WorldWideScience

Sample records for fast large area

  1. Fast mapping algorithm of lighting spectrum and GPS coordinates for a large area

    Science.gov (United States)

    Lin, Chih-Wei; Hsu, Ke-Fang; Hwang, Jung-Min

    2016-09-01

    In this study, we propose a fast rebuild technology for evaluating light quality in large areas. Outdoor light quality, which is measured by illuminance uniformity and the color rendering index, is difficult to conform after improvement. We develop an algorithm for a lighting quality mapping system and coordinates using a micro spectrometer and GPS tracker integrated with a quadcopter or unmanned aerial vehicle. After cruising at a constant altitude, lighting quality data is transmitted and immediately mapped to evaluate the light quality in a large area.

  2. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J.T., E-mail: ted@adelphitech.com [Adelphi Technology Inc., 2003 East Bayshore Road, Redwood City, California 94063 (United States); Williams, D.L.; Gary, C.K.; Piestrup, M.A.; Faber, D.R.; Fuller, M.J.; Vainionpaa, J.H.; Apodaca, M. [Adelphi Technology Inc., 2003 East Bayshore Road, Redwood City, California 94063 (United States); Pantell, R.H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2012-05-21

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5-50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 10{sup 9} n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  3. The ''Flight Chamber'': A fast, large area, zero-time detector

    International Nuclear Information System (INIS)

    Trautner, N.

    1976-01-01

    A new, fast, zero-time detector with an active area of 20 cm 2 has been constructed. Secondary electrons from a thin self-supporting foil are accelerated onto a scinitllator. The intrinsic time resolution (fwhm) was 0.85 for 5.5 MeV α-particles and 0.42 ns for 17 MeV 16 O-ions, at an efficiency of 97.5% and 99.6%, respectively. (author)

  4. Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Hösel, Markus; Jørgensen, Mikkel

    2013-01-01

    Processing of large area, indium tin oxide (ITO) free electrochromic (EC) devices has been carried out using roll-toroll (R2R) processing. By use of very fine high-conductive silver grids with a hexagonal structure, it is possible to achieve good transparency of the electrode covered substrates...... and when used in EC devices switching times are similar to corresponding ITO devices. This is obtained without the uneven switching of larger areas, which is generally observed when using ITO because of its high-sheet resistance. The silver electrode structures for 18 ×18 cm2 devices can be processed...

  5. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  6. A fast embedded readout system for large-area Medipix and Timepix systems

    International Nuclear Information System (INIS)

    Brogna, A S; Balzer, M; Smale, S; Hartmann, J; Bormann, D; Hamann, E; Cecilia, A; Zuber, M; Koenig, T; Weber, M; Fiederle, M; Baumbach, T; Zwerger, A

    2014-01-01

    In this work we present a novel readout electronics for an X-ray sensor based on a Si crystal bump-bonded to an array of 3 × 2 Medipix ASICs. The pixel size is 55 μm × 55 μm with a total number of ∼ 400k pixels and a sensitive area of 42 mm × 28 mm. The readout electronics operate Medipix-2 MXR or Timepix ASICs with a clock speed of 125 MHz. The data acquisition system is centered around an FPGA and each of the six ASICs has a dedicated I/O port for simultaneous data acquisition. The settings of the auxiliary devices (ADCs and DACs) are also processed in the FPGA. Moreover, a high-resolution timer operates the electronic shutter to select the exposure time from 8 ns to several milliseconds. A sophisticated trigger is available in hardware and software to synchronize the acquisition with external electro-mechanical motors. The system includes a diagnostic subsystem to check the sensor temperature and to control the cooling Peltier cells and a programmable high-voltage generator to bias the crystal. A network cable transfers the data, encapsulated into the UDP protocol and streamed at 1 Gb/s. Therefore most notebooks or personal computers are able to process the data and to program the system without a dedicated interface. The data readout software is compatible with the well-known Pixelman 2.x running both on Windows and GNU/Linux. Furthermore the open architecture encourages users to write their own applications. With a low-level interface library which implements all the basic features, a MATLAB or Python script can be implemented for special manipulations of the raw data. In this paper we present selected images taken with a microfocus X-ray tube to demonstrate the capability to collect the data at rates up to 120 fps corresponding to 0.76 Gb/s

  7. Focusing on fast food restaurants alone underestimates the relationship between neighborhood deprivation and exposure to fast food in a large rural area

    Directory of Open Access Journals (Sweden)

    Dean Wesley R

    2011-01-01

    Full Text Available Abstract Background Individuals and families are relying more on food prepared outside the home as a source for at-home and away-from-home consumption. Restricting the estimation of fast-food access to fast-food restaurants alone may underestimate potential spatial access to fast food. Methods The study used data from the 2006 Brazos Valley Food Environment Project (BVFEP and the 2000 U.S. Census Summary File 3 for six rural counties in the Texas Brazos Valley region. BVFEP ground-truthed data included identification and geocoding of all fast-food restaurants, convenience stores, supermarkets, and grocery stores in study area and on-site assessment of the availability and variety of fast-food lunch/dinner entrées and side dishes. Network distance was calculated from the population-weighted centroid of each census block group to all retail locations that marketed fast food (n = 205 fast-food opportunities. Results Spatial access to fast-food opportunities (FFO was significantly better than to traditional fast-food restaurants (FFR. The median distance to the nearest FFO was 2.7 miles, compared with 4.5 miles to the nearest FFR. Residents of high deprivation neighborhoods had better spatial access to a variety of healthier fast-food entrée and side dish options than residents of low deprivation neighborhoods. Conclusions Our analyses revealed that identifying fast-food restaurants as the sole source of fast-food entrées and side dishes underestimated neighborhood exposure to fast food, in terms of both neighborhood proximity and coverage. Potential interventions must consider all retail opportunities for fast food, and not just traditional FFR.

  8. Focusing on fast food restaurants alone underestimates the relationship between neighborhood deprivation and exposure to fast food in a large rural area.

    Science.gov (United States)

    Sharkey, Joseph R; Johnson, Cassandra M; Dean, Wesley R; Horel, Scott A

    2011-01-25

    Individuals and families are relying more on food prepared outside the home as a source for at-home and away-from-home consumption. Restricting the estimation of fast-food access to fast-food restaurants alone may underestimate potential spatial access to fast food. The study used data from the 2006 Brazos Valley Food Environment Project (BVFEP) and the 2000 U.S. Census Summary File 3 for six rural counties in the Texas Brazos Valley region. BVFEP ground-truthed data included identification and geocoding of all fast-food restaurants, convenience stores, supermarkets, and grocery stores in study area and on-site assessment of the availability and variety of fast-food lunch/dinner entrées and side dishes. Network distance was calculated from the population-weighted centroid of each census block group to all retail locations that marketed fast food (n = 205 fast-food opportunities). Spatial access to fast-food opportunities (FFO) was significantly better than to traditional fast-food restaurants (FFR). The median distance to the nearest FFO was 2.7 miles, compared with 4.5 miles to the nearest FFR. Residents of high deprivation neighborhoods had better spatial access to a variety of healthier fast-food entrée and side dish options than residents of low deprivation neighborhoods. Our analyses revealed that identifying fast-food restaurants as the sole source of fast-food entrées and side dishes underestimated neighborhood exposure to fast food, in terms of both neighborhood proximity and coverage. Potential interventions must consider all retail opportunities for fast food, and not just traditional FFR.

