodynamic Waves in the Solar Chromosphere and Corona

    Institute of Scientific and Technical Information of China (English)

    李波; 郑惠南; 王水

    2002-01-01

    We study the three-dimensional magnetohydrodynamic (MHD) wave propagation in the solar atmosphere consisting of the chromosphere and corona. Pressure enhancement and velocity shear are implemented simultaneously at the bottom of the chromosphere. The global propagation of the incurred MHD waves, including fast-mode and slow-mode magnetoacoustic waves as well as Alfvén wave, can be identified. Wave front positions obtained numerically with respect to specific waves fit well with those calculated with local MHD wave speeds.

  19. Heat transfer with thermal radiation on MHD particle-fluid suspension induced by metachronal wave

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Ellahi, R.

    2017-09-01

    In this article, effects of heat transfer on particle-fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.

  20. Heat transfer with thermal radiation on MHD particle–fluid suspension induced by metachronal wave

    Indian Academy of Sciences (India)

    M M BHATTI; A ZEESHAN; R ELLAHI

    2017-09-01

    In this article, effects of heat transfer on particle–fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm’s law and Roseland’s approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.

  1. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    Science.gov (United States)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-11-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  2. A new type of MHD activity in JET ICRF-only discharges with high fast-ion energy contents

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M.J. [JET Joint Undertaking, Abingdon, Oxfordshire (United Kingdom); Helsinki University of Technology, Association Euratom-Tekes (Finland); Sharapov, S.; Alper, B.; Gondhalekar, A.; McDonald, D.C. [JET Joint Undertaking, Abingdon, Oxfordshire (United Kingdom)

    2000-12-01

    The question of sawtooth stabilization at very high fast-ion energy contents has been addressed in discharges carried out in the JET tokamak with ion cyclotron resonance frequency (ICRF) heating and varying plasma density, controlled by deuterium gas puffs. In these experiments dramatic differences in the sawtooth behaviour have been observed. When the plasma density n{sub e} decreases below a certain threshold, the sawtooth frequency and the crash duration time increase by a factor of five. Since the fast-ion energy content increases with decreasing n{sub e} due to the inverse proportionality of the fast-ion slowing-down time on n{sub e}, the threshold in n{sub e} corresponds to a threshold in the fast-ion energy content. In the present experiments, this threshold is reached when the fast-ion energy contribution to the total plasma diamagnetic energy content becomes larger than 45%. The sawtooth activity with short sawtooth free period is accompanied by MHD activity, with a toroidal mode number n = 1 at frequencies between 55 and 65 kHz. This activity is interpreted as an energetic particle fishbone mode that is resonant with the ICRF-driven fast ions. The experimental results appear to be consistent with the stability diagram for sawtooth and fishbone modes (White 1989 Theory of Tokamak Plasmas (Amsterdam: North-Holland)), exploring the part of the diagram with a very large fast-ion population. (author)

  3. A new type of MHD activity in JET ICRF-only discharges with high fast-ion energy contents

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M.; Sharapov, S.; Alper, B. [and others

    2000-12-01

    The question of sawtooth stabilisation at very high fast ion energy contents has been addressed in discharges carried out in the JET tokamak with ion cyclotron resonance frequency (ICRF) heating and varying plasma density, controlled by deuterium gas puffs. In these experiments dramatic differences in the sawtooth behaviour have been observed. When the plasma density n{sub e} decreases below a certain threshold, the sawtooth frequency and the crash duration time increase by a factor of five. Since the fast-ion energy content increases with decreasing n{sub e} due to the inverse proportionality of the fast-ion slowing-down time on n{sub e}, the threshold in n{sub e} corresponds to a threshold in the fast ion energy content. In the present experiments, this threshold is reached when the fast ion energy contribution to the total plasma diamagnetic energy content becomes larger than 45%. The sawtooth activity with short sawtooth free period is accompanied by MHD activity, with a toroidal mode number n = 1 at frequencies between 55-65 kHz. This activity is interpreted as an energetic particle fishbone mode that is resonant with the ICRF-driven fast ions. The experimental results appear to be consistent with the stability diagram for sawtooth and fishbone modes [White, Theory of Tokamak Plasmas (North-Holland, Amsterdam, 1989)], exploring the part of the diagram with a very large fast ion population. (author)

  4. A new type of MHD activity in JET ICRF-only discharges with high fast-ion energy contents

    Science.gov (United States)

    Mantsinen, M. J.; Sharapov, S.; Alper, B.; Gondhalekar, A.; McDonald, D. C.

    2000-12-01

    The question of sawtooth stabilization at very high fast-ion energy contents has been addressed in discharges carried out in the JET tokamak with ion cyclotron resonance frequency (ICRF) heating and varying plasma density, controlled by deuterium gas puffs. In these experiments dramatic differences in the sawtooth behaviour have been observed. When the plasma density ne decreases below a certain threshold, the sawtooth frequency and the crash duration time increase by a factor of five. Since the fast-ion energy content increases with decreasing ne due to the inverse proportionality of the fast-ion slowing-down time on ne, the threshold in ne corresponds to a threshold in the fast-ion energy content. In the present experiments, this threshold is reached when the fast-ion energy contribution to the total plasma diamagnetic energy content becomes larger than 45%. The sawtooth activity with short sawtooth free period is accompanied by MHD activity, with a toroidal mode number n = 1 at frequencies between 55 and 65 kHz. This activity is interpreted as an energetic particle fishbone mode that is resonant with the ICRF-driven fast ions. The experimental results appear to be consistent with the stability diagram for sawtooth and fishbone modes (White 1989 Theory of Tokamak Plasmas (Amsterdam: North-Holland)), exploring the part of the diagram with a very large fast-ion population.

  5. Nonlinear resonant absorption of fast magnetoacoustic waves in strongly anisotropic and dispersive plasmas

    CERN Document Server

    Clack, C

    2009-01-01

    The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and dispersive plasmas, developed for slow resonance by Clack and Ballai [Phys. Plasmas, 15, 2310 (2008)] and Alfv\\'en resonance by Clack \\emph{et al.} [A&A,494, 317 (2009)], is used to study the weakly nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar plasma. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localized slow or Alfv\\'{e}n dissipative layer and are partly reflected, dissipated and transmitted by this region. The nonlinearity parameter defined by Clack and Ballai (2008) is assumed to be small and a regular perturbation method is used to obtain analytical solutions in the slow dissipative layer. The effect of dispersion in the slow dissipative layer is to further decrease the coefficient of ener...

  6. Numerical study of shock waves in non-ideal magnetogasdynamics (MHD

    Directory of Open Access Journals (Sweden)

    Addepalli Ramu

    2016-01-01

    Full Text Available One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindrical or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transformations reduce the governing equations into ordinary differential equations of Poincare type. In the present work, McQueen and Royce equations of state (EOS have been considered with suitable material constants and the spherical and cylindrical cases are worked out in detail to investigate the behavior and the influence on the shock wave propagation by energy input and β(ρ/ρ0, the measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter pressure is neglected. The numerical technique applied in this paper provides a global solution to the implosion problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is shown that increasing β(ρ/ρ0 does not automatically decelerate the shock front but the velocity and pressure behind the shock front increases quickly in the presence of the magnetic field and decreases slowly and become constant. This becomes true whether the piston is accelerated, is moving at constant speed or is decelerated. These results are presented through the illustrative graphs and tables. The magnetic field effects on the flow variables through a medium and total energy under the influence of strong magnetic field are also presented.

  7. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  8. Primordial flares, flux tubes, MHD waves in the early universe and genesis of cosmic gamma ray bursts

    CERN Document Server

    Hiremath, K M

    2009-01-01

    It is conjectured that energy sources of the gamma ray bursts are similar to energy sources which trigger solar and stellar transient activity phenomena like flares, plasma accelerated flows in the flux tubes and, dissipation of energy and acceleration of particles by the MHD waves. Phenomenologically we examine in detail the following energy sources which may trigger gamma ray bursts : (i) cosmic primordial flares which could be solar flare like phenomena in the region of inter galactic or inter galactic cluster regions, (ii) primordial magnetic flux tubes that might have been formed from the convective collapse of the primordial magnetic flux (iii) nonlinear interaction and dissipation of MHD waves that are produced from the perturbations of large-scale inter galactic or inter cluster magnetic field of primordial origin. We examine in detail each of the afore mentioned phenomena keeping in mind that whether such processes are responsible for energy sources of the gamma ray bursts. By considering the similar...

  9. The Foggy EUV Corona and Coronal Heating by MHD Waves From Explosive Reconnection Events

    Science.gov (United States)

    Moore, R. L.; Cirtain, J. W.; Falconer, D. A.

    2008-05-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, Cirtain et al (2006, Sol. Phys., 239, 295) found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete-loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e.g., the 0.1 arcsec/pixel resolution of the Hi-C sounding- rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and

  10. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    Science.gov (United States)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  11. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  12. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited).

    Science.gov (United States)

    Chen, J; Zhuang, G; Li, Q; Liu, Y; Gao, L; Zhou, Y N; Jian, X; Xiong, C Y; Wang, Z J; Brower, D L; Ding, W X

    2014-11-01

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5-3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25-0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  13. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  14. Properties of the First-order Fermi acceleration in fast magnetic reconnection driven by turbulence in collisional MHD flows

    CERN Document Server

    del Valle, M V; Kowal, G

    2016-01-01

    Fast magnetic reconnection may occur in different astrophysical sources, producing flare-like emission and particle acceleration. Currently, this process is being studied as an efficient mechanism to accelerate particles via a first-order Fermi process. In this work we analyse the acceleration rate and the energy distribution of test particles injected in three-dimensional magnetohydrodynamical (MHD) domains with large-scale current sheets where reconnection is made fast by the presence of turbulence. We study the dependence of the particle acceleration time with the relevant parameters of the embedded turbulence, i.e., the Alfv\\'en speed $V_{\\rm A}$, the injection power $P_{\\rm inj}$ and scale $k_{\\rm inj}$ ($k_{\\rm inj} = 1/l_{\\rm inj}$). We find that the acceleration time follows a power-law dependence with the particle kinetic energy: $t_{acc} \\propto E^{\\alpha}$, with $0.2 < \\alpha < 0.6$ for a vast range of values of $c / V_{\\rm A} \\sim 20 - 1000$. The acceleration time decreases with the Alfv\\'en...

  15. The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution

    Directory of Open Access Journals (Sweden)

    Marc Raimondo

    2007-04-01

    Full Text Available This paper provides an introduction to a software package called waved making available all code necessary for reproducing the figures in the recently published articles on the WaveD transform for wavelet deconvolution of noisy signals. The forward WaveD transforms and their inverses can be computed using any wavelet from the Meyer family. The WaveD coefficients can be depicted according to time and resolution in several ways for data analysis. The algorithm which implements the translation invariant WaveD transform takes full advantage of the fast Fourier transform (FFT and runs in O(n(log n2

  16. Magnetoacoustic Waves in the Solar Stratified Atmosphere

    Institute of Scientific and Technical Information of China (English)

    郑惠南; 王水; 吴式灿; 李波

    2001-01-01

    The propagation of magnetoacoustic waves in the solar atmosphere consisting of the photosphere, chromosphere and corona has been studied numerically by time-dependent multi-dimensional magnetohydrodynamic (MHD) simulation. Pressure disturbances are introduced at the bottom of the chromosphere and at the bottom of the corona, respectively. The computational results show that incurred fast and slow MHD waves propagate away from the source of the disturbances. The fast MHD wave propagates as an expansive wave in the radial direction, while the slow one steepens and it may evolve into a slow shock. We suggest that the extreme ultraviolet imaging telescope wave observed by the SOHO and Moreton wave are a fast MHD wave propagating in the corona and in the chromosphere, respectively.

  17. Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas

    Science.gov (United States)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.

    2016-12-01

    The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.

  18. Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO-AIA

    Science.gov (United States)

    Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.

    2012-01-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  19. Instabilities of MHD Waves Produced by Coupling of Rotation and Gradient of Magnetic Field and its Possible Application in the Galactic Central Region

    CERN Document Server

    Das, Ipsita

    2008-01-01

    An analysis of MHD wave propagating in a gravitating and rotating medium permeated by non-uniform magnetic field has been done. It has been found that the Gradient of Magnetic Field when coupled with Rotation becomes capable to generate few instabilities (Temporal or Spatial) leading to the damping or amplification of MHD waves. The Jean's criterion is not sufficient for stability always. Rather, the waves will suffer instability unless their wave length (frequency) is less (greater) than certain critical values. Otherwise, those will smoothly propagate outward. Out of different scenarioes depending on the direction of the magnetic field, its gradient, rotation and wave propagation three important Special Cases have been discussed and different stability criteria have been derived. Finally, using the above theory we have obtained the stability/instability criteria for the waves moving parallel and perpendicular to the galactic plane in the Core and Periphery of the Central Region of Galaxy (C.R.G.) due to the...

  20. MHD wave propagation from the sub-photosphere to the corona in an arcade-shaped magnetic field with a null point

    CERN Document Server

    Santamaria, Irantzu C; Collados, Manuel

    2015-01-01

    The aim of this work is to study the energy transport by means of MHD waves propagating in quiet Sun magnetic topology from layers below the surface to the corona. Upward propagating waves find obstacles, such as the equipartition layer with plasma b=1 and the transition region, and get converted, reflected and refracted. Understanding the mechanisms by which MHD waves can reach the corona can give us information about the solar atmosphere and the magnetic structures. We carry out two-dimensional numerical simulations of wave propagation in a magnetic field structure that consists of two vertical flux tubes separated by an arcade shaped magnetic field. This configuration contains a null point in the corona, that significantly modifies the behaviour of the waves. We describe in detail the wave propagation through the atmosphere under different driving conditions. We also present the spatial distribution of the mean acoustic and magnetic energy fluxes and the spatial distribution of the dominant frequencies in ...

  1. Direct Comparison of a Solar Moreton Wave, EUV Wave and CME (Preprint)

    Science.gov (United States)

    2013-10-30

    Veronig et al. 2010) show that other traveling EIT disturbances definitely are freely propagating MHD waves.” The latest studies from STEREO and SDO...one was reported). From an analytic model of the Moreton wave on 2005 January 17, Temmer et al. (2009) concluded that the wave was driven either...propagating EUV disturbances were identified as fast–mode magnetohydrodynamic ( MHD ) waves. They also identified a slow bright wave behind the fast

  2. Nonlinear fast magnetoacoustic wave interaction with 2D magnetic X-points in the ion cyclotron range of frequencies

    CERN Document Server

    Threlfall, J W; De Moortel, I; McClements, K G; Arber, T D

    2012-01-01

    Context. This paper investigates the role of the Hall term in the propagation and dissipation of waves which interact with 2D magnetic X-points and considers the effect of the Hall term on the nature of the resulting reconnection. Aims. The goal is to determine how the evolution of a nonlinear fast magnetoacoustic wave pulse, and the behaviour of the oscillatory reconnection which results from the interaction of the pulse with a line-tied 2D magnetic X-point, is affected by the Hall term in the generalised Ohm's law. Methods. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (di) in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Results. In general, the fast wave is coupled to a shear wave and, for finite di, to whistler and ion cyclotron waves. Dispersive whistler effects...

  3. Geometry of fast magnetosonic rays, wavefronts and shock waves

    Science.gov (United States)

    Núñez, Manuel

    2016-11-01

    Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes.

  4. Heating and Acceleration of the Fast Solar Wind by Alfvén Wave Turbulence

    Science.gov (United States)

    van Ballegooijen, A. A.; Asgari-Targhi, M.

    2016-04-01

    We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation and includes the effects of wave pressure on the solar wind outflow. Alfvén waves are launched at the coronal base and reflect at various heights owing to variations in Alfvén speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counterpropagating Alfvén waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfvén speed vary smoothly with height, resulting in minimal wave reflections and low-energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formula is proposed. In the second model we introduce additional density variations along the flux tube with a correlation length of 0.04 R⊙ and with relative amplitude of 10%. These density variations simulate the effects of compressive MHD waves on the Alfvén waves. We find that such variations significantly enhance the wave reflection and thereby the turbulent dissipation rates, producing enough heat to maintain the background atmosphere. We conclude that interactions between Alfvén and compressive waves may play an important role in the turbulent heating of the fast solar wind.

  5. Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave

    Science.gov (United States)

    Dryer, M.; Wu, S. T.; Han, S. M.

    1986-01-01

    A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.

  6. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    Science.gov (United States)

    2007-09-30

    1) is a natural two-space-dimension extension of the KdV equation . The periodic KP solutions include directional spreading in the wave field: y η...of the nonlinear preprocessor in the new approach for obtaining numerical solutions to nonlinear wave equations . I will now do so, but without many...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  7. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.;

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....

  8. The energy associated with MHD waves generation in the solar wind plasma

    Science.gov (United States)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  9. Secondary Fast Magnetoacoustic Waves Trapped in Randomly Structured Plasmas

    Science.gov (United States)

    Yuan, Ding; Li, Bo; Walsh, Robert W.

    2016-09-01

    Fast magnetoacoustic waves are an important tool for inferring parameters of the solar atmosphere. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas that mimic the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the speed of the fast wave, we quantify the properties of secondary waves by examining the dependence of the average temporal period (\\bar{p}) on the initial pulse width (w 0) and studying the density contrast ({δ }ρ ) and correlation length (L c ) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, {δ }ρ does not alter \\bar{p} significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when {δ }ρ is small but have a smoothing effect when {δ }ρ is sufficiently large. We found that \\bar{p} scales linearly with L c and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of \\bar{p}, broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and the background plasma. Our study may find applications in magnetohydrodynamic seismology by exploiting the secondary waves detected in the dimming regions after coronal mass ejections or extreme ultraviolet waves.

  10. From MHD regime to quiescent non-inductive discharges in Tore Supra: experimental observations and MHD modelling

    Science.gov (United States)

    Maget, P.; Huysmans, G. T. A.; Lütjens, H.; Ottaviani, M.; Moreau, Ph; Ségui, J.-L.

    2009-06-01

    Attempts to run non-inductive plasma discharges on Tore Supra sometimes fail due to the triggering of magneto-hydro-dynamic (MHD) instabilities that saturate at a large amplitude, producing degraded confinement and loss of wave driven fast electrons (the so-called MHD regime (Maget et al 2005 Nucl. Fusion 45 69-80)). In this paper we investigate the transition to this soft (in the sense of non-disruptive) MHD limit from experimental observations, and compare it with non-linear code predictions. Such a comparison suggests that different non-linear regimes, with periodic relaxations or saturation, are correctly understood. However, successful non-inductive discharges without detectable magnetic island at q = 2 cannot be reproduced if realistic transport coefficients are used in the computation. Additional physics seems mandatory for explaining these discharges, such as diamagnetic effects, that could also justify cases of abrupt transition to the MHD regime.

  11. Fast Evaluation of Ship Responses in Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2004-01-01

    The aim of the present paper is to provide a rational and efficient procedure able to predict the design wave-induced motions, accelerations and loads with sufficient engineering accuracy in the conceptual design phase and in risk assessment. The procedure relies only on the following main parame...... parameters of the ship: Length, breadth, draught, block coefficient and water plane area together with the operational profile. The formulas are semi-analytical and the calculations can be easily done using a standard spreadsheet program....

  12. How fast is the wave function collapse?

    CERN Document Server

    Ignatiev, A Yu

    2012-01-01

    Using complex quantum Hamilton-Jacobi formulation, a new kind of non-linear equations is proposed that have almost classical structure and extend the Schroedinger equation to describe the collapse of the wave function as a finite-time process. Experimental bounds on the collapse time are reported (of order 0.1 ms to 0.1 ps) and its convenient dimensionless measure is introduced. This parameter helps to identify the areas where sensitive probes of the possible collapse dynamics can be done. Examples are experiments with Bose-Einstein condensates, ultracold neutrons or ultrafast optics.

  13. Secondary fast magnetoacoustic waves trapped in randomly structured plasmas

    CERN Document Server

    Yuan, Ding; Walsh, Robert W

    2016-01-01

    Fast magnetoacoustic wave is an important tool for inferring solar atmospheric parameters. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas mimicking the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the fast wave speed, we quantify the properties of secondary waves by examining the dependence of the average temporal period ($\\bar{p}$) on the initial pulse width ($w_0$) as well as the density contrast ($\\delta_\\rho$) and correlation length ($L_c$) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, $\\delta_\\rho$ does not alter $\\bar{p}$ significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when $\\delta_\\rho$ is small but have a smoothing effect when $\\delta_\\rho$ is suffic...

  14. Fast cooling techniques for gravitational wave antennas

    CERN Document Server

    Furtado, S R

    2002-01-01

    The resonant-mass technique for the detection of gravitational waves may involve, in the near future, the cooling of very large masses (about 100 tons) from room temperature (300 K) to extreme cryogenic temperatures (20 mK). To cool these detectors to cryogenic temperatures an exchange gas (helium) is used, and the heat is removed from the antenna to the cold reservoir by thermal conduction and natural convection. With the current technique, cooling times of about 1 month can be obtained for cylindrical bar antennas of 2.5 tons. Should this same technique be used to cool a 100 ton spherical antenna the cooling time would be about 10 months, making the operation of these antennas impracticable. In this paper, we study the above-mentioned cooling technique and others, such as thermal switching and forced convection from room temperature to liquid nitrogen temperature (77 K) using an aluminium truncated icosahedron of 19 kg weight and 25 cm diameter.

  15. Fast Gravitational Wave Radiometry using Data Folding

    CERN Document Server

    Ain, Anirban; Mitra, Sanjit

    2015-01-01

    Gravitational Waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole dataset for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and non-stationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a co...

  16. On Plasma Rotation Induced by Traveling Fast Alfvin Waves

    Energy Technology Data Exchange (ETDEWEB)

    F.W. Perkins; R.B. White; and V.S. Chan

    2001-08-09

    Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.

  17. Bistability of Slow and Fast Traveling Waves in Fluid Mixtures

    CERN Document Server

    Hollinger, S; Lücke, M; Hollinger, St.

    1997-01-01

    The appearence of a new type of fast nonlinear traveling wave states in binary fluid convection with increasing Soret effect is elucidated and the parameter range of their bistability with the common slower ones is evaluated numerically. The bifurcation behavior and the significantly different spatiotemporal properties of the different wave states - e.g. frequency, flow structure, and concentration distribution - are determined and related to each other and to a convenient measure of their nonlinearity. This allows to derive a limit for the applicability of small amplitude expansions. Additionally an universal scaling behavior of frequencies and mixing properties is found. PACS: 47.20.-k, 47.10.+g, 47.20.Ky

  18. Nonlinear fast sausage waves in homogeneous magnetic flux tubes

    Science.gov (United States)

    Mikhalyaev, Badma B.; Ruderman, Michael S.

    2015-12-01

    > We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.

  19. Coexistence of weak and strong wave turbulence in incompressible Hall MHD

    Science.gov (United States)

    Meyrand, Romain; Kiyani, Khurom; Galtier, Sebastien

    2016-04-01

    We report a numerical investigation of 3D Hall Magnetohydrodynamic turbulence with a strong mean magnetic field. By using a helicity decomposition and a cross-bicoherence analysis, we observe that the nonlinear 3-wave coupling is substantial among ion cyclotron and whistler waves. By studying in detail the degree of nonlinearity of these two populations we show that ion cyclotron and whistler turbulent fluctuations belong respectively to strong and weak wave turbulence. The non trivial blending of these two regime give rise to anomalous anisotropy and scaling properties. The separation of the weak random wave and strong coherent turbulence component can however be effectively done using simultaneous space and time Fourier transforms. Using this techniques we show that it is possible to recover some statistical prediction of weak turbulent theory.

  20. Simulated interaction of MHD shock waves with a complex network-like region

    CERN Document Server

    Santamaria, Irantzu C; Collados, Manuel; de Vicente, Angel

    2016-01-01

    We provide estimates of the wave energy reaching the solar chromosphere and corona in a network-like magnetic field topology, including a coronal null point. The waves are excited by an instantaneous strong subphotospheric source and propagate through the subphotosphere, photosphere, chromosphere, transition region, and corona with the plasma beta and other atmospheric parameters varying by several orders of magnitude. We compare two regimes of the wave propagation: a linear and nonlinear regime. While the amount of energy reaching the corona is similar in both regimes, this energy is transmitted at different frequencies. In both cases the dominant periods of waves at each height strongly depend on the local magnetic field topology, but this distribution is only in accordance with observations in the nonlinear case.

  1. Ultra-fast multiple tunnelling of electromagnetic X-waves

    Energy Technology Data Exchange (ETDEWEB)

    Shaarawi, Amr M. [Physics Department, American University in Cairo, Cairo (Egypt); Besieris, Ioannis M. [Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2000-12-01

    A study is provided of the transmission of a three-dimensional electromagnetic X-wave undergoing frustrated total internal reflection on the upper surface of a multi-layered structure. The stratified structure consists of successive layers alternately allowing the transmission of evanescent and free-propagation components. It is shown that the peak of an X-wave is transmitted through these successive layers at an ultra-fast speed. Under certain conditions, the total traversal time through all successive evanescent and free-propagation sections appears to be less than zero. The peak of the transmitted pulse emerges from the stack before the incident peak reaches the front surface of the stratified structure. Conditions for the materialization of this ultra-fast multiple tunnelling of pulses are pointed out and their consequences and limitations are discussed. (author)

  2. Fast Traveling-Wave Reactor of the Channel Type

    CERN Document Server

    Rusov, Vitaliy D; Vashchenko, Volodymyr N; Chernezhenko, Sergei A; Kakaev, Andrei A; Pantak, Oksana I

    2015-01-01

    The main aim of this paper is to solve the technological problems of the TWR based on the technical concept described in our priority of invention reference, which makes it impossible, in particular, for the fuel claddings damaging doses of fast neutrons to excess the ~200 dpa limit. Thus the essence of the technical concept is to provide a given neutron flux at the fuel claddings by setting the appropriate speed of the fuel motion relative to the nuclear burning wave. The basic design of the fast uranium-plutonium nuclear traveling-wave reactor with a softened neutron spectrum is developed, which solves the problem of the radiation resistance of the fuel claddings material.

  3. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    Science.gov (United States)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  4. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Turco, F., E-mail: turcof@fusion.gat.com; Hanson, J. M.; Navratil, G. A. [Columbia University, 116th and Broadway, New York, New York 10027 (United States); Turnbull, A. D. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  5. Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    CERN Document Server

    Jess, D B; Verth, G; Fedun, V; Grant, S D T; Giagkiozis, I

    2015-01-01

    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.

  6. Acoustic power absorption and enhancement generated by slow and fast MHD waves

    CERN Document Server

    Simoniello, R; Garcia, R A; Salabert, D; Jimenez, A; Elsworth, Y; Schunker, H

    2010-01-01

    We used long duration, high quality, unresolved (Sun-as-a star) observations collected by the ground based network BiSON and by the instruments GOLF and VIRGO on board the ESA/NASA SOHO satellite to search for solar-cycle-related changes in mode characteristics in velocity and continuum intensity for the frequency range between 2.5mHz < nu < 6.8mHz. Over the ascending phase of solar cycle 23 we found a suppression in the p-mode amplitudes both in the velocity and intensity data between 2.5mHz

  7. Fast Waves at the Base of the Cochlea.

    Directory of Open Access Journals (Sweden)

    Alberto Recio-Spinoso

    Full Text Available Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy's results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy's theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves.

