WorldWideScience

Sample records for fast marching methods

  1. A Comparison of Fast Marching, Fast Sweeping and Fast Iterative Methods for the Solution of the Eikonal Equation

    Directory of Open Access Journals (Sweden)

    A. Capozzoli

    2014-11-01

    Full Text Available We compare the computational performance of the Fast Marching Method, the Fast Sweeping Method and the Fast Iterative Method to determine a numerical solution to the eikonal equation. We point out how the Fast Iterative Method outperforms the other two thanks to its parallel processing capabilities.

  2. Segmentation of hand radiographs using fast marching methods

    Science.gov (United States)

    Chen, Hong; Novak, Carol L.

    2006-03-01

    Rheumatoid Arthritis is one of the most common chronic diseases. Joint space width in hand radiographs is evaluated to assess joint damage in order to monitor progression of disease and response to treatment. Manual measurement of joint space width is time-consuming and highly prone to inter- and intra-observer variation. We propose a method for automatic extraction of finger bone boundaries using fast marching methods for quantitative evaluation of joint space width. The proposed algorithm includes two stages: location of hand joints followed by extraction of bone boundaries. By setting the propagation speed of the wave front as a function of image intensity values, the fast marching algorithm extracts the skeleton of the hands, in which each branch corresponds to a finger. The finger joint locations are then determined by using the image gradients along the skeletal branches. In order to extract bone boundaries at joints, the gradient magnitudes are utilized for setting the propagation speed, and the gradient phases are used for discriminating the boundaries of adjacent bones. The bone boundaries are detected by searching for the fastest paths from one side of each joint to the other side. Finally, joint space width is computed based on the extracted upper and lower bone boundaries. The algorithm was evaluated on a test set of 8 two-hand radiographs, including images from healthy patients and from patients suffering from arthritis, gout and psoriasis. Using our method, 97% of 208 joints were accurately located and 89% of 416 bone boundaries were correctly extracted.

  3. A highly scalable massively parallel fast marching method for the Eikonal equation

    Science.gov (United States)

    Yang, Jianming; Stern, Frederick

    2017-03-01

    The fast marching method is a widely used numerical method for solving the Eikonal equation arising from a variety of scientific and engineering fields. It is long deemed inherently sequential and an efficient parallel algorithm applicable to large-scale practical applications is not available in the literature. In this study, we present a highly scalable massively parallel implementation of the fast marching method using a domain decomposition approach. Central to this algorithm is a novel restarted narrow band approach that coordinates the frequency of communications and the amount of computations extra to a sequential run for achieving an unprecedented parallel performance. Within each restart, the narrow band fast marching method is executed; simple synchronous local exchanges and global reductions are adopted for communicating updated data in the overlapping regions between neighboring subdomains and getting the latest front status, respectively. The independence of front characteristics is exploited through special data structures and augmented status tags to extract the masked parallelism within the fast marching method. The efficiency, flexibility, and applicability of the parallel algorithm are demonstrated through several examples. These problems are extensively tested on six grids with up to 1 billion points using different numbers of processes ranging from 1 to 65536. Remarkable parallel speedups are achieved using tens of thousands of processes. Detailed pseudo-codes for both the sequential and parallel algorithms are provided to illustrate the simplicity of the parallel implementation and its similarity to the sequential narrow band fast marching algorithm.

  4. On the implementation of fast marching methods for 3D lattices

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    2001-01-01

    This technical report discusses Sethian's Fast Marching Method and its higher accuracy variant. Both methods may be used to compute the arrival times at the points of a discrete lattice of a front which is monotonously expanding. Applications of the method include arrival time computation and the...

  5. A highly scalable massively parallel fast marching method for the Eikonal equation

    CERN Document Server

    Yang, Jianming

    2015-01-01

    In this study, we present a highly scalable massively parallel implementation of the fast marching method using a domain decomposition approach. Central to this algorithm is a novel restarted narrow band approach that coordinates the frequency of communications and the amount of computations extra to a sequential run for achieving an unprecedented parallel performance. Within each restart, the narrow band fast marching method is executed; simple synchronous local exchanges and global reductions are adopted for communicating updated data in the overlapping regions between neighboring subdomains and getting the latest front status, respectively. The independence of front characteristics is exploited through special data structures and augmented status tags to extract the masked parallelism within the fast marching method. The efficiency, flexibility, and applicability of the parallel algorithm are demonstrated through several examples. These problems are extensively tested on grids with up to 1 billion points u...

  6. A fast marching method based back projection algorithm for photoacoustic tomography in heterogeneous media

    CERN Document Server

    Wang, Tianren

    2015-01-01

    This paper presents a numerical study on a fast marching method based back projection reconstruction algorithm for photoacoustic tomography in heterogeneous media. Transcranial imaging is used here as a case study. To correct for the phase aberration from the heterogeneity (i.e., skull), the fast marching method is adopted to compute the phase delay based on the known speed of sound distribution, and the phase delay is taken into account by the back projection algorithm for more accurate reconstructions. It is shown that the proposed algorithm is more accurate than the conventional back projection algorithm, but slightly less accurate than the time reversal algorithm particularly in the area close to the skull. However, the image reconstruction time for the proposed algorithm can be as little as 124 ms when implemented by a GPU (512 sensors, 21323 pixels reconstructed), which is two orders of magnitude faster than the time reversal reconstruction. The proposed algorithm, therefore, not only corrects for the p...

  7. Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains.

    Science.gov (United States)

    Hassouna, M Sabry; Farag, A A

    2007-09-01

    A wide range of computer vision applications require an accurate solution of a particular Hamilton- Jacobi (HJ) equation, known as the Eikonal equation. In this paper, we propose an improved version of the fast marching method (FMM) that is highly accurate for both 2D and 3D Cartesian domains. The new method is called multi-stencils fast marching (MSFM), which computes the solution at each grid point by solving the Eikonal equation along several stencils and then picks the solution that satisfies the upwind condition. The stencils are centered at each grid point and cover its entire nearest neighbors. In 2D space, 2 stencils cover the 8-neighbors of the point, while in 3D space, 6 stencils cover its 26-neighbors. For those stencils that are not aligned with the natural coordinate system, the Eikonal equation is derived using directional derivatives and then solved using higher order finite difference schemes. The accuracy of the proposed method over the state-of-the-art FMM-based techniques has been demonstrated through comprehensive numerical experiments.

  8. Semi-automated segmentation of the sigmoid and descending colon for radiotherapy planning using the fast marching method

    Science.gov (United States)

    Losnegård, Are; Bolstad Hysing, Liv; Muren, Ludvig Paul; Hodneland, Erlend; Lundervold, Arvid

    2010-09-01

    A fast and accurate segmentation of organs at risk, such as the healthy colon, would be of benefit for planning of radiotherapy, in particular in an adaptive scenario. For the treatment of pelvic tumours, a great challenge is the segmentation of the most adjacent and sensitive parts of the gastrointestinal tract, the sigmoid and descending colon. We propose a semi-automated method to segment these bowel parts using the fast marching (FM) method. Standard 3D computed tomography (CT) image data obtained from routine radiotherapy planning were used. Our pre-processing steps distinguish the intestine, muscles and air from connective tissue. The core part of our method separates the sigmoid and descending colon from the muscles and other segments of the intestine. This is done by utilizing the ability of the FM method to compute a specified minimal energy functional integrated along a path, and thereby extracting the colon centre line between user-defined control points in the sigmoid and descending colon. Further, we reconstruct the tube-shaped geometry of the sigmoid and descending colon by fitting ellipsoids to points on the path and by adding adjacent voxels that are likely voxels belonging to these bowel parts. Our results were compared to manually outlined sigmoid and descending colon, and evaluated using the Dice coefficient (DC). Tests on 11 patients gave an average DC of 0.83 (±0.07) with little user interaction. We conclude that the proposed method makes it possible to fast and accurately segment the sigmoid and descending colon from routine CT image data.

  9. Semi-automated segmentation of the sigmoid and descending colon for radiotherapy planning using the fast marching method.

    Science.gov (United States)

    Losnegård, Are; Hysing, Liv Bolstad; Muren, Ludvig Paul; Hodneland, Erlend; Lundervold, Arvid

    2010-09-21

    A fast and accurate segmentation of organs at risk, such as the healthy colon, would be of benefit for planning of radiotherapy, in particular in an adaptive scenario. For the treatment of pelvic tumours, a great challenge is the segmentation of the most adjacent and sensitive parts of the gastrointestinal tract, the sigmoid and descending colon. We propose a semi-automated method to segment these bowel parts using the fast marching (FM) method. Standard 3D computed tomography (CT) image data obtained from routine radiotherapy planning were used. Our pre-processing steps distinguish the intestine, muscles and air from connective tissue. The core part of our method separates the sigmoid and descending colon from the muscles and other segments of the intestine. This is done by utilizing the ability of the FM method to compute a specified minimal energy functional integrated along a path, and thereby extracting the colon centre line between user-defined control points in the sigmoid and descending colon. Further, we reconstruct the tube-shaped geometry of the sigmoid and descending colon by fitting ellipsoids to points on the path and by adding adjacent voxels that are likely voxels belonging to these bowel parts. Our results were compared to manually outlined sigmoid and descending colon, and evaluated using the Dice coefficient (DC). Tests on 11 patients gave an average DC of 0.83 (+/-0.07) with little user interaction. We conclude that the proposed method makes it possible to fast and accurately segment the sigmoid and descending colon from routine CT image data.

  10. 基于 Fast Marching 方法的多目标点路径规划的研究%Research on Multi-target Path Planning Based on Fast Marching Method

    Institute of Scientific and Technical Information of China (English)

    于晖; 王永骥

    2015-01-01

    This paper proposed a new path planning method by combining Multi-Direction Fast Marching (MDFM) method and genetic algorithm (GA)to resolve the multi-targets path planning for autonumous underwater robotic fish to mo-nitor the water quality.First,MDFM method was used to plan the point-to-point path among multiple targets;second the final optimal path to travel all the targets was planned by GA;at last,the simulation experiment shows that our method is feasible.%目前,水下自主机器鱼已经被应用于对水域多个目标点依次进行水质监测,因此有必要研究多个目标点的路径规划。针对遍历多个目标点的路径规划问题,提出一种 Multi-Direction Fast Marching (MDFM)方法和遗传算法相结合的路径规划方法。该方法首先使用 MDFM 方法对工作站和多个目标点两两之间进行路径规划,然后使用遗传算法规划出遍历所有点的最短路径,最后通过仿真实验验证算法的可行性。

  11. Three-dimensional pre-stack depth migration of receiver functions with the fast marching method: a Kirchhoff approach

    Science.gov (United States)

    Cheng, Cheng; Bodin, Thomas; Allen, Richard M.

    2016-05-01

    We present a novel 3-D pre-stack Kirchhoff depth migration (PKDM) method for teleseismic receiver functions. The proposed algorithm considers the effects of diffraction, scattering and traveltime alteration caused by 3-D volumetric heterogeneities. It is therefore particularly useful for imaging complex 3-D structures such as dipping discontinuities, which is hard to accomplish with traditional methods. The scheme is based on the acoustic wave migration principle, where at each time step of the receiver function, the energy is migrated back to the ensemble of potential conversion points in the image, given a smooth 3-D reference model. Traveltimes for P and S waves are computed with an efficient eikonal solver, the fast marching method. We also consider elastic scattering patterns, where the amplitude of converted S waves depends on the angle between the incident P wave and the scattered S wave. Synthetic experiments demonstrate the validity of the method for a variety of dipping angle discontinuities. Comparison with the widely used common conversion point (CCP) stacking method reveals that our migration shows considerable improvement. For example, the effect of multiple reflections that usually produce apparent discontinuities is avoided. The proposed approach is practical, computationally efficient, and is therefore a potentially powerful alternative to standard CCP methods for imaging large-scale continental structure under dense networks.

  12. Phase aberration correction by multi-stencils fast marching method using sound speed image in ultrasound computed tomography

    Science.gov (United States)

    Qu, Xiaolei; Azuma, Takashi; Lin, Hongxiang; Imoto, Haruka; Tamano, Satoshi; Takagi, Shu; Umemura, Shin-Ichiro; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-04-01

    Reflection image from ultrasound computed tomography (USCT) system can be obtained by synthetic aperture technique, however its quality is decreased by phase aberration caused by inhomogeneous media. Therefore, phase aberration correction is important to improve image quality. In this study, multi-stencils fast marching method (MSFMM) is employed for phase correction. The MSFMM is an accurate and fast solution of Eikonal equation which considers the refraction. The proposed method includes two steps. First, the MSFMM is used to compute sound propagation time from each element to each image gird point using sound speed image of USCT. Second, synthetic aperture technique is employed to obtain reflection image using the computed propagation time. To evaluate the proposed method, both numerical simulation and phantom experiment were conducted. With regard to numerical simulation, both quantitative and qualitative comparisons between reflection images with and without phase aberration correction were given. In the quantitative comparison, the diameters of point spread function (PSF) in reflection images of a two layer structure were presented. In the qualitative comparison, reflection images of simple circle and complex breast modes with phase aberration correction show higher quality than that without the correction. In respect to phantom experiment, a piece of breast phantom with artificial glandular structure inside was scanned by a USCT prototype, and the artificial glandular structure is able to be visible more clearly in the reflection image with phase aberration correction than in that without the correction. In this study, a phase aberration correction method by the MSFMM are proposed for reflection image of the USCT.

  13. Hamilton-Jacobi equation for the least-action/least-time dynamical path based on fast marching method.

    Science.gov (United States)

    Dey, Bijoy K; Janicki, Marek R; Ayers, Paul W

    2004-10-08

    Classical dynamics can be described with Newton's equation of motion or, totally equivalently, using the Hamilton-Jacobi equation. Here, the possibility of using the Hamilton-Jacobi equation to describe chemical reaction dynamics is explored. This requires an efficient computational approach for constructing the physically and chemically relevant solutions to the Hamilton-Jacobi equation; here we solve Hamilton-Jacobi equations on a Cartesian grid using Sethian's fast marching method. Using this method, we can--starting from an arbitrary initial conformation--find reaction paths that minimize the action or the time. The method is demonstrated by computing the mechanism for two different systems: a model system with four different stationary configurations and the H+H(2)-->H(2)+H reaction. Least-time paths (termed brachistochrones in classical mechanics) seem to be a suitable chioce for the reaction coordinate, allowing one to determine the key intermediates and final product of a chemical reaction. For conservative systems the Hamilton-Jacobi equation does not depend on the time, so this approach may be useful for simulating systems where important motions occur on a variety of different time scales.

  14. Travel time calculation in regular 3D grid in local and regional scale using fast marching method

    Science.gov (United States)

    Polkowski, M.

    2015-12-01

    Local and regional 3D seismic velocity models of crust and sediments are very important for numerous technics like mantle and core tomography, localization of local and regional events and others. Most of those techniques require calculation of wave travel time through the 3D model. This can be achieved using multiple approaches from simple ray tracing to advanced full waveform calculation. In this study simple and efficient implementation of fast marching method is presented. This method provides more information than ray tracing and is much less complicated than methods like full waveform being the perfect compromise. Presented code is written in C++, well commented and is easy to modify for different types of studies. Additionally performance is widely discussed including possibilities of multithreading and massive parallelism like GPU. Source code will be published in 2016 as it is part of the PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  15. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    Science.gov (United States)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  16. A Mended Fast Marching Method with Direction Constrained%一种改进的方向可控Fast Marching方法

    Institute of Scientific and Technical Information of China (English)

    李时东

    2009-01-01

    由于Fast Marching方法所规划出来的路径比传统的搜索方法所得路径更加光滑,并且不会像其它势场方法一样陷入局部最小.从而在路径规划中获得广泛应用.这种全局最优的路径规划方法严格受规划空间中障碍代价分布影响,路径产生采用对时间距离图的最陡下降法反向跟踪,路径缺乏可控性.通过加入人工力场的方法,对Eikonal方程的代价项进行分解,提出一种改进的代价模型,并利用Gudunov一阶逆风近似实现了一种改进的FMM,实验结果表明,该模型能够改善路径的可控性,对于要求路径局部具有特定方向的应用情景具有良好的适用性.

  17. A fast marching algorithm for the factored eikonal equation

    Science.gov (United States)

    Treister, Eran; Haber, Eldad

    2016-11-01

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. This inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss-Newton.

  18. Endocardial Boundary Detection in Echocardiographic Images with an Improved Fast Marching Method%心超图中心内膜边缘检测改进的快速行进算法

    Institute of Scientific and Technical Information of China (English)

    严加勇; 庄天戈

    2003-01-01

    Objective To study a new computerized automatic method for endocardial boundary estimation and tracking in sequential echocardiographic images. Method Through analyzing the existing problems of the traditional fast marching method, the contour energy conception of the active contour model was introduced to improve the traditional fast marching mathematical model. Result The improved mathematical model was applied to sequential echocardiographic images and the experimental results showed that endocardial boundary can be accurately detected. Conclusion The introduction of contour energy conception enhances the stability and effectiveness while keeping the convergence velocity of the fast marching algorithm.%目的探讨一种对心超图中心脏内膜边缘进行检测的自动化方法.方法根据对传统快速行进算法中存在问题的分析研究,引入活动轮廓线模型中轮廓线能量概念以改进传统快速行进算法的数学模型.结果将改进的快速行进模型应用于心超图像中心脏内膜边缘检测,实验结果表明该方法能够准确地检测、跟踪出心脏内膜边缘. 结论轮廓线能量概念的引入提高了快速行进算法的稳定性和有效性,而且几乎不影响算法的收敛速度.

  19. Fast Distributed Gradient Methods

    CERN Document Server

    Jakovetic, Dusan; Moura, Jose M F

    2011-01-01

    The paper proposes new fast distributed optimization gradient methods and proves convergence to the exact solution at rate O(\\log k/k), much faster than existing distributed optimization (sub)gradient methods with convergence O(1/\\sqrt{k}), while incurring practically no additional communication nor computation cost overhead per iteration. We achieve this for convex (with at least one strongly convex,) coercive, three times differentiable and with Lipschitz continuous first derivative (private) cost functions. Our work recovers for distributed optimization similar convergence rate gains obtained by centralized Nesterov gradient and fast iterative shrinkage-thresholding algorithm (FISTA) methods over ordinary centralized gradient methods. We also present a constant step size distributed fast gradient algorithm for composite non-differentiable costs. A simulation illustrates the effectiveness of our distributed methods.

  20. Video Segmentation Using Fast Marching and Region Growing Algorithms

    Directory of Open Access Journals (Sweden)

    Eftychis Sifakis

    2002-04-01

    Full Text Available The algorithm presented in this paper is comprised of three main stages: (1 classification of the image sequence and, in the case of a moving camera, parametric motion estimation, (2 change detection having as reference a fixed frame, an appropriately selected frame or a displaced frame, and (3 object localization using local colour features. The image sequence classification is based on statistical tests on the frame difference. The change detection module uses a two-label fast marching algorithm. Finally, the object localization uses a region growing algorithm based on the colour similarity. Video object segmentation results are shown using the COST 211 data set.

  1. 基于波前快速推进法的页岩气储层动用预测%Prediction of the Drainage Volume of Shale Gas Reservoir with Fast Marching Method

    Institute of Scientific and Technical Information of China (English)

    滕柏路; 程林松; 黄世军; 贾振; 艾爽

    2016-01-01

    The development of unconventional energy,especially shale gas reservoir,is getting more and more attention;however,prediction of the drainage volume of shale gas reservoir is to be improved. Fast marching method is a fast and efficient method to present the front of the pressure. Taking into account desorption and slippage,the flow regions can be divided with the compound linear flow model by Van Kruysdijk. The Eikonal equation of the matrix and the fracture can be obtained and solved with fast marching method,then drainage volume of the reservoir at different time can be obtained,and the comparison of the condition whether or not considering desorption and the effect of slippage can be seen easily. The result shows that slippage accelerates the increase of drainage volume and desorption slows the increase of drainage volume. The influence of slippage is greater than desorption.%对非常规能源尤其是页岩气藏的开发越来越受到人们的重视,然而,目前对页岩气藏动用情况的预测还有待提高。波前快速推进法是一种可以快速高效地预测波前运移情况的方法,在考虑页岩基质吸附解吸特性,及基质孔隙中气体的滑脱作用影响的前提下,利用Van Kruysdijk提出的多段压裂水平井的复合线性流模型,将储层划分不同的流动区域,并分别建立基质与裂缝的程函方程,基于波前快速推进法求解程函方程,从而达到对多段压裂水平井页岩气储层的动用进行预测的目的。绘制了储层动用情况与时间的关系图,对比了考虑解吸和滑脱与不考虑解吸和滑脱的储层动用情况。结果表明,滑脱效应加快了储层的动用速度对储层动用影响较大,而解吸作用降低了储层的动用速度对储层动用影响较小。

  2. Fast marching over the 2D Gabor magnitude domain for tongue body segmentation

    Science.gov (United States)

    Cui, Zhenchao; Zhang, Hongzhi; Zhang, David; Li, Naimin; Zuo, Wangmeng

    2013-12-01

    Tongue body segmentation is a prerequisite to tongue image analysis and has recently received considerable attention. The existing tongue body segmentation methods usually involve two key steps: edge detection and active contour model (ACM)-based segmentation. However, conventional edge detectors cannot faithfully detect the contour of the tongue body, and the initialization of ACM suffers from the edge discontinuity problem. To address these issues, we proposed a novel tongue body segmentation method, GaborFM, which initializes ACM by performing fast marching over the two-dimensional (2D) Gabor magnitude domain of the tongue images. For the enhancement of the contour of the tongue body, we used the 2D Gabor magnitude-based detector. To cope with the edge discontinuity problem, the fast marching method was utilized to connect the discontinuous contour segments, resulting in a closed and continuous tongue body contour for subsequent ACM-based segmentation. Qualitative and quantitative results showed that GaborFM is superior to the other methods for tongue body segmentation.

  3. Methods of Fast Exponentiation

    Directory of Open Access Journals (Sweden)

    Mohammed A. Maitah

    2010-01-01

    Full Text Available Problem statement: Modular exponentiation constitutes the basis of many well-known and widely used public key cryptosystems. Approach: A fast portable modular exponentiation algorithm considerably enhanced the speed and applicability of these systems, also an efficient implementation of this algorithm was the key to high performance of such system. Results: In this study, two main approaches for solving this problem were proposed. The proposed approaches involved calculations without usage of extra operational memory for saving constants and calculations with usage of preliminary calculated constants. Conclusion/Recommendations: The estimation of complexity of the speedup and effectiveness of proposed approaches for the data were presented.

  4. Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms

    Directory of Open Access Journals (Sweden)

    Didier Auroux

    2011-01-01

    Full Text Available We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm.

  5. FAST FLUX TEST FACILITY PERIODIC TECHNICAL REPORT MARCH, APRIL, MAY, JUNE 1970

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, B.; Cabell, C. P.

    1970-08-01

    This report was prepared by Battelle-Northwest under Contract No. AT (45-1) -1830 for the Atomic Energy Commission, Division of Reactor Development and Technology, to summarize technical progress made in the Fast Flux Test Facility Program during March, April , May and June 1970.

  6. Fast regularized image interpolation method

    Institute of Scientific and Technical Information of China (English)

    Hongchen Liu; Yong Feng; Linjing Li

    2007-01-01

    The regularized image interpolation method is widely used based on the vector interpolation model in which down-sampling matrix has very large dimension and needs large storage consumption and higher computation complexity. In this paper, a fast algorithm for image interpolation based on the tensor product of matrices is presented, which transforms the vector interpolation model to matrix form. The proposed algorithm can extremely reduce the storage requirement and time consumption. The simulation results verify their validity.

  7. Fast neutron imaging device and method

    Science.gov (United States)

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  8. Marche

    Directory of Open Access Journals (Sweden)

    Roberto Gasparini

    2012-11-01

    Full Text Available In Marche region 68% of women (aged 24-64 are screened regularly, meaning every 3 years. The analysis on cross-protective activity exercised by bivalent and quadrivalent vaccines shows that the bivalent vaccine could prevent more pre-cancerous lesions and cases of cervicocarcinoma than quadrivalent, and that the latter could prevent genital warts that are not prevented by bivalent. The major number of cases avoided by the bivalent make it possible to fully offset the cost savings related to warts associated with the quadrivalent vaccine. Furthermore, a cost-effectiveness analysis shows that, considering regional tariffs, the multiple cohort (12-year-old + 25-year-old women vaccination strategy with a 90% coverage could prevent 18 cases of cervicocarcinoma and 8 related deaths more than the vaccination of only 12-year-old girls, and thus proves to be cost-effective (10,700 €/QALY.

  9. PARALLEL IMPLEMENTATIONS OF THE FAST SWEEPING METHOD

    Institute of Scientific and Technical Information of China (English)

    Hongkai Zhao

    2007-01-01

    The fast sweeping method is an efficient iterative method for hyperbolic problems.It combines Gauss-Seidel iterations with alternating sweeping orderings.In this paper several parallel implementations of the fast sweeping method are presented. These parallel algorithms are simple and efficient due to the causality of the underlying partial different equations. Numerical examples are used to verify our algorithms.

  10. A fast level set method for reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K. Hvistendahl; Lie, K.-A.; Risebro, N.H.

    1999-10-01

    We present a level set method for reservoir simulation based on a fractional flow formulation of two-phase, incompressible, immiscible flow in two or three space dimensions. The method uses a fast marching level set approach and is therefore considerable faster than conventional finite difference methods. The level set approach compares favourably with a front tracking method as regards to both efficiency and accuracy but maintains the advantage of being able to handle changing topologies of the front structure. 8 figs., 1 tab., 32 refs.

  11. Fast Qualification Methods for Microelectronic Packages

    NARCIS (Netherlands)

    Ma, X.

    2011-01-01

    This research aims at developing a knowledge based fast qualification method for moisture or thermally induced failure in microelectronic packages. Driven by the market competition and the need for shorter time to market, fast qualification tests are becoming more and more important for the industry

  12. An Image Inpainting Technique Based on the Fast Marching Method

    NARCIS (Netherlands)

    Telea, Alexandru

    2004-01-01

    Digital inpainting provides a means for reconstruction of small damaged portions of an image. Although the inpainting basics are straightforward, most inpainting techniques published in the literature are complex to understand and implement. We present here a new algorithm for digital inpainting

  13. Fast marching methods for the continuous traveling salesman problem

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.; Sethian, J.A.

    2008-12-01

    We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ('cities') in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the Traveling Salesman Problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The order of the heuristic algorithm is at worst case M * N logN, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.

  14. Fast Harmonic Splines and Parameter Choice Methods

    Science.gov (United States)

    Gutting, Martin

    2017-04-01

    Solutions to boundary value problems in geoscience where the boundary is the Earth's surface are constructed in terms of harmonic splines. These are localizing trial functions that allow regional modeling or the improvement of a global model in a part of the Earth's surface. Some cases of the occurring kernels can be equipped with a fast matrix-vector multiplication using the fast multipole method (FMM). The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. The numerical effort of the matrix-vector multiplication becomes linear in reference to the number of points for a prescribed accuracy of the kernel approximation. This fast spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate several methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. However, in order to keep a fast solution algorithm we do no longer have access to the whole matrix or e.g. its singular values whose computation requires a much larger numerical effort. This must be reflected by the parameter choice methods. Therefore, in some cases a further approximation is necessary. The performance of these methods is considered for different types of noise in a large simulation study with applications to gravitational field modeling as well as to boundary value problems.

  15. A pragmatic overview of fast multipole methods

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, J.H.; Baty, R.S.

    1995-12-01

    A number of physics problems can be modeled by a set of N elements which have pair-wise interactions with one another. A direct solution technique requires computational effort which is O(N{sup 2}). Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to these problems requiring a computational effort of only 0 (N lnN) or O (N). In this paper we present an overview of several variations of the fast multipole method along with examples of its use in solving a variety of physical problems.

  16. A FAST CONVERGENT METHOD OF ITERATED REGULARIZATION

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaowei; Wu Chuansheng; Wu Di

    2009-01-01

    This article presents a fast convergent method of iterated regularization based on the idea of Landweber iterated regularization, and a method for a-posteriori choice by the Morozov discrepancy principle and the optimum asymptotic convergence order of the regularized solution is obtained. Numerical test shows that the method of iterated regu-larization can quicken the convergence speed and reduce the calculation burden efficiently.

  17. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    Directory of Open Access Journals (Sweden)

    Trong-Ngoc Le

    2016-01-01

    Full Text Available Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN, which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  18. Fast variation method for elastic strip calculation.

    Science.gov (United States)

    Biryukov, Sergey V

    2002-05-01

    A new, fast, variation method (FVM) for determining an elastic strip response to stresses arbitrarily distributed on the flat side of the strip is proposed. The remaining surface of the strip may have an arbitrary form, and it is free of stresses. The FVM, as well as the well-known finite element method (FEM), starts with the variational principle. However, it does not use the meshing of the strip. A comparison of FVM results with the exact analytical solution in the special case of shear stresses and a rectangular strip demonstrates an excellent agreement.

  19. Fast title extraction method for business documents

    Science.gov (United States)

    Katsuyama, Yutaka; Naoi, Satoshi

    1997-04-01

    Conventional electronic document filing systems are inconvenient because the user must specify the keywords in each document for later searches. To solve this problem, automatic keyword extraction methods using natural language processing and character recognition have been developed. However, these methods are slow, especially for japanese documents. To develop a practical electronic document filing system, we focused on the extraction of keyword areas from a document by image processing. Our fast title extraction method can automatically extract titles as keywords from business documents. All character strings are evaluated for similarity by rating points associated with title similarity. We classified these points as four items: character sitting size, position of character strings, relative position among character strings, and string attribution. Finally, the character string that has the highest rating is selected as the title area. The character recognition process is carried out on the selected area. It is fast because this process must recognize a small number of patterns in the restricted area only, and not throughout the entire document. The mean performance of this method is an accuracy of about 91 percent and a 1.8 sec. processing time for an examination of 100 Japanese business documents.

  20. Fast and accurate methods for phylogenomic analyses

    Directory of Open Access Journals (Sweden)

    Warnow Tandy

    2011-10-01

    Full Text Available Abstract Background Species phylogenies are not estimated directly, but rather through phylogenetic analyses of different gene datasets. However, true gene trees can differ from the true species tree (and hence from one another due to biological processes such as horizontal gene transfer, incomplete lineage sorting, and gene duplication and loss, so that no single gene tree is a reliable estimate of the species tree. Several methods have been developed to estimate species trees from estimated gene trees, differing according to the specific algorithmic technique used and the biological model used to explain differences between species and gene trees. Relatively little is known about the relative performance of these methods. Results We report on a study evaluating several different methods for estimating species trees from sequence datasets, simulating sequence evolution under a complex model including indels (insertions and deletions, substitutions, and incomplete lineage sorting. The most important finding of our study is that some fast and simple methods are nearly as accurate as the most accurate methods, which employ sophisticated statistical methods and are computationally quite intensive. We also observe that methods that explicitly consider errors in the estimated gene trees produce more accurate trees than methods that assume the estimated gene trees are correct. Conclusions Our study shows that highly accurate estimations of species trees are achievable, even when gene trees differ from each other and from the species tree, and that these estimations can be obtained using fairly simple and computationally tractable methods.

  1. Doublet method for very fast autocoding

    Directory of Open Access Journals (Sweden)

    Berman Jules J

    2004-09-01

    Full Text Available Abstract Background Autocoding (or automatic concept indexing occurs when a software program extracts terms contained within text and maps them to a standard list of concepts contained in a nomenclature. The purpose of autocoding is to provide a way of organizing large documents by the concepts represented in the text. Because textual data accumulates rapidly in biomedical institutions, the computational methods used to autocode text must be very fast. The purpose of this paper is to describe the doublet method, a new algorithm for very fast autocoding. Methods An autocoder was written that transforms plain-text into intercalated word doublets (e.g. "The ciliary body produces aqueous humor" becomes "The ciliary, ciliary body, body produces, produces aqueous, aqueous humor". Each doublet is checked against an index of doublets extracted from a standard nomenclature. Matching doublets are assigned a numeric code specific for each doublet found in the nomenclature. Text doublets that do not match the index of doublets extracted from the nomenclature are not part of valid nomenclature terms. Runs of matching doublets from text are concatenated and matched against nomenclature terms (also represented as runs of doublets. Results The doublet autocoder was compared for speed and performance against a previously published phrase autocoder. Both autocoders are Perl scripts, and both autocoders used an identical text (a 170+ Megabyte collection of abstracts collected through a PubMed search and the same nomenclature (neocl.xml, containing over 102,271 unique names of neoplasms. In side-by-side comparison on the same computer, the doublet method autocoder was 8.4 times faster than the phrase autocoder (211 seconds versus 1,776 seconds. The doublet method codes 0.8 Megabytes of text per second on a desktop computer with a 1.6 GHz processor. In addition, the doublet autocoder successfully matched terms that were missed by the phrase autocoder, while the

  2. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  3. Fast Parallel Particle Methods: Angstroms to Gigaparsecs

    Science.gov (United States)

    Warren, Michael

    2006-03-01

    Fast multipole methods have become an ubiquitous tool for the simulation of physical systems with long-range interactions. Since their introduction they have been applied to a vast range of problems. Our own parallel hashed oct-tree code (HOT) has been applied to a number of physical systems with long-range interactions, including gravitational and smoothed particle hydrodynamic interactions in astrophysical systems, fluid flows with vortex-particle methods, electromagnetic scattering and aerodynamics. Several these simulations were recognized with Gordon Bell prizes for significant achievement in parallel processing. We will discuss some recent work which used a series of 1-billion particle dark matter simulations to accurately determine the mass function of galaxy halos. These simulations required over 4x10^18 floating point operations (4 exaflops). Another focus of our current research is extending the HOT framework to biological systems, with the goal of simulating systems using over ten times as many atoms as the current state-of-the-art. This requires addressing several issues with current multipole algorithms, such as spatially-correlated errors and the ability to handle disparate time scales efficiently.

  4. Fast Implicit Methods for Stiff Moving Interfaces

    Science.gov (United States)

    2011-03-16

    y) of the elliptic system (2): multiplying Eq. (2) by S, integrating over Ω and applying Gauss ’ theorem yields 1 2 µ(γ)− ∫ Γ P (γ)S(γ − σ)An(σ)µ(σ...Fast ADI iteration for first-order elliptic systems. Preprint, UC Berke- ley Mathematics Department, 2011. [15] J. Strain. Geometric nonuniform fast

  5. Methods and Instruments for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Cooper, Matthew W.; McCormick, Kathleen R.; Peurrung, Anthony J.; Warren, Glen A.

    2005-05-01

    Pacific Northwest National Laboratory evaluated the performance of a large-area (~0.7 m2) plastic scintillator time-of-flight (TOF) sensor for direct detection of fast neutrons. This type of sensor is a readily area-scalable technology that provides broad-area geometrical coverage at a reasonably low cost. It can yield intrinsic detection efficiencies that compare favorably with moderator-based detection methods. The timing resolution achievable should permit substantially more precise time windowing of return neutron flux than would otherwise be possible with moderated detectors. The energy-deposition threshold imposed on each scintillator contributing to the event-definition trigger in a TOF system can be set to blind the sensor to direct emission from the neutron generator. The primary technical challenge addressed in the project was to understand the capabilities of a neutron TOF sensor in the limit of large scintillator area and small scintillator separation, a size regime in which the neutral particle’s flight path between the two scintillators is not tightly constrained.

  6. A Fast Fractal Image Compression Coding Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fast algorithms for reducing encoding complexity of fractal image coding have recently been an important research topic. Search of the best matched domain block is the most computation intensive part of the fractal encoding process. In this paper, a fast fractal approximation coding scheme implemented on a personal computer based on matching in range block's neighbours is presented. Experimental results show that the proposed algorithm is very simple in implementation, fast in encoding time and high in compression ratio while PSNR is almost the same as compared with Barnsley's fractal block coding .

  7. Performance Benchmarking of Fast Multipole Methods

    KAUST Repository

    Al-Harthi, Noha A.

    2013-06-01

    The current trends in computer architecture are shifting towards smaller byte/flop ratios, while available parallelism is increasing at all levels of granularity – vector length, core count, and MPI process. Intel’s Xeon Phi coprocessor, NVIDIA’s Kepler GPU, and IBM’s BlueGene/Q all have a Byte/flop ratio close to 0.2, which makes it very difficult for most algorithms to extract a high percentage of the theoretical peak flop/s from these architectures. Popular algorithms in scientific computing such as FFT are continuously evolving to keep up with this trend in hardware. In the meantime it is also necessary to invest in novel algorithms that are more suitable for computer architectures of the future. The fast multipole method (FMM) was originally developed as a fast algorithm for ap- proximating the N-body interactions that appear in astrophysics, molecular dynamics, and vortex based fluid dynamics simulations. The FMM possesses have a unique combination of being an efficient O(N) algorithm, while having an operational intensity that is higher than a matrix-matrix multiplication. In fact, the FMM can reduce the requirement of Byte/flop to around 0.01, which means that it will remain compute bound until 2020 even if the cur- rent trend in microprocessors continues. Despite these advantages, there have not been any benchmarks of FMM codes on modern architectures such as Xeon Phi, Kepler, and Blue- Gene/Q. This study aims to provide a comprehensive benchmark of a state of the art FMM code “exaFMM” on the latest architectures, in hopes of providing a useful reference for deciding when the FMM will become useful as the computational engine in a given application code. It may also serve as a warning to certain problem size domains areas where the FMM will exhibit insignificant performance improvements. Such issues depend strongly on the asymptotic constants rather than the asymptotics themselves, and therefore are strongly implementation and hardware

  8. THE FAST FILAMENT ERUPTION LEADING TO THE X-FLARE ON 2014 MARCH 29

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, Lucia; Battaglia, Marina; Krucker, Säm [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Reardon, Kevin [National Solar Observatory, Sacramento Peak, P.O. Box 62, Sunspot, NM 88349 (United States); Dalda, Alberto Sainz [Stanford-Lockheed Institute for Space Research, Stanford University, HEPL, 466 Via Ortega, Stanford, CA 94305 (United States); Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-06-10

    We investigate the sequence of events leading to the solar X1 flare SOL2014-03-29T17:48. Because of the unprecedented joint observations of an X-flare with the ground-based Dunn Solar Telescope and the spacecraft IRIS, Hinode, RHESSI, STEREO, and the Solar Dynamics Observatory, we can sample many solar layers from the photosphere to the corona. A filament eruption was observed above a region of previous flux emergence, which possibly led to a change in magnetic field configuration, causing the X-flare. This was concluded from the timing and location of the hard X-ray emission, which started to increase slightly less than a minute after the filament accelerated. The filament showed Doppler velocities of ∼2–5 km s{sup −1} at chromospheric temperatures for at least one hour before the flare occurred, mostly blueshifts, but also redshifts near its footpoints. Fifteen minutes before the flare, its chromospheric Doppler shifts increased to ∼6–10 km s{sup −1} and plasma heating could be observed before it lifted off with at least 600 km s{sup −1} as seen in IRIS data. Compared to previous studies, this acceleration (∼3–5 km s{sup −2}) is very fast, while the velocities are in the common range for coronal mass ejections. An interesting feature was a low-lying twisted second filament near the erupting filament, which did not seem to participate in the eruption. After the flare ribbons started on each of the second filament’s sides, it seems to have untangled and vanished during the flare. These observations are some of the highest resolution data of an X-class flare to date and reveal some small-scale features yet to be explained.

  9. A Fast Stble Marching Scheme for Calculating Mixed Convection in a Vertical Rotating Annulus

    Institute of Scientific and Technical Information of China (English)

    Chao-MinZhang; Zeng-YuanGuo

    1993-01-01

    An iterative simultanous solution method is developed to efficiently solve the Newton-Raphson linear equation set for velocity in three dimensions,pressure and temperature,The proposed method is demonstrated for several cases of the thermal drive in a vertical rotating annulus,and is shown to be insensitive to dimensionless time step,requiring significantly less computational effort to converge to the desired accuracy than SIMPLEC,even for low Prandtl number fluid flows.

  10. Rotary fast tool servo system and methods

    Science.gov (United States)

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  11. Topology Correction of Segmented Medical Images using a Fast Marching Algorithm

    OpenAIRE

    2007-01-01

    We present here a new method for correcting the topology of objects segmented from medical images. Whereas previous techniques alter a surface obtained from a binary segmentation of the object, our technique can be applied directly to the image intensities of a probabilistic or fuzzy segmentation, thereby propagating the topology for all isosurfaces of the object. From an analysis of topological changes and critical points in implicit surfaces, we derive a topology propagation algorithm that ...

  12. Scalable fast multipole methods for vortex element methods

    KAUST Repository

    Hu, Qi

    2012-11-01

    We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.

  13. Analytical chemistry methods for mixed oxide fuel, March 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of materials used to produce mixed oxide fuel. These materials are ceramic fuel and insulator pellets and the plutonium and uranium oxides and nitrates used to fabricate these pellets.

  14. Analytical chemistry methods for metallic core components: Revision March 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of alloys used to fabricate core components. These alloys are 302, 308, 316, 316-Ti, and 321 stainless steels and 600 and 718 Inconels and they may include other 300-series stainless steels.

  15. A fast level set method for synthetic aperture radar ocean image segmentation.

    Science.gov (United States)

    Huang, Xiaoxia; Huang, Bo; Li, Hongga

    2009-01-01

    Segmentation of high noise imagery like Synthetic Aperture Radar (SAR) images is still one of the most challenging tasks in image processing. While level set, a novel approach based on the analysis of the motion of an interface, can be used to address this challenge, the cell-based iterations may make the process of image segmentation remarkably slow, especially for large-size images. For this reason fast level set algorithms such as narrow band and fast marching have been attempted. Built upon these, this paper presents an improved fast level set method for SAR ocean image segmentation. This competent method is dependent on both the intensity driven speed and curvature flow that result in a stable and smooth boundary. Notably, it is optimized to track moving interfaces for keeping up with the point-wise boundary propagation using a single list and a method of fast up-wind scheme iteration. The list facilitates efficient insertion and deletion of pixels on the propagation front. Meanwhile, the local up-wind scheme is used to update the motion of the curvature front instead of solving partial differential equations. Experiments have been carried out on extraction of surface slick features from ERS-2 SAR images to substantiate the efficacy of the proposed fast level set method.

  16. A parallel fast multipole method for elliptic difference equations

    CERN Document Server

    Liska, Sebastian

    2014-01-01

    A new fast multipole formulation for solving elliptic PDEs on unbounded domains and its parallel implementation are presented. This method formally discretizes the PDE on an infinite Cartesian grid, and then solves the corresponding difference equations. In the analog to solving continuous inhomogeneous differential equations using Green's functions, the proposed method uses the fundamental solution of the discrete operator on an infinite grid, or lattice Green's function. Fast solutions O(N) are achieved by using a kernel-independent interpolation-based fast multipole method. Unlike other fast multipole algorithms, our approach exploits the regularity of the underlying Cartesian grid and the efficiency of FFTs to reduce the computation time. Our parallel implementation allows communications and computations to be overlapped and requires minimal global synchronization. The accuracy, efficiency, and parallel performance of the method are demonstrated through numerical experiments on the discrete 3D Poisson equ...

  17. A Fast, Powerful Method for Detecting Identity by Descent

    National Research Council Canada - National Science Library

    Browning, Sharon R; Browning, Brian L

    2011-01-01

    .... FastIBD can be applied to thousands of samples across genome-wide SNP data and is significantly more powerful for finding short tracts of IBD than existing methods for finding IBD tracts in such data...

  18. Improvement of Neutronics Calculation Methods for Fast Reactors

    OpenAIRE

    Takeda, Toshikazu

    2011-01-01

    To accurately estimate neutronics properties of fast reactors, particularly Japan Sodium-cooled Fast Reactor of1,500 MW electric, calculational methods are being improved in Japan.This paper describes the planning and the ongoing development of the neutronics calculation methods in the fieldof 1) assembly calculations including the calculations of effective cross sections, 2) core calculations and 3) uncertaintyevaluation and uncertainty reduction.

  19. A Fast and Robust Method for Measuring Optical Channel Gain

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob; Villemoes, L.F.

    2000-01-01

    We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions......We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions...

  20. Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes.

    Science.gov (United States)

    Sethian, J A; Vladimirsky, A

    2000-05-23

    The Fast Marching Method is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. The scheme relies on an upwind finite difference approximation to the gradient and a resulting causality relationship that lends itself to a Dijkstra-like programming approach. In this paper, we discuss several extensions to this technique, including higher order versions on unstructured meshes in Rn and on manifolds and connections to more general static Hamilton-Jacobi equations.

  1. FastStats: Births -- Method of Delivery

    Science.gov (United States)

    ... this? Submit What's this? Submit Button NCHS Home Births - Method of Delivery Recommend on Facebook Tweet Share ... of all deliveries by Cesarean: 32.0% Source: Births: Final Data for 2015, table 21 [PDF - 1. ...

  2. A fast construction method for spatial index GBD-tree

    Institute of Scientific and Technical Information of China (English)

    Yukio Negishi; Yutaka Ohsawa; Satoshi Takazawa

    2007-01-01

    This paper proposes a fast initial construction method of the GBD-tree. The GDB tree has proper characteristics for management of large amount of 2 or 3 dimensional data. However, the GBD-tree needs long initial construction time by originally proposed one-by-one insertion method. A fast insertion method has been proposed, but it needs large size of buffer capable to hold index information of all entries. The paper proposes another fast initial construction method. The method requires only limited size of work space (buffer). The experimental results show the initial construction time reduces into a third or a quarter of the one-by-one insertion method. The memory efficiency and retrieval efficiency are also improved than the one-by-one insertion method.