  9. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  10. Large-area, low-noise, high-speed, photodiode-based fluorescence detectors with fast overdrive recovery

    International Nuclear Information System (INIS)

    Bickman, S.; DeMille, D.

    2005-01-01

    Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mmx28 mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/√(Hz), can recover from a large scattered light pulse within 10 μs, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08 pW/√(Hz), also can recover from a large scattered light pulse within 10 μs, and has a bandwidth of 1 MHz

  11. Replication fidelity assessment of polymer large area sub-μm structured surfaces using fast angular intensity distribution measurements

    DEFF Research Database (Denmark)

    Calaon, M.; Hansen, H. N.; Tosello, G.

    The present investigation addresses one of the key challenges in the product quality control of transparent polymer substrates, identified in the replication fidelity of sub-μm structures over large area. Additionally the work contributes to the development of new techniques focused on in......-line characterization of large nanostructured surfaces. In particular the aim of the present paper is to introduce initial development of a metrology approach to quantify the replication fidelity of produced 500 nm diameter semi-spheres via anodizing of aluminum (Al) and subsequent nickel electroforming to COC...

  12. Focusing on fast food restaurants alone underestimates the relationship between neighborhood deprivation and exposure to fast food in a large rural area

    OpenAIRE

    Sharkey, Joseph R; Johnson, Cassandra M; Dean, Wesley R; Horel, Scott A

    2011-01-01

    Abstract Background Individuals and families are relying more on food prepared outside the home as a source for at-home and away-from-home consumption. Restricting the estimation of fast-food access to fast-food restaurants alone may underestimate potential spatial access to fast food. Methods The study used data from the 2006 Brazos Valley Food Environment Project (BVFEP) and the 2000 U.S. Census Summary File 3 for six rural counties in the Texas Brazos Valley region. BVFEP ground-truthed da...

  13. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways.

    Science.gov (United States)

    Walther, Andreas; Bjurhager, Ingela; Malho, Jani-Markus; Pere, Jaakko; Ruokolainen, Janne; Berglund, Lars A; Ikkala, Olli

    2010-08-11

    Although remarkable success has been achieved to mimic the mechanically excellent structure of nacre in laboratory-scale models, it remains difficult to foresee mainstream applications due to time-consuming sequential depositions or energy-intensive processes. Here, we introduce a surprisingly simple and rapid methodology for large-area, lightweight, and thick nacre-mimetic films and laminates with superior material properties. Nanoclay sheets with soft polymer coatings are used as ideal building blocks with intrinsic hard/soft character. They are forced to rapidly self-assemble into aligned nacre-mimetic films via paper-making, doctor-blading or simple painting, giving rise to strong and thick films with tensile modulus of 45 GPa and strength of 250 MPa, that is, partly exceeding nacre. The concepts are environmentally friendly, energy-efficient, and economic and are ready for scale-up via continuous roll-to-roll processes. Excellent gas barrier properties, optical translucency, and extraordinary shape-persistent fire-resistance are demonstrated. We foresee advanced large-scale biomimetic materials, relevant for lightweight sustainable construction and energy-efficient transportation.

  14. Development of a Large Area Advanced Fast RICH Detector for Particle Identification at the Large Hadron Collider Operated with Heavy Ions

    CERN Multimedia

    Piuz, F; Braem, A; Van beelen, J B; Lion, G; Gandi, A

    2002-01-01

    %RD26 %title\\\\ \\\\During the past two years, RD26 groups have focused their activities on the production of CsI-RICH prototypes of large area, up to a square meter, to demonstrate their application in High Energy experiments. Many large CsI-photocathodes (up to 40) were produced following the processing techniques furthermore developped in the collaboration. Taking the Quantum Efficiency (QE) measured at 180 nm as a comparative figure of merit of a CsI-PC. Figure 1 shows the increase of the performance while improvements were successively implemented in the PC processing sequence. Most efficient were the use of substrates made of nickel, the heat treatment and handling of the PCs under inert gas. Actually, three large systems based on CsI-RICH have got approval in the following HEP experiments: HADES at GSI, COMPASS/NA58 at CERN and HMPID/ALICE at LHC implying up to 14 square metres of CsI-PC. In addition, several CsI-RICH detectors have been successfully operated in the Threshold Imaging Detector at NA44 and ...

  15. High rate resistive plate chambers: An inexpensive, fast, large area detector of energetic charged particles for accelerator and non-accelerator applications

    International Nuclear Information System (INIS)

    Wuest, C.R.; Ables, E.; Bionta, R.M.; Clamp, O.; Haro, M.; Mauger, G.J.; Miller, K.; Olson, H.; Ramsey, P.

    1993-05-01

    Resistive Plate Chambers, or RPCs, have been used until recently as large detectors of cosmic ray muons. They are now finding use as fast large-area trigger and muon detection systems for different high energy physics detectors such the L3 Detector at LEP and future detectors to be built at the Superconducting Super Collider (SSC) and at the Large Hadron Collider (LHC) at CERN. RPC systems at these accelerators must operate with high efficiency, providing nanosecond timing resolution in particle fluences up to a few tens of kHz/cm 2 -- with thousands of square meters of active area. RPCs are simple and cheap to construct. The authors report here recent work on RPCs using new materials that exhibit a combination of desirable RPC features such as low bulk resistivity, high dielectric strength, low mass, and low cost. These new materials were originally developed for use in electronics assembly areas and other applications, where static electric charge buildup can damage sensitive electrical systems

  16. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  17. Large-area photonic crystals

    Science.gov (United States)

    Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger

    2004-09-01

    Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.

  18. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  19. A Fast Shutdown Technique for Large Tokamaks

    International Nuclear Information System (INIS)

    Fredrickson, E.; Schmidt, G.L.; Hill, K.; Jardin, S.C.

    1999-01-01

    A practical method is proposed for the fast shutdown of a large ignited tokamak. The method consists of injecting a rapid series of 30-50 deuterium pellets doped with a small ( 0.0005%) concentration of Krypton impurity, and simultaneously ramping the plasma current and shaping fields down over a period of several seconds using the poloidal field system. Detailed modeling with the Tokamak Simulation Code using a newly developed pellet mass deposition model shows that this method should terminate the discharge in a controlled and stable way without producing significant numbers of runaway electrons. A partial prototyping of this technique was accomplished in TFTR

  20. Large area CMOS image sensors

    International Nuclear Information System (INIS)

    Turchetta, R; Guerrini, N; Sedgwick, I

    2011-01-01

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  1. Large area and flexible electronics

    CERN Document Server

    Caironi, Mario

    2015-01-01

    From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance.Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applicatio

  2. Launching fast waves in large devices

    International Nuclear Information System (INIS)

    Jacquinot, J.; Bhatnagar, V.P.; Kaye, A.; Brown, T.