  8. Radio fiber bursts and fast magnetoacoustic wave trains

    CERN Document Server

    Karlický, M; Jelínek, P

    2012-01-01

    We present a model for dm-fiber bursts that is based on assuming fast sausage magnetoacoustic wave trains that propagate along a dense vertical filament or current sheet. Eight groups of dm-fiber bursts that were observed during solar flares were selected and analyzed by the wavelet analysis method. To model these fiber bursts we built a semi-empirical model. We also did magnetohydrodynamic simulations of a propagation of the magnetoacoustic wave train in a vertical and gravitationally stratified current sheet. In the wavelet spectra of the fiber bursts computed at different radio frequencies we found the wavelet tadpoles, whose head maxima have the same frequency drift as the drift of fiber bursts. It indicates that the drift of these fiber bursts can be explained by the propagating fast sausage magnetoacoustic wave train. Using new semi-empirical and magnetohydrodynamic models with a simple radio emission model we generated the artificial radio spectra of the fiber bursts, which are similar to the observed ...

  9. X-ray Jet observations in coronal holes and evidence for MHD waves

    Science.gov (United States)

    Cirtain, J.; Davey, A.

    2008-05-01

    Hinode observations of polar coronal holes have revealed that X-ray jets have two distinct velocities, one near the Alfvén speed (~800 km s-1) and another near the sound speed (200 km s-1). This analysis has been reported in Cirtain et al. (2007). In addition to the evidence of Alfvén waves and evaporation flow, there are some subset of jets that appear to oscillate in the direction transverse to the jet axis. We will present studies of these oscillations using both XRT and EIS (Hinode) data, and NFI/SOT ( Hinode) data when available.

  10. Gravitational Wave Constraints on the Progenitors of Fast Radio Bursts

    CERN Document Server

    Callister, Thomas; Weinstein, Alan

    2016-01-01

    The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, fast radio bursts are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. We demonstrate that measurements made by the LIGO and Virgo gravitational wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements rule out binary black holes as FRB progenitors, and results from Advanced LIGO's O1 and O2 observing runs will either confirm or strongly rule out binary neutron star and neutron star-black hole progenitors.

  11. Heat wave fast ignition in inertial confinement energy

    Institute of Scientific and Technical Information of China (English)

    Shalom; Eliezer; Shirly; Vinikman; Pinhasi

    2013-01-01

    An accelerated micro-foil is used to ignite a pre-compressed cylindrical shell containing deuterium–tritium fuel.The well-known shock wave ignition criterion and a novel criterion based on heat wave ignition are developed in this work.It is shown that for heat ignition very high impact velocities are required.It is suggested that a multi-petawatt laser can accelerate a micro-foil to relativistic velocities in a very short time duration(picosecond)of the laser pulse.The cylindrical geometry suggested here for the fast ignition approach has the advantage of geometrically separating the nanosecond lasers that compress the target from the picosecond laser that accelerates the foil.The present model suggests that nuclear fusion by micro-foil impact ignition could be attained with currently existing technology.

  12. Fast wave current drive antenna performance on D3-D

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Prater, R.; Porkolab, M.

    1991-10-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the D3-D tokamak for the first time in high electron temperature, high (beta) target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n(sub parallel) value (approximately = 7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90 degrees) in each of the straps for a directional spectrum. We describe the performance of the D3-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  13. Fast Wave Current Drive Antenna Performance on DIII-D

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Porkolab, M.; Prater, R.; Baity, F. W.; Goulding, R. H.; Hoffman, D. J.

    1992-01-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the DIII-D tokamak for the first time in high electron temperature, high β target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n∥ value (≂7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90°) in each of the straps for a directional spectrum. In this paper we describe the performance of the DIII-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  14. Elastic wave from fast heavy ion irradiation on solids

    Science.gov (United States)

    Kambara, T.; Kageyama, K.; Kanai, Y.; Kojima, T. M.; Nanai, Y.; Yoneda, A.; Yamazaki, Y.

    2002-06-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al 2O 3), fused silica (SiO 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the wave source was estimated. The result was compared with ion ranges calculated for these materials by TRIM code.

  15. High harmonic fast waves in high beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1995-04-01

    High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption.

  16. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  17. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)a)

    Science.gov (United States)

    Chen, J.; Zhuang, G.; Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J.; Brower, D. L.; Ding, W. X.

    2014-11-01

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5-3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25-0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  18. Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?

    CERN Document Server

    Heyer, M; Yildiz, U A; Snell, R L; Falgarone, E; Pineda, J

    2016-01-01

    The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10~m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations result from the modulation of velocities and the beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes ar...

  19. Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?

    Science.gov (United States)

    Heyer, M.; Goldsmith, P. F.; Yıldız, U. A.; Snell, R. L.; Falgarone, E.; Pineda, J. L.

    2016-10-01

    The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J = 2-1 emission obtained with the 10-m Submillimeter Telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J = 2-1 to J = 1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations are generated from the modulation of velocities and beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvénic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission.

  20. Elastic wave from fast heavy ion irradiation on solids

    CERN Document Server

    Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y

    2002-01-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...

  1. Fast magnetoacoustic wave trains of sausage symmetry in cylindrical waveguides of the solar corona

    CERN Document Server

    Shestov, S; Kuzin, S

    2015-01-01

    Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils and plumes, are known to be highly dispersive, which leads to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g. a solar flare. We investigated effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localised impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation, with the longer instant period seen in the beginning of the wave train. The wave trains have also a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train...

  2. Fast electronic resistance switching involving hidden charge density wave states

    Science.gov (United States)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  3. High Harmonic Fast Wave heating and current drive for NSTX

    Science.gov (United States)

    Robinson, J. A.; Majeski, R.; Hosea, J.; Menard, J.; Ono, M.; Phillips, C. K.; Wilson, J. R.; Wright, J.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Ryan, P.; Swain, D.; Mau, T. K.; Chiu, S. C.; Smithe, D.

    1997-11-01

    Heating and noninductive current drive in NSTX will initially use 6 MW of rf power in the high harmonic fast wave (HHFW) regime. We present numerical modelling of HHFW heating and current drive in NSTX using the PICES, CURRAY, FISIC, and METS95 codes. High electron β during the discharge flattop in NSTX is predicted to result in off-axis power deposition and current drive. However, reductions in the trapped electron fraction (due also to high β effects) are predicted to result in adequate current drive efficiency, with ~ 400 - 500 kA of noninductive current driven. Sufficient per-pass absorption (>10%) to ensure effective electron heating is also expected for the startup plasma. Present plans call for a single twelve strap antenna driven by six FMIT transmitters operating at 30 MHz. The design for the antenna and matching system will also be discussed.

  4. Fast wave power flow along SOL field lines in NSTX

    Science.gov (United States)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  5. Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-07-01

    Full Text Available Background: There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Methods: Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry. Results: The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats. Conclusions: We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design.

  6. Characteristics of laminar MHD fluid hammer in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.Y.; Liu, Y.J., E-mail: yajun@scut.edu.cn

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  7. Effect of Alfvén resonance on low-frequency fast wave current drive

    Science.gov (United States)

    Wang, C. Y.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Stallings, D. C.

    1995-08-01

    The Alfvén resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion 31, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss.

  8. Effect of Alfven resonance on low-frequency fast wave current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.; Batchelor, D.B.; Carter, M.D.; Jaeger, E.F.; Stallings, D.C. [Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1995-07-01

    The Alfven resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion {bold 31}, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. On the measurements of numerical viscosity and resistivity in Eulerian MHD codes

    CERN Document Server

    Rembiasz, Tomasz; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel; Müller, Ewald

    2016-01-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfven waves, and the tearing mode instability using the MHD code Aenus. By comparing the simu- lation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of tearing modes we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast-magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) systems. We also determine the dependance of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results we infer the numerical resolution (as a function of the spatial reconstruction ...

  10. A CLASS OF TWO-STEP TVD MACCORMACK TYPE NUMERICAL SCHEME FOR MHD EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    FENG Xueshang; WEI Fengsi; ZHONG Dingkun

    2003-01-01

    In this paper, a new numerical scheme of Total Variation Diminishing (TVD) MacCormack type for MagnetoHydroDynamic (MHD) equations is proposed by taking into account of the characteristics such as convergence, stability, resolution. This new scheme is established by solving the MHD equations with a TVD modified MacCormack scheme for the purpose of developing a scheme of quick convergence as well as of TVD property. To show the validation, simplicity and practicability of the scheme for modelling MHD problems, a self-similar Cauchy problem with the discontinuous initial data consisting of constant states, and the collision of two fast MHD shocks, and two-dimensional Orszag and Tang's MHD vortex problem are discussed with the numerical results conforming to the existing results obtained by the Roe type TVD, the high-order Godunov scheme,and Weighted Essentially Non-Oscillatory (WENO) scheme. The numerical tests show that this two-step TVD MacCormack numerical scheme for MHD system is of robust operation in the presence of very strong waves, thin shock fronts, thin contact and slip surface discontinuities.

  11. FAST MAGNETOACOUSTIC WAVE TRAINS OF SAUSAGE SYMMETRY IN CYLINDRICAL WAVEGUIDES OF THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Shestov, S.; Kuzin, S. [Lebedev Physical Institute, Leninskii prospekt, 53, Moscow 119991 (Russian Federation); Nakariakov, V. M., E-mail: sshestov@gmail.com [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-12-01

    Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation, with the longer instant period seen in the beginning of the wave train. The wave trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.

  12. Fast Magnetoacoustic Wave Trains of Sausage Symmetry in Cylindrical Waveguides of the Solar Corona

    Science.gov (United States)

    Shestov, S.; Nakariakov, V. M.; Kuzin, S.

    2015-12-01

    Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation, with the longer instant period seen in the beginning of the wave train. The wave trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.

  13. Magnetohydrodynamic waves within the medium separated by the plane shock wave or rotational discontinuity

    Directory of Open Access Journals (Sweden)

    A. A. Lubchich

    2005-07-01

    Full Text Available Characteristics of small amplitude plane waves within the medium separated by the plane discontinuity into two half spaces are analysed. The approximation of the ideal one-fluid magnetohydrodynamics (MHD is used. The discontinuities with the nonzero mass flux across them are mainly examined. These are fast or slow shock waves and rotational discontinuities. The dispersion equation for MHD waves within each of half space is obtained in the reference frame connected with the discontinuity surface. The solution of this equation permits one to determine the wave vectors versus the parameter cp, which is the phase velocity of surface discontinuity oscillations. This value of cp is common for all MHD waves and determined by an incident wave or by spontaneous oscillations of the discontinuity surface. The main purpose of the study is a detailed analysis of the dispersion equation solution. This analysis let us draw the following conclusions. (I For a given cp, ahead or behind a discontinuity at most, one diverging wave can transform to a surface wave damping when moving away from the discontinuity. The surface wave can be a fast one or, in rare cases, a slow, magnetoacoustic one. The entropy and Alfvén waves always remain in a usual homogeneous mode. (II For certain values of cp and parameters of the discontinuity behind the front of the fast shock wave, there can be four slow magnetoacoustic waves, satisfying the dispersion equation, and none of the fast magnetoacoustic waves. In this case, one of the four slow magnetoacoustic waves is incident on the fast shock wave from the side of a compressed medium. It is shown that its existence does not contradict the conditions of the evolutionarity of MHD shock waves. The four slow magnetoacoustic waves, satisfying the dispersion equation, can also exist from either side of a slow shock wave or rotational discontinuity. (III The

  14. Role of fast waves in the central deposition of lower hybrid power

    Science.gov (United States)

    Heikkinen, J. A.; Tala, T. J. J.; Pättikangas, T. J. H.; Piliya, A. D.; Saveliev, A. N.; Karttunen, S. J.

    1999-10-01

    In tokamaks, lower hybrid (LH) waves are routinely used for current drive and heating of plasmas. The LH waves have two modes of propagation that are called the slow and the fast wave. Usually, the lower hybrid waves are launched as slow waves into a tokamak, but during the propagation part of the wave power can be transformed to fast waves. General characteristics of the mode transformation of slow waves to fast waves are first investigated with a simple quasitoroidal ray-tracing model. Next, the effect of mode transformed LH power on the deposition profiles in a JET-like tokamak is analysed by using the fast ray-tracing code FRTC. When the launched spectrum is at small values of the toroidal refractive index (1.6 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 2.0), the contribution of the fast wave to the deposited power is found to be significant and responsible for most of the absorption at the centre. When nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 is large (nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/gtrsim" ALT="gtrsim" ALIGN="TOP"/> 2.2), the effect of the mode transformed fast waves is small or negligible. At modest central densities (ne0 ~ 0.5 × 1020 m-3), the contribution of the fast wave to the power deposition can be more than 50% in the plasma centre. In consequence, the significant amount of wave energy absorbed in the fast mode must be carefully taken into account in modelling LH current drive experiments in the future. At low central densities (ne0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 0.3 × 1020 m-3), practically no absorption of fast waves occurs.

  15. Fast wave current drive modeling using the combined RANT3D and PICES codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C. [and others

    1995-07-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  16. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Science.gov (United States)

    Jaeger, E. F.; Murakami, M.; Stallings, D. C.; Carter, M. D.; Wang, C. Y.; Galambos, J. D.; Batchelor, D. B.; Baity, F. W.; Bell, G. L.; Wilgen, J. B.; Chiu, S. C.; DeGrassie, J. S.; Forest, C. B.; Kupfer, K.; Petty, C. C.; Pinsker, R. T.; Prater, R.; Lohr, J.; Lee, K. M.

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  17. 柱等离子体中磁流体力学波之间的耦合%COUPLING OF MHD WAVES IN A CYLINDRICAL PLASMA

    Institute of Scientific and Technical Information of China (English)

    杨维宏

    2001-01-01

    采用柱螺旋坐标系,把广义磁流体力学方程组简化为四元一阶微分方程组。在ω/ωci→0时,该方程组化为Hain-Lüst方程;而当p→0时,即是K Appert理论。在这两种情况下,Alfvén波共振层都是奇异的。Alfvén波共振层的奇异性来源于极限的选取。在远离极限的区域,离子的惯性会使理想磁流体中Alfvén波共振层的奇异性消失,且使磁流体力学波之间相互耦合。%In cylindrical helical coordinates,generalized magnetohydrodynamic (MHD) equations are reduced to four first order differential equations.The K Appert theory and Hain-Lüst equation are two special cases resulting from p→0 and ω/ωci→0, respectively.In these two cases,the Alfvén resonant layers are singular.The singularities of the equations at the Alfvén resonant layers are caused by taking the limits.Far from the limit region, ion inertia results in the disappearance of singularity of the equations at the Alfvén resonant layer and coupling of the MHD waves.

  18. Application of High Harmonic Fast Waves to Off-Axis Current Drive in DIII-D

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V. L.

    2013-10-01

    High harmonic fast waves, also called ``whistlers'' or ``helicons,'' may be an effective means of driving current off-axis in high performance discharges in DIII-D. Modeling using the GENRAY ray tracing code APP shows that fast waves launched with frequency 500 MHz tend to spiral around the magnetic axis. If the electron beta is above 1.7%, the waves are damped around ρ = 0 . 5 for a broad range of conditions. The fast wave current drive in the test discharge is 2 to 4 times larger per MW than that from the electron cyclotron heating or neutral beam injection systems on DIII-D. Interestingly, the current drive location and magnitude are nearly independent of the launched n| | over the range 2 to 4. Use of a moderately large value, n| | = 3 , reduces the possibility of mode conversion to the slow wave. A traveling wave antenna is expected to be effective at launching the wave with a narrow spectrum of n| |, which also helps avoid mode conversion. A test of the physics of high harmonic fast wave current drive is planned for DIII-D. Work supported in part by the US Department of Energy under DE-FC02-04ER54698.

  19. Generation of fast electrons by breaking of a laser-induced plasma wave

    NARCIS (Netherlands)

    Trines, Rmgm; Goloviznin, V. V.; Kamp, L. P. J.; Schep, T. J.

    2001-01-01

    A one-dimensional model for fast electron generation by an intense, nonevolving laser pulse propagating through an underdense plasma has been developed. Plasma wave breaking is considered to be the dominant mechanism behind this process, and wave breaking both in front of and behind the laser pulse

  20. Research on fast rise time EMP radiating-wave simulator

    Science.gov (United States)

    Fan, Lisi; Liu, Haitao; Wang, Yun

    2013-03-01

    This paper presents an antenna of High altitude electromagnetic pulse (HEMP) radiating-wave simulator which expands the testing zone larger than the traditional transmission line simulator. The numerical results show that traverse electramagnetic (TEM) antenna can be used to radiate HEMP simulation radiating wave, but in low frequency band the emissive capability is poor. The experiment proves the numerical model is valid. The results of this paper show that TEM antenna can be used to HEMP radiating-wave simulator, and can prove the low frequency radiation capability through resistance loaded method.

  1. Seismic anisotropy of the crust in Yunnan,China: Polarizations of fast shear-waves

    Institute of Scientific and Technical Information of China (English)

    SHI Yu-tao; GAO Yuan; WU Jing; LUO Yan; SU You-jin

    2006-01-01

    Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003,the dominant polarization directions of fast shear-waves are obtained at l0 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan.The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.

  2. Fokker-Planck Simulation of Fast Wave Current Drive and Heating in the Reversed Field Pinch

    Science.gov (United States)

    Uchimoto, E.; Shiina, S.; Harvey, R. W.; Smirnov, A. P.; Forest, C. B.; Prager, S. C.; Wright, J. C.

    1999-11-01

    Fast wave current drive (FWCD) has been shown theoretically to be a good candidate for improving plasma confinement characteristics of a high-beta, reactor-grade RFP via current profile control.footnote S. Shiina, Y. Kondoh, H. Ishii, Nuclear Fusion 34, 1473 (1994); T. Nagai et al., Proc. ICPP (Nagoya, 1996), p. 1042; K. Kusano et al., 17th IAEA Fusion Energy Conf. (Yokohama, 1998), paper THP1/12. To assess the effects of toroidicity and quasilinear modifications to the electron distribution function on FWCD, we are using the RFP version of ray-tracing and Fokker-Planck codes (GENRAY and CQL3D). Although lower hybrid slow waves are ideally suited for poloidal current drive in large RFPs presently in operation, possible use of fast waves is being considered for core current drive and heating in these devices. For MST parameters, our calculations focus on intermediate to high harmonic fast waves for which geometric optics is valid.

  3. Identification of standing fronts in steady state fluid flows: exact and approximate solutions for propagating MHD modes

    Science.gov (United States)

    Pantellini, Filippo; Griton, Léa

    2016-10-01

    The spatial structure of a steady state plasma flow is shaped by the standing modes with local phase velocity exactly opposite to the flow velocity. The general procedure of finding the wave vectors of all possible standing MHD modes in any given point of a stationary flow requires numerically solving an algebraic equation. We present the graphical procedure (already mentioned by some authors in the 1960's) along with the exact solution for the Alfvén mode and approximate analytic solutions for both fast and slow modes. The technique can be used to identify MHD modes in space and laboratory plasmas as well as in numerical simulations.

  4. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    NARCIS (Netherlands)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Oosterbeek, J. W.; M.R. de Baar,; van den Berg, M. A.; van Beveren, V.; Burger, A.; Goede, A. P. H.; Graswinckel, M. F.; Hennen, B.A.; Schüller, F. C.

    2009-01-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digi

  5. Wave-induced hydroelastic response of fast monohull displacement ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Wang, Zhaohui

    1998-01-01

    High-speed ships are weight sensitive structures and high strength steel, aluminium or composites are preferred building materials. It is characteristic for these materials that they result in larger hull flexibility than more conventional materials. Therefore, for large fast ships the lowest...

  6. Wave-induced Hydroelastic response of fast monohull ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    1996-01-01

    High-speed ships are weight sensitive structures and high strength steel, aluminium or composites are preferred building materials. it is characteristic for these materials that they result in larger hull flexibility than more conventional materials. Therefore, for large fast ships the lowest...... to the hull flexibility due to the high zero crossing periods associated with the extreme responses....

  7. Parallel 3-dim fast Fourier transforms with load balancing of the plane waves

    CERN Document Server

    Gao, Xingyu; Fang, Jun; Wang, Han

    2016-01-01

    The plane wave method is most widely used for solving the Kohn-Sham equations in first-principles materials science computations. In this procedure, the three-dimensional (3-dim) trial wave functions' fast Fourier transform (FFT) is a regular operation and one of the most demanding algorithms in terms of the scalability on a parallel machine. We propose a new partitioning algorithm for the 3-dim FFT grid to accomplish the trade-off between the communication overhead and load balancing of the plane waves. It is shown by qualitative analysis and numerical results that our approach could scale the plane wave first-principles calculations up to more nodes.

  8. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.

    Science.gov (United States)

    Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Mizuno, Katsunori; Sato, Toru

    2015-04-01

    The received signal in through-transmission ultrasound measurements of cancellous bone consists of two longitudinal waves, called the fast and slow waves. Analysis of these fast and slow waves may reveal characteristics of the cancellous bone that would be good indicators of osteoporosis. Because the two waves often overlap, decomposition of the received signal is an important problem in the characterization of bone quality. This study proposes a fast and accurate decomposition method based on the frequency domain interferometry imaging method with a modified wave transfer function that uses a phase rotation parameter. The proposed method accurately characterized the fast and slow waves in the experimental study, and the residual intensity, which was normalized with respect to the received signal intensity, was less than -20 dB over the bone specimen thickness range from 6 to 15 mm. In the simulation study, the residual intensity was less than -20 dB over the specimen thickness range from 3 to 8 mm. Decomposition of a single received signal takes only 5 s using a laptop personal computer with a single central processing unit. The proposed method has great potential to provide accurate and rapid measurements of indicators of osteoporosis in cancellous bone.

  9. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.

    Science.gov (United States)

    Hoffman, Joseph J; Nelson, Amber M; Holland, Mark R; Miller, James G

    2012-09-01

    A Bayesian probability theory approach for separating overlapping ultrasonic fast and slow waves in cancellous bone has been previously introduced. The goals of this study were to investigate whether the fast and slow waves obtained from Bayesian separation of an apparently single mode signal individually correlate with porosity and to isolate the fast and slow waves from medial-lateral insonification of the calcaneus. The Bayesian technique was applied to trabecular bone data from eight human calcanei insonified in the medial-lateral direction. The phase velocity, slope of attenuation (nBUA), and amplitude were determined for both the fast and slow waves. The porosity was assessed by micro-computed tomography (microCT) and ranged from 78.7% to 94.1%. The method successfully separated the fast and slow waves from medial-lateral insonification of the calcaneus. The phase velocity for both the fast and slow wave modes showed an inverse correlation with porosity (R(2) = 0.73 and R(2) = 0.86, respectively). The slope of attenuation for both wave modes also had a negative correlation with porosity (fast wave: R(2) = 0.73, slow wave: R(2) = 0.53). The fast wave amplitude decreased with increasing porosity (R(2) = 0.66). Conversely, the slow wave amplitude modestly increased with increasing porosity (R(2) = 0.39).

  10. DETECTION OF FAST-MOVING WAVES PROPAGATING OUTWARD ALONG SUNSPOTS’ RADIAL DIRECTION IN THE PHOTOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junwei; Chen, Ruizhu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Hartlep, Thomas [BAER Institute, NASA Ames Research Center, Moffet Field, CA 94043 (United States); Kosovichev, Alexander G. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2015-08-10

    Helioseismic and magnetohydrodynamic waves are abundant in and above sunspots. Through cross-correlating oscillation signals in the photosphere observed by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, we reconstruct how waves propagate away from virtual wave sources located inside a sunspot. In addition to the usual helioseismic wave, a fast-moving wave is detected traveling along the sunspot’s radial direction from the umbra to about 15 Mm beyond the sunspot boundary. The wave has a frequency range of 2.5–4.0 mHz with a phase velocity of 45.3 km s{sup −1}, substantially faster than the typical speeds of Alfvén and magnetoacoustic waves in the photosphere. The observed phenomenon is consistent with a scenario of that a magnetoacoustic wave is excited at approximately 5 Mm beneath the sunspot. Its wavefront travels to and sweeps across the photosphere with a speed higher than the local magnetoacoustic speed. The fast-moving wave, if truly excited beneath the sunspot’s surface, will help open a new window for studying the internal structure and dynamics of sunspots.

  11. Detection of Fast-Moving Waves Propagating Outward along Sunspots' Radial Direction in the Photosphere

    CERN Document Server

    Zhao, Junwei; Hartlep, Thomas; Kosovichev, Alexander G

    2015-01-01

    Helioseismic and magnetohydrodynamic waves are abundant in and above sunspots. Through cross-correlating oscillation signals in the photosphere observed by the SDO/HMI, we reconstruct how waves propagate away from virtual wave sources located inside a sunspot. In addition to the usual helioseismic wave, a fast-moving wave is detected traveling along the sunspot's radial direction from the umbra to about 15 Mm beyond the sunspot boundary. The wave has a frequency range of 2.5 - 4.0 mHz with a phase velocity of 45.3 km/s, substantially faster than the typical speeds of Alfven and magnetoacoustic waves in the photosphere. The observed phenomenon is consistent with a scenario of that a magnetoacoustic wave is excited at approximately 5 Mm beneath the sunspot, and its wavefront travels to and sweeps across the photosphere with a speed higher than the local magnetoacoustic speed. The fast-moving wave, if truly excited beneath the sunspot's surface, will help open a new window to study the internal structure and dyn...

  12. Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave

    KAUST Repository

    Levko, Dmitry

    2017-09-08

    The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.

  13. Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave

    Science.gov (United States)

    Levko, Dmitry; Pachuilo, Michael; Raja, Laxminarayan L.

    2017-09-01

    The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.

  14. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, D.; Bég, O. Anwar; Khan, Z. H.

    2016-11-01

    A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length.

  15. Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model

    Science.gov (United States)

    Huang, Chia-Lin; Spence, Harlan E.; Singer, Howard J.; Hughes, W. Jeffrey

    2010-06-01

    To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5-8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere.

  16. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    Science.gov (United States)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  17. Fast earthward flows, electron cyclotron harmonic waves, and diffuse auroras: Conjunctive observations and a synthesized scenario

    Science.gov (United States)

    Liang, Jun; Ni, B.; Spanswick, E.; Kubyshkina, M.; Donovan, E. F.; Uritsky, V. M.; Thorne, R. M.; Angelopoulos, V.

    2011-12-01

    We present in this paper multi-instrumental observations and analyses of fast earthward flows, electrostatic electron cyclotron harmonic (ECH) waves, and diffuse auroras, during 8-9 UT on February 5, 2009. The event began with a series of fast earthward flows detected on mid-tail probe THEMIS-C. Subsequently, magnetic dipolarizations and strong ECH wave intensifications were observed on THEMIS-D/E probes at L ˜ 11 in the equatorial plasma sheet. Concurrently, Ground optical instruments detected diffuse auroral intensifications in the region surrounding the ionospheric footprints of the THEMIS probes. Together with the theoretical simulation performed by Ni et al. (2011e), we establish a causal conjunction between the ECH waves and diffuse auroras for the reported event. We also propose that the ECH wave and diffuse auroral intensification were likely triggered by the fast flow activity from the mid-tail and its resulting magnetic dipolarization. We discuss possible mechanisms linking the fast flow and its associated dipolarization to the intensification of ECH wave and diffuse aurora in the outer magnetosphere.