  3. Fast Particle Methods for Multiscale Phenomena Simulations

    Science.gov (United States)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  4. Function Parametrization - a Fast Inverse Mapping Method

    NARCIS (Netherlands)

    van Milligen, B. P.; Cardozo, N. J. L.

    1991-01-01

    Function parametrization (FP) is a method to invert computer models that map physical parameters describing the state of a physical system onto measurements. It find a mapping of the measurements onto the physical parameters that requires little computing time to evaluate. The major advantages of FP

  5. A fast digital image correlation method for deformation measurement

    Science.gov (United States)

    Pan, Bing; Li, Kai

    2011-07-01

    Fast and high-accuracy deformation analysis using digital image correlation (DIC) has been increasingly important and highly demanded in recent years. In literature, the DIC method using the Newton-Rapshon (NR) algorithm has been considered as a gold standard for accurate sub-pixel displacement tracking, as it is insensitive to the relative deformation and rotation of the target subset and thus provides highest sub-pixel registration accuracy and widest applicability. A significant drawback of conventional NR-algorithm-based DIC method, however, is its extremely huge computational expense. In this paper, a fast DIC method is proposed deformation measurement by effectively eliminating the repeating redundant calculations involved in the conventional NR-algorithm-based DIC method. Specifically, a reliability-guided displacement scanning strategy is employed to avoid time-consuming integer-pixel displacement searching for each calculation point, and a pre-computed global interpolation coefficient look-up table is utilized to entirely eliminate repetitive interpolation calculation at sub-pixel locations. With these two approaches, the proposed fast DIC method substantially increases the calculation efficiency of the traditional NR-algorithm-based DIC method. The performance of proposed fast DIC method is carefully tested on real experimental images using various calculation parameters. Results reveal that the computational speed of the present fast DIC is about 120-200 times faster than that of the traditional method, without any loss of its measurement accuracy

  6. Method for ultra-fast boriding

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Sista, Vivekanand; Kahvecioglu, Ozgenur; Eryilmaz, Osman Levent

    2017-01-31

    An article of manufacture and method of forming a borided material. An electrochemical cell is used to process a substrate to deposit a plurality of borided layers on the substrate. The plurality of layers are co-deposited such that a refractory metal boride layer is disposed on a substrate and a rare earth metal boride conforming layer is disposed on the refractory metal boride layer.

  7. A simple and fast method for determining colony forming units

    NARCIS (Netherlands)

    Sieuwerts, S.; Bok, de F.A.M.; Mols, E.; Vos, de W.M.; Hylckama Vlieg, van J.E.T.

    2008-01-01

    Aims: To develop a flexible and fast colony forming unit quantification method that can be operated in a standard microbiology laboratory. Methods and Results: A miniaturized plating method is reported where droplets of bacterial cultures are spotted on agar plates. Subsequently, minicolony spots ar

  8. Hanford environmental analytical methods (methods as of March 1990). Appendix A3-R

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Techniques in use at the Hanford Reservation as of March, 1990 for the analysis of liquids and radioactive effluents are described. Limitations and applications of the techniques are included. This report is Appendix A3-R.

  9. Fast sequential Monte Carlo methods for counting and optimization

    CERN Document Server

    Rubinstein, Reuven Y; Vaisman, Radislav

    2013-01-01

    A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the

  10. Fast New Method for Temporary Chemical Passivation

    Directory of Open Access Journals (Sweden)

    Marek Solčanský

    2012-12-01

    Full Text Available The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution.The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed.

  11. High-order implicit time-marching methods for unsteady fluid flow simulation

    Science.gov (United States)

    Boom, Pieter David

    Unsteady computational fluid dynamics (CFD) is increasingly becoming a critical tool in the development of emerging technologies and modern aircraft. In spite of rapid mathematical and technological advancement, these simulations remain computationally intensive and time consuming. More efficient temporal integration will promote a wider use of unsteady analysis and extend its range of applicability. This thesis presents an investigation of efficient high-order implicit time-marching methods for application in unsteady compressible CFD. A generalisation of time-marching methods based on summation-by-parts (SBP) operators is described which reduces the number of stages required to obtain a prescribed order of accuracy, thus improving their efficiency. The classical accuracy and stability theory is formally extended for these generalised SBP (GSBP) methods, including superconvergence and nonlinear stability. Dual-consistent SBP and GSBP time-marching methods are shown to form a subclass of implicit Runge-Kutta methods, which enables extensions of nonlinear accuracy and stability results. A novel family of fully-implicit GSBP Runge-Kutta schemes based on Gauss quadrature are derived which are both algebraically stable and L-stable with order 2s - 1, where s is the number of stages. In addition, a numerical tool is developed for the construction and optimisation of general linear time-marching methods. The tool is applied to the development of several low-stage-order L-stable diagonally-implicit methods, including a diagonally-implicit GSBP Runge-Kutta scheme. The most notable and efficient method developed is a six-stage fifth-order L-stable stiffly-accurate explicit-first-stage singly-diagonally-implicit Runge-Kutta (ESDIRK5) method with stage order two. The theoretical results developed in this thesis are supported by numerical simulations, and the predicted relative efficiency of the schemes is realised.

  12. Fast Erase Method and Apparatus For Digital Media

    Science.gov (United States)

    Oakely, Ernest C. (Inventor)

    2006-01-01

    A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.

  13. MARCHING CUBES BASED FRONT TRACKING METHOD AND ITS APPLICATION TO SOME INTERFACE INSTABILITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-yi; ZOU Jian-feng; ZHENG Yao; REN An-lu

    2011-01-01

    A front tracking method based on a marching cubes isosurface extractor,which is related filter generating isosurfaces from a structured point set,is provided to achieve sharp resolution for the simulation of non-diffusive interfacial flow.Compared with the traditional topology processing procedure,the current front tracking method is easier to be implemented and presents high performance in terms of computational resources.The numerical tests for 2-D highly-shearing flows and 3-D bubbles merging process are conducted to numerically examine the performance of the current methodology for tracking interfaces between two immiscible fluids.The Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability problems are successfully investigated with the present marching cubes based front tracking method.

  14. A Fast LMMSE Channel Estimation Method for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Zhou Wen

    2009-01-01

    Full Text Available A fast linear minimum mean square error (LMMSE channel estimation method has been proposed for Orthogonal Frequency Division Multiplexing (OFDM systems. In comparison with the conventional LMMSE channel estimation, the proposed channel estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large dimension matrix by using the fast Fourier transform (FFT operation. Therefore, the computational complexity can be reduced significantly. The normalized mean square errors (NMSEs of the proposed method and the conventional LMMSE estimation have been derived. Numerical results show that the NMSE of the proposed method is very close to that of the conventional LMMSE method, which is also verified by computer simulation. In addition, computer simulation shows that the performance of the proposed method is almost the same with that of the conventional LMMSE method in terms of bit error rate (BER.

  15. Gaussian translation operator for Multi-Level Fast Multipole Method

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Hansen, Per Christian; Sorensen, Stig B.

    2014-01-01

    Results using a new translation operator for the Multi-Level Fast Multipole Method are presented. Based on Gaussian beams, the translation operator allows a significant portion of the plane-wave directions to be neglected, resulting in a much faster translation step.......Results using a new translation operator for the Multi-Level Fast Multipole Method are presented. Based on Gaussian beams, the translation operator allows a significant portion of the plane-wave directions to be neglected, resulting in a much faster translation step....

  16. Comparison of Standard and Fast Charging Methods for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2014-01-01

    Full Text Available This paper describes a comparison of standard and fast charging methods used in the field of electric vehicles and also comparison of their efficiency in terms of electrical energy consumption. The comparison was performed on three-phase buck converter, which was designed for EV’s fast charging station. The results were obtained by both mathematical and simulation methods. The laboratory model of entire physical application, which will be further used for simulation results verification, is being built in these days.

  17. A new simple multidomain fast multipole boundary element method

    Science.gov (United States)

    Huang, S.; Liu, Y. J.

    2016-09-01

    A simple multidomain fast multipole boundary element method (BEM) for solving potential problems is presented in this paper, which can be applied to solve a true multidomain problem or a large-scale single domain problem using the domain decomposition technique. In this multidomain BEM, the coefficient matrix is formed simply by assembling the coefficient matrices of each subdomain and the interface conditions between subdomains without eliminating any unknown variables on the interfaces. Compared with other conventional multidomain BEM approaches, this new approach is more efficient with the fast multipole method, regardless how the subdomains are connected. Instead of solving the linear system of equations directly, the entire coefficient matrix is partitioned and decomposed using Schur complement in this new approach. Numerical results show that the new multidomain fast multipole BEM uses fewer iterations in most cases with the iterative equation solver and less CPU time than the traditional fast multipole BEM in solving large-scale BEM models. A large-scale fuel cell model with more than 6 million elements was solved successfully on a cluster within 3 h using the new multidomain fast multipole BEM.

  18. Methods for quantifying uncertainty in fast reactor analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Fischer, P. F.

    2008-04-07

    Liquid-metal-cooled fast reactors in the form of sodium-cooled fast reactors have been successfully built and tested in the U.S. and throughout the world. However, no fast reactor has operated in the U.S. for nearly fourteen years. More importantly, the U.S. has not constructed a fast reactor in nearly 30 years. In addition to reestablishing the necessary industrial infrastructure, the development, testing, and licensing of a new, advanced fast reactor concept will likely require a significant base technology program that will rely more heavily on modeling and simulation than has been done in the past. The ability to quantify uncertainty in modeling and simulations will be an important part of any experimental program and can provide added confidence that established design limits and safety margins are appropriate. In addition, there is an increasing demand from the nuclear industry for best-estimate analysis methods to provide confidence bounds along with their results. The ability to quantify uncertainty will be an important component of modeling that is used to support design, testing, and experimental programs. Three avenues of UQ investigation are proposed. Two relatively new approaches are described which can be directly coupled to simulation codes currently being developed under the Advanced Simulation and Modeling program within the Reactor Campaign. A third approach, based on robust Monte Carlo methods, can be used in conjunction with existing reactor analysis codes as a means of verification and validation of the more detailed approaches.

  19. Fast and sensitive method for detecting volatile species in liquids

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard; Pedersen, Thomas; Hansen, Ole

    2015-01-01

    to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system...

  20. Multilevel Fast Multipole Method for Higher Order Discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik;

    2014-01-01

    The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower or...

  1. A fast alternating projection method for complex frequency estimation

    CERN Document Server

    Andersson, Fredrik; Ivert, Per-Anders

    2011-01-01

    The problem of approximating a sampled function using sums of a fixed number of complex exponentials is considered. We use alternating projections between fixed rank matrices and Hankel matrices to obtain such an approximation. Convergence, convergence rates and error estimates for this technique are proven, and fast algorithms are developed. We compare the numerical results obtain with the MUSIC and ESPRIT methods.

  2. Improved Multilevel Fast Multipole Method for Higher-Order discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion b...

  3. Fast and stable numerical method for neuronal modelling

    Science.gov (United States)

    Hashemi, Soheil; Abdolali, Ali

    2016-11-01

    Excitable cell modelling is of a prime interest in predicting and targeting neural activity. Two main limits in solving related equations are speed and stability of numerical method. Since there is a tradeoff between accuracy and speed, most previously presented methods for solving partial differential equations (PDE) are focused on one side. More speed means more accurate simulations and therefore better device designing. By considering the variables in finite differenced equation in proper time and calculating the unknowns in the specific sequence, a fast, stable and accurate method is introduced in this paper for solving neural partial differential equations. Propagation of action potential in giant axon is studied by proposed method and traditional methods. Speed, consistency and stability of the methods are compared and discussed. The proposed method is as fast as forward methods and as stable as backward methods. Forward methods are known as fastest methods and backward methods are stable in any circumstances. Complex structures can be simulated by proposed method due to speed and stability of the method.

  4. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wáng, Yì

    2012-03-14

    A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A new fast direct solver for the boundary element method

    Science.gov (United States)

    Huang, S.; Liu, Y. J.

    2017-04-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  6. A fast direct numerical simulation method for characterising hydraulic roughness

    CERN Document Server

    Chung, Daniel; MacDonald, Michael; Hutchins, Nicholas; Ooi, Andrew

    2015-01-01

    We describe a fast direct numerical simulation (DNS) method that promises to directly characterise the hydraulic roughness of any given rough surface, from the hydraulically smooth to the fully rough regime. The method circumvents the unfavourable computational cost associated with simulating high-Reynolds-number flows by employing minimal-span channels (Jimenez & Moin 1991). Proof-of-concept simulations demonstrate that flows in minimal-span channels are sufficient for capturing the downward velocity shift, that is, the Hama roughness function, predicted by flows in full-span channels. We consider two sets of simulations, first with modelled roughness imposed by body forces, and second with explicit roughness described by roughness-conforming grids. Owing to the minimal cost, we are able to conduct DNSs with increasing roughness Reynolds numbers while maintaining a fixed blockage ratio, as is typical in full-scale applications. The present method promises a practical, fast and accurate tool for character...

  7. A FOURTH ORDER DERIVATIVE-FREE OPERATOR MARCHING METHOD FOR HELMHOLTZ EQUATION IN WAVEGUIDES

    Institute of Scientific and Technical Information of China (English)

    Ya Yan Lu

    2007-01-01

    A fourth-order operator marching method for the Helmholtz equation in a waveguide is developed in this paper. It is derived from a new fourth-order exponential integrator for linear evolution equations. The method improves the second-order accuracy associated with the widely used step-wise coupled mode method where the waveguide is approximated by segments that are uniform in the propagation direction. The Helmholtz equation is solved using a one-way reformulation based on the Dirichlet-to-Neumann map. An alternative version closely related to the coupled mode method is also given. Numerical results clearly indicate that the method is more accurate than the coupled mode method while the required computing effort is nearly the same.

  8. Fast nonlinear regression method for CT brain perfusion analysis.

    Science.gov (United States)

    Bennink, Edwin; Oosterbroek, Jaap; Kudo, Kohsuke; Viergever, Max A; Velthuis, Birgitta K; de Jong, Hugo W A M

    2016-04-01

    Although computed tomography (CT) perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several shortcomings. We propose a fast nonlinear regression method with a box-shaped model (boxNLR) that has important advantages over the current state-of-the-art method, block-circulant singular value decomposition (bSVD). These advantages include improved robustness to attenuation curve truncation, extensibility, and unified estimation of perfusion parameters. The method is compared with bSVD and with a commercial SVD-based method. The three methods were quantitatively evaluated by means of a digital perfusion phantom, described by Kudo et al. and qualitatively with the aid of 50 clinical CTP scans. All three methods yielded high Pearson correlation coefficients ([Formula: see text]) with the ground truth in the phantom. The boxNLR perfusion maps of the clinical scans showed higher correlation with bSVD than the perfusion maps from the commercial method. Furthermore, it was shown that boxNLR estimates are robust to noise, truncation, and tracer delay. The proposed method provides a fast and reliable way of estimating perfusion parameters from CTP scans. This suggests it could be a viable alternative to current commercial and academic methods.

  9. Gradient Gene Algorithm: a Fast Optimization Method to MST Problem

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The extension of Minimum Spanning Tree(MST) problem is an NP hardproblem which does not exit a polynomial time algorithm. In this paper, a fast optimizat ion method on MST problem--the Gradient Gene Algorithm is introduced. Compar ed with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems.

  10. Differential correction method applied to measurement of the FAST reflector

    Science.gov (United States)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%-80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  11. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    Science.gov (United States)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  12. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman

    2012-06-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.

  13. A Novel Fast Method for Point-sampled Model Simplification

    Directory of Open Access Journals (Sweden)

    Cao Zhi

    2016-01-01

    Full Text Available A novel fast simplification method for point-sampled statue model is proposed. Simplifying method for 3d model reconstruction is a hot topic in the field of 3D surface construction. But it is difficult as point cloud of many 3d models is very large, so its running time becomes very long. In this paper, a two-stage simplifying method is proposed. Firstly, a feature-preserved non-uniform simplification method for cloud points is presented, which simplifies the data set to remove the redundancy while keeping down the features of the model. Secondly, an affinity clustering simplifying method is used to classify the point cloud into a sharp point or a simple point. The advantage of Affinity Propagation clustering is passing messages among data points and fast speed of processing. Together with the re-sampling, it can dramatically reduce the duration of the process while keep a lower memory cost. Both theoretical analysis and experimental results show that after the simplification, the performance of the proposed method is efficient as well as the details of the surface are preserved well.

  14. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    KAUST Repository

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  15. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser

    2014-01-01

    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

  16. A method for fast feature extraction in threshold scans

    Science.gov (United States)

    Mertens, Marius C.; Ritman, James

    2014-01-01

    We present a fast, analytical method to calculate the threshold and noise parameters from a threshold scan. This is usually done by fitting a response function to the data which is computationally very intensive. The runtime can be minimized by a hardware implementation, e.g. using an FPGA, which in turn requires to minimize the mathematical complexity of the algorithm in order to fit into the available resources on the FPGA. The systematic errors of the method are analyzed and reasonable choices of the parameters for use in practice are given.

  17. Fast methods for static Hamilton-Jacobi Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirsky, Alexander Boris

    2001-05-01

    The authors develop a family of fast methods approximating the solution to a wide class of static Hamilton-Jacobi partial differential equations. These partial differential equations are considered in the context of control-theoretic and front-propagation problems. In general, to produce a numerical solution to such a problem, one has to solve a large system of coupled non-linear discretized equations. The techniques use partial information about the characteristic directions to de-couple the system. Previously known fast methods, available for isotropic problems, are discussed in detail. They introduce a family of new Ordered Upwinding Methods (OUM) for general (anisotropic) problems and prove convergence to the viscosity solution of the corresponding Hamilton-Jacobi partial differential equation. The hybrid methods introduced here are based on the analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed and compared to that of several other numerical approaches to these problems. Computational experiments are performed using test problems from control theory, computational geometry and seismology.

  18. Fast methods for static Hamilton-Jacobi Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirsky, Alexander Boris [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    The authors develop a family of fast methods approximating the solution to a wide class of static Hamilton-Jacobi partial differential equations. These partial differential equations are considered in the context of control-theoretic and front-propagation problems. In general, to produce a numerical solution to such a problem, one has to solve a large system of coupled non-linear discretized equations. The techniques use partial information about the characteristic directions to de-couple the system. Previously known fast methods, available for isotropic problems, are discussed in detail. They introduce a family of new Ordered Upwinding Methods (OUM) for general (anisotropic) problems and prove convergence to the viscosity solution of the corresponding Hamilton-Jacobi partial differential equation. The hybrid methods introduced here are based on the analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed and compared to that of several other numerical approaches to these problems. Computational experiments are performed using test problems from control theory, computational geometry and seismology.

  19. Fast and accurate method for computing ATC with voltage stability

    CERN Document Server

    Eidiani, M; Vahedi, E

    2002-01-01

    Order 889 mandated each control area to computer ATC (Available Transfer Capability) and post them on a communication system called the Open Access Same-time Information System (OASIS). Approaches of computing ATC can be divided into the following groups: Static and Dynamic methods. This paper presents a fast method for ATC calculations with voltage stability termination criteria. We use estimation of the determinant of Jacobian matrix for assessment of voltage stability. This method is compared with these methods: different between energy in SEP (Stable Equilibrium Point) and UEP (Unstable Equilibrium Point), ts index of Dr.Chiang and continuation power flow. The idea are demonstrated on 2, 3, 7 (CIGRE), 10, 30 (IEEE) and 145 bus (Iowa State University).

  20. [Fast Implementation Method of Protein Spots Detection Based on CUDA].

    Science.gov (United States)

    Xiong, Bangshu; Ye, Yijia; Ou, Qiaofeng; Zhang, Haodong

    2016-02-01

    In order to improve the efficiency of protein spots detection, a fast detection method based on CUDA was proposed. Firstly, the parallel algorithms of the three most time-consuming parts in the protein spots detection algorithm: image preprocessing, coarse protein point detection and overlapping point segmentation were studied. Then, according to single instruction multiple threads executive model of CUDA to adopted data space strategy of separating two-dimensional (2D) images into blocks, various optimizing measures such as shared memory and 2D texture memory are adopted in this study. The results show that the operative efficiency of this method is obviously improved compared to CPU calculation. As the image size increased, this method makes more improvement in efficiency, such as for the image with the size of 2,048 x 2,048, the method of CPU needs 52,641 ms, but the GPU needs only 4,384 ms.

  1. Magnetostatic solution by hybrid technique and fast multipole method

    Energy Technology Data Exchange (ETDEWEB)

    Gruosso, G. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, I-20133 Milan (Italy); Repetto, M. [Politecnico di Torino, Dipartimento di Ingegneria Elettrica, C.so Duca Abruzzi 24, I-10129 Turin (Italy)], E-mail: maurizio.repetto@polito.it

    2008-02-01

    The use of fast multipole method (FMM) in the solution of a magnetostatic problem is presented. The magnetostatic solution strategy is based on finite formulation of electromagnetic field coupled with an integral formulation for the definition of boundary conditions on the external surface of the unstructured mesh. Due to the hypothesis of micromagnetic problem, the resulting matrix structure is sparse and integral terms are only on the RHS. Magnetic surface charge is used as source of these integral terms and is localized on the faces between tetrahedra. The computation of the integral terms can be performed by analytical formulas for the near field contributes and by FMM for far field ones.

  2. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  3. Fast Registration Method for Point Clouds Using the Image Information

    Directory of Open Access Journals (Sweden)

    WANG Ruiyan

    2016-01-01

    Full Text Available On the existing laser scanners, there usually is a coaxial camera, which could capture images in the scanning site. For the laser scanners with a coaxial camera, we propose a fast registration method using the image information. Unlike the traditional registration methods that computing the rotation and translation simultaneously, our method calculates them individually. The rotation transformation between the point clouds is obtained by the knowledge of the vision geometry and the image information, while their translation is acquired by our improved ICP algorithm. In the improved ICP algorithm, only the translation vector is updated iteratively, whose input is the point clouds that removing the rotation transformation. Experimental results show that the rotation matrix obtained by the images has a high accuracy. In addition, compared with the traditional ICP algorithm, our algorithm converges faster and is easier to fall into the global optimum.

  4. Pipelining the Fast Multipole Method over a Runtime System

    CERN Document Server

    Agullo, Emmanuel; Coulaud, Olivier; Darve, Eric; Messner, Matthias; Toru, Takahashi

    2012-01-01

    Fast Multipole Methods (FMM) are a fundamental operation for the simulation of many physical problems. The high performance design of such methods usually requires to carefully tune the algorithm for both the targeted physics and the hardware. In this paper, we propose a new approach that achieves high performance across architectures. Our method consists of expressing the FMM algorithm as a task flow and employing a state-of-the-art runtime system, StarPU, in order to process the tasks on the different processing units. We carefully design the task flow, the mathematical operators, their Central Processing Unit (CPU) and Graphics Processing Unit (GPU) implementations, as well as scheduling schemes. We compute potentials and forces of 200 million particles in 48.7 seconds on a homogeneous 160 cores SGI Altix UV 100 and of 38 million particles in 13.34 seconds on a heterogeneous 12 cores Intel Nehalem processor enhanced with 3 Nvidia M2090 Fermi GPUs.

  5. Fast, simple, and good pan-sharpening method

    Science.gov (United States)

    Palubinskas, Gintautas

    2013-01-01

    Pan-sharpening of optical remote sensing multispectral imagery aims to include spatial information from a high-resolution image (high frequencies) into a low-resolution image (low frequencies) while preserving spectral properties of a low-resolution image. From a signal processing view, a general fusion filtering framework (GFF) can be formulated, which is very well suitable for a fusion of multiresolution and multisensor data such as optical-optical and optical-radar imagery. To reduce computation time, a simple and fast variant of GFF-high-pass filtering method (HPFM)-is proposed, which performs filtering in signal domain and thus avoids time-consuming FFT computations. A new joint quality measure based on the combination of two spectral and spatial measures was proposed for quality assessment by a proper normalization of the ranges of variables. Quality and speed of six pan-sharpening methods-component substitution (CS), Gram-Schmidt (GS) sharpening, Ehlers fusion, Amélioration de la Résolution Spatiale par Injection de Structures, GFF, and HPFM-were evaluated for WorldView-2 satellite remote sensing data. Experiments showed that the HPFM method outperforms all the fusion methods used in this study, even its parentage method GFF. Moreover, it is more than four times faster than GFF method and competitive with CS and GS methods in speed.

  6. An implicit time-marching method for studying unsteady flow with massive separation

    Science.gov (United States)

    Osswald, G. A.; Ghia, K. N.; Chia, U.

    1985-01-01

    A fully implicit time-marching method is developed such that all spatial derivatives are approximated using central differences, but no use is made of any artificial dissipation. The numerical method solves the discretized equations using Alternating Direction Implicit-Block Gaussian Elimination technique. The method is implemented in the unsteady analysis, which solves the incompressible Navier-Stokes equations in terms of vorticity and stream function in generalized orthogonal coordinates. A clustered conformal C-grid is employed, and every effort is made to resolve the various length scales in the flow problem. The metric discontinuity at the branch-cut is treated appropriately using analytic continuation. Introduction of the BGE reordering permits implicit treatment of the branch cut in the numerical method. The vorticity singularity at the cusped trailing edge is also appropriately treated. This accurate and efficient implicit method is used to study flow at Re = 1000, past a 12-percent thick symmetric Joukowski airfoil at high angle of attack 30 and 53 deg.

  7. Fast calculation method of complex space targets' optical cross section.

    Science.gov (United States)

    Han, Yi; Sun, Huayan; Li, Yingchun; Guo, Huichao

    2013-06-10

    This paper utilizes the optical cross section (OCS) to characterize the optical scattering characteristics of a space target under the conditions of Sun lighting. We derive the mathematical expression of OCS according to the radiometric theory, and put forward a fast visualization calculation method of complex space targets' OCS based on an OpenGL and 3D model. Through the OCS simulation of Lambert bodies (cylinder and sphere), the computational accuracy and speed of the algorithm were verified. By using this method, the relative error for OCS will not exceed 0.1%, and it only takes 0.05 s to complete a complex calculation. Additionally, we calculated the OCS of three actual satellites with bidirectional reflectance distribution function model parameters in visible bands, and results indicate that it is easy to distinguish the three targets by comparing their OCS curves. This work is helpful for the identification and classification of unresolved space target based on photometric characteristics.

  8. Error Control Strategies for Numerical Integrations in Fast Collocation Methods

    Institute of Scientific and Technical Information of China (English)

    陈仲英; 巫斌; 许跃生

    2005-01-01

    We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.

  9. Fast methods for spatially correlated multilevel functional data

    KAUST Repository

    Staicu, A.-M.

    2010-01-19

    We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online.

  10. Efficient DPCA SAR imaging with fast iterative spectrum reconstruction method

    Institute of Scientific and Technical Information of China (English)

    FANG Jian; ZENG JinShan; XU ZongBen; ZHAO Yao

    2012-01-01

    The displaced phase center antenna (DPCA) technique is an effective strategy to achieve wide-swath synthetic aperture radar (SAR) imaging with high azimuth resolution.However,traditionally,it requires strict limitation of the pulse repetition frequency (PRF) to avoid non-uniform sampling.Otherwise,any deviation could bring serious ambiguity if the data are directly processed using a matched filter.To break this limitation,a recently proposed spectrum reconstruction method is capable of recovering the true spectrum from the nonuniform samples. However,the performance is sensitive to the selection of the PRF.Sparse regularization based imaging may provide a way to overcome this sensitivity. The existing time-domain method,however,requires a large-scale observation matrix to be built,which brings a high computational cost.In this paper,we propose a frequency domain method,called the iterative spectrum reconstruction method,through integration of the sparse regularization technique with spectrum analysis of the DPCA signal.By approximately expressing the observation in the frequency domain,which is realized via a series of decoupled linear operations,the method performs SAR imaging which is then not directly based on the observation matrix,which reduces the computational cost from O(N2) to O(NlogN) (where N is the number of range cells),and is therefore more efficient than the time domain method. The sparse regularization scheme,realized via a fast thresholding iteration,has been adopted in this method,which brings the robustness of the imaging process to the PRF selection.We provide a series of simulations and ground based experiments to demonstrate the high efficiency and robustness of the method.The simulations show that the new method is almost as fast as the traditional mono-channel algorithm,and works well almost independently of the PRF selection.Consequently,the suggested method can be accepted as a practical and efficient wide-swath SAR imaging technique.

  11. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  12. The use of the spectral method within the fast adaptive composite grid method

    Energy Technology Data Exchange (ETDEWEB)

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  13. Improved Fast Fourier Transform Based Method for Code Accuracy Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Wook; Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The capability of the proposed method is discussed. In this study, the limitations of the FFTBM were analyzed. The FFTBM produces quantitatively different results due to its frequency dependence. Because the problem is intensified by including a lot of high frequency components, a new method using a reduced cut-off frequency was proposed. The results of the proposed method show that the shortcomings of FFTBM are considerably relieved. Among them, the fast Fourier transform based method (FFTBM) introduced in 1990 has been widely used to evaluate a code uncertainty or accuracy. Prosek et al., (2008) identified its drawbacks, the so-called 'edge effect'. To overcome the problems, an improved FFTBM by signal mirroring (FFTBM-SM) was proposed and it has been used up to now. In spite of the improvement, the FFTBM-SM yielded different accuracy depending on the frequency components of a parameter, such as pressure, temperature and mass flow rate. Therefore, it is necessary to reduce the frequency dependence of the FFTBMs. In this study, the deficiencies of the present FFTBMs are analyzed and a new method is proposed to mitigate its frequency dependence.

  14. A fast RCS accuracy assessment method for passive radar calibrators

    Science.gov (United States)

    Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI

    2016-10-01

    In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.

  15. Methods for fast, reliable growth of Sn whiskers

    Science.gov (United States)

    Bozack, M. J.; Snipes, S. K.; Flowers, G. N.

    2016-10-01

    We report several methods to reliably grow dense fields of high-aspect ratio tin whiskers for research purposes in a period of days to weeks. The techniques offer marked improvements over previous means to grow whiskers, which have struggled against the highly variable incubation period of tin whiskers and slow growth rate. Control of the film stress is the key to fast-growing whiskers, owing to the fact that whisker incubation and growth are fundamentally a stress-relief phenomenon. The ability to grow high-density fields of whiskers (103-106/cm2) in a reasonable period of time (days, weeks) has accelerated progress in whisker growth and aided in development of whisker mitigation strategies.

  16. Fast MR Spectroscopic Imaging Technologies and Data Reconstruction Methods

    Institute of Scientific and Technical Information of China (English)

    HUANGMin; LUSong-tao; LINJia-rui; ZHANYing-jian

    2004-01-01

    MRSI plays a more and more important role in clinical application. In this paper, we compare several fast MRSI technologies and data reconstruction methods. For the conventional phase encoding MRSI, the data reconstruction using FFT is simple. But the data acquisition is very time consuming and thus prohibitive in clinical settings. Up to now, the MRSI technologies based on echo-planar, spiral trajectories and sensitivity encoding are the fastest in data acquisition, but their data reconstruction is complex. EPSI reconstruction uses shift of odd and even echoes. Spiral SI uses gridding FFT. SENSE-SI, a new approach to reducing the acquisition time, uses the distinct spatial sensitivities of the individual coil elements to recover the missing encoding information. These improvements in data acquisition and image reconstruction provide a potential value of metabolic imaging as a clinical tool.

  17. Fast Second Degree Total Variation Method for Image Compressive Sensing.

    Science.gov (United States)

    Liu, Pengfei; Xiao, Liang; Zhang, Jun

    2015-01-01

    This paper presents a computationally efficient algorithm for image compressive sensing reconstruction using a second degree total variation (HDTV2) regularization. Firstly, a preferably equivalent formulation of the HDTV2 functional is derived, which can be formulated as a weighted L1-L2 mixed norm of second degree image derivatives under the spectral decomposition framework. Secondly, using the equivalent formulation of HDTV2, we introduce an efficient forward-backward splitting (FBS) scheme to solve the HDTV2-based image reconstruction model. Furthermore, from the averaged non-expansive operator point of view, we make a detailed analysis on the convergence of the proposed FBS algorithm. Experiments on medical images demonstrate that the proposed method outperforms several fast algorithms of the TV and HDTV2 reconstruction models in terms of peak signal to noise ratio (PSNR), structural similarity index (SSIM) and convergence speed.

  18. Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures; January 2012 - March 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jayaweera, T.; Haeri, H.

    2013-04-01

    Under the Uniform Methods Project, DOE is developing a framework and a set of protocols for determining the energy savings from specific energy efficiency measures and programs. The protocols provide a straightforward method for evaluating gross energy savings for common residential and commercial measures offered in ratepayer-funded initiatives in the United States. They represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. This document deals with savings from the following measures: commercial and industrial lighting, commercial and industrial lighting controls, small commercial and residential unitary and split system HVAC cooling equipment, residential furnaces and boilers, residential lighting, refrigerator recycling, whole-building retrofit using billing analysis, metering, peak demand and time-differentiated energy savings, sample design, survey design and implementation, and assessing persistence and other evaluation issues.

  19. Hanford environmental analytical methods: Methods as of March 1990. Volume 3, Appendix A2-I

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    This paper from the analytical laboratories at Hanford describes the method used to measure pH of single-shell tank core samples. Sludge or solid samples are mixed with deionized water. The pH electrode used combines both a sensor and reference electrode in one unit. The meter amplifies the input signal from the electrode and displays the pH visually.

  20. Near-field hazard assessment of March 11, 2011 Japan Tsunami sources inferred from different methods

    Science.gov (United States)

    Wei, Y.; Titov, V.V.; Newman, A.; Hayes, G.; Tang, L.; Chamberlin, C.

    2011-01-01

    Tsunami source is the origin of the subsequent transoceanic water waves, and thus the most critical component in modern tsunami forecast methodology. Although impractical to be quantified directly, a tsunami source can be estimated by different methods based on a variety of measurements provided by deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some in real time, some in post real-time. Here we assess these different sources of the devastating March 11, 2011 Japan tsunami by model-data comparison for generation, propagation and inundation in the near field of Japan. This study provides a comparative study to further understand the advantages and shortcomings of different methods that may be potentially used in real-time warning and forecast of tsunami hazards, especially in the near field. The model study also highlights the critical role of deep-ocean tsunami measurements for high-quality tsunami forecast, and its combination with land GPS measurements may lead to better understanding of both the earthquake mechanisms and tsunami generation process. ?? 2011 MTS.

  1. A fast Chebyshev method for simulating flexible-wing propulsion

    Science.gov (United States)

    Moore, M. Nicholas J.

    2017-09-01

    We develop a highly efficient numerical method to simulate small-amplitude flapping propulsion by a flexible wing in a nearly inviscid fluid. We allow the wing's elastic modulus and mass density to vary arbitrarily, with an eye towards optimizing these distributions for propulsive performance. The method to determine the wing kinematics is based on Chebyshev collocation of the 1D beam equation as coupled to the surrounding 2D fluid flow. Through small-amplitude analysis of the Euler equations (with trailing-edge vortex shedding), the complete hydrodynamics can be represented by a nonlocal operator that acts on the 1D wing kinematics. A class of semi-analytical solutions permits fast evaluation of this operator with O (Nlog ⁡ N) operations, where N is the number of collocation points on the wing. This is in contrast to the minimum O (N2) cost of a direct 2D fluid solver. The coupled wing-fluid problem is thus recast as a PDE with nonlocal operator, which we solve using a preconditioned iterative method. These techniques yield a solver of near-optimal complexity, O (Nlog ⁡ N) , allowing one to rapidly search the infinite-dimensional parameter space of all possible material distributions and even perform optimization over this space.

  2. Fast method for dynamic thresholding in volume holographic memories

    Science.gov (United States)

    Porter, Michael S.; Mitkas, Pericles A.

    1998-11-01

    It is essential for parallel optical memory interfaces to incorporate processing that dynamically differentiates between databit values. These thresholding points will vary as a result of system noise -- due to contrast fluctuations, variations in data page composition, reference beam misalignment, etc. To maintain reasonable data integrity it is necessary to select the threshold close to its optimal level. In this paper, a neural network (NN) approach is proposed as a fast method of determining the threshold to meet the required transfer rate. The multi-layered perceptron network can be incorporated as part of a smart photodetector array (SPA). Other methods have suggested performing the operation by means of histogram or by use of statistical information. These approaches fail in that they unnecessarily switch to a 1-D paradigm. In this serial domain, global thresholding is pointless since sequence detection could be applied. The discussed approach is a parallel solution with less overhead than multi-rail encoding. As part of this method, a small set of values are designated as threshold determination data bits; these are interleaved with the information data bits and are used as inputs to the NN. The approach has been tested using both simulated data as well as data obtained from a volume holographic memory system. Results show convergence of the training and an ability to generalize upon untrained data for binary and multi-level gray scale datapage images. Methodologies are discussed for improving the performance by a proper training set selection.

  3. Fast alternating projection methods for constrained tomographic reconstruction.

    Science.gov (United States)

    Liu, Li; Han, Yongxin; Jin, Mingwu

    2017-01-01

    The alternating projection algorithms are easy to implement and effective for large-scale complex optimization problems, such as constrained reconstruction of X-ray computed tomography (CT). A typical method is to use projection onto convex sets (POCS) for data fidelity, nonnegative constraints combined with total variation (TV) minimization (so called TV-POCS) for sparse-view CT reconstruction. However, this type of method relies on empirically selected parameters for satisfactory reconstruction and is generally slow and lack of convergence analysis. In this work, we use a convex feasibility set approach to address the problems associated with TV-POCS and propose a framework using full sequential alternating projections or POCS (FS-POCS) to find the solution in the intersection of convex constraints of bounded TV function, bounded data fidelity error and non-negativity. The rationale behind FS-POCS is that the mathematically optimal solution of the constrained objective function may not be the physically optimal solution. The breakdown of constrained reconstruction into an intersection of several feasible sets can lead to faster convergence and better quantification of reconstruction parameters in a physical meaningful way than that in an empirical way of trial-and-error. In addition, for large-scale optimization problems, first order methods are usually used. Not only is the condition for convergence of gradient-based methods derived, but also a primal-dual hybrid gradient (PDHG) method is used for fast convergence of bounded TV. The newly proposed FS-POCS is evaluated and compared with TV-POCS and another convex feasibility projection method (CPTV) using both digital phantom and pseudo-real CT data to show its superior performance on reconstruction speed, image quality and quantification.

  4. Fast integral methods for integrated optical systems simulations: a review

    Science.gov (United States)

    Kleemann, Bernd H.

    2015-09-01

    -functional profiles, very deep ones, very large ones compared to wavelength, or simple smooth profiles. This integral method with either trigonometric or spline collocation, iterative solver with O(N2) complexity, named IESMP, was significantly improved by an efficient mesh refinement, matrix preconditioning, Ewald summation method, and an exponentially convergent quadrature in 2006 by G. Schmidt and A. Rathsfeld from Weierstrass-Institute (WIAS) Berlin. The so-called modified integral method (MIM) is a modification of the IEM of D. Maystre and has been introduced by L. Goray in 1995. It has been improved for weak convergence problems in 2001 and it was the only commercial available integral method for a long time, known as PCGRATE. All referenced integral methods so far are for in-plane diffraction only, no conical diffraction was possible. The first integral method for gratings in conical mounting was developed and proven under very weak conditions by G. Schmidt (WIAS) in 2010. It works for separated interfaces and for inclusions as well as for interpenetrating interfaces and for a large number of thin and thick layers in the same stable way. This very fast method has then been implemented for parallel processing under Unix and Windows operating systems. This work gives an overview over the most important BIMs for grating diffraction. It starts by presenting the historical evolution of the methods, highlights their advantages and differences, and gives insight into new approaches and their achievements. It addresses future open challenges at the end.

  5. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  6. An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An asynchronous and parallel time-marching method for three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) simulation is used for large-scale solar wind simulation. It uses different local time steps in the corona and the heliosphere according to the local Courant-Friedrichs-Levy (CFL) conditions. The solar wind background with observed solar photospheric magnetic field as input is first presented. The simulation time for the background solar wind by using the asynchronous method is <1/6 of that by using the normal synchronous time-marching method with the same computation precision. Then, we choose the coronal mass ejection (CME) event of 13 November, 2003 as a test case. The time-dependent variations of the pressure and the velocity configured from a CME model at the inner boundary are applied to generate transient structures in order to study the dynamical interaction of a CME with the background solar wind flow between 1 and 230 Rs. This time-marching method is very effective in terms of computation time for large-scale 3D time-dependent numerical MHD problem. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, provides a relatively satisfactory comparison with the ACE spacecraft obser- vations at L1 point.

  7. Modeling the Performance of Fast Mulipole Method on HPC platforms

    KAUST Repository

    Ibeid, Huda

    2012-04-06

    The current trend in high performance computing is pushing towards exascale computing. To achieve this exascale performance, future systems will have between 100 million and 1 billion cores assuming gigahertz cores. Currently, there are many efforts studying the hardware and software bottlenecks for building an exascale system. It is important to understand and meet these bottlenecks in order to attain 10 PFLOPS performance. On applications side, there is an urgent need to model application performance and to understand what changes need to be made to ensure continued scalability at this scale. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle based methods. Nowadays, FMM is more than an N-body solver, recent trends in HPC have been to use FMMs in unconventional application areas. FMM is likely to be a main player in exascale due to its hierarchical nature and the techniques used to access the data via a tree structure which allow many operations to happen simultaneously at each level of the hierarchy. In this thesis , we discuss the challenges for FMM on current parallel computers and future exasclae architecture. Furthermore, we develop a novel performance model for FMM. Our ultimate aim of this thesis is to ensure the scalability of FMM on the future exascale machines.

  8. Fast multipole method applied to Lagrangian simulations of vortical flows

    Science.gov (United States)

    Ricciardi, Túlio R.; Wolf, William R.; Bimbato, Alex M.

    2017-10-01

    Lagrangian simulations of unsteady vortical flows are accelerated by the multi-level fast multipole method, FMM. The combination of the FMM algorithm with a discrete vortex method, DVM, is discussed for free domain and periodic problems with focus on implementation details to reduce numerical dissipation and avoid spurious solutions in unsteady inviscid flows. An assessment of the FMM-DVM accuracy is presented through a comparison with the direct calculation of the Biot-Savart law for the simulation of the temporal evolution of an aircraft wake in the Trefftz plane. The role of several parameters such as time step restriction, truncation of the FMM series expansion, number of particles in the wake discretization and machine precision is investigated and we show how to avoid spurious instabilities. The FMM-DVM is also applied to compute the evolution of a temporal shear layer with periodic boundary conditions. A novel approach is proposed to achieve accurate solutions in the periodic FMM. This approach avoids a spurious precession of the periodic shear layer and solutions are shown to converge to the direct Biot-Savart calculation using a cotangent function.

  9. a Novel and Fast Corner Detection Method for SAR Imagery

    Science.gov (United States)

    Jiao, N.; Kang, W.; Xiang, Y.; You, H.

    2017-09-01

    Corners play an important role on image processing, while it is difficult to detect reliable and repeatable corners in SAR images due to the complex property of SAR sensors. In this paper, we propose a fast and novel corner detection method for SAR imagery. First, a local processing window is constructed for each point. We use the local mean of a 3 x 3 mask to represent a single point, which is weighted by a Gaussian template. Then the candidate point is compared with 16 surrounding points in the processing window. Considering the multiplicative property of speckle noise, the similarity measure between the center point and the surrounding points is calculated by the ratio of their local means. If there exist more than M continuous points are different from the center point, then the candidate point is labelled as a corner point. Finally, a selection strategy is implemented by ranking the corner score and employing the non-maxima suppression method. Extreme situations such as isolated bright points are also removed. Experimental results on both simulated and real-world SAR images show that the proposed detector has a high repeatability and a low localization error, compared with other state-of-the-art detectors.

  10. Use of viber app: A fast, easy and cost effective method of communication in neurosurgery

    Directory of Open Access Journals (Sweden)

    Amit Thapa

    2013-01-01

    Full Text Available Objective: Neurosurgeons often have to rely on judgments of junior staffs to decide on patients whom they cannot attend immediately. Viber is a free to use application for image transfer on Internet. We evaluated the use of viber in neurosurgical scenario, to show it is cheap, fast, accessible, reliable and feasible. Materials and Methods: We conducted a prospective study from March 2013 to July 2013. Residents were taught to take sharp pictures and upload them immediately using viber on Internet. Primary endpoints were discordance between opinion of residents and consultants on viber images and subsequent actual image evaluation and time delay in decision-making. Discordance was considered significant if it changed management decision. Results: During the study period, 120 (mean age: 42 years, 58% males patients were enrolled. Wi-Fi is freely available in the institute and thus no costs were involved. Decision could be made on images received on viber at an average of 20 min. There was discordance in 56.7% cases between residents′ reports and images on viber, which was significant in 88.2% cases. However in 5% cases decision changed after actual images were reviewed. Of all imaging modalities, computed tomography angiographic images were associated with statistically significant discordance (P <0.05. Conclusion: This study suggests that the use of viber app in neurosurgery can be an easy fast reliable and almost free mode of communicating images enabling a quick decision. However this cost-effective method should be used with caution particularly with imaging modalities, which require processing and review on console.

  11. "Stand by Me": A Mixed Methods Study of a Collegiate Marching Band Members' Intragroup Beliefs throughout a Performance Season

    Science.gov (United States)

    Matthews, Wendy K.