    1994-01-01

    Design features of JET A2-antennae including that of remote location of ceramic are outlined. These antennae are being installed in preparation for the new divertor phase of JET that will commence in 1994. The experience of antenna design gained at JET is carried forward to present an outline in blanket/shield design of an antenna for launching fast waves in ITER for heating and current drive. Further, a new wide band antenna the so called 'violin antenna' is presented that features high plasma coupling resistance in selected bands in the 20-85 MHz frequency range. (author)

  3. Fast unfolding of communities in large networks

    International Nuclear Information System (INIS)

    Blondel, Vincent D; Guillaume, Jean-Loup; Lambiotte, Renaud; Lefebvre, Etienne

    2008-01-01

    We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection methods in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2 million customers and by analysing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad hoc modular networks

  4. Large area high-speed metrology SPM system

    International Nuclear Information System (INIS)

    Klapetek, P; Valtr, M; Martinek, J; Picco, L; Payton, O D; Miles, M; Yacoot, A

    2015-01-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm 2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope. (paper)

  5. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  6. Spontaneous and Fast Growth of Large‐Area Graphene Nanofilms Facilitated by Oil/Water Interfaces

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Wu, Tongshun

    2012-01-01

    An efficient wet-chemical method based on soft interfacial self-assembly is developed for spontaneous, fast growth of large-area graphene nanofilms on various substrates. The graphene nanofilms produced show tunable optical properties and a highly reversible optoelectronic response. Complementary...... to chemical vapor deposition, this method could offer a fast, simple, and low-cost chemical strategy to produce graphene nanofilms....

  7. LYCORIS - A Large Area Strip Telescope

    CERN Document Server

    Krämer, U; Stanitzki, M; Wu, M

    2018-01-01

    The LYCORIS Large Area Silicon Strip Telescope for the DESY II Test Beam Facility is presented. The DESY II Test Beam Facility provides elec- tron and positron beams for beam tests of up to 6 GeV. A new telescope with a large 10 × 20 cm2 coverage area based on a 25 μm pitch strip sensor is to be installed within the PCMAG 1 T solenoid. The current state of the system is presented.

  8. Fast algorithm for exploring and compressing of large hyperspectral images

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey

    2011-01-01

    A new method for calculation of latent variable space for exploratory analysis and dimension reduction of large hyperspectral images is proposed. The method is based on significant downsampling of image pixels with preservation of pixels’ structure in feature (variable) space. To achieve this, in...... can be used first of all for fast compression of large data arrays with principal component analysis or similar projection techniques....

  9. The European Large Area ISO Survey

    DEFF Research Database (Denmark)

    Oliver, S.; Rowan-Robinson, M.; Alexander, D.M.

    2000-01-01

    We describe the European Large Area ISO Survey (ELAIS). ELAIS was the largest single Open Time project conducted by ISO, mapping an area of 12 deg(2) at 15 mu m with ISOCAM and at 90 mu m with ISOPHOT. Secondary surveys in other ISO bands were undertaken by the ELAIS team within the fields of the...

  10. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  11. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  12. Large area damage testing of optics

    International Nuclear Information System (INIS)

    Sheehan, L.; Kozlowski, M.; Stolz, C.

    1996-01-01

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed open-quotes functional damage thresholdclose quotes was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold

  13. Large Area Sputter Coating on Glass

    Science.gov (United States)

    Katayama, Yoshihito

    Large glass has been used for commercial buildings, housings and vehicles for many years. Glass size for flat displays is getting larger and larger. The glass for the 8th generation is more than 5 m2 in area. Demand of the large glass is increasing not only in these markets but also in a solar cell market growing drastically. Therefore, large area coating is demanded to plus something else on glass more than ever. Sputtering and pyrolysis are the major coating methods on large glass today. Sputtering process is particularly popular because it can deposit a wide variety of materials in good coating uniformity on the glass. This paper describes typical industrial sputtering system and recent progress in sputtering technology. It also shows typical coated glass products in architectural, automotive and display fields and comments on their functions, film stacks and so on.

  14. Large catchment area recharges Titan's Ontario Lacus

    Science.gov (United States)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  15. Rotation invariant fast features for large-scale recognition

    Science.gov (United States)

    Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd

    2012-10-01

    We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.

  16. Quantitative Mapping of Large Area Graphene Conductance

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2012-01-01

    We present quantitative mapping of large area graphene conductance by terahertz time-domain spectroscopy and micro four point probe. We observe a clear correlation between the techniques and identify the observed systematic differences to be directly related to imperfections of the graphene sheet...

  17. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  18. A large area plastic Cherenkov detector

    International Nuclear Information System (INIS)

    Bernabei, R.; Bidoli, V.; Zorzi, G. de; Biagio, A. di

    1978-01-01

    A large area Cherenkov counter has been built up using as a radiator a sheet of Pilot 425 plastic, (180x20)cm 2 x2.5 cm. Experimental tests performed with a pion beam in order to measure the average number of photoelectrons collected by photomultipliers and the scintillation to Cherenkov light ratio. (Auth.)

  19. Noise Pulses in Large Area Optical Modules

    International Nuclear Information System (INIS)

    Aiello, Sebastiano; Leonora, Emanuele; Giordano, Valentina

    2013-06-01

    A great number of large area photomultipliers are widely used in neutrino and astro-particle detector to measure Cherenkov light in medium like water or ice. The key element of these detectors are the so-called 'optical module', which consist in photodetectors closed in a transparent pressure-resistant container to protect it and ensure good light transmission. The noise pulses present on the anode of each photomultiplier affect strongly the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, prepulses, delayed pulses, and after pulses. The contribution to noise pulses due to the presence of the external glass spheres was also studied, even comparing two vessels of different brands. (authors)

  20. Progress on large area GEMs (VCI 2010)

    CERN Document Server

    Villa, Marco; Alfonsi, Matteo; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; Taureg, Hans; van Stenis, Miranda

    2011-01-01

    The Gas Electron Multiplier (GEM) manufacturing technique has recently evolved to allow the production of large area GEMs. A novel approach based on single mask photolithography eliminates the mask alignment issue, which limits the dimensions in the traditional double mask process. Moreover, a splicing technique overcomes the limited width of the raw material. Stretching and handling issues in large area GEMs have also been addressed. Using the new improvements it was possible to build a prototype triple-GEM detector of ~ 2000 cm2 active area, aimed at an application for the TOTEM T1 upgrade. Further refinements of the single mask technique give great control over the shape of the GEM holes and the size of the rims, which can be tuned as needed. In this framework, simulation studies can help to understand the GEM behavior depending on the hole shape.