  18. Landau Damping of Transverse Waves in the Exosphere by Fast Particle Fluxes

    Science.gov (United States)

    Tidman, D. A.; Jaggi, R. K.

    1962-01-01

    We have investigated the Landau damping of transverse waves propagating in the thermal exospheric plasma, by fast particle fluxes which also exist in these regions. The most intense non-thermal fluxes so far detected are those of the auroral producing electrons and protons measured by McIlwain. We find that these fluxes may considerably damp the propagation of whistler modes through some regions. The damping of hydromagnetic waves in the exosphere by this mechanism is negligible.

  19. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  20. Evolutionary Conditions in the Dissipative MHD System Revisited

    CERN Document Server

    Inoue, Tsuyoshi

    2007-01-01

    The evolutionary conditions for the dissipative continuous magnetohydrodynamic (MHD) shocks are studied. We modify Hada's approach in the stability analysis of the MHD shock waves. The matching conditions between perturbed shock structure and asymptotic wave modes shows that all types of the MHD shocks, including the intermediate shocks, are evolutionary and perturbed solutions are uniquely defined. We also adopt our formalism to the MHD shocks in the system with resistivity without viscosity, which is often used in numerical simulation, and show that all types of shocks that are found in the system satisfy the evolutionary condition and perturbed solutions are uniquely defined. These results suggest that the intermediate shocks may appear in reality.

  1. FAST TRACK COMMUNICATION: Small surface wave discharge at atmospheric pressure

    Science.gov (United States)

    Kiss'ovski, Zh; Kolev, M.; Ivanov, A.; Lishev, St.; Koleva, I.

    2009-09-01

    A small surface wave driven source produces plasma at atmospheric pressure. Microwave power at frequency 2.45 GHz is coupled with the source and a discharge is ignited at power levels below 10 W. The coaxial exciter of the surface waves has a length of 10 mm because its dielectric is a high permittivity discharge tube. The plasma source operates as a plasma jet in the case of plasma columns longer than the tube length. The source maintains stable plasma columns over a wide range of neutral gas flow and applied power in continuous and pulse regimes. An additional advantage of this source is the discharge self-ignition. An electron temperature of Te ~ 1.9 eV and a density of ne ~ 3.9 × 1014 cm-3 are estimated by the probe diagnostics method. The emission spectra in the wavelength range 200-1000 nm under different experimental conditions are analysed and they prove the applicability of the source for analytical spectroscopy. The dependences of column length, reflected power and plasma parameters on the gas flow and the input power are discussed.

  2. Fast calculation of spherical computer generated hologram using spherical wave spectrum method.

    Science.gov (United States)

    Jackin, Boaz Jessie; Yatagai, Toyohiko

    2013-01-14

    A fast calculation method for computer generation of spherical holograms in proposed. This method is based on wave propagation defined in spectral domain and in spherical coordinates. The spherical wave spectrum and transfer function were derived from boundary value solutions to the scalar wave equation. It is a spectral propagation formula analogous to angular spectrum formula in cartesian coordinates. A numerical method to evaluate the derived formula is suggested, which uses only N(logN)2 operations for calculations on N sampling points. Simulation results are presented to verify the correctness of the proposed method. A spherical hologram for a spherical object was generated and reconstructed successfully using the proposed method.

  3. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    CERN Document Server

    Kumar, Pankaj

    2015-01-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 {\\AA}) arcade loops observed by the SDO/AIA. The wave was associated with an impulsive/compact flare, near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060-760 km/s within ~3-4 minute. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km/s, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  4. Fast ion millimeter wave collective Thomson scattering diagnostics on TEXTOR and ASDEX upgrades

    DEFF Research Database (Denmark)

    Michelsen, S.; Korsholm, Søren Bang; Bindslev, H.

    2004-01-01

    Collective Thomson scattering (CTS) diagnostic systems for measuring fast ions in TEXTOR and ASDEX Upgrade are described in this article. Both systems use millimeter waves generated by gyrotrons as probing radiation and the scattered radiation is detected with heterodyne receivers having 40...

  5. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C.; Carter, M.D.; Wang, C.Y.; Galambos, J.D.; Batchelor, D.B.; Baity, F.W.; Bell, G.L.; Wilgen, J.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States); Chiu, S.C.; DeGrassie, J.S.; Forest, C.B. [General Atomics, San Diego, California 92186-9784 (United States); Kupfer, K. [ORISE Postdoctoral Fellow at General Atomics, San Diego, California 92186-9784 (United States); Petty, C.C.; Pinsker, R.T.; Prater, R.; Lohr, J. [General Atomics, San Diego, California 92186-9784 (United States); Lee, K.M. [University of California, Los Angeles, California 90024-1597 (United States)

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment. {copyright} {ital 1996 American Institute of Physics.}

  6. Fast and Accurate Inference on Gravitational Waves from Precessing Compact Binaries

    CERN Document Server

    Smith, Rory; Blackburn, Kent; Haster, Carl-Johan; Pürrer, Michael; Raymond, Vivien; Schmidt, Patricia

    2016-01-01

    Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper we construct the first reduced order models of gravitational-wave signals that include the effects of spin-precession, inspiral, merger, and ringdown in compact object binaries, and which are valid for component masses describing binary neutron star, binary black hole and mixed binary systems. This work utilizes the waveform model known as "IMRPhenomPv2". Our ROM enables the use of a fast \\textit{reduced order quadrature} (ROQ) integration rule...

  7. Hybrid single-beam reconstruction technique for slow and fast varying wave fields.

    Science.gov (United States)

    Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata

    2015-06-01

    An iterative single-beam wave field reconstruction technique that employs both non-paraxial, wave propagation based and paraxial deterministic phase retrieval techniques is presented. This approach overcomes two major obstacles that exist in the current state of the art techniques: iterative methods do not reconstruct slowly varying wave fields due to slow convergence and stagnation, and deterministic methods have paraxial limits, making the reconstructions of quickly varying object features impossible. In this work, a hybrid approach is reported that uses paraxial wave field corrections within iterative phase retrieval solvers. This technique is suitable for cases ranging from slow to fast varying wave fields, and unlike the currently available methods, can also reconstruct measurement objects with different regions of both slowly and quickly varying object features. It is further shown that this technique gives a higher accuracy than current single-beam phase retrieval techniques, and in comparison to the iterative methods, has a higher convergence speed.

  8. On standing sausage waves in photospheric magnetic waveguides

    CERN Document Server

    Dorotovic, I; Freij, N; Karlovsky, V; Marquez, I

    2012-01-01

    By focusing on the oscillations of the cross-sectional area and the intensity of magnetic waveguides located in the lower solar atmosphere, we aim to detect and identify magnetohydrodynamic (MHD) sausage waves. Capturing several series of high-resolution images of pores and sunspots and employing wavelet analysis in conjunction with empirical mode decomposition (EMD) makes the MHD wave analysis possible. For this paper, two sunspots and one pore (with a light bridge) were chosen as representative examples of MHD waveguides in the lower solar atmosphere. The sunspots and pore display a range of periods from 4 to 65 minutes. The sunspots support longer periods than the pore - generally enabling a doubling or quadrupling of the maximum pore oscillatory period. All of these structures display area oscillations indicative of MHD sausage modes and in-phase behaviour between the area and intensity, presenting mounting evidence for the presence of the slow sausage mode within these waveguides. The presence of fast an...

  9. Radio Wave Propagation and the Provenance of Fast Radio Bursts

    CERN Document Server

    Cordes, J M; Spitler, L G; Chatterjee, S; Wasserman, I

    2016-01-01

    We analyze plasma dispersion and scattering of fast radio bursts (FRBs) to identify the dominant locations of free electrons along their lines of sight and thus constrain the distances of the burst sources themselves. We establish the average $\\tau$-DM relation for Galactic pulsars and use it as a benchmark for discussing FRB scattering. Though scattering times $\\tau$ for FRBs are large in the majority of the 17 events we analyze, they are systematically smaller than those of Galactic pulsars that have similar dispersion measures (DMs). The lack of any correlation between $\\tau$ and DM for FRBs suggests that the intergalactic medium (IGM) cannot account for both $\\tau$ and DM. We therefore consider mixed models involving the IGM and host galaxies. If the IGM contributes significantly to DM while host galaxies dominate $\\tau$, the scattering deficit with respect to the mean Galactic trend can be explained with a $\\tau$-DM relation in the host that matches that for the Milky Way. However, it is possible that ho...

  10. Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation

    Science.gov (United States)

    Poddar, Banibrata; Giurgiutiu, Victor

    2016-04-01

    Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.

  11. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    Science.gov (United States)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  12. 3D MHD Coronal Oscillations About a Magnetic Null Point: Application of WKB Theory

    CERN Document Server

    McLaughlin, J A; Hood, A W

    2007-01-01

    This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit's Method and a Runge-Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, ${\\bf{B}}=(x,\\epsilon y -(\\epsilon +1)z)$. Under our cold plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfv\\'en waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point, and that the effect of this refraction depends upon the Alfv\\'en speed profile. The wave, and thus the wave energy, accumulates at the null point. We have found that current build up is exponential and the exponent is dependent upon $\\epsilon$. Thus, for the fast wave there is preferential heating at the null point. For the Alfv\\'en wave, we find that the wave propagates along the fieldlines. For an Alfv\\'en wave generated along the fan-plane, the wave accumulates along the spine. For an Alfv\\'en wa...

  13. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  14. A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

    2011-01-01

    We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave...... model is based on a potential flow formulation, which requires efficient solution of a Laplace problem at large-scales. We report recent results on a new mixed-precision strategy for efficient iterative high-order accurate and scalable solution of the Laplace problem using a multigrid......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...

  15. Fast-mode Coronal EUV Wave Trains Associated with Solar Flares and CMEs

    Science.gov (United States)

    Liu, Wei; Ofman, Leon; Downs, Cooper; Karlicky, Marian; Chen, Bin

    2017-08-01

    As a new observational phenomenon, Quasi-periodic, Fast Propagating EUV wave trains (QFPs) are fast-mode magnetosonic waves closely related to quasi-periodic pulsations commonly detected in solar flares (traditionally with non-imaging observations). They can provide critical clues to flare energy release and serve as new tools for coronal seismology. We report recent advances in observing and modeling QFPs, including evidence of heating and cooling cycles revealed with differential emission measure (DEM) analysis that are consistent with alternating compression and rarefaction expected for magnetosonic waves. Through a statistical survey, we found a preferential association of QFPs with eruptive flares (with CMEs) rather than confined flares (without CMEs). We also identified some correlation with quasi-periodic radio bursts observed at JVLA and Ondrejov observatories. We will discuss the implications of these results and the potential roles of QFPs in coronal heating and energy transport.

  16. Propagation and dispersion of whistler waves generated by fast reconnection onset

    Science.gov (United States)

    Singh, Nagendra

    2013-02-01

    The role of whistler mode during the onset of magnetic reconnection (MR) has been widely suggested, but the manifestations of its highly dispersive and anisotropic propagation properties in reconnection events remain largely unclear. Comparing results from a recently developed theoretical model for reconnection in terms of whistler's dispersive behavior with those reported from laboratory experiments on fast spontaneous magnetic reconnection, we demonstrate that the onset of fast reconnection in electron current layers (ECLs) emits whistler wave packets. The time scale of the explosively fast reconnection events are inversely related to the whistler mode frequencies at the lower end of the whistler frequency band. The wave packets in this frequency band have a characteristic angular dispersion, which marks the initial opening of the reconnection exhaust angle. The multidimensional propagation of the whistler for the reconnection with a strong guide magnetic field is investigated, showing that the measured propagation velocities of the reconnection electric field along the guide field in the Versatile Toroidal Facility at MIT quantitatively compare with the group velocities of the whistler wave packets. The whistler mode dispersive properties measured in laboratory experiments without a guide magnetic field in the magnetic reconnection experiments at Princeton also compare well with the theoretically predicted dispersion of the wave packets depending on the ECL width. Fast normalized reconnection rates extending to ˜0.35 at the MR onset in thin ECLs imply whistler wave propagation away from the onset location. We also present evidences for the whistler wave packets being emitted from reconnection diffusion region as seen in simulations and satellite observations.

  17. SciDAC - Center for Simulation of Wave Interactions with MHD -- General Atomics Support of ORNL Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G

    2012-11-09

    The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project is dedicated to conduct research on integrated multi-physics simulations. The Integrated Plasma Simulator (IPS) is a framework that was created by the SWIM team. It provides an integration infrastructure for loosely coupled component-based simulations by facilitating services for code execution coordination, computational resource management, data management, and inter-component communication. The IPS framework features improving resource utilization, implementing application-level fault tolerance, and support of the concurrent multi-tasking execution model. The General Atomics (GA) team worked closely with other team members on this contract, and conducted research in the areas of computational code monitoring, meta-data management, interactive visualization, and user interfaces. The original website to monitor SWIM activity was developed in the beginning of the project. Due to the amended requirements, the software was redesigned and a revision of the website was deployed into production in April of 2010. Throughout the duration of this project, the SWIM Monitoring Portal (http://swim.gat.com:8080/) has been a critical production tool for supporting the project's physics goals.

  18. Influence of various physics phenomena on fast-wave current drive in advanced tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Goldfinger, R.C.; Stallings, D.C. [Oak Ridge National Lab., TN (United States)

    1992-12-31

    The need for some type of noninductive current drive in advanced tokamaks has been recognized for some time. In reactor-grade plasmas, as envisioned in the International Thermonuclear Experimental Reactor (ITER), high density and temperature may limit the penetration of lower hybrid (LH) waves to only the outer layers of the plasma. Fast waves in the ion cyclotron range of frequencies (ICRF), however, can easily penetrate to the center of such high-density plasmas. With sufficient directivity in the launched wave spectrum, currents can be driven by combined damping of the fast waves on resonant electrons through electron Landau damping (ELD) and transit-time magnetic pumping (TTMP). Experiments to study the feasibility of fast-wave current drive (FWCD) have only recently begun, but theoretical predictions look promising. In this paper we analyze the influence of the relevant physics phenomena, which are not necessarily independent, on current drive performance. Such phenomena include diffraction and other nongeometrical optics processes, k{sub ||} modification, single-pass absorption, and antenna characteristics, such as poloidal extent and poloidal location. To do this, we apply a two-and-one-half dimensional (2 1/2-D), full-wave code (PICES) for modeling ion cyclotron resonance heating (ICRH) and current drive based on the poloidal mode expansion method and the reduced-order expansion. By 2 1/2-D, we mean that 3-D wave fields are calculated in axisymmetric geometry (2-D solution domain - r, {theta}), while the correct toroidal dependence of the antenna source currents is obtained from a 2-D (r, {phi}) recessed antenna code. The model includes the poloidal and toroidal structure of the antennas, the modification of the k{sub ||} spectrum due to the poloidal magnetic field, and a nonperturbative solution for E{sub ||}. A semianalytical model for current drive, including trapped electron effects, is employed. (author) 10 refs., 4 figs.

  19. The structure of fast sausage waves in current-carrying coronal loops

    Science.gov (United States)

    Bembitov, D. B.; Mikhalyaev, B. B.; Ruderman, M. S.

    2014-09-01

    We study fast sausage waves in a model coronal loop that consists of a cylindrical core with axial magnetic field and coaxial annulus with purely azimuthal magnetic field. The magnetic field is discontinuous at the tube and core boundaries, and there are surface currents with the opposite directions on these boundaries. The principal mode of fast sausage waves in which the magnetic pressure perturbation has no nodes in the radial direction can exist for arbitrary wavelength. The results for the fundamental radial mode of sausage waves are applied to the interpretation of observed periodic pulsations of microwave emission in flaring loops with periods of a few tens of seconds. Radial plasma motion has opposite directions at the tube and core boundaries. This leads to the periodic contraction and expansion of the annulus. We assume that the principal mode of fast sausage waves in the current-carrying coronal loops is able to produce a current sheet. However, the nonlinear analysis is needed to confirm this conjecture.

  20. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.

    Science.gov (United States)

    Anderson, Christian C; Bauer, Adam Q; Holland, Mark R; Pakula, Michal; Laugier, Pascal; Bretthorst, G Larry; Miller, James G

    2010-11-01

    Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.

  1. Electron MHD: dynamics and turbulence

    CERN Document Server

    Lyutikov, Maxim

    2013-01-01

    (Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...

  2. Fast calculation method of computer-generated cylindrical hologram using wave-front recording surface.

    Science.gov (United States)

    Zhao, Yu; Piao, Mei-lan; Li, Gang; Kim, Nam

    2015-07-01

    Fast calculation method for a computer-generated cylindrical hologram (CGCH) is proposed. The method consists of two steps: the first step is a calculation of a virtual wave-front recording surface (WRS), which is located between the 3D object and CGCH. In the second step, in order to obtain a CGCH, we execute the diffraction calculation based on the fast Fourier transform (FFT) from the WRS to the CGCH, which are in the same concentric arrangement. The computational complexity is dramatically reduced in comparison with direct integration method. The simulation results confirm that our proposed method is able to improve the computational speed of CGCH.

  3. Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind

    CERN Document Server

    Xiong, Ming

    2012-01-01

    Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power spectral density; (2) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; (3) kinetic wave-particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha-proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfven-cyclotron waves. ...

  4. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    Science.gov (United States)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  5. Stimulated emission of fast Alfv\\'en waves within magnetically confined fusion plasmas

    CERN Document Server

    Cook, J W S; Chapman, S C

    2016-01-01

    A fast Alfv\\'en wave with finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer mid-plane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "alpha-particle channelling" scenario for the first time.

  6. Stimulated Emission of Fast Alfvén Waves within Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2017-05-01

    A fast Alfvén wave with a finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer midplane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first-principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "α -particle channeling" scenario for the first time.

  7. Anomalous negative dispersion in bone can result from the interference of fast and slow waves.

    Science.gov (United States)

    Marutyan, Karen R; Holland, Mark R; Miller, James G

    2006-11-01

    The goal of this work was to show that the apparent negative dispersion of ultrasonic waves propagating in bone can arise from interference between fast and slow longitudinal modes, each exhibiting positive dispersion. Simulations were carried out using two approaches: one based on the Biot-Johnson model and one independent of that model. Results of the simulations are mutually consistent and appear to account for measurements from many laboratories that report that the phase velocity of ultrasonic waves propagating in cancellous bone decreases with increasing frequency (negative dispersion) in about 90% of specimens but increases with frequency in about 10%.

  8. Mass transport induced by internal Kelvin waves beneath shore-fast ice

    Science.gov (United States)

    StøYlen, Eivind; Weber, Jan Erik H.

    2010-03-01

    A one-layer reduced-gravity model is used to investigate the wave-induced mass flux in internal Kelvin waves along a straight coast beneath shore-fast ice. The waves are generated by barotropic tidal pumping at narrow sounds, and the ice lid introduces a no-slip condition for the horizontal wave motion. The mean Lagrangian fluxes to second order in wave steepness are obtained by integrating the equations of momentum and mass between the material interface and the surface. The mean flow is forced by the conventional radiation stress for internal wave motion, the mean pressure gradient due to the sloping surface, and the frictional drag at the boundaries. The equations that govern the mean fluxes are expressed in terms of mean Eulerian variables, while the wave forcing terms are given by the horizontal divergence of the Stokes flux. Analytical results show that the effect of friction induces a mean Eulerian flux along the coast that is comparable to the Stokes flux. In addition, the horizontal divergence of the total mean flux along the coast induces a small mass flux in the cross-shore direction. This flux changes the mean thickness of the upper layer outside the trapping region and may facilitate geostrophically balanced boundary currents in enclosed basins. This is indeed demonstrated by numerical solutions of the flux equations for confined areas larger than the trapping region. Application of the theory to Arctic waters is discussed, with emphasis on the transport of biological material and pollutants in nearshore regions.

  9. Effect of material parameters on stress wave propagation during fast upsetting

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-jin; CHENG Li-dong

    2008-01-01

    Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.

  10. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  11. MHD Flow Control

    Science.gov (United States)

    2006-09-01

    Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman

  12. Fast-light Assisted Four-Wave-Mixing in Photonic Bandgap

    CERN Document Server

    Feng, Cheng; Zhang, Liang; Liu, Jinmei; Zhan, Li

    2014-01-01

    Since the forward and backward waves are coupled with each other and a standing wave with no net propagation of energy is formed in the photonic bandgap, it is a commonsense of basic physics that, any kinds of effects associated with wave propagation including four-wave-mixing (FWM) are thought to be impossible. However, we lay great emphasis here on explaining that this commonsense could be broken under specific circumstances. In this article, we report with the first experimental observation of the energy conversion in the photonic bandgap into other channel via FWM. Owing to the phase manipulation by fast light effect in the photonic bandgap, we manage to achieve the phase-match condition and thus occurred FWM transfer energy into other channels outside the photonic bandgap efficiently. As one-dimensional photonic crystal, simulations on fiber Bragg grating (FBG) with and without fast light were conducted respectively, and an enhanced FWM in photonic bandgap of FBG was observed. The experimental result sho...

  13. High efficiency off-axis current drive by high frequency fast waves

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.

    2014-02-01

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves ("helicons" or "whistlers"). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n∥, a result that can be understood from examination of the evolution of n∥ as the waves propagate in the plasma. Because of this insensitivity, relatively large values (˜3) of n∥ can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n∥ spectrum, which also helps avoid mode conversion.

  14. Tunneling and mode conversion of fast magnetosonic waves in the magnetospheres of Earth and Mercury

    CERN Document Server

    Kazakov, Yevgen O

    2014-01-01

    Narrow-band linearly polarized waves, having a resonant structure and a peak frequency between the local cyclotron frequency of protons and heavy ions, have been detected in the magnetospheres of Earth and of Mercury. Some of these wave events have been suggested to be driven by linear mode conversion (MC) of the fast magnetosonic waves at the ion-ion hybrid (IIH) resonances. Since the resonant IIH frequency is linked to the plasma composition, solving the inverse problem allows one to infer the concentration of the heavy ions from the measured frequency spectra. In this paper, we identify the conditions when the MC efficiency is maximized in the magnetospheric plasmas and discuss how this can be applied for estimating the heavy ion concentration in the magnetospheres of Earth and Mercury.

  15. Comparative Study between Slow Shock Wave Lithotripsy and Fast Shock Wave Lithotripsy in the Management of Renal Stone

    Directory of Open Access Journals (Sweden)

    AKM Zamanul Islam Bhuiyan

    2013-01-01

    Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A

  16. Corrugation of relativistic magnetized shock waves

    CERN Document Server

    Lemoine, M; Gremillet, L

    2016-01-01

    As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophys...

  17. A transient MHD model applicable for the source of solar cosmic ray acceleration

    Science.gov (United States)

    Dryer, M.; Wu, S. T.

    1981-01-01

    A two-dimensional, time-dependent magnetohydrodynamic model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. In this presentation, the effects of initial magnetic topology and strength on the formation of MHD shocks have been studied. The plasma beta (thermal pressure/magnetic pressure) is considered as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfven Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. It is suggested that this model (computed self-consistently) provides the shock waves and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.

  18. Theory of travelling wave antenna for ICRH and fast wave current drive in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.L. [NFI RNC Kurchatov Institute, Moscow (Russian Federation)

    1993-12-31

    Tokamaks` FWCD antennae require many loops with significant difficulties of location of large coaxes in a region of first wall and their matching with a generator due to mutual coupling between loops (LMC) (mainly through the plasma). It is natural to convert LMC from a defect into advantage by feeding a periodical structure at the edge loop creating the travelling wave. In this work we will give the self consistent theory of poloidal loop antennae with a Faraday screen (FS) loaded at the edges by lumped capacitances. (author) 2 refs.

  19. SHOCKFIND - An algorithm to identify magnetohydrodynamic shock waves in turbulent clouds

    CERN Document Server

    Lehmann, Andrew; Wardle, Mark

    2016-01-01

    The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetised turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks --- fast, intermediate and slow --- distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here we introduce the publicly available algorithm, SHOCKFIND, to extract and characterise the mixture of shock families in MHD turbulence. The algorithm is applied to a 3-dimensional simulation of a magnetised turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of s...

  20. Impulsively Driven Waves And Flows In Coronal Active Regions

    Science.gov (United States)

    Ofman, Leon; Wang, T.; Davila, J. M.; Liu, W.

    2012-05-01

    Recent SDO/AIA and Hinode EIS observations indicate that both (super) fast and slow magnetosonic waves are present in active region (AR) magnetic structures. Evidence for fast (100-300 km/s) impulsive flows is found in spectroscopic and imaging observations of AR loops. The super-fast waves were observed in magnetic funnels of ARs. The observations suggest that waves and flow are produced by impulsive events, such as (micro) flares. We have performed three-dimensional magnetohydrodynamic (3D MHD) simulations of impulsively generated flows and waves in coronal loops of a model bi-polar active region (AR). The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with impulsively driven flow at the coronal base of the AR in localized magnetic field structures. We model the excitation of the flows in hot (6MK) and cold (1MK) active region plasma, and find slow and fast magnetosonic waves produced by these events. We also find that high-density (compared to surrounding corona) loops are produced as a result of the upflows. We investigate the parametric dependence between the properties of the impulsive flows and the waves. The results of the 3D MHD modeling study supports the conjecture that slow magnetosonic waves are often produced by impulsive upflows along the magnetic field, and fast magnetosonic waves can result from impulsive transverse field line perturbations associated with reconnection events. The waves and flows can be used for diagnostic of AR structure and dynamics.

  1. Fast and accurate inference on gravitational waves from precessing compact binaries

    Science.gov (United States)

    Smith, Rory; Field, Scott E.; Blackburn, Kent; Haster, Carl-Johan; Pürrer, Michael; Raymond, Vivien; Schmidt, Patricia

    2016-08-01

    Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments, we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced-order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper, we construct the first reduced-order models of gravitational-wave signals that include the effects of spin precession, inspiral, merger, and ringdown in compact object binaries and that are valid for component masses describing binary neutron star, binary black hole, and mixed binary systems. This work utilizes the waveform model known as "IMRPhenomPv2." Our ROM enables the use of a fast reduced-order quadrature (ROQ) integration rule which allows us to approximate Bayesian probability density functions at a greatly reduced computational cost. We find that the ROQ rule can be used to speed-up inference by factors as high as 300 without introducing systematic bias. This corresponds to a reduction in computational time from around half a year to half a day for the longest duration and lowest mass signals. The ROM and ROQ rules are available with the main inference library of the LIGO Scientific Collaboration, LALInference.