    2017-01-01

    The purpose of this mixed methods study was to investigate intragroup beliefs regarding participation in a National Collegiate Athletic Association (NCAA) Division II marching band throughout the university's American football season. Fifty-three undergraduates from an urban midwestern university elected one of two options: (1) focus group only or…

  12. A method for fast automated microscope image stitching.

    Science.gov (United States)

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Slow and fast narrow spectra aurora E region echoes during the March 17, 2015 storm at mid latitudes. Multi-static, multi-frequency radar observations

    Science.gov (United States)

    Chau, Jorge; St-Maurice, Jean-Pierre

    2016-07-01

    Coherent E region echoes were observed at midlatitudes during the March 17, 2015 storm. The observations came from multi-static, multi-frequency, wide-field of view radars operating at 32.55 and 36.2 MHz in northern Germany. Each of the three receiver stations used, two in monostatic and one in bistatic modes, allow interferometry. These radars systems are devoted primarily to the measurement of mesospheric winds from specular meteor echoes. However during this storm, the strongest of the current solar cycle, strong Radar Aurora echoes were observed during the day for more than four hours. Here we present the main features observed, with a specific emphasis on echoes presenting narrow spectra with slower (around 180 m/s) and faster (as fast as 1600 m/s) Doppler velocities, than nominal typical ion-acoustic velocity expected to be between 400 and 800 m/s. We find that in both types of echoes the range vs. time slopes are between 800 and 1400 m/s. They agree rather well with the Doppler velocity for the narrow fast types but do not agree at all in the narrow slow spectral case. In both instances, the echoes are organized in localized horizontal structures with a range extent typically between 50 and 80 km. The fast-narrow structures tend to occur at higher altitudes than the well-known Farley-Buneman echoes, while the slow-narrow structures occur at lower altitudes (lower than 95 km). Both echo types come from regions with relatively small flow angles. Moreover the altitude of all echoes went down after 16:15 UT with the small-narrow echoes acquiring even smaller Doppler velocities. In large part thanks to the echo localization made feasible by interferometry, these new features are shedding some new important perspective on our understanding of auroral E-region radar echoes, particularly when it comes to spectra classified in the past as "Type III" and "Type IV" echoes.

  14. NESVM: a Fast Gradient Method for Support Vector Machines

    CERN Document Server

    Zhou, Tianyi; Wu, Xindong

    2010-01-01

    Support vector machines (SVMs) are invaluable tools for many practical applications in artificial intelligence, e.g., classification and event recognition. However, popular SVM solvers are not sufficiently efficient for applications with a great deal of samples as well as a large number of features. In this paper, thus, we present NESVM, a fast gradient SVM solver that can optimize various SVM models, e.g., classical SVM, linear programming SVM and least square SVM. Compared against SVM-Perf \\cite{SVM_Perf}\\cite{PerfML} (its convergence rate in solving the dual SVM is upper bounded by $\\mathcal O(1/\\sqrt{k})$, wherein $k$ is the number of iterations.) and Pegasos \\cite{Pegasos} (online SVM that converges at rate $\\mathcal O(1/k)$ for the primal SVM), NESVM achieves the optimal convergence rate at $\\mathcal O(1/k^{2})$ and a linear time complexity. In particular, NESVM smoothes the non-differentiable hinge loss and $\\ell_1$-norm in the primal SVM. Then the optimal gradient method without any line search is ado...

  15. A task parallel implementation of fast multipole methods

    KAUST Repository

    Taura, Kenjiro

    2012-11-01

    This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM, experiences have almost exclusively been limited to formulation based on flat homogeneous parallel loops. FMM in fact contains operations that cannot be readily expressed in such conventional but restrictive models. We show that task parallelism, or parallel recursions in particular, allows us to parallelize all operations of FMM naturally and scalably. Moreover it allows us to parallelize a \\'\\'mutual interaction\\'\\' for force/potential evaluation, which is roughly twice as efficient as a more conventional, unidirectional force/potential evaluation. The net result is an open source FMM that is clearly among the fastest single node implementations, including those on GPUs; with a million particles on a 32 cores Sandy Bridge 2.20GHz node, it completes a single time step including tree construction and force/potential evaluation in 65 milliseconds. The study clearly showcases both programmability and performance benefits of flexible parallel constructs over more monolithic parallel loops. © 2012 IEEE.

  16. Data-driven execution of fast multipole methods

    KAUST Repository

    Ltaief, Hatem

    2013-09-17

    Fast multipole methods (FMMs) have O (N) complexity, are compute bound, and require very little synchronization, which makes them a favorable algorithm on next-generation supercomputers. Their most common application is to accelerate N-body problems, but they can also be used to solve boundary integral equations. When the particle distribution is irregular and the tree structure is adaptive, load balancing becomes a non-trivial question. A common strategy for load balancing FMMs is to use the work load from the previous step as weights to statically repartition the next step. The authors discuss in the paper another approach based on data-driven execution to efficiently tackle this challenging load balancing problem. The core idea consists of breaking the most time-consuming stages of the FMMs into smaller tasks. The algorithm can then be represented as a directed acyclic graph where nodes represent tasks and edges represent dependencies among them. The execution of the algorithm is performed by asynchronously scheduling the tasks using the queueing and runtime for kernels runtime environment, in a way such that data dependencies are not violated for numerical correctness purposes. This asynchronous scheduling results in an out-of-order execution. The performance results of the data-driven FMM execution outperform the previous strategy and show linear speedup on a quad-socket quad-core Intel Xeon system.Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  17. A fast method for particle picking in cryo-electron micrographs based on fast R-CNN

    Science.gov (United States)

    Xiao, Yifan; Yang, Guangwen

    2017-06-01

    We propose a fast method to automatically pick protein particles in cryo-EM micrographs, which is now completed manually in practice. Our method is based on Fast R-CNN, with sliding window as the regions proposal solution. To reduce the false positive detections, we set a single class for the major contaminant ice, and pick out all the ice particles in the whole datasets. Tests on the recently-published cryo-EM data of three proteins have demonstrated that our approach can automatically accomplish the human-level particle picking task, and we successfully reduce the test time from 1.5 minutes of previous deep learning method to 2 seconds without any recall or precision losses. Our program is available under the MIT License at https://github.com/xiao1fan/FastParticlePicker.

  18. Hanford Environmental Analytical Methods (methods as of March 1990). Volume 2, Appendix A1-O and appendix A1-I

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Techniques in use at the Hanford Reservation as of March, 1990 for the analysis of liquids, organic wastes, soils, and sediments, are described. Limitations and applications of the techniques are included.

  19. Characterization methods for an accelerator based fast-neutron facility

    Science.gov (United States)

    Franklyn, C.; Daniels, G. C.

    2012-02-01

    A fast neutron facility provides a number of complexities in both detection and shielding, the latter arising not only due to uncertainty in the behaviour of the scattered radiation (neutron and gamma-rays) from a fast neutron source, but also on shielding requirements that have to take into account internal and external factors, such as dose limitations, space availability for implementing bulky shielding and secondary interactions of the radiation with materials. This has possible influence on experimental measurements with a low signal to noise ratio. This paper reports on some of the investigations performed at a RFQ accelerator facility generating > 1011 neutrons per second with energies up to 14 MeV, which are used to perform fast neutron radiography studies. Areas highlighted are the neutron cross section libraries, where important data needs to be reviewed or updated.

  20. An Iterative Method for the Approximation of Fibers in Slow-Fast Systems

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Brøns, Morten; Starke, Jens

    2014-01-01

    . The method is demonstrated on the Michaelis--Menten--Henri model and the Lindemann mechanism. The latter example also serves to demonstrate the method on a slow-fast system in nonstandard slow-fast form. Finally, we extend the method further so that it also approximates the curvature of the fibers....

  1. A fast and efficient method for device level layout analysis

    Science.gov (United States)

    Dong, YaoQi; Zou, Elaine; Pang, Jenny; Huang, Lucas; Yang, Legender; Zhang, Chunlei; Du, Chunshan; Hu, Xinyi; Wan, Qijian

    2017-03-01

    There is an increasing demand for device level layout analysis, especially as technology advances. The analysis is to study standard cells by extracting and classifying critical dimension parameters. There are couples of parameters to extract, like channel width, length, gate to active distance, and active to adjacent active distance, etc. for 14nm technology, there are some other parameters that are cared about. On the one hand, these parameters are very important for studying standard cell structures and spice model development with the goal of improving standard cell manufacturing yield and optimizing circuit performance; on the other hand, a full chip device statistics analysis can provide useful information to diagnose the yield issue. Device analysis is essential for standard cell customization and enhancements and manufacturability failure diagnosis. Traditional parasitic parameters extraction tool like Calibre xRC is powerful but it is not sufficient for this device level layout analysis application as engineers would like to review, classify and filter out the data more easily. This paper presents a fast and efficient method based on Calibre equation-based DRC (eqDRC). Equation-based DRC extends the traditional DRC technology to provide a flexible programmable modeling engine which allows the end user to define grouped multi-dimensional feature measurements using flexible mathematical expressions. This paper demonstrates how such an engine and its programming language can be used to implement critical device parameter extraction. The device parameters are extracted and stored in a DFM database which can be processed by Calibre YieldServer. YieldServer is data processing software that lets engineers query, manipulate, modify, and create data in a DFM database. These parameters, known as properties in eqDRC language, can be annotated back to the layout for easily review. Calibre DesignRev can create a HTML formatted report of the results displayed in Calibre

  2. Geodynamic simulations using the fast multipole boundary element method

    Science.gov (United States)

    Drombosky, Tyler W.

    Interaction between viscous fluids models two important phenomena in geophysics: (i) the evolution of partially molten rocks, and (ii) the dynamics of Ultralow-Velocity Zones. Previous attempts to numerically model these behaviors have been plagued either by poor resolution at the fluid interfaces or high computational costs. We employ the Fast Multipole Boundary Element Method, which tracks the evolution of the fluid interfaces explicitly and is scalable to large problems, to model these systems. The microstructure of partially molten rocks strongly influences the macroscopic physical properties. The fractional area of intergranular contact, contiguity, is a key parameter that controls the elastic strength of the grain network in the partially molten aggregate. We study the influence of matrix deformation on the contiguity of an aggregate by carrying out pure shear and simple shear deformations of an aggregate. We observe that the differential shortening, the normalized difference between the major and minor axes of grains is inversely related to the ratio between the principal components of the contiguity tensor. From the numerical results, we calculate the seismic anisotropy resulting from melt redistribution during pure and simple shear deformation. During deformation, the melt is expelled from tubules along three grain corners to films along grain edges. The initially isotropic fractional area of intergranular contact, contiguity, becomes anisotropic due to deformation. Consequently, the component of contiguity evaluated on the plane parallel to the axis of maximum compressive stress decreases. We demonstrate that the observed global shear wave anisotropy and shear wave speed reduction of the Lithosphere-Asthenosphere Boundary are best explained by 0.1 vol% partial melt distributed in horizontal films created by deformation. We use our microsimulation in conjunction with a large scale mantle deep Earth simulation to gain insight into the formation of

  3. Computational Neutronics Methods and Transmutation Performance Analyses for Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    R. Ferrer; M. Asgari; S. Bays; B. Forget

    2007-03-01

    The once-through fuel cycle strategy in the United States for the past six decades has resulted in an accumulation of Light Water Reactor (LWR) Spent Nuclear Fuel (SNF). This SNF contains considerable amounts of transuranic (TRU) elements that limit the volumetric capacity of the current planned repository strategy. A possible way of maximizing the volumetric utilization of the repository is to separate the TRU from the LWR SNF through a process such as UREX+1a, and convert it into fuel for a fast-spectrum Advanced Burner Reactor (ABR). The key advantage in this scenario is the assumption that recycling of TRU in the ABR (through pyroprocessing or some other approach), along with a low capture-to-fission probability in the fast reactor’s high-energy neutron spectrum, can effectively decrease the decay heat and toxicity of the waste being sent to the repository. The decay heat and toxicity reduction can thus minimize the need for multiple repositories. This report summarizes the work performed by the fuel cycle analysis group at the Idaho National Laboratory (INL) to establish the specific technical capability for performing fast reactor fuel cycle analysis and its application to a high-priority ABR concept. The high-priority ABR conceptual design selected is a metallic-fueled, 1000 MWth SuperPRISM (S-PRISM)-based ABR with a conversion ratio of 0.5. Results from the analysis showed excellent agreement with reference values. The independent model was subsequently used to study the effects of excluding curium from the transuranic (TRU) external feed coming from the LWR SNF and recycling the curium produced by the fast reactor itself through pyroprocessing. Current studies to be published this year focus on analyzing the effects of different separation strategies as well as heterogeneous TRU target systems.

  4. A fast collocation method for a variable-coefficient nonlocal diffusion model

    Science.gov (United States)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  5. Simple and fast method for step size determination in computations of signal propagation through nonlinear fibres

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    2001-01-01

    Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method.......Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method....

  6. A Capture-gated Fast Neutron Detection Method

    CERN Document Server

    Liu, Yi; Tai, Yang; Zhang, Zhi

    2016-01-01

    To address the problem of the shortage of neutron detectors used in radiation portal monitors (RPMs), caused by the 3He supply crisis, research on a cadmium-based capture-gated fast neutron detector is presented in this paper. The detector is composed of many 1 cm * 1 cm * 20 cm plastic scintillator cuboids covered by 0.1 mm thick film of cadmium. The detector uses cadmium to absorb thermal neutrons and produce capture gamma-rays to indicate the detection of neutrons, and uses plastic scintillator to moderate neutrons and register gamma-rays. This design removes the volume competing relationship in traditional 3He counter-based fast neutron detectors, which hinders enhancement of the neutron detection efficiency. Detection efficiency of 21.66 +- 1.22% has been achieved with a 40.4 cm * 40.4 cm * 20 cm overall detector volume. This detector can measure both neutrons and gamma-rays simultaneously. A small detector (20.2 cm * 20.2 cm * 20 cm) demonstrated a 3.3 % false alarm rate for a 252Cf source with a neutro...

  7. Method for using fast fluidized bed dry bottom coal gasification

    Science.gov (United States)

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  8. Ontwikkeling van een FAST-LC methode voor een aantal nitrofuranen in ei

    NARCIS (Netherlands)

    Beek, W.M.J.; Aerts, M.M.L.

    1986-01-01

    Doel van dit onderzoek was: Het bepalen en/of screenen van de belangrijkste nitrofuranen in ei met behulp van FAST-LC op een meetniveau van 10 ppb. Er is een FAST-LC methode voor nitrofurantoine, nitrofurazon, furazolidon en furaltadon in ei ontwikkeld. Evenals bij vlees en melk worden door toepassi

  9. Three Dimensional Segmentation of Intravascular Ultrasound Image Sequence Based on Fast Marching%基于快速推进法的血管内超声图像序列的三维分割

    Institute of Scientific and Technical Information of China (English)

    杨宇

    2011-01-01

    目的 血管内超声(intravascular ultrasound,IVUS)是近年来临床诊断血管病变的一项新技术.对IVUS图像进行分割,提取出图像中血管壁的内膜和中-外膜轮廓,是IVUS图像序列定量分析和三维重建的重要步骤.方法 本文提出一种基于快速推进法的IVUS图像序列三维并行分割方法.在完成对原始图像的滤波去噪、抑制导管伪影等预处理后,获取IVUS序列纵向视图,并从中提取出血管壁的内膜和中 -外膜轮廓,然后将该轮廓映射到每帧IVUS横向视图中,得到各IVUS帧中血管壁的内膜和中-外膜轮廓,最后采用快速推进法对初始轮廓进行演化变形,最终提取出目标轮廓.结果 对临床IVUS图像数据进行实验,与逐帧处理的串行分割方法相比,本文方法明显提高了处理效率,克服了传统串行处理方法运算效率低的缺点.结论 该方法对血管疾病的临床诊治具有重要意义.%Objective Intravascular ultrasound (IV US) is used in clinical diagnosis of vascular disease as a new technology in recent years. The detection of vascular wall from IV US image to get the intima contour and the media - adventitia contour of vessel wall is an important step in quantitative analysis and three -dimensional reconstruction of IVUS image sequence. Methods We proposed a three dimensional parallel segmentation of IVUS image sequence based on fast marching method. After the pretreatments of original images, such as filtering, smoothing and suppression of ring - down artifacts, IVUS longitudinal cut was obtained and its detected vessel wall contours were mapped into each cross - sectional slice to obtain initial vessel wall contours in each IVUS frame. Finally, with the fast marching algorithm, initial contours deformed until stopping at the actual contours. Results The data of the experiment on clinical IV US image showed that this method greatly improved the efficiency and overcame the shortcomings of the traditional

  10. A fast and accurate method for echocardiography strain rate imaging

    Science.gov (United States)

    Tavakoli, Vahid; Sahba, Nima; Hajebi, Nima; Nambakhsh, Mohammad Saleh

    2009-02-01

    Recently Strain and strain rate imaging have proved their superiority with respect to classical motion estimation methods in myocardial evaluation as a novel technique for quantitative analysis of myocardial function. Here in this paper, we propose a novel strain rate imaging algorithm using a new optical flow technique which is more rapid and accurate than the previous correlation-based methods. The new method presumes a spatiotemporal constancy of intensity and Magnitude of the image. Moreover the method makes use of the spline moment in a multiresolution approach. Moreover cardiac central point is obtained using a combination of center of mass and endocardial tracking. It is proved that the proposed method helps overcome the intensity variations of ultrasound texture while preserving the ability of motion estimation technique for different motions and orientations. Evaluation is performed on simulated, phantom (a contractile rubber balloon) and real sequences and proves that this technique is more accurate and faster than the previous methods.

  11. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  12. Fast methods for screening of trichothecenes in fungal cultures using gas chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Thrane, Ulf

    2001-01-01

    The paper presents a fast method for trichothecene profiling and chemotaxonomic studies in species of Fusarium, Stachybotrys, Trichoderma and Memnoniella. Micro scale extracted crude Fusarium extracts were derivatised using pentafluoropropionic anhydride and analysed by gas chromatography...

  13. Fast and efficient solution methods for ozone chemistry

    NARCIS (Netherlands)

    Loon, M. van

    1995-01-01

    Two special-purpose solvers for chemical kinetics problems, a QSSA method and TWOSTEP, together with the state-of-the-art stiff solver VODE, provided with sparse matrix routines, are considered for application in an atmospheric model. Of all three methods a short description is given. A comparison i

  14. Fast and efficient solution methods for ozone chemistry

    NARCIS (Netherlands)

    M. van Loon

    1995-01-01

    textabstractTwo special-purpose solvers for chemical kinetics problems, a QSSA method and TWOSTEP, together with the state-of-the-art stiff solver VODE, provided with sparse matrix routines, are considered for application in an atmospheric model. Of all three methods a short description is given. A

  15. Fast Multilevel Methods for Solving Ill-posed Problems

    Institute of Scientific and Technical Information of China (English)

    陈仲英; 宋丽红; 马富明

    2005-01-01

    Many industrial and engineering applications require numerically solving ill-posed problems. Regularization methods are employed to find approximate solutions of these problems. The choice of regularization parameters by numerical algorithms is one of the most important issues for the success of regularization methods. When we use some discrepancy principles to determine the regularization parameter,

  16. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  17. A fast template matching method for LED chip Localization

    Directory of Open Access Journals (Sweden)

    Zhong Fuqiang

    2015-01-01

    Full Text Available Efficiency determines the profits of the semiconductor producers. So the producers spare no effort to enhance the efficiency of every procedure. The purpose of the paper is to present a method to shorten the time to locate the LED chips on wafer. The method consists of 3 steps. Firstly, image segmentation and blob analyzation are used to predict the positions of potential chips. Then predict the orientations of potential chips based on their dominant orientations. Finally, according to the positions and orientations predicted above, locate the chips precisely based on gradient orientation features. Experiments show that the algorithm is faster than the traditional method we choose to locate the LED chips. Besides, even the orientations of the chips on wafer are of big deviation to the orientation of the template, the efficiency of this method won't be affected.

  18. Histological image segmentation using fast mean shift clustering method

    OpenAIRE

    Wu, Geming; Zhao, Xinyan; Luo, Shuqian; Shi, Hongli

    2015-01-01

    Background Colour image segmentation is fundamental and critical for quantitative histological image analysis. The complexity of the microstructure and the approach to make histological images results in variable staining and illumination variations. And ultra-high resolution of histological images makes it is hard for image segmentation methods to achieve high-quality segmentation results and low computation cost at the same time. Methods Mean Shift clustering approach is employed for histol...

  19. A fast method for morphological analysis of laser drilling holes

    OpenAIRE

    Schneider, Matthieu; Berthe, Laurent; Muller, Maryse; Fabbro, Rémy

    2010-01-01

    International audience; This paper presents an original method for analyzing laser drilled holes. The so-called Direct Observation of Drilled hOle (DODO) method is introduced and its applications. The hole characterization that's been made is compared with x-ray radiography and cross-section analysis. Direct Observation of Drilled hole provides instantaneously surface state, geometric shape, as well as recast layer structure, without additional operation. Since no mounting resin is used to em...

  20. Comparison and Realization of Fast Acquisition Method for GPS Signal under High Dynamic

    Directory of Open Access Journals (Sweden)

    Zeng Chan

    2017-01-01

    Full Text Available In order to solve the problem of fast acquisition for GPS signal under high dynamic, the paper add window in traditional Partial Matched Filter (PMF plus Fast Fourier Transform (FFT for fast acquisition with the purpose of reducing the scalloping loss and improving the acquisition performance. And comparing the parallel code phase acquisition based on FFT with the new acquisition method based on the improved PMF+FFT. The high dynamic digital intermediate frequency signal is generated based on high dynamic trail. For the quicker acquisition speed, a method of fast blind search combining pseudo code correlation is used in acquisition. The results of simulation based on Matlab show that the new acquisition method can achieve the performance of 100g dynamics.

  1. A fast and reproducible method to quantify magnetic nanoparticle biodistribution.

    Science.gov (United States)

    Maurizi, Lionel; Sakulkhu, Usawadee; Gramoun, Azza; Vallee, Jean-Paul; Hofmann, Heinrich

    2014-03-07

    The quantification of nanoparticles, particularly superparamagnetic iron oxide nanoparticles (SPIONs), both in vitro and in vivo has become highly important in recent years. Some methods, such as induced coupled plasma (ICP) spectroscopy and UV-visible chemical titration using Prussian Blue (PB), already exist however they consist of the titration of the whole iron content. These standard methods need sample preparations leading to their destruction and long measurement time. In this study, we used magnetic susceptibility measurements (MSM) to titrate the concentration and biodistribution of magnetic particles in the organs of rats. The advantages of the MSM SPION quantification technique are presented and compared to widely used methods of iron oxide titration such as ICP and PB UV-visible titration. We have demonstrated that MSM is a simpler, faster (1 second per measurement), more reproducible and highly sensitive technique for SPION detection with minimal detection around 2 μgFe mL(-1) without being influenced by neither the SPION coating nor their surrounding environment. Moreover, MSM is a more robust method as it is not affected by endogenous iron facilitating the distinction of SPIONs (iron present as nanoparticles) from background iron in tissues. This advantage allows the decrease of control samples needed in biological studies. In conclusion, we have demonstrated that MSM is a standard method that can be easily setup to determine the biodistribution of SPIONs regardless of their environment.

  2. A fast flexible docking method using an incremental construction algorithm.

    Science.gov (United States)

    Rarey, M; Kramer, B; Lengauer, T; Klebe, G

    1996-08-23

    We present an automatic method for docking organic ligands into protein binding sites. The method can be used in the design process of specific protein ligands. It combines an appropriate model of the physico-chemical properties of the docked molecules with efficient methods for sampling the conformational space of the ligand. If the ligand is flexible, it can adopt a large variety of different conformations. Each such minimum in conformational space presents a potential candidate for the conformation of the ligand in the complexed state. Our docking method samples the conformation space of the ligand on the basis of a discrete model and uses a tree-search technique for placing the ligand incrementally into the active site. For placing the first fragment of the ligand into the protein, we use hashing techniques adapted from computer vision. The incremental construction algorithm is based on a greedy strategy combined with efficient methods for overlap detection and for the search of new interactions. We present results on 19 complexes of which the binding geometry has been crystallographically determined. All considered ligands are docked in at most three minutes on a current workstation. The experimentally observed binding mode of the ligand is reproduced with 0.5 to 1.2 A rms deviation. It is almost always found among the highest-ranking conformations computed.

  3. Fast LCMV-based Methods for Fundamental Frequency Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Glentis, George-Othon; Christensen, Mads Græsbøll

    2013-01-01

    Recently, optimal linearly constrained minimum variance (LCMV) filtering methods have been applied to fundamental frequency estimation. Such estimators often yield preferable performance but suffer from being computationally cumbersome as the resulting cost functions are multimodal with narrow...... as such either the classic time domain averaging covariance matrix estimator, or, if aiming for an increased spectral resolution, the covariance matrix resulting from the application of the recent iterative adaptive approach (IAA). The proposed exact implementations reduce the required computational complexity...... be efficiently updated when new observations become available. The resulting time-recursive updating can reduce the computational complexity even further. The experimental results show that the performances of the proposed methods are comparable or better than that of other competing methods in terms of spectral...

  4. Fast 3-D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method

    Science.gov (United States)

    Ren, Zhengyong; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi

    2017-01-01

    A novel fast and accurate algorithm is developed for large-scale 3-D gravity and magnetic modeling problems. An unstructured grid discretization is used to approximate sources with arbitrary mass and magnetization distributions. A novel adaptive multilevel fast multipole (AMFM) method is developed to reduce the modeling time. An observation octree is constructed on a set of arbitrarily distributed observation sites, while a source octree is constructed on a source tetrahedral grid. A novel characteristic is the independence between the observation octree and the source octree, which simplifies the implementation of different survey configurations such as airborne and ground surveys. Two synthetic models, a cubic model and a half-space model with mountain-valley topography, are tested. As compared to analytical solutions of gravity and magnetic signals, excellent agreements of the solutions verify the accuracy of our AMFM algorithm. Finally, our AMFM method is used to calculate the terrain effect on an airborne gravity data set for a realistic topography model represented by a triangular surface retrieved from a digital elevation model. Using 16 threads, more than 5800 billion interactions between 1,002,001 observation points and 5,839,830 tetrahedral elements are computed in 453.6 s. A traditional first-order Gaussian quadrature approach requires 3.77 days. Hence, our new AMFM algorithm not only can quickly compute the gravity and magnetic signals for complicated problems but also can substantially accelerate the solution of 3-D inversion problems.

  5. Fast Numerical Methods for Stochastic Partial Differential Equations

    Science.gov (United States)

    2016-04-15

    is fundamentally different and more powerful than existing methods. To the best of our knowledge , our proposed approach represents a first attempt to...alleviating the “ curse of dimensionality” problem for moderately high dimensional problems. To elaborate the basic idea of our proposed algorithm, we first

  6. Optimal design method for fast carry-skip adders

    Science.gov (United States)

    Lee, Songjun; Swartzlander, Earl E., Jr.

    2001-11-01

    A carry-skip adder is faster than a ripple carry adder and it has a simple structure. To maximize the speed it is necessary to optimize the width of the blocks that comprise the carry skip adder. This paper presents a simple algorithm to select the size of each block. Assuming that each logic gate has a unit delay, the algorithm achieves slightly faster designs for 64 and 128 bit adders than previous methods developed by Guyot, et al. and Kantabutra.

  7. [Innovations in cardiology. We are too fast with new methods].

    Science.gov (United States)

    Diegeler, A

    2016-03-01

    Cardiology is rapidly developing on many levels. New treatment methods are introduced at ever decreasing intervals. Against the background of economization of other areas in medicine, dangers are lurking here for patients if safety, usefulness and sustainability of the treatment methods cannot be sufficiently proven. The German Federal Ministry of Health (Bundesministerium für Gesundheit, BMG) aims to adjust the regulatory framework for the approval of new medical products to the legal requirements of the European Union. With the establishment of the Institute for Quality Assessment and Transparency in Health Care (Institut für Qualitätssicherung und Transparenz im Gesundheitswesen, IQTIG) more precise quality controls should be carried out. Implantation registers will be soon implemented and the routinely performed quality control of different interventions will be coordinated across different healthcare sectors in order to achieve a better understanding of long-term results. Medicine in general and the safety of patients in particular, ultimately benefit from more stringent controls, neutrality and transparency in the assessment of new methods.

  8. Kernel Density Estimation, Kernel Methods, and Fast Learning in Large Data Sets.

    Science.gov (United States)

    Wang, Shitong; Wang, Jun; Chung, Fu-lai

    2014-01-01

    Kernel methods such as the standard support vector machine and support vector regression trainings take O(N(3)) time and O(N(2)) space complexities in their naïve implementations, where N is the training set size. It is thus computationally infeasible in applying them to large data sets, and a replacement of the naive method for finding the quadratic programming (QP) solutions is highly desirable. By observing that many kernel methods can be linked up with kernel density estimate (KDE) which can be efficiently implemented by some approximation techniques, a new learning method called fast KDE (FastKDE) is proposed to scale up kernel methods. It is based on establishing a connection between KDE and the QP problems formulated for kernel methods using an entropy-based integrated-squared-error criterion. As a result, FastKDE approximation methods can be applied to solve these QP problems. In this paper, the latest advance in fast data reduction via KDE is exploited. With just a simple sampling strategy, the resulted FastKDE method can be used to scale up various kernel methods with a theoretical guarantee that their performance does not degrade a lot. It has a time complexity of O(m(3)) where m is the number of the data points sampled from the training set. Experiments on different benchmarking data sets demonstrate that the proposed method has comparable performance with the state-of-art method and it is effective for a wide range of kernel methods to achieve fast learning in large data sets.

  9. A New Numerical Method for Fast Solution of Partial Integro-Differential Equations

    OpenAIRE

    Dourbal, Pavel; Pekker, Mikhail

    2016-01-01

    A new method of numerical solution for partial differential equations is proposed. The method is based on a fast matrix multiplication algorithm. Two-dimensional Poison equation is used for comparison of the proposed method with conventional numerical methods. It was shown that the new method allows for linear growth in the number of elementary addition and multiplication operations with the growth of grid size, as contrasted with quadratic growth necessitated by the standard numerical method...

  10. Infrared thermography method for fast estimation of phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Del Barrio, Elena [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Cadoret, Régis [Centre National de la Recherche Scientifique, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Daranlot, Julien [Solvay, Laboratoire du Futur, 178 Av du Dr Schweitzer, 33608 Pessac (France); Achchaq, Fouzia, E-mail: fouzia.achchaq@u-bordeaux.fr [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France)

    2016-02-10

    Highlights: • Infrared thermography is proposed to determine phase diagrams in record time. • Phase boundaries are detected by means of emissivity changes during heating. • Transition lines are identified by using Singular Value Decomposition techniques. • Different binary systems have been used for validation purposes. - Abstract: Phase change materials (PCM) are widely used today in thermal energy storage applications. Pure PCMs are rarely used because of non adapted melting points. Instead of them, mixtures are preferred. The search of suitable mixtures, preferably eutectics, is often a tedious and time consuming task which requires the determination of phase diagrams. In order to accelerate this screening step, a new method for estimating phase diagrams in record time (1–3 h) has been established and validated. A sample composed by small droplets of mixtures with different compositions (as many as necessary to have a good coverage of the phase diagram) deposited on a flat substrate is first prepared and cooled down to ambient temperature so that all droplets crystallize. The plate is then heated at constant heating rate up to a sufficiently high temperature for melting all the small crystals. The heating process is imaged by using an infrared camera. An appropriate method based on singular values decomposition technique has been developed to analyze the recorded images and to determine the transition lines of the phase diagram. The method has been applied to determine several simple eutectic phase diagrams and the reached results have been validated by comparison with the phase diagrams obtained by Differential Scanning Calorimeter measurements and by thermodynamic modelling.

  11. Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces

    Science.gov (United States)

    Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John

    2011-01-01

    Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.

  12. Fast calculation method of computer-generated cylindrical hologram using wave-front recording surface.

    Science.gov (United States)

    Zhao, Yu; Piao, Mei-lan; Li, Gang; Kim, Nam

    2015-07-01

    Fast calculation method for a computer-generated cylindrical hologram (CGCH) is proposed. The method consists of two steps: the first step is a calculation of a virtual wave-front recording surface (WRS), which is located between the 3D object and CGCH. In the second step, in order to obtain a CGCH, we execute the diffraction calculation based on the fast Fourier transform (FFT) from the WRS to the CGCH, which are in the same concentric arrangement. The computational complexity is dramatically reduced in comparison with direct integration method. The simulation results confirm that our proposed method is able to improve the computational speed of CGCH.

  13. A fast mollified impulse method for biomolecular atomistic simulations

    Science.gov (United States)

    Fath, L.; Hochbruck, M.; Singh, C. V.

    2017-03-01

    Classical integration methods for molecular dynamics are inherently limited due to resonance phenomena occurring at certain time-step sizes. The mollified impulse method can partially avoid this problem by using appropriate filters based on averaging or projection techniques. However, existing filters are computationally expensive and tedious in implementation since they require either analytical Hessians or they need to solve nonlinear systems from constraints. In this work we follow a different approach based on corotation for the construction of a new filter for (flexible) biomolecular simulations. The main advantages of the proposed filter are its excellent stability properties and ease of implementation in standard softwares without Hessians or solving constraint systems. By simulating multiple realistic examples such as peptide, protein, ice equilibrium and ice-ice friction, the new filter is shown to speed up the computations of long-range interactions by approximately 20%. The proposed filtered integrators allow step sizes as large as 10 fs while keeping the energy drift less than 1% on a 50 ps simulation.

  14. Fast algorithms for glassy materials: methods and explorations

    Science.gov (United States)

    Middleton, A. Alan

    2014-03-01

    Glassy materials with frozen disorder, including random magnets such as spin glasses and interfaces in disordered materials, exhibit striking non-equilibrium behavior such as the ability to store a history of external parameters (memory). Precisely due to their glassy nature, direct simulation of models of these materials is very slow. In some fortunate cases, however, algorithms exist that exactly compute thermodynamic quantities. Such cases include spin glasses in two dimensions and interfaces and random field magnets in arbitrary dimensions at zero temperature. Using algorithms built using ideas developed by computer scientists and mathematicians, one can even directly sample equilibrium configurations in very large systems, as if one picked the configurations out of a ``hat'' of all configurations weighted by their Boltzmann factors. This talk will provide some of the background for these methods and discuss the connections between physics and computer science, as used by a number of groups. Recent applications of these methods to investigating phase transitions in glassy materials and to answering qualitative questions about the free energy landscape and memory effects will be discussed. This work was supported in part by NSF grant DMR-1006731. Creighton Thomas and David Huse also contributed to much of the work to be presented.

  15. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  16. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    Science.gov (United States)

    Jia, Meng; Fan, Yang-Yu; Tian, Wei-Jian

    2011-03-01

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 60872159).

  17. Simple and fast cosine approximation method for computer-generated hologram calculation.

    Science.gov (United States)

    Nishitsuji, Takashi; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ito, Tomoyoshi

    2015-12-14

    The cosine function is a heavy computational operation in computer-generated hologram (CGH) calculation; therefore, it is implemented by substitution methods such as a look-up table. However, the computational load and required memory space of such methods are still large. In this study, we propose a simple and fast cosine function approximation method for CGH calculation. As a result, we succeeded in creating CGH with sufficient quality and made the calculation time 1.6 times as fast at maximum compared to using the look-up table of the cosine function on CPU implementation.

  18. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    Science.gov (United States)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  19. Study of improved methods for predicting chemical equilibria. Final report, January 1, 1990--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, T.G.; Vaughan, J.D.

    1993-09-01

    Objective was to develop computational methods for equilibrium constants of Diels-Alder reactions in gas and liquid solution phases. Approach was to calculate standard enthalpies of formation at 298 K and standard thermodynamic functions for a range of temperatures for reactants and products, and then to calculate standard enthalpies, entropies, Gibbs free energies, and equilibrium constants at various temperatures.

  20. A fast cross-entropy method for estimating buffer overflows in queueing networks

    NARCIS (Netherlands)

    Boer, de P.T.; Kroese, D.P.; Rubinstein, R.Y.

    2004-01-01

    In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a

  1. NUMERICAL BOUNDARY CONDITIONS FOR THE FAST SWEEPING HIGH ORDER WENO METHODS FOR SOLVING THE EIKONAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    Ling Huang; Chi-Wang Shu; Mengping Zhang

    2008-01-01

    High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping methods are more accurate, but they often require additional numerical boundary treatment for several grid points near the boundary because of the wider numerical stencil. It is particularly important to treat the points near the inflow boundary accurately, as the information would flow into the computational domain and would affect global accuracy. In the literature, the numerical solution at these boundary points are either fixed with the exact solution, which is not always feasible, or computed with a first order discretization, which could reduce the global accuracy. In this paper, we discuss two strategies to handle the inflow boundary conditions. One is based on the numerical solutions of a first order fast sweeping method with several different mesh sizes near the boundary and a Richardson extrapolation, the other is based on a Lax-Wendroff type procedure to repeatedly utilizing the PDE to write the normal spatial derivatives to the inflow boundary in terms of the tangential derivatives, thereby obtaining high order solution values at the grid points near the inflow boundary. We explore these two approaches using the fast sweeping high order WENO scheme in [18] for solving the static Eikonal equation as a representative example. Numerical examples are given to demonstrate the performance of these two approaches.

  2. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    Energy Technology Data Exchange (ETDEWEB)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Department of Computer Science (United States); Department of Mathematics (United States)

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  3. Characterization of rice starch and protein obtained by a fast alkaline extraction method.

    Science.gov (United States)

    Souza, Daiana de; Sbardelotto, Arthur Francisco; Ziegler, Denize Righetto; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina

    2016-01-15

    This study evaluated the characteristics of rice starch and protein obtained by a fast alkaline extraction method on rice flour (RF) derived from broken rice. The extraction was conducted using 0.18% NaOH at 30°C for 30min followed by centrifugation to separate the starch rich and the protein rich fractions. This fast extraction method allowed to obtain an isoelectric precipitation protein concentrate (IPPC) with 79% protein and a starchy product with low protein content. The amino acid content of IPPC was practically unchanged compared to the protein in RF. The proteins of the IPPC underwent denaturation during extraction and some of the starch suffered the cold gelatinization phenomenon, due to the alkaline treatment. With some modifications, the fast method can be interesting in a technological point of view as it enables process cost reduction and useful ingredients obtention to the food and chemical industries.

  4. Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations

    Science.gov (United States)

    Detrixhe, Miles; Gibou, Frédéric

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  5. Multiscale stochastic finite element method on random field modeling of geotechnical problems- a fast computing procedure

    Institute of Scientific and Technical Information of China (English)

    Xi F. XU

    2015-01-01

    The Green-function-based multiscale stochastic finite element method (MSFEM) has been formulated based on the stochastic variational principle. In this study a fast computing procedure based on the MSFEM is developed to solve random field geotechnical problems with a typical coefficient of variance less than 1. A unique fast computing advantage of the procedure enables computation performed only on those locations of interest, therefore saving a lot of computation. The numerical example on soil settlement shows that the procedure achieves significant computing efficiency compared with Monte Carlo method.

  6. Adaptive integral method with fast Gaussian gridding for solving combined field integral equations

    Science.gov (United States)

    Bakır, O.; Baǧ; Cı, H.; Michielssen, E.

    Fast Gaussian gridding (FGG), a recently proposed nonuniform fast Fourier transform algorithm, is used to reduce the memory requirements of the adaptive integral method (AIM) for accelerating the method of moments-based solution of combined field integral equations pertinent to the analysis of scattering from three-dimensional perfect electrically conducting surfaces. Numerical results that demonstrate the efficiency and accuracy of the AIM-FGG hybrid in comparison to an AIM-accelerated solver, which uses moment matching to project surface sources onto an auxiliary grid, are presented.

  7. Neutron Age Determination in Fast Reactor Materials using the Group Method

    Directory of Open Access Journals (Sweden)

    Kabanova Marina F.

    2016-01-01

    Full Text Available The article deals with the methods of identifying fast neutron age in sodium (Na and uranium-238 (238U; describes the model of advanced and effective fast neutron nuclear reactors (FN, where Na is a coolant while 238U is involved in the fuel cycle in large quantities; justifies the choice of the group method for calculating the neutron age value in the substances mentioned above that can show the accuracy of the used constants for Na and estimate various versions of multilevel description of neutron moderation in 238U – the most powerful resonance absorber of the neutron reactor active zone.

  8. Development of a fast DNA extraction method for sea food and marine species identification.

    Science.gov (United States)

    Tagliavia, Marcello; Nicosia, Aldo; Salamone, Monica; Biondo, Girolama; Bennici, Carmelo Daniele; Mazzola, Salvatore; Cuttitta, Angela

    2016-07-15

    The authentication of food components is one of the key issues in food safety. Similarly taxonomy, population and conservation genetics as well as food web structure analysis, also rely on genetic analyses including the DNA barcoding technology. In this scenario we developed a fast DNA extraction method without any purification step from fresh and processed seafood, suitable for any PCR analysis. The protocol allows the fast DNA amplification from any sample, including fresh, stored and processed seafood and from any waste of industrial fish processing, independently of the sample storage method. Therefore, this procedure is particularly suitable for the fast processing of samples and to carry out investigations for the authentication of seafood by means of DNA analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods

    Directory of Open Access Journals (Sweden)

    Alam Zeb

    2016-01-01

    Full Text Available A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries.

  10. Fast Adomian decomposition method for the Cauchy problem of the time-fractional reaction diffusion equation

    Directory of Open Access Journals (Sweden)

    Xiang-Chao Shi

    2016-02-01

    Full Text Available The fractional reaction diffusion equation is one of the popularly used fractional partial differential equations in recent years. The fast Adomian decomposition method is used to obtain the solution of the Cauchy problem. Also, the analytical scheme is extended to the fractional one where the Taylor series is employed. In comparison with the classical Adomian decomposition method, the ratio of the convergence is increased. The method is more reliable for the fractional partial differential equations.

  11. A Practical and Fast Method To Predict the Thermodynamic Preference of omega-Transaminase-Based Transformations

    DEFF Research Database (Denmark)

    Meier, Robert J.; Gundersen Deslauriers, Maria; Woodley, John

    2015-01-01

    A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir...

  12. Inversion methods for fast-ion velocity-space tomography in fusion plasmas

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Stagner, L.; Salewski, Mirko

    2016-01-01

    Velocity-space tomography has been used to infer 2D fast-ion velocity distribution functions. Here we compare the performance of five different tomographic inversion methods: truncated singular value decomposition, maximum entropy, minimum Fisher information and zeroth and first-order Tikhonov re...

  13. Fast and accurate numerical methods for solving elliptic difference equations defined on lattices

    Science.gov (United States)

    Gillman, A.; Martinsson, P. G.

    2010-12-01

    Techniques for rapidly computing approximate solutions to elliptic PDEs such as Laplace's equation are well established. For problems involving general domains, and operators with constant coefficients, a highly efficient approach is to rewrite the boundary value problem as a Boundary Integral Equation (BIE), and then solve the BIE using fast methods such as, e.g., the Fast Multipole Method (FMM). The current paper demonstrates that this procedure can be extended to elliptic difference equations defined on infinite lattices, or on finite lattice with boundary conditions of either Dirichlet or Neumann type. As a representative model problem, a lattice equivalent of Laplace's equation on a square lattice in two dimensions is considered: discrete analogs of BIEs are derived and fast solvers analogous to the FMM are constructed. Fast techniques are also constructed for problems involving lattices with inclusions and local deviations from perfect periodicity. The complexity of the methods described is O( Nboundary + Nsource + Ninc) where Nboundary is the number of nodes on the boundary of the domain, Nsource is the number of nodes subjected to body loads, and Ninc is the number of nodes that deviate from perfect periodicity. This estimate should be compared to the O( Ndomainlog Ndomain) estimate for FFT based methods, where Ndomain is the total number of nodes in the lattice (so that in two dimensions, N˜Ndomain1/2). Several numerical examples are presented.

  14. A Fast Melting Release Method in Free-Fall Equivalence Principle Test

    Institute of Scientific and Technical Information of China (English)

    WU Zi-Gang; WANG Dian-Hong; LUO Jun; ZHOU Ze-Bing; NIE Yu-Xin; ZHANG Yuan-Zhong

    2001-01-01

    A fast melting release method for the free-fallequivalence principle test using laser interferometry is discussed. The primary experiment result shows that the uncertainty of the differential release time could be controlled at the level of 1 ms by this release system, which satisfies the requirement of the expected experimental precision.

  15. A Practical and Fast Method To Predict the Thermodynamic Preference of ω-Transaminase-Based Transformations

    DEFF Research Database (Denmark)

    Meier, Robert J.; Gundersen, Maria T.; Woodley, John

    2015-01-01

    A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir...

  16. Fast method for verifying Chernikov rules in Fourier-Motzkin elimination

    Science.gov (United States)

    Bastrakov, S. I.; Zolotykh, N. Yu.

    2015-01-01

    The problem of eliminating unknowns from a system of linear inequalities is considered. A new fast technique for verifying Chernikov rules in Fourier-Motzkin elimination is proposed, which is an adaptation of the "graph" test for adjacency in the double description method. Numerical results are presented that confirm the effectiveness of this technique.

  17. A fast method to prepare water samples for 15N analysis

    Institute of Scientific and Technical Information of China (English)

    肖化云; 刘丛强

    2001-01-01

    Automatic element analyser is often used to prepare organic matters tor 15N analysis. It is seldom used to prepare water samples. Water samples are conventionally dealt with by Kjeldahl-Rittenberg technique. But it requires tedious and labor-intensive sample preparation. A fast and reliable method is proposed in this paper to prepare water samples for 15N analysis.