  1. FERMILAB: operation resumes in meson area; fast neutron therapy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Improvements and modifications in the Meson Area at Fermilab are described. The target train was rebuilt and energy range of some beams raised to 400 GeV with provisions for Tevatron beams of 1000 GeV in the future. The work of the fast neutron therapy facility is summarised. (W.D.L.).

  2. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  3. Development of high performance core for large fast breeder reactors

    International Nuclear Information System (INIS)

    Inoue, Kotaro; Kawashima, Katsuyuki; Watari, Yoshio.

    1982-01-01

    Subsequently to the fast breeder prototype reactor ''Monju'', the construction of a demonstration reactor with 1000 MWe output is planned. This research aims at the establishment of the concept of a large core with excellent fuel breeding property and safety for a demonstration and commercial reactors. For the purpose, the optimum specification of fuel design as a large core was clarified, and the new construction of a core was examined, in which a disk-shaped blanket with thin peripheral edge is introduced at the center of a core. As the result, such prospect was obtained that the time for fuel doubling would be 1/2, and the energy generated in a core collapse accident would be about 1/5 as compared with a large core using the same fuel as ''Monju''. Generally, as a core is enlarged, the rate of breeding lowers. If a worst core collapse accident occurs, the scale of accident will be very large in the case of a ''Monju'' type large core. In an unhomogeneous core, an internal blanket is provided in the core for the purpose of improving the breeding property and safety. Hitachi Ltd. developed the concept of a large core unhomogeneous in axial direction and proposed it. The research on the fuel design for a large core, an unhomogeneous core and its core collapse accident is reported. (Kako, I.)

  4. Neutron flux shape effects in large fast reactor safety calculations

    International Nuclear Information System (INIS)

    Galati, A.; Loizzo, P.; Musco, A.

    1978-01-01

    Three classes of accidents in a large fast reactor were studied by the two-dimensional core dynamics code NADYP-2. A Modified version of the code, including a point kinetics module, allowed comparison between 2D and 0D power, reactivity and temperature histories. A strong shape effect was evidenced by these calculations in the boiling phase of LOF accidents as well as in the accident generated by control rod removal. Some future possibilities of by passing the consequences of this effect are indicated

  5. Very large area multiwire spectroscopic proportional counters

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F.

    1981-01-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) succesfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm 2 with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results. (orig.)

  6. Very large area multiwire spectroscopic proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F. (Istituto di Astrofisica Spaziale, Frascati (Italy))

    1981-07-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) successfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm/sup 2/ with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results.

  7. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  8. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  9. Charge reconstruction in large-area photomultipliers

    Science.gov (United States)

    Grassi, M.; Montuschi, M.; Baldoncini, M.; Mantovani, F.; Ricci, B.; Andronico, G.; Antonelli, V.; Bellato, M.; Bernieri, E.; Brigatti, A.; Brugnera, R.; Budano, A.; Buscemi, M.; Bussino, S.; Caruso, R.; Chiesa, D.; Corti, D.; Dal Corso, F.; Ding, X. F.; Dusini, S.; Fabbri, A.; Fiorentini, G.; Ford, R.; Formozov, A.; Galet, G.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Insolia, A.; Isocrate, R.; Lippi, I.; Longhitano, F.; Lo Presti, D.; Lombardi, P.; Marini, F.; Mari, S. M.; Martellini, C.; Meroni, E.; Mezzetto, M.; Miramonti, L.; Monforte, S.; Nastasi, M.; Ortica, F.; Paoloni, A.; Parmeggiano, S.; Pedretti, D.; Pelliccia, N.; Pompilio, R.; Previtali, E.; Ranucci, G.; Re, A. C.; Romani, A.; Saggese, P.; Salamanna, G.; Sawy, F. H.; Settanta, G.; Sisti, M.; Sirignano, C.; Spinetti, M.; Stanco, L.; Strati, V.; Verde, G.; Votano, L.

    2018-02-01

    Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction in the case of large PE pile-up, providing an unbiased charge estimator at the permille level up to 15 detected PEs. The method is based on a signal filtering technique (Wiener filter) which suppresses the noise due to both PMT and readout electronics, and on a Fourier-based deconvolution able to minimize the influence of signal distortions—such as an overshoot. The analysis of simulated PMT waveforms shows that the slope of a linear regression modeling the relation between reconstructed and true charge values improves from 0.769 ± 0.001 (without deconvolution) to 0.989 ± 0.001 (with deconvolution), where unitary slope implies perfect reconstruction. A C++ implementation of the charge reconstruction algorithm is available online at [1].

  10. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  11. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wiesel, J R

    1969-02-15

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions.

  12. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    International Nuclear Information System (INIS)

    Wiesel, J.R.

    1969-02-01

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions

  13. Large area electron beam diode development

    International Nuclear Information System (INIS)

    Helava, H.; Gilman, C.M.; Stringfield, R.M.; Young, T.

    1983-01-01

    A large area annular electron beam diode has been tested at Physics International Co. on the multi-terawatt PITHON generator. A twelve element post hole convolute converted the coaxial MITL into a triaxial arrangement of anode current return structures both inside and outside the cathode structure. The presence of both inner and outer current return paths provide magnetic pressure balance for the beam, as determined by diode current measurements. X-ray pinhole photographs indicated uniform emission with intensity maxima between the post positions. Current losses in the post hole region were negligible, as evidenced by the absence of damage to the aluminum hardware. Radial electron flow near the cathode ring however did damage the inner anode cylinder between the post positions. Cutting away these regions prevented further damage of the transmission lines

  14. Large-area mapping of biodiversity

    Science.gov (United States)

    Scott, J.M.; Jennings, M.D.

    1998-01-01

    The age of discovery, description, and classification of biodiversity is entering a new phase. In responding to the conservation imperative, we can now supplement the essential work of systematics with spatially explicit information on species and assemblages of species. This is possible because of recent conceptual, technical, and organizational progress in generating synoptic views of the earth's surface and a great deal of its biological content, at multiple scales of thematic as well as geographic resolution. The development of extensive spatial data on species distributions and vegetation types provides us with a framework for: (a) assessing what we know and where we know it at meso-scales, and (b) stratifying the biological universe so that higher-resolution surveys can be more efficiently implemented, coveting, for example, geographic adequacy of specimen collections, population abundance, reproductive success, and genetic dynamics. The land areas involved are very large, and the questions, such as resolution, scale, classification, and accuracy, are complex. In this paper, we provide examples from the United States Gap Analysis Program on the advantages and limitations of mapping the occurrence of terrestrial vertebrate species and dominant land-cover types over large areas as joint ventures and in multi-organizational partnerships, and how these cooperative efforts can be designed to implement results from data development and analyses as on-the-ground actions. Clearly, new frameworks for thinking about biogeographic information as well as organizational cooperation are needed if we are to have any hope of documenting the full range of species occurrences and ecological processes in ways meaningful to their management. The Gap Analysis experience provides one model for achieving these new frameworks.