  2. The ultra-fast Kelvin waves in the equatorial ionosphere: observations and modeling

    Directory of Open Access Journals (Sweden)

    A. N. Onohara

    2013-02-01

    Full Text Available The main purpose of this study is to investigate the vertical coupling between the mesosphere and lower thermosphere (MLT region and the ionosphere through ultra-fast Kelvin (UFK waves in the equatorial atmosphere. The effect of UFK waves on the ionospheric parameters was estimated using an ionospheric model which calculates electrostatic potential in the E-region and solves coupled electrodynamics of the equatorial ionosphere in the E- and F-regions. The UFK wave was observed in the South American equatorial region during February–March 2005. The MLT wind data obtained by meteor radar at São João do Cariri (7.5° S, 37.5° W and ionospheric F-layer bottom height (h'F observed by ionosonde at Fortaleza (3.9° S; 38.4° W were used in order to calculate the wave characteristics and amplitude of oscillation. The simulation results showed that the combined electrodynamical effect of tides and UFK waves in the MLT region could explain the oscillations observed in the ionospheric parameters.

  3. Analogue Kerr-like geometries in a MHD inflow

    CERN Document Server

    Noda, Sousuke; Takahashi, Masaaki

    2016-01-01

    We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.

  4. Fast solution of elliptic partial differential equations using linear combinations of plane waves

    Science.gov (United States)

    Pérez-Jordá, José M.

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  5. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    Institute of Scientific and Technical Information of China (English)

    Chang-Jun Zheng; Hai-Bo Chen; Lei-Lei Chen

    2013-01-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.

  6. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    in the field of burn control is to find the proper balance between desired and detrimental effects of the various MHD modes and to develop the methods and tools for active feedback control of MHD modes in burning plasmas. Therefore, it is necessary to understand the dynamics of the system, in this case the mutual interactions between the fast alpha particles and the MHD instabilities. Since burning plasmas do not yet exist, the relevant experimental work until ITER comes into full operation needs to be largely based on alpha-particle simulation experiments in which the alpha particles are accelerated to high energies by means of special heating techniques. The precise conditions of a burning plasma can be only partly mimicked in present tokamaks. Hence, also a detailed computational modelling effort is needed, in order to understand the impact of findings in present machines for those of the future. In 2011 two dedicated workshops were devoted to MHD control. Firstly, there was a workshop on Control of Burning Plasmas that took place from 21-25 March 2011 at the Lorentz Centre in Leiden, The Netherlands. Secondly, the 480th Wilhelm and Else Heraeus Seminar that took place from 16-18 June in Bad Honnef, Germany was devoted to Active Control of Instabilities in Hot Plasmas. This special issue presents a collection of papers that have been presented at the two workshops, along with a few papers that are the result of an open call to contribute to this special issue.

  7. Cyclotron resonances of ions with obliquely propagating waves in coronal holes and the fast solar wind

    Science.gov (United States)

    Hollweg, Joseph V.; Markovskii, S. A.

    2002-06-01

    There is a growing consensus that cyclotron resonances play important roles in heating protons and ions in coronal holes where the fast solar wind originates and throughout interplanetary space as well. Most work on cyclotron resonant interactions has concentrated on the special, but unrealistic, case of propagation along the ambient magnetic field, B0, because of the great simplification it gives. This paper offers a physical discussion of how the cyclotron resonances behave when the waves propagate obliquely to B0. We show how resonances at harmonics of the cyclotron frequency come about, and how the physics can be different depending on whether E⊥ is in or perpendicular to the plane containing k and B0 (k is wave vector, and E⊥ is the component of the wave electric field perpendicular to B0). If E⊥ is in the k-B0 plane, the resonances are analogous to the Landau resonance and arise because the particle tends to stay in phase with the wave during the part of its orbit when it is interacting most strongly with E⊥. If E⊥ is perpendicular to the k-B0 plane, then the resonances depend on the fact that the particle is at different positions during the parts of its orbit when it is interacting most strongly with E⊥. Our main results are our refid="df10" type="formula">equations (10), refid="df11" type="formula">(11), and refid="df13" type="formula">(13) for the secular rate of energy gain (or loss) by a resonant particle and the unfamiliar result that ions can resonate with a purely right-hand circularly polarized wave if the propagation is oblique. We conclude with some speculations about the origin of highly obliquely propagating ion resonant waves in the corona and solar wind. We point out that there are a number of instabilities that may generate such waves locally in the corona and solar wind.

  8. Stability of ideal MHD configurations. I. Realizing the generality of the G operator

    Science.gov (United States)

    Keppens, R.; Demaerel, T.

    2016-12-01

    A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes

  9. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    Science.gov (United States)

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel; Müller, Ewald

    2017-06-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.

  10. Development of a fast traveling-wave beam chopper for the SNS project

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Power, J.F.

    1998-12-31

    High current and stringent restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns--beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures based on meander lines is discussed. Three-dimensional time-domain computer simulations with MAFIA are used to study transient effects in the chopper and to optimize current structure design. Two options for the fast pulsed voltage generator--based on FETs and vacuum tubes--are considered, and their advantages and shortcomings for the SNS chopper are discussed.

  11. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    Science.gov (United States)

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-01-01

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved. PMID:25029282

  12. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Daniel Matatagui

    2014-07-01

    Full Text Available The following paper examines a time-efficient method for detecting biological warfare agents (BWAs. The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13, and the rabbit immunoglobulin (Rabbit IgG has been detected using the polyclonal antibody goat anti-rabbit (GAR. Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.

  13. Love-wave sensors combined with microfluidics for fast detection of biological warfare agents.

    Science.gov (United States)

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-07-15

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.

  14. FIRST SIMULTANEOUS OBSERVATION OF AN H{alpha} MORETON WAVE, EUV WAVE, AND FILAMENT/PROMINENCE OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Ayumi; Isobe, Hiroaki [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin' ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shiota, Daikou [Advanced Science Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Oi, Akihito [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Akioka, Maki, E-mail: asai@kwasan.kyoto-u.ac.jp [Hiraiso Solar Observatory, National Institute of Information and Communications Technology, Hitachinaka, Ibaraki 311-1202 (Japan)

    2012-02-15

    We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.

  15. Gravitational-wave Constraints on the Progenitors of Fast Radio Bursts

    Science.gov (United States)

    Callister, Thomas; Kanner, Jonah; Weinstein, Alan

    2016-07-01

    The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, FRBs are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. Such coalescence events are strong gravitational-wave emitters. We demonstrate that measurements made by the LIGO and Virgo gravitational-wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements constrain the binary black hole rate to approximately 5% of the FRB rate, and results from Advanced LIGO’s O1 and O2 observing runs may place similarly strong constraints on the fraction of FRBs due to binary neutron star and neutron star-black hole progenitors.

  16. Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier

    Directory of Open Access Journals (Sweden)

    Josef Burian

    2012-12-01

    Full Text Available This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.

  17. Electromagnetic Modeling of a Fast Traveling-Wave Beam Chopper for the SNS Project.

    Science.gov (United States)

    Kurennoy, Sergey

    1998-04-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast --- with the rise time from 2% to 98% less than 2.5 ns --- beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures, based on meander lines, is discussed. Three-dimensional time-domain computer simulations are used to study transient effects in the chopper and to optimize its design.

  18. A note on a strongly damped wave equation with fast growing nonlinearities

    OpenAIRE

    2015-01-01

    A note on a strongly damped wave equation with fast growing nonlinearities Varga Kalantarov and Sergey Zelik Citation: Journal of Mathematical Physics 56, 011501 (2015); doi: 10.1063/1.4905234 View online: http://dx.doi.org/10.1063/1.4905234 View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/56/1?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Local well-posedness for nonlinear Klein-Gordon equation with weak and strong d...

  19. Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons

    CERN Document Server

    Serov, V V; Joulakian, B B; Vinitsky, S I; Serov, Vladislav V.; Derbov, Vladimir L.; Joulakian, Boghos B.; Vinitsky, Sergue I.

    2000-01-01

    The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.

  20. Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites

    Science.gov (United States)

    Apperson, S.; Shende, R. V.; Subramanian, S.; Tappmeyer, D.; Gangopadhyay, S.; Chen, Z.; Gangopadhyay, K.; Redner, P.; Nicholich, S.; Kapoor, D.

    2007-12-01

    Nanothermite composites containing metallic fuel and inorganic oxidizer are gaining importance due to their outstanding combustion characteristics. In this paper, the combustion behaviors of copper oxide/aluminum nanothermites are discussed. CuO nanorods were synthesized using the surfactant-templating method, then mixed or self-assembled with Al nanoparticles. This nanoscale mixing resulted in a large interfacial contact area between fuel and oxidizer. As a result, the reaction of the low density nanothermite composite leads to a fast propagating combustion, generating shock waves with Mach numbers up to 3.

  1. Design of long-pulse fast wave current drive antennas for DIII-D

    Science.gov (United States)

    Baity, F. W.; Batchelor, D. B.; Bills, K. C.; Fogelman, C. H.; Jaeger, E. F.; Ping, J. L.; Riemer, B. W.; Ryan, P. M.; Stallings, D. C.; Taylor, D. J.; Yugo, J. J.

    1994-10-01

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90° phasing into a low-density plasma (˜4×1019m-3) with hot electrons (˜10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  2. Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force

    Science.gov (United States)

    Thurgood, J. O.; McLaughlin, J. A.

    2013-07-01

    Context. In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently, despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇cA ≠ 0) there is no further nonlinear generation of fast waves. Conclusions: We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse and longitudinal disturbances - effects absent in the linear regime - due to nonlinear magnetic pressure gradients.

  3. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  4. Numerical Simulation of Fast-mode Magnetosonic Waves Excited by Plasmoid Ejections in the Solar Corona

    Science.gov (United States)

    Yang, Liping; Zhang, Lei; He, Jiansen; Peter, Hardi; Tu, Chuanyi; Wang, Linghua; Zhang, Shaohua; Feng, Xueshang

    2015-02-01

    The Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory has directly imaged the fast-propagating magnetosonic waves (FMWs) successively propagating outward along coronal magnetic funnels. In this study we perform a numerical investigation of the excitation of FMWs in the interchange reconnection scenario, with footpoint shearing flow being used to energize the system and drive the reconnection. The modeling results show that as a result of magnetic reconnection, the plasma in the current sheet is heated up by Joule dissipation to ~10 MK and is ejected rapidly, developing the hot outflows. Meanwhile, the current sheet is torn into plasmoids, which are shot quickly both upward and downward. When the plasmoids reach the outflow regions, they impact and collide with the ambient magnetic field there, which consecutively launches FMWs. The FMWs propagate outward divergently away from the impact regions, with a phase speed of the Alfvén speed of ~1000 km s-1. In the k - ω diagram of the Fourier wave power, the FMWs display a broad frequency distribution with a straight ridge that represents the dispersion relation. With the WKB approximation, at the distance of 15 Mm from the wave source region, we estimate the energy flux of FMWs to be E ~ 7.0 × 106 erg cm-2 s-1, which is ~50 times smaller than the energy flux related to the tube-channeled reconnection outflow. These simulation results indicate that energetically and dynamically the outflow is far more important than the waves.

  5. A Fast Improved Fat Tree Encoder for Wave Union TDC in an FPGA

    CERN Document Server

    Shen, Qi; Liu, Shubin; Liao, Shengkai; Qi, Binxiang; Hu, Xueye; Peng, Chengzhi; An, Qi

    2013-01-01

    Up to the present, the wave union method can achieve the best timing performance in FPGA based TDC designs. However, it should be guaranteed in such a structure that the non-thermometer code to binary code (NTH2B) encoding process should be finished within just one system clock cycle. So the implementation of the NTH2B encoder is quite challenging considering the high speed requirement. Besides, the high resolution wave union TDC also demands the encoder to convert an ultra-wide input code to a binary code. We present a fast improved fat tree encoder (IFTE) to fulfill such requirements, in which bubble error suppression is also integrated. With this encoder scheme, a wave union TDC with 7.7 ps RMS and 3.8 ps effective bin size was implemented in an FPGA from Xilinx Virtex 5 family. An encoding time of 8.33 ns was achieved for a 276-bit non-thermometer code to a 9-bit binary code conversion. We conducted a series of tests on the oscillating period of the wave union launcher, as well as the overall performance ...

  6. GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY STEREO SECCHI COR1

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young; Kramar, Maxim; Wang, Tongjiang; Ofman, Leon [Department of Physics, Institute for Astrophysics and Computational Sciences, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Chae, Jongchul [Astronomy Program, Department of Physics and Astronomy, Seoul National University (Korea, Republic of); Zhang, Jie [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States)

    2013-10-10

    We present global coronal seismology for the first time, which allows us to determine inhomogeneous magnetic field strength in the extended corona. From the measurements of the propagation speed of a fast magnetosonic wave associated with a coronal mass ejection (CME) and the coronal background density distribution derived from the polarized radiances observed by the STEREO SECCHI COR1, we determined the magnetic field strengths along the trajectories of the wave at different heliocentric distances. We found that the results have an uncertainty less than 40%, and are consistent with values determined with a potential field model and reported in previous works. The characteristics of the coronal medium we found are that (1) the density, magnetic field strength, and plasma β are lower in the coronal hole region than in streamers; (2) the magnetic field strength decreases slowly with height but the electron density decreases rapidly so that the local fast magnetosonic speed increases while plasma β falls off with height; and (3) the variations of the local fast magnetosonic speed and plasma β are dominated by variations in the electron density rather than the magnetic field strength. These results imply that Moreton and EIT waves are downward-reflected fast magnetosonic waves from the upper solar corona, rather than freely propagating fast magnetosonic waves in a certain atmospheric layer. In addition, the azimuthal components of CMEs and the driven waves may play an important role in various manifestations of shocks, such as type II radio bursts and solar energetic particle events.

  7. Relativistic MHD with Adaptive Mesh Refinement

    CERN Document Server

    Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David

    2006-01-01

    We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.

  8. A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model

    CERN Document Server

    Oran, Rona; van der Holst, Bart; Lepri, Susan T; Frazin, Alberto M Vásquez Federico A Nuevo Richard; Manchester, Ward B; Sokolov, Igor V; Gombosi, Tamas I

    2014-01-01

    The higher charge states found in slow ($<$400km s$^{-1}$) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops, and released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using AWSoM, a global magnetohydrodynamic model driven by Alfv{\\'e}n waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge states calculation covering all latitudes in a realistic magnetic field. The ratios $O^{+7}/O^{+6}$ and $C^{+6}/C^{+5}$ are compared to in-situ Ulysses observations, and are found to be higher in the slow wind, as observed; however, they are under-predicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to EIS observations above a cor...

  9. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    CERN Document Server

    Goddard, C R; Nakariakov, V M; Zimovets, I V; White, S M

    2016-01-01

    Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio \\lq sparks\\rq (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emissi...

  10. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    Science.gov (United States)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  11. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects

    Science.gov (United States)

    Tong, Mei Song; Chew, Weng Cho

    2009-02-01

    Multilevel fast multipole algorithm (MLFMA) is developed for solving elastic wave scattering by large three-dimensional (3D) objects. Since the governing set of boundary integral equations (BIE) for the problem includes both compressional and shear waves with different wave numbers in one medium, the double-tree structure for each medium is used in the MLFMA implementation. When both the object and surrounding media are elastic, four wave numbers in total and thus four FMA trees are involved. We employ Nyström method to discretize the BIE and generate the corresponding matrix equation. The MLFMA is used to accelerate the solution process by reducing the complexity of matrix-vector product from O(N2) to O(NlogN) in iterative solvers. The multiple-tree structure differs from the single-tree frame in electromagnetics (EM) and acoustics, and greatly complicates the MLFMA implementation due to the different definitions for well-separated groups in different FMA trees. Our Nyström method has made use of the cancellation of leading terms in the series expansion of integral kernels to handle hyper singularities in near terms. This feature is kept in the MLFMA by seeking the common near patches in different FMA trees and treating the involved near terms synergistically. Due to the high cost of the multiple-tree structure, our numerical examples show that we can only solve the elastic wave scattering problems with 0.3-0.4 millions of unknowns on our Dell Precision 690 workstation using one core.

  12. Simple MHD Equilibria

    Science.gov (United States)

    Schnack, Dalton D.

    In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.

  13. High efficiency off-axis current drive by high frequency fast waves

    Energy Technology Data Exchange (ETDEWEB)

    Prater, R.; Pinsker, R. I.; Moeller, C. P. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Porkolab, M.; Vdovin, V. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-02-12

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.

  14. Experimental investigation of the shock wave in a fast discharge with cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, P. S.; Dorokhin, L. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2013-08-15

    The work is devoted to the registration and the study of the properties of cylindrical shock waves generated in the fast discharge (dI/dt ∼ 10{sup 12} A/s) inside the ceramic tube (Al{sub 2}O{sub 3}) filled by argon at pressures of 100 and 300 Pa. The shock wave appears at the inner wall of the insulator and moves to the discharge axis with a velocity of about (3−4) × 10{sup 6} cm/s with subsequent cumulation. The plasma behind the front is heated enough to produce radiation in the vacuum ultraviolet (VUV) region, which makes it possible to study its structure by means of a pinhole camera with a microchannel plate detector. The time resolution of the registration system was 10 ns. The analysis of VUV spectra of the plasma shows that the electron temperature behind the shock wave front is about several eV; after the moment of cumulation, its temperature increases to 20–30 eV.

  15. Experimental investigation of the shock wave in a fast discharge with cylindrical geometry

    Science.gov (United States)

    Antsiferov, P. S.; Dorokhin, L. A.

    2013-08-01

    The work is devoted to the registration and the study of the properties of cylindrical shock waves generated in the fast discharge ( dI/ dt ˜ 1012 A/s) inside the ceramic tube (Al2O3) filled by argon at pressures of 100 and 300 Pa. The shock wave appears at the inner wall of the insulator and moves to the discharge axis with a velocity of about (3-4) × 106 cm/s with subsequent cumulation. The plasma behind the front is heated enough to produce radiation in the vacuum ultraviolet (VUV) region, which makes it possible to study its structure by means of a pinhole camera with a microchannel plate detector. The time resolution of the registration system was 10 ns. The analysis of VUV spectra of the plasma shows that the electron temperature behind the shock wave front is about several eV; after the moment of cumulation, its temperature increases to 20-30 eV.

  16. Gyrokinetic electron and fully kinetic ion simulations of fast magnetosonic waves in the magnetosphere

    Science.gov (United States)

    Gao, Xiaotian; Liu, Kaijun; Wang, Xueyi; Min, Kyungguk; Lin, Yu; Wang, Xiaogang

    2017-06-01

    Two-dimensional simulations using a gyrokinetic electron and fully kinetic ion (GeFi) scheme are preformed to study the excitation of fast magnetosonic waves in the terrestrial magnetosphere, which arise from the ion Bernstein instability driven by proton velocity distributions with a positive slope with respect to the perpendicular velocity. Since both ion and electron kinetics are relevant, particle-in-cell (PIC) simulations have often been employed to study the wave excitation. However, the full particle-in-cell scheme is computationally expensive for simulating waves in the ion scale because the electron scale must be fully resolved. Therefore, such simulations are limited to reduced proton-to-electron mass ratio ( m p / m e) and light-to-Alfvén speed ratio ( c / v A). The present study exploits the GeFi scheme that can break through these limitations to some extent, so larger m p / m e and c / v A can be used. In the simulations presented, the ion Bernstein instability is driven by a proton velocity distribution composed of 10% energetic protons with a shell distribution and 90% relatively cool, background protons with a Maxwellian distribution. The capability of the GeFi code in simulating the ion Bernstein instability is first demonstrated by comparing a GeFi simulation using reduced mass ratio ( m p / m e = 100) and speed ratio ( c / v A = 15) to a corresponding PIC simulation as well as linear dispersion analysis. A realistic speed ratio ( c / v A = 400) and a larger mass ratio ( m p / m e = 400) are then adopted in the GeFi code to explore how the results vary. It is shown that, as the increased m p / m e and c / v A lead to a larger lower hybrid frequency, ion Bernstein waves are excited at more ion cyclotron harmonics, consistent with the general prediction of linear dispersion theory. On the other hand, the GeFi simulations also revealed some interesting features after the instability saturation, which are likely related to nonlinear wave-wave

  17. Resonant Absorption of Fast Magnetoacoustic Waves due to Coupling into the Slow and Alfven Continua in the Solar Atmosphere

    CERN Document Server

    Clack, C T M; Douglas, M

    2010-01-01

    Resonant absorption of fast magnetoacoustic (FMA) waves in an inhomogeneous, weakly dissipative, one-dimensional planar, strongly anisotropic and dispersive plasma is investigated. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localised slow or Alfven waves present in the inhomogeneous layer and are partly reflected, dissipated and transmitted by this region. The presented research aims to find the coefficient of wave energy absorption under solar chromospheric and coronal conditions. Numerical results are analyzed to find the coefficient of wave energy absorption at both the slow and Alfven resonance positions. The mathematical derivations are based on the two simplifying assumptions that (i) nonlinearity is weak, and (ii) the thickness of the inhomogeneous layer is small in comparison to the wavelength of the wave, i.e. we empl...

  18. Fast dropouts of multi-MeV electrons due to combined effects of EMIC and whistler mode waves

    Science.gov (United States)

    Mourenas, D.; Artemyev, A. V.; Ma, Q.; Agapitov, O. V.; Li, W.

    2016-05-01

    We investigate how whole populations of 2-6 MeV electrons can be quickly lost from the Earth's outer radiation belt at L= 3-6 through precipitation into the atmosphere due to quasi-linear pitch angle scattering by combined electromagnetic ion cyclotron (EMIC) and whistler mode waves of realistic intensities occurring at the same or different local times. We provide analytical estimates of the corresponding relativistic electron lifetimes, emphasizing that the combined effects of both waves can lead to very fast (2-10 h) dropouts. Scaling laws for the loss timescales are derived, allowing us to determine the various plasma and wave parameter domains potentially leading to strong and fast dropouts. The analysis reveals that the fastest MeV electron dropouts occur at approximately the same rate over some high energy range and almost independently of EMIC wave amplitudes above a certain threshold. These results should help to better understand the dynamic variability of the radiation belts.

  19. Strong fast long-period waves in the Efpalio 2010 earthquake records: explanation in terms of leaking modes

    Science.gov (United States)

    Vackář, Jiří; Zahradník, Jiří; Sokos, Efthimios

    2014-01-01

    The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece ( M w 5.3) generated unusually strong long-period waves (periods 4-8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40-250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).

  20. An analysis of JET fast-wave heating and current drive experiments directly related to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, V.P.; Eriksson, L.; Gormezano, C.; Jacquinot, J.; Kaye, A.; Start, D.F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs.

  1. Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Jason, A.J.; Krawczyk, F.L.; Power, J.

    1997-10-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design.

  2. Development of a Fast Traveling-Wave Beam Chopper for National Spallation Neutron Source.

    Science.gov (United States)

    Kurennoy, Sergey S.; Jason, Andrew J.; Krawczyk, Frank L.

    1997-05-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the NSNS require clean and fast (with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5 MHz beam structure) beam chopping in its front end, at beam energy 2.5 MeV. The present R&D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations we study transient effects in such structures to choose an optimal chopper design.

  3. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms.

    Science.gov (United States)

    Mézière, F; Juskova, P; Woittequand, J; Muller, M; Bossy, E; Boistel, Renaud; Malaquin, L; Derode, A

    2016-02-01

    In this paper, ultrasound measurements of 1:1 scale three-dimensional (3D) printed trabecular bone phantoms are reported. The micro-structure of a trabecular horse bone sample was obtained via synchrotron x-ray microtomography, converted to a 3D binary data set, and successfully 3D-printed at scale 1:1. Ultrasound through-transmission experiments were also performed through a highly anisotropic version of this structure, obtained by elongating the digitized structure prior to 3D printing. As in real anisotropic trabecular bone, both the fast and slow waves were observed. This illustrates the potential of stereolithography and the relevance of such bone phantoms for the study of ultrasound propagation in bone.

  4. Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Philip Michael [ORNL; Baity Jr, F Wallace [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Greenough, Nevell [Princeton Plasma Physics Laboratory (PPPL); Nagy, Alex [Princeton Plasma Physics Laboratory (PPPL); Pinsker, R. [General Atomics; Rasmussen, David A [ORNL

    2009-01-01

    A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs.

  5. Design of long-pulse fast wave current drive antennas for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Baity, F.W.; Batchelor, D.B.; Bills, K.C.; Fogelman, C.H.; Jaeger, E.F.; Ping, J.L.; Riemer, B.W.; Ryan, P.M.; Stallings, D.C.; Taylor, D.J.; Yugo, J.J. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States))

    1994-10-15

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90[degree] phasing into a low-density plasma ([similar to]4[times]10[sup 19]m[sup [minus]3]) with hot electrons ([similar to]10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  6. Fast accurate computation of the fully nonlinear solitary surface gravity waves

    CERN Document Server

    Clamond, Didier

    2013-01-01

    In this short note, we present an easy to implement and fast algorithm for the computation of the steady solitary gravity wave solution of the free surface Euler equations in irrotational motion. First, the problem is reformulated in a fixed domain using the conformal mapping technique. Second, the problem is reduced to a single equation for the free surface. Third, this equation is solved using Petviashvili's iterations together with pseudo-spectral discretisation. This method has a super-linear complexity, since the most demanding operations can be performed using a FFT algorithm. Moreover, when this algorithm is combined with the multi-precision arithmetics, the results can be obtained to any arbitrary accuracy.

  7. The efficiency of fast wave current drive for a weakly relativistic plasma

    Science.gov (United States)

    Chiu, S. C.; Lin-Liu, Y. R.; Karney, C. F. F.

    1994-10-01

    Current drive by fast waves (FWCD) is an important candidate for steady-state operation of tokamaks. Major experiments using this scheme are being carried out on DIII-D. There has been considerable study of the theoretical efficiency of FWCD. In Refs. 4 and 5, the nonrelativistic efficiency of FWCD at arbitrary frequencies was studied. For DIII-D parameters, the results can be considerably different from the Landau and Alfvén limits. At the high temperatures of reactors and DIII-D upgrade, relativistic effects become important. In this paper, the relativistic FWCD efficiency for arbitrary frequencies is studied. Assuming that the plasma is weakly relativistic, i.e., Te/mc2 is small, an analytic expression for FWCD is obtained for high resonant energies (uph/uTe≫1). Comparisons with the results from a numerical code ADJ and the nonrelativistic results shall be made and analytical fits in the whole range of velocities shall be presented.

  8. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  9. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.

    Science.gov (United States)

    Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  10. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  11. Nonlinear Alfv\\'en wave dynamics at a 2D magnetic null point: ponderomotive force

    CERN Document Server

    Thurgood, J O

    2013-01-01

    Context : In the linear, {\\beta}=0 MHD regime, the transient properties of MHD waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfv\\'en waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfv\\'en speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfv\\'en waves about a 2D magnetic null point in nonlinear, {\\beta}= 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfv\\'en waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfv\\'en wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. t...