  18. Hanford environmental analytical methods (methods as of March 1990). Appendix A3-O and Appendix A3-I

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.D.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Information is provided on the techniques employed towards the chemical analysis of volatile, semi-volatile matter, pesticides and PCB`s at the Hanford Reservation. Sample preparation methods are included.

  19. Marching Choruses

    DEFF Research Database (Denmark)

    Lech, Marcel Lysgaard

    2009-01-01

      This article re-examines the evidence for choral marching in the Athenian theatre, which has fostered ideas on the dramatic choruses as military training for young men, ephebes. But the late lexicographical sources are not relating to the dramatic choruses of the fifth-century and are in consta...

  20. Preparation of lithium fast ionic conductor by sol-gel-hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    Wang Qinghua; Wang Bengen; Xu Yan; Liu Hongyu

    2006-01-01

    The solid fast ionic conductor was synthesized by the sol-gel-hydrothermal method.The influences of the dispersion reagent,the alkalinity and the calcination temperature on the surface morphology of nanopowders,and the electric conductivity were discussed.When PEG 12000 was used as the dispersion reagent,the alkalinity was 1.0% and the calcination temperature was 550℃; the electric conductivity at ambience temperature of the inorganic nanopowder of lithium fast ionic conductor synthesized was 2.59 ±10-3 S·cm-1.

  1. Fast methods for long-range interactions in complex systems. Lecture notes

    Energy Technology Data Exchange (ETDEWEB)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)

    2011-10-13

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  2. A new, fast and semi-automated size determination method (SASDM for studying multicellular tumor spheroids

    Directory of Open Access Journals (Sweden)

    Lindhe Örjan

    2005-11-01

    Full Text Available Abstract Background Considering the width and importance of using Multicellular Tumor Spheroids (MTS in oncology research, size determination of MTSs by an accurate and fast method is essential. In the present study an effective, fast and semi-automated method, SASDM, was developed to determinate the size of MTSs. The method was applied and tested in MTSs of three different cell-lines. Frozen section autoradiography and Hemotoxylin Eosin (H&E staining was used for further confirmation. Results SASDM was shown to be effective, user-friendly, and time efficient, and to be more precise than the traditional methods and it was applicable for MTSs of different cell-lines. Furthermore, the results of image analysis showed high correspondence to the results of autoradiography and staining. Conclusion The combination of assessment of metabolic condition and image analysis in MTSs provides a good model to evaluate the effect of various anti-cancer treatments.

  3. A new, fast and semi-automated size determination method (SASDM) for studying multicellular tumor spheroids

    Science.gov (United States)

    Monazzam, Azita; Razifar, Pasha; Lindhe, Örjan; Josephsson, Raymond; Långström, Bengt; Bergström, Mats

    2005-01-01

    Background Considering the width and importance of using Multicellular Tumor Spheroids (MTS) in oncology research, size determination of MTSs by an accurate and fast method is essential. In the present study an effective, fast and semi-automated method, SASDM, was developed to determinate the size of MTSs. The method was applied and tested in MTSs of three different cell-lines. Frozen section autoradiography and Hemotoxylin Eosin (H&E) staining was used for further confirmation. Results SASDM was shown to be effective, user-friendly, and time efficient, and to be more precise than the traditional methods and it was applicable for MTSs of different cell-lines. Furthermore, the results of image analysis showed high correspondence to the results of autoradiography and staining. Conclusion The combination of assessment of metabolic condition and image analysis in MTSs provides a good model to evaluate the effect of various anti-cancer treatments. PMID:16283948

  4. A fast integral equation method for solid particles in viscous flow using quadrature by expansion

    CERN Document Server

    Klinteberg, Ludvig af

    2016-01-01

    Boundary integral methods are advantageous when simulating viscous flow around rigid particles, due to the reduction in number of unknowns and straightforward handling of the geometry. In this work we present a fast and accurate framework for simulating spheroids in periodic Stokes flow, which is based on the completed double layer boundary integral formulation. The framework implements a new method known as quadrature by expansion (QBX), which uses surrogate local expansions of the layer potential to evaluate it to very high accuracy both on and off the particle surfaces. This quadrature method is accelerated through a newly developed precomputation scheme. The long range interactions are computed using the spectral Ewald (SE) fast summation method, which after integration with QBX allows the resulting system to be solved in M log M time, where M is the number of particles. This framework is suitable for simulations of large particle systems, and can be used for studying e.g. porous media models.

  5. A new, fast and semi-automated size determination method (SASDM) for studying multicellular tumor spheroids.

    Science.gov (United States)

    Monazzam, Azita; Razifar, Pasha; Lindhe, Orjan; Josephsson, Raymond; Långström, Bengt; Bergström, Mats

    2005-11-14

    Considering the width and importance of using Multicellular Tumor Spheroids (MTS) in oncology research, size determination of MTSs by an accurate and fast method is essential. In the present study an effective, fast and semi-automated method, SASDM, was developed to determinate the size of MTSs. The method was applied and tested in MTSs of three different cell-lines. Frozen section autoradiography and Hemotoxylin Eosin (H&E) staining was used for further confirmation. SASDM was shown to be effective, user-friendly, and time efficient, and to be more precise than the traditional methods and it was applicable for MTSs of different cell-lines. Furthermore, the results of image analysis showed high correspondence to the results of autoradiography and staining. The combination of assessment of metabolic condition and image analysis in MTSs provides a good model to evaluate the effect of various anti-cancer treatments.

  6. Fast calculation of spherical computer generated hologram using spherical wave spectrum method.

    Science.gov (United States)

    Jackin, Boaz Jessie; Yatagai, Toyohiko

    2013-01-14

    A fast calculation method for computer generation of spherical holograms in proposed. This method is based on wave propagation defined in spectral domain and in spherical coordinates. The spherical wave spectrum and transfer function were derived from boundary value solutions to the scalar wave equation. It is a spectral propagation formula analogous to angular spectrum formula in cartesian coordinates. A numerical method to evaluate the derived formula is suggested, which uses only N(logN)2 operations for calculations on N sampling points. Simulation results are presented to verify the correctness of the proposed method. A spherical hologram for a spherical object was generated and reconstructed successfully using the proposed method.

  7. A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method.

    Science.gov (United States)

    Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin

    2013-06-01

    In the last decades, due to the development of the parallel programming, the lattice Boltzmann method (LBM) has attracted much attention as a fast alternative approach for solving partial differential equations. In this paper, we first designed an energy functional based on the fuzzy c-means objective function which incorporates the bias field that accounts for the intensity inhomogeneity of the real-world image. Using the gradient descent method, we obtained the corresponding level set equation from which we deduce a fuzzy external force for the LBM solver based on the model by Zhao. The method is fast, robust against noise, independent to the position of the initial contour, effective in the presence of intensity inhomogeneity, highly parallelizable and can detect objects with or without edges. Experiments on medical and real-world images demonstrate the performance of the proposed method in terms of speed and efficiency.

  8. Fast methods for screening of trichothecenes in fungal cultures using gas chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Thrane, Ulf

    2001-01-01

    The paper presents a fast method for trichothecene profiling and chemotaxonomic studies in species of Fusarium, Stachybotrys, Trichoderma and Memnoniella. Micro scale extracted crude Fusarium extracts were derivatised using pentafluoropropionic anhydride and analysed by gas chromatography......-acetoxyscirpentriol, nivalenol, fusarenon-X, deoxynivalenol, 15-acetyl- deoxynivalenol and 3-acetyl-deoxynivalenol possible during a 23-min GC run. A slightly modified method could detect trichothecenes produced by Stachybotrys, Memnoniella and Trichoderma, by hydrolysing crude extracts prior to derivatisation...

  9. A Subspace Embedding Method in L2 Norm via Fast Cauchy Transform

    Directory of Open Access Journals (Sweden)

    Xu Xiang

    2013-01-01

    Full Text Available We propose a subspace embedding method via Fast Cauchy Transform (FCT in L2 norm. It is motivated by and complements the work of the subspace embedding method in Lp norm, for all p∈[1,∞] except p = 2, by K. L. Clarkson (ACM-SIAM, 2013. Unlike the traditionally used orthogonal basis in Johnson-Lindenstrauss (JL embedding, we employ the well-conditioned basis in L2 norm to obtain concentration property of FCT in L2 norm.

  10. Control rod reactivity measurement by rod-drop method at a fast critical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, L.; Yin, Y.; Lian, X.; Zheng, C. [Inst. of Nuclear Physics and Chemistry in CAEP, P. O. Box 919 210, Mianyang, Sichuan, 621900 (China)

    2012-07-01

    Rod-drop experiments were carried out to estimate the reactivity of the control rod of a fast critical assembly operated by CAEP. Two power monitor systems were used to obtain the power level and integration method was used to process the data. Three experiments were performed. The experimental results of the reactivity from the two power monitor systems were consistent and showed a reasonable range of reactivity compared to results from positive period method. (authors)

  11. A fast algorithm for depth migration by the Gaussian beam summation method

    Science.gov (United States)

    Gao, Zhenghui; Sun, Jianguo; Sun, Xu; Wang, Xueqiu; Sun, Zhangqing; Liu, Zhiqiang

    2017-02-01

    Depth migration by the Gaussian beam summation method has no limitation on the seismic acquisition configuration. In the past, this migration method applied the steepest descent approximation to reduce the dimension of the integrals over the ray parameters at the cost of a precision loss. However, the simplified formula was still in the frequency domain, thereby impairing the computational efficiency. We present a new fast algorithm which can increase the computational efficiency without losing precision. To develop the fast algorithm, we change the order of the integrals and treat the two innermost integrals as a couple of two-dimensional continuous functions with respect to the real and imaginary parts of the total traveltime. A couple of lookup tables corresponding to the values of the two innermost integrals are constructed at the sampling points. The results of the two innermost integrals at a certain imaging point can be obtained through interpolation in the two constructed lookup tables. Both the numerical analysis and examples validate the precision and efficiency of the fast algorithm. With the advantage of handling rugged topography, we apply the fast algorithm to the 2D Canadian Foothills velocity model.

  12. Spectrophotometric Method for the Determination of Some Drugs Using Fast Red B Salt

    Directory of Open Access Journals (Sweden)

    Afaf Abul Khier

    2008-01-01

    Full Text Available A simple spectrophorometric method for the determination of secnidazole, niclosamide, nifuroxazide and sulphasalzine is described. The method is based on reduction of the nitro group present in secnidazole and niclosamide molecule using zinc powder and dilute hydrochloric acid followed by reaction with fast red B salt in presence of ammonium chloride and sodium hydroxide, while in case of nifuroxazide and sulphasalazine the reaction takes place directly without any prior reduction between the phenolic group present in each drug and fast red B salt in presence of sodium hydroxide. Beer's law is valid in the concentration ranges 2.5-15, 1.25-10, 2.5-15, and 2.5-13.75 μg.mL-1 for secnidazole, niclosamide, nifuroxazide and sulphasalazine respectively. The proposed method is applied successfully for the estimation of the mentioned drugs either in pure form or in their pharmaceutical formulations.

  13. A fast high-order method to calculate wakefield forces in an electron beam

    CERN Document Server

    Qiang, Ji; Ryne, Robert D

    2012-01-01

    In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an $O(Nlog(N))$ computational cost, where $N$ is the number of grid points. Using the Simpson quadrature rule with an accuracy of $O(h^4)$, where $h$ is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force.

  14. A fast-saliency method for real-time infrared small target detection

    Science.gov (United States)

    Qi, Shengxiang; Xu, Guojing; Mou, Zhiying; Huang, Dayu; Zheng, Xueli

    2016-07-01

    Infrared small target detection plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, we present a fast method, called fast-saliency, with very low computational complexity, for real-time small target detection in single image frame under various complex backgrounds. Different from traditional algorithms, the proposed method is inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, which is able to delineate regions of small targets in infrared images. Concisely, there are only four simple steps contained in fast-saliency. In order, they are gradient operation, square computation, Gaussian smoothing and automatic thresholding, representing the four procedures as highpass filtering, target enhancement, noise suppression and target segmentation, respectively. Especially, for the most crucial step, gradient operation, we innovatively propose a 5 × 5 facet kernel operator that holds the key for separating the small targets from backgrounds. To verify the effectiveness of our proposed method, a set of real infrared images covering typical backgrounds with sea, sky and ground clutters are tested in experiments. The results demonstrate that it outperforms the state-of-the-art methods not only in detection accuracy, but also in computation efficiency.

  15. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    Institute of Scientific and Technical Information of China (English)

    Chang-Jun Zheng; Hai-Bo Chen; Lei-Lei Chen

    2013-01-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.

  16. Diagnostic efficacy of Ziehl-Neelsen method against fluorescent microscopy in detection of acid fast bacilli

    Institute of Scientific and Technical Information of China (English)

    Soham Gupta; Vishnu Prasad Shenoy; Indira Bairy; MuralidharanS

    2010-01-01

    Objective:To investigate the application of Ziehl-Neelsen (Z-N) and fluorescent microscopy in detection of acid fast bacilli (AFB).Methods: Duplicate smears were prepared from 260 sputum samples and stained with Z-N and fluorescent staining (FS) methods. The efficiency of both methods in primary diagnosis of tuberculosis were evaluated.Results:The smears were positive for AFB in 15 (5.77%) samples by Z-N staining method and in 16 (6.15%) samples by FS method. The sensitivity and specificity of Z-N staining method against FS method were 93.75% and 100% respectively.Conclusions: Though lesser cost-effective than Z-N, FS method is a more sensitive and better case finding tool in detection of AFB.

  17. The Schrodinger Eigenvalue March

    Science.gov (United States)

    Tannous, C.; Langlois, J.

    2011-01-01

    A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…

  18. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    DESIG: E 263 09 ^TITLE: Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron ^SIGNUSE: Refer to Guide E 844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. Refer to Practice E 261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. Pure iron in the form of foil or wire is readily available and easily handled. Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1). This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E 1018 for descriptions of recommended tabulated dosimetry cross sections. 54Mn has a half-life of 312.13 days (3) (2) and emits a gamma ray with an energy of 834.845 keV (5). (2) Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46)-h 56Mn, 44.95-d (8) 59Fe, and 5.27...

  19. The fast multipole method and point dipole moment polarizable force fields

    Science.gov (United States)

    Coles, Jonathan P.; Masella, Michel

    2015-01-01

    We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.

  20. A charge-collection method for measurements of pulsed fast-neutron flux

    CERN Document Server

    Ouyang, X P; Ho, Y K; Zhang, Z B

    2002-01-01

    A charge-collection method for measuring the flux of pulsed fast neutrons in current mode has been developed, which is based on the well-known recoil-proton method combined with ion-induced secondary electron emission from solid surfaces. The detection unit consists of four elements: an n-p converter, an absorber, a collector, and a rear insulator. The assembly does not require vacuum for operation. Recoil protons from the n-p converter and the secondary electrons induced by the passing protons on the interface of the absorber and the collector contribute to the detector output signal. By properly choosing the materials and the combination of the absorber and the collector, the fraction of secondary electrons in the output signal can be determined experimentally. This detection concept allows one to design a medium type of fast-neutron detector for measurements of extremely intense pulsed neutron flux with a number of advantages over the existing systems.

  1. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.

  2. A fast and accurate initial alignment method for strapdown inertial navigation system on stationary base

    Institute of Scientific and Technical Information of China (English)

    Xinlong WANG; Gongxun SHEN

    2005-01-01

    In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed.It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer.Over here,the two-position alignment principle is presented.On the basis of this SINS error model,a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates,and the novel azimuth error estimation algorithm is used for the two-position alignment.Consequently,the speed and accuracy of the SINS's initial alignment is enhanced greatly.The computer simulation results illustrate the efficiency of this alignment method.

  3. A Practical and Fast Method To Predict the Thermodynamic Preference of ω-Transaminase-Based Transformations

    DEFF Research Database (Denmark)

    Meier, Robert J.; Gundersen, Maria T.; Woodley, John;

    2015-01-01

    A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir......A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable...... as confirmed by experiment. Once a larger data base is established, in silico screening of several new reactions (new target molecules) can easily be performed each day....

  4. A Fast Channel Switching Method in EPON System for IPTV Service

    Science.gov (United States)

    Nie, Yaling; Yoshiuchi, Hideya

    This paper presents a fast channel switching method in Ethernet Passive Optical Network (EPON) system for IPTV service. Fast channel switching is one of the important features of successful IPTV systems. Users surely prefer IPTV systems with small channel switching time rather than a longer one. Thus a channel switching control module and a channel/permission list in EPON system’s ONU or OLT is designed. When EPON system receives channel switching message from IPTV end user, the channel switching control module will catch the message and search the channel list and permission list maintained in EPON system, then got the matching parameter of EPON for the new channel. The new channel’s data transmission will be enabled by directly updating the optical filter of the ONU that end user connected. By using this method in EPON system, it provides a solution for dealing with channel switching delays in IPTV service.

  5. A Fast Edge Preserving Bayesian Reconstruction Method for Parallel Imaging Applications in Cardiac MRI

    Science.gov (United States)

    Singh, Gurmeet; Raj, Ashish; Kressler, Bryan; Nguyen, Thanh D.; Spincemaille, Pascal; Zabih, Ramin; Wang, Yi

    2010-01-01

    Among recent parallel MR imaging reconstruction advances, a Bayesian method called Edge-preserving Parallel Imaging with GRAph cut Minimization (EPIGRAM) has been demonstrated to significantly improve signal to noise ratio (SNR) compared to conventional regularized sensitivity encoding (SENSE) method. However, EPIGRAM requires a large number of iterations in proportion to the number of intensity labels in the image, making it computationally expensive for high dynamic range images. The objective of this study is to develop a Fast EPIGRAM reconstruction based on the efficient binary jump move algorithm that provides a logarithmic reduction in reconstruction time while maintaining image quality. Preliminary in vivo validation of the proposed algorithm is presented for 2D cardiac cine MR imaging and 3D coronary MR angiography at acceleration factors of 2-4. Fast EPIGRAM was found to provide similar image quality to EPIGRAM and maintain the previously reported SNR improvement over regularized SENSE, while reducing EPIGRAM reconstruction time by 25-50 times. PMID:20939095

  6. The Three-Dimensional Fast Segmentation Algorithm Based on Level Set Method%基于Level Set的交互式快速分割算法

    Institute of Scientific and Technical Information of China (English)

    孙海鹏; 余伟巍; 席平

    2011-01-01

    三维医学图像数据量大,并且受噪声、边界模糊等原因的影响,致使三维分割过程消耗时间较长,容易产生欠分割或过度分割.针对以上问题,提出一种基于LevelSet的三维快速分割算法,采用Fast Marching获取二维分割区域,优化轮廓边界,利用直线数值微分算法(Digital Differential Analyzer,DDA)提取轮廓像素;进一步引入扫描线种子填充思想,实现医学图像的三维快速分割.实验结果表明,上述算法能够快速准确地分割出感兴趣区域.%Because of the large volume of medical image data, the impact of noise, blurred boundaries and other reasons, the three-dimensional segmentation process is time-consuming, and easily produces less or over segmentation. To solve the above problems, this paper proposes a three-dimensional fast segmentation algorithm based on Level Set, using Level Set Fast Marching Method to obtain two-dimensional segmental region, optimizing the boundary contour, using the Digital Differential Analyzer method to extract contour pixels, finally introducing the idea of the Scan Line Seed-filling to achieve the three-dimensional fast segmentation. The actual clinical CT images of vertebral segmentation experiment result shows that this method can quickly and accurately separate out the interested area.

  7. A Fast Radiochemical Method for the Determination of Some Essential Trace Elements in Biology and Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K.

    1966-02-15

    An anion-exchange method based on fast selective sorption steps from mixtures of sulfuric, hydrobromic, and hydrochloric acid solutions has been developed for the separation of five different groups of radioactive trace elements in neutron-irradiated biological material. The separations are performed automatically with a simple proportioning pump apparatus. The apparatus allows the exact adjustment of influent solutions to the series of ion-exchange columns. The practical application of the method is described in detail. The successful use of the method is practically independent on the level of Na activity present in the sample.

  8. Swarm: robust and fast clustering method for amplicon-based studies

    Directory of Open Access Journals (Sweden)

    Frédéric Mahé

    2014-09-01

    Full Text Available Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units.

  9. Adaptation and performance of the fast multipole method for dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Gorn, N.L. E-mail: db@innovent-jena.de; Berkov, D.V

    2004-05-01

    We have developed a new specialized version of the fast multipole method (FMM) for dipolar systems. For this purpose we have derived general expressions of the multipole expansion coefficients (in spherical coordinates) for a system of point dipoles with the potential phi (cursive,open) Greek{sub dip}{approx}1/r{sup 2}. Our version is especially useful for simulations of fine magnetic particle systems (magnetic nanocomposites, ferrofluids), molecular dipolar fluids or electric dipolar glasses.

  10. New method for fast detection of railway track smoothness by fiber optic gyro

    Science.gov (United States)

    Wang, Lixin; Liang, Lei; Hu, Wenbin

    2000-05-01

    In this article, the conducting schemes for fiber optic gyro (FOG) used int he fast detecting of the smoothness of rail track has been proposed from the practical use point of view. The relevant approximate method of calculating has been given. The experiments in lab have been carried out, and the factors to influence the detecting precision of the smoothness of rail track such as the precision of FOG have been analyzed.

  11. Formulation, evaluation and optimization of fast dissolving tablets containing Amlodipine Besylate by sublimation method

    OpenAIRE

    Narmada, G.Y.; Mohini, K.; Prakash Rao, B.; Gowrinath, D.X.P.; Kumar, K.S.

    2009-01-01

    The objective of this research was to formulate fast dissolving tablet of amlodipine besylate for rapid action. Sublimation method was adapted to prepare the tablets by using a 23 full factorial design. FT-IR and D.T.A studies revealed that there was no physico-chemical interaction between amlodipine besylate and other excipients. All formulations are evaluated for pre-compression and post-compression parameters, wetting time, water absorption ratio. The results obtained showed that the quant...

  12. A new method to customize protein expression vectors for fast, efficient and background free parallel cloning

    OpenAIRE

    Scholz, J; Besir, H.; Strasser, C.; Suppmann, S.

    2013-01-01

    Background: Expression and purification of correctly folded proteins typically require screening of different parameters such as protein variants, solubility enhancing tags or expression hosts. Parallel vector series that cover all variations are available, but not without compromise. We have established a fast, efficient and absolutely background free cloning approach that can be applied to any selected vector. Results: Here we describe a method to tailor selected expression vectors for para...

  13. Strip mine reclamation: criteria and methods for measurement of revegetation success. Progress report, April 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Carrel, J.E.; Kucera, C.L.; Johannsen, C.J.; Blanchar, R.W.

    1980-12-01

    During this contract period research was continued at finding suitable methods and criteria for determining the success of revegetation in Midwestern prime ag lands strip mined for coal. Particularly important to the experimental design was the concept of reference areas, which were nearby fields from which the performance standards for reclaimed areas were derived. Direct and remote sensing techniques for measuring plant ground cover, production, and species composition were tested. 15 mine sites were worked in which were permitted under interim permanent surface mine regulations and in 4 adjoining reference sites. Studies at 9 prelaw sites were continued. All sites were either in Missouri or Illinois. Data gathered in the 1980 growing season showed that 13 unmanaged or young mineland pastures generally had lower average ground cover and production than 2 reference pastures. In contrast, yields at approximately 40% of 11 recently reclaimed mine sites planted with winter wheat, soybeans, or milo were statistically similar to 3 reference values. Digital computer image analysis of color infrared aerial photographs, when compared to ground level measurements, was a fast, accurate, and inexpensive way to determine plant ground cover and areas. But the remote sensing approach was inferior to standard surface methods for detailing plant species abundance and composition.

  14. Slow beam-extraction method using a fast Q-magnet assisted by RF-knockout

    Science.gov (United States)

    Nakanishi, Tetsuya; Furukawa, Takuji; Yoshida, Katsuhisa; Noda, Koji

    2005-11-01

    A new method for slow beam-extraction from a synchrotron ring is proposed, based on controlling a quadrupole field with a fast response (FQ), assisted by a transverse RF-field (RF-knockout). This method works as follows: (1) particles of a circulating beam are diffused by RF-knockout to just inside the boundary of a separatrix produced under a resonant condition, (2) exciting the FQ shrinks the separatrix to a certain size, and the particles outside the separatrix can be extracted, (3) the fast Q-field is turned off, and (4) the above process is repeated until all of the circulating beam is completely extracted. This method can extract prescribed particles at required timings quickly and precisely, because it is controlled with only the fast Q-field. A proof-of-principle experiment was carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) synchrotron. As a result, it was verified that the beam was extracted only with exciting the FQ, but not with turning the RF-knockout on.

  15. Fast and Sensitive Method for Determination of Domoic Acid in Mussel Tissue

    Directory of Open Access Journals (Sweden)

    Elena Barbaro

    2016-01-01

    Full Text Available Domoic acid (DA, a neurotoxic amino acid produced by diatoms, is the main cause of amnesic shellfish poisoning (ASP. In this work, we propose a very simple and fast analytical method to determine DA in mussel tissue. The method consists of two consecutive extractions and requires no purification steps, due to a reduction of the extraction of the interfering species and the application of very sensitive and selective HILIC-MS/MS method. The procedural method was validated through the estimation of trueness, extract yield, precision, detection, and quantification limits of analytical method. The sample preparation was also evaluated through qualitative and quantitative evaluations of the matrix effect. These evaluations were conducted both on the DA-free matrix spiked with known DA concentration and on the reference certified material (RCM. We developed a very selective LC-MS/MS method with a very low value of method detection limit (9 ng g−1 without cleanup steps.

  16. A fast and automatic mosaic method for high-resolution satellite images

    Science.gov (United States)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  17. Deterministic numerical solutions of the Boltzmann equation using the fast spectral method

    Science.gov (United States)

    Wu, Lei; White, Craig; Scanlon, Thomas J.; Reese, Jason M.; Zhang, Yonghao

    2013-10-01

    The Boltzmann equation describes the dynamics of rarefied gas flows, but the multidimensional nature of its collision operator poses a real challenge for its numerical solution. In this paper, the fast spectral method [36], originally developed by Mouhot and Pareschi for the numerical approximation of the collision operator, is extended to deal with other collision kernels, such as those corresponding to the soft, Lennard-Jones, and rigid attracting potentials. The accuracy of the fast spectral method is checked by comparing our numerical solutions of the space-homogeneous Boltzmann equation with the exact Bobylev-Krook-Wu solutions for a gas of Maxwell molecules. It is found that the accuracy is improved by replacing the trapezoidal rule with Gauss-Legendre quadrature in the calculation of the kernel mode, and the conservation of momentum and energy are ensured by the Lagrangian multiplier method without loss of spectral accuracy. The relax-to-equilibrium processes of different collision kernels with the same value of shear viscosity are then compared; the numerical results indicate that different forms of the collision kernels can be used as long as the shear viscosity (not only the value, but also its temperature dependence) is recovered. An iteration scheme is employed to obtain stationary solutions of the space-inhomogeneous Boltzmann equation, where the numerical errors decay exponentially. Four classical benchmarking problems are investigated: the normal shock wave, and the planar Fourier/Couette/force-driven Poiseuille flows. For normal shock waves, our numerical results are compared with a finite difference solution of the Boltzmann equation for hard sphere molecules, experimental data, and molecular dynamics simulation of argon using the realistic Lennard-Jones potential. For planar Fourier/Couette/force-driven Poiseuille flows, our results are compared with the direct simulation Monte Carlo method. Excellent agreements are observed in all test cases

  18. Fast generation of weak lensing maps by the inverse-Gaussianization method

    Science.gov (United States)

    Yu, Yu; Zhang, Pengjie; Jing, Yipeng

    2016-10-01

    To take full advantage of the unprecedented power of upcoming weak lensing surveys, understanding the noise, such as cosmic variance and geometry/mask effects, is as important as understanding the signal itself. Accurately quantifying the noise requires a large number of statistically independent mocks for a variety of cosmologies. This is impractical for weak lensing simulations, which are costly for simultaneous requirements of large box size (to cover a significant fraction of the past light cone) and high resolution (to robustly probe the small scale where most lensing signal resides). Therefore, fast mock generation methods are desired and are under intensive investigation. We propose a new fast weak lensing map generation method, named the inverse-Gaussianization method, based on the finding that a lensing convergence field can be Gaussianized to excellent accuracy by a local transformation [43 Y. Yu, P. Zhang, W. Lin, W. Cui, and J. N. Fry, Phys. Rev. D 84, 023523 (2011).]. Given a simulation, it enables us to produce as many as infinite statistically independent lensing maps as fast as producing the simulation initial conditions. The proposed method is tested against simulations for each tomography bin centered at lens redshift z ˜0.5 , 1, and 2, with various statistics. We find that the lensing maps generated by our method have reasonably accurate power spectra, bispectra, and power spectrum covariance matrix. Therefore, it will be useful for weak lensing surveys to generate realistic mocks. As an example of application, we measure the probability distribution function of the lensing power spectrum, from 16384 lensing maps produced by the inverse-Gaussianization method.

  19. A Fast Carrier Chromatin Immunoprecipitation Method Applicable to Microdissected Tissue Samples

    Science.gov (United States)

    Hao, Haiping; Liu, Hester; Gonye, Gregory; Schwaber, James S.

    2008-01-01

    Transcriptional regulation studies of CNS neurons are complicated by both cellular diversity and plasticity. Microdissection of specific functionally related populations of neurons can greatly reduce these issues, but typically excludes the use of many technologies due to tissue requirements, such as Chromatin Immunoprecipitation (ChIP), a powerful tool for studying in vivo protein-DNA interactions. We have developed a fast carrier ChIP (Fast CChIP) method for analyzing specific in vivo transcription factor-DNA interactions in as little as 0.2 mm3 brain tissue. Using an antibody against phosphorylated cyclic-AMP response element binding (CREB) protein, we confirmed phospho-CREB (pCREB) binding at the c-fos gene promoter. Then we further demonstrated the applicability of Fast CChIP in determining hypertension-induced pCREB binding at the c-fos gene promoter in the rat nucleus tractus solitarius (NTS), confirming CREB’s role in mediating hypertension-induced c-fos expression. This method will be broadly applicable to individual brain nucleus and biopsy/surgical samples. PMID:18502516

  20. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    Science.gov (United States)

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  1. Periodic boundary conditions and the error-controlled fast multipole method

    Energy Technology Data Exchange (ETDEWEB)

    Kabadshow, Ivo

    2012-08-22

    The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific research. Especially the calculation of long-range interactions poses limitations to the system size, since these interactions scale quadratically with the number of particles. Fast summation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). This work extends the possible range of applications of the FMM to periodic systems in one, two and three dimensions with one unique approach. Together with a tight error control, this contribution enables the simulation of periodic particle systems for different applications without the need to know and tune the FMM specific parameters. The implemented error control scheme automatically optimizes the parameters to obtain an approximation for the minimal runtime for a given energy error bound.

  2. A fast method for computing 1-D wakefields due to coherent synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Chad E., E-mail: ChadMitchell@lbl.gov; Qiang, Ji; Ryne, Robert D.

    2013-07-01

    A method for computing the free-space longitudinal wakefield due to coherent synchrotron radiation (CSR) in a one-dimensional model is developed using a fast integrated Green function approach. This approach accurately captures the short-range behavior of the CSR interaction and does not require the numerical differentiation of a noisy longitudinal charge density. The transient wakefields that occur near bend entry and exit are included. This method can also be generalized to include the effect of upstream radiation that propagates through multiple lattice elements before interacting with the bunch.

  3. A fast method for the determination of fractional contributions to solvation in proteins

    Science.gov (United States)

    Talavera, David; Morreale, Antonio; Meyer, Tim; Hospital, Adam; Ferrer-Costa, Carles; Gelpi, Josep Lluis; de la Cruz, Xavier; Soliva, Robert; Luque, F. Javier; Orozco, Modesto

    2006-01-01

    A fast method for the calculation of residue contributions to protein solvation is presented. The approach uses the exposed polar and apolar surface of protein residues and has been parametrized from the fractional contributions to solvation determined from linear response theory coupled to molecular dynamics simulations. Application of the method to a large subset of proteins taken from the Protein Data Bank allowed us to compute the expected fractional solvation of residues. This information is used to discuss when a residue or a group of residues presents an uncommon solvation profile. PMID:17001031

  4. Fast method of NMR imaging based on trains of spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Hennel, F.

    1993-12-31

    A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs.

  5. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    CERN Document Server

    Furukawa, T

    2002-01-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 mu s from 700 mu s by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  6. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2007-04-14

    The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces.

  7. Three novel high-resolution nonlinear methods for fast signal processing

    Science.gov (United States)

    Belkić, Dž.; Dando, P. A.; Main, J.; Taylor, H. S.

    2000-10-01

    Three novel nonlinear parameter estimators are devised and implemented for accurate and fast processing of experimentally measured or theoretically generated time signals of arbitrary length. The new techniques can also be used as powerful tools for diagonalization of large matrices that are customarily encountered in quantum chemistry and elsewhere. The key to the success and the common denominator of the proposed methods is a considerably reduced dimensionality of the original data matrix. This is achieved in a preprocessing stage called beamspace windowing or band-limited decimation. The methods are decimated signal diagonalization (DSD), decimated linear predictor (DLP), and decimated Padé approximant (DPA). Their mutual equivalence is shown for the signals that are modeled by a linear combination of time-dependent damped exponentials with stationary amplitudes. The ability to obtain all the peak parameters first and construct the required spectra afterwards enables the present methods to phase correct the absorption mode. Additionally, a new noise reduction technique, based upon the stabilization method from resonance scattering theory, is proposed. The results obtained using both synthesized and experimental time signals show that DSD/DLP/DPA exhibit an enhanced resolution power relative to the standard fast Fourier transform. Of the three methods, DPA is found to be the most efficient computationally.

  8. Method modification of the Legipid® Legionella fast detection test kit.

    Science.gov (United States)

    Albalat, Guillermo Rodríguez; Broch, Begoña Bedrina; Bono, Marisa Jiménez

    2014-01-01

    Legipid(®) Legionella Fast Detection is a test based on combined magnetic immunocapture and enzyme-immunoassay (CEIA) for the detection of Legionella in water. The test is based on the use of anti-Legionella antibodies immobilized on magnetic microspheres. Target microorganism is preconcentrated by filtration. Immunomagnetic analysis is applied on these preconcentrated water samples in a final test portion of 9 mL. The test kit was certified by the AOAC Research Institute as Performance Tested Method(SM) (PTM) No. 111101 in a PTM validation which certifies the performance claims of the test method in comparison to the ISO reference method 11731-1998 and the revision 11731-2004 "Water Quality: Detection and Enumeration of Legionella pneumophila" in potable water, industrial water, and waste water. The modification of this test kit has been approved. The modification includes increasing the target analyte from L. pneumophila to Legionella species and adding an optical reader to the test method. In this study, 71 strains of Legionella spp. other than L. pneumophila were tested to determine its reactivity with the kit based on CEIA. All the strains of Legionella spp. tested by the CEIA test were confirmed positive by reference standard method ISO 11731. This test (PTM 111101) has been modified to include a final optical reading. A methods comparison study was conducted to demonstrate the equivalence of this modification to the reference culture method. Two water matrixes were analyzed. Results show no statistically detectable difference between the test method and the reference culture method for the enumeration of Legionella spp. The relative level of detection was 93 CFU/volume examined (LOD50). For optical reading, the LOD was 40 CFU/volume examined and the LOQ was 60 CFU/volume examined. Results showed that the test Legipid Legionella Fast Detection is equivalent to the reference culture method for the enumeration of Legionella spp.

  9. Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis

    Science.gov (United States)

    Lesar, Žiga; Bohak, Ciril; Marolt, Matija

    2015-03-01

    In this paper we present the results of an evaluation of different visualization methods for angiogram volumetric data-ray casting, marching cubes, and multi-level partition of unity implicits. There are several options available with ray-casting: isosurface extraction, maximum intensity projection and alpha compositing, each producing fundamentally different results. Different visualization methods are suitable for different needs, so this choice is crucial in diagnosis and decision making processes. We also evaluate visual effects such as ambient occlusion, screen space ambient occlusion, and depth of field. Some visualization methods include transparency, so we address the question of relevancy of this additional visual information. We employ transfer functions to map data values to color and transparency, allowing us to view or hide particular tissues. All the methods presented in this paper were developed using OpenCL, striving for real-time rendering and quality interaction. An evaluation has been conducted to assess the suitability of the visualization methods. Results show superiority of isosurface extraction with ambient occlusion effects. Visual effects may positively or negatively affect perception of depth, motion, and relative positions in space.

  10. New modelling method for fast reactor neutronic behaviours analysis; Nouvelles methodes de modelisation neutronique des reacteurs rapides de quatrieme Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.

    2011-05-23

    Due to safety rules running on fourth generation reactors' core development, neutronics simulation tools have to be as accurate as never before. First part of this report enumerates every step of fast reactor's neutronics simulation implemented in current reference code: ECCO. Considering the field of fast reactors that meet criteria of fourth generation, ability of models to describe self-shielding phenomenon, to simulate neutrons leakage in a lattice of fuel assemblies and to produce representative macroscopic sections is evaluated. The second part of this thesis is dedicated to the simulation of fast reactors' core with steel reflector. These require the development of advanced methods of condensation and homogenization. Several methods are proposed and compared on a typical case: the ZONA2B core of MASURCA reactor. (author) [French] Les criteres de surete qui regissent le developpement de coeurs de reacteurs de quatrieme generation implique l'usage d'outils de calcul neutronique performants. Une premiere partie de la these reprend toutes les etapes de modelisation neutronique des reacteurs rapides actuellement d'usage dans le code de reference ECCO. La capacite des modeles a decrire le phenomene d'autoprotection, a representer les fuites neutroniques au niveau d'un reseau d'assemblages combustibles et a generer des sections macroscopiques representatives est appreciee sur le domaine des reacteurs rapides innovants respectant les criteres de quatrieme generation. La deuxieme partie de ce memoire se consacre a la modelisation des coeurs rapides avec reflecteur acier. Ces derniers necessitent le developpement de methodes avancees de condensation et d'homogenisation. Plusieurs methodes sont proposees et confrontees sur un probleme de modelisation typique: le coeur ZONA2B du reacteur maquette MASURCA

  11. OPUS-Rota: a fast and accurate method for side-chain modeling.

    Science.gov (United States)

    Lu, Mingyang; Dousis, Athanasios D; Ma, Jianpeng

    2008-09-01

    In this paper, we introduce a fast and accurate side-chain modeling method, named OPUS-Rota. In a benchmark comparison with the methods SCWRL, NCN, LGA, SPRUCE, Rosetta, and SCAP, OPUS-Rota is shown to be much faster than all the methods except SCWRL, which is comparably fast. In terms of overall chi (1) and chi (1+2) accuracies, however, OPUS-Rota is 5.4 and 8.8 percentage points better, respectively, than SCWRL. Compared with NCN, which has the best accuracy in the literature, OPUS-Rota is 1.6 percentage points better for overall chi (1+2) but 0.3 percentage points weaker for overall chi (1). Hence, our algorithm is much more accurate than SCWRL with similar execution speed, and it has accuracy comparable to or better than the most accurate methods in the literature, but with a runtime that is one or two orders of magnitude shorter. In addition, OPUS-Rota consistently outperforms SCWRL on the Wallner and Elofsson homology-modeling benchmark set when the sequence identity is greater than 40%. We hope that OPUS-Rota will contribute to high-accuracy structure refinement, and the computer program is freely available for academic users.

  12. Fast and accurate marker-based projective registration method for uncalibrated transmission electron microscope tilt series.

    Science.gov (United States)

    Lee, Ho; Lee, Jeongjin; Shin, Yeong Gil; Lee, Rena; Xing, Lei

    2010-06-21

    This paper presents a fast and accurate marker-based automatic registration technique for aligning uncalibrated projections taken from a transmission electron microscope (TEM) with different tilt angles and orientations. Most of the existing TEM image alignment methods estimate the similarity between images using the projection model with least-squares metric and guess alignment parameters by computationally expensive nonlinear optimization schemes. Approaches based on the least-squares metric which is sensitive to outliers may cause misalignment since automatic tracking methods, though reliable, can produce a few incorrect trajectories due to a large number of marker points. To decrease the influence of outliers, we propose a robust similarity measure using the projection model with a Gaussian weighting function. This function is very effective in suppressing outliers that are far from correct trajectories and thus provides a more robust metric. In addition, we suggest a fast search strategy based on the non-gradient Powell's multidimensional optimization scheme to speed up optimization as only meaningful parameters are considered during iterative projection model estimation. Experimental results show that our method brings more accurate alignment with less computational cost compared to conventional automatic alignment methods.

  13. A Fast Method for Heuristics in Large-Scale Flow Shop Scheduling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fast computation methods are needed for the heuristics of flow shop scheduling problems in practical manufacturing environments. This paper describes a generalized flow shop model, which is an extension of the classical model, in which not all machines are available at time zero. The general completion-time computing method is used to compute completion time of generalized flow shops. The transform classical flow shop to generalized shop (TCG) method is used to transform classical schedules into generalized schedules with less jobs. INSERT and SWAP, extended from job-insertion and pair-wise exchange which are fundamental procedures used in most heuristics for classical flow shops, reduce the CPU time by 1/2 and 1/3, respectively. The CPU time of 14 job-insertion and pair-wise exchange-based heuristics are analyzed with and without the TCG method. The results show that TCG considerably reduces the CPU time.

  14. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Deseases, Tokyo (Japan)

    1998-02-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using {sup 14}C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO{sub 2} was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  15. Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation

    Science.gov (United States)

    Wang, Yibin; Qin, Ning; Zhao, Ning

    2016-06-01

    A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.

  16. QC-Chain: fast and holistic quality control method for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Qian Zhou

    Full Text Available Next-generation sequencing (NGS technologies have been widely used in life sciences. However, several kinds of sequencing artifacts, including low-quality reads and contaminating reads, were found to be quite common in raw sequencing data, which compromise downstream analysis. Therefore, quality control (QC is essential for raw NGS data. However, although a few NGS data quality control tools are publicly available, there are two limitations: First, the processing speed could not cope with the rapid increase of large data volume. Second, with respect to removing the contaminating reads, none of them could identify contaminating sources de novo, and they rely heavily on prior information of the contaminating species, which is usually not available in advance. Here we report QC-Chain, a fast, accurate and holistic NGS data quality-control method. The tool synergeticly comprised of user-friendly tools for (1 quality assessment and trimming of raw reads using Parallel-QC, a fast read processing tool; (2 identification, quantification and filtration of unknown contamination to get high-quality clean reads. It was optimized based on parallel computation, so the processing speed is significantly higher than other QC methods. Experiments on simulated and real NGS data have shown that reads with low sequencing quality could be identified and filtered. Possible contaminating sources could be identified and quantified de novo, accurately and quickly. Comparison between raw reads and processed reads also showed that subsequent analyses (genome assembly, gene prediction, gene annotation, etc. results based on processed reads improved significantly in completeness and accuracy. As regard to processing speed, QC-Chain achieves 7-8 time speed-up based on parallel computation as compared to traditional methods. Therefore, QC-Chain is a fast and useful quality control tool for read quality process and de novo contamination filtration of NGS reads, which could

  17. Improved microscopical detection of acid-fast bacilli by the modified bleach method in lymphnode aspirates

    Directory of Open Access Journals (Sweden)

    Annam Vamseedhar

    2009-07-01

    Full Text Available Objectives: To improve the smear microscopy for detection of acid-fast bacilli (AFB in fine needle aspiration cytology (FNAC of lymph node using the bleach method and also to compare this with cytological diagnosis and the conventional Ziehl-Neelsen (ZN method. Study Design: In 99 consecutive patients with clinical suspicion of tuberculosis (TB presenting with lymphadenopathy, FNACs were performed. Smears from the aspirates were processed for routine cytology and the conventional ZN method. The remaining material in the needle hub and/or the syringe was used for the bleach method. The significance of the bleach method over the conventional ZN method and cytology was analyzed using the χ2 test. Results: Of 99 aspirates, 93 were studied and the remaining six were excluded from the study due to diagnosis of malignancy in 4.04% (4/6 and inadequate aspiration in 2.02% (2/6. Among the 93 aspirates, 33.33% (31/93 were positive for AFB on conventional ZN method, 41.94% (39/93 were indicative of TB on cytology and the smear positivity increased to 63.44% (59/93 on bleach method. Conclusion: The bleach method is simple, inexpensive and potent disinfectant, also limiting the risk of laboratory-acquired infections. The implementation of the bleach method clearly improves microscopic detection and can be a useful contribution to routine cytology.

  18. Adaptive grouping for the higher-order multilevel fast multipole method

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Jørgensen, Erik; Meincke, Peter

    2014-01-01

    An alternative parameter-free adaptive approach for the grouping of the basis function patterns in the multilevel fast multipole method is presented, yielding significant memory savings compared to the traditional Octree grouping for most discretizations, particularly when using higher-order basis...... functions. Results from both a uniformly and nonuniformly meshed scatterer are presented, showing how the technique is worthwhile even for regular meshes, and demonstrating that there is no loss of accuracy in spite of the large reduction in memory requirements and the relatively low computational cost....

  19. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Jensen, Ole Nørregaard

    2010-01-01

    MOTIVATION: Fuzzy c-means clustering is widely used to identify cluster structures in high-dimensional datasets, such as those obtained in DNA microarray and quantitative proteomics experiments. One of its main limitations is the lack of a computationally fast method to set optimal values...... on the main properties of the dataset. Taking the dimension of the set and the number of objects as input values instead of evaluating the entire dataset allows us to propose a functional relationship determining the fuzzifier directly. This result speaks strongly against using a predefined fuzzifier...