  15. Background simulations for the Large Area Detector onboard LOFT

    DEFF Research Database (Denmark)

    Campana, Riccardo; Feroci, Marco; Ettore, Del Monte

    2013-01-01

    and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of similar to 10 m(2) at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment...... is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design...... an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than...

  16. Electromagnetic surface waves for large-area RF plasma productions between large-area planar electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1992-01-01

    Recently, large-area plasma production has been tested by means of a 13.56 MHz radio-frequency (RF) discharge between a pair of large-area planar electrodes, approximately 0.5 m x 1.4 m, as one of the semiconductor technologies for fabrication of large-area amorphous silicon solar cells in the ''Sunshine Project'' of the Agency of Industrial Science and Technology in Japan. We also confirmed long plasma production between a pair of long electrodes. In this paper, normal electromagnetic (EM) waves propagating in a region between a planar waveguide with one plasma and two dielectric layers are analyzed in order to study the feasibility of large-area plasma productions by EM wave-discharges between a pair of large-area RF electrodes larger than the half-wavelength of RF wave. In conclusion, plasmas higher than an electron plasma frequency will be produced by an odd TMoo surface mode. (author) 4 refs., 3 figs

  17. FTSPlot: fast time series visualization for large datasets.

    Directory of Open Access Journals (Sweden)

    Michael Riss

    Full Text Available The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of O(n x log(N; the visualization itself can be done with a complexity of O(1 and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with < 20 ms ms. The current 64-bit implementation theoretically supports datasets with up to 2(64 bytes, on the x86_64 architecture currently up to 2(48 bytes are supported, and benchmarks have been conducted with 2(40 bytes/1 TiB or 1.3 x 10(11 double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments.

  18. Large area atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  19. FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bisello, D.; Baughman, B. M.; Belli, F.

    2010-01-01

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  20. The Field Assessment Stroke Triage for Emergency Destination (FAST-ED): a Simple and Accurate Pre-Hospital Scale to Detect Large Vessel Occlusion Strokes

    Science.gov (United States)

    Lima, Fabricio O.; Silva, Gisele S.; Furie, Karen L.; Frankel, Michael R.; Lev, Michael H.; Camargo, Érica CS; Haussen, Diogo C.; Singhal, Aneesh B.; Koroshetz, Walter J.; Smith, Wade S.; Nogueira, Raul G.

    2016-01-01

    Background and Purpose Patients with large vessel occlusion strokes (LVOS) may be better served by direct transfer to endovascular capable centers avoiding hazardous delays between primary and comprehensive stroke centers. However, accurate stroke field triage remains challenging. We aimed to develop a simple field scale to identify LVOS. Methods The FAST-ED scale was based on items of the NIHSS with higher predictive value for LVOS and tested in the STOPStroke cohort, in which patients underwent CT angiography within the first 24 hours of stroke onset. LVOS were defined by total occlusions involving the intracranial-ICA, MCA-M1, MCA-2, or basilar arteries. Patients with partial, bi-hemispheric, and/or anterior + posterior circulation occlusions were excluded. Receiver operating characteristic (ROC) curve, sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of FAST-ED were compared with the NIHSS, Rapid Arterial oCclusion Evaluation (RACE) scale and Cincinnati Prehospital Stroke Severity Scale (CPSSS). Results LVO was detected in 240 of the 727 qualifying patients (33%). FAST-ED had comparable accuracy to predict LVO to the NIHSS and higher accuracy than RACE and CPSS (area under the ROC curve: FAST-ED=0.81 as reference; NIHSS=0.80, p=0.28; RACE=0.77, p=0.02; and CPSS=0.75, p=0.002). A FAST-ED ≥4 had sensitivity of 0.60, specificity 0.89, PPV 0.72, and NPV 0.82 versus RACE ≥5 of 0.55, 0.87, 0.68, 0.79 and CPSS ≥2 of 0.56, 0.85, 0.65, 0.78, respectively. Conclusions FAST-ED is a simple scale that if successfully validated in the field may be used by medical emergency professionals to identify LVOS in the pre-hospital setting enabling rapid triage of patients. PMID:27364531

  1. Silicon Ingot Casting - Heat Exchanger Method (HEM). Multi-Wire Slicing - Fixed Abrasive Slicing Technique (Fast). Phase 4 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-Cost Solar Array Project

    Science.gov (United States)

    Schmid, F.

    1981-01-01

    The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.

  2. ISABELLE. Volume 3. Experimental areas, large detectors

    International Nuclear Information System (INIS)

    1981-01-01

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors

  3. Reactive dual magnetron sputtering for large area application

    International Nuclear Information System (INIS)

    Struempfel, J.

    2002-01-01

    Production lines for large area coating demand high productivity of reactive magnetron sputtering processes. Increased dynamic deposition rates for oxides and nitrides were already obtained by using of highly powered magnetrons in combination with advanced sputter techniques. However, besides high deposition rates the uniformity of such coatings has to be carefully considered. First the basics of reactive sputtering processes and dual magnetron sputtering are summarized. Different methods for process stabilization and control are commonly used for reactive sputtering. The Plasma Emission Monitor (PE M) offers the prerequisite for fast acting process control derived from the in-situ intensity measurements of a spectral line of the sputtered target material. Combined by multiple Plasma Emission Monitor control loops segmented gas manifolds are able to provide excellent thin film uniformity at high deposition rates. The Dual Magnetron allows a broad range of processing by different power supply modes. Medium frequency, DC and pulsed DC power supplies can be used for high quality layers. Whereas the large area coating of highly isolating layers like TiO 2 or SiO 2 is dominated by MF sputtering best results for coating with transparent conductive oxides are obtained by dual DC powering of the dual magnetron arrangement. (Author)

  4. A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2012-05-15

    A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.

  5. Preserving Medieval Farm Mounds in a Large Stormwater Retention Area

    NARCIS (Netherlands)

    Vorenhout, M.

    2016-01-01

    The Netherlands has denoted large areas as stormwater retention areas. These areas function as temporary storage locations for stormwater when rivers cannot cope with the amount of water. A large area, the Onlanden — 2,500 hectares — was developed as such a storage area between 2008 and 2013. This

  6. Multi-Robot FastSLAM for Large Domains

    National Research Council Canada - National Science Library

    Koperski, Choyong G

    2007-01-01

    For a robot to build a map of its surrounding area, it must have accurate position information within the area, and to obtain accurate position information within the area, the robot needs to have an...

  7. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix

    OpenAIRE

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2009-01-01

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement Neighbor-Joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest neighbor in...

  8. Utilization of large electromagnetic pumps in the fast breeder reactors

    International Nuclear Information System (INIS)

    Deverge, C.; Lefrere, J.P.; Peturaud, P.; Sauvage, M.