  12. Combined Effects of Chemical Reaction and Wall Slip on MHD Flow in a Vertical Wavy Porous Space with Traveling Thermal Waves

    Directory of Open Access Journals (Sweden)

    Ramamoorthy MUTHURAJ

    2013-07-01

    Full Text Available This paper investigates the magnetohydrodynamic (MHD mixed convective heat and mass transfer flow in a vertical wavy porous space in the presence of a heat source with the combined effects of chemical reaction and wall slip condition. The dimensionless governing equations are perturbed into: mean (zeroth-order part and a perturbed part, using amplitude as a small parameter. The perturbed quantities are obtained by perturbation series expansion for small wavelength in which terms of exponential order arise. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, magnetic field, porous medium, heat source/sink parameter and wall slip condition. Further, the results of the skin friction and rate of heat and mass transfer at the wall are presented for various values of parameters entering into the problem and discussed with the help of graphs.

  13. Constraints of relic gravitational waves by Pulsar Timing Array: Forecasts for the FAST and SKA projects

    CERN Document Server

    Zhao, Wen; You, Xiao-Peng; Zhu, Zong-Hong

    2013-01-01

    Measurement of the pulsar timing residuals provides a direct way to detect relic gravitational waves at the frequency $f\\sim 1/{\\rm yr}$. In this paper, we investigate the constraints on the inflationary parameters, the tensor-to-scalar ratio $r$ and the tensor spectral index $n_t$, by the current and future Pulsar Timing Arrays (PTAs). We find that Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China and the planned Square Kilometer Array (SKA) projects have the fairly strong abilities to test the phantom-like inflationary models. If $r=0.1$, FAST could give the constraint on the spectral index $n_t<0.38$, and SKA gives $n_t<0.30$. While an observation with the total time T=20yr, the pulsar noise level $\\sigma_w=30$ns and the monitored pulsar number $n=200$, could even constrain $n_t<0.05$. These are much tighter than those inferred from the current results of Parkers Pulsar Timing Array (PPTA) and European Pulsar Timing Array (EPTA). Especially, by studying the effects of various o...

  14. Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Z D; Hristov, T S; Mishonov, T M

    2011-01-01

    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.

  15. Pearson相关系数法快慢横波波场分离%Wave filed separation of fast-slow shear waves by Pearson correlation coefficient method

    Institute of Scientific and Technical Information of China (English)

    王凯; 冯晅; 刘财

    2012-01-01

    横波分裂是各向异性介质的重要特征,当横波或转换波穿过各向异性介质到达地面时,地面三分量检波器的x分量和y分量接收到的地震记录中都会同时存在快横波和慢横波.将快横波和慢横波进行分离,进而计算介质的各向异性参数是多分量数据处理中重要的一步.将数学中的Pearson相关系数引入到多分量地震勘探中,提出了Pearson相关系数法进行旋转角度识别,进而分离快、慢横波波场.相比于传统的互相关法,Pearson相关系数法从精度、抗噪性能和计算效率上都有提高.%Shear-wave splitting is an important characteristic of anisotropic media. Generally, when S or P-SV waves reach to the ground through anisotropic media, the seismic record received by x component and y component of three-component detector contains fast wave and slow wave simultaneously- Separating fast wave and slow wave and then calculating the anisotropic parameters of media are an important step in multi-component data processing. The authors introduce the Pearson correlation coefficients into multi-component seismic exploration and propose the Pearson correlation coefficients to detect the rotation angle and then separate the fast wave and slow wave. Compared with the traditional cross-correlation method, the Pearson correlation coefficient method is better in accuracy, noise immunity and computational efficiency.

  16. Energy Cascades in MHD

    Science.gov (United States)

    Alexakis, A.

    2009-04-01

    Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed

  17. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review.

    Science.gov (United States)

    Afzal, Adeel; Iqbal, Naseer; Mujahid, Adnan; Schirhagl, Romana

    2013-07-17

    The necessity of selectively detecting various organic vapors is primitive not only with respect to regular environmental and industrial hazard monitoring, but also in detecting explosives to combat terrorism and for defense applications. Today, the huge arsenal of micro-sensors has revolutionized the traditional methods of analysis by, e.g. replacing expensive laboratory equipment, and has made the remote screening of atmospheric threats possible. Surface acoustic wave (SAW) sensors - based on piezoelectric crystal resonators - are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. Combined with suitably designed molecular recognition materials SAW devices could develop into highly selective and fast responsive miniaturized sensors, which are capable of continuously monitoring a specific organic gas, preferably in the sub-ppm regime. For this purpose, different types of recognition layers ranging from nanostructured metal oxides and carbons to pristine or molecularly imprinted polymers and self-assembled monolayers have been applied in the past decade. We present a critical review of the recent developments in nano- and micro-engineered synthetic recognition materials predominantly used for SAW-based organic vapor sensors. Besides highlighting their potential to realize real-time vapor sensing, their limitations and future perspectives are also discussed.

  18. Development of fast two-dimensional standing wave microscopy using acousto-optic deflectors

    Science.gov (United States)

    Gliko, Olga; Reddy, Duemani G.; Brownell, William E.; Saggau, Peter

    2008-02-01

    A novel scheme for two-dimensional (2D) standing wave fluorescence microscopy (SWFM) using acousto-optic deflectors (AODs) is proposed. Two laser beams were coupled into an inverted microscope and focused at the back focal plane of the objective lens. The position of each of two beams at the back focal plane was controlled by a pair of AODs. This resulted in two collimated beams that interfered in the focal plane, creating a lateral periodic excitation pattern with variable spacing and orientation. The phase of the standing wave pattern was controlled by phase delay between two RF sinusoidal signals driving the AODs. Nine SW patterns of three different orientations about the optical axis and three different phases were generated. The excitation of the specimen using these patterns will result in a SWFM image with enhanced 2D lateral resolution with a nearly isotropic effective point-spread function. Rotation of the SW pattern relative to specimen and varying the SW phase do not involve any mechanical movements and are only limited by the time required for the acoustic wave to fill the aperture of AOD. The resulting total acquisition time can be as short as 100 µs and is only further limited by speed and sensitivity of the employed CCD camera. Therefore, this 2D SWFM can provide a real time imaging of subresolution processes such as docking and fusion of synaptic vesicles. In addition, the combination of 2D SWFM with variable angle total internal reflection (TIR) can extend this scheme to fast microscopy with enhanced three-dimensional (3D) resolution.

  19. Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Directory of Open Access Journals (Sweden)

    Muthuraj R.

    2012-01-01

    Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.

  20. Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R. W. [CompX, Del Mar, CA (United States)

    2009-11-12

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over

  1. Connecting the Sun and the Solar Wind: The First Two-Dimensional Self-consistent MHD Simulation under the Alfv\\'en Wave Scenario

    CERN Document Server

    Matsumoto, Takuma

    2011-01-01

    We report the results of the first two-dimensional self-consistent simulations directly covering from the photosphere to the interplanetary space. We carefully set up grid points with spherical coordinate to treat Alfv\\'enic waves in the atmosphere with the huge density contrast, and successfully simulate hot coronal wind streaming out as a result of surface convective motion. Footpoint motion excites upwardly propagating Alfv\\'enic waves along an open magnetic flux tube. These waves, traveling in non-uniform medium, suffer reflection, nonlinear mode conversion to compressive modes, and turbulent cascade. Combination of these mechanisms, the Alfv\\'enic waves eventually dissipate to accelerate the solar wind. While the shock heating by the dissipation of the compressive wave plays a primary role in the coronal heating, both turbulent cascade and shock heating contribute to drive the solar wind.

  2. Nonlinear generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-04-20

    We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.

  3. Cyclotron Resonances of Ions with Obliquely-Propagating Waves in Coronal Holes and the Fast Solar Wind

    Science.gov (United States)

    Hollweg, J. V.; Markovskii, S. A.

    2001-05-01

    UVCS/SOHO has provided observations of protons and ions in coronal holes which suggest the operation of ion-cyclotron heating and acceleration. Many models have concentrated on the interactions of particles with parallel-propagating ion-cyclotron waves. There is of course no reason to expect parallel propagation in the corona, so we consider here some consequences of oblique propagation. Following Stix (1992), we analytically calculate the energy absorbed by an ion moving in an obliquely-propagating electromagnetic wave. Resonances occur at harmonics of the gyro frequency, though we will show that the physical interpretations are quite different for electric field polarizations in, or perpendicular to, the plane containing k and Bo (k is wavenumber and Bo is the ambient magnetic field). Surprisingly, a resonance at the fundamental frequency can occur even if the wave is right-hand circularly polarized (i.e. opposite to the sense of the gyromotion). We suggest, therefore, that resonances with the fast/whistler branch, which are often overlooked, may play a role in the heating of ions and protons in coronal holes as long as the waves are oblique. We will discuss possible sources of such waves. We will also summarize other consequences of oblique propagation for the resonant heating of coronal holes and the origin of the fast solar wind. Stix, T.H., Waves in Plasmas, AIP, New York, 1992.

  4. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C. [Association EURATOM-FOM, Trilateral Euregio Cluster, FOM-Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Oosterbeek, J. W.; Buerger, A. [Association EURATOM-FZJ, Institut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GMBH, 52425 Juelich (Germany); Hennen, B. A. [Association EURATOM-FOM, Trilateral Euregio Cluster, FOM-Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Control Systems Technology Group, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2009-10-15

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  5. Local conservative regularizations of compressible MHD and neutral flows

    CERN Document Server

    Krishnaswami, Govind S; Thyagaraja, Anantanarayanan

    2016-01-01

    Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...

  6. Laser-powered MHD generators for space application

    Science.gov (United States)

    Jalufka, N. W.

    1986-10-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  7. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......-equipartition and a turbulent state. The generation and evolution of such strong magnetic fields is relevant for the understanding of dynamo action that occurs in stars and other astrophysical objects. Aims.We study the mode of operation of this dynamo, in the linear and non-linear saturation regimes. We also consider...... the effect of varying the magnetic and fluid Reymolds number on the non-linear behaviour of the system. Methods.We perform three-dimensional non-linear MHD simulations and visualization using a high resolution numerical scheme. Results.We find that this dynamo has a high growth rate in the linear regime...

  8. Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model

    Science.gov (United States)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu

    1995-01-01

    Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.

  9. Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.

    1998-07-01

    Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and

  10. Collisionless magnetic reconnection under anisotropic MHD approximation

    Science.gov (United States)

    Hirabayashi, Kota; Hoshino, Masahiro

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  11. Fast Magnetoacoustic Waves in a Fan Structure Above a Coronal Magnetic Null Point

    Science.gov (United States)

    Mészárosová, H.; Dudík, J.; Karlický, M.; Madsen, F. R. H.; Sawant, H. S.

    2013-04-01

    We analyze the 26 November 2005 solar radio event observed interferometrically at frequencies of 244 and 611 MHz by the Giant Metrewave Radio Telescope (GMRT) in Pune, India. These observations are used to make interferometric maps of the event at both frequencies with the time cadence of 1 s from 06:50 to 07:12 UT. These maps reveal several radio sources. The light curves of these sources show that only two sources at 244 MHz and 611 MHz are well correlated in time. The EUV flare is more localized with flare loops located rather away from the radio sources. Using SoHO/MDI observations and potential magnetic field extrapolation we demonstrate that both the correlated sources are located in the fan structure of magnetic field lines starting from a coronal magnetic null point. Wavelet analysis of the light curves of the radio sources detects tadpoles with periods in the range P=10 - 83 s. These wavelet tadpoles indicate the presence of fast magnetoacoustic waves that propagate in the fan structure of the coronal magnetic null point. We estimate the plasma parameters in the studied radio sources and find them consistent with the presented scenario involving the coronal magnetic null point.

  12. Fast magnetoacoustic waves in a fan structure above the coronal magnetic null point

    CERN Document Server

    Meszarosova, H; Karlicky, M; Madsen, F R H; Sawant, H S

    2013-01-01

    We analyze the 26 November 2005 solar radio event observed interferometrically at frequencies of 244 and 611 MHz by the Giant Metrewave Radio Telescope (GMRT) in Pune, India. These observations are used to make interferometric maps of the event at both frequencies with the time cadence of 1 s from 06:50 to 07:12 UT. These maps reveal several radio sources. The light curves of these sources show that only two sources at 244 MHz and 611 MHz are well correlated in time. The EUV flare is more localized with flare loops located rather away from the radio sources. Using the SoHO/MDI observations and potential magnetic field extrapolation we demonstrate that both the correlated sources are located in the fan structure of magnetic field lines starting from a coronal magnetic null point. Wavelet analysis of the light curves of the radio sources detects tadpoles with periods in the range P = 10-83 s. These wavelet tadpoles indicate the presence of fast magnetoacoustic waves that propagate in the fan structure of the co...

  13. MHD Equilibria and Triggers for Prominence Eruption

    CERN Document Server

    Fan, Yuhong

    2015-01-01

    Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.

  14. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    CERN Document Server

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca

    2016-01-01

    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  15. Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles.

    Science.gov (United States)

    Gennisson, Jean-Luc; Catheline, Stefan; Chaffaï, Sana; Fink, Mathias

    2003-07-01

    From the measurement of a low frequency (50-150 Hz) shear wave speed, transient elastography evaluates the Young's modulus in isotropic soft tissues. In this paper, it is shown that a rod source can generate a low frequency polarized shear strain waves. Consequently this technique allows to study anisotropic medium such as muscle. The evidence of the polarization of low frequency shear strain waves is supported by both numeric simulations and experiments. The numeric simulations are based on theoretical Green's functions in isotropic and anisotropic media (hexagonal system). The experiments in vitro led on beef muscle proves the pertinent of this simple anisotropic pattern. Results in vivo on man biceps shows the existence of slow and fast shear waves as predicted by theory.

  16. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    Science.gov (United States)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  17. ON THE RESONANT GENERATION OF WEAKLY NONLINEAR STOKES WAVES IN REGIONS WITH FAST VARYING TOPOGRAPHY AND FREE SURFACE CURRENT

    Institute of Scientific and Technical Information of China (English)

    黄虎; 周锡礽

    2001-01-01

    The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.

  18. Application of oil-water discrimination technology in fractured reservoirs using the differences between fast and slow shear-waves

    Science.gov (United States)

    Luo, Cong; Li, Xiangyang; Huang, Guangtan

    2017-08-01

    Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.

  19. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Acoustic waves in a Biot-type porous snow model: The fast slow wave in light snow

    CERN Document Server

    Sidler, Rolf

    2015-01-01

    Wave velocities, attenuation and reflection coefficients in snow can not be explained by the widely used elastic or viscoelastic models for wave propagation. Instead, Biot's model of wave propagation in porous materials should be used. However, the application of Biot's model is difficult due to the large property space of the underlying porous material. Here we use the properties of ice and air as well as empirical relationships to define the properties of snow as a function of porosity. This reduction allows to predict phase velocities and attenuation of the shear- and compressional-waves as functions of porosity or density. For light snow the peculiarity was found that the velocity of the compressional wave of the first kind is lower than the compressional wave of the second kind that is commonly referred to as the "slow" wave. The reversal of the velocities comes with an increase of attenuation for the first compressional wave. This is in line with the common observation that sound is strongly absorbed af...

  1. Realistic radiative MHD simulation of a solar flare

    Science.gov (United States)

    Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.

    2017-08-01

    We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".

  2. Fast- and slow-wave heating of ion cyclotron range of frequencies in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, T.; Kumazawa, R.; Seki, T. [and others

    2000-11-01

    Wave-heating at the fundamental ion-cyclotron frequency was applied to a hydrogen plasma in the Large Helical Device (LHD) over a range of plasma densities from 0.2-8x10{sup 19} m{sup -3}. Substantial heating was observed for all densities. In the low-density plasma (less than 0.4x10{sup 19} m{sup -3}) ion-cyclotron-wave (shear Alfven wave) heating was effective. For high-density plasmas, a fast-wave should be excited, and in this case also, effective heating was observed with the presence of the NBI beam component. The wave damping mechanism may be attributed to the finite gyro-radius effect on beam ions by the right-handed polarized wave. The experimental results were compared with an analysis using the full-wave code. The heating performance was a little worse than that of the usual two-ion hybrid-heating mode. (author)

  3. MHD Generation Code

    CERN Document Server

    Frutos-Alfaro, Francisco

    2015-01-01

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  4. Heating and current drive by fast wave in lower hybrid range of frequency on Versatile Experiment Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ho, E-mail: shkim95@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Seung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyunwoo; Lee, Byungje [KwangWoon University, Seoul (Korea, Republic of); Jo, Jong-Gab; Lee, Hyun-Young; Hwang, Yong-Seok [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    An efficient heating and current drive scheme in central or off-axis region is required to realize steady state operation of tokamak fusion reactor. And the fast wave in lower hybrid resonance range of frequency could be a candidate for such an efficient scheme in high density and high temperature plasmas. Its propagation and absorption characteristics including current drive and coupling efficiency are analyzed for Versatile Experiment Spherical Torus and it is shown that it is possible to drive current with considerable current drive efficiency in central region. The RF system for the fast wave experiment including klystron, transmission systems, inter-digital antenna, and RF diagnostics are given as well in this paper.

  5. Quasi-periodic Fast-mode Magnetosonic Wave Trains Within Coronal Waveguides Associated with Flares and CMEs

    CERN Document Server

    Liu, Wei; Broder, Brittany; Karlicky, Marian; Downs, Cooper

    2015-01-01

    Quasi-periodic, fast-mode, propagating wave trains (QFPs) are a new observational phenomenon recently discovered in the solar corona by the Solar Dynamics Observatory with extreme ultraviolet (EUV) imaging observations. They originate from flares and propagate at speeds up to ~2000 km/s within funnel-shaped waveguides in the wakes of coronal mass ejections (CMEs). QFPs can carry sufficient energy fluxes required for coronal heating during their occurrences. They can provide new diagnostics for the solar corona and their associated flares. We present recent observations of QFPs focusing on their spatio-temporal properties, temperature dependence, and statistical correlation with flares and CMEs. Of particular interest is the 2010-Aug-01 C3.2 flare with correlated QFPs and drifting zebra and fiber radio bursts, which might be different manifestations of the same fast-mode wave trains. We also discuss the potential roles of QFPs in accelerating and/or modulating the solar wind.

  6. Nonlinear helical MHD instability

    Energy Technology Data Exchange (ETDEWEB)

    Zueva, N.M.; Solov' ev, L.S.

    1977-07-01

    An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.

  7. Eigenmode formations of m = 1 fast Alfven waves in the ion-cyclotron frequency range in the GAMMA 10 central cell

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Y [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ichimura, M [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Higaki, H [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Kakimoto, S [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nakagome, K [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nemoto, K [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Katano, M [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nakajima, H [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Fukuyama, A [Department of Nuclear Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Cho, T [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2006-08-15

    The formation of eigenmodes with the m = 1 fast Alfven waves in the ion-cyclotron range of frequency are investigated in the axisymmetric central cell of the GAMMA 10 tandem mirror. When the fast waves with frequencies near the fundamental ion-cyclotron frequency have been used for the plasma production, the saturation in the density has been observed. The spatial structure of the excited wave field is calculated in the central cell using a two-dimensional full wave code. The results of numerical analysis indicate that the increase in plasma density depends strongly on the eigenmode formations associated with the boundary conditions. The results of numerical analysis are compared with the results of measurements of the waves with magnetic probes. A very good degree of agreement is found between the theoretical results and the experimental results. It is suggested that the simultaneous excitation of several radial eigenmodes with high-harmonic fast waves is effective for higher density plasma production.

  8. Fast Inversion of Air-Coupled Spectral Analysis of Surface Wave (SASW Using in situ Particle Displacement

    Directory of Open Access Journals (Sweden)

    Yifeng Lu

    2015-11-01

    Full Text Available Spectral Analysis of Surface Wave (SASW is widely used in nondestructive subsurface profiling for geological sites. The air-coupled SASW is an extension from conventional SASW methods by replacing ground-mounted accelerometers with non-contact microphones, which acquire a leaky surface wave instead of ground vibration. The air-coupled SASW is a good candidate for fast inspection in shallow geological studies. Especially for pavement maintenance, minimum traffic interference might be induced. One issue that restrains SASW from fast inspection is the traditional slow inversion which relies on guess-and-check iteration techniques including a forward analysis. In this article, a fast inversion analysis algorithm is proposed to estimate the shear velocity profile without performing conventional forward simulation. By investigating the attenuation of particle displacement along penetrating depths, a weighted combination relationship is derived to connect the dispersion curve with the shear velocity profile directly. Using this relationship, the shear velocity profile could be estimated from a given/measured dispersion curve. The proposed procedure allows the surface wave-based method to be fully automatic and even operated in real-time for geological site and pavement assessment. The method is verified by the forward analysis with stiffness matrix method. It is also proved by comparing with other published results using various inversion methods.

  9. Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments

    Science.gov (United States)

    Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.

    1996-01-01

    First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current

  10. Signatures of fast and slow magnetohydrodynamic shocks in turbulent molecular clouds

    CERN Document Server

    Lehmann, Andrew

    2015-01-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low-velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks---fast, intermediate and slow---differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions. Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks propagating at low speeds (a few km/s) in molecular clouds. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where...

  11. On the existence of Alfvén waves in the terrestrial foreshock

    Directory of Open Access Journals (Sweden)

    J. P. Eastwood

    Full Text Available The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvénic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed.

    Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks – Space plasma physics (wave particle interactions

  12. Experimental study of the MHD activity associated to the mode m=2, n=1 in the Tore Supra tokamak; Etude experimentale de l`activite MHD associee au mode m=2, n=1 dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Turlur, S.

    1996-09-20

    In tokamaks such as Tore Supra, the plasma confinement magnetic structure can be severely affected when Magnetohydrodynamic (M.H.D.) instabilities are destabilized. Experimentally, these instabilities are detected as magnetic fluctuations with captors located against the inner wall of the vacuum vessel. Fourier analysis provides amplitude, frequency and wave numbers of magnetic modes. In case of fast or transient phenomena, the analysis of magnetic fluctuations is completed using the singular value decomposition. In this dissertation, these analysis techniques are used to study two specific examples of M.H.D. activity related to the m = 2, n = 1 mode. On Tore Supra, the onset of this mode have strong consequences on the stability of partially or fully non inductive discharges. A regular and persistent sawtooth-like regime is observed on the electronic temperature leading to a significant degradation of the central confinement. Heat exhaust and particle balance are also essential parameters to achieve stationary discharges. On Tore Supra, these are studied with the ergodic divertor which produces stochastic magnetic field lines at the plasma edge. For optimal operating conditions of the ergodic divertor, the growth of the m = 2, N = 1 mode can lead to sudden destruction of magnetic equilibrium. For both cases, understanding and characterization of mechanisms leading to the observed m = 2, n = 1 M.H.D. activity are fundamental to obtain stationary discharges. (author). 115 refs.

  13. Experimental study of the MHD activity associated to the mode m=2, n=1 in the Tore Supra tokamak; Etude experimentale de l`activite MHD associee au mode m=2, n=1 dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Turlur, S.

    1996-09-20

    In tokamaks such as Tore Supra, the plasma confinement magnetic structure can be severely affected when Magnetohydrodynamic (M.H.D.) instabilities are destabilized. Experimentally, these instabilities are detected as magnetic fluctuations with captors located against the inner wall of the vacuum vessel. Fourier analysis provides amplitude, frequency and wave numbers of magnetic modes. In case of fast or transient phenomena, the analysis of magnetic fluctuations is completed using the singular value decomposition. In this dissertation, these analysis techniques are used to study two specific examples of M.H.D. activity related to the m = 2, n = 1 mode. On Tore Supra, the onset of this mode have strong consequences on the stability of partially or fully non inductive discharges. A regular and persistent sawtooth-like regime is observed on the electronic temperature leading to a significant degradation of the central confinement. Heat exhaust and particle balance are also essential parameters to achieve stationary discharges. On Tore Supra, these are studied with the ergodic divertor which produces stochastic magnetic field lines at the plasma edge. For optimal operating conditions of the ergodic divertor, the growth of the m = 2, N = 1 mode can lead to sudden destruction of magnetic equilibrium. For both cases, understanding and characterization of mechanisms leading to the observed m = 2, n = 1 M.H.D. activity are fundamental to obtain stationary discharges. (author). 115 refs.

  14. Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation

    CERN Document Server

    Xu, Siyao; Lazarian, A

    2015-01-01

    We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  15. Generation of Non-Inductive H-Mode Plasmas with 30 MHz Fast Wave Heating in NSTX-U

    Science.gov (United States)

    Taylor, G.; Bertelli, N.; Gerhardt, S. P.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Poli, F. M.; Wilson, J. R.; Raman, R.

    2016-10-01

    A Fusion Nuclear Science Facility based on a spherical tokamak must generate the plasma current (Ip) with little or no central solenoid field. The NSTX-U non-inductive (NI) plasma research program is addressing this goal by developing NI start-up, ramp-up and sustainment scenarios separately. 4 MW of 30 MHz fast wave power is predicted to ramp Ip to 400 kA, a level sufficient to avoid significant shine-through of 90 keV ions from neutral beam injection. In 2010, experiments in NSTX demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a NI Ip fraction, fNI, around 0.7 at the maximum axial toroidal field (BT(0)) in NSTX of 0.55 T. NSTX-U is a major upgrade of NSTX that will eventually allow the generation of plasmas with BT(0) up to 1 T. Full wave simulations of 30 MHz HHFW heating in NSTX-U predict reduced FW power loss in the plasma edge as BT(0) is increased. HHFW experiments this year aim to couple 3 - 4 MW of 30 MHz HHFW power into an Ip = 250 - 350 kA plasma with BT(0) up to 0.75 T to generate a fNI = 1 H-mode plasma. These experiments should benefit from the improved fast wave coupling predicted at higher BT(0) in NSTX-U. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  16. MHD Generation Code

    OpenAIRE

    Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo

    2015-01-01

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...

  17. Mhd models for pne

    Directory of Open Access Journals (Sweden)

    G. García Segura

    2000-01-01

    Full Text Available Se presenta un escenario auto consistente para explicar la morfolog a de las nebulosas planetarias. El escenario es consistente con la distribuci on Gal actica de los diferentes tipos morfol ogicos. Este trabajo resuelve, por medio de efectos MHD, algunas de las caracter sticas controversiales que aparecen en las nebulosas planetarias. Estas caracter sticas incluyen la presencia de ujos axisim etricos y colimados, con una cinem atica que aumenta linealmente con la distancia y la existencia de morfolog as asim etricas tales como las de las nebulosas con simetr a de punto.

  18. MHD-ETF design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Retallick, F.D.

    1978-04-01

    This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.

  19. MHD turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.

  20. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics: Building Blocks for a Higher Order Method

    Science.gov (United States)

    2006-09-30

    Fisica Generale, Università di Torino Via Pietro Giuria 1 10125 Torino, Italy Phone: (+39) 11-670-7451 or (+39) 11-329-5492 fax: (39) 11-658444 email...spectrum” of the solution), the vector k constitutes the usual wave numbers, the vector θ(x,t | %B,φ) ω contains the frequencies and the vector φ...the Riemann matrix, the vector k constitutes the wave numbers in the x direction and the wave number vector l constitutes the y-direction wave

  1. Linear wave propagation in relativistic magnetohydrodynamics

    CERN Document Server

    Keppens, R

    2008-01-01

    The properties of linear Alfv\\'en, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comparison with the Newtonian MHD limits easier and to stress the graphical representation of their anisotropic linear wave properties using the phase and group speed diagrams. By drawing these for both the fluid rest frame and for a laboratory Lorentzian frame which sees the plasma move with a three-velocity having an arbitrary orientation with respect to the magnetic field, a graphical view of the relativistic aberration effects is obtained for all three MHD wave families. Moreover, it is confirmed that the classical Huygens construction relates the phase and group speed diagram in the usual way, even for the lab frame viewpoint. Since the group speed diagrams correspond to exact solutions for initial conditions co...