  20. Formulation design and optimization of fast dissolving clonazepam tablets by sublimation method

    OpenAIRE

    Shirsand, S. B.; Sarasija Suresh; Kusumdevi, V.; Swamy, P. V.

    2011-01-01

    Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 3² full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly c...

  1. Highly Parallel Demagnetization Field Calculation Using the Fast Multipole Method on Tetrahedral Meshes with Continuous Sources

    CERN Document Server

    Palmesi, Pietro; Bruckner, Florian; Abert, Claas; Suess, Dieter

    2016-01-01

    The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Improvements both on a numerical and computational basis can relief problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. We assume linearly magnetized tetrahedral sources, treat the near field directly and use analytical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.

  2. 一种快速3维无人机航迹规划方法%A Fast 3D Path Planning Method for UAVs

    Institute of Scientific and Technical Information of China (English)

    李时东; 艾青; 刘嵩

    2012-01-01

    无人机三维航迹规划由于规划约束众多,同时面临在巨大的搜索空间中寻优,往往规划速度慢,规划效率低.结合二维规划和高度规划实现三维规划是一种有效提升规划速度的解决方案,在利用Fast M arching Method(FMM)进行二维规划的基础上,采用SparseA—star(SAS)搜索算法进行高度规划,分阶段考虑航迹规划的各种环境约束和机动约束,从而压缩规划空间.实验表明,该方法航迹规划速度快,所得到的三维航迹具有良好的地形跟随能力和避障能力.%3D path planning is always slow and in efficient for there are many constraints to be considered while planning, meanwhile, the path is produced by searching in huge space. It is an efficient scheme to improve path planning speed by combining 2D path planning and height planning. We proposed a fast 3D path planning method' by planning 2D path with Fast Marching Method (FMM) and making height plan- ning using Sparse A-Star (SAS) searching method, where the environment and maneuverability constraints are processed by stages, thereby, the planning space is reduced. Experiments showed that the proposed method generates path quickly, and the obtained path follows terrain and avoids obstacle well.

  3. An improved current potential method for fast computation of stellarator coil shapes

    Science.gov (United States)

    Landreman, Matt

    2017-04-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.

  4. About peculiarities of application of the method of fast expansions in the solution of the Navier-Stokes equations

    Directory of Open Access Journals (Sweden)

    A. D. Chernyshov

    2017-01-01

    Full Text Available The brief presentation of the method of fast expansions is given to solve nonlinear differential equations. Application  rules of the operator of fast expansions are specified for solving differential equations. According to the method of fast expansions, an unknown function can be represented as the sum of the boundary function and Fourier series sines and cosines for one variable. The special construction of the boundary functions leads to reasonably fast convergence of the Fourier series, so that for engineering calculations, it is sufficient to consider only the first three members. The method is applicable both to linear and nonlinear integro-differential systems. By means of applying the method of fast expansions to nonlinear Navier-Stokes equations the problem is reduced to a closed system of ordinary differential equations, which solution doesn't represent special difficulties. We can reapply the method of fast expansions to the resulting system of differential equations and reduce the original problem to a system of algebraic equations. If the problem is n-dimensional, then after n-fold application of the method of fast expansions the problem will be reduced to a closed algebraic system. Finally, we obtain an analytic-form solution of complicated boundary value problem in partial derivatives. The flow of an incompressible viscous fluid of Navier–Stokes is considered in a curvilinear pipe. The problem is reduced to solving a closed system of ordinary differential equations with boundary conditions by the method of fast expansions. The article considers peculiarities of finding the coefficients of boundary functions and Fourier coefficients for the zero-order and first-order operators of fast expansions. Obtaining the analytic-form solution is of great interest, because it allows to analyze and to investigate the influence of various factors on the properties of the viscous fluid in specific cases.

  5. Fast Swinnex Filtration (FSF): A fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Utrilla, Jose; Naviaux, Robert K.;

    2015-01-01

    of a suitable method for anaerobic cultures grown in complex media. Given that a vast majority of bacteria are facultative or obligate anaerobes that grow to low biomass density and need to be cultured in complex media, a suitable sampling and extraction strategy for anaerobic cultures is needed. In this work......Liquid chromatography tandem mass spectrometry (LC–MS/MS) provides a powerful means to analyze intracellular metabolism. A prerequisite to accurate metabolomics analysis using LC–MS/MS is a robust sampling and extraction protocol. One unaddressed area in sampling is a detailed examination......, we develop a fast-filtration method using pressuredriven Swinnex filters. We show that the method is fast enough to provide an accurate snapshot of intracellular metabolism, reduces matrix interference from the media to improve the number of compounds that can be detected, and is applicable...

  6. An optimized fast image resizing method based on content-aware

    Science.gov (United States)

    Lu, Yan; Gao, Kun; Wang, Kewang; Xu, Tingfa

    2014-11-01

    In traditional image resizing theory based on interpolation, the prominent object may cause distortion, and the image resizing method based on content-aware has become a research focus in image processing because the prominent content and structural features of images are considered in this method. In this paper, we present an optimized fast image resizing method based on content-aware. Firstly, an appropriate energy function model is constructed on the basis of image meshes, and multiple energy constraint templates are established. In addition, this paper deducts the image saliency constraints, and then the problem of image resizing is used to reformulate a kind of convex quadratic program task. Secondly, a method based on neural network is presented in solving the problem of convex quadratic program. The corresponding neural network model is constructed; moreover, some sufficient conditions of the neural network stability are given. Compared with the traditional numerical algorithm such as iterative method, the neural network method is essentially parallel and distributed, which can expedite the calculation speed. Finally, the effects of image resizing by the proposed method and traditional image resizing method based on interpolation are compared by adopting MATLAB software. Experiment results show that this method has a higher performance of identifying the prominent object, and the prominent features can be preserved effectively after the image is resized. It also has the advantages of high portability and good real-time performance with low visual distortion.

  7. Fast Vortex Method for the Simulation of Flows Inside Channels With and Without Injection

    Institute of Scientific and Technical Information of China (English)

    YvesGAGNON; HUANGWeiguang

    1993-01-01

    A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels,The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow.The second channel is similar to the first one but with an injection of a secondary fluid through a slot on one of its walls,In both cases,results are presented for flows at low Reynolds numbers and for flows at a high Reynolds number The numerical method used is based on the Random Vortex Method and on the Vortex-In-Cell Algorithm.Physical analyses of the numerical results are also presented.mostly in application to film cooling.

  8. Periodic Boundary Conditions for Finite-Differentiation-Method Fast-Fourier-Transform Micromagnetics

    Institute of Scientific and Technical Information of China (English)

    Jiang-Nan Li; Dan Wei

    2017-01-01

    We describe an accurate periodic boundary condition (PBC) called the symmetric PBC in the calculation of the magnetostatic interaction field in the finite-differentiation-method fast-Fourier-transform (FDM-FFT) micromagnetics.The micromagnetic cells in the regular mesh used by the FDM-FFT method are finite-sized elements,but not geometrical points.Therefore,the key PBC operations for FDM-FFT methods are splitting and relocating the micromagnetic cell surfaces to stay symmetrically inside the box of half-total sizes with respect to the origin.The properties of the demagnetizing matrix of the split micromagnetic cells are discussed,and the sum rules of demagnetizing matrix are fulfilled by the symmetric PBC.

  9. A fast method for spine localization in x-ray images.

    Science.gov (United States)

    Huang, Chao-Hui

    2013-01-01

    Detection of spines in medical images are important tasks in medical applications. These tasks are relatively easy for CT/MR images because the bones are easily distinguishable from other tissues. However, they are difficult for x-ray images due to bone and soft tissue overlapping. This paper illustrates a method for detecting the medial axis of spine in x-ray images. Given an initial point on the spine in the x-ray image manually or automatically, the method iteratively searches for good feature points on the spine to locate the medial axis. As a result, the effort of determining the relevant medical information, such as Cobb's angle, can be minimized. The proposed method is fast and efficient. In average it took less than 1 second for localizing the spine on a 3000×1000 gray scale x-ray image.

  10. A new method for the fast simulation of models of highly dependable Markov system

    Institute of Scientific and Technical Information of China (English)

    XIAO Gang; LI Zhizhong

    2005-01-01

    To fast evaluate the small probability that starts from the all-components-up state, the system hits the failed sets before returning to the all-components-up state, Important Sampling or Important Splitting is used commonly. In this paper, a new approach distinguished from Important Sampling and Important Splitting is presented to estimate this small probability of highly dependable Markov system. This new approach achieves variance reduction through improving the estimator itself. The new estimator is derived from the integral equation describing the state transitions of Markov system. That the variance of this estimator is less than that of naive simulation at all time is proved theoretically. Two example involved reliability models with deferred repair are used to compare the methods of RB, IGBS, SB-RBS, naive simulation, and the method presented in this paper. Results show our method has the least RE.

  11. Investigation of vortical flows over oscillating body using fast Lagrangian vortex method

    Institute of Scientific and Technical Information of China (English)

    Baoshan ZHU

    2009-01-01

    A computational method facilitating long-time and high-resolution unsteady vortical flows is developed with the advantages of the discrete vortex methods. Both the velocity and pressure distribution of the flow field are calculated by integral formulations in combination with a fast summation algorithm. The vorticity field is described by Lagrangian representation, which is well suited to the moving boundary. Viscosity diffusion of the vorticity is considered with the core spreading model corrected by an adaptive splitting and merging algorithm. The effective-ness of the present method is examined by comparing the numerical results of unsteady separated flows which pass a cylinder and a thin cambered blade undergoing rotational oscillations with available experimental results. Interesting results about vortex shedding patterns and lock-in characteristics are provided for the thin cambered blade.

  12. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer.

    Science.gov (United States)

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng

    2015-04-01

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  13. A fast recognition method of warhead target in boost phase using kinematic features

    Science.gov (United States)

    Chen, Jian; Xu, Shiyou; Tian, Biao; Wu, Jianhua; Chen, Zengping

    2015-12-01

    The radar targets number increases from one to more when the ballistic missile is in the process of separating the lower stage rocket or casting covers or other components. It is vital to identify the warhead target quickly among these multiple targets for radar tracking. A fast recognition method of the warhead target is proposed to solve this problem by using kinematic features, utilizing fuzzy comprehensive method and information fusion method. In order to weaken the influence of radar measurement noise, an extended Kalman filter with constant jerk model (CJEKF) is applied to obtain more accurate target's motion information. The simulation shows the validity of the algorithm and the effects of the radar measurement precision upon the algorithm's performance.

  14. ERROR ANALYSIS FOR A FAST NUMERICAL METHOD TO A BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND

    Institute of Scientific and Technical Information of China (English)

    Jingtang Ma; Tao Tang

    2008-01-01

    For two-dimensional boundary integral equations of the first kind with logarithmic kernels,the use of the conventional boundary element methods gives linear systems with dense matrix.In a recent work [J.Comput.Math.,22 (2004),pp.287-298],it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules.The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved.The purpose of this work is to establish a stability and convergence theory for this fast numerical method.The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation.The formal orders of convergence observed in the numerical experiments are proved rigorously.

  15. GRS Method for Uncertainties Evaluation of Parameters in a Prospective Fast Reactor

    Science.gov (United States)

    Peregudov, A.; Andrianova, O.; Raskach, K.; Tsibulya, A.

    2014-04-01

    A number of recent studies have been devoted to the uncertainty estimation of reactor calculation parameters by the GRS (Generation Random Sampled) method. This method is based on direct sampling input data resulting in formation of random sets of input parameters which are used for multiple calculations. Once these calculations are performed, statistical processing of the calculation results is carried out to determine the mean value and the variance of each calculation parameter of interest. In our study this method is used to estimate the uncertainty of calculation parameters (keff, power density, dose rate) of a prospective sodium-cooled fast reactor. Neutron transport calculations were performed by the nodal diffusion code TRIGEX and Monte Carlo code MMK.

  16. Fast ℓ1-regularized space-time adaptive processing using alternating direction method of multipliers

    Science.gov (United States)

    Qin, Lilong; Wu, Manqing; Wang, Xuan; Dong, Zhen

    2017-04-01

    Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-to-clutter-noise ratio performance than other algorithms.

  17. A data-driven prediction method for fast-slow systems

    Science.gov (United States)

    Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael

    2016-04-01

    In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.

  18. A Fast Feature Extraction Method Based on Integer Wavelet Transform for Hyperspectral Images

    Institute of Scientific and Technical Information of China (English)

    GUYanfeng; ZHANGYe; YUShanshan

    2004-01-01

    Hyperspectral remote sensing provides high-resolution spectral data and the potential for remote discrimination between subtle differences in ground covers. However, the high-dimensional data space generated by the hyperspectral sensors creates a new challenge for conventional spectral data analysis techniques. A challenging problem in using hyperspectral data is to eliminate redundancy and preserve useful spectral information for applications. In this paper, a Fast feature extraction (FFE) method based on integer wavelet transform is proposed to extract useful features and reduce dimensionality of hyperspectral images. The FFE method can be directly used to extract useful features from spectral vector of each pixel resident in the hyperspectral images. The FFE method has two main merits: high computational efficiency and good ability to extract spectral features. In order to better testify the effectiveness and the performance of the proposed method, classification experiments of hyperspectral images are performed on two groups of AVIRIS (Airborne visible/infrared imaging spectrometer) data respectively. In addition, three existing methods for feature extraction of hyperspectral images, i.e. PCA, SPCT and Wavelet Transform, are performed on the same data for comparison with the proposed method. The experimental investigation shows that the efficiency of the FFE method for feature extraction outclasses those of the other three methods mentioned above.

  19. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    Science.gov (United States)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  20. A fast nonlinear regression method for estimating permeability in CT perfusion imaging.

    Science.gov (United States)

    Bennink, Edwin; Riordan, Alan J; Horsch, Alexander D; Dankbaar, Jan Willem; Velthuis, Birgitta K; de Jong, Hugo W

    2013-11-01

    Blood-brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography (CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression (NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the permeability estimates were evaluated using simulated CT attenuation-time curves with realistic noise, and clinical data from 20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable estimates, but took up to 12 × longer to calculate. The simplified NLR method was ∼4 × faster than other NLR methods, while maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate permeability in stroke, fast enough for clinical application in an acute stroke setting.

  1. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Institute of Scientific and Technical Information of China (English)

    Xue Mengfan; Li Xiaoping; Sun Haifeng; Fang Haiyan

    2016-01-01

    X-ray pulsar-based navigation (XPNAV) is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint prob-ability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC) and nonlinear least squares (NLS) estima-tors, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML) estimators.

  2. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Directory of Open Access Journals (Sweden)

    Xue Mengfan

    2016-06-01

    Full Text Available X-ray pulsar-based navigation (XPNAV is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint probability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC and nonlinear least squares (NLS estimators, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML estimators.

  3. Agreement between fasting and postprandial LDL cholesterol measured with 3 methods in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Lund, Søren S.; Petersen, Martin; Frandsen, Merete

    2011-01-01

    LDL cholesterol (LDL-C) is a modifiable cardiovascular disease risk factor. We used 3 LDL-C methods to study the agreement between fasting and postprandial LDL-C in type 2 diabetes (T2DM) patients.......LDL cholesterol (LDL-C) is a modifiable cardiovascular disease risk factor. We used 3 LDL-C methods to study the agreement between fasting and postprandial LDL-C in type 2 diabetes (T2DM) patients....

  4. A fast pressure-correction method for incompressible two-fluid flows

    Science.gov (United States)

    Dodd, Michael S.; Ferrante, Antonino

    2014-09-01

    We have developed a new pressure-correction method for simulating incompressible two-fluid flows with large density and viscosity ratios. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation, which can be solved with an FFT-based, fast Poisson solver. This reduction is achieved by splitting the variable density pressure gradient term in the governing equations. The validity of this splitting is demonstrated from our numerical tests, and it is explained from a physical viewpoint. In this paper, the new pressure-correction method is coupled with a mass-conserving volume-of-fluid method to capture the motion of the interface between the two fluids but, in general, it could be coupled with other interface advection methods such as level-set, phase-field, or front-tracking. First, we verified the new pressure-correction method using the capillary wave test-case up to density and viscosity ratios of 10,000. Then, we validated the method by simulating the motion of a falling water droplet in air and comparing the droplet terminal velocity with an experimental value. Next, the method is shown to be second-order accurate in space and time independent of the VoF method, and it conserves mass, momentum, and kinetic energy in the inviscid limit. Also, we show that for solving the two-fluid Navier-Stokes equations, the method is 10-40 times faster than the standard pressure-correction method, which uses multigrid to solve the variable coefficient Poisson equation. Finally, we show that the method is capable of performing fully-resolved direct numerical simulation (DNS) of droplet-laden isotropic turbulence with thousands of droplets using a computational mesh of 10243 points.

  5. A New Fast Method for Determining Local Properties of Striped Patterns

    CERN Document Server

    Egolf, D A; Bodenschatz, E; Egolf, David A.; Melnikov, Ilarion V.; Bodenschatz, Eberhard

    1997-01-01

    From the striped coats of zebras to the ripples in windblown sand, the natural world abounds with locally banded patterns. Such patterns have been of great interest throughout history, and, in the last twenty years, scientists in a wide variety of fields have been studying the patterns formed in well-controlled experiments that yield enormous quantities of high-precision data. These experiments involving phenomena as diverse as chemical reactions in shallow layers, thermal convection in horizontal fluid layers, periodically shaken layers of sand, and the growth of slime mold colonies often display patterns that appear qualitatively similar. Methods are needed to characterize in a reasonable amount of time the differences and similarities in patterns that develop in different systems, as well as in patterns formed in one system for different experimental conditions. In this Letter, we introduce a novel, fast method for determining local pattern properties such as wavenumber, orientation, and curvature as a fun...

  6. Fast discrimination of hydroxypropyl methyl cellulose using portable Raman spectrometer and multivariate methods

    Science.gov (United States)

    Song, Biao; Lu, Dan; Peng, Ming; Li, Xia; Zou, Ye; Huang, Meizhen; Lu, Feng

    2017-02-01

    Raman spectroscopy is developed as a fast and non-destructive method for the discrimination and classification of hydroxypropyl methyl cellulose (HPMC) samples. 44 E series and 41 K series of HPMC samples are measured by a self-developed portable Raman spectrometer (Hx-Raman) which is excited by a 785 nm diode laser and the spectrum range is 200-2700 cm-1 with a resolution (FWHM) of 6 cm-1. Multivariate analysis is applied for discrimination of E series from K series. By methods of principal components analysis (PCA) and Fisher discriminant analysis (FDA), a discrimination result with sensitivity of 90.91% and specificity of 95.12% is achieved. The corresponding receiver operating characteristic (ROC) is 0.99, indicting the accuracy of the predictive model. This result demonstrates the prospect of portable Raman spectrometer for rapid, non-destructive classification and discrimination of E series and K series samples of HPMC.

  7. An improved current potential method for fast computation of stellarator coil shapes

    CERN Document Server

    Landreman, Matt

    2016-01-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure [Merkel, Nucl. Fusion 27, 867 (1987)], its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, and it eliminates two pathologies of NE...

  8. Method of Images for the Fast Calculation of Temperature Distributions in Packaged VLSI Chips

    CERN Document Server

    Hériz, Virginia Martín; Kemper, T; Kang, S -M; Shakouri, A

    2008-01-01

    Thermal aware routing and placement algorithms are important in industry. Currently, there are reasonably fast Green's function based algorithms that calculate the temperature distribution in a chip made from a stack of different materials. However, the layers are all assumed to have the same size, thus neglecting the important fact that the thermal mounts which are placed underneath the chip can be significantly larger than the chip itself. In an earlier publication, we showed that the image blurring technique can be used to calculate quickly temperature distribution in realistic packages. For this method to be effective, temperature distribution for several point heat sources at the center and at the corner and edges of the chip should be calculated using finite element analysis (FEA) or measured. In addition, more accurate results require correction by a weighting function that will need several FEA simulations. In this paper, we introduce the method of images that take the symmetry of the thermal boundary...

  9. A fast method to diagnose phase transition from amorphous to microcrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    HOU; GuoFu

    2007-01-01

    A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various silane concentrations. The influence of silane concentration on structural and electrical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time, optical emission spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties, Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism, why both OES and Raman can be used to diagnose the phase transition, was analyzed theoretically.……

  10. Fast Total-Variation Image Deconvolution with Adaptive Parameter Estimation via Split Bregman Method

    Directory of Open Access Journals (Sweden)

    Chuan He

    2014-01-01

    Full Text Available The total-variation (TV regularization has been widely used in image restoration domain, due to its attractive edge preservation ability. However, the estimation of the regularization parameter, which balances the TV regularization term and the data-fidelity term, is a difficult problem. In this paper, based on the classical split Bregman method, a new fast algorithm is derived to simultaneously estimate the regularization parameter and to restore the blurred image. In each iteration, the regularization parameter is refreshed conveniently in a closed form according to Morozov’s discrepancy principle. Numerical experiments in image deconvolution show that the proposed algorithm outperforms some state-of-the-art methods both in accuracy and in speed.

  11. A fast computation method for MUSIC spectrum function based on circular arrays

    Science.gov (United States)

    Du, Zhengdong; Wei, Ping

    2015-02-01

    The large computation amount of multiple signal classification (MUSIC) spectrum function seriously affects the timeliness of direction finding system using MUSIC algorithm, especially in the two-dimensional directions of arrival (DOA) estimation of azimuth and elevation with a large antenna array. This paper proposes a fast computation method for MUSIC spectrum. It is suitable for any circular array. First, the circular array is transformed into a virtual uniform circular array, in the process of calculating MUSIC spectrum, for the cyclic characteristics of steering vector, the inner product in the calculation of spatial spectrum is realised by cyclic convolution. The computational amount of MUSIC spectrum is obviously less than that of the conventional method. It is a very practical way for MUSIC spectrum computation in circular arrays.

  12. SPLICEFINDER - a fast and easy screening method for active protein trans-splicing positions.

    Directory of Open Access Journals (Sweden)

    Joachim Zettler

    Full Text Available Split intein enabled protein trans-splicing (PTS is a powerful method for the ligation of two protein fragments, thereby paving the way for various protein modification or protein function control applications. PTS activity is strongly influenced by the amino acids directly flanking the splice junctions. However, to date no reliable prediction can be made whether or not a split intein is active in a particular foreign extein context. Here we describe SPLICEFINDER, a PCR-based method, allowing fast and easy screening for active split intein insertions in any target protein. Furthermore we demonstrate the applicability of SPLICEFINDER for segmental isotopic labeling as well as for the generation of multi-domain and enzymatically active proteins.

  13. Improved tilt-depth method for fast estimation of top and bottom depths of magnetic bodies

    Science.gov (United States)

    Wang, Yan-Guo; Zhang, Jin; Ge, Kun-Peng; Chen, Xiao; Nie, Feng-Jun

    2016-06-01

    The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and threedimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.

  14. Methods to determine fast-ion distribution functions from multi-diagnostic measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko

    Understanding the behaviour of fast ions in a fusion plasma is very important, since the fusion-born alpha particles are expected to be the main source of heating in a fusion power plant. Preferably, the entire fast-ion velocity-space distribution function would be measured. However, no fast...

  15. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method.

    Science.gov (United States)

    Yang, Kewei; Delaney, Joseph T; Schubert, Ulrich S; Fahr, Alfred

    2012-03-01

    A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50 nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.

  16. A Fast Optimization Method for Reliability and Performance of Cloud Services Composition Application

    Directory of Open Access Journals (Sweden)

    Zhao Wu

    2013-01-01

    Full Text Available At present the cloud computing is one of the newest trends of distributed computation, which is propelling another important revolution of software industry. The cloud services composition is one of the key techniques in software development. The optimization for reliability and performance of cloud services composition application, which is a typical stochastic optimization problem, is confronted with severe challenges due to its randomness and long transaction, as well as the characteristics of the cloud computing resources such as openness and dynamic. The traditional reliability and performance optimization techniques, for example, Markov model and state space analysis and so forth, have some defects such as being too time consuming and easy to cause state space explosion and unsatisfied the assumptions of component execution independence. To overcome these defects, we propose a fast optimization method for reliability and performance of cloud services composition application based on universal generating function and genetic algorithm in this paper. At first, a reliability and performance model for cloud service composition application based on the multiple state system theory is presented. Then the reliability and performance definition based on universal generating function is proposed. Based on this, a fast reliability and performance optimization algorithm is presented. In the end, the illustrative examples are given.

  17. IN SEARCH OF A FAST SCREENING METHOD FOR DETECTING THE MALINGERING OF COGNITIVE IMPAIRMENT

    Directory of Open Access Journals (Sweden)

    Amada Ampudia

    2012-07-01

    Full Text Available Forensic settings demand expedient and conclusive forensic psychological assessment. The aim of this study was to design a simple and fast, but reliable psychometric instrument for detecting the malingering of cognitive impairment. In a quasi-experimental design, 156 individuals were divided into three groups: a normal group with no cognitive impairment; a Mild Cognitive Impairment (MCI group; and a group of informed malingerers with no MCI who feigned cognitive impairment. Receiver Operating Curve (ROC analysis of the Test of Memory Malingering (TOMM, and of several subtests of the Wechsler Memory Scale (WMS-III revealed that the WMS-III was as reliable and accurate as the TOMM in discriminating malingerers from the honest. The results revealed that the diagnostic accuracy, sensitivity and specificity of the WMS-III Auditory Recognition Delayed of Verbal Paired Associates subtest was similar to the TOMM in discriminating malingering from genuine memory impairment. In conclusion, the WMS-III Recognition of Verbal Paired Associates subtest and the TOMM provide a fast, valid and reliable screening method for detecting the malingering of cognitive impairment.

  18. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    Science.gov (United States)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution

  19. A fast and effective method to assess myocardial hyperemia in acute myocarditis by magnetic resonance.

    Science.gov (United States)

    Perfetti, Matteo; Malatesta, Gelsomina; Alvarez, Irene; Liga, Riccardo; Barison, Andrea; Todiere, Giancarlo; Eletto, Nicoletta; De Caterina, Raffaele; Lombardi, Massimo; Aquaro, Giovanni Donato

    2014-03-01

    Current cardiac magnetic resonance (CMR) quantitative signs for the diagnosis of myocarditis include myocardial edema, fibrosis and myocardial hyperemia (Hyp). Methods for the assessment of Hyp are actually complex and time-consuming. To test a simple and fast method to assess Hyp, using contrast enhancement steady state free precession (ceSSFP) technique. CMR imaging at 1.5T was performed on 39 patients with diagnosis of acute myocarditis and in 20 healthy controls. Hyp was evaluated in systolic and diastolic frames (Hyp-SYS and Hyp-DIA) as areas of myocardial hyperintensity in ceSSFP images early after gadolinium injection. Myocardial edema was evaluated using T2-STIR images. Myocardial fibrosis was assessed in conventional late gadolinium enhancement (LGE) images. A value of ≤12.1 g of Hyp-DIA was obtained as cut-off of normality in healthy controls. Using this threshold, Hyp was detected in 30 patients (77 %) with myocarditis. LGE was detected in 36 patients (92 %), and myocardial edema in 38 (97 %) patients with myocarditis A linear relation was found between Hyp-DIA and the extent of myocardial edema (R(2) 0.48, 95 % CI 0.47-0.85, p < 0.001) and the extent of LGE (R(2) 0.41, 95 % CI 0.31-0.61, p < 0.001). Patients with hyperemia had higher levels of C-reactive protein (p < 0.001), a higher extent of LGE (p < 0.05) and a larger left atrial area (p < 0.05). ceSSFP sequence at CMR is a novel and fast method to assess myocardial hyperemia in patient with acute myocarditis. Compared with non-Hyp subjects, patients with Hyp had more signs of inflammation and myocardial damage.

  20. Development of level-1 PSA method applicable to Japan Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kurisaka, K., E-mail: kurisaka.kennichi@jaea.go.jp [Advanced Nuclear System R and D Directorate, Japan Atomic Energy Agency, Ibaraki (Japan); Sakai, T.; Yamano, H. [Advanced Nuclear System R and D Directorate, Japan Atomic Energy Agency, Ibaraki (Japan); Fujita, S.; Minagawa, K. [Department of Mechanical Engineering, School of Engineering, Tokyo Denki University, Tokyo (Japan); Yamaguchi, A.; Takata, T. [Department of Energy and Environment Engineering, Osaka University, Osaka (Japan)

    2014-04-01

    This paper describes a study to develop the level-1 probabilistic safety assessment (PSA) method that is applicable to the Japan Sodium-cooled Fast Reactor (JSFR). This study has been started since August 2010 and aims to provide a new evaluation method of (1) passive safety architectures related to internal events and (2) an advanced seismic isolation system related to a seismic event as a representative external event in Japan. Regarding the internal events evaluation, a quantitative analysis on the frequency of the core damage caused by reactor shutdown failure was conducted. A failure in passive reactor shutdown was taken into account in the event tree model. The failure rate of sodium-cooled fast reactor (SFR) specific components was evaluated based on the operating experience in existing SFRs by applying the Hierarchical Bayesian Method, which can consider a plant-to-plant variability. By conducting an uncertainty analysis, it was found that the assumption about the correlation of the probability parameters between the main and backup reactor shutdown systems (RSSs) is sensitive to the mean value of the frequency of the core damage caused by reactor shutdown failure. As for the seismic event evaluation, seismic response analysis and sensitivity analysis of a seismic isolation system were carried out. Rubber bearings have a hardening property in horizontal direction and a softening property in vertical direction in case of large deformation. Therefore the analyses considered nonlinearity of rubber bearings. Both horizontal and vertical nonlinear characteristics of rubber bearings were explained by multi-linear model. Mass point analytical models were applied. At first, seismic response analysis was executed in order to investigate influence of nonlinearity of rubber bearing upon response of building. Then sensitivity analysis was executed. Parameters of rubber bearings, oil dampers and the building were fluctuated, and influence of dispersion of these

  1. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    Science.gov (United States)

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  2. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    Science.gov (United States)

    Furukawa, Takuji; Noda, Koji

    2002-08-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 μs from 700 μs by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  3. Extension and evaluation of the multilevel summation method for fast long-range electrostatics calculations.

    Science.gov (United States)

    Moore, Stan G; Crozier, Paul S

    2014-06-21

    Several extensions and improvements have been made to the multilevel summation method (MSM) of computing long-range electrostatic interactions. These include pressure calculation, an improved error estimator, faster direct part calculation, extension to non-orthogonal (triclinic) systems, and parallelization using the domain decomposition method. MSM also allows fully non-periodic long-range electrostatics calculations which are not possible using traditional Ewald-based methods. In spite of these significant improvements to the MSM algorithm, the particle-particle particle-mesh (PPPM) method was still found to be faster for the periodic systems we tested on a single processor. However, the fast Fourier transforms (FFTs) that PPPM relies on represent a major scaling bottleneck for the method when running on many cores (because the many-to-many communication pattern of the FFT becomes expensive) and MSM scales better than PPPM when using a large core count for two test problems on Sandia's Redsky machine. This FFT bottleneck can be reduced by running PPPM on only a subset of the total processors. MSM is most competitive for relatively low accuracy calculations. On Sandia's Chama machine, however, PPPM is found to scale better than MSM for all core counts that we tested. These results suggest that PPPM is usually more efficient than MSM for typical problems running on current high performance computers. However, further improvements to MSM algorithm could increase its competitiveness for calculation of long-range electrostatic interactions.

  4. A Fast Feature Points-Based Object Tracking Method for Robot Grasp

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2013-03-01

    Full Text Available In this paper, we propose a fast feature points‐based object tracking method for robot grasp. In the detection phase, we detect the object with SIFT feature points extraction and matching. Then we compute the object’s image position with homography constraints and set up an interest window to accommodate the object. In the tracking phase, we only focus on the interest window, detecting feature points from the window and updating the window’s position and size. Our method is of special practical meaning in the case of service robot grasp. Because when the robot grasps the object, the object’s image size is usually small relative to the whole image, it is unnecessary to detect the whole image. On the other hand, the object is partially occluded by the robot gripper. SIFT is good at dealing with occlusion, but it is time consuming. Hence, by combining SIFT and an interest window, our method gains the ability to deal with occlusion and can satisfy the real‐time requirements at the same time. Experiments show that our method exceeds several leading feature points‐based object tracking methods in real‐time performance.

  5. Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method

    Science.gov (United States)

    Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian

    2016-09-01

    We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.

  6. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.;

    2014-01-01

    Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... operation, where switching times must be performed within a few milliseconds. These valve requirements make a simulation based design approach essential, where mechanical strength, thermal dissipation, fluid dynamics and electro-magnetic dynamics must be taken into account. In this paper a complete design...... of the valves. A coupled optimization is finally conducted to optimize the electro-magnetic actuator, leading to a valve design based on the chosen valve topology. The design method is applied to an example DD machine and the resulting valve design fulfilling the requirements is presented....

  7. The Fast Multipole Method and Point Dipole Moment Polarizable Force Fields

    CERN Document Server

    Coles, Jonathan P

    2014-01-01

    We present a momentum conserving implementation of the fast multipole method for computing coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected $O(N)$ scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using both a standard integrator and a multiple time step one. Our tests show the applicability of FMM combined with state-of-the-art chemical models in molecular dynamical systems.

  8. Fast prediction unit selection method for HEVC intra prediction based on salient regions

    Science.gov (United States)

    Feng, Lei; Dai, Ming; Zhao, Chun-lei; Xiong, Jing-ying

    2016-07-01

    In order to reduce the computational complexity of the high efficiency video coding (HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit (PU) size selection method for HEVC based on salient regions is proposed in this paper. We first build a saliency map for each largest coding unit (LCU) to reduce its texture complexity. Secondly, the optimal PU size is determined via a scheme that implements an information entropy comparison among sub-blocks of saliency maps. Finally, we apply the partitioning result of saliency map on the original LCUs, obtaining the optimal partitioning result. Our algorithm can determine the PU size in advance to the angular prediction in intra coding, reducing computational complexity of HEVC. The experimental results show that our algorithm achieves a 37.9% reduction in encoding time, while producing a negligible loss in Bjontegaard delta bit rate ( BDBR) of 0.62%.

  9. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    CERN Document Server

    Chen, Yonghao; Lei, Jiarong; An, Li; Zhang, Xiaodong; Shao, Jianxiong; Zheng, Pu; Wang, Xinhua

    2013-01-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  10. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    Science.gov (United States)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  11. Germination test as a fast method to detect glyphosate-resistant sourgrass

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2015-09-01

    Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.

  12. Germination test as a fast method to detect glyphosate-resistant sourgrass

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2015-01-01

    Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.

  13. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.

    2014-01-01

    Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... operation, where switching times must be performed within a few milliseconds. These valve requirements make a simulation based design approach essential, where mechanical strength, thermal dissipation, fluid dynamics and electro-magnetic dynamics must be taken into account. In this paper a complete design...... of the valves. A coupled optimization is finally conducted to optimize the electro-magnetic actuator, leading to a valve design based on the chosen valve topology. The design method is applied to an example DD machine and the resulting valve design fulfilling the requirements is presented....

  14. Fast calculation method of computer generated hologram animation for viewpoint parallel shift and rotation using Fourier transform optical system.

    Science.gov (United States)

    Watanabe, Ryosuke; Yamaguchi, Kazuhiro; Sakamoto, Yuji

    2016-01-20

    Computer generated hologram (CGH) animations can be made by switching many CGHs on an electronic display. Some fast calculation methods for CGH animations have been proposed, but one for viewpoint movement has not been proposed. Therefore, we designed a fast calculation method of CGH animations for viewpoint parallel shifts and rotation. A Fourier transform optical system was adopted to expand the viewing angle. The results of experiments were that the calculation time of our method was over 6 times faster than that of the conventional method. Furthermore, the degradation in CGH animation quality was found to be sufficiently small.

  15. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.

    Science.gov (United States)

    Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M; Whitaker, Ross T

    2011-01-01

    This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton-Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers.

  16. Cutaneous tube ureterostomy: a fast and effective method of urinary diversion in emergency situations

    Directory of Open Access Journals (Sweden)

    Abdin T

    2015-06-01

    Full Text Available Tamer Abdin,1 Gideon Zamir,2 Alon Pikarsky,2 Ran Katz,1 Ezekiel H Landau,1 Ofer N Gofrit1 1Department of Urology, 2Department of General Surgery, Hadassah Hebrew University Hospital, Jerusalem, Israel Aim: To report on a simple and rapid method of urinary diversion. This method was applied successfully in different clinical scenarios when primary reconstruction of the ureters was not possible. Materials and methods: The disconnected ureter is catheterized by a feeding tube. The tube is secured with sutures and brought out to the lateral abdominal wall as cutaneous tube ureterostomy (CTU. Results: This method was applied in three different clinical scenarios: a 40-year-old man who sustained multiple high-velocity gunshots to the pelvis with combined rectal and bladder trigone injuries and massive bleeding from a comminuted pubic fracture. Damage control included colostomy and bilateral CTUs. A 26-year-old woman had transection of the right lower ureter during abdominal hysterectomy. Diagnosis was delayed for 3 weeks when the patient developed sepsis. The right kidney was diverted with a CTU. A 37-year-old male suffered from bladder perforation and hemorrhagic shock. Emergency cystectomy was done and urinary diversion was accomplished with bilateral CTUs. In all cases, effective drainage of the urinary system was achieved with normalization of kidney function. Conclusion: When local or systemic conditions preclude definitive repair and damage control surgery is needed, CTU provides fast and effective urinary diversion. Keywords: Ureter, trauma, tube cutenuous ureterostomy 

  17. Flow Modeling in Pelton Turbines by an Accurate Eulerian and a Fast Lagrangian Evaluation Method

    Directory of Open Access Journals (Sweden)

    A. Panagiotopoulos

    2015-01-01

    Full Text Available The recent development of CFD has allowed the flow modeling in impulse hydro turbines that includes complex phenomena like free surface flow, multifluid interaction, and unsteady, time dependent flow. Some commercial and open-source CFD codes, which implement Eulerian methods, have been validated against experimental results showing satisfactory accuracy. Nevertheless, further improvement of accuracy is still a challenge, while the computational cost is very high and unaffordable for multiparametric design optimization of the turbine’s runner. In the present work a CFD Eulerian approach is applied at first, in order to simulate the flow in the runner of a Pelton turbine model installed at the laboratory. Then, a particulate method, the Fast Lagrangian Simulation (FLS, is used for the same case, which is much faster and hence potentially suitable for numerical design optimization, providing that it can achieve adequate accuracy. The results of both methods for various turbine operation conditions, as also for modified runner and bucket designs, are presented and discussed in the paper. In all examined cases the FLS method shows very good accuracy in predicting the hydraulic efficiency of the runner, although the computed flow evolution and the torque curve exhibit some systematic differences from the Eulerian results.

  18. Fast analysis of glibenclamide and its impurities: quality by design framework in capillary electrophoresis method development.

    Science.gov (United States)

    Furlanetto, Sandra; Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Mura, Paola; Pinzauti, Sergio

    2015-10-01

    A fast capillary zone electrophoresis method for the simultaneous analysis of glibenclamide and its impurities (I(A) and I(B)) in pharmaceutical dosage forms was fully developed within a quality by design framework. Critical quality attributes were represented by I(A) peak efficiency, critical resolution between glibenclamide and I(B), and analysis time. Experimental design was efficiently used for rapid and systematic method optimization. A 3(5)//16 symmetric screening matrix was chosen for investigation of the five selected critical process parameters throughout the knowledge space, and the results obtained were the basis for the planning of the subsequent response surface study. A Box-Behnken design for three factors allowed the contour plots to be drawn and the design space to be identified by introduction of the concept of probability. The design space corresponded to the multidimensional region where all the critical quality attributes reached the desired values with a degree of probability π ≥ 90%. Under the selected working conditions, the full separation of the analytes was obtained in less than 2 min. A full factorial design simultaneously allowed the design space to be validated and method robustness to be tested. A control strategy was finally implemented by means of a system suitability test. The method was fully validated and was applied to real samples of glibenclamide tablets.

  19. A fast iterative-clique percolation method for identifying functional modules in protein interaction networks

    Institute of Scientific and Technical Information of China (English)

    Penggang SUN; Lin GAO

    2009-01-01

    Accumulating evidence suggests that biological systems are composed of interacting, separable, functional modules-groups of vertices within which connections are dense but between which they are sparse. Identifying these modules is likely through capturing the biologically mean-ingful interactions. In recent years, many algorithms have been developed for detecting such structures. These al-gorithms, however, are computationally demanding, which limits their applications. In this paper, we propose a fast iterative-clique percolation method (ICPM) for identifying overlapping functional modules in protein-protein interac-tion (PPI) networks. Our method is based on clique percola-tion method (CPM), and it not only considers the degree of nodes to minimize the search space (the vertices in k-cliques must have the degree of k - 1 at least), but also converts k-cliques to (k - 1)-cliques. It finds k-cliques by append-ing one node to (k - 1)-cliques. By testing our method on PPI networks, our analysis of the yeast PPI network suggeststhat most of these modules have well-supported biological significance.

  20. Fast identification of microplastics in complex environmental samples by a thermal degradation method.

    Science.gov (United States)

    Dümichen, Erik; Eisentraut, Paul; Bannick, Claus Gerhard; Barthel, Anne-Kathrin; Senz, Rainer; Braun, Ulrike

    2017-05-01

    In order to determine the relevance of microplastic particles in various environmental media, comprehensive investigations are needed. However, no analytical method exists for fast identification and quantification. At present, optical spectroscopy methods like IR and RAMAN imaging are used. Due to their time consuming procedures and uncertain extrapolation, reliable monitoring is difficult. For analyzing polymers Py-GC-MS is a standard method. However, due to a limited sample amount of about 0.5 mg it is not suited for analysis of complex sample mixtures like environmental samples. Therefore, we developed a new thermoanalytical method as a first step for identifying microplastics in environmental samples. A sample amount of about 20 mg, which assures the homogeneity of the sample, is subjected to complete thermal decomposition. The specific degradation products of the respective polymer are adsorbed on a solid-phase adsorber and subsequently analyzed by thermal desorption gas chromatography mass spectrometry. For certain identification, the specific degradation products for the respective polymer were selected first. Afterwards real environmental samples from the aquatic (three different rivers) and the terrestrial (bio gas plant) systems were screened for microplastics. Mainly polypropylene (PP), polyethylene (PE) and polystyrene (PS) were identified for the samples from the bio gas plant and PE and PS from the rivers. However, this was only the first step and quantification measurements will follow.

  1. Fast full waveform inversion with source encoding and second-order optimization methods

    Science.gov (United States)

    Castellanos, Clara; Métivier, Ludovic; Operto, Stéphane; Brossier, Romain; Virieux, Jean

    2015-02-01

    Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.

  2. A Universal Fast Colorimetric Method for DNA Signal Detection with DNA Strand Displacement and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Li

    2015-01-01

    Full Text Available DNA or gene signal detection is of great significance in many fields including medical examination, intracellular molecular monitoring, and gene disease signal diagnosis, but detection of DNA or gene signals in a low concentration with instant visual results remains a challenge. In this work, a universal fast and visual colorimetric detection method for DNA signals is proposed. Specifically, a DNA signal amplification “circuit” based on DNA strand displacement is firstly designed to amplify the target DNA signals, and then thiol modified hairpin DNA strands and gold nanoparticles are used to make signal detection results visualized in a colorimetric manner. If the target DNA signal exists, the gold nanoparticles aggregate and settle down with color changing from dark red to grey quickly; otherwise, the gold nanoparticles’ colloids remain stable in dark red. The proposed method provides a novel way to detect quickly DNA or gene signals in low concentrations with instant visual results. When applied in real-life, it may provide a universal colorimetric method for gene disease signal diagnosis.

  3. Combining the multilevel fast multipole method with the uniform geometrical theory of diffraction

    Directory of Open Access Journals (Sweden)

    A. Tzoulis

    2005-01-01

    Full Text Available The presence of arbitrarily shaped and electrically large objects in the same environment leads to hybridization of the Method of Moments (MoM with the Uniform Geometrical Theory of Diffraction (UTD. The computation and memory complexity of the MoM solution is improved with the Multilevel Fast Multipole Method (MLFMM. By expanding the k-space integrals in spherical harmonics, further considerable amount of memory can be saved without compromising accuracy and numerical speed. However, until now MoM-UTD hybrid methods are restricted to conventional MoM formulations only with Electric Field Integral Equation (EFIE. In this contribution, a MLFMM-UTD hybridization for Combined Field Integral Equation (CFIE is proposed and applied within a hybrid Finite Element - Boundary Integral (FEBI technique. The MLFMM-UTD hybridization is performed at the translation procedure on the various levels of the MLFMM, using a far-field approximation of the corresponding translation operator. The formulation of this new hybrid technique is presented, as well as numerical results.

  4. A fast all-in-one method for automated post-processing of PIV data.

    Science.gov (United States)

    Garcia, Damien

    2011-05-01

    Post-processing of PIV (particle image velocimetry) data typically contains three following stages: validation of the raw data, replacement of spurious and missing vectors, and some smoothing. A robust post-processing technique that carries out these steps simultaneously is proposed. The new all-in-one method (DCT-PLS), based on a penalized least squares approach (PLS), combines the use of the discrete cosine transform (DCT) and the generalized cross-validation, thus allowing fast unsupervised smoothing of PIV data. The DCT-PLS was compared with conventional methods, including the normalized median test, for post-processing of simulated and experimental raw PIV velocity fields. The DCT-PLS was shown to be more efficient than the usual methods, especially in the presence of clustered outliers. It was also demonstrated that the DCT-PLS can easily deal with a large amount of missing data. Because the proposed algorithm works in any dimension, the DCT-PLS is also suitable for post-processing of volumetric three-component PIV data.