    1984-04-01

    After an overview concerning the induction annular electromagnetic pumps and the dimensioning methods usually utilized, development of these components for a fast breeder integrated reactor is considered: - utilization of cooled EMP in the intermediate circuit, - utilization of immersed pumps, coupled with the intermediate exchanger, for the primary pumping; dimensioning, energetic aspects, and effects on the power plant geometrical configurations [fr

  9. Analysis of Electrically Large Antennas using Fast Physical Optics

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Viskum, Hans-Henrik; Meincke, Peter

    2015-01-01

    accelerated Physical Optics (Fast-PO) and show that this approach allows for a timely and accurate solution of realistic designs. Several examples, ranging from canonical tests of the scaling of the method against the wavelength to real-life applications, illustrate the performance of the approach in practice....

  10. Large area UV light source with a semiconductor cathode

    International Nuclear Information System (INIS)

    Salamov, B. G.; Ciftci, Y. Oe.; Colakoglu, K.

    2002-01-01

    The light emission (LE) in the UV and visible (blue) range generated by a planar gas discharge system (PGDS) with a semiconductor cathode (SC) are studied. New light source offer high-intensity narrow-band emission at various UV and visible wavelengths (330 - 440 nm). Spectra in N 2 is presented, as well as intensity vs pressure curves for the main peaks of the spectrum. The use of source offers several advantages: PGDS can be extremely efficient energy converters transforming and amplifying a relatively low-powered photon flux incident on the receiving surface of the SC into a flux of high-energy particles over extended areas, i.e. electron, ions, photons. Thus, extremely bright UV and visible sources can be built. LE characteristics of the space in the PGDS are complex, depending on the emitting medium and species. By using the IR light to excite the SC of the system, we have shown that the discharge light emission (DLE) of the device with the N 2 in the gap can serve as an efficient source of the UV radiation if gas pressure and electric field are sufficiently high. This is realized due to the effect of the stabilisation of the spatially homogeneous mode of the discharge in a narrow gap with a large emitting area of SC. Special features of DLE render it highly promising for the development of sources with a large area of the emitting surface, high spatial uniformity of UV radiation, and fast dynamics of these devices. This low cost, high power light sources can provide an interesting alternative to conventional UV lamps

  11. A large area detector for x-ray applications

    International Nuclear Information System (INIS)

    Rodricks, B.; Huang, Qiang; Hopf, R.; Wang, Kemei.

    1993-01-01

    A large area detector for x-ray synchrotron applications has been developed. The front end of this device consist of a scintillator coupled to a fiber-optic taper. The fiber-optic taper is comprised of 4 smaller (70 mm x 70 mm) tapers fused together in a square matrix giving an active area of 140 mm x 140 mm. Each taper has a demagnification of 5.5 resulting in four small ends that are 12 mm diagonally across. The small ends of each taper are coupled to four microchannel-plate-based image intensifiers. The output from each image intensifier is focused onto a Charge Coupled Device (CCD) detector. The four CCDs are read out in parallel and are independently controlled. The image intensifiers also act as fast (20 ns) electronic shutters. The system is capable of displaying images in real time. Additionally, with independent control on the readout of each row of data from the CCD, the system is capable of performing high speed imaging through novel readout manipulation

  12. Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition

    Science.gov (United States)

    Sun, Limin; Han, Menglai; Pratt, Kevin; Paulson, Douglas; Dinh, Christoph; Esch, Lorenz; Okada, Yoshio; Hämäläinen, Matti

    2017-05-01

    Versatile controllers for accurate, fast, and real-time synchronized acquisition of large-scale data are useful in many areas of science, engineering, and technology. Here, we describe the development of a controller software based on a technique called queued state machine for controlling the data acquisition (DAQ) hardware, continuously acquiring a large amount of data synchronized across a large number of channels (>400) at a fast rate (up to 20 kHz/channel) in real time, and interfacing with applications for real-time data analysis and display of electrophysiological data. This DAQ controller was developed specifically for a 384-channel pediatric whole-head magnetoencephalography (MEG) system, but its architecture is useful for wide applications. This controller running in a LabVIEW environment interfaces with microprocessors in the MEG sensor electronics to control their real-time operation. It also interfaces with a real-time MEG analysis software via transmission control protocol/internet protocol, to control the synchronous acquisition and transfer of the data in real time from >400 channels to acquisition and analysis workstations. The successful implementation of this controller for an MEG system with a large number of channels demonstrates the feasibility of employing the present architecture in several other applications.

  13. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  14. Liver Transcriptome Analysis of the Large Yellow Croaker (Larimichthys crocea) during Fasting by Using RNA-Seq

    Science.gov (United States)

    Qian, Baoying; Xue, Liangyi; Huang, Hongli

    2016-01-01

    The large yellow croaker (Larimichthys crocea) is an economically important fish species in Chinese mariculture industry. To understand the molecular basis underlying the response to fasting, Illumina HiSeqTM 2000 was used to analyze the liver transcriptome of fasting large yellow croakers. A total of 54,933,550 clean reads were obtained and assembled into 110,364 contigs. Annotation to the NCBI database identified a total of 38,728 unigenes, of which 19,654 were classified into Gene Ontology and 22,683 were found in Kyoto Encyclopedia of Genes and Genomes (KEGG). Comparative analysis of the expression profiles between fasting fish and normal-feeding fish identified a total of 7,623 differentially expressed genes (P fasting as well as identified areas that require further investigation. PMID:26967898

  15. Comparison of fasting and non-fasting lipid profiles in a large cohort of patients presenting at a community hospital.

    Science.gov (United States)

    Cartier, Louis-Jacques; Collins, Charlene; Lagacé, Mathieu; Douville, Pierre

    2018-02-01

    To compare the fasting and non-fasting lipid profile including ApoB in a cohort of patients from a community setting. Our purpose was to determine the proportion of results that could be explained by the known biological variation in the fasting state and to examine the additional impact of non-fasting on these same lipid parameters. 1093 adult outpatients with fasting lipid requests were recruited from February to September 2016 at the blood collection sites of the Moncton Hospital. Participants were asked to come back in the next 3-4days after having eaten a regular breakfast to have their blood drawn for a non-fasting lipid profile. 91.6% of patients in this study had a change in total cholesterol that fell within the biological variation expected for this parameter. Similar results were seen for HDL-C (94.3%) non-HDL-C (88.8%) and ApoB (93.0%). A smaller number of patients fell within the biological variation expected for TG (78.8%) and LDL-C (74.6%). An average TG increase of 0.3mmol/L was observed in fed patients no matter the level of fasting TG. A gradual widening in the range of change in TG concentration was observed as fasting TG increased. Similar results were seen in diabetic patients. Outside of LDL-C and TG, little changes were seen in lipid parameters in the postprandial state. A large part of these changes could be explained by the biological variation. We observed a gradual widening in the range of increase in TG for patients with higher fasting TG. Non-HDL-C and ApoB should be the treatment target of choice for patients in the non-fasting state. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. A large area cooled-CCD detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Raeburn, C.

    1994-01-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout.We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparcstation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD.The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in similar 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of similar 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at similar -40 circle C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented. ((orig.))