  2. Black Tea Lowers Blood Pressure and Wave Reflections in Fasted and Postprandial Conditions in Hypertensive Patients: A Randomised Study

    Directory of Open Access Journals (Sweden)

    Davide Grassi

    2015-02-01

    Full Text Available Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids or placebo twice a day for eight days (13 day wash-out period. Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p < 0.0001. Fat challenge increased wave reflection, which was counteracted by tea consumption (p < 0.0001. Black tea decreased systolic and diastolic BP (−3.2 mmHg, p < 0.005 and −2.6 mmHg, p < 0.0001; respectively and prevented BP increase after a fat load (p < 0.0001. Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection.

  3. The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids

    NARCIS (Netherlands)

    Mathijssen, T.; Gallo, M.; Casati, E.; Nannan, N.R.; Zamfirescu, C.; Guardone, A.; Colonna, P.

    2015-01-01

    This paper describes the commissioning of the flexible asymmetric shock tube (FAST), a novel Ludwieg tube-type facility designed and built at Delft University of Technology, together with the results of preliminary experiments. The FAST is conceived to measure the velocity of waves propagating in

  4. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  5. Exploración del modelo coronal MHD de Uchida

    Science.gov (United States)

    Francile, C.; Castro, J. I.; Flores, M.

    We present an analysis of the MHD model of an isothermal solar corona with radially symmetrical magnetic field and gravity. The solution in the approximation "WKB" was presented by Uchida (1968). The model is ex- plored for different coronal conditions and heights of initial perturbation to study the propagation of coronal waves and reproduce the observed char- acteristics of phenomena such as Moreton waves. Finally we discuss the obtained results. FULL TEXT IN SPANISH

  6. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    Science.gov (United States)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  7. Tomographic errors from wave front healing: more than just a fast bias

    NARCIS (Netherlands)

    Malcolm, A.E.; Trampert, J.

    2011-01-01

    Wave front healing, in which diffractions interfere with directly travelling waves causing a reduction in recorded traveltime delays, has been postulated to cause a bias towards faster estimated earth models. This paper reviews the theory from the mathematical physics community that explains the

  8. Tomographic errors from wave front healing: more than just a fast bias

    NARCIS (Netherlands)

    Malcolm, A.E.; Trampert, J.

    2011-01-01

    Wave front healing, in which diffractions interfere with directly travelling waves causing a reduction in recorded traveltime delays, has been postulated to cause a bias towards faster estimated earth models. This paper reviews the theory from the mathematical physics community that explains the pro

  9. Nonlinear Resonant Excitation of Fast Sausage Waves in Current-Carrying Coronal Loops

    Science.gov (United States)

    Mikhalyaev, B. B.; Bembitov, D. B.

    2014-11-01

    We consider a model of a coronal loop that is a cylindrical magnetic tube with two surface electric currents. Its principal sausage mode has no cut-off in the long-wavelength limit. For typical coronal conditions, the period of the mode is between one and a few minutes. The sausage mode of flaring loops could cause long-period pulsations observed in microwave and hard X-ray ranges. There are other examples of coronal oscillations: long-period pulsations of active-region quiet loops in the soft X-ray emission are observed. We assume that these can also be caused by sausage waves. The question arises of how the sausage waves are generated in quiet loops. We assume that they can be generated by torsional oscillations. This process can be described in the framework of the nonlinear three-wave interaction formalism. The periods of interacting torsional waves are similar to the periods of torsional oscillations observed in the solar atmosphere. The timescale of the sausage-wave excitation is not much longer than the periods of interacting waves, so that the sausage wave is excited before torsional waves are damped.

  10. Fast Modeling of Large Wave Energy Farms Using Interaction Distance Cut-Off

    Directory of Open Access Journals (Sweden)

    Malin Göteman

    2015-12-01

    Full Text Available In many wave energy concepts, power output in the MW range requires the simultaneous operation of many wave energy converters. In particular, this is true for small point-absorbers, where a wave energy farm may contain several hundred devices. The total performance of the farm is affected by the hydrodynamic interactions between the individual devices, and reliable tools that can model full farms are needed to study power output and find optimal design parameters. This paper presents a novel method to model the hydrodynamic interactions and power output of very large wave energy farms. The method is based on analytical multiple scattering theory and uses time series of irregular wave amplitudes to compute the instantaneous power of each device. An interaction distance cut-off is introduced to improve the computational cost with acceptable accuracy. As an application of the method, wave energy farms with over 100 devices are studied in the MW range using one month of wave data measured at an off-shore site.

  11. Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens

    Science.gov (United States)

    Schröder, Jochen; Wang, Fan; Clarke, Aisling; Ryckeboer, Eva; Pelusi, Mark; Roelens, Michaël A. F.; Eggleton, Benjamin J.

    2010-06-01

    We demonstrate an aberration-free, all-optical, ultra-fast oscilloscope based on the concept of Fourier-transformation with an optical time-lens. By combining the four-wave mixing time-lens with a Fourier-domain optical processor as the dispersive element we avoid aberrations associated with the traditional method of using lengths of fibre for the dispersive elements. We investigate the impact of aberrations due to third-order dispersion and inaccuracies in matching the Fourier-transform condition and demonstrate how these are overcome using the optical processor. The resolution of the oscilloscope is 750 fs.

  12. Fast 3D seismic wave simulations of 24 August 2016 Mw 6.0 central Italy earthquake for visual communication

    Directory of Open Access Journals (Sweden)

    Emanuele Casarotti

    2016-12-01

    Full Text Available We present here the first application of the fast reacting framework for 3D simulations of seismic wave propagation generated by earthquakes in the Italian region with magnitude Mw 5. The driven motivation is to offer a visualization of the natural phenomenon to the general public but also to provide preliminary modeling to expert and civil protection operators. We report here a description of this framework during the emergency of 24 August 2016 Mw 6.0 central Italy Earthquake, a discussion on the accuracy of the simulation for this seismic event and a preliminary critical analysis of the visualization structure and of the reaction of the public.

  13. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    Science.gov (United States)

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-11-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.

  14. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    CERN Document Server

    Takasao, Shinsuke

    2016-01-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in the flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both of QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares, such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-...

  15. Some properties of the formation of fast magnetosonic shocks

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2015-12-18

    Nonlinear waves advancing into equilibrium states may become shocks. This possibility depends on the equilibrium quantities plus the velocity and shape of the wavefronts. The equation describing this phenomenon is described for the case of the fast magnetosonic waves, and the particular case of plane flow with vertical magnetic field is analyzed in detail. It is also shown that in two-species MHD, both collisions between species and their chemical reactivity tend to delay or prevent the formation of shocks. - Highlights: • Magnetosonic waves may evolve into shock waves. • The problem is analyzed in detail for vertical magnetic fields and plane flows. • The essential parameter is the curvature of wavefronts. • The method may be extended to two-species and reactive plasmas.

  16. Machine modification for active MHD control in RFX

    Energy Technology Data Exchange (ETDEWEB)

    Sonato, P. E-mail: sonato@igi.pd.cnr.it; Chitarin, G.; Zaccaria, P.; Gnesotto, F.; Ortolani, S.; Buffa, A.; Bagatin, M.; Baker, W.R.; Dal Bello, S.; Fiorentin, P.; Grando, L.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Peruzzo, S.; Pomaro, N.; Serianni, G

    2003-09-01

    Recent studies on RFP and Tokamak devices call for an active control of the MHD and resistive wall modes to induce plasma mode rotation and to prevent mode phase locking. The results obtained on RFX, where slow rotation of phase locked modes has been induced, support the possibility of extending active MHD mode control through a substantial modification of the device. A new first wall with an integrated system of electric and magnetic transducers has been realised. A close fitting 3 mm thick Cu shell replaces the 65 mm Al shell. A toroidal support structure (TSS) made of stainless steel replaces the shell in supporting all the forces acting on the torus. A system of 192 saddle coils is provided to actively control the MHD modes. This system completely surrounds the toroidal surface and allows the generation of harmonic fields with m=0 and m=1 poloidal wave number and with a toroidal spectrum up to n=24.

  17. Using Coronal Hole Maps to Constrain MHD Models

    Science.gov (United States)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  18. Lectures in magnetohydrodynamics. With an appendix on extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D. [Wisconsin Univ., Madison, WI (United States). Dept. Physics

    2009-07-01

    This concise and self-contained primer is based on class-tested notes for an advanced graduate course in MHD. The broad areas chosen for presentation are the derivation and properties of the fundamental equations, equilibrium, waves and instabilities, self-organization, turbulence, and dynamos. The latter topics require the inclusion of the effects of resistivity and nonlinearity. Together, these span the range of MHD issues that have proven to be important for understanding magnetically confined plasmas as well as in some space and astrophysical applications. The combined length and style of the thirty-eight lectures are appropriate for complete presentation in a single semester. An extensive appendix on extended MHD is included as further reading. (orig.)

  19. Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere

    Science.gov (United States)

    Wang, Chengrui; Rankin, Robert; Zong, Qiugang

    2015-04-01

    Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.

  20. 3D Alfven wave behaviour around proper and improper magnetic null points

    CERN Document Server

    Thurgood, J O

    2013-01-01

    Context: MHD waves and magnetic null points are both prevalent in many astrophysical plasmas, including the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating events. Aims: Here we investigate the transient behaviour of the Alfven wave about fully 3D proper and improper 3D magnetic null points. Previously, the behaviour of fast magnetoacoustic waves at null points in 3D, cold MHD was considered by Thurgood & McLaughlin (Astronomy & Astrophysics, 2012, 545, A9). Methods: We introduce an Alfven wave into the vicinity of both proper and improper null points by numerically solving the ideal, $\\beta=0$ MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of resulting wave-modes and the analysis of their interaction. Results: We find that the Alfven wave propagates throughout the region and accumulates near the fan-plane, causing current build up. For different values of nul...

  1. MHD Energy Bypass Scramjet Engine

    Science.gov (United States)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  2. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge, TN 37830 (United States); Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Pinsker, R. I.; Prater, R. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Qin, C. M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  3. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, Nicola [Princeton Plasma Physics Laboratory (PPPL); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge; Lau, Cornwall H [ORNL; Blazevski, Dan [Oak Ridge National Laboratory (ORNL); Green, David L [ORNL; Berry, Lee Alan [XCEL Engineering Inc., Oak Ridge; Bonoli, P. T. [Massachusetts Institute of Technology (MIT); Gerhardt, S.P. [Princeton Plasma Physics Laboratory (PPPL); Hosea, J. C. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. [Princeton Plasma Physics Laboratory (PPPL); Perkins, R. J. [Princeton Plasma Physics Laboratory (PPPL); Phillips, Cynthia [Princeton Plasma Physics Laboratory (PPPL); Pinsker, R. I. [General Atomics, San Diego; Prater, R. [General Atomics; Qin, C M [Chinese Academy of Sciences (CAS), Institute of Plasma Physics, Hefei; Ryan, P. M. [Oak Ridge National Laboratory (ORNL); Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Valeo, E. J. [Princeton Plasma Physics Laboratory (PPPL); Wilson, Randy [Princeton Plasma Physics Laboratory (PPPL); Wright, J. [Massachusetts Institute of Technology (MIT); Zhang, X J [Chinese Academy of Sciences (CAS), Institute of Plasma Physics, Hefei

    2015-01-01

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to "conventional" tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  4. Dynamo action in dissipative, forced, rotating MHD turbulence

    Science.gov (United States)

    Shebalin, John V.

    2016-06-01

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  5. Seismic Halos Around Active Regions: An MHD Theory

    CERN Document Server

    Hanasoge, Shravan M

    2007-01-01

    Comprehending the manner in which magnetic fields affect propagating waves is a first step toward the helioseismic construction of accurate models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Results from a simulation of waves interacting with a flux tub...

  6. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind.

    Science.gov (United States)

    McIntosh, Scott W; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo; Boerner, Paul; Goossens, Marcel

    2011-07-27

    Energy is required to heat the outer solar atmosphere to millions of degrees (refs 1, 2) and to accelerate the solar wind to hundreds of kilometres per second (refs 2-6). Alfvén waves (travelling oscillations of ions and magnetic field) have been invoked as a possible mechanism to transport magneto-convective energy upwards along the Sun's magnetic field lines into the corona. Previous observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5 km s(-1)) to supply the energy flux (100-200 W m(-2)) required to drive the fast solar wind or balance the radiative losses of the quiet corona. Here we report observations of the transition region (between the chromosphere and the corona) and of the corona that reveal how Alfvénic motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous outward-propagating Alfvénic motions observed have amplitudes of the order of 20 km s(-1) and periods of the order of 100-500 s throughout the quiescent atmosphere (compatible with recent investigations), and are energetic enough to accelerate the fast solar wind and heat the quiet corona.

  7. Design and Preparation of RF System for the Lower Hybrid Fast Wave Heating and Current Drive Research on VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.

  8. Slow and fast light via two-wave mixing in the rare-earth doped optical fibers (Conference Presentation)

    Science.gov (United States)

    Stepanov, Serguei I.; Plata Sánchez, Marcos; Hernández, Eliseo

    2017-02-01

    Dynamic population Bragg gratings can be recorded in the rare-earth-doped (e.g. doped with erbium or ytterbium) optical fibers with mWatt-scale cw laser power. Two-wave mixing (TWM) via such gratings is utilized in single-frequency fiber lasers and in adaptive interferometric fiber sensors with automatic stabilization of the operation point. Slow and fast light propagation can also be observed in the vicinity of narrow ( 20-200Hz) spectral profile of stationary no-degenerate TWM. In particular, slow light propagation is observed for the purely amplitude grating, recorded in the erbium-doped fiber in spectral range 1510-1550nm. In its turn, in ytterbium-doped fibers at 1064nm (or in erbium-doped fiber at the wavelength below 1500nm) the dynamic grating has significant contribution of the phase component, the TWM profile has essentially asymmetric form, and both slow and fast (superluminal) light propagation is possible at different frequency off-sets between the counter-propagating interacting waves.

  9. Black tea lowers blood pressure and wave reflections in fasted and postprandial conditions in hypertensive patients: a randomised study.

    Science.gov (United States)

    Grassi, Davide; Draijer, Richard; Desideri, Giovambattista; Mulder, Theo; Ferri, Claudio

    2015-02-04

    Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP) and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids) or placebo twice a day for eight days (13 day wash-out period). Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (ptea consumption (pBlack tea decreased systolic and diastolic BP (-3.2 mmHg, pBlack tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection.

  10. The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma

    CERN Document Server

    Carbonell, M; Oliver, R; Ballester, J L

    2010-01-01

    Solar prominences are partially ionised plasmas displaying flows and oscillations. These oscillations show time and spatial damping and, commonly, have been explained in terms of magnetohydrodynamic (MHD) waves. We study the spatial damping of linear non-adiabatic MHD waves in a flowing partially ionised plasma, having prominence-like physical properties. We consider single fluid equations for a partially ionised hydrogen plasma including in the energy equation optically thin radiation, thermal conduction by electrons and neutrals, and heating. Keeping the frequency real and fixed, we have solved the obtained dispersion relations for the complex wavenumber, k, and have analysed the behaviour of the damping length, wavelength and the ratio of the damping length to the wavelength, versus period, for Alfven, fast, slow and thermal waves.

  11. Fast calculate the parameters of surface acoustic wave coupling-of-modes model

    Institute of Scientific and Technical Information of China (English)

    LIU Jiansheng; HE Shitang

    2007-01-01

    Accurate solutions of acoustic waves in piezoelectric substrate and metal film as layered structure were obtained. Phase velocity, electromechanical coupling coefficient and static capacitance were calculated based upon the solutions. Chen and Haus' theory was used to analyze surface acoustic waves in shorten gratings with single finger every period and a reflection coefficient expression of one strip was presented. Parameters of aluminum on X112°Y LiTaO3 and gold on ST-quartz were calculated. The results agreed well with those from Ken-ya Hashimoto's theory. The reflection coefficient of gold on ST-quartz was measured to verify the theoretical result.

  12. Excitation of Alfvén waves by modulated HF heating of the ionosphere, with application to FAST observations

    Directory of Open Access Journals (Sweden)

    E. Kolesnikova

    Full Text Available During the operation of the EISCAT high power facility (heater at Tromsø, Norway, on 8 October 1998, the FAST spacecraft made electric field and particle observations in the inner magnetosphere at 0.39 Earth radii above the heated ionospheric region. Measurements of the direct current electric field clearly exhibit oscillations with a frequency close to the modulated frequency of heater ( ~ 3 Hz and an amplitude of ~ 2 - 5 mV m-1. Thermal electron data from the electrostatic analyser show the modulation at the same frequency of the downward electron fluxes. During this period the EISCAT UHF incoherent scatter radar, sited also at Tromsø, measured a significant enhancement of the electron density in E-layer up to 2 · 1012 m-3. These observations have prompted us to make quantitative estimates of the expected pulsations in the inner magnetosphere caused by the modulated HF heating of lower ionosphere. Under the conditions of the strong electron precipitation in the ionosphere, which took place during the FAST observations, the primary current caused by the perturbation of the conductivity in the heated region is closed entirely by the parallel current which leaks into the magnetosphere. In such circumstances the conditions at the ionosphere-magnetosphere boundary are most favourable for the launching of an Alfvén wave: it is launched from the node in the gradient of the scalar potential which is proportional to the parallel current. The parallel electric field of the Alfvén wave is significant in the region where the electron inertial length is of order of the transverse wavelength of the Alfvén wave or larger and may effectively accelerate superthermal electrons downward into the ionosphere.

    Key words. Ionosphere (active experiments; ionosphere – magnetosphere interactions; particle acceleration

  13. A comparative study of two fast nonlinear free-surface water wave models

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    This paper presents a comparison in terms of accuracy and efficiency between two fully nonlinear potential flow solvers for the solution of gravity wave propagation. One model is based on the high-order spectral (HOS) method, whereas the second model is the high-order finite difference model Ocea...

  14. Heating and Acceleration of the Fast Solar Wind by Alfv\\'{e}n Wave Turbulence

    CERN Document Server

    van Ballegooijen, A A

    2016-01-01

    We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation, and includes the effects of wave pressure on the solar wind outflow. Alfv\\'{e}n waves are launched at the coronal base, and reflect at various heights due to variations in Alfv\\'{e}n speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counter-propagating Alfv\\'{e}n waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfv\\'{e}n speed vary smoothly with height, resulting in minimal wave reflections and low energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formu...

  15. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2016-01-01

    This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where ...

  16. Lamb waves based fast subwavelength imaging using a DORT-MUSIC algorithm

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-02-01

    A Lamb wave-based, subwavelength imaging algorithm is developed for damage imaging in large-scale, plate-like structures based on a decomposition of the time-reversal operator (DORT) method combined with the multiple signal classification (MUSIC) algorithm in the space-frequency domain. In this study, a rapid, hybrid non-contact scanning system was proposed to image an aluminum plate using a piezoelectric linear array for actuation and a laser Doppler vibrometer (LDV) line-scan for sensing. The physics of wave propagation, reflection, and scattering that underlies the response matrix in the DORT method is mathematically formulated in the context of guided waves. The singular value decomposition (SVD) and MUSIC-based imaging condition enable quantifying the damage severity by a `reflectivity' parameter and super-resolution imaging. With the flexibility of this scanning system, a considerably large area can be imaged using lower frequency Lamb waves with limited line-scans. The experimental results showed that the hardware system with a signal processing tool such as the DORT-MUSIC (TR-MUSIC) imaging technique can provide rapid, highly accurate imaging results as well as damage quantification with unknown material properties.

  17. Experimental Validation of a Fast Forward Model for Guided Wave Tomography of Pipe Elbows.

    Science.gov (United States)

    Brath, Alex J; Simonetti, Francesco; Nagy, Peter B; Instanes, Geir

    2017-05-01

    Ultrasonic guided wave tomography (GWT) methods for the detection of corrosion and erosion damage in straight pipe sections are now well advanced. However, successful application of GWT to pipe bends has not yet been demonstrated due to the computational burden associated with the complex forward model required to simulate guided wave propagation through the bend. In a previous paper [Brath et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 61, pp. 815-829, 2014], we have shown that the speed of the forward model can be increased by replacing the 3-D pipe bend with a 2-D rectangular domain in which guided wave propagation is formulated based on an artificially inhomogeneous and elliptically anisotropic (INELAN) acoustic model. This paper provides further experimental validation of the INLEAN model by studying the traveltime shifts caused by the introduction of shallow defects on the elbow of a pipe bend. Comparison between experiments and simulations confirms that a defect can be modeled as a phase velocity perturbation to the INLEAN velocity field with accuracy that is within the experimental error of the measurements. In addition, it is found that the sensitivity of traveltime measurements to the presence of damage decreases as the damage position moves from the interior side of the bend (intrados) to the exterior one (extrados). This effect is due to the nonuniform ray coverage obtainable when transmitting the guided wave signals with one ring array of sources on one side of the elbow and receiving with a second array on the other side.

  18. Fast color flow mode imaging using plane wave excitation and temporal encoding

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used...

  19. 3D Alfvén wave behaviour about proper and improper magnetic null points

    Science.gov (United States)

    Thurgood, J. O.; McLaughlin, J. A.

    2013-10-01

    Context. Magnetohydrodynamic (MHD) waves and magnetic null points are both prevalent in many astrophysical plasmas, including the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating events. Aims: Here we investigate the transient behaviour of the Alfvén wave about fully 3D proper and improper magnetic null points. Methods: We introduce an Alfvén wave into the vicinity of both proper and improper null points by numerically solving the ideal, β = 0 MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of resulting wave modes and the analysis of their interaction. Results: We find that the Alfvén wave propagates throughout the region and accumulates near the fan-plane, causing current build up. For different values of null point eccentricity, the qualitative behaviour changes only by the imposition of anisotropic pulse dilation, owing to the differing rates at which fieldlines diverge from the spine. For all eccentricities, we find that the fast and Alfvén waves are linearly decoupled. During the driving phase, an independently propagating fast wave is nonlinearly generated owing to the ponderomotive force. Subsequently, no further excitation of fast waves occurs. Conclusions: We find that the key aspects of the theory of Alfvén waves about 2D null points extends intuitively to the fully 3D case; i.e. the wave propagates along fieldlines and thus accumulates at predictable parts of the topology. We also highlight that unlike in the 2D case, in 3D Alfvén-wave pulses are always toroidal, and thus any aspects of 2D Alfvén-wave-null models that are pulse-geometry specific must be reconsidered in 3D.

  20. Fast acceleration of 2D wave propagation simulations using modern computational accelerators.

    Science.gov (United States)

    Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H; Kay, Matthew

    2014-01-01

    Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than 150x speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least 200x faster than the sequential implementation and 30x faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of 120x with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of

  1. Fast acceleration of 2D wave propagation simulations using modern computational accelerators.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent developments in modern computational accelerators like Graphics Processing Units (GPUs and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than 150x speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least 200x faster than the sequential implementation and 30x faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of 120x with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other

  2. Eigenanalysis of Ideal Hall MHD Turbulence

    Science.gov (United States)

    Fu, T.; Shebalin, J. V.

    2011-12-01

    Ideal, incompressible, homogeneous, Hall magnetohydrodynamic (HMHD) turbulence may be investigated through a Fourier spectral method. In three-dimensional periodic geometry, the independent Fourier coefficients represent a canonical ensemble described by a Gaussian probability density. The canonical ensemble is based on the conservation of three invariants: total energy, generalized helicity, and magnetic helicity. Generalized helicity in HMHD takes the place of cross helicity in MHD. The invariants determine the modal probability density giving the spectral structure and equilibrium statistics of ideal HMHD, which are compared to known MHD results. New results in absolute equilibrium ensemble theory are derived using a novel approach that involves finding the eigenvalues of a Hermitian covariance matrix for each modal probability density. The associated eigenvectors transform the original phase space variables into eigenvariables through a special unitary transformation. These are the normal modes which facilitate the analysis of ideal HMHD non-linear dynamics. The eigenanalysis predicts that the low wavenumber modes with very small eigenvalues may have mean values that are large compared to their standard deviations, contrary to the ideal ensemble prediction of zero mean values. (Expectation values may also be relatively large at the highest wave numbers, but the addition of even small levels of dissipation removes any relevance this may have for real-world turbulence.) This behavior is non-ergodic over very long times for a numerical simulation and is termed 'broken ergodicity'. For fixed values of the ideal invariants, the effect is seen to be enhanced with increased numerical grid size. Broken ergodicity at low wave number modes gives rise to large-scale, quasi-stationary, coherent structure. Physically, this corresponds to plasma relaxation to force-free states. For real HMHD turbulence with dissipation, broken ergodicity and coherent structure are still

  3. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  4. Real-time measurement of the fast axis angle of a quarter-wave plate based on simultaneous phase shifting technique

    Institute of Scientific and Technical Information of China (English)

    Kun Yang; Aijun Zeng; Xiangzhao Wang; Hua Wang; Feng Tang

    2008-01-01

    Real-time measurement of the fast axis angle of a quarter-wave plate based on simultaneous phase shifting technique is presented. The simultaneous phase shifting function is realized by an orthogonal grating, a diaphragm, an analyzer array, and a 4-quadrant detector. The intensities of the light beams from the four analyzers with different azimuths are measured simultaneously. The fast axis angle of the quarter-wave plate is obtained through the four light intensity values. In this method, rotating elements are not required, so real-time measurement is achieved.

  5. Neutrino oscillations in MHD supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, S; Kotake, K [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, T, E-mail: shio.k@nao.ac.j [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2010-01-01

    We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.

  6. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  7. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  8. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  9. A fast fault location method using modal decomposition technique of traveling wave

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kyung Rae; Kim, Sung Soo; Kang, Yong Cheol; Park, Jong Keun [Seoul National University, Seoul (Korea, Republic of); Hong, Jun Hee [Kyungwon University, Songnam (Korea, Republic of)

    1996-02-01

    In this paper, a fault location algorithm is presented, which uses novel signal processing techniques and takes a new paradigm to overcome some drawbacks of the conventional methods. This new method for fault location on electric power transmission lines uses only one-terminal fault signals. The main feature of the method is hat it uses the high frequency components in fault signal and considers the influence of the source network by using a traveling wave propagation characteristics. As a result, we can develop a high speed, good accuracy fault locator. (author). 15 refs., 15 figs., 1 tab.

  10. Fast torsional waves and strong magnetic field within the Earth's core.

    Science.gov (United States)

    Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre

    2010-05-06

    The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n geodynamo models with studies of geostrophic motions in the Earth's core that rely on geomagnetic data. From an ensemble inversion of core flow models, we find a torsional wave recurring every six years, the angular momentum of which accounts well for both the phase and the amplitude of the six-year signal for change in length of day detected over the second half of the twentieth century. It takes about four years for the wave to propagate throughout the fluid outer core, and this travel time translates into a slowness for Alfvén waves that corresponds to a r.m.s. field strength in the cylindrical radial direction of approximately 2 mT. Assuming isotropy, this yields a r.m.s. field strength of 4 mT inside the Earth's core.