  5. A fast method for computing the centroid of a type-2 fuzzy set.

    Science.gov (United States)

    Wu, Hsin-Jung; Su, Yao-Lung; Lee, Shie-Jue

    2012-06-01

    Type reduction does the work of computing the centroid of a type-2 fuzzy set. The result is a type-1 fuzzy set from which a corresponding crisp number can then be obtained through defuzzification. Type reduction is one of the major operations involved in type-2 fuzzy inference. Therefore, making type reduction efficient is a significant task in the application of type-2 fuzzy systems. Liu introduced a horizontal slice representation, called the α-plane representation, and proposed a type-reduction method for a type-2 fuzzy set. By exploring some useful properties of the α-plane representation and of the type reduction for interval type-2 fuzzy sets, a fast method is developed for computing the centroid of a type-2 fuzzy set. The number of computations and comparisons involved is greatly reduced. Convergence in each iteration can then speed up, and type reduction can be done much more efficiently. The effectiveness of the proposed method is analyzed mathematically and demonstrated by experimental results.

  6. Investigation of schemes for incorporating generator Q limits in the fast decoupled load flow method

    Indian Academy of Sciences (India)

    Lakshmi Sundaresh; P S Nagendra Rao

    2015-06-01

    Fast Decoupled Load Flow (FDLF) is a very popular and widely used power flow analysis method because of its simplicity and efficiency. Even though the basic FDLF algorithm is well investigated, the same is not true in the case of additional schemes/modifications required to obtain adjusted load flow solutions using the FDLF method. Handling generator Q limits is one such important feature needed in any practical load flow method. This paper presents a comprehensive investigation of two classes of schemes intended to handle this aspect i.e. the bus type switching scheme and the sensitivity scheme. We propose two new sensitivity based schemes and assess their performance in comparison with the existing schemes. In addition, a new scheme to avoid the possibility of anomalous solutions encountered while using the conventional schemes is also proposed and evaluated. Results from extensive simulation studies are provided to highlight the strengths and weaknesses of these existing and proposed schemes, especially from the point of view of reliability.

  7. A Fast Air-dry Dropping Chromosome Preparation Method Suitable for FISH in Plants.

    Science.gov (United States)

    Aliyeva-Schnorr, Lala; Ma, Lu; Houben, Andreas

    2015-12-16

    Preparation of chromosome spreads is a prerequisite for the successful performance of fluorescence in situ hybridization (FISH). Preparation of high quality plant chromosome spreads is challenging due to the rigid cell wall. One of the approved methods for the preparation of plant chromosomes is a so-called drop preparation, also known as drop-spreading or air-drying technique. Here, we present a protocol for the fast preparation of mitotic chromosome spreads suitable for the FISH detection of single and high copy DNA probes. This method is an improved variant of the air-dry drop method performed under a relative humidity of 50%-55%. This protocol comprises a reduced number of washing steps making its application easy, efficient and reproducible. Obvious benefits of this approach are well-spread, undamaged and numerous metaphase chromosomes serving as a perfect prerequisite for successful FISH analysis. Using this protocol we obtained high-quality chromosome spreads and reproducible FISH results for Hordeum vulgare, H. bulbosum, H. marinum, H. murinum, H. pubiflorum and Secale cereale.

  8. A fast variational Gaussian wavepacket method: size-induced structural transitions in large neon clusters.

    Science.gov (United States)

    Georgescu, Ionuţ; Mandelshtam, Vladimir A

    2011-10-21

    The variational Gaussian wavepacket (VGW) approximation provides an alternative to path integral Monte Carlo for the computation of thermodynamic properties of many-body systems at thermal equilibrium. It provides a direct access to the thermal density matrix and is particularly efficient for Monte Carlo approaches, as for an N-body system it operates in a non-inflated 3N-dimensional configuration space. Here, we greatly accelerate the VGW method by retaining only the relevant short-range correlations in the (otherwise full) 3N × 3N Gaussian width matrix without sacrificing the accuracy of the fully coupled VGW method. This results in the reduction of the original O(N(3)) scaling to O(N(2)). The fast-VGW method is then applied to quantum Lennard-Jones clusters with sizes up to N = 6500 atoms. Following Doye and Calvo [JCP 116, 8307 (2002)] we study the competition between the icosahedral and decahedral structural motifs in Ne(N) clusters as a function of N.

  9. A fast method for quantifying observational selection effects in asteroid surveys

    Science.gov (United States)

    Jedicke, Robert; Bolin, Bryce; Granvik, Mikael; Beshore, Ed

    2016-03-01

    We present a fast method to calculate an asteroid survey's 'bias' - essentially a correction factor from the observed number of objects to the actual number in the population. The method builds upon the work of Jedicke and Metcalfe (Jedicke, R., Metcalfe, T.S. [1998]. Icaurs 131, 245-260) and Granvik et al. (Granvik, M., Vaubaillon, J., Jedicke, R. [2012]. Icarus 218, 262-277) and essentially efficiently maps out the phase space of orbit elements that can appear in a field-of-view. It does so by 'integrating' outwards in geocentric distance along a field's boresite from the topocentric location of the survey and calculating the allowable angular elements for each desired combination of semi-major axis, eccentricity and inclination. We then use a contour algorithm to map out the orbit elements that place an object at the edge of the field-of-view. We illustrate the method's application to calculate the bias correction for near Earth Objects detected with the Catalina Sky Survey (Christensen, E. et al. [2012]. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44, p. 210.13; Larson, S. et al. [1998]. Bulletin of the American Astronomical Society, vol. 30, p. 1037).

  10. A Fast Measuring Method for the Inner Diameter of Coaxial Holes

    Science.gov (United States)

    Wang, Lei; Yang, Fangyun; Fu, Luhua; Wang, Zhong; Yang, Tongyu; Liu, Changjie

    2017-01-01

    A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod’s rotation angles, so all diameters of coaxial holes can be calculated by sensors’ values. While revolving, the changing angles of each sensor’s laser beams are approximately equal in the rod’s radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 μm is achieved by 20 μm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS’s mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use. PMID:28327499

  11. An automatic method for fast and accurate liver segmentation in CT images using a shape detection level set method

    Science.gov (United States)

    Lee, Jeongjin; Kim, Namkug; Lee, Ho; Seo, Joon Beom; Won, Hyung Jin; Shin, Yong Moon; Shin, Yeong Gil

    2007-03-01

    Automatic liver segmentation is still a challenging task due to the ambiguity of liver boundary and the complex context of nearby organs. In this paper, we propose a faster and more accurate way of liver segmentation in CT images with an enhanced level set method. The speed image for level-set propagation is smoothly generated by increasing number of iterations in anisotropic diffusion filtering. This prevents the level-set propagation from stopping in front of local minima, which prevails in liver CT images due to irregular intensity distributions of the interior liver region. The curvature term of shape modeling level-set method captures well the shape variations of the liver along the slice. Finally, rolling ball algorithm is applied for including enhanced vessels near the liver boundary. Our approach are tested and compared to manual segmentation results of eight CT scans with 5mm slice distance using the average distance and volume error. The average distance error between corresponding liver boundaries is 1.58 mm and the average volume error is 2.2%. The average processing time for the segmentation of each slice is 5.2 seconds, which is much faster than the conventional ones. Accurate and fast result of our method will expedite the next stage of liver volume quantification for liver transplantations.

  12. Fast and "green" method for the analytical monitoring of haloketones in treated water.

    Science.gov (United States)

    Serrano, María; Silva, Manuel; Gallego, Mercedes

    2014-09-05

    Several groups of organic compounds have emerged as being particularly relevant as environmental pollutants, including disinfection by-products (DBPs). Haloketones (HKs), which belong to the unregulated volatile fraction of DBPs, have become a priority because of their occurrence in drinking water at concentrations below 1μg/L. The absence of a comprehensive method for HKs has led to the development of the first method for determining fourteen of these species. In an effort to miniaturise, this study develops a micro liquid-liquid extraction (MLLE) method adapted from EPA Method 551.1. In this method practically, the whole extract (50μL) was injected into a programmed temperature vaporiser-gas chromatography-mass spectrometer in order to improve sensitivity. The method was validated by comparing it to EPA Method 551.1 and showed relevant advantages such as: lower sample pH (1.5), higher aqueous/organic volume ratio (60), lower solvent consumption (200μL) and fast and cost-saving operation. The MLLE method achieved detection limits ranging from 6 to 60ng/L (except for 1,1,3-tribromo-3-chloroacetone, 120ng/L) with satisfactory precision (RSD, ∼6%) and high recoveries (95-99%). An evaluation was carried out of the influence of various dechlorinating agents as well as of the sample pH on the stability of the fourteen HKs in treated water. To ensure the HKs integrity for at least 1 week during storage at 4°C, the samples were acidified at pH ∼1.5, which coincides with the sample pH required for MLLE. The green method was applied to the speciation of fourteen HKs in tap and swimming pool waters, where one and seven chlorinated species, respectively, were found. The concentration of 1.1-dichloroacetone in swimming pool water increased ∼25 times in relation to tap water. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Fast Method to Predict Distributions of Binary Black Hole Masses Based on Gaussian Process Regression

    Science.gov (United States)

    Yun, Yuqi; Zevin, Michael; Sampson, Laura; Kalogera, Vassiliki

    2017-01-01

    With more observations from LIGO in the upcoming years, we will be able to construct an observed mass distribution of black holes to compare with binary evolution simulations. This will allow us to investigate the physics of binary evolution such as the effects of common envelope efficiency and wind strength, or the properties of the population such as the initial mass function.However, binary evolution codes become computationally expensive when running large populations of binaries over a multi-dimensional grid of input parameters, and may simulate accurately only for a limited combination of input parameter values. Therefore we developed a fast machine-learning method that utilizes Gaussian Mixture Model (GMM) and Gaussian Process (GP) regression, which together can predict distributions over the entire parameter space based on a limited number of simulated models. Furthermore, Gaussian Process regression naturally provides interpolation errors in addition to interpolation means, which could provide a means of targeting the most uncertain regions of parameter space for running further simulations.We also present a case study on applying this new method to predicting chirp mass distributions for binary black hole systems (BBHs) in Milky-way like galaxies of different metallicities.

  14. Fast and reliable methods for extracting functional connectivity in large populations

    DEFF Research Database (Denmark)

    Roudi, Yasser; Tyrcha, Joanna; Hertz, John

    2009-01-01

    in that time bin, and 1 if it has emitted one spike or more. One then can construct an Ising model, P(s )=Z-1exp{h.s+sJs} for the spike patterns with the same means and pair correlations as the data, using Boltzmann learning, which is in principle exact.  The elements Jij , of the matrix J can be considered...... to be functional couplings. However, Boltzmann learning is prohibitively time-consuming for large networks. Here, we compare the results from five fast approximate methods for finding the couplings with those from Boltzmann learning.      We used data from a simulated network of spiking neurons operating...... methods:  A) a naive mean-field approximation, for which J is equal to minus the inverse of the covariance matrix. B) an independent-pair approximation, C) a low rate, small-population approximation (the low-rate limit of (B), which is valid generally in the limit of small Nrt, where r is the average rate...

  15. Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples

    Directory of Open Access Journals (Sweden)

    Christina Looße

    2015-06-01

    Full Text Available Relative and absolute quantification of proteins in biological and clinical samples are common approaches in proteomics. Until now, targeted protein quantification is mainly performed using a combination of HPLC-based peptide separation and selected reaction monitoring on triple quadrupole mass spectrometers. Here, we show for the first time the potential of absolute quantification using a direct infusion strategy combined with single ion monitoring (SIM on a Q Exactive mass spectrometer. By using complex membrane fractions of Escherichia coli, we absolutely quantified the recombinant expressed heterologous human cytochrome P450 monooxygenase 3A4 (CYP3A4 comparing direct infusion-SIM with conventional HPLC-SIM. Direct-infusion SIM revealed only 14.7% (±4.1 (s.e.m. deviation on average, compared to HPLC-SIM and a decreased processing and analysis time of 4.5 min (that could be further decreased to 30 s for a single sample in contrast to 65 min by the LC–MS method. Summarized, our simplified workflow using direct infusion-SIM provides a fast and robust method for quantification of proteins in complex protein mixtures.

  16. High-resolution imaging without iteration: a fast and robust method for breast ultrasound tomography.

    Science.gov (United States)

    Huthwaite, P; Simonetti, F

    2011-09-01

    Breast ultrasound tomography has the potential to improve the cost, safety, and reliability of breast cancer screening and diagnosis over the gold-standard of mammography. Vital to achieving this potential is the development of imaging algorithms to unravel the complex anatomy of the breast and its mechanical properties. The solution most commonly relied upon is time-of-flight tomography, but this exhibits low resolution due to the presence of diffraction effects. Iterative full-wave inversion methods present one solution to achieve higher resolution, but these are slow and are not guaranteed to converge to the correct solution. Presented here is HARBUT, the hybrid algorithm for robust breast ultrasound tomography, which utilizes the complementary strengths of time-of-flight and diffraction tomography resulting in a direct, fast, robust and accurate high resolution method of reconstructing the sound speed through the breast. The algorithm is shown to produce accurate reconstructions with realistic data from a complex three-dimensional simulation, with masses as small as 4 mm being clearly visible.

  17. Quantitative assessment with improved fast Fourier transform based method by signal mirroring

    Energy Technology Data Exchange (ETDEWEB)

    Prosek, Andrej [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)], E-mail: andrej.prosek@ijs.si; Leskovar, Matjaz; Mavko, Borut [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2008-10-15

    The comparison of calculated results to experimental measurements is very important for thermal-hydraulic code qualification. Recently, it was observed that the fast Fourier transform based method (FFTBM) favors certain trends when an edge (difference) is present in the signal between the first and the last data point of the investigated time signal. Namely, the discrete Fourier transform used for the code accuracy calculation views the time domain signal as an infinite periodic signal. The purpose of the present study was therefore to improve the FFTBM regarding the unphysical edge impact. This was achieved by signal mirroring. In the demonstration it was shown how the improved FFTBM by signal mirroring works. Besides two case studies also the code accuracy of the LOFT L2-5 test calculations performed in the frame of the Best-Estimate Methods Uncertainty and Sensitivity Evaluation (BEMUSE) program was assessed. The results show that the improved FFTBM by signal mirroring judges the accuracy in a consistent and unbiased way.

  18. Petascale molecular dynamics simulation using the fast multipole method on K computer

    KAUST Repository

    Ohno, Yousuke

    2014-10-01

    In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.

  19. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method

    Science.gov (United States)

    Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke

    2016-12-01

    Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.

  20. A Generalized Grid-Based Fast Multipole Method for Integrating Helmholtz Kernels.

    Science.gov (United States)

    Parkkinen, Pauli; Losilla, Sergio A; Solala, Eelis; Toivanen, Elias A; Xu, Wen-Hua; Sundholm, Dage

    2017-02-14

    A grid-based fast multipole method (GB-FMM) for optimizing three-dimensional (3D) numerical molecular orbitals in the bubbles and cube double basis has been developed and implemented. The present GB-FMM method is a generalization of our recently published GB-FMM approach for numerically calculating electrostatic potentials and two-electron interaction energies. The orbital optimization is performed by integrating the Helmholtz kernel in the double basis. The steep part of the functions in the vicinity of the nuclei is represented by one-center bubbles functions, whereas the remaining cube part is expanded on an equidistant 3D grid. The integration of the bubbles part is treated by using one-center expansions of the Helmholtz kernel in spherical harmonics multiplied with modified spherical Bessel functions of the first and second kind, analogously to the numerical inward and outward integration approach for calculating two-electron interaction potentials in atomic structure calculations. The expressions and algorithms for massively parallel calculations on general purpose graphics processing units (GPGPU) are described. The accuracy and the correctness of the implementation has been checked by performing Hartree-Fock self-consistent-field calculations (HF-SCF) on H2, H2O, and CO. Our calculations show that an accuracy of 10(-4) to 10(-7) Eh can be reached in HF-SCF calculations on general molecules.

  1. Hyperspectral imaging based method for fast characterization of kidney stone types.

    Science.gov (United States)

    Blanco, Francisco; López-Mesas, Montserrat; Serranti, Silvia; Bonifazi, Giuseppe; Havel, Josef; Valiente, Manuel

    2012-07-01

    The formation of kidney stones is a common and highly studied disease, which causes intense pain and presents a high recidivism. In order to find the causes of this problem, the characterization of the main compounds is of great importance. In this sense, the analysis of the composition and structure of the stone can give key information about the urine parameters during the crystal growth. But the usual methods employed are slow, analyst dependent and the information obtained is poor. In the present work, the near infrared (NIR)-hyperspectral imaging technique was used for the analysis of 215 samples of kidney stones, including the main types usually found and their mixtures. The NIR reflectance spectra of the analyzed stones showed significant differences that were used for their classification. To do so, a method was created by the use of artificial neural networks, which showed a probability higher than 90% for right classification of the stones. The promising results, robust methodology, and the fast analytical process, without the need of an expert assistance, lead to an easy implementation at the clinical laboratories, offering the urologist a rapid diagnosis that shall contribute to minimize urolithiasis recidivism.

  2. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Science.gov (United States)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  3. Family-Joining: A Fast Distance-Based Method for Constructing Generally Labeled Trees.

    Science.gov (United States)

    Kalaghatgi, Prabhav; Pfeifer, Nico; Lengauer, Thomas

    2016-10-01

    The widely used model for evolutionary relationships is a bifurcating tree with all taxa/observations placed at the leaves. This is not appropriate if the taxa have been densely sampled across evolutionary time and may be in a direct ancestral relationship, or if there is not enough information to fully resolve all the branching points in the evolutionary tree. In this article, we present a fast distance-based agglomeration method called family-joining (FJ) for constructing so-called generally labeled trees in which taxa may be placed at internal vertices and the tree may contain polytomies. FJ constructs such trees on the basis of pairwise distances and a distance threshold. We tested three methods for threshold selection, FJ-AIC, FJ-BIC, and FJ-CV, which minimize Akaike information criterion, Bayesian information criterion, and cross-validation error, respectively. When compared with related methods on simulated data, FJ-BIC was among the best at reconstructing the correct tree across a wide range of simulation scenarios. FJ-BIC was applied to HIV sequences sampled from individuals involved in a known transmission chain. The FJ-BIC tree was found to be compatible with almost all transmission events. On average, internal branches in the FJ-BIC tree have higher bootstrap support than branches in the leaf-labeled bifurcating tree constructed using RAxML. 36% and 25% of the internal branches in the FJ-BIC tree and RAxML tree, respectively, have bootstrap support greater than 70%. To the best of our knowledge the method presented here is the first attempt at modeling evolutionary relationships using generally labeled trees.

  4. Fast Multipole Methods for Three-Dimensional N-body Problems

    Science.gov (United States)

    Koumoutsakos, P.

    1995-01-01

    We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995

  5. Experimental investigation of a new method for advanced fast reactor shutdown cooling

    Science.gov (United States)

    Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.

    2017-07-01

    We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.

  6. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    Science.gov (United States)

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level.

  7. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  8. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    Science.gov (United States)

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.

  9. A Fast Variational Method for the Construction of Resolution Adaptive C-Smooth Molecular Surfaces.

    Science.gov (United States)

    Bajaj, Chandrajit L; Xu, Guoliang; Zhang, Qin

    2009-05-01

    We present a variational approach to smooth molecular (proteins, nucleic acids) surface constructions, starting from atomic coordinates, as available from the protein and nucleic-acid data banks. Molecular dynamics (MD) simulations traditionally used in understanding protein and nucleic-acid folding processes, are based on molecular force fields, and require smooth models of these molecular surfaces. To accelerate MD simulations, a popular methodology is to employ coarse grained molecular models, which represent clusters of atoms with similar physical properties by psuedo- atoms, resulting in coarser resolution molecular surfaces. We consider generation of these mixed-resolution or adaptive molecular surfaces. Our approach starts from deriving a general form second order geometric partial differential equation in the level-set formulation, by minimizing a first order energy functional which additionally includes a regularization term to minimize the occurrence of chemically infeasible molecular surface pockets or tunnel-like artifacts. To achieve even higher computational efficiency, a fast cubic B-spline C(2) interpolation algorithm is also utilized. A narrow band, tri-cubic B-spline level-set method is then used to provide C(2) smooth and resolution adaptive molecular surfaces.

  10. Dielectric Spectroscopy: noninvasive and fast method for measuring changes in the membrane potential

    Science.gov (United States)

    Bot, Corina; Prodan, Camelia; Prodan, Emil

    2008-03-01

    We present a noninvasive and fast method, dielectric spectroscopy, to measure changes in the membrane potential of live cell suspensions, in particular to E. coli. This technique can be applied virtually to any cell suspension, regardless of size or shape and is tested against the traditional one-using voltage sensitive dyes. Precise measurements of the dielectric permittivity ɛ and conductivity σ of live cells suspensions require prior elimination of the polarization errors. Polarization errors are caused by the ionic content of a buffer, and they affect the total impedance in the low frequency interval. We hereby present our approach of polarization removal in low frequency limit by fitting both real and imaginary experimental curves with an ideal impedance Z=d/iφɛ^*S, where ɛ^*=ɛ+1/iφσ. Here, ɛ and σ represent the fitting parameters; a higher weight is given to each of them for the high frequency domain (3kHz-10kHz), where polarization effects were proven negligible. Measurements were performed in a low electric field (1V/cm) and 40Hz-10kHz frequency domain. Different buffers are measured, such as HEPES, DMEM with different KCl concentrations. Adding different KCl concentration or ionophores triggers changes in the membrane potential of E. coli. Those changes are measured using dielectric spectroscopy and voltage sensitive dyes.

  11. Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat‑4 method

    Directory of Open Access Journals (Sweden)

    Zhipeng Qu

    2017-02-01

    Full Text Available The new Heliosat‑4 method estimates the downwelling shortwave irradiance received at ground level in all sky conditions. It provides the global irradiance and its direct and diffuse components on a horizontal plane and the direct irradiance for a plane normal to sun rays. It is a fully physical model using a fast, but still accurate approximation of radiative transfer modelling and is therefore well suited for geostationary satellite retrievals. It can also be used as a fast radiative transfer model in numerical weather prediction models. It is composed of two models based on abaci, also called look-up tables: the already-published McClear model calculating the irradiance under cloud-free conditions and the new McCloud model calculating the extinction of irradiance due to clouds. Both have been realized by using the libRadtran radiative transfer model. The main inputs to Heliosat‑4 are aerosol properties, total column water vapour and ozone content as provided by the Copernicus Atmosphere Monitoring Service (CAMS every 3 h. Cloud properties are derived from images of the Meteosat Second Generation (MSG satellites in their 15 min temporal resolution using an adapted APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean scheme. The 15 min means of irradiance estimated by Heliosat‑4 are compared to corresponding measurements made at 13 stations within the Baseline Surface Radiation Network and being located in the field of view of MSG and in various climates. The bias for global irradiance is comprised between 2 and 32 W m−2. The root mean square error (RMSE ranges between 74 and 94 W m−2. Relative RMSE values range between 15 % and 20 % of the mean observed irradiance for stations in desert and Mediterranean climates, and between 26 % and 43 % for rainy climates with mild winters. Correlation coefficients between 0.91 and 0.97 are found. The bias for the direct irradiance at normal incidence is comprised

  12. RADAR: A novel fast-screening method for reading difficulties with special focus on dyslexia.

    Science.gov (United States)

    Smyrnakis, Ioannis; Andreadakis, Vassilios; Selimis, Vassilios; Kalaitzakis, Michail; Bachourou, Theodora; Kaloutsakis, Georgios; Kymionis, George D; Smirnakis, Stelios; Aslanides, Ioannis M

    2017-01-01

    Dyslexia is a developmental learning disorder of single word reading accuracy and/or fluency, with compelling research directed towards understanding the contributions of the visual system. While dyslexia is not an oculomotor disease, readers with dyslexia have shown different eye movements than typically developing students during text reading. Readers with dyslexia exhibit longer and more frequent fixations, shorter saccade lengths, more backward refixations than typical readers. Furthermore, readers with dyslexia are known to have difficulty in reading long words, lower skipping rate of short words, and high gaze duration on many words. It is an open question whether it is possible to harness these distinctive oculomotor scanning patterns observed during reading in order to develop a screening tool that can reliably identify struggling readers, who may be candidates for dyslexia. Here, we introduce a novel, fast, objective, non-invasive method, named Rapid Assessment of Difficulties and Abnormalities in Reading (RADAR) that screens for features associated with the aberrant visual scanning of reading text seen in dyslexia. Eye tracking parameter measurements that are stable under retest and have high discriminative power, as indicated by their ROC (receiver operating characteristic) curves, were obtained during silent text reading. These parameters were combined to derive a total reading score (TRS) that can reliably separate readers with dyslexia from typical readers. We tested TRS in a group of school-age children ranging from 8.5 to 12.5 years of age. TRS achieved 94.2% correct classification of children tested. Specifically, 35 out of 37 control (specificity 94.6%) and 30 out of 32 readers with dyslexia (sensitivity 93.8%) were classified correctly using RADAR, under a circular validation condition (see section Results/Total Reading Score) where the individual evaluated was not included in the test construction group. In conclusion, RADAR is a novel

  13. ADT fast losses MD

    CERN Document Server

    Priebe, A; Dehning, B; Redaelli, S; Salvachua Ferrando, BM; Sapinski, M; Solfaroli Camillocci, M; Valuch, D

    2013-01-01

    The fast beam losses in the order of 1 ms are expected to be a potential major luminosity limitation for higher beam energies after the LHC long shutdown (LS1). Therefore a Quench Test is planned in the winter 2013 to estimate the quench limit in this timescale and revise the current models. This experiment was devoted to determination the LHC Transverse Damper (ADT) as a system for fast losses induction. A non-standard operation of the ADT was used to develop the beam oscillation instead of suppressing them. The sign flip method had allowed us to create the fast losses within several LHC turns at 450 GeV during the previous test (26th March 2012). Thus, the ADT could be potentially used for the studies of the UFO ("Unidentied Falling Object") impact on the cold magnets. Verification of the system capability and investigations of the disturbed beam properties were the main objectives of this MD. During the experiment, the pilot bunches of proton beam were excited independently in the horizontal and vertical ...

  14. Simple and fast chromatographic method for the simultaneous determination of vanillylmandelic acid and homovanillic acid in human urine.

    Science.gov (United States)

    Zilli, M A

    1991-10-04

    A high-performance liquid chromatographic method for the determination of vanillylmandelic acid and homovanillic acid is described. The method is fast despite the great polarity differences between the two acids. Moreover the sample pretreatment is quick and it does not need complex or expensive equipment. The only requirement is the disposition of two pumps (or at least two eluent reservoirs) operated alternatively by means of a switching valve placed before the injection device. This makes the method available for most routine laboratories.

  15. Optimized Fast and Sensitive Acquisition Methods for Shotgun Proteomics on a Quadrupole Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Young, Clifford; Lavallee, Richard;

    2012-01-01

    Advances in proteomics are continually driven by the introduction of new mass spectrometric instrumentation with improved performances. The recently introduced quadrupole Orbitrap (Q Exactive) tandem mass spectrometer allows fast acquisition of high-resolution higher-energy collisional dissociation...

  16. Accurate and fast methods to estimate the population mutation rate from error prone sequences

    Directory of Open Access Journals (Sweden)

    Miyamoto Michael M

    2009-08-01

    Full Text Available Abstract Background The population mutation rate (θ remains one of the most fundamental parameters in genetics, ecology, and evolutionary biology. However, its accurate estimation can be seriously compromised when working with error prone data such as expressed sequence tags, low coverage draft sequences, and other such unfinished products. This study is premised on the simple idea that a random sequence error due to a chance accident during data collection or recording will be distributed within a population dataset as a singleton (i.e., as a polymorphic site where one sampled sequence exhibits a unique base relative to the common nucleotide of the others. Thus, one can avoid these random errors by ignoring the singletons within a dataset. Results This strategy is implemented under an infinite sites model that focuses on only the internal branches of the sample genealogy where a shared polymorphism can arise (i.e., a variable site where each alternative base is represented by at least two sequences. This approach is first used to derive independently the same new Watterson and Tajima estimators of θ, as recently reported by Achaz 1 for error prone sequences. It is then used to modify the recent, full, maximum-likelihood model of Knudsen and Miyamoto 2, which incorporates various factors for experimental error and design with those for coalescence and mutation. These new methods are all accurate and fast according to evolutionary simulations and analyses of a real complex population dataset for the California seahare. Conclusion In light of these results, we recommend the use of these three new methods for the determination of θ from error prone sequences. In particular, we advocate the new maximum likelihood model as a starting point for the further development of more complex coalescent/mutation models that also account for experimental error and design.

  17. PON-P2: prediction method for fast and reliable identification of harmful variants.

    Science.gov (United States)

    Niroula, Abhishek; Urolagin, Siddhaling; Vihinen, Mauno

    2015-01-01

    More reliable and faster prediction methods are needed to interpret enormous amounts of data generated by sequencing and genome projects. We have developed a new computational tool, PON-P2, for classification of amino acid substitutions in human proteins. The method is a machine learning-based classifier and groups the variants into pathogenic, neutral and unknown classes, on the basis of random forest probability score. PON-P2 is trained using pathogenic and neutral variants obtained from VariBench, a database for benchmark variation datasets. PON-P2 utilizes information about evolutionary conservation of sequences, physical and biochemical properties of amino acids, GO annotations and if available, functional annotations of variation sites. Extensive feature selection was performed to identify 8 informative features among altogether 622 features. PON-P2 consistently showed superior performance in comparison to existing state-of-the-art tools. In 10-fold cross-validation test, its accuracy and MCC are 0.90 and 0.80, respectively, and in the independent test, they are 0.86 and 0.71, respectively. The coverage of PON-P2 is 61.7% in the 10-fold cross-validation and 62.1% in the test dataset. PON-P2 is a powerful tool for screening harmful variants and for ranking and prioritizing experimental characterization. It is very fast making it capable of analyzing large variant datasets. PON-P2 is freely available at http://structure.bmc.lu.se/PON-P2/.

  18. Generic solid phase extraction-liquid chromatography-tandem mass spectrometry method for fast determination of drugs in biological fluids

    NARCIS (Netherlands)

    Schellen, A.; Ooms, B.; Lagemaat, D. van de; Vreeken, R.; Dongen, W.D. van

    2003-01-01

    A generic method was developed for the fast determination of a wide range of drugs in serum or plasma. The methodology comprises generic solid-phase extraction, on-line coupled to gradient HPLC with tandem mass spectrometric detection (SPE-LC-MS/MS). The individual components of the SPE-LC-MS/MS sys

  19. Improvements in fast-neutron spectroscopy methods (1961); Amelioration des methodes de spectrometrie des neutrons rapides (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Cambou, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-02-15

    This research aimed at improving fast-neutron electronic detectors based on n-p elastic scattering. The first part concerns proportional counters; careful constructional methods have made it possible to plot mono-energetic neutron spectra in the range 700 keV - 3 MeV with a resolution of 7 per cent. The second part concerns scintillation counters: an organic scintillator and an inorganic scintillator covered with a thin layer of a scattering agent. An exact study of the types of scintillation has made it possible to develop efficient discriminator circuits. Different neutron spectra plotted in the presence of a strong gamma background are presented. The last part deals with the development of form discrimination methods for the study, in the actual beam, of the elastic scattering of 14.58 MeV electrons. With hydrogen, the distribution f ({phi}) of the recoil protons is f({phi}) = 1 + 0.034 cos {phi} + 0.042 cos{sup 2} {phi}. With tritium the scattering is strongly anisotropic; the curve representing the variation of the differential cross-section for the elastic scattering in the centre of mass system is obtained with a target containing 1 cm{sup 3} of tritium. (author) [French] Le travail a porte sur l'amelioration des detecteurs electroniques de neutrons rapides bases sur la diffusion elastique n-p. La premiere partie est relative aux compteurs proportionnels; des methodes soignees de fabrication ont permis des traces de spectres de neutrons monoenergetiques dans le domaine 700 keV - 3 MeV avec une resolution de 7 pour cent. La deuxieme partie est relative au compteur a scintillations; scintillateur organique et scintillateur mineral recouvert d'un diffuseur mince. Une etude precise des formes de scintillations a permis la mise au point de circuits discriminateurs efficaces. Differents spectres de neutrons traces en presence d'un fond gamma intense sont presentes. La derniere partie est relative a la mise en oeuvre des methodes de discrimination de

  20. Agricultural Education (Postsecondary): Teaching Materials, Methods and Curricula. January 1990-March 1994. Quick Bibliography Series: QB 94-03.

    Science.gov (United States)

    Krug, Patricia A.

    This bibliography is intended primarily for current awareness on the topic of postsecondary agricultural education teaching materials, methods, and curricula, and as the title of the series implies, is not an indepth exhaustive bibliography on the subject. It is derived from a computerized search of the AGRICOLA database. The search strategy used…

  1. a Fast and Flexible Method for Meta-Map Building for Icp Based Slam

    Science.gov (United States)

    Kurian, A.; Morin, K. W.

    2016-06-01

    Recent developments in LiDAR sensors make mobile mapping fast and cost effective. These sensors generate a large amount of data which in turn improves the coverage and details of the map. Due to the limited range of the sensor, one has to collect a series of scans to build the entire map of the environment. If we have good GNSS coverage, building a map is a well addressed problem. But in an indoor environment, we have limited GNSS reception and an inertial solution, if available, can quickly diverge. In such situations, simultaneous localization and mapping (SLAM) is used to generate a navigation solution and map concurrently. SLAM using point clouds possesses a number of computational challenges even with modern hardware due to the shear amount of data. In this paper, we propose two strategies for minimizing the cost of computation and storage when a 3D point cloud is used for navigation and real-time map building. We have used the 3D point cloud generated by Leica Geosystems's Pegasus Backpack which is equipped with Velodyne VLP-16 LiDARs scanners. To improve the speed of the conventional iterative closest point (ICP) algorithm, we propose a point cloud sub-sampling strategy which does not throw away any key features and yet significantly reduces the number of points that needs to be processed and stored. In order to speed up the correspondence finding step, a dual kd-tree and circular buffer architecture is proposed. We have shown that the proposed method can run in real time and has excellent navigation accuracy characteristics.

  2. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method

    KAUST Repository

    Prest, Emmanuelle I E C

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. © 2013 Elsevier Ltd.

  3. Diagnostic Performance of a Lattice Boltzmann-Based Method for Fast CT-Fractional Flow Reserve.

    Science.gov (United States)

    Giannopoulos, Andreas; Tang, Anji; Ge, Yin; Cheezum, Michael; Steigner, Michael; Fujimoto, Shinichiro; Kumamaru, Kanako; Chiappino, Dante; Della Latta, Daniele; Berti, Sergio; Chiappino, Sara; Rybicki, Frank; Melchionna, Simone; Mitsouras, Dimitrios

    2017-06-27

    Fractional flow reserve (FFR) estimated from coronary computed tomography angiography (CT-FFR) offers non-invasive detection of lesion-specific ischemia. We developed and validated a fast CT-FFR algorithm utilizing the Lattice-Boltzmann Method for blood flow simulation (LBM CT-FFR). 64 patients from 3 institutions with clinically-indicated CTA and invasive FFR measurement were retrospectively analyzed. CT-FFR was performed using an on-site tool interfacing with a commercial Lattice-Boltzmann fluid dynamics cloud-based platform. Diagnostic accuracy of LBM CT-FFR≤0.8 and percent diameter stenosis >50% by CTA to detect invasive FFR≤0.8 were compared using area under the receiver operating characteristic curve (AUC). 60 patients successfully underwent LBM CT-FFR analysis; 29 of 73 lesions in 69 vessels had invasive FFR≤0.8. Total time to perform LBM CT-FFR was 40±10 min. Compared to invasive FFR, LBM CT-FFR had good correlation (r=0.64), small bias (0.009) and good limits of agreement (-0.223 to 0.206). The AUC of LBM CT-FFR (AUC=0.894, 95% confidence interval [CI]: 0.792- 0.996) was significantly higher than CTA (AUC=0.685, 95% CI: 0.576-0.794) to detect FFR≤0.8 (p=0.0021). Per-lesion specificity, sensitivity, accuracy of LBM CT-FFR were 97.7%, 79.3%, and 90.4%, respectively. LBM CT-FFR has very good diagnostic accuracy to detect lesion-specific ischemia (FFR≤0.8) and can be performed in less than 1 hour.

  4. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.

    Science.gov (United States)

    Prest, E I; Hammes, F; Kötzsch, S; van Loosdrecht, M C M; Vrouwenvelder, J S

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Formulation design and optimization of fast disintegrating lorazepam tablets by effervescent method

    Directory of Open Access Journals (Sweden)

    Shirsand S

    2010-01-01

    Full Text Available Fast disintegrating tablets of lorazepam were prepared by effervescent method with a view to enhance patient compliance. A 3΂ full factorial design was applied to investigate the combined effect of two formulation variables: amount of crospovidone and mixture of sodium bicarbonate, citric acid and tartaric acid (effervescent material on in vitro dispersion time. Crospovidone (2-8% w/w was used as superdisintegrant and mixture of sodium bicarbonate, citric acid and tartaric acid (6-18% w/w was used as effervescent material, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity and in vitro dispersion time. Based on in vitro dispersion time (approximately 13 s; the formulation containing 8% w/w crospovidone and 18% w/w mixture of sodium bicarbonate, citric acid and tartaric acid was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer, short-term stability and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables (concentrations of crospovidone and effervescent material on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design check point formulations. The optimized tablet formulation was compared with conventional marketed tablet for drug release profiles. This formulation showed nearly eleven-fold faster drug release (t 50% 2.8 min compared to the conventional commercial tablet formulation (t 50% >30 min. Short-term stability studies on the formulation indicated that there were no significant changes in drug content and in vitro dispersion time (P<0.05.

  6. A performance model for the communication in fast multipole methods on high-performance computing platforms

    KAUST Repository

    Ibeid, Huda

    2016-03-04

    Exascale systems are predicted to have approximately 1 billion cores, assuming gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. The fast multipole method (FMM) was originally developed for accelerating N-body problems in astrophysics and molecular dynamics but has recently been extended to a wider range of problems. Its high arithmetic intensity combined with its linear complexity and asynchronous communication patterns make it a promising algorithm for exascale systems. In this paper, we discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on internode communication. We focus on the communication part only; the efficiency of the computational kernels are beyond the scope of the present study. We develop a performance model that considers the communication patterns of the FMM and observe a good match between our model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization of internode communication in FMM that validates the model against actual measurements of communication time. The ultimate communication model is predictive in an absolute sense; however, on complex systems, this objective is often out of reach or of a difficulty out of proportion to its benefit when there exists a simpler model that is inexpensive and sufficient to guide coding decisions leading to improved scaling. The current model provides such guidance.

  7. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian

    2016-06-09

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  8. Formulation design and optimization of fast dissolving clonazepam tablets by sublimation method

    Directory of Open Access Journals (Sweden)

    S B Shirsand

    2011-01-01

    Full Text Available Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 3² full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w was used as superdisintegrant and camphor (20-40% w/w was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s; the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer. Short-term stability (at 40°/75% relative humidity for 3 mo and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t 50% 1.8 min compared to the conventional commercial tablet formulation (t 50% 16.4 min. Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05.

  9. Formulation design and optimization of fast dissolving clonazepam tablets by sublimation method.

    Science.gov (United States)

    Shirsand, S B; Suresh, Sarasija; Kusumdevi, V; Swamy, P V

    2011-09-01

    Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s); the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer). Short-term stability (at 40°/75% relative humidity for 3 mo) and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t(50%) 1.8 min) compared to the conventional commercial tablet formulation (t(50%) 16.4 min). Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05).

  10. A fast and robust method to clone and functionally validate T-cell receptors.

    Science.gov (United States)

    Birkholz, Katrin; Hofmann, Christian; Hoyer, Stefanie; Schulz, Birgit; Harrer, Thomas; Kämpgen, Eckhart; Schuler, Gerold; Dörrie, Jan; Schaft, Niels

    2009-07-31

    Sequencing, cloning and functional testing of T-cell-receptor (TCR) alpha- and beta-chains from T-cell clones is often required in immunotherapy and in immunological research. However, the determination of the TCR chains by a simple PCR is not possible, since, in contrast to the 3' constant domain and untranslated region (UTR), no conserved sequences are present in the 5' region. Furthermore, subsequent functional testing of cloned TCRs requires laborious cell culture experiments, often involving primary human material and time-consuming viral transduction strategies. Here we present a universal PCR-based protocol, adapted from the capswitch technology, that allows for amplification of the TCR alpha- and beta-chain mRNAs without knowledge of the TCR variable domain subtype by attaching a designed sequence to the mRNA's 5' end. Two different MelanA/HLA-A2-specific and one HIVgag/HLA-A2-specific TCR were cloned that way, and were functionally tested by a newly developed easy, fast, and low-cost method: we electroporated Jurkat T cells simultaneously with TCR-encoding RNA and an NFAT-reporter construct, and measured the activation status of the cells upon specific stimulation. The results of this assay correlated with the cytokine release, functional avidity, proliferative activity, and the ability to recognize MelanA/HLA-A2-presenting tumor cells of bulk T cells electroporated with RNA encoding the same TCR. Together these two protocols represent a rapid and low-cost tool for the identification and functional testing of TCRs of T-cell clones, which can then be applied in immunotherapy or immunological research.

  11. Performance Evaluation of Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore Architecture

    KAUST Repository

    Abduljabbar, Mustafa

    2017-07-31

    Manycore optimizations are essential for achieving performance worthy of anticipated exascale systems. Utilization of manycore chips is inevitable to attain the desired floating point performance of these energy-austere systems. In this work, we revisit ExaFMM, the open source Fast Multiple Method (FMM) library, in light of highly tuned shared-memory parallelization and detailed performance analysis on the new highly parallel Intel manycore architecture, Knights Landing (KNL). We assess scalability and performance gain using task-based parallelism of the FMM tree traversal. We also provide an in-depth analysis of the most computationally intensive part of the traversal kernel (i.e., the particle-to-particle (P2P) kernel), by comparing its performance across KNL and Broadwell architectures. We quantify different configurations that exploit the on-chip 512-bit vector units within different task-based threading paradigms. MPI communication-reducing and NUMA-aware approaches for the FMM’s global tree data exchange are examined with different cluster modes of KNL. By applying several algorithm- and architecture-aware optimizations for FMM, we show that the N-Body kernel on 256 threads of KNL achieves on average 2.8× speedup compared to the non-vectorized version, whereas on 56 threads of Broadwell, it achieves on average 2.9× speedup. In addition, the tree traversal kernel on KNL scales monotonically up to 256 threads with task-based programming models. The MPI-based communication-reducing algorithms show expected improvements of the data locality across the KNL on-chip network.

  12. Fast and accurate determination of 3D temperature distribution using fraction-step semi-implicit method

    Science.gov (United States)

    Cen, Wei; Hoppe, Ralph; Gu, Ning

    2016-09-01

    In this paper, we proposed a method to numerically determinate 3-dimensional thermal response due to electromagnetic exposure quickly and accurately. Due to the stability criterion the explicit finite-difference time-domain (FDTD) method works fast only if the spatial step is not set very small. In this paper, the semi-implicit Crank-Nicholson method for time domain discretization with unconditional time stability is proposed, where the idea of fractional steps method was utilized in 3-dimension so that an efficient numerical implementation is obtained. Compared with the explicit FDTD, with similar numerical precision, the proposed method takes less than 1/200 of the execution time.

  13. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    OpenAIRE

    Danaila, Ionut; Hecht, Frédéric

    2009-01-01

    to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...

  14. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    OpenAIRE

    Danaila, Ionut; Hecht, Frédéric

    2010-01-01

    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates re- quire high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric con- trol, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex sta...

  15. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    OpenAIRE

    Danaila, Ionut; Hecht, Frédéric

    2010-01-01

    to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...

  16. Validation of a fast real-time PCR method to detect fraud and mislabeling in milk and dairy products.

    Science.gov (United States)

    Di Domenico, M; Di Giuseppe, M; Wicochea Rodríguez, J D; Cammà, C

    2017-01-01

    Fast real-time PCR TaqMan assays were developed and validated for species identification in dairy products. Based on the amplification of 12S rRNA and cytB partial genes of mitochondrial DNA, the methods were demonstrated to be sensitive, fast, and species-specific for Bos taurus, Ovis aries, Bubalus bubalis, and Capra hircus. The limit of detection calculated was lower than 1%, and the efficiency was reported to be higher than 96% in every assay. An internal amplification control was used to detect possible false negatives. The method was validated by means of laboratory-prepared samples mixing different species. Moreover, 18 commercial dairy samples were analyzed by both real-time PCR and isoelectric focusing, the official European Union reference method. The 4 TaqMan assays were confirmed to be a useful tool for milk and dairy product authentication.