  17. Study on neutron streaming effect in large fast critical assembly

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamaoka, Mitsuaki; Sakurai, Shungo; Tanimoto, Koichi; Abe, Yuhei

    1981-03-01

    A cell calculation method taking into account the neutron leakage from a cell and a transport calculation method treating the neutron streaming have been developed, and their applicability has been investigated. In the cell calculation method, the neutron leakage in the perpendicular direction to plates was treated by introducing an albedo collision probability which is a first-flight collision probability incorporating albedos at cell boundaries, and that in the parallel direction was treated by the pseudo absorption method. The use of the albedo collision probability made it possible to calculate the flux tilt in a cell exactly. This cell calculation method was applied to two slab models where fuel drawers were stacked in perpendicular and parallel directions to plates. Cell averaged cross sections calculated by the proposed method agreed well with those obtained from exact transport calculations treating the plate-wise heterogeneity, while the infinite cell calculation and the conventional pseudo absorption method produced about 2% errors in the cell-averaged cross sections. The cell-averaging procedure for control-rod channels was also proposed, and this method was applied to the calculation of control-rod worths and control-rod position worths. A transport calculation method based on the response matrix method has been proposed to treat the neutron streaming in fast critical assemblies directly. A response matrix code in two dimensional XY geometry RES2D was made. The accuracy of response matrices obtained from the RES2D code was checked by applying it to a slab cell and by comparing cell-averaged cross sections and k-infinity with those from a reference cell calculation based on the collision probability. The agreement of the results was good, and it was found that the response matrix method is very promising for the treatment of the neutron streaming in fast critical assemblies. (author)

  18. Fast crawling methods of exploring content distributed over large graphs

    KAUST Repository

    Wang, Pinghui; Zhao, Junzhou; Lui, John C. S.; Towsley, Don; Guan, Xiaohong

    2018-01-01

    Despite recent effort to estimate topology characteristics of large graphs (e.g., online social networks and peer-to-peer networks), little attention has been given to develop a formal crawling methodology to characterize the vast amount of content

  19. Fast, large-scale hologram calculation in wavelet domain

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi

    2018-04-01

    We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.

  20. A fast BDD algorithm for large coherent fault trees analysis

    International Nuclear Information System (INIS)

    Jung, Woo Sik; Han, Sang Hoon; Ha, Jaejoo

    2004-01-01

    Although a binary decision diagram (BDD) algorithm has been tried to solve large fault trees until quite recently, they are not efficiently solved in a short time since the size of a BDD structure exponentially increases according to the number of variables. Furthermore, the truncation of If-Then-Else (ITE) connectives by the probability or size limit and the subsuming to delete subsets could not be directly applied to the intermediate BDD structure under construction. This is the motivation for this work. This paper presents an efficient BDD algorithm for large coherent systems (coherent BDD algorithm) by which the truncation and subsuming could be performed in the progress of the construction of the BDD structure. A set of new formulae developed in this study for AND or OR operation between two ITE connectives of a coherent system makes it possible to delete subsets and truncate ITE connectives with a probability or size limit in the intermediate BDD structure under construction. By means of the truncation and subsuming in every step of the calculation, large fault trees for coherent systems (coherent fault trees) are efficiently solved in a short time using less memory. Furthermore, the coherent BDD algorithm from the aspect of the size of a BDD structure is much less sensitive to variable ordering than the conventional BDD algorithm

  1. Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix

    OpenAIRE

    N. Price, Morgan

    2009-01-01

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor i...

  2. How to use the Fast Fourier Transform in Large Finite Fields

    OpenAIRE

    Petersen, Petur Birgir

    2011-01-01

    The article contents suggestions on how to perform the Fast Fourier Transform over Large Finite Fields. The technique is to use the fact that the multiplicative groups of specific prime fields are surprisingly composite.

  3. Fast crawling methods of exploring content distributed over large graphs

    KAUST Repository

    Wang, Pinghui

    2018-03-15

    Despite recent effort to estimate topology characteristics of large graphs (e.g., online social networks and peer-to-peer networks), little attention has been given to develop a formal crawling methodology to characterize the vast amount of content distributed over these networks. Due to the large-scale nature of these networks and a limited query rate imposed by network service providers, exhaustively crawling and enumerating content maintained by each vertex is computationally prohibitive. In this paper, we show how one can obtain content properties by crawling only a small fraction of vertices and collecting their content. We first show that when sampling is naively applied, this can produce a huge bias in content statistics (i.e., average number of content replicas). To remove this bias, one may use maximum likelihood estimation to estimate content characteristics. However, our experimental results show that this straightforward method requires to sample most vertices to obtain accurate estimates. To address this challenge, we propose two efficient estimators: special copy estimator (SCE) and weighted copy estimator (WCE) to estimate content characteristics using available information in sampled content. SCE uses the special content copy indicator to compute the estimate, while WCE derives the estimate based on meta-information in sampled vertices. We conduct experiments on a variety of real-word and synthetic datasets, and the results show that WCE and SCE are cost effective and also “asymptotically unbiased”. Our methodology provides a new tool for researchers to efficiently query content distributed in large-scale networks.

  4. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  5. Fast symplectic map tracking for the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Dan T. Abell

    2003-06-01

    Full Text Available Tracking simulations remain the essential tool for evaluating how multipolar imperfections in ring magnets restrict the domain of stable phase-space motion. In the Large Hadron Collider (LHC at CERN, particles circulate at the injection energy, when multipole errors are most significant, for more than 10^{7} turns, but systematic tracking studies are limited to a small fraction of this total time—even on modern computers. A considerable speedup is expected by replacing element-by-element tracking with the use of a symplectified one-turn map. We have applied this method to the realistic LHC lattice, version 6, and report here our results for various map orders, with special emphasis on precision and speed.

  6. Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.

    Science.gov (United States)

    Han, Lei; Zhang, Yu; Zhang, Tong

    2016-08-01

    The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.

  7. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    Science.gov (United States)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  8. Large-Area Visually Augmented Navigation for Autonomous Underwater Vehicles

    National Research Council Canada - National Science Library

    Eustice, Ryan M

    2005-01-01

    ...., unstructured terrain, low-overlap imagery, moving light source). Our large area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical...