  11. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  12. TAE modes and MHD activity in TFTR DT plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.; Batha, S.; Bell, M.

    1995-03-01

    The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas.

  13. Gyro-Kinetic Electron and Fully-Kinetic Ion Simulations of Fast Magnetosonic Waves in the Magnetosphere

    Science.gov (United States)

    Gao, X.; Liu, K.; Wang, X.; Min, K.; Lin, Y.

    2016-12-01

    Two-dimensional simulations using a gyro-kinetic electron and fully-kinetic ion (GeFi) scheme are preformed to study the excitation of fast magnetosonic waves in the magnetosphere, which arise from the ion Bernstein instability driven by ring-like proton velocity distributions (with a positive slope with respect to the perpendicular velocity). Since both ion and electron kinetics are relevant, particle-in-cell (PIC) simulations have often been employed to study the wave excitation. However, such simulations are limited to reduced ion-to-electron mass ratio (mi/me) and light-to-Alfvén speed ratio (c/VA) due to the computationally expensive nature of PIC codes. The present study exploits a GeFi scheme that can break through these limitations and use larger/more realistic mi/me and c/VA. The capability of the GeFi code in simulating the ion Bernstein instability is first demonstrated by comparing a GeFi simulation using reduced mass ratio (mi/me=100) and speed ratio (c/VA=15) to a corresponding PIC simulation. A realistic speed ratio (c/VA=400) and a larger mass ratio (mi/me=400) are then adopted in the GeFi code to explore how the results vary. It is shown that the increased mi/me and c/VA lead to a larger lower hybrid frequency and allow waves to arise at more ion cyclotron harmonics, consistent with the general prediction of linear dispersion theory.

  14. Observational Tests of Recent MHD Turbulence Perspectives

    Science.gov (United States)

    Ghosh, Sanjoy

    2001-06-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  15. Resonant interactions of perturbations in MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Sagalakov, A.M.; Shtern, V.N.

    1977-01-17

    The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.

  16. A Fast Simulation Method for Wave Transformation Processes In Coastal Zones

    Directory of Open Access Journals (Sweden)

    I.E Herrera-Díaz

    2011-08-01

    Full Text Available We develop a numerical model based on the mild-slope equation of water wave propagation over complexbathymetrys, taking into account the combined effects of refraction, diffraction and reflection due to protectionstructures. The numerical method was developed using a split proposed version of the mild-slope equation in ellipticalform and solved by an implicit method in a finite volume mesh, this technique easily allows the modeling of the wavetransformations caused by the protection structures in coastal waters, where industrial and other economic activitiestake place. Study cases controlled have been made and the results match very well with the reference solution. Thecapability and utility of the model for coastal areas are illustrated by its application to the breakwater of the LagunaVerde Nuclear Power Plant (LVNPP and the protection structure of the Nautical Marine named “Los Ayala”.

  17. Tunable compression of template banks for fast gravitational-wave detection and localization

    Science.gov (United States)

    Chua, Alvin J. K.; Gair, Jonathan R.

    2016-06-01

    One strategy for reducing the online computational cost of matched-filter searches for gravitational waves is to introduce a compressed basis for the waveform template bank in a grid-based search. In this paper, we propose and investigate several tunable compression schemes for a general template bank. Through offline compression, such schemes are shown to yield faster detection and localization of signals, along with moderately improved sensitivity and accuracy over coarsened banks at the same level of computational cost. This is potentially useful for any search involving template banks, and especially in the analysis of data from future space-based detectors such as eLISA, for which online grid searches are difficult due to the long-duration waveforms and large parameter spaces.

  18. Problems in nonlinear resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  19. Magnetohydrodynamic (MHD) channel corner seal

    Science.gov (United States)

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  20. 3D MHD Models of Active Region Loops

    Science.gov (United States)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  1. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  2. Stochastic Acceleration of Electrons by Fast Magnetosonic Waves in Solar Flares: the Effects of Anisotropy in Velocity andWavenumber Space

    CERN Document Server

    Pongkitiwanichakul, Peera

    2014-01-01

    We develop a model for stochastic acceleration of electrons in solar flares. As in several previous models, the electrons are accelerated by turbulent fast magnetosonic waves ("fast waves") via transit-time-damping (TTD) interactions. (In TTD interactions, fast waves act like moving magnetic mirrors that push the electrons parallel or anti-parallel to the magnetic field). We also include the effects of Coulomb collisions and the waves' parallel electric fields. Unlike previous models, our model is two-dimensional in both momentum space and wavenumber space and takes into account the anisotropy of the wave power spectrum $F_k$ and electron distribution function $f_{\\rm e}$. We use weak turbulence theory and quasilinear theory to obtain a set of equations that describes the coupled evolution of $F_k$ and $f_{\\rm e}$. We solve these equations numerically and find that the electron distribution function develops a power-law-like non-thermal tail within a restricted range of energies $E\\in (E_{\\rm nt}, E_{\\rm max}...

  3. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  4. Fast control of semiconductor qubits beyond the rotating-wave approximation

    Science.gov (United States)

    Song, Yang; Kestner, J. P.; Wang, Xin; Das Sarma, S.

    2016-07-01

    We present a theoretical study of single-qubit operations by oscillatory fields on various semiconductor platforms. We explicitly show how to perform faster gate operations by going beyond the universally used rotating-wave approximation (RWA) regime, while using only two sinusoidal pulses. We first show for specific published experiments how much error is currently incurred by implementing pulses designed using standard RWA. We then show that an even modest increase in gate speed would cause problems in using RWA for gate design in the singlet-triplet (ST) and resonant-exchange (RX) qubits. We discuss the extent to which analytically keeping higher orders in the perturbation theory would address the problem. More strikingly, we give a new prescription for gating with strong coupling far beyond the RWA regime. We perform numerical calculations for the phases and the durations of two consecutive pulses to realize the key Hadamard and π/8 gates with coupling strengths up to several times the qubit splitting. Working in this manifestly non-RWA regime, the gate operation speeds up by two to three orders of magnitude and nears the quantum speed limit without requiring complicated pulse shaping or optimal control sequences.

  5. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  6. Fast color flow mode imaging using plane wave excitation and temporal encoding

    Science.gov (United States)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jorgen A.

    2005-04-01

    In conventional ultrasound color flow mode imaging, a large number (~500) of pulses have to be emitted in order to form a complete velocity map. This lowers the frame-rate and temporal resolution. A method for color flow imaging in which a few (~10) pulses have to be emitted to form a complete velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used as apodization on the transmitting aperture. The data are beamformed along the direction of the flow, and the velocity is found by 1-D cross correlation of these data. First the method is evaluated in simulations using the Field II program. Secondly, the method is evaluated using the experimental scanner RASMUS and a 7 MHz linear array transducer, which scans a circulating flowrig. The velocity of the blood mimicking fluid in the flowrig is constant and parabolic, and the center of the scanned area is situated at a depth of 40 mm. A CFM image of the blood flow in the flowrig is estimated from two pulse emissions. At the axial center line of the CFM image, the velocity is estimated over the vessel with a mean relative standard deviation of 2.64% and a mean relative bias of 6.91%. At an axial line 5 mm to the right of the center of the CFM image, the velocity is estimated over the vessel with a relative standard deviation of 0.84% and a relative bias of 5.74%. Finally the method is tested on the common carotid artery of a healthy 33-year-old male.

  7. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  8. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  9. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    Science.gov (United States)

    Prater, R.; Moeller, C. P.; Pinsker, R. I.; Porkolab, M.; Meneghini, O.; Vdovin, V. L.

    2014-08-01

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called 'helicons' or ‘whistlers’) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behaviour of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly towards the plasma centre. The high frequency also contributes to strong damping. Modelling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta is above about 1.8%. Detailed analysis of ray behaviour shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behaviour in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n‖, so wave accessibility issues can be reduced. Use of a travelling wave antenna provides a very narrow n‖spectrum, which also helps avoid accessibility problems.

  10. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  11. MHD Turbulence and Magnetic Dynamos

    Science.gov (United States)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  12. A Two-Fluid, MHD Coronal Model

    Science.gov (United States)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  13. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.; Politzer, P. A. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Diem, S. J.; Kaufman, M. C.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Doyle, E. J.; Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A.; Hosea, J. C.; Nagy, A.; Perkins, R.; Solomon, W. M.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maggiora, R.; Milanesio, D. [Politecnico di Torino, Dipartimento di Elettronica, Torino (Italy); Porkolab, M. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Turco, F. [Columbia University, New York, New York 10027 (United States)

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedly strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.

  14. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  15. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  16. Magnetorotational Instability of Dissipative MHD Flows

    Energy Technology Data Exchange (ETDEWEB)

    HERRON, ISOM H

    2010-07-10

    Executive summary Two important general problems of interest in plasma physics that may be addressed successfully by Magnetohydrodynamics (MHD) are: (1) Find magnetic field configurations capable of confining a plasma in equilibrium. (2) Study the stability properties of each such an equilibrium. It is often found that the length scale of many instabilities and waves that are able to grow or propagate in a system, are comparable with plasma size, such as in magnetically confined thermonuclear plasmas or in astrophysical accretion disks. Thus MHD is able to provide a good description of such large-scale disturbances. The Magnetorotational instability (MRI) is one particular instance of a potential instability. The project involved theoretical work on fundamental aspects of plasma physics. Researchers at the Princeton Plasma Physics Laboratory (PPPL) began to perform a series of liquid metal Couette flow experiments between rotating cylinders. Their purpose was to produce MRI, which they had predicted theoretically 2002, but was only observed in the laboratory since this project began. The personnel on the project consisted of three persons: (1) The PI, who was partially supported on the budget during each of four summers 2005-2008. (2) Two graduate research assistants, who worked consecutively on the project throughout the years 2005-2009. As a result, the first student, Fritzner Soliman, obtained an M.S. degree in 2006; the second student, Pablo Suarez obtained the Ph.D. degree in 2009. The work was in collaboration with scientists in Princeton, periodic trips were made by the PI as part of the project. There were 4 peer-reviewed publications and one book produced.

  17. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  18. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    Science.gov (United States)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  19. Integral Constraints and MHD Stability

    Science.gov (United States)

    Jensen, T. H.

    2003-10-01

    Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].

  20. Shunting ratios for MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Birzvalk, Yu.

    1978-01-01

    The shunting ratio and the local shunting ratio, pertaining to currents induced by a magnetic field in a flow channel, are properly defined and systematically reviewed on the basis of the Lagrange criterion. Their definition is based on the energy balance and related to dimensionless parameters characterizing an MHD flow, these parameters evolving from the Hartmann number and the hydrodynamic Reynolds number as well as the magnetic Reynolds number, and the Lundquist number. These shunting ratios, of current density in the core of a stream (uniform) or equivalent mean current density to the short-circuit (maximum) current density, are given here for a slot channel with nonconducting or conducting walls, for a conduction channel with heavy side rails, and for an MHD-flow around bodies. 5 references, 1 figure.

  1. Simulation of three-dimensional nonideal MHD flow at high magnetic Reynolds number

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A conservative TVD scheme is adopted to solve the equations governing the three-dimensional flow of a nonideal compressible conducting fluid in a magnetic field.The eight-wave equations for magnetohydrodynamics(MHD) are proved to be a non-strict hyperbolic system,therefore it is difficult to develop its eigenstructure.Powell developed a new set of equations which cannot be numerically simulated by conservative TVD scheme directly due to its non-conservative form.A conservative TVD scheme augmented with a new set of eigenvectors is proposed in the paper.To validate this scheme,1-D MHD shock tube,unsteady MHD Rayleigh problem and steady MHD Hartmann problem for different flow conditions are simulated.The simulated results are in good agreement with the existing analytical results.So this scheme can be used to effectively simulate high-conductivity fluids such as cosmic MHD problem and hypersonic MHD flow over a blunt body,etc.

  2. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  3. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  4. The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids

    Science.gov (United States)

    Mathijssen, T.; Gallo, M.; Casati, E.; Nannan, N. R.; Zamfirescu, C.; Guardone, A.; Colonna, P.

    2015-10-01

    This paper describes the commissioning of the flexible asymmetric shock tube (FAST), a novel Ludwieg tube-type facility designed and built at Delft University of Technology, together with the results of preliminary experiments. The FAST is conceived to measure the velocity of waves propagating in dense vapours of organic fluids, in the so-called non-ideal compressible fluid dynamics (NICFD) regime, and can operate at pressures and temperatures as high as 21 bar and 400°C, respectively. The set-up is equipped with a special fast-opening valve, separating the high-pressure charge tube from the low-pressure plenum. When the valve is opened, a wave propagates into the charge tube. The wave speed is measured using a time-of-flight technique employing four pressure transducers placed at known distances from each other. The first tests led to the following results: (1) the leakage rate of 5 × {10}^{-4} {mbar l s^{-1}} for subatmospheric and 5 × {10}^{-2} {mbar l s^{-1}} for a superatmospheric pressure is compatible with the purpose of the conceived experiments, (2) the process start-up time of the valve has been found to be between 2.1 and 9.0 ms, (3) preliminary rarefaction wave experiments in the dense vapour of siloxane {D}_6 (dodecamethylcyclohexasiloxane, an organic fluid) were successfully accomplished up to temperatures of 300°C, and (4) a method for the estimation of the speed of sound from wave propagation experiments is proposed. Results are found to be within 2.1 % of accurate model predictions for various gases. The method is then applied to estimate the speed of sound of {D}_6 in the NICFD regime.

  5. Small scales formation via Alfven wave propagation in compressible nonuniform media

    Science.gov (United States)

    Malara, F.; Primavera, L.; Veltri, P.

    1995-01-01

    In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.

  6. Modeling the high-latitude ground response to the excitation of the ionospheric MHD modes by atmospheric electric discharge

    Science.gov (United States)

    Fedorov, E.; Mazur, N.; Pilipenko, V.; Baddeley, L.

    2016-11-01

    The ionospheric Alfvén resonator (IAR) and fast magnetosonic (FMS) waveguide, which can trap the electromagnetic wave energy in the range from fractions of Hz to several Hz, are characteristic features of the upper ionosphere. Their role in the electromagnetic impulsive coupling between atmospheric discharge processes and the ionosphere can be elucidated with a proper model. The presented model is based on numerical solution of coupled wave equations for electromagnetic modes in the ionosphere and atmosphere in a realistic ionosphere modeled with the use of IRI (International Reference Ionosphere) vertical profiles. The geomagnetic field is supposed to be nearly vertical, so the model can be formally applied to high latitudes, though the main features of ground ULF structure will be qualitatively similar at middle latitudes as well. The modeling shows that during the lightning discharge a coupled wave system comprising IAR and MHD waveguide is excited. Using the model, the spatial structure, frequency spectra, and polarization parameters have been calculated at various distances from a vertical dipole. In the lightning proximity (about several hundred kilometer) only the lowest IAR harmonics are revealed in the radial magnetic component spectra. At distances >800 km the multiband spectral structure is formed predominantly by harmonics of FMS waveguide modes. The model predictions do not contradict the results of search coil magnetometer observations on Svalbard; however, the model validation demands more dedicated experimental studies.

  7. Three-Dimensional MHD Modeling of The Solar Corona and Solar Wind: Comparison with The Wang-Sheeley Model

    Science.gov (United States)

    Usmanov, A. V.; Goldstein, M. L.

    2003-01-01

    We present simulation results from a tilted-dipole steady-state MHD model of the solar corona and solar wind and compare the output from our model with the Wang-Sheeley model which relates the divergence rate of magnetic flux tubes near the Sun (inferred from solar magnetograms) to the solar wind speed observed near Earth and at Ulysses. The boundary conditions in our model specified at the coronal base and our simulation region extends out to 10 AU. We assumed that a flux of Alfven waves with amplitude of 35 km per second emanates from the Sun and provides additional heating and acceleration for the coronal outflow in the open field regions. The waves are treated in the WKB approximation. The incorporation of wave acceleration allows us to reproduce the fast wind measurements obtained by Ulysses, while preserving reasonable agreement with plasma densities typically found at the coronal base. We find that our simulation results agree well with Wang and Sheeley's empirical model.

  8. MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng

    2002-05-30

    By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.

  9. Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas

    Directory of Open Access Journals (Sweden)

    G. G. Howes

    2009-03-01

    Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.

  10. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  11. MHD Driving of Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Arieh Königl

    2007-01-01

    Full Text Available Paulatinamente se ha ido reconociendo que los campos magnéticos juegan un papel dominante en la producción y colimación de chorros astrofísicos. Demostramos aquí, usando soluciones semianalíticas exactas para las ecuaciones de MHD ideal en relatividad especial, que un disco de acreción altamente magnetizado (con un campo magnético principalmente poloidal o azimutal alrededor de un agujero negro es capaz de acelerar un flujo de protones y electrones a los factores de Lorentz y energías cinéticas asociadas a fuentes de destellos de rayos gama y nucleos activos de galaxias. También se discuten las contribuciones a la aceleración provenientes de efectos térmicos (por presión de radiación y pares electrón-positrón y de MHD no ideal. Notamos que la aceleración por MHD se caracteriza por ser extendida espacialmente, y esta propiedad se manifesta más claramente en flujos relativistas. Las indicaciones observacionales de que la aceleración de movimientos superlumínicos en chorros de radio ocurre sobre escalas mucho más grandes que las del agujero negro propiamente, apoyan la idea de que la producción de chorros es principalmente un fenómeno magnético. Presentamos resultados preliminares de un modelo global que puede utilizarse para probar esta interpretación.

  12. Global MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1983-01-01

    A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.

  13. MHD Turbulence, Turbulent Dynamo and Applications

    CERN Document Server

    Beresnyak, Andrey

    2014-01-01

    MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov -5/3) and is represented by critically balanced strong MHD turbulence. In this paper we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo $C_E=0.05$, Kolmogorov constant $C_K=4.2$ and anisotropy constant $C_A=0.63$ for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfv\\'enic part of MHD cascade in compressible turbul...

  14. Effect of volumetric electromagnetic forces on shock wave structure of hypersonic air flow near plate

    Science.gov (United States)

    Fomichev, Vladislav; Yadrenkin, Mikhail; Shipko, Evgeny

    2016-10-01

    Summarizing of experimental studies results of the local MHD-interaction at hypersonic air flow near the plate is presented. Pulsed and radiofrequency discharge have been used for the flow ionization. It is shown that MHD-effect on the shock-wave structure of the flow is significant at test conditions. Using of MHD-interaction parameter enabled to defining characteristic modes of MHD-interaction by the force effect: weak, moderate and strong.

  15. An MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1985-01-01

    It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.

  16. Waves in a Uniform Medium: Arbitrary Angle of Propagation

    Science.gov (United States)

    Schnack, Dalton D.

    In Lecture 23, we showed that in an infinite, uniform medium, the solutions of the ideal MHD wave equation could be decomposed into plane wave solutions ξ _{{k}} e^{i(k \\cdot r + ω _k t)} that satisfy.

  17. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  18. Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

    Science.gov (United States)

    Godfrey, Holly J.; Fry, Bill; Savage, Martha K.

    2017-04-01

    Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear-wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydrothermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods. Most of the measured group velocities of fundamental mode Love-waves across the TgVC are 0.1-0.4 km/s slower than those of fundamental mode Rayleigh-waves in the

  19. Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a Fast Semi-Submersible Floating Wind Turbine Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Couling, A. J.; Goupee, A. J.; Robertson, A. N.; Jonkman, J. M.

    2013-06-01

    To better access the abundant offshore wind resource, efforts across the world are being undertaken to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools that can be relied upon in the design process. The National Renewable Energy Laboratory (NREL) has created a comprehensive, coupled analysis CAE tool for floating wind turbines, FAST, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are currently underway that leverage the extensive 1/50th-scale DeepCwind wind/wave basin model test dataset, obtained at the Maritime Research Institute Netherlands (MARIN) in 2011, to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. In this paper, further work is undertaken to continue this validation. In particular, the ability of FAST to replicate global response behaviors associated with dynamic wind forces, second-order difference-frequency wave-diffraction forces and their interaction with one another are investigated.

  20. Cosmic-ray pitch-angle scattering in imbalanced MHD turbulence simulations

    CERN Document Server

    Weidl, Martin S; Teaca, Bogdan; Schlickeiser, Reinhard

    2015-01-01

    Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  1. Absence of complete finite-Larmor-radius stabilization in extended MHD.

    Science.gov (United States)

    Zhu, P; Schnack, D D; Ebrahimi, F; Zweibel, E G; Suzuki, M; Hegna, C C; Sovinec, C R

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-beta or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity.

  2. Nanoflares and MHD turbulence in coronal loops: a hybrid shell model.

    Science.gov (United States)

    Nigro, Giuseppina; Malara, Francesco; Carbone, Vincenzo; Veltri, Pierluigi

    2004-05-14

    A model to describe injection, due to footpoint motions, storage, and dissipation of MHD turbulence in coronal loops, is presented. The model is based on the use of the shell technique in the wave vector space applied to the set of reduced MHD equations. Numerical simulation showed that the energy injected is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions among these fluctuations give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. The statistical analysis performed on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics.

  3. An FCT finite element scheme for ideal MHD equations in 1D and 2D

    Science.gov (United States)

    Basting, Melanie; Kuzmin, Dmitri

    2017-06-01

    This paper presents an implicit finite element (FE) scheme for solving the equations of ideal magnetohydrodynamics in 1D and 2D. The continuous Galerkin approximation is constrained using a flux-corrected transport (FCT) algorithm. The underlying low-order scheme is constructed using a Rusanov-type artificial viscosity operator based on scalar dissipation proportional to the fast wave speed. The accuracy of the low-order solution can be improved using a shock detector which makes it possible to prelimit the added viscosity in a monotonicity-preserving iterative manner. At the FCT correction step, the changes of conserved quantities are limited in a way which guarantees positivity preservation for the density and thermal pressure. Divergence-free magnetic fields are extracted using projections of the FCT predictor into staggered finite element spaces forming exact sequences. In the 2D case, the magnetic field is projected into the space of Raviart-Thomas finite elements. Numerical studies for standard test problems are performed to verify the ability of the proposed algorithms to enforce relevant constraints in applications to ideal MHD flows.

  4. Observational Quantification of the Energy Dissipated by Alfv\\'en Waves in a Polar Coronal Hole: Evidence that Waves Drive the Fast Solar Wind

    CERN Document Server

    Hahn, Michael

    2013-01-01

    We present a measurement of the energy carried and dissipated by Alfv\\'en waves in a polar coronal hole. Alfv\\'en waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity v_nt and the ion temperature T_i. We have implemented a means to separate the T_i and v_nt contributions using the observation that at low heights the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to v_nt. We find the initial energy flux density present was 6.7 +/- 0.7 x 10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and acccelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find tha...

  5. Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind

    CERN Document Server

    Shoda, Munehito

    2016-01-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...

  6. Characterization of the three-dimensional supersonic flow for the MHD generator

    Institute of Scientific and Technical Information of China (English)

    LU HaoYu; LEE ChunHian; DONG HaiTao

    2009-01-01

    A numerical procedure based on a five-wave MHD model associated with non-ideal, low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy condi-tioned scheme for solving the non-homogeneous Navier-Stokes equations, in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode, where the local adverse pressure gradient is large, and the core of the flow field is characterized as a 2-D flow due to the Hartmann ef-fects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases, and even induce an eddy current. Induced eddy cur-rent was also found in the different cross-sections along the axial direction, all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section, which, in turn, induces the corner eddy current at the cor-ner. A numerical parametric study was also performed, and the computed performance parameters for the MHD generator suggest that, in order to enhance the performance of MHD generator, the magnetic interaction parameter should be elevated.

  7. Characterization of the three-dimensional supersonic flow for the MHD generator

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2009-01-01

    A numerical procedure based on a five-wave MHD model associated with non-ideal,low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode,where the local adverse pressure gradient is large,and the core of the flow field is characterized as a 2-D flow due to the Hartmann effects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases,and even induce an eddy current. Induced eddy current was also found in the different cross-sections along the axial direction,all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section,which,in turn,induces the corner eddy current at the corner. A numerical parametric study was also performed,and the computed performance parameters for the MHD generator suggest that,in order to enhance the performance of MHD generator,the magnetic interaction parameter should be elevated.

  8. Differing Event-Related Patterns of Gamma-Band Power in Brain Waves of Fast- and Slow-Reacting Subjects

    Science.gov (United States)

    1994-05-01

    Wilhelm Wundt proposed that there are two types of subjects in sim- ple RT experiments: fast-reacting subjects, who respond before they fully...quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects...accord with the hypothesis of Wundt and others that slower ("sensorial") responders wait to fully perceive a stimulus and then react to their perception

  9. Comparative analysis of four-wave mixing of optical pulses in slow- and fast-light regimes of a silicon photonic crystal waveguide.

    Science.gov (United States)

    Lavdas, Spyros; Panoiu, Nicolae C

    2015-09-15

    We present an in-depth study of four-wave mixing (FWM) of optical pulses in silicon photonic crystal waveguides. Our analysis is based on a rigorous model that includes all relevant linear and nonlinear optical effects and their dependence on the group velocity, as well as the influence of free carriers on pulse dynamics. In particular, we reveal key differences between FWM in the slow- and fast-light regimes and how they are related to the physical parameters of the pulses and waveguide. Finally, we illustrate how these results can be used to design waveguides with optimized FWM conversion efficiency.

  10. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  11. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  12. Cosmological AMR MHD with Enzo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  13. MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.

    1982-01-01

    The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.

  14. Simulation of three-dimensional nonideal MHD flow at low magnetic Reynolds number

    Institute of Scientific and Technical Information of China (English)

    LU HaoYu; LEE ChunHian

    2009-01-01

    A numerical procedure based on a five-wave model associated with non-ideal,low magnetic Reynolds number magnetohydrodynamic(MHD)flows was developed.It is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential of flow field.To validate the developed procedure,two different test cases were used which included MHD Rayleigh problem and MHD Hartmann problem.The simulations were performed under the assumption of low magnetic Reynolds number.The simulated results were found to be in good agreement with the closed form analytical solutions deduced in the present study,showing that the present algorithm could simulate engineering MHD flow at low magnetic Reynolds number effectively.In the end,a flow field between a pair of segmented electrodes in a three dimensional MHD channel was simulated using the present algorithm with and without including Hall effects.Without the introduction of Hall effects,no distortion was observed in the current and potential lines.By taking the Hall effects into account,the potential lines distorted and clustered at the upstream and downstream edges of the cathode and anode,respectively.