  17. Pulse combustion reactor as a fast and scalable synthetic method for preparation of Li-ion cathode materials

    Science.gov (United States)

    Križan, Gregor; Križan, Janez; Dominko, Robert; Gaberšček, Miran

    2017-09-01

    In this work a novel pulse combustion reactor method for preparation of Li-ion cathode materials is introduced. Its advantages and potential challenges are demonstrated on two widely studied cathode materials, LiFePO4/C and Li-rich NMC. By exploiting the nature of efficiency of pulse combustion we have successfully established a slightly reductive or oxidative environment necessary for synthesis. As a whole, the proposed method is fast, environmentally friendly and easy to scale. An important advantage of the proposed method is that it preferentially yields small-sized powders (in the nanometric range) at a fast production rate of 2 s. A potential disadvantage is the relatively high degree of disorder of synthesized active material which however can be removed using a post-annealing step. This additional step allows a further tuning of materials morphology as shown and commented in some detail.

  18. The Generalized Centroid Difference method for lifetime measurements via γ-γ coincidences using large fast-timing arrays

    Directory of Open Access Journals (Sweden)

    Régis J.-M.

    2015-01-01

    Full Text Available A novel method for direct electronic “fast-timing” lifetime measurements of nuclear excited states via γ-γ coincidences using an array equipped with N very fast high-resolution LaBr3(Ce scintillator detectors is presented. The generalized centroid difference method provides two independent “start” and “stop” time spectra obtained without any correction by a superposition of the N(N – 1/2 calibrated γ-γ time difference spectra of the N detector fast-timing system. The two fast-timing array time spectra correspond to a forward and reverse gating of a specific γ-γ cascade and the centroid difference as the time shift between the centroids of the two time spectra provides a picosecond-sensitive mirror-symmetric observable of the set-up. The energydependent mean prompt response difference between the start and stop events is calibrated and used as a single correction for lifetime determination. These combined fast-timing array mean γ-γ zero-time responses can be determined for 40 keV < Eγ < 1.4 MeV with a precision better than 10 ps using a 152Eu γ-ray source. The new method is described with examples of (n,γ and (n,f,γ experiments performed at the intense cold-neutron beam facility PF1B of the Institut Laue-Langevin in Grenoble, France, using 16 LaBr3(Ce detectors within the EXILL&FATIMA campaign in 2013. The results are discussed with respect to possible systematic errors induced by background contributions.

  19. Fast nuclear staining of head hair roots as a screening method for successful STR analysis in forensics.

    Science.gov (United States)

    Lepez, Trees; Vandewoestyne, Mado; Van Hoofstat, David; Deforce, Dieter

    2014-11-01

    The success rate of STR profiling of hairs found at a crime scene is quite low and negative results of hair analysis are frequently reported. To increase the success rate of DNA analysis of hairs in forensics, nuclei in hair roots can be counted after staining the hair root with DAPI. Two staining methods were tested: a longer method with two 1h incubations in respectively a DAPI- and a wash-solution, and a fast, direct staining of the hair root on microscope slides. The two staining methods were not significantly different. The results of the STR analysis for both procedures showed that 20 nuclei are necessary to obtain at least partial STR profiles. When more than 50 nuclei were counted, full STR profiles were always obtained. In 96% of the cases where no nuclei were detected, no STR profile could be obtained. However, 4% of the DAPI-negative hair roots resulted in at least partial STR profiles. Therefore, each forensic case has to be evaluated separately in function of the importance of the evidential value of the found hair. The fast staining method was applied in 36 forensic cases on 279 hairs in total. A fast screening method using DAPI can be used to increase the success rate of hair analysis in forensics.

  20. Fast numerical methods for mixed-integer nonlinear model-predictive control

    CERN Document Server

    Kirches, Christian

    2011-01-01

    Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.

  1. Method of producing an item with enhanced wetting properties by fast replication and replication tool used in the method

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a replication tool (1) for producing an item (4) with enhanced wetting properties by fast replication, such as injection moulding or extrusion coating. The replication tool (1) comprises a tool surface (2a, 2b) defining a general shape of the item (4). The tool surface (2a...

  2. Holographic methods in X-ray crystallography. Pt. 4. A fast algorithm and its application to macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, J.R. [California Univ., Berkeley (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States); Szoeke, H. [Lawrence Livermore National Lab., CA (United States); Goodman, D.M. [Lawrence Livermore National Lab., CA (United States); Beran, P. [Lawrence Livermore National Lab., CA (United States); Truckses, D. [Wisconsin Univ., Madison, WI (United States). Dept. of Biochemistry; Kim, S.H. [California Univ., Berkeley (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States); Szoeke, A. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    The holographic method makes use of partially modeled electron density and experimentally measured structure-factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density and can incorporate a `target` electron density, making it similar to solvent flattening. The potential for applying the holographic method to macromolecular X-ray crystallography is assessed using both synthetic and experimental data. (orig.).

  3. Testing method for color fastness to ozone%耐臭氧色牢度测试

    Institute of Scientific and Technical Information of China (English)

    王宜满; 周爱晖; 赵丽莎; 张华春; 张清山

    2013-01-01

    The influences of ozone concentration, relative humidity, testing temperature and time on color fastness to ozone are discussed by testing eight cotton fabrics in different shades. The optimum testing conditions for color fastness to ozone are defined as follows; ozone concentration 1 mg/kg, relative humidity of the chamber 65%, and testing at 25 ℃ for 4 h.%测试了8种不同颜色棉质纺织面料的耐臭氧色牢度,探讨臭氧浓度、仓内相对湿度、试验温度、试验时间等因素对纺织品耐臭氧色牢度的影响.优化的耐臭氧色牢度测试条件为:臭氧用量1 mg/kg,仓内相对湿度65%,温度25℃,时间4h.

  4. Apparatus, System and Method for Fast Detection of Genetic Information by PCR in an Interchangeable Chip

    KAUST Repository

    Wen, Weijia

    2011-03-03

    A polymerase chain reaction (PCR) device for fast amplification and detection of DNA includes an interchangeable PCR chamber, a temperature control component, and an optical detection system. The DNA amplification is performed on an interchangeable chip with volumes as small as 1.25 µl, while the heating and cooling rate may be as fast as 12.7 °C/second ensuring that the total time needed of only 25 minutes to complete the 35 cycle PCR amplification. The PCR may be performed according to a two-temperature approach for denaturing and annealing (Td and Ta) of DNA with the PCR chip, with which the amplification of male-specific SRY gene marker by utilizing raw saliva may be achieved. The genetic identification may be in-situ detected after PCR by the optical detection system.

  5. Fast steel-cleanness characterization by means of laser-assisted plasma spectrometric methods.

    Science.gov (United States)

    Müller, Gregor; Stahnke, Frank; Bleiner, Davide

    2006-12-15

    Laser-assisted plasma spectrometry is a palette of analytical techniques (L-OES, LA-ICP-MS) capable of fast spatially-resolved elemental analysis in the micrometer range. For fast estimation of the occurrence in steel samples of non-metallic inclusions, which degrade the material's technical properties, simultaneous OES detection and sequential ICP-MS detection were compared. Histograms were obtained for the intensity distribution of the acquired signals (laser pulse statistics). The skewness coefficient of the histograms for Al (indicator of non-metallic inclusions) was found to be clearly dependent on the fraction of non-metallic inclusions in the case of scanning L-OES. For LA-ICP-MS less clear dependence was observed, which was influenced by the acquisition characteristics. In fact, less measurement throughput limited for LA-ICP-MS the counting statistics to an extent that overrides the benefit of higher detection power as compared to L-OES.

  6. Fast analytical methods for the correction of signal random time-shifts and application to segmented HPGe detectors

    CERN Document Server

    Désesquelles, P; Korichi, A; Blanc, F Le; Olariu, A; Petrache, C M; 10.1016/j.nimb.2008.11.042

    2009-01-01

    Detection systems rely more and more on on-line or off-line comparison of detected signals with basis signals in order to determine the characteristics of the impinging particles. Unfortunately, these comparisons are very sensitive to the random time shifts that may alter the signal delivered by the detectors. We present two fast algebraic methods to determine the value of the time shift and to enhance the reliability of the comparison to the basis signals.

  7. A Hybrid Algorithm of Fast Invariant Imbedding and Doubling-Adding Methods for Efficient Multiple Scattering Calculations

    CERN Document Server

    Kawabata, Kiyoshi

    2016-01-01

    An efficient hybrid numerical method for multiple scattering calculations is proposed. We use the well established doubling--adding method to find the reflection function of the lowermost homogeneous slab comprising the atmosphere of our interest. This reflection function provides the initial value for the fast invariant imbedding method of Sato et al., (1977), with which layers are added until the final reflection function of the entire atmosphere is obtained. The execution speed of this hybrid method is no slower than one half of that of the doubling-adding method, probably the fastest algorithm available, even in the most unsuitable cases for the fast invariant imbedding method. The efficiency of the proposed method increases rapidly with the number of atmospheric slabs and the optical thickness of each slab. For some cases, its execution speed is approximately four times faster than the doubling--adding method. This work has been published in NAIS Journal (ISSN 1882-9392) Vol. 7, 5-16 (2012).

  8. Fast and exact method for computing a stack of images at various focuses from a four-dimensional light field

    Science.gov (United States)

    Mhabary, Ziv; Levi, Ofer; Small, Eran; Stern, Adrian

    2016-07-01

    This paper presents an efficient method for computing a stack of images digitally focused at various lengths from a four-dimensional light field (LF). The main contribution of this work is a fast and algebraically exact method that does not require interpolation in the frequency or spatial domains as alternative methods do. The proposed imaging operator combines two-dimensional (2-D) fast Fourier transform with 2-D fractional Fourier transform and has computational complexity of O(N log N), where N is the number of pixels in the LF tesseract of dimension N=nx×ny×nu×nv. The whole method consists of unitary vector-based operations; therefore, parallel implementation is easy and can contribute additional speed up. While current state of the art methods suffer from inherent tradeoff between the reconstruction quality and computational complexity, the proposed method benefits of both low-computational complexity and high-reconstruction quality. We also offer a solution for refocusing at distances that are not included in the reconstructed images stack. For such a case, we provide a modified version of our method, which is also algebraically exact and has lower computational complexity than other exact methods.

  9. Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    Science.gov (United States)

    Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai

    2010-12-01

    FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been

  10. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  11. Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J., E-mail: jo316@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Greer, A.L., E-mail: alg13@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2015-03-10

    Highlights: • Study of ultra-fast DSC applied to the crystallization of glass-forming liquids. • Numerical modeling of DSC traces at heating rates exceeding 10 orders of magnitude. • Identification of three regimes in Kissinger plots. • Elucidation of the effect of liquid fragility on the Kissinger method. • Modeling to study the regime in which crystal growth is thermodynamically limited. - Abstract: Numerical simulation of DSC traces is used to study the validity and limitations of the Kissinger method for determining the temperature dependence of the crystal-growth rate on continuous heating of glasses from the glass transition to the melting temperature. A particular interest is to use the wide range of heating rates accessible with ultra-fast DSC to study systems such as the chalcogenide Ge{sub 2}Sb{sub 2}Te{sub 5} for which fast crystallization is of practical interest in phase-change memory. Kissinger plots are found to show three regimes: (i) at low heating rates the plot is straight, (ii) at medium heating rates the plot is curved as expected from the liquid fragility, and (iii) at the highest heating rates the crystallization rate is thermodynamically limited, and the plot has curvature of the opposite sign. The relative importance of these regimes is identified for different glass-forming systems, considered in terms of the liquid fragility and the reduced glass-transition temperature. The extraction of quantitative information on fundamental crystallization kinetics from Kissinger plots is discussed.

  12. New methods for more effective use of bandwidth in MPLS networks with fast rerouting

    Science.gov (United States)

    Matsuoka, Yasuyuki; Kurimoto, Takashi; Nishikido, Jun; Urushidani, Shigeo

    2002-09-01

    Multi-protocol label switching (MPLS) technology is useful for IP Virtual Private Networks (IP-VPNs), guaranteeing bandwidth in IP (Internet Protocol) networks, and carrying out traffic engineering with explicit routing. The advantage of MPLS is its high capability to achieve of reliable networks when used with Fast Rerouting. However, Fast Rerouting requires a lot of network resources. This is because, for the rapid recovery of end-to-end communications after detection of failures, secondary LSPs must already have been reserved as detours in case there are failures on primary node-to-node links. The sharing of bandwidth among secondary LSPs is thus significant as a way of reducing the usage of network resources when Fast Rerouting is applied. In this paper, we propose a new routing algorithm in which bandwidth is shared among the secondary LSPs for multiple primary LSPs. This algorithm produces efficient network-level LSP designs. Three approaches to the dynamical changing of Open Shortest Path First (OSPF) link-cost metrics are applied in the algorithm. Each approach improves efficiency in the sharing of LSPs. The approaches are (1) the broader distribution of primary LSPs to reduce the need for detours in cases of single failures, (2) the concentration of secondary LSPs on links to increase the possibilities for bandwidth sharing, and (3) the distribution of secondary LSPs that cater to a certain failure, thus increasing the numbers of detouring LSPs which are independent of each other on the respective links. The scheme provides a slight improvement over the results of the conventional Dijkstra-algorithm calculation which is used in conventional OSPF. The proposed algorithms are applied with various network models that have been proposed in IETF Internet drafts, e.g.,

  13. Some Fast Methods for Fitting Some One-parameter Spatial Models

    Directory of Open Access Journals (Sweden)

    R. J. Martin

    2005-01-01

    Full Text Available It is common in geographic modelling to use a one-parameter spatial model to specify the inverse covariance matrix in terms of I-bW, for some known matrix W. Exact Gaussian maximum likelihood estimation of b requires evaluation of the determinant of the covariance matrix. For large data sets, this evaluation of the determinant can be slow and good approximations can be useful. Seventy regional configurations are used to consider some approximations to the determinant of I-bW that are fast to evaluate, and their usefulness is compared.

  14. A fast learning-based super-resolution method for copper strip defect image

    Science.gov (United States)

    Zhang, Zhuo; Fan, Xinnan; Zhang, Xuewu

    2017-07-01

    In this paper, a fast pre-classified-based super-resolution model has been proposed to overcome the problems of degraded imaging in weak-target real-time detection system, specialized to copper defect detection. To accurately characterize the defected image, textural features based on the statistical function of gray-gradient are presented. Furthermore, to improve the effectiveness and practicality of the online detection, a concept of pre-classified learning is introduced and an edge smoothness rule is designed. Some experiments are carried out on defect images in different environments and the experimental results show the efficiency and effectiveness of the algorithm.

  15. A fast stroboscopic spectral method for rotating systems in numerical relativity

    CERN Document Server

    Bonazzola, S; Novák, J; Bonazzola, Silvano; Jaramillo, Jos{\\'e}-Luis; Novak, Jerome

    2007-01-01

    We present a numerical technique for solving evolution equations, as the wave equation, in the description of rotating astrophysical compact objects in comoving coordinates, which avoids the problems associated with the light cylinder. The technique implements a fast spectral matching between two domains in relative rotation: an inner spherical domain, comoving with the sources and lying strictly inside the light cylinder, and an outer inertial spherical shell. Even though the emphasis is placed on spectral techniques, the matching is independent of the specific manner in which equations are solved inside each domain, and can be adapted to different schemes. We illustrate the strategy with some simple but representative examples.

  16. PREDICTION OF THE LEAF AREA IN ZUCCHINI FRUIT: A NON DESTRUCTIVE, EXACT, SIMPLE, FAST AND PRACTICAL METHOD

    Directory of Open Access Journals (Sweden)

    Gustavo Sessa Fialho1

    2011-12-01

    Full Text Available Non destructive methods aiming the estimation of the leaf area, fast, easily executed, with acceptable levels of accuracy are useful to the study of plants growing under field conditions. This way, the leaf area of zucchini fruit plants was estimated, through regression models. The leaf areas, measured by a leaf integrator were distributed according to the leaf dimension (length-C, wideness-L and of the product-CL of the original leaves. Several estimators were generated, however, only the three most relevant were studied, among which, the best, statistically, was elected for validation analysis. We concluded that the leaf area of the zucchini fruit, grown in field, can be predicted, based on the leaf wideness (L, by the following estimator: , that, by its turn, was shown accurate, exact, simple, fast and practical, being reliable to predict this important agronomic variable.

  17. A Toeplitz Jacobian Matrix/Fast Fourier Transformation Method for Steady-State Analysis of Discontinuous Oscillators

    Directory of Open Access Journals (Sweden)

    T. Ge

    1995-01-01

    Full Text Available A semianalytical algorithm is proposed for the solutions and their stability of a piecewise nonlinear system. The conventional harmonic balance method is modified by the introduction of Toeplitz Jacobian matrices (TJM and by the alternative applications of fast Fourier transformation (FFT and its inverse. The TJM/FFT method substantially reduces the amount of computation and circumvents the necessary numerical differentiation for the Jacobian. An arc-length algorithm and a branch switching procedure are incorporated so that the secondary branches can be independently traced. Oscillators with piecewise nonlinear characteristics are taken as illustrative examples. Flip, fold, and Hopf bifurcations are of interest.

  18. A FAST NUMERICAL METHOD FOR INTEGRAL EQUATIONS OF THE FIRST KIND WITH LOGARITHMIC KERNEL USING MESH GRADING

    Institute of Scientific and Technical Information of China (English)

    Qi-yuan Chen; Tao Tang; Zhen-huan Teng

    2004-01-01

    The aim of this paper is to develop a fast numerical method for two-dimensional boundary integral equations of the first kind with logarithm kernels when the boundary of the domain is smooth and closed. In this case, the use of the conventional boundary element methods gives linear systems with dense matrix. In this paper, we demonstrate that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. It will be demonstrated that this technique can increase the numerical efficiency significantly.

  19. Test Methods for Vertebrate Pest Control and Management Materials. A Symposium Sponsored by ASTM Committee E-35 on Pesticides, American Society for Testing and Materials, Monterey, California, March 8, 1976.

    Science.gov (United States)

    Jackson, W. B., Ed.; Marsh, R. E., Ed.

    The first symposium on "Test Methods for Vertebrate Pest Management" was held in March, 1976. Much of the thrust was toward explaining and defining the "state of the art." Concerns included rodents and rabbits, predators, scavengers, and large game animals, and a variety of bird species. Environments were as restricted as a…

  20. Determination of the fast neutrons spectra by the Elastic scattering method (n, p)

    CERN Document Server

    Elizalde, J

    1973-01-01

    This work consists in determining the fast neutron spectra emitted by a Pu-Be isotopic source. The implemented technique is based in the spectrometry (n, p). This consists in making to fall on a fast neutrons beams (polyenergetic) over a thin film of hydrogenated material, detecting the spectra of emitted protons at a fix angle. The polyethylene film and the used solid state detector are inside of a vacuum chamber. The detector is placed at 30 degree with respect to direction of the incident neutrons beam. The protons spectra is stored in a multichannel. the energy is obtained with the prior calibration of the system. The data processing involves the transformation of the protons spectra observed at the falling on neutrons spectra over the film. The energy of the neutrons is related with that of the protons, according to the collision kinematical equations. The cross section of elastic collision of the neutrons with the hydrogen atoms is obtained from literature. Applying these relations to the observed spect...

  1. A fast method for optical simulation of flood maps of light-sharing detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Han [Tsinghua University, Beijing (China); Lawrence Berkeley National Laboratory, CA (United States); Du, Dong [Tsinghua University, Beijing (China); Xu, JianFeng [Huazhong University of Science and Technology, Wuhan (China); Moses, William W. [Lawrence Berkeley National Laboratory, CA (United States); Peng, Qiyu, E-mail: qiyupeng@gmail.com [Lawrence Berkeley National Laboratory, CA (United States)

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  2. Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes

    Science.gov (United States)

    Anisimova, Maria; Gil, Manuel; Dufayard, Jean-François; Dessimoz, Christophe; Gascuel, Olivier

    2011-01-01

    Phylogenetic inference and evaluating support for inferred relationships is at the core of many studies testing evolutionary hypotheses. Despite the popularity of nonparametric bootstrap frequencies and Bayesian posterior probabilities, the interpretation of these measures of tree branch support remains a source of discussion. Furthermore, both methods are computationally expensive and become prohibitive for large data sets. Recent fast approximate likelihood-based measures of branch supports (approximate likelihood ratio test [aLRT] and Shimodaira–Hasegawa [SH]-aLRT) provide a compelling alternative to these slower conventional methods, offering not only speed advantages but also excellent levels of accuracy and power. Here we propose an additional method: a Bayesian-like transformation of aLRT (aBayes). Considering both probabilistic and frequentist frameworks, we compare the performance of the three fast likelihood-based methods with the standard bootstrap (SBS), the Bayesian approach, and the recently introduced rapid bootstrap. Our simulations and real data analyses show that with moderate model violations, all tests are sufficiently accurate, but aLRT and aBayes offer the highest statistical power and are very fast. With severe model violations aLRT, aBayes and Bayesian posteriors can produce elevated false-positive rates. With data sets for which such violation can be detected, we recommend using SH-aLRT, the nonparametric version of aLRT based on a procedure similar to the Shimodaira–Hasegawa tree selection. In general, the SBS seems to be excessively conservative and is much slower than our approximate likelihood-based methods. PMID:21540409

  3. Fast numerical method for electromagnetic scattering from an object above a large-scale layered rough surface at large incident angle: vertical polarization.

    Science.gov (United States)

    Wang, A-Q; Guo, L-X; Chai, C

    2011-02-01

    A fast numerical method has been proposed in this paper for calculating the electromagnetic scattering from a perfectly electric conducting object above a two-layered dielectric rough surface. The focus in this study is large incidence. The parallel fast multipole method is combined with the method of moments for fast implementation of the scattering from this composite model. The biconjugate gradient method is adopted to solve the unsymmetrical matrix equation and parallelized. The simulating time and parallel speedup ratio with different processors are provided. Several numerical results are shown and analyzed to discuss the influences of the parameters of the rough surface, the object, and the intermediate medium on the bistatic scattering.

  4. A Fast Implicit Finite Difference Method for Fractional Advection-Dispersion Equations with Fractional Derivative Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Taohua Liu

    2017-01-01

    Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(Klog⁡K. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.

  5. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels

    Directory of Open Access Journals (Sweden)

    Mergeai G.

    2006-01-01

    Full Text Available A reliable, fast, cheap and sensitive silver staining method to detect nucleic acids in polyacrylamide gels was developed from two standard stain procedures. The main differences between the three methods concerned (i the preexposure with formaldehyde during silver nitrate impregnation, (ii the addition of sodium thiosulfate and sodium carbonate instead of sodium hydroxide during development; (iii the removal of the stop reaction or the inclusion of absolute ethanol with acetic acid in the stop solution and (iv the duration of the different reaction steps. All methods allowed the detection of similar polymorphisms for single sequence repeats with different cotton genotypes but important differences regarding the contrast, background and conservation duration of the gels were observed. Two methods gave superior sensitivity. The improved method was sensitive, fast (20 min, gave lower backgrounds, produced gels with long-term conservation ability, and allowed a reutilization of all the solutions used in the staining procedure from fi ve to seven times, making it quite cheap.

  6. Fast point-based method of a computer-generated hologram for a triangle-patch model by using a graphics processing unit.

    Science.gov (United States)

    Sugawara, Takuya; Ogihara, Yuki; Sakamoto, Yuji

    2016-01-20

    The point-based method and fast-Fourier-transform-based method are commonly used for calculation methods of computer-generation holograms. This paper proposes a novel fast calculation method for a patch model, which uses the point-based method. The method provides a calculation time that is proportional to the number of patches but not to that of the point light sources. This means that the method is suitable for calculating a wide area covered by patches quickly. Experiments using a graphics processing unit indicated that the proposed method is about 8 times or more faster than the ordinary point-based method.

  7. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting

    Directory of Open Access Journals (Sweden)

    Gunetti Monica

    2012-05-01

    Full Text Available Abstract Background The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests’ accuracy, precision, repeatability, linearity and range. Methods As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. Results All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells and under five percent (viable cells. The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Conclusions Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a

  8. 基于wedgelets的快速图像表示方法%Fast image representation method based on wedgelets

    Institute of Scientific and Technical Information of China (English)

    束建华; 殷志祥

    2014-01-01

    针对用wedgelets表示图像存在计算冗余和存储空间大的问题,提出一种快速的基于wedgelets的图像表示方法。采用与传统的自下而上的剪枝策略不同的四叉树剪枝算法,通过基于快速多叉数树搜索及仅用wedgelets表示树叶来实现快速运算和减少存储空间,并且提出了一些提高计算效率的搜索和编码技巧。复杂度分析及实验结果表明,该方法能降低计算复杂度且有理想的率失真性能,并有效地捕获图像的几何结构。%A fast image representation method based on wedgelets is proposed in order to solve the problem that the image representation method by wedgelets has high computational complexity and storage space. The proposed method uses a recursive top-down quad-tree pruning algorithm compared to traditional bottom-up pruning strategy, based on fast multi-tree search and decorating leaves by wedgelets to achieve fast operation and reduce the storage space. Meanwhile, simple coding strategy and some search tips to improve the computational efficiency are presented and analyzed in this paper. Complexity analysis and Experimental results show that the method reduces computation complexity for searching different dyadic squares with desirable rate-distortion behaviour and captures natural geometric structure of image effectively.

  9. Fast synthesis of dopamine-coated Fe3O4 nanoparticles through ligand-exchange method

    Institute of Scientific and Technical Information of China (English)

    Peng An; Fang Zuo; Yuan Peng Wu; Jun Hua Zhang; Zhao Hui Zheng; Xiao Bin Ding; Yu Xing Peng

    2012-01-01

    A fast approach was described for the synthesis of water-dispersible monodisperse dopamine-coated Fe3O4 nanoparticles (DA-Fe3O4) with uniform size and shape via ligand-exchange of oleic acid on Fe3O4 using only 2 min.The prepared DA-Fe3O4 nanoparticles were characterized by transmission electron microscopy,Fourier transform infrared spectrometry,and vibrating sample magnetometer.The results indicated that the resulting DA-Fe3O4 nanoparticles had an average diameter of about 19.2 nm.The magnetic saturation value of the prepared DA-Fe3O4 nanoparticles was determined to be 72.87 emu/g,which indicating a wellestablished superparamagnetic property.

  10. Fast crustal deformation computing method for multiple computations accelerated by a graphics processing unit cluster

    Science.gov (United States)

    Yamaguchi, Takuma; Ichimura, Tsuyoshi; Yagi, Yuji; Agata, Ryoichiro; Hori, Takane; Hori, Muneo

    2017-08-01

    As high-resolution observational data become more common, the demand for numerical simulations of crustal deformation using 3-D high-fidelity modelling is increasing. To increase the efficiency of performing numerical simulations with high computation costs, we developed a fast solver using heterogeneous computing, with graphics processing units (GPUs) and central processing units, and then used the solver in crustal deformation computations. The solver was based on an iterative solver and was devised so that a large proportion of the computation was calculated more quickly using GPUs. To confirm the utility of the proposed solver, we demonstrated a numerical simulation of the coseismic slip distribution estimation, which requires 360 000 crustal deformation computations with 82 196 106 degrees of freedom.

  11. 'Label and go' - A fast and easy radiolabelling method for pellets

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, C.; Mien, L.-K. [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Salar-Behzadi, S. [Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Knaeusl, B. [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Wadsak, W. [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna (Austria); Dudczak, R.; Kletter, K. [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Viernstein, H. [Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Mitterhauser, M. [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna, A-1090 Vienna (Austria)], E-mail: markus.mitterhauser@meduniwien.ac.at

    2010-03-15

    For the development and process optimization of pharmaceutical equipment, it is important to investigate the underlying processes. Taking the fluidized bed technology as an example, the study of particle flow pattern and convection of the particles within the functional unity is essential for construction and process improvement. With positron emission particle tracking (PEPT) it is possible to study the real-time particle motion with radiolabelled particles. We established a fast and simple labelling technique with [{sup 18}F]fluoride for pellets composed of Avicel and anion exchange resin. The uptake of activity ranged from 1.3% to 1.7% per mg and 8.6% to 16.3% per pellet. A specific binding of [{sup 18}F]fluoride with increasing degree of anion exchange resin in the pellets could be observed.

  12. SKRYN: A fast semismooth-Krylov-Newton method for controlling Ising spin systems

    Science.gov (United States)

    Ciaramella, G.; Borzì, A.

    2015-05-01

    The modeling and control of Ising spin systems is of fundamental importance in NMR spectroscopy applications. In this paper, two computer packages, ReHaG and SKRYN, are presented. Their purpose is to set-up and solve quantum optimal control problems governed by the Liouville master equation modeling Ising spin-1/2 systems with pointwise control constraints. In particular, the MATLAB package ReHaG allows to compute a real matrix representation of the master equation. The MATLAB package SKRYN implements a new strategy resulting in a globalized semismooth matrix-free Krylov-Newton scheme. To discretize the real representation of the Liouville master equation, a norm-preserving modified Crank-Nicolson scheme is used. Results of numerical experiments demonstrate that the SKRYN code is able to provide fast and accurate solutions to the Ising spin quantum optimization problem.

  13. U.S. Sodium Fast Reactor Codes and Methods: Current Capabilities and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, A. J.; Fanning, T. H.

    2017-06-26

    The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such as SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.

  14. Method for combining fast surface and exact volume visualization techniques in medicine

    Science.gov (United States)

    Englmeier, Karl-Hans; Haubner, Michael; Foerterer, H. M.; Perzl, W.; Fink, B. K.; Fink, U.

    1994-05-01

    In order to enable the interaction with and manipulation of 3-D data sets in the realm of medical diagnosis and therapy planning we developed a modified Z-merging algorithm that includes transparency and texture mapping features. For this an extended shape based interpolation model creates isotropic grayscale data volume in case of spatial image sequences. Interesting anatomical regions such as soft tissue, organs, and bones are detected by automatic and interactive segmentation procedures. Following that, a fully automatic surface construction algorithm detects the 3-D object boundaries by fitting geometric primitives to the binary data. The surface representations support the user with a fast overview about the structure of the 3D scene. Texture mapping is implemented as the projection of the gray values of the isotropic voxels onto a polygonal surface. Adaptive refinement, Phong's normal interpolation, and transparency are the most important features of this raytracer. The described technique enables the simultaneous display of multimodal 3D image data.

  15. A new cost-effective and fast method of autologous fat grafting.

    Science.gov (United States)

    Sorin, T; Rausky, J; Rem, K; Ozil, C; Nguyen Van Nuoi, V; Revol, M; Mazouz Dorval, S

    2016-08-01

    Due to the increasing number of fat grafting procedures, several laboratories have developed their own fat processing system (Puregraft(®), LipiVage(®), Viafill(®), etc.), such as closed harvesting systems, centrifugation or washing and filtration devices, or even simple decantation techniques. However, all these tissue-engineering systems are expensive. Our team has developed a simple and fast autologous fat grafting system, useable even for a large volume of lipofilling, and based on low-pressure suction and a sterile closed-system for processing the harvested fat tissue. It is a cost-effective system, as it only costs 9.28Eur (10.52USD) for a 500milliliters autologous fat graft procedure.

  16. A fast stir bar sorptive extraction method for the analysis of geosmin and 2-methylisoborneol in source and drinking water.

    Science.gov (United States)

    Bauld, T; Teasdale, P; Stratton, H; Uwins, H

    2007-01-01

    The presence of unpleasant taste and odour in drinking water is an ongoing aesthetic concern for water providers worldwide. The need for a sensitive and robust method capable of analysis in both natural and treated waters is essential for early detection of taste and odour events. The purpose of this study was to develop and optimise a fast stir bar sorptive extraction (SBSE) method for the analysis of geosmin and 2-methylisoborneol (MIB) in both natural water and drinking water. Limits of detection with the optimised fast method (45 min extraction time at 60 degrees C using 24 microL stir bars) were 1.1 ng/L for geosmin and 4.2 ng/L for MIB. Relative standard deviations at the detection limits were under 17% for both compounds. Use of multiple stir bars can be used to decrease the detection limits further. The use of 25% NaCl and 5% methanol sample modifiers decreased the experimental recoveries. Likewise, addition of 1 mg/L and 1.5 mg/L NaOCI decreased the recoveries and this effect was not reversed by addition of 10% thiosulphate. The optimised method was used to measure geosmin concentrations in treated and untreated drinking water. MIB concentrations were below the detection limits in these waters.

  17. A Fast Numerical Method for Max-Convolution and the Application to Efficient Max-Product Inference in Bayesian Networks.

    Science.gov (United States)

    Serang, Oliver

    2015-08-01

    Observations depending on sums of random variables are common throughout many fields; however, no efficient solution is currently known for performing max-product inference on these sums of general discrete distributions (max-product inference can be used to obtain maximum a posteriori estimates). The limiting step to max-product inference is the max-convolution problem (sometimes presented in log-transformed form and denoted as "infimal convolution," "min-convolution," or "convolution on the tropical semiring"), for which no O(k log(k)) method is currently known. Presented here is an O(k log(k)) numerical method for estimating the max-convolution of two nonnegative vectors (e.g., two probability mass functions), where k is the length of the larger vector. This numerical max-convolution method is then demonstrated by performing fast max-product inference on a convolution tree, a data structure for performing fast inference given information on the sum of n discrete random variables in O(nk log(nk)log(n)) steps (where each random variable has an arbitrary prior distribution on k contiguous possible states). The numerical max-convolution method can be applied to specialized classes of hidden Markov models to reduce the runtime of computing the Viterbi path from nk(2) to nk log(k), and has potential application to the all-pairs shortest paths problem.

  18. A Robust and Fast Method for Sidescan Sonar Image Segmentation Using Nonlocal Despeckling and Active Contour Model.

    Science.gov (United States)

    Huo, Guanying; Yang, Simon X; Li, Qingwu; Zhou, Yan

    2017-04-01

    Sidescan sonar image segmentation is a very important issue in underwater object detection and recognition. In this paper, a robust and fast method for sidescan sonar image segmentation is proposed, which deals with both speckle noise and intensity inhomogeneity that may cause considerable difficulties in image segmentation. The proposed method integrates the nonlocal means-based speckle filtering (NLMSF), coarse segmentation using k -means clustering, and fine segmentation using an improved region-scalable fitting (RSF) model. The NLMSF is used before the segmentation to effectively remove speckle noise while preserving meaningful details such as edges and fine features, which can make the segmentation easier and more accurate. After despeckling, a coarse segmentation is obtained by using k -means clustering, which can reduce the number of iterations. In the fine segmentation, to better deal with possible intensity inhomogeneity, an edge-driven constraint is combined with the RSF model, which can not only accelerate the convergence speed but also avoid trapping into local minima. The proposed method has been successfully applied to both noisy and inhomogeneous sonar images. Experimental and comparative results on real and synthetic sonar images demonstrate that the proposed method is robust against noise and intensity inhomogeneity, and is also fast and accurate.

  19. Fast Fourier-Galerkin methods for first-kind logarithmic-kernel integral equations on open arcs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We propose a fully discrete fast Fourier-Galerkin method for solving an integral equation of the first kind with a logarithmic kernel on a smooth open arc,which is a reformulation of the Dirichlet problem of the Laplace equation in the plane.The optimal convergence order and quasi-linear complexity order of the proposed method are established.A precondition is introduced.Combining this method with an efficient numerical integration algorithm for computing the single-layer potential defined on an open arc,we obtain the solution of the Dirichlet problem on a smooth open arc in the plane.Numerical examples are presented to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed method.

  20. Fast and Robust Method for the Computation of Spherical Harmonic Coefficients from SST Data of GOCE Satellite

    Science.gov (United States)

    Touati, F.; Idres, M.; Kahlouche, S.

    2010-12-01

    A method is presented for the fast and robust computation of the spherical harmonic coefficients of the terrestrial gravitational field from precise kinematic orbit of GOCE satellite. To reduce the influence of outliers in the kinematic orbit, Huber's M-estimation is applied. The computational aspect of this method is studied with great importance by investigating the Newton's procedure which converges faster than the iteratively reweighted least squares (IRLS) algorithm. The processing strategy of the orbit data is based on satellite accelerations, which are derived from GPS position time-series by Newton's interpolation. The gradient of the gravitational potential with respect to rectangular coordinates is expressed using the Cunningham-Metris method. The Newton's law of motion performs the equality between satellite accelerations and the gradient of the gravitational potential in an inertial frame system. Numerical results using simulated data are realized in order to test the robustness and the computational efficiency of the proposed method.

  1. Fast generation method of fuzzy rules and its application to flux optimization in process of matter converting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of two linguistic variables with the degree of certainty and the storage structure of rule base was described.The simulation results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5%.

  2. Calculation of Resistivity of the Insulating Layer in Tunnelling-Magnetoresistive Head by Fast Green Function Method

    Institute of Scientific and Technical Information of China (English)

    WEI Dan; PIAO Kun; QIN Jian; DONG Zhong

    2005-01-01

    @@ We calculate the resistivity of the insulating layer in a tunnelling-magnetoresistive (TMR) magnetic head byusing the Landauer-Büttiker formula with a fast Green function method, where a recursive process with a faster simulation speed and higher accuracy is carried out to substitute the inversion of Green's matrix. A tight-binding model with an energy barrier △ E is utilized to simulate the magnetoresistive tunnelling junction in the TMR head. The resistivity of the insulating layer is 2.6 × 105μΩcm with two oxygen-ion layers and △E = 2.5 eV, which agrees with the experimental data.

  3. A fast and robust method for whole genome sequencing of the Aleutian Mink Disease Virus (AMDV) genome

    DEFF Research Database (Denmark)

    Hagberg, Emma Elisabeth; Krarup, Anders; Fahnøe, Ulrik;

    2016-01-01

    have focused on limited regions of the viral genome. This paper describes a robust, reliable, and fast protocol for amplification of the full AMDV genome using long-range PCR. The method was used to generate next generation sequencing data for the non-virulent cell-culture adapted AMDV-G strain as well......Aleutian Mink Disease Virus (AMDV) is a frequently encountered pathogen associated with commercial mink breeding. AMDV infection leads to increased mortality and compromised animal health and welfare. Currently little is known about the molecular evolution of the virus, and the few existing studies...

  4. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    Energy Technology Data Exchange (ETDEWEB)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  5. Fast Segmentation Method of Fingerprint Image%一种指纹图像的快速分割方法

    Institute of Scientific and Technical Information of China (English)

    梁媛媛; 温佩芝; 黄文明; 任亚恒; 朱叶青; 罗桂海

    2011-01-01

    Mathematical morphology amoebae method can segment the fingerprint, but the run speed is slow for the large computation. Aiming at this problem, this paper proposes a fast segmentation method of fingerprint image based on the mathematical morphology amoebas and Discrete Wavetei Transform(DWT). It uses the wavelet decomposition, and segments the low frequency image using morphology amoebas. Experimental results show thai this method ensures good segmentation accuracy and realizes the fast segmentation of fingerprint image.%利用数学形态学变形虫法进行指纹图像分割时计算最大,导致分割速度变慢.针对该问题,提出一种将数学形态学变形虫法和离散小波变换相结合的指纹图像快速分割方法.先对原始图像进行小波分解,再对获取的低频图像采用形态学变形虫分割.实验结果表明,该方法在保证良好分割精度的同时分割速度较快.

  6. Method of signal detection from silicon photomultipliers using fully differential Charge to Time Converter and fast shaper

    Energy Technology Data Exchange (ETDEWEB)

    Baszczyk, M., E-mail: baszczyk@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Dorosz, P.; Glab, S.; Kucewicz, W. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Mik, L. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); State Higher Vocational School, Tarnow (Poland); Sapor, M. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland)

    2016-07-11

    The paper presents an implementation of fully differential readout method for Silicon Photomultipliers (SiPM). Front-end electronics consists of a fast and slow path. The former creates the trigger signal while the latter produces a pulse of width proportional to the input charge. The fast shaper generates unipolar pulse and utilizes the pole-zero cancelation circuit. The peaking time for single photoelectron is equal to 3.6 ns and the FWHM is 3.8 ns. The pulse width of the Charge to Time Converter (QTC) depends on the number of photons entering the SiPM at the moment of measurement. The QTC response is nonlinear but it allows us to work with signals in a wide dynamic range. The proposed readout method is effective in measurements of random signals where frequent events tend to pile-up. Thermal generation and afterpulses have a strong influence on the width of pulses from QTC. The proposed method enables us to distinguish those overlapping signals and get the reliable information on the number of detected photons.

  7. Core Power Control of the fast nuclear reactors with estimation of the delayed neutron precursor density using Sliding Mode method

    Energy Technology Data Exchange (ETDEWEB)

    Ansarifar, G.R., E-mail: ghr.ansarifar@ast.ui.ac.ir; Nasrabadi, M.N.; Hassanvand, R.

    2016-01-15

    Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.

  8. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties

    Science.gov (United States)

    Cao, Guangxia; Hong, Kunquan; Wang, Wenda; Liu, Liqing; Xu, Mingxiang

    2016-10-01

    The fast growth of aligned ZnO nanowire arrays with optimized structure is attractive for electrical and optical devices. In this paper, we report a controllable and rapid growth of ZnO nanowire arrays by a microwave-assisted hydrothermal method. When using different zinc salts as the precursors, the morphology of the samples changes a lot and the length growth rate is several times different. The growth mechanism is also investigated. It is found that the solution near neutral pH value is ideal for fast nanowire growth, in which the length of the nanowires increases linearly with growth time and the growth rate is over ten times faster than that in the traditional hydrothermal method. Therefore, aligned ZnO nanowire arrays can grow up to tens of microns in a few hours, while the density and sizes of these nanowires can be well controlled. The ZnO nanowire arrays used as photocatalysts present good photocatalytic performance to the degradation of methyl orange (MO) due to the large surface area. So this paper provides an effective method to obtain vertically aligned ZnO nanowire arrays for practical applications.

  9. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface.

    Science.gov (United States)

    Chang, Hyejin; Kang, Homan; Jeong, Sinyoung; Ko, Eunbyeol; Lee, Yoon-Sik; Lee, Ho-Young; Jeong, Dae Hong

    2015-05-01

    Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.

  10. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol; Jeong, Dae Hong, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Chemistry Education, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Homan [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Yoon-Sik, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Ho-Young, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of)

    2015-05-15

    Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.

  11. Method for fast computation of angular light scattering spectra from 2D periodic arrays

    CERN Document Server

    Pomplun, J; Zschiedrich, L; Gutsche, P; Schmidt, F

    2016-01-01

    An efficient numerical method for computing angle-resolved light scattering off periodic arrays is presented. The method combines finite-element discretization with a Schur complement solver. A significant speed-up of the computations in comparison to standard finite-element method computations is observed.

  12. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    Science.gov (United States)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  13. A Fast O(N log N Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Treena Basu

    2015-10-01

    Full Text Available This paper proposes an approach for the space-fractional diffusion equation in one dimension. Since fractional differential operators are non-local, two main difficulties arise after discretization and solving using Gaussian elimination: how to handle the memory requirement of O(N2 for storing the dense or even full matrices that arise from application of numerical methods and how to manage the significant computational work count of O(N3 per time step, where N is the number of spatial grid points. In this paper, a fast iterative finite difference method is developed, which has a memory requirement of O(N and a computational cost of O(N logN per iteration. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.

  14. ERENA: A fast and robust Jacobian-free integration method for ordinary differential equations of chemical kinetics

    Science.gov (United States)

    Morii, Youhi; Terashima, Hiroshi; Koshi, Mitsuo; Shimizu, Taro; Shima, Eiji

    2016-10-01

    We herein propose a fast and robust Jacobian-free time integration method named as the extended robustness-enhanced numerical algorithm (ERENA) to treat the stiff ordinary differential equations (ODEs) of chemical kinetics. The formulation of ERENA is based on an exact solution of a quasi-steady-state approximation that is optimized to preserve the mass conservation law through use of a Lagrange multiplier method. ERENA exhibits higher accuracy and faster performance in homogeneous ignition simulations compared to existing popular explicit and implicit methods for stiff ODEs such as VODE, MTS, and CHEMEQ2. We investigate the effects of user-specified threshold values in ERENA, to provide trade-off information between the accuracy and the computational cost.

  15. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.

    Science.gov (United States)

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí

    2009-04-24

    A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pK(a), obtaining a mean deviation of 0.05 pH units compared to the literature values.