  9. Diagnose of large area electron beam with faraday cup

    International Nuclear Information System (INIS)

    Tang Ying; Qian Hang; Yi Aiping; Huang Xin; Yu Li; Liu Jingru; Su Jiancang; Ding Zhenjie; Ding Yongzhong; Yu Jianguo

    2008-01-01

    In the experiment of gas laser pumped by electron beam, large area uniform electron beam is important to generate high efficiency laser output. This paper introduces Faraday cup is used in the diagnose experiment on the uniformity of large area e-beam generated by SPG-200 pulsed power generator. Construction of Faraday cup and the results of calibration are presented in detail. The uniformity of velvet emission is given, and the results of experiment are analyzed. (authors)

  10. Small-size pedestrian detection in large scene based on fast R-CNN

    Science.gov (United States)

    Wang, Shengke; Yang, Na; Duan, Lianghua; Liu, Lu; Dong, Junyu

    2018-04-01

    Pedestrian detection is a canonical sub-problem of object detection with high demand during recent years. Although recent deep learning object detectors such as Fast/Faster R-CNN have shown excellent performance for general object detection, they have limited success for small size pedestrian detection in large-view scene. We study that the insufficient resolution of feature maps lead to the unsatisfactory accuracy when handling small instances. In this paper, we investigate issues involving Fast R-CNN for pedestrian detection. Driven by the observations, we propose a very simple but effective baseline for pedestrian detection based on Fast R-CNN, employing the DPM detector to generate proposals for accuracy, and training a fast R-CNN style network to jointly optimize small size pedestrian detection with skip connection concatenating feature from different layers to solving coarseness of feature maps. And the accuracy is improved in our research for small size pedestrian detection in the real large scene.

  11. Spatially explicit shallow landslide susceptibility mapping over large areas

    Science.gov (United States)

    Dino Bellugi; William E. Dietrich; Jonathan Stock; Jim McKean; Brian Kazian; Paul Hargrove

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so...

  12. Large area modules based on low band gap polymers

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2010-01-01

    The use of three low band gap polymers in large area roll-to-roll coated modules is demonstrated. The polymers were prepared by a Stille cross coupling polymerization and all had a band gap around 1.6 eV. The polymers were first tested in small area organic photovoltaic devices which showed...

  13. Pneumatic radiator of transition radiation for large working area arrangements

    International Nuclear Information System (INIS)

    Shikhlyarov, K.K.; Gavalyan, V.G.

    1993-01-01

    An unconventional approach to the constructions of large area regular radiator of X-rays transition radiation is proposed based on the use of a pack of hermetically sealed bags, in which elastic helium layers are formed. A prototype of such a radiator of about 1m 2 area was made for test of the proposed device. 9 refs

  14. Seafloor mapping of large areas using multibeam system - Indian experience

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; KameshRaju, K.A; Ramprasad, T.

    averaged and merged to produce large area maps. Maps were generated in the scale of 1 mil. and 1.5 mil covering area of about 2 mil. sq.km in single map. Also, depth contour interval were generated. A computer program was developed to convert the depth data...

  15. Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix

    Energy Technology Data Exchange (ETDEWEB)

    N. Price, Morgan; S. Dehal, Paramvir; P. Arkin, Adam

    2009-07-31

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

  16. Large-area OLED lightings and their applications

    International Nuclear Information System (INIS)

    Park, J W; Shin, D C; Park, S H

    2011-01-01

    In this paper, we review the key issues related to the fabrication of large-area organic light-emitting devices (OLEDs) for lighting applications. We discuss the origin of a short-circuit problem, luminance non-uniformity, hot spot, efficiency reduction (power loss), and heat generation and present the way of suppressing them. We also introduce three different application areas of large-area OLED lighting panels. They can be integrated with a solar cell for power recycling or inorganic LEDs for emotional lightings. The feasibility of using OLEDs for the application of visible-light communications is also reviewed

  17. Mapping the electrical properties of large-area graphene

    DEFF Research Database (Denmark)

    Bøggild, Peter; Mackenzie, David; Whelan, Patrick Rebsdorf

    2017-01-01

    The significant progress in terms of fabricating large-area graphene films for transparent electrodes, barriers, electronics, telecommunication and other applications has not yet been accompanied by efficient methods for characterizing the electrical properties of large-area graphene. While......, and a high measurement effort per device. In this topical review, we provide a comprehensive overview of the issues that need to be addressed by any large-area characterisation method for electrical key performance indicators, with emphasis on electrical uniformity and on how this can be used to provide...... a more accurate analysis of the graphene film. We review and compare three different, but complementary approaches that rely either on fixed contacts (dry laser lithography), movable contacts (micro four point probes) and non-contact (terahertz time-domain spectroscopy) between the probe and the graphene...

  18. Optical fabrication of large area photonic microstructures by spliced lens

    Science.gov (United States)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  19. Plasma and Ion Sources in Large Area Coatings: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  20. Charge-carrier transport in large-area epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, Ferdinand; Popp, Matthias; Weber, Heiko B. [Lehrstuhl fuer Angewandte Physik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen (Germany); Jobst, Johannes [Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University (Netherlands); Shallcross, Sam [Lehrstuhl fuer theoretische Festkoerperphysik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen (Germany)

    2017-11-15

    We present an overview of recent charge carrier transport experiments in both monolayer and bilayer graphene, with emphasis on the phenomena that appear in large-area samples. While many aspects of transport are based on quantum mechanical concepts, in the large-area limit classical corrections dominate and shape the magnetoresistance and the tunneling conductance. The discussed phenomena are very general and can, with little modification, be expected in any atomically thin 2D conductor. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Manufacture of axially insulated large-area diodes

    International Nuclear Information System (INIS)

    Ma Weiyi; Zhou Kungang; Wang Youtian; Zhang Dong; Shan Yusheng; Wang Naiyan

    1999-01-01

    The author describes the design and construction of the axially insulated large-area diodes used in the 'Heaven-1'. The four axially insulated large-area diodes are connected to the 10 ohm pulse transmission lines via the vacuum feed through tubes. The experimental results with the diodes are given. The diodes can steadily work at the voltage of 650 kV, and the diode current density is about 80 A per cm 2 with a pulse width of 220 ns. The electron beams with a total energy of 25 kJ are obtained

  2. Large-area metallic photonic lattices for military applications.

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting Shan

    2007-11-01

    In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the <100> plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.

  3. 3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation

    Science.gov (United States)

    Chen, Z.; Meng, X.; Guo, L.; Liu, G.

    2011-12-01

    In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and

  4. Material balance areas and frequencies for large reprocessing plants

    International Nuclear Information System (INIS)

    Burr, T.

    1994-01-01

    It has long been recognized that facilities with a large nuclear material throughput will probably not meet the International Atomic Energy Agency (IAEA) goal for detecting trickle diversion of plutonium over periods of about one year. The reason is that measurement errors for plutonium concentration and for liquid volume are often approximately relative over a fairly wide range of true values. Therefore, large throughput facilities will tend to have large uncertainties assigned to their annual throughput. By the same argument, if frequent balances are performed over small material balance areas, then the uncertainty associated with each balance period for each balance area will be small. However, trickle diversion would still be difficult to detect statistically. Because the IAEA will soon be faced with safeguarding a new large-scale reprocessing plant in Japan, it is timely to reconsider the advantages and disadvantages of performing frequent material balances over small balance areas (individual tanks where feasible). Therefore, in this paper the authors present some simulation results to study the effect of balance frequency on loss detection probability, and further simulation results to study possibilities introduced by choosing small balance areas. They conclude by recommending frequent balances over small areas

  5. Technique investigation on large area neutron scintillation detector array

    International Nuclear Information System (INIS)

    Chen Jiabin

    2006-12-01

    The detailed project for developing Large