  15. Cascades and Spectra of Elastic Turbulence in 2D: Spinodal Decomposition & MHD

    Science.gov (United States)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis

    2016-10-01

    We report on studies of turbulence in 2D spinodal decompositions of symmetric binary mixtures. This study emphasizes a comparison and contrast of the physics of spinodal turbulence with that of 2D MHD turbulence. The important similarities include basic equations, ideal quadratic conserved quantities, cascade directions and elastic waves. Turbulence in spinodal decomposition exhibits an elastic range when the Hinze scale is sufficiently larger than the dissipation scale, i.e. LH k (analogous to HkA ≡k in MHD) scales as k - 7 / 3. This suggests an inverse cascade of Hψ, corresponding to the case in MHD. However, we also show that, the kinetic energy spectrum scales as k-3, as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution of this dilemma is that capillarity acts only at blob boundaries. This is in contrast to B in MHD. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the outcome for the kinetic energy spectrum. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  16. Multi-fluid Modeling of Magnetosonic Wave Propagation in the Solar Chromosphere: Effects of Impact Ionization and Radiative Recombination

    Science.gov (United States)

    Maneva, Yana G.; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan

    2017-02-01

    In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magnetic field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.

  17. Open Boundary Conditions for Dissipative MHD

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  18. Resistive MHD jet simulations with large resistivity

    CERN Document Server

    Cemeljic, Miljenko; Vlahakis, Nektarios; Tsinganos, Kanaris

    2009-01-01

    Axisymmetric resistive MHD simulations for radially self-similar initial conditions are performed, using the NIRVANA code. The magnetic diffusivity could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We introduce, in addition to the classical magnetic Reynolds number Rm, which measures the importance of resistive effects in the induction equation, a new number Rb, which measures the importance of the resistive effects in the energy equation. We find two distinct regimes of solutions in our simulations. One is the low-resistivity regime, in which results do not differ much from ideal-MHD solutions. In the high-resistivity regime, results seem to show some periodicity in time-evolution, and depart significantly from the ideal-MHD case. Whether this departure is caused by numerical or physical reasons is of considerable interest for nu...

  19. An accurate and fast forward model of three-dimensional electromagnetic wave scattering in a layered structure with multilayer rough interfaces

    Science.gov (United States)

    Wu, Chao; Zhang, Xiaojuan; Fang, Guangyou; Shi, Jiancheng; Liu, Shiyin

    2015-03-01

    We develop an accurate and fast forward model for calculating the compact closed-form high-order perturbative solutions of the problem of three-dimensional (3-D) radiation and propagation electromagnetic fields in a layered structure with multilayer rough interfaces. The proposed method for the fast forward model is first demonstrated by strictly theoretical formulas derivation in the framework of classical small perturbation method (SPM) without other else approximation and equivalent process. The kernel functions of high order are proposed for calculating the radar cross sections with more efficiency and clear physical meanings for better use in practice. What is more, we give the clear physical interpretation of the first-order fully polarimetric electromagnetic wave scattering mechanism in the layered structure with multilayer rough interfaces. The proposed forward model is necessary to insure a successful inversion process. Furthermore, the high-order SPM solutions derived by employing the proposed method are validated with existing methods and numerical results. Finally, we study the performance of the high-order fully polarimetric electromagnetic wave scattering according to the numerical results and analyze the scattering enhancement phenomena.

  20. FAST Model Calibration and Validation of the OC5- DeepCwind Floating Offshore Wind System Against Wave Tank Test Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitch and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.

  1. Solar Magnetic Waves and Oscillations

    Science.gov (United States)

    Erdelyi von Fay-Siebenburgen, R.

    2006-11-01

    Recent solar and space satellite missions (e.g. SOHO, Trace) and high- resolution ground-based observations (e.g. Swedish Solar Telescope, Dutch Open Telescope) have opened new avenues for 21st century plasma physics. With unprecedented details a very rich and abundant structure of the solar atmosphere is unveiled. Revolutionary observations clearly confirmed the existence of MHD waves and oscillations in a wide range of solar atmospheric magnetic structures, commonly described in the form of solar flux tubes. The objectives of this review are to give an up-to-date account of the theory of MHD waves and oscillations in solar and astrophysical magnetic wave-guides. Since magnetic structuring acts as excellent wave guides, plasma waves and oscillations are able to propagate from sub-surface solar regions through the solar atmosphere deep into the interplanetary space. Observations and theoretical modeling of waves can provide excellent diagnostic tools about the state of solar plasma. Key examples of the various types of MHD waves and oscillations will be discussed both from observational and theoretical perspectives and the concept of atmospheric (coronal) and magneto-seismology will be introduced. The lecture will also contain a few short exercises in order to highlight the important points of the applications of solar MHD wave theory.

  2. Fast one-dimensional wave-front propagation for x-ray differential phase-contrast imaging.

    Science.gov (United States)

    Wolf, Johannes; Malecki, Andreas; Sperl, Jonathan; Chabior, Michael; Schüttler, Markus; Bequé, Dirk; Cozzini, Cristina; Pfeiffer, Franz

    2014-10-01

    Numerical wave-optical simulations of X-ray differential phase-contrast imaging using grating interferometry require the oversampling of gratings and object structures in the range of few micrometers. Consequently, fields of view of few millimeters already use large amounts of a computer's main memory to store the propagating wave front, limiting the scope of the investigations to only small-scale problems. In this study, we apply an approximation to the Fresnel-Kirchhoff diffraction theory to overcome these restrictions by dividing the two-dimensional wave front up into 1D lines, which are processed separately. The approach enables simulations with samples of clinically relevant dimensions by significantly reducing the memory footprint and the execution time and, thus, allows the qualitative comparison of different setup configurations. We analyze advantages as well as limitations and present the simulation of a virtual mammography phantom of several centimeters of size.

  3. A fast-multipole domain decomposition integral equation solver for characterizing electromagnetic wave propagation in mine environments

    KAUST Repository

    Yücel, Abdulkadir C.

    2013-07-01

    Reliable and effective wireless communication and tracking systems in mine environments are key to ensure miners\\' productivity and safety during routine operations and catastrophic events. The design of such systems greatly benefits from simulation tools capable of analyzing electromagnetic (EM) wave propagation in long mine tunnels and large mine galleries. Existing simulation tools for analyzing EM wave propagation in such environments employ modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), and full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of miners and their equipments, as well as wall roughness (especially when the latter is comparable to the wavelength). Full-wave methods do not suffer from such restrictions but require prohibitively large computational resources. To partially alleviate this computational burden, a 2D integral equation-based domain decomposition technique has recently been proposed (Bakir et. al., in Proc. IEEE Int. Symp. APS, 1-2, 8-14 July 2012). © 2013 IEEE.

  4. MHD equilibria with diamagnetic effects

    Science.gov (United States)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.

    1997-11-01

    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  5. MHD Jets in inhomogeneous media

    Directory of Open Access Journals (Sweden)

    S. O´Sullivan

    2002-01-01

    Full Text Available Presentamos simulaciones de la propagaci on de jets moleculares no-adiab aticos en un medio ambiente inhomog eneo. Los jets tienen condiciones descritos por un modelo de jet MHD en el cual la forma de las l neas magn eticas se prescribe cerca de la fuente. Per les de densidad ambiental fueron elegidos para representar la zona de transici on entre las regiones exteriores de una nube molecular y el medio interestelar. Escalamos las tasas de enfriamiento at omico y molecular a niveles apropriados para resolver todas las escalas espaciales apropriadas. Con la inclusi on de variabilidad de la fuente, las simulaciones reproducen varias caracter sticas observacionales de jets moleculares, entre ellas las cavidades moleculares. Adicionalmente, encontramos similitudes entre teor a y observaci on para la fracci on de ionizaci on a lo largo del jet. Encontramos que la extensi on lateral de las super cies de trabajo internas son sensibles al medio ambiente. Tambi en presentamos resultados preliminares para un m etodo de calcular mapas de emisi on en l neas usando solamente variables fundamentales de estado que parecen reproducir la emisi on lamentosa de Balmer en frentes de choque.

  6. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  7. Height-dependent Refraction of A Global EUV Wave and Its Associated Sympathetic Eruptions

    Science.gov (United States)

    Liu, Wei; Ofman, Leon; Downs, Cooper; Schrijver, Karel

    2014-06-01

    The height dependence of global extreme-ultraviolet (EUV) waves in the solar corona, especially of their wave-like behaviors such as transmission and reflection, is critical to understanding their physical nature. Prior observations of such behaviors, when detected on the solar disk, were compromised because height-dependent information is lost due to the line-of-sight projection from a top-down view. We report a global EUV wave on the limb observed by SDO/AIA from a side-view that evidently shows height-dependent transmission and refraction. As the wave travels through an active region, the orientation of the low-corona wave front changes from a forward inclination toward the solar surface to a backward inclination. This indicates that the EUV wave speed is lower at higher altitudes, which is expected because of the rapid drop with height of the Alfven and fast-mode speeds in active regions, as predicted by MHD models. When traveling into the active region, the EUV wave speed in the low corona increases from ~600 km/s to ~900 km/s. In addition, in the neighborhood of the active region, sympathetic eruptions of local coronal structures take place sequentially upon the wave impact and may appear as wave reflection. Understanding propagation behaviors of global EUV waves brings us one step closer to fully utilizing them for seismological diagnostics of the global corona, such as mapping the spatial distribution of the Alfven speed and magnetic field strength.

  8. MHD simulations of three-dimensional Resistive Reconnection in a cylindrical plasma column

    CERN Document Server

    Striani, Edoardo; Vaidya, Bhargav; Bodo, Gianluigi; Ferrari, Attilio

    2016-01-01

    Magnetic reconnection is a plasma phenomenon where a topological rearrangement of magnetic field lines with opposite polarity results in dissipation of magnetic energy into heat, kinetic energy and particle acceleration. Such a phenomenon is considered as an efficient mechanism for energy release in laboratory and astrophysical plasmas. An important question is how to make the process fast enough to account for observed explosive energy releases. The classical model for steady state magnetic reconnection predicts reconnection times scaling as $S^{1/2}$ (where $S$ is the Lundquist number) and yields times scales several order of magnitude larger than the observed ones. Earlier two-dimensional MHD simulations showed that for large Lundquist number the reconnection time becomes independent of $S$ ("fast reconnection" regime) due to the presence of the secondary tearing instability that takes place for $S \\gtrsim 1 \\times 10^4$. We report on our 3D MHD simulations of magnetic reconnection in a magnetically confin...

  9. MHD Shock Conditions for Accreting Plasma onto Kerr Black Holes - I

    CERN Document Server

    Takahashi, M; Fukumura, K; Tsuruta, S; Takahashi, Masaaki; Rilett, Darrell; Fukumura, Keigo; Tsuruta, Sachiko

    2002-01-01

    We extend the work by Appl and Camenzind (1988) for special relativistic magnetohydrodynamic (MHD) jets, to fully general relativistic studies of the standing shock formation for accreting MHD plasma in a rotating, stationary and axisymmetric black hole magnetosphere. All the postshock physical quantities are expressed in terms of the relativistic compression ratio, which can be obtained in terms of preshock quantities. Then, the downstream state of a shocked plasma is determined by the upstream state of the accreting plasma. In this paper sample solutions are presented for slow magnetosonic shocks for accreting flows in the equatorial plane. We find that some properties of the slow magnetosonic shock for the rotating magnetosphere can behave like a fast magnetosonic shock. In fact, it is confirmed that in the limit of weak gravity for the upstream non-rotating accretion plasma where the magnetic field lines are leading and rotating, our results are very similar to the fast magnetosonic shock solution by Appl...

  10. Advances in Observing Various Coronal EUV Waves in the SDO Era and Their Seismological Applications (Invited Review)

    CERN Document Server

    Liu, Wei

    2014-01-01

    Global extreme ultraviolet (EUV) waves are spectacular traveling disturbances in the solar corona associated with energetic eruptions such as coronal mass ejections (CMEs) and flares. Over the past 15 years, observations from three generations of space-borne EUV telescopes have shaped our understanding of this phenomenon and at the same time led to controversy about its physical nature. Since its launch in 2010, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has observed more than 210 global EUV waves in exquisite detail, thanks to its high spatio-temporal resolution and full-disk, wide-temperature coverage. A combination of statistical analysis of this large sample, 30 some detailed case studies, and data-driven MHD modeling, has been leading their physical interpretations to a convergence, favoring a bimodal composition of an outer, fast-mode magnetosonic wave component and an inner, non-wave CME component. Adding to this multifaceted picture, AIA has also discovered new...

  11. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    Science.gov (United States)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  12. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    Science.gov (United States)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams

    2017-07-01

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.

  13. Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science Waveform Receiver Plasma Wave Analysis

    Science.gov (United States)

    Boardsen, Scott A.; Hospodarsky, George B.; Kletzing, Craig A.; Engebretson, Mark J.; Pfaff, Robert F.; Wygant, John R.; Kurth, William S.; Averkamp, Terrance F.; Bounds, Scott R.; Green, Jim L.; hide

    2016-01-01

    We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 21 September 2012 to 1 August 2014. We show that statistically, the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (f(sub cP)) has a distinct funnel-shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extra-ordinary (whistler) mode at wave normal angles (theta(sub k)) near 90 deg. Performing polarization analysis on synthetic waveforms composed from a superposition of extra-ordinary mode plane waves with theta(sub k) randomly chosen between 87 and 90 deg, we show that the uncertainty in the derived wave normal is substantially broadened, with a tail extending down to theta(sub k) of 60 deg, suggesting that another approach is necessary to estimate the true distribution of theta(sub k). We find that the histograms of the synthetically derived ellipticities and theta(sub k) are consistent with the observations of ellipticities and theta(sub k) derived using polarization analysis.We make estimates of the median equatorial theta(sub k) by comparing observed and model ray tracing frequency-dependent probability occurrence with latitude and give preliminary frequency dependent estimates of the equatorial theta(sub k) distribution around noon and 4 R(sub E), with the median of approximately 4 to 7 deg from 90 deg at f/f(sub cP) = 2 and dropping to approximately 0.5 deg from 90 deg at f/f(sub cP) = 30. The occurrence of waves in this mode peaks around noon near the equator at all radial distances, and we find that the overall intensity of these waves increases with AE*, similar to findings of other studies.

  14. Plane thermonuclear detonation waves initiated by proton beams and quasi-one-dimensional model of fast ignition

    CERN Document Server

    Charakhch'yan, Alexander A

    2014-01-01

    The one-dimensional (1D) problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length $2H$ and density $\\rho_0 \\leqslant 100\\rho_s$, where $\\rho_s$ is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is $10^{19}$ W/cm$^2$ and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by alpha-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable $x$ and with a weak dependence of the thermodynamic functions of $x$ occurs. An appropriate solution of the equations of hydrodynamics is...

  15. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Ben [University of California, Davis; Classen, I.G.J. [FOM Institute for Plasma Physics Rijnhuizen, Nieuwegein, The Netherlands; Domier, C. W. [University of California, Davis; Heidbrink, W. [University of California, Irvine; Luhmann, N.C. [University of California, Davis; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Park, H.K. [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Spong, Donald A [ORNL; Van Zeeland, Michael [General Atomics

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  16. An unsplit, cell-centered Godunov method for ideal MHD

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Robert K.; Colella, Phillip; Fisher, Robert T.; Klein, Richard I.; McKee, Christopher F.

    2003-08-29

    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.

  17. An Unsplit, Cell-Centered Godunov Method for Ideal MHD

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R; Crockett, R; Colella, P; Klein, R; McKee, C

    2003-10-16

    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella, with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We apply the method to a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, and low-beta flux tubes. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.

  18. The climatology, propagation and excitation of ultra-fast Kelvin waves as observed by meteor radar, Aura MLS, TRMM and in the Kyushu-GCM

    Directory of Open Access Journals (Sweden)

    R. N. Davis

    2012-02-01

    Full Text Available Wind measurements from a meteor radar on Ascension Island (8° S, 14° W and simultaneous temperature measurements from the Aura MLS instrument are used to characterise ultra-fast Kelvin waves (UFKW of zonal wavenumber 1 (E1 in the mesosphere and lower thermosphere (MLT in the years 2005–2010. These observations are compared with some predictions of the Kyushu-general circulation model. Good agreement is found between observations of the UFKW in the winds and temperatures, and also with the properties of the waves in the Kyushu-GCM. UFKW are found at periods between 2.5–4.5 days with amplitudes of up to 40 m s−1 in the zonal winds and 6 K in the temperatures. The average vertical wavelength is found to be 44 km. Amplitudes vary with latitude in a Gaussian manner with the maxima centred over the equator. Dissipation of the waves results in monthly-mean eastward accelerations of 0.2–0.9 m s−1 day−1 at heights around 95 km, with 5-day mean peak values of 4 m s−1 day−1. Largest wave amplitudes and variances are observed over Indonesia and central Africa and may be a result of very strong moist convective heating over those regions. Rainfall data from TRMM are used as a proxy for latent-heat release in an investigation of the excitation of these waves. No strong correlation is found between the occurrence of large-amplitude mesospheric UFKW events and either the magnitude of the equatorial rainfall or the amplitudes of E1 signatures in the rainfall time series, indicating that either other sources or the propagation environment are more important in determining the amplitude of UFKW in the MLT. A strong semiannual variation in wave amplitudes is observed. Intraseasonal oscillations (ISOs with periods 25–60 days are evident in the zonal background winds, zonal-mean temperature, UFKW amplitudes, UFKW accelerations and the rainfall rate. This suggests that UFKW play a role in

  19. Dipole Alignment in Rotating MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  20. Theoretical modeling of propagation of magneto-acoustic waves in magnetic regions below sunspots

    CERN Document Server

    Khomenko, E; Collados, M; Parchevsky, K; Olshevsky, V

    2008-01-01

    We use 2D numerical simulations and eikonal approximation to study properties of magneto-acoustic gravity waves traveling below the solar surface through the magnetic structure of sunspots. We consider a series of magnetostatic models of sunspots of different magnetic field strengths, from the deep interior to the chromosphere. The purpose of these studies is to quantify the effect of the magnetic field on local helioseismology measurements. Waves are excited by a sub-photospheric source located in the region beta slightly larger than 1. Time-distance diagrams and travel times are calculated for various frequency intervals and compared to the non-magnetic case. The results confirm that the observed time-distance helioseismology signals in sunspot regions correspond to fast MHD waves. The slow MHD waves form a distinctly different pattern in the time-distance diagram, which has not been detected in observations. The numerical results are in good agreement with the solution in the short-wavelength (eikonal) app...

  1. Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations

    Science.gov (United States)

    Guermond, Jean-Luc; Popov, Bojan

    2016-09-01

    This paper is concerned with the construction of a fast algorithm for computing the maximum speed of propagation in the Riemann solution for the Euler system of gas dynamics with the co-volume equation of state. The novelty in the algorithm is that it stops when a guaranteed upper bound for the maximum speed is reached with a prescribed accuracy. The convergence rate of the algorithm is cubic and the bound is guaranteed for gasses with the co-volume equation of state and the heat capacity ratio γ in the range (1 , 5 / 3 ].

  2. Large-scale Globally Propagating Coronal Waves

    Directory of Open Access Journals (Sweden)

    Alexander Warmuth

    2015-09-01

    Full Text Available Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the “classical” interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which “pseudo waves” are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  3. New tests for a singularity of ideal MHD

    CERN Document Server

    Kerr, R M; Kerr, Robert M.; Brandenburg, Axel

    2000-01-01

    Analysis using new calculations with 3 times the resolution of the earlier linked magnetic flux tubes confirms the transition from singular to saturated growth rate reported by Grauer and Marliani \\cite{GrauerMar99} for the incompressible cases is confirmed. However, all of the secondary tests point to a transition back to stronger growth rate at a different location at late times. Similar problems in ideal hydrodynamics are discussed, pointing out that initial negative results eventually led to better initial conditions that did show evidence for a singularity of Euler. Whether singular or near-singular growth in ideal MHD is eventually shown, this study could have bearing on fast magnetic reconnection, high energy particle production and coronal heating.

  4. Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain

    Science.gov (United States)

    Ryo, Ikehata

    Uniform energy and L2 decay of solutions for linear wave equations with localized dissipation will be given. In order to derive the L2-decay property of the solution, a useful device whose idea comes from Ikehata-Matsuyama (Sci. Math. Japon. 55 (2002) 33) is used. In fact, we shall show that the L2-norm and the total energy of solutions, respectively, decay like O(1/ t) and O(1/ t2) as t→+∞ for a kind of the weighted initial data.

  5. Benchmarking a hybrid MHD/kinetic code with C-2 experimental data

    Science.gov (United States)

    Magee, Richard; Clary, Ryan; Dettrick, Sean; Korepanov, Sergey; Onofri, Marco; Smirnov, Artem; TAE Team

    2013-10-01

    The C-2 device creates field-reversed configuration (FRC) plasmas via the dynamic merging of two compact toroids and heated with neutral beams. Simulations of these plasmas are performed with Q2D - a hybrid MHD/Monte Carlo code that evolves the plasma according to the resistive MHD equations and treats the neutral beam injected fast ions as a minority kinetic species. Recent Q2D runs have resulted in testable predictions, namely that the axial profile of the fast ions is double-peaked, and charge-exchange neutrals are localized in pitch-angle. In some simulations, the fast particle population can induce magnetic fluctuations. These fluctuations are largest in the radial component, have a characteristic frequency approximately equal to the fast ion bounce frequency (f ~ 150 kHz), and a broad k spectrum. These fluctuations have the beneficial effect of smoothing out the double-peaked axial fast ion density profile, resulting in an increased fast ion density at the mid-plane. We will present results from a benchmarking study to quantitatively compare the results of Q2D runs to existing C-2 experimental data.

  6. Radiation-driven MHD systems for space applications

    Science.gov (United States)

    Lee, J. H.; Jalufka, N. W.

    High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.

  7. The mathematical theory of reduced MHD models for fusion plasmas

    OpenAIRE

    Guillard, Hervé

    2015-01-01

    The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.

  8. An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor

    Directory of Open Access Journals (Sweden)

    Se Yeon Oh

    2015-06-01

    Full Text Available Fast gas chromatography-surface acoustic wave sensor (GC/SAW has been applied for the detection of the pharmacological volatiles emanated from Houttuynia cordata Thunb which is from South Korea. H. cordata Thunb with unpleasant and fishy odors shows a variety of pharmacological activities such as anti-microbial, anti-inflammatory, anti-cancer, and insect repellent. The aim of this study is to show a novel quality control by GC/SAW methodology for the discrimination of the three different parts of the plant such as leaves, aerial stems, and underground stems for H. cordata Thunb. Sixteen compounds were identified. β-Myrcene, cis-ocimene and decanal are the dominant volatiles for leaves (71.0% and aerial stems (50.1%. While, monoterpenes (74.6% are the dominant volatiles for underground stems. 2-Undecanone (1.3% and lauraldehyde (3.5% were found to be the characteristic components for leaves. Each part of the plant has its own characteristic fragrance pattern owing to its individual chemical compositions. Moreover, its individual characteristic fragrance patterns are conducive to discrimination of the three different parts of the plant. Consequently, fast GC/SAW can be a useful analytical method for quality control of the different parts of the plant with pharmacological volatiles as it provides second unit analysis, a simple and fragrant pattern recognition.

  9. Speed evolution of fast CME/shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric type-II emissions

    Directory of Open Access Journals (Sweden)

    A. Gonzalez-Esparza

    2009-10-01

    Full Text Available Fast CME/shocks propagating in the interplanetary medium can generate kilometric Type II (km-TII radio emissions at the local plasma frequency and/or its harmonic, so these radio emissions provide a means of remotely tracking CME/shocks. We apply a new analysis technique, using the frequency drift of km-TII spectrum obtained by the Thermal Noise Receiver (TNR of the WIND/WAVES experiment, to infer, at some adequate intervals, the propagation speed of six CME/shocks. We combine these results with previously reported speeds from coronagraph white light and interplanetary scintillation observations, and in-situ measurements, to study the temporal speed evolution of the six events. The speed values obtained by the km-TII analysis are in a reasonable agreement with the speed measurements obtained by other techniques at different heliocentric distance ranges. The combination of all the speed measurements show a gradual deceleration of the CME/shocks as they propagate to 1 AU. This new technique can be useful in studying the evolution of fast CME/shocks when adequate intervals of km-TII emissions are available.

  10. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    Science.gov (United States)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  11. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor.

    Science.gov (United States)

    Artem'ev, K V; Berezhetskaya, N K; Kazantsev, S Yu; Kononov, N G; Kossyi, I A; Popov, N A; Tarasova, N M; Filimonova, E A; Firsov, K N

    2015-08-13

    Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane-oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of 'explosive' inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of 'incomplete combustion' under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the 'preflame' and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density n(e)≈10(12) cm(-3)) and a high frequency of electron-neutral collisions (ν(en)≈10(12) s(-1)). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed.

  12. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor

    Science.gov (United States)

    Artem'ev, K. V.; Berezhetskaya, N. K.; Kazantsev, S. Yu.; Kononov, N. G.; Kossyi, I. A.; Popov, N. A.; Tarasova, N. M.; Filimonova, E. A.; Firsov, K. N.

    2015-01-01

    Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane–oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of ‘explosive’ inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of ‘incomplete combustion’ under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the ‘preflame’ and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density ne≈1012 cm−3) and a high frequency of electron–neutral collisions (νen≈1012 s−1). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed. PMID:26170426

  13. Analysis of Magnetic Fields in Inertial Alfven Wave Collisions

    CERN Document Server

    Drake, Dereth J; Shanken, Brian C; Howes, Gregory G; Skiff, Frederick; Kletzing, Craig A; Carter, Troy A; Dorfman, Seth

    2014-01-01

    Turbulence in astrophysical and space plasmas is dominated by the nonlinear interaction of counterpropagating Alfven waves. Most Alfven wave turbulence theories have been based on ideal plasma models, such as incompressible MHD, for Alfven waves at large scales. However, in the inertial Alfven wave regime (vA > vthe), relevant to magnetospheric plasmas, how the turbulent nonlinear interactions are modified by the dispersive nature of the waves remains to be explored. Here we present the first laboratory evidence of the nonlinear interaction in the inertial regime. A comparison is made with the theory for MHD Alfven waves.

  14. Euler potentials for the MHD Kamchatnov-Hopf soliton solution

    NARCIS (Netherlands)

    Semenov, VS; Korovinski, DB; Biernat, HK

    2002-01-01

    In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf invarian

  15. Viscous, resistive MHD stability computed by spectral techniques

    Science.gov (United States)

    Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.

    1983-01-01

    Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.

  16. Safety and reliability in superconducting MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

  17. Explosively-driven magnetohydrodynamic (MHD) generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)

    1995-08-01

    Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.

  18. Fast Ion Dynamics in ASDEX Upgrade and TEXTOR Measured by Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Moseev, Dmitry

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic...

  19. MHD Mode Conversion around a 2D Magnetic Null Point

    CERN Document Server

    McDougall, A M D; 10.1063/1.3099224

    2009-01-01

    Mode conversion occurs when a wave passes through a region where the sound and Alfven speeds are equal. At this point there is a resonance, which allows some of the incident wave to be converted into a different mode. We study this phenomenon in the vicinity of a two-dimensional, coronal null point. As a wave approaches the null it passes from low- to high-beta plasma, allowing conversion to take place. We simulate this numerically by sending in a slow magnetoacoustic wave from the upper boundary; as this passes through the conversion layer a fast wave can clearly be seen propagating ahead. Numerical simulations combined with an analytical WKB investigation allow us to determine and track both the incident and converted waves throughout the domain.

  20. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    Science.gov (United States)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.