  16. A New Method to Monitor the Contribution of Fast Food Restaurants to the Diets of US Children

    Science.gov (United States)

    Rehm, Colin D.; Drewnowski, Adam

    2014-01-01

    Background American adults consume 11.3% of total daily calories from foods and beverages from fast food restaurants. The contribution of different types of fast food restaurants to the diets of US children is unknown. Objective To estimate the consumption of energy, sodium, added sugars, and solid fats among US children ages 4–19 y by fast food restaurant type. Methods Analyses used the first 24-h recall for 12,378 children in the 2003–2010 cycles of the nationally representative National Health and Nutrition Examination Survey (NHANES 2003–2010). NHANES data identify foods by location of origin, including stores and fast food restaurants (FFR). A novel custom algorithm divided FFRs into 8 segments and assigned meals and snacks to each. These included burger, pizza, sandwich, Mexican, Asian, fish, and coffee/snack restaurants. The contribution of each restaurant type to intakes of energy and other dietary constituents was then assessed by age group (4–11 y and 12–19 y) and by race/ethnicity. Results Store-bought foods and beverages provided 64.8% of energy, 61.9% of sodium, 68.9% of added sugars, and 60.1% of solid fats. FFRs provided 14.1% of energy, 15.9% of sodium, 10.4% of added sugars and 17.9% of solid fats. Among FFR segments, burger restaurants provided 6.2% of total energy, 5.8% of sodium, 6.2% of added sugars, and 7.6% of solid fats. Less energy was provided by pizza (3.3%), sandwich (1.4%), Mexican (1.3%), and chicken restaurants (1.2%). Non-Hispanic black children obtained a greater proportion of their total energy (7.4%), sodium (7.1%), and solid fats (9.5%) from burger restaurants as compared to non-Hispanic white children (6.0% of energy, 5.5% of sodium, and 7.3% of solid fat). Conclusions These novel analyses, based on consumption data by fast food market segment, allow public health stakeholders to better monitor the effectiveness of industry efforts to promote healthier menu options. PMID:25062277

  17. Size dependence study of the ordering temperature in the Fast Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, E. A., E-mail: eavelas@gmail.com [Universidad de San Buenaventura Seccional Medellin, Grupo de Investigacion en Modelamiento y Simulacion Computacional, Facultad de Ingenierias (Colombia); Mazo-Zuluaga, J., E-mail: johanmazo@gmail.com [Universidad de Antioquia, Grupo de Estado Solido, Grupo de Instrumentacion Cientifica y Microelectronica, Instituto de Fisica-FCEN (Colombia); Mejia-Lopez, J., E-mail: jmejia@puc.cl [Universidad de Antioquia, Instituto de Fisica-FCEN (Colombia)

    2013-02-15

    Based on the framework of the Fast Monte Carlo approach, we study the diameter dependence of the ordering temperature in magnetic nanostructures of cylindrical shape. For the purposes of this study, Fe cylindrical-shaped samples of different sizes (20 nm height, 30-100 nm in diameter) have been chosen, and their magnetic properties have been computed as functions of the scaled temperature. Two main set of results are concluded: (a) the ordering temperature of nanostructures follows a linear scaling relationship as a function of the scaling factor x, for all the studied sizes. This finding rules out a scaling relation T Prime {sub c} = x{sup 3{eta}}T{sub c} (where {eta} is a scaling exponent, and T Prime {sub c} and T{sub c} are the scaled and true ordering temperatures) that has been proposed in the literature, and suggests that temperature should scale linearly with the scaling factor x. (b) For the nanostructures, there are three different order-disorder magnetic transition modes depending on the system's size, in very good agreement with previous experimental reports.

  18. An Improved TA-SVM Method Without Matrix Inversion and Its Fast Implementation for Nonstationary Datasets.

    Science.gov (United States)

    Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong

    2015-09-01

    Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.

  19. Fast and efficient second-order method for training radial basis function networks.

    Science.gov (United States)

    Xie, Tiantian; Yu, Hao; Hewlett, Joel; Rózycki, Paweł; Wilamowski, Bogdan

    2012-04-01

    This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm.

  20. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    Science.gov (United States)

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-03-09

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  1. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    Directory of Open Access Journals (Sweden)

    Jonghoon Seo

    2016-03-01

    Full Text Available Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  2. A FAST LAGRANGIAN SIMULATION METHOD FOR FLOW ANALYSIS AND RUNNER DESIGN IN PELTON TURBINES

    Institute of Scientific and Technical Information of China (English)

    ANAGNOSTOPOULOS John S.; PAPANTONIS Dimitris E.

    2012-01-01

    In the present work,an alternative numerical methodology is developed for a fast and effective simulation and analysis of the complex flow and energy conversion in Pelton impulse hydro turbines.The algorithm is based on the Lagrangian approach and the unsteady free-surface flow during the jet-bucket interaction is simulated by tracking the trajectories of representative fluid particles at very low computer cost.Modern regression tools are implemented in a new parameterization technique of the inner bucket surface.Key-feature of the model is the introduction of additional terms into the particle motion equations to account for various hydraulic losses and the flow spreading,which are regulated and evaluated with the aid of experimental data in a Laboratory Pelton turbine.The model is applied to study the jet-runner interaction in various operation conditions and then to perform numerical design optimization of the bucket shape,using a stochastic optimizer based on evolutionary algorithms.The obtained optimum runner attains remarkably higher hydraulic efficiency in the entire load range.Finally,a new small Pelton turbine (150 kW) is designed,manufactured and tested in the Laboratory,and its performance and efficiency verify the model predictions.

  3. A Fast Time-Delay Calculation Method in Through-Wall-Radar Detection Scenario

    Directory of Open Access Journals (Sweden)

    Zhang Qi

    2016-01-01

    Full Text Available In TWR (Through Wall Radar signal processing procedure, time delay estimation is one of the key steps in target localization and high resolution imaging. In time domain imaging procedure such as back projection imaging algorithm, round trip propagation time delay at the path of “transmitter-target-receiver” needs to be calculated for each pixel in imaging region. In typical TWR scenario, transmitter and receiver are at one side and targets at the other side of a wall. Based on two-dimensional searching algorithm or solving two variables equation of four times, traditional time delay calculation algorithms are complex and time consuming, and cannot be used to real-time imaging procedure. In this paper, a new fast time-delay (FTD algorithm is presented. Because of that incident angle at one side equals to refracting angle at the other side, an equation of lateral distance through the wall can be established. By solving this equation, the lateral distance can be obtained and total propagation time delay can be calculated subsequently. Through processing simulation data, the result shows that new algorithm can be applied effectively to real-time time-delay calculation in TWR signal processing.

  4. The Effect of LC-MS Data Preprocessing Methods on the Selection of Plasma Biomarkers in Fed vs. Fasted Rats.

    Science.gov (United States)

    Gürdeniz, Gözde; Kristensen, Mette; Skov, Thomas; Dragsted, Lars O

    2012-01-18

    The metabolic composition of plasma is affected by time passed since the last meal and by individual variation in metabolite clearance rates. Rat plasma in fed and fasted states was analyzed with liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF) for an untargeted investigation of these metabolite patterns. The dataset was used to investigate the effect of data preprocessing on biomarker selection using three different softwares, MarkerLynxTM, MZmine, XCMS along with a customized preprocessing method that performs binning of m/z channels followed by summation through retention time. Direct comparison of selected features representing the fed or fasted state showed large differences between the softwares. Many false positive markers were obtained from custom data preprocessing compared with dedicated softwares while MarkerLynxTM provided better coverage of markers. However, marker selection was more reliable with the gap filling (or peak finding) algorithms present in MZmine and XCMS. Further identification of the putative markers revealed that many of the differences between the markers selected were due to variations in features representing adducts or daughter ions of the same metabolites or of compounds from the same chemical subclasses, e.g., lyso-phosphatidylcholines (LPCs) and lyso-phosphatidylethanolamines (LPEs). We conclude that despite considerable differences in the performance of the preprocessing tools we could extract the same biological information by any of them. Carnitine, branched-chain amino acids, LPCs and LPEs were identified by all methods as markers of the fed state whereas acetylcarnitine was abundant during fasting in rats.

  5. A fast 3D surface reconstruction and volume estimation method for grain storage based on priori model

    Science.gov (United States)

    Liang, Xian-hua; Sun, Wei-dong

    2011-06-01

    Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.

  6. A new method for fast circle detection in a complex background image

    Science.gov (United States)

    Wu, Meijun; Yang, Jie; Sun, Yadong

    2011-11-01

    A new method for circle detection, Hough gradient clustering method, has been developed in this paper. By using gradient direction angle to find the diameter of a circle, the new method can rapidly detect the circle in a complex background. The crucial steps in this method are the feature extraction and the clustering of the points which have the same gray direction angle and are collinear along the gradient direction. The application of the two-to-one space mapping and 1-2Hough transform can further reduce the useless calculation in the process of circle detection. Comparing with the Hough gradient method in OpenCV, the newly developed method shows a higher efficiency of circle detection in a complex background image as well as a great improvement in the anti-noise ability.

  7. SOLVING CONTACT PROBLEM WITH FRICTION BY A NEW FAST BOUNDARY ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The formulation of boundary element method for handling contact problems with friction and the technique for high-speed contact analysis are presented. This formulation is based on the idea of modifying the length of contact elements without altering the total number of elements. The high precision of solution and high-speed analysis are verified according to the results of conventional method and analysis method.

  8. Application of Sweat Patch Screening for 16 Drugs and Metabolites Using a Fast and Highly Selective LC-MS/MS Method

    NARCIS (Netherlands)

    Koster, Remco A.; Alffenaar, Jan-Willem C.; Greijdanus, Ben; VanDerNagel, Joanneke E. L.; Uges, Donald R. A.

    Background: To facilitate the monitoring of drug abuse by patients, a method was developed and validated for fast and highly selective screening for amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylphenidate, cocaine,

  9. Application of Sweat Patch Screening for 16 Drugs and Metabolites Using a Fast and Highly Selective LC-MS/MS Method

    NARCIS (Netherlands)

    Koster, Remco A.; Alffenaar, Jan-Willem C.; Greijdanus, Ben; VanDerNagel, Joanneke E. L.; Uges, Donald R. A.

    2014-01-01

    Background: To facilitate the monitoring of drug abuse by patients, a method was developed and validated for fast and highly selective screening for amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylphenidate, cocaine, b

  10. Fast egg collection method greatly improves randomness of egg sampling in Drosophila melanogaster.

    Science.gov (United States)

    Schou, Mads Fristrup

    2013-01-01

    When obtaining samples for population genetic studies, it is essential that the sampling is random. For Drosophila, one of the crucial steps in sampling experimental flies is the collection of eggs. Here an egg collection method is presented, which randomizes the eggs in a water column and diminishes environmental variance. This method was compared with a traditional egg collection method where eggs are collected directly from the medium. Within each method the observed and expected standard deviations of egg-to-adult viability were compared, whereby the difference in the randomness of the samples between the two methods was assessed. The method presented here was superior to the traditional method. Only 14% of the samples had a standard deviation higher than expected, as compared with 58% in the traditional method. To reduce bias in the estimation of the variance and the mean of a trait and to obtain a representative collection of genotypes, the method presented here is strongly recommended when collecting eggs from Drosophila.

  11. Fast optimization of binary clusters using a novel dynamic lattice searching method.

    Science.gov (United States)

    Wu, Xia; Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.

  12. Data Collection Methods for Validation of Advanced Multi-Resolution Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akiro [Univ. of Idaho, Moscow, ID (United States); Ruggles, Art [Univ. of Tennessee, Knoxville, TN (United States); Pointer, David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-22

    In pool-type Sodium Fast Reactors (SFR) the regions most susceptible to thermal striping are the upper instrumentation structure (UIS) and the intermediate heat exchanger (IHX). This project experimentally and computationally (CFD) investigated the thermal mixing in the region exiting the reactor core to the UIS. The thermal mixing phenomenon was simulated using two vertical jets at different velocities and temperatures as prototypic of two adjacent channels out of the core. Thermal jet mixing of anticipated flows at different temperatures and velocities were investigated. Velocity profiles are measured throughout the flow region using Ultrasonic Doppler Velocimetry (UDV), and temperatures along the geometric centerline between the jets were recorded using a thermocouple array. CFD simulations, using COMSOL, were used to initially understand the flow, then to design the experimental apparatus and finally to compare simulation results and measurements characterizing the flows. The experimental results and CFD simulations show that the flow field is characterized into three regions with respective transitions, namely, convective mixing, (flow direction) transitional, and post-mixing. Both experiments and CFD simulations support this observation. For the anticipated SFR conditions the flow is momentum dominated and thus thermal mixing is limited due to the short flow length associated from the exit of the core to the bottom of the UIS. This means that there will be thermal striping at any surface where poorly mixed streams impinge; rather unless lateral mixing is ‘actively promoted out of the core, thermal striping will prevail. Furthermore we note that CFD can be considered a ‘separate effects (computational) test’ and is recommended as part of any integral analysis. To this effect, poorly mixed streams then have potential impact on the rest of the SFR design and scaling, especially placement of internal components, such as the IHX that may see poorly mixed

  13. Analytical-BEM coupling method for fast 3-D Interconnect resistance extraction

    Institute of Scientific and Technical Information of China (English)

    WANG Xi-ren; YU Wen-jian; WANG Ze-yi

    2006-01-01

    Deep submicron process technology is widely being used and interconnect structures are becoming more and more complex.This means that the resistance calculation based on two-dimensional models can no longer provide sufficiently accurate results.This paper presents a three-dimensional resistance calculation method called the combined analytical formula and boundary element method (ABEM).The method cuts selected interconnecting lines then it calculates the resistances of straight sections using an analytical formula and the resistances of the other sections using the boundary element method (BEM).The resistances of the different sub-regions are combined to calculate the resistance of the entire region.Experiments on actual layouts show that compared with the commercial software Raphael based on finite difference method,the proposed method is 2-3 orders of magnitude faster.The ABEM method uses much less memory (about 0.1%-1%),and is more accurate than Raphael with default mesh partitions.The results illustrate that the proposed method is efficient and accurate.

  14. A simple, low cost and fast improved fluorimetric method for Histamine measurement

    Directory of Open Access Journals (Sweden)

    Poorpak Z

    2001-11-01

    Full Text Available The well-known fluorimetric method for histamine measurement which is one of the common methods in diagnostic laboratories was modified to accelerate and facilitate measurement of serum histamine levels and decrease the costs and restrictions. The modified method needs only 1 ml of whole blood (or serum instead of about 10 ml in original method which is difficult almost or impossible specially for children. In addition, very small amounts of the expensive materials are needed and the samples are saved for about 15 days in -20°C which makes no significant changes. Because in most cases, sample can not be read at sampling day, the saving possibility is an advantage for improved method.

  15. A fast exact simulation method for a class of Markov jump processes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yao, E-mail: yaoli@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts 10003 (United States); Hu, Lili, E-mail: lilyhu86@gmail.com [School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  16. A fast exact simulation method for a class of Markov jump processes

    Science.gov (United States)

    Li, Yao; Hu, Lili

    2015-11-01

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  17. A fast object-oriented Matlab implementation of the Reproducing Kernel Particle Method

    Science.gov (United States)

    Barbieri, Ettore; Meo, Michele

    2012-05-01

    Novel numerical methods, known as Meshless Methods or Meshfree Methods and, in a wider perspective, Partition of Unity Methods, promise to overcome most of disadvantages of the traditional finite element techniques. The absence of a mesh makes meshfree methods very attractive for those problems involving large deformations, moving boundaries and crack propagation. However, meshfree methods still have significant limitations that prevent their acceptance among researchers and engineers, namely the computational costs. This paper presents an in-depth analysis of computational techniques to speed-up the computation of the shape functions in the Reproducing Kernel Particle Method and Moving Least Squares, with particular focus on their bottlenecks, like the neighbour search, the inversion of the moment matrix and the assembly of the stiffness matrix. The paper presents numerous computational solutions aimed at a considerable reduction of the computational times: the use of kd-trees for the neighbour search, sparse indexing of the nodes-points connectivity and, most importantly, the explicit and vectorized inversion of the moment matrix without using loops and numerical routines.

  18. A Fast Ambient Occlusion Method for Real-Time Plant Rendering

    Institute of Scientific and Technical Information of China (English)

    Jun Teng; Marc Jaeger; Bao-Gang HU

    2007-01-01

    Global illumination effects are crucial for virtual plant rendering. Whereas real-time global illumination rendering of plants is impractical, ambient occlusion is an efficient alternative approximation. A tree model with millions of triangles is common, and the triangles can be considered as randomly distributed. The existing ambient occlusion methods fail to apply on such a type of object. In this paper, we present a new ambient occlusion method dedicated to real time plant rendering with limited user interaction. This method is a three-step ambient occlusion calculation framework which is suitable for a huge number of geometry objects distributed randomly in space. The complexity of the proposed algorithm is O(n), compared to the conventional methods with complexities of O(n2). Furthermore, parameters in this method can be easily adjusted to achieve flexible ambient occlusion effects. With this ambient occlusion calculation method, we can manipulate plant models with millions of organs, as well as geometry objects with large number of randomly distributed components with affordable time, and with perceptual quality comparable to the previous ambient occlusion methods.

  19. A fast and flexible library-based thick-mask near-field calculation method

    Science.gov (United States)

    Ma, Xu; Gao, Jie; Chen, Xuanbo; Dong, Lisong; Li, Yanqiu

    2015-03-01

    Aerial image calculation is the basis of the current lithography simulation. As the critical dimension (CD) of the integrated circuits continuously shrinks, the thick mask near-field calculation has increasing influence on the accuracy and efficiency of the entire aerial image calculation process. This paper develops a flexible librarybased approach to significantly improve the efficiency of the thick mask near-field calculation compared to the rigorous modeling method, while leading to much higher accuracy than the Kirchhoff approximation method. Specifically, a set of typical features on the fullchip are selected to serve as the training data, whose near-fields are pre-calculated and saved in the library. Given an arbitrary test mask, we first decompose it into convex corners, concave corners and edges, afterwards match each patch to the training layouts based on nonparametric kernel regression. Subsequently, we use the matched near-fields in the library to replace the mask patches, and rapidly synthesize the near-field for the entire test mask. Finally, a data-fitting method is proposed to improve the accuracy of the synthesized near-field based on least square estimate (LSE). We use a pair of two-dimensional mask patterns to test our method. Simulations show that the proposed method can significantly speed up the current FDTD method, and effectively improve the accuracy of the Kirchhoff approximation method.

  20. A Fast, Accurate and Sensitive GC-FID Method for the Analyses of Glycols in Water and Urine

    Science.gov (United States)

    Kuo, C. Mike; Alverson, James T.; Gazda, Daniel B.

    2017-01-01

    Glycols, specifically ethylene glycol and 1,2-propanediol, are some of the major organic compounds found in the humidity condensate samples collected on the International Space Station. The current analytical method for glycols is a GC/MS method with direct sample injection. This method is simple and fast, but it is not very sensitive. Reporting limits for ethylene glycol and 1,2-propanediol are only 1 ppm. A much more sensitive GC/FID method was developed, in which glycols were derivatized with benzoyl chloride for 10 minutes before being extracted with hexane. Using 1,3-propanediol as an internal standard, the detection limits for the GC/FID method was determined to be 50 ppb and the analysis only takes 7 minutes. Data from the GC/MS and the new GC/FID methods shows excellent agreement with each other. Factors affecting the sensitivity, including sample volume, NaOH concentration and volume, volume of benzoyl chloride, reaction time and temperature, were investigated. Interferences during derivatization and possible method to reduce interferences were also investigated.

  1. A fast and reliable method for simultaneous waveform, amplitude and latency estimation of single-trial EEG/MEG data.

    Directory of Open Access Journals (Sweden)

    Wouter D Weeda

    Full Text Available The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the method describes these data accurately.

  2. A Fast Motion Parameters Estimation Method Based on Cross-Correlation of Adjacent Echoes for Wideband LFM Radars

    Directory of Open Access Journals (Sweden)

    Yi-Xiong Zhang

    2017-05-01

    Full Text Available In wideband radar systems, the performance of motion parameters estimation can significantly affect the performance of object detection and the quality of inverse synthetic aperture radar (ISAR imaging. Although the traditional motion parameters estimation methods can reduce the range migration (RM and Doppler frequency migration (DFM effects in ISAR imaging, the computational complexity is high. In this paper, we propose a new fast non-parameter-searching method for motion parameters estimation based on the cross-correlation of adjacent echoes (CCAE for wideband LFM signals. A cross-correlation operation is carried out for two adjacent echo signals, then the motion parameters can be calculated by estimating the frequency of the correlation result. The proposed CCAE method can be applied directly to the stretching system, which is commonly adopted in wideband radar systems. Simulation results demonstrate that the new method can achieve better estimation performances, with much lower computational cost, compared with existing methods. The experimental results on real radar datasets are also evaluated to verify the effectiveness and superiority of the proposed method compared to the state-of-the-art existing methods.

  3. A fast fault location method using modal decomposition technique of traveling wave

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kyung Rae; Kim, Sung Soo; Kang, Yong Cheol; Park, Jong Keun [Seoul National University, Seoul (Korea, Republic of); Hong, Jun Hee [Kyungwon University, Songnam (Korea, Republic of)

    1996-02-01

    In this paper, a fault location algorithm is presented, which uses novel signal processing techniques and takes a new paradigm to overcome some drawbacks of the conventional methods. This new method for fault location on electric power transmission lines uses only one-terminal fault signals. The main feature of the method is hat it uses the high frequency components in fault signal and considers the influence of the source network by using a traveling wave propagation characteristics. As a result, we can develop a high speed, good accuracy fault locator. (author). 15 refs., 15 figs., 1 tab.

  4. A fast and accurate numerical method for solving simulated moving bed (SMB) chromatographic separation problems

    DEFF Research Database (Denmark)

    Lim, Young-il; Jørgensen, Sten Bay

    2003-01-01

    /solution element (CE/SE) method addressed in this study enforces both local and global flux conservation in space and time, and uses a simple stencil structure (two points at the previous time level and one point at the present time level) on staggered space-time grids. Thus, accurate and computationally efficient...... numerical solutions are obtained. Stable solutions are guaranteed if the Courant-Friedrichs-Lewy (CFL) condition is satisfied. The boundary condition and recycle flow treatments are much simpler than for the time integrator in the framework of the method of lines. Applying the CE/SE method for SMB...

  5. A Comparative Study of Analog Voltage-mode Control Methods for Ultra-Fast Tracking Power Supplies

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a theoretical and experimental comparison of the standard PWM/PID voltage-mode control method for single-phase buck converters with two highperformance self-oscillating (a.k.a. sliding mode) control methods. The application considered is ultra-fast tracking power supplies...... (UFTPSs) for RF power amplifiers, where the switching converter needs to track a varying reference voltage precisely and quickly while maintaining low output impedance. The small-signal analyses performed on the different controllers show that the hysteretic-type controller can achieve the highest loop......-oscillating control is shown to reduce the worst-case UFTPS output impedance by a factor of 10....

  6. Fast 3D Focusing Inversion of Gravity Data Using Reweighted Regularized Lanczos Bidiagonalization Method

    Science.gov (United States)

    Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid

    2016-09-01

    Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.

  7. Implementation of a novel ultra fast metabolic stability analysis method using exact mass TOF-MS.

    Science.gov (United States)

    Manna, Joseph D; Richardson, Samantha J; Moghaddam, Mehran F

    2017-02-01

    Increasing numbers of compounds requiring stability data means highly optimized methods capable of rapid turnaround are desirable during early discovery. Materials and methods/results: An advanced, generic analytical workflow for metabolic stability has been developed that utilizing ballistic gradient LC (sub 1 min run times), exact mass TOF-MS (Waters Xevo-G2-XS Q-TOF) and automated data processing (Waters UNIFI software) allowed for rapid integration and interpretation of all data produced, eliminating the need for method development and manual processing. We can analyze and process 96 compounds across two species in quadruplicate in a 24-h period with no method development. An advanced bioanalytical workflow has increased our capacity threefold and reduced our instrument/processing needs threefold.

  8. A Fast and Reliable UPLC-PAD Fingerprint Analysis of Chimonanthus salicifolius Combined with Chemometrics Methods.

    Science.gov (United States)

    Liang, Xianrui; Zhao, Cui; Su, Weike

    2016-08-01

    A novel fingerprinting approach was developed by means of ultra-high-performance liquid chromatography with photodiode array detector (UPLC-PAD) for the quality control of Chimonanthus salicifolius (C. salicifolius). All UPLC analyses were carried out on a Waters Acquity BEH Phenyl column (2.1 × 50 mm, 1.7 μm particle size) at 48°C, with a gradient mobile phase composed of 0.1% aqueous phosphoric acid and acetonitrile at a flow rate of 0.2 mL/min. The method validation results demonstrated the developed method possessing desirable precision [<0.88% relative standard deviation (RSD)], reproducibility (<1.87% RSD), stability (<1.42% RSD) and allowing fingerprint analysis in one chromatographic run within 21 min. The quality assessment was achieved by using chemometrics methods including similarity analysis, hierarchical clustering analysis and principal component analysis. The developed method can be used for further quality control of C. salicifolius.

  9. Fast 3D Focusing Inversion of Gravity Data Using Reweighted Regularized Lanczos Bidiagonalization Method

    Science.gov (United States)

    Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid

    2017-01-01

    Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.

  10. A fast three-dimensional reconstruction method applied for the fabric defect detection

    Science.gov (United States)

    Song, Limei; Zhang, Chunbo; Xiong, Hui; Wei, Yiying; Chen, Huawei

    2010-11-01

    The fabric quality defect detection is very useful for improving the qualities of the products. It is also very important to increase the reputation and the economic benefits of a company. However, there are some shortcomings in the traditional manual detection methods, such as the low detection efficiency, the fatigue problem of the operator, and the detection inaccuracy, etc. The existing 2D image processing methods are difficult to solve the interference which is caused by non-defect case, just like the cloth folds, the flying thick silk floss, the noise from the background light and ambient light, etc. In order to solve those problem, the BCCSL (Binocular Camera Color Structure Light) method and SFMS (Shape from Multi Shading) method is proposed in this paper. The three-dimensional color coordinates of the fabric can be quickly and highly-precision obtained, thus to judge the defects shape and location. The BCCSL method and SFMS method can quickly obtain the three-dimensional coordinates' information of the fabric defects. The BCCSL method collects the 3D skeleton's information of a fabric image through the binocular video capture device and the color structured light projection device in real-time. And the details 3D coordinates of fabric outside strip structural are obtained through the proposed method SFMS. The interference information, such as the cloth fold, the flying thick silk floss, and the noise from the background light and ambient light can be excluded by using the three-dimensional defect identification. What is more, according to the characteristics of 3D structure of the defect, the fabric can be identified and classified. Further more, the possible problems from the production line can be summarized.

  11. Fast, accurate and stable scattering calculation method with application to finite sized photonic crystal waveguides

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper

    2009-01-01

    We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide.......We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide....

  12. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes.

    Science.gov (United States)

    Lehotay, Steven J; Mastovská, Katerina; Yun, Seon Jong

    2005-01-01

    Two rapid methods of sample preparation and analysis of fatty foods (e.g., milk, eggs, and avocado) were evaluated and compared for 32 pesticide residues representing a wide range of physicochemical properties. One method, dubbed the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residue analysis, entailed extraction of 15 g sample with 15 mL acetonitrile (MeCN) containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 1 mL of the buffered MeCN extract underwent a cleanup step (in a technique known as dispersive solid-phase extraction) using 50 mg each of C18 and primary secondary amine sorbents plus 150 mg MgSO4. The second method incorporated a form of matrix solid-phase dispersion (MSPD), in which 0.5 g sample plus 2 g C18 and 2 g anhydrous sodium sulfate was mixed in a mortar and pestle and added above a 2 g Florisil column on a vacuum manifold. Then, 5 x 2 mL MeCN was used to elute the pesticide analytes from the sample into a collection tube, and the extract was concentrated to 0.5 mL by evaporation. Extracts in both methods were analyzed concurrently by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. The recoveries of semi-polar and polar pesticides were typically 100% in both methods (except that basic pesticides, such as thiabendazole and imazalil, were not recovered in the MSPD method), but recovery of nonpolar pesticides decreased as fat content of the sample increased. This trend was more pronounced in the QuEChERS method, in which case the most lipophilic analyte tested, hexachlorobenzene, gave 27 +/- 1% recovery (n=6) in avocado (15% fat) with a<10 ng/g limit of quantitation.

  13. Fast Fourier Transform Pricing Method for Exponential Lévy Processes

    KAUST Repository

    Crocce, Fabian

    2014-05-04

    We describe a set of partial-integro-differential equations (PIDE) whose solutions represent the prices of european options when the underlying asset is driven by an exponential L´evy process. Exploiting the L´evy -Khintchine formula, we give a Fourier based method for solving this class of PIDEs. We present a novel L1 error bound for solving a range of PIDEs in asset pricing and use this bound to set parameters for numerical methods.

  14. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    Science.gov (United States)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  15. Fast method of constructing image correlations to build a free network based on image multivocabulary trees

    Science.gov (United States)

    Zhan, Zongqian; Wang, Xin; Wei, Minglu

    2015-05-01

    In image-based three-dimensional (3-D) reconstruction, one topic of growing importance is how to quickly obtain a 3-D model from a large number of images. The retrieval of the correct and relevant images for the model poses a considerable technological challenge. The "image vocabulary tree" has been proposed as a method to search for similar images. However, a significant drawback of this approach is identified in its low time efficiency and barely satisfactory classification result. The method proposed is inspired by, and improves upon, some recent methods. Specifically, vocabulary quality is considered and multivocabulary trees are designed to improve the classification result. A marked improvement was, indeed, observed in our evaluation of the proposed method. To improve time efficiency, graphics processing unit (GPU) computer unified device architecture parallel computation is applied in the multivocabulary trees. The results of the experiments showed that the GPU was three to four times more efficient than the enumeration matching and CPU methods when the number of images is large. This paper presents a reliable reference method for the rapid construction of a free network to be used for the computing of 3-D information.

  16. [Fast determination of melamine content in milk base on Vis/NIR spectroscopy method].

    Science.gov (United States)

    Yuan, Shi-Lin; He, Yong; Ma, Tian-Yun; Wu, Di; Nie, Peng-Cheng

    2009-11-01

    In order to investigate the feasibility of near infrared reflectance spectroscopy (NIRS) method for detecting if milk was adulterated with melamine or not, the present work has done the following research. Through adulterating different content of melamine into pure milk, altogether 160 samples were prepared. Using the Handheld Field Spec spectrometer spectral data of the samples were obtained, followed by different pretreatment methods to carry on processing the spectrum data, then establishing the mathematical model separately through comparison with different calibration models using different pretreatment methods, thus we got smoothing of moving average as the pretreatment method. One hundred twenty samples were taken out ran domly from 160 samples (all) to set model, with the remaining 40 samples as the validation samples. Two discriminant analysis models were developed by using partial least squares (PLS) method and least squares-support vector machine (LS-SVM) metho respectively, and then the other 40 samples were used to test the performance of the models. The coefficients of correlation (r) between the real values and the discriminant analysis models predicted ones were 0.917 4 (PLS) and 0.910 9 (LS-SVM). The root mean standard errors of prediction (RMSEP) were 0.030 4 (PLS) and 0.046 7 (LS-SVM). The results of this study indicated that NIRS method could provide rapid determination for melamine in milk.

  17. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Poursina, Mohammad [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721 (United States); Anderson, Kurt S. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), Troy, NY 12180 (United States)

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  18. An easier method for performing a pancreaticojejunostomy for the soft pancreas using a fast-absorbable suture

    Institute of Scientific and Technical Information of China (English)

    Kenichi Hakamada; Shunji Narumi; Yoshikazu Toyoki; Masaki Nara; Kenosuke Ishido; Takuya Miura; Norihito; Mutsuo Sasaki

    2008-01-01

    AIM:To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fastabsorbable suture material irradiated polyglactin 910,and a temporary stent tube for a narrow pancreatic duct with a soft pancreatic texture.METHODS:Among 63 consecutive patients with soft pancreas undergoing a pancreaticoduodenectomy from 2003 to 2006,35 patients were treated with a new reconstructive method.Briefly,after the pancreatic transaction,a stent tube was inserted into the lumen of the pancreatic duct and ligated with it by a fastabsorbable suture.Another tip of the stent tube was introduced into the intestinal lumen at the jejunal limb,where a purse-string suture was made by another fast-absorbable suture to roughly fix the tube.The pancreaticojejunostomy was completed by ligating two fast-absorbable sutures to approximate the ductal end and the jejunal mucosa,and by adding a rough anastomosis between the pancreatic parenchyma and the seromuscular layer of the jejunum.The initial surgical results with this method were retrospectively compared with those of the 28 patients treated with conventional duct-to-mucosa anastomosis.RESULTS:The incidences of postoperative morbidity including pancreatic fistula were comparable between the two groups (new;3%-17% vs conventional;7%-14% according to the definitions).There was no mortality and re-admission.Late complications were also rarely seen.CONCLUSION:A pancreaticojejunostomy using an irradiated polyglactin 910 suture material and a temporary stent is easy to perform and is feasible even in cases with a narrow pancreatic duct and a normal soft pancreas.

  19. A Tape Method for Fast Characterization and Identification of Active Pharmaceutical Ingredients in the 2-18 THz Spectral Range

    Science.gov (United States)

    Kissi, Eric Ofosu; Bawuah, Prince; Silfsten, Pertti; Peiponen, Kai-Erik

    2015-03-01

    In order to find counterfeit drugs quickly and reliably, we have developed `tape method' a transmission spectroscopic terahertz (THz) measurement technique and compared it with a standard attenuated total reflection (ATR) THz spectroscopic measurement. We used well-known training samples, which include commercial paracetamol and aspirin tablets to check the validity of these two measurement techniques. In this study, the spectral features of some active pharmaceutical ingredients (APIs), such as aspirin and paracetamol are characterized for identification purpose. This work covers a wide THz spectral range namely, 2-18 THz. This proposed simple but novel technique, the tape method, was used for characterizing API and identifying their presence in their dosage forms. By comparing the spectra of the APIs to their dosage forms (powder samples), all distinct fingerprints present in the APIs are also present in their respective dosage forms. The positions of the spectral features obtained with the ATR techniques were akin to that obtained from the tape method. The ATR and the tape method therefore, complement each other. The presence of distinct fingerprints in this spectral range has highlighted the possibility of developing fast THz sensors for the screening of pharmaceuticals. It is worth noting that, the ATR method is applicable to flat faced tablets whereas the tape method is suitable for powders in general (e.g. curved surface tablets that require milling before measurement). Finally, we have demonstrated that ATR techniques can be used to screen counterfeit antimalarial tablets.

  20. Fast egg collection method greatly improves randomness of egg sampling in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Schou, Mads Fristrup

    2013-01-01

    When obtaining samples for population genetic studies, it is essential that the sampling is random. For Drosophila, one of the crucial steps in sampling experimental flies is the collection of eggs. Here an egg collection method is presented, which randomizes the eggs in a water column and dimini......When obtaining samples for population genetic studies, it is essential that the sampling is random. For Drosophila, one of the crucial steps in sampling experimental flies is the collection of eggs. Here an egg collection method is presented, which randomizes the eggs in a water column...... and to obtain a representative collection of genotypes, the method presented here is strongly recommended when collecting eggs from Drosophila....

  1. Fast Drift and Diffusion in a Class of Isochronous Systems with the Windows Method

    Energy Technology Data Exchange (ETDEWEB)

    Fortunati, Alessandro, E-mail: alessandro.fortunati@bristol.ac.uk [University of Bristol, School of Mathematics (United Kingdom)

    2017-06-15

    The aim of the paper is to deal with some peculiar difficulties arising from the use of the geometrical tool known as windows method in the context of the well known problem of Arnold’s diffusion for isochronous nearly-integrable Hamiltonian systems. Despite the simple features of the class of systems at hand, it is possible to show how the absence of an anisochrony term leads to several substantial differences in the application of the method, requiring some additional devices, such as non-equally spaced transition chains and variable windows. As a consequence, we show the existence of a set of unstable orbits, whose drifting time matches, up to a constant, the one obtained via variational methods.

  2. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays.

    Science.gov (United States)

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-02-23

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches.

  3. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    Science.gov (United States)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp–Davis–Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  4. Fast calibration methods using cosmic rays for a neutron detection array

    Institute of Scientific and Technical Information of China (English)

    YANG Zai-Hong; YE Yan-Lin; XIAO Jun; YOU Hai-Bo; LIU HONG-Na; SUN Ye-Lei; WANG Zi-Heng; CHEN Jie

    2012-01-01

    An overall irradiation and calibration technique was introduced and applied to a test scintillation detector array. An integral conversion method was used to reduce the nonlinearity of the time difference spectrum,and to improve the position determination especially for positions close to the two ends of a long scintillation bar.An overall position resolution of about 3.0 cm (FWHM) was extracted from the residual analysis method and verified by a direct measurement.Energy calibration was also realized by selecting cosmic rays at different incident angles.The bulk light attenuation lengths for the four test bars were also determined.It is demonstrated that these methods are especially efficient for calibrating large and complex detector arrays.

  5. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    CERN Document Server

    Liska, Sebastian

    2016-01-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also...

  6. Fast egg collection method greatly improves randomness of egg sampling in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Schou, Mads Fristrup

    2013-01-01

    When obtaining samples for population genetic studies, it is essential that the sampling is random. For Drosophila, one of the crucial steps in sampling experimental flies is the collection of eggs. Here an egg collection method is presented, which randomizes the eggs in a water column and dimini......When obtaining samples for population genetic studies, it is essential that the sampling is random. For Drosophila, one of the crucial steps in sampling experimental flies is the collection of eggs. Here an egg collection method is presented, which randomizes the eggs in a water column...... and to obtain a representative collection of genotypes, the method presented here is strongly recommended when collecting eggs from Drosophila....

  7. A chemical method for fast and sensitive detection of DNA synthesis in vivo.

    Science.gov (United States)

    Salic, Adrian; Mitchison, Timothy J

    2008-02-19

    We have developed a method to detect DNA synthesis in proliferating cells, based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) and its subsequent detection by a fluorescent azide through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction ("click" chemistry). Detection of the EdU label is highly sensitive and can be accomplished in minutes. The small size of the fluorescent azides used for detection results in a high degree of specimen penetration, allowing the staining of whole-mount preparations of large tissue and organ explants. In contrast to BrdU, the method does not require sample fixation or DNA denaturation and permits good structural preservation. We demonstrate the use of the method in cultured cells and in the intestine and brain of whole animals.

  8. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    Science.gov (United States)

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years.

  9. Particle mesh multipole method: An efficient solver for gravitational/electrostatic forces based on multipole method and fast convolution over a uniform mesh

    CERN Document Server

    Nitadori, Keigo

    2014-01-01

    We propose an efficient algorithm for the evaluation of the potential and its gradient of gravitational/electrostatic $N$-body systems, which we call particle mesh multipole method (PMMM or PM$^3$). PMMM can be understood both as an extension of the particle mesh (PM) method and as an optimization of the fast multipole method (FMM).In the former viewpoint, the scalar density and potential held by a grid point are extended to multipole moments and local expansions in $(p+1)^2$ real numbers, where $p$ is the order of expansion. In the latter viewpoint, a hierarchical octree structure which brings its $\\mathcal O(N)$ nature, is replaced with a uniform mesh structure, and we exploit the convolution theorem with fast Fourier transform (FFT) to speed up the calculations. Hence, independent $(p+1)^2$ FFTs with the size equal to the number of grid points are performed. The fundamental idea is common to PPPM/MPE by Shimada et al. (1993) and FFTM by Ong et al. (2003). PMMM differs from them in supporting both the open ...

  10. A fast method for analyzing essential protein mutants in human cells.

    Science.gov (United States)

    Dietsch, Frank; Donzeau, Mariel; Cordonnier, Agnes M; Weiss, Etienne; Chatton, Bruno; Vigneron, Marc

    2017-02-01

    Here we developed a complementation method for the study of essential genes in live human cells using the CRISPR/Cas9 system. Proteins encoded by essential genes were expressed using a derivative of the pCEP4 compensating plasmid in combination with Cas9 endonuclease targeting of the chromosomal genes. We show that this strategy can be applied to essential genes, such as those coding for proliferating cell nuclear antigen (PCNA) and DNA polymerase delta subunit 2 (POLD2). As demonstrated for the PCNA protein, our method allows mutational analysis of essential protein-coding sequences in live cells.

  11. In-vivo Examples of Flow Patterns With The Fast Vector Velocity Ultrasound Method

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2009-01-01

    of the blood can be acquired for each pulse emission. The pulse is a 13 bit Barker code transmitted simultaneously from each transducer element. The 2D vector velocity of the blood is found using 2D speckle tracking between segments in consecutive speckle images. Implemented on the experimental scanner RASMUS...... has been proposed. Material and Methods: The PWE method can estimate the 2D vector velocity of the blood with a high frame rate. Vector velocity estimates are acquired by using the following approach: The ultrasound is not focused during the ultrasound transmission, and a full speckle image...

  12. A Fast Algorithm for Phase Grating Preparation by Real Space Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on a definitely integral formula, an expression ofcalculating atomic potential distribution function U(Υ) in a unit cell is derived as follows: Making use of this expression to calculate the phase grating in high resolution image simulation can greatly reduce the calculating time. In this paper, the derivation of the expression is introduced, and then the computer routine is explained in details. Finally the potential projection map of Mg44Rh7 along [001] direction is shown as an illustration. All operations are carried out in real space, so we call the calculation method as the real space method.

  13. Fast Frequency-Weighted Formant Tracking Using Analysis by Synthesis Method

    Institute of Scientific and Technical Information of China (English)

    ZHANGJianping; YANYonghong

    2004-01-01

    In this paper, we present our current research on formant trajectory estimation using analysis by synthesis method for English Dysarthric speech. The algorithm is implemented in both frequency domain and time domain. Theoretic background and implementation issues are discussed in detail. Experiments show that the frequency-domain implementation is faster than the timedomain implementation. Our algorithm performance is comparable to those from LPC pole-zero analysis method using Esps/Xwaves+. The frequency domain algorithm is also applied to analyze speakers' vowel tri-angle properties using our dysarthria database.

  14. Unsteady Fast Random Particle Mesh method for efficient prediction of tonal and broadband noises of a centrifugal fan unit

    Directory of Open Access Journals (Sweden)

    Seung Heo

    2015-09-01

    Full Text Available In this study, efficient numerical method is proposed for predicting tonal and broadband noises of a centrifugal fan unit. The proposed method is based on Hybrid Computational Aero-Acoustic (H-CAA techniques combined with Unsteady Fast Random Particle Mesh (U-FRPM method. The U-FRPM method is developed by extending the FRPM method proposed by Ewert et al. and is utilized to synthesize turbulence flow field from unsteady RANS solutions. The H-CAA technique combined with U-FRPM method is applied to predict broadband as well as tonal noises of a centrifugal fan unit in a household refrigerator. Firstly, unsteady flow field driven by a rotating fan is computed by solving the RANS equations with Computational Fluid Dynamic (CFD techniques. Main source regions around the rotating fan are identified by examining the computed flow fields. Then, turbulence flow fields in the main source regions are synthesized by applying the U-FRPM method. The acoustic analogy is applied to model acoustic sources in the main source regions. Finally, the centrifugal fan noise is predicted by feeding the modeled acoustic sources into an acoustic solver based on the Boundary Element Method (BEM. The sound spectral levels predicted using the current numerical method show good agreements with the measured spectra at the Blade Pass Frequencies (BPFs as well as in the high frequency range. On the more, the present method enables quantitative assessment of relative contributions of identified source regions to the sound field by comparing predicted sound pressure spectrum due to modeled sources.

  15. Fast screening method for detection of acyl-HSL-degrading soil isolates

    NARCIS (Netherlands)

    Jafra, S.; Wolf, van der J.M.

    2004-01-01

    A reliable method was developed for screening of bacteria isolates capable of degrading acyl-HSLs, the signal molecules in quorum-sensing-mediated processes of many Proteobacteria. The microtiter assay was based on the use of a GFP-marked Escherichia coli strain, which fluoresces upon the presence o

  16. A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria

    NARCIS (Netherlands)

    T. van Gool (Tom); M.E. van Wolfswinkel (Marlies); R. Koelewijn (Rob); P.P.A.M. van Thiel (Pieter); J. Jacobs (Jan); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2011-01-01

    textabstractBackground: Counts of malaria parasites in peripheral blood are important to assess severity of Plasmodium falciparum malaria. Thin and thick smears are routinely used for this purpose. Methods. In this study the Binax NOW® Malaria Test, an easy-to-perform rapid diagnostic test, with His

  17. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR

    NARCIS (Netherlands)

    Nevalainen, O.; Hakala, T.; Suomalainen, J.M.; Mäkipää, R.; Peltoniemi, M.; Krooks, A.; Kaasalainen, S.

    2014-01-01

    We propose an empirical method for nondestructive estimation of chlorophyll in tree canopies. The first prototype of a full waveform hyperspectral LiDAR instrument has been developed by the Finnish Geodetic Institute (FGI). The instrument efficiently combines the benefits of passive and active remot

  18. A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria

    NARCIS (Netherlands)

    T. van Gool (Tom); M.E. van Wolfswinkel (Marlies); R. Koelewijn (Rob); P.P.A.M. van Thiel (Pieter); J. Jacobs (Jan); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2011-01-01

    textabstractBackground: Counts of malaria parasites in peripheral blood are important to assess severity of Plasmodium falciparum malaria. Thin and thick smears are routinely used for this purpose. Methods. In this study the Binax NOW® Malaria Test, an easy-to-perform rapid diagnostic test, with

  19. A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria

    NARCIS (Netherlands)

    T. van Gool (Tom); M.E. van Wolfswinkel (Marlies); R. Koelewijn (Rob); P.P.A.M. van Thiel (Pieter); J. Jacobs (Jan); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2011-01-01

    textabstractBackground: Counts of malaria parasites in peripheral blood are important to assess severity of Plasmodium falciparum malaria. Thin and thick smears are routinely used for this purpose. Methods. In this study the Binax NOW® Malaria Test, an easy-to-perform rapid diagnostic test, with His

  20. A fast and simple spectrofluorometric method for the determination of alendronate sodium in pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Jafar Ezzati Nazhad Dolatabadi

    2014-03-01

    Full Text Available Introduction: Alendronate sodium enhances bone formation and increases osteoblast proliferation and maturation and leads to the inhibition of osteoblast apoptosis. Therefore, a rapid and simple spectrofluorometric method has been developed and validated for the quantitative determination of it. Methods: The procedure is based on the reaction of primary amino group of alendronate with o-phthalaldehyde (OPA in sodium hydroxide solution. Results: The calibration graph was linear over the concentration range of 0.0-2.4 μM and limit of detection and limit of quantification of the method was 8.89 and 29 nanomolar, respectively.The enthalpy and entropy of the reaction between alendronate sodium and OPA showed that the reaction is endothermic and entropy favored (ΔH = 154.08 kJ/mol; ΔS = 567.36 J/mol K which indicates that OPA interaction with alendronate is increased at elevated temperature. Conclusion: This simple method can be used as a practical technique for the analysis of alendronate in various samples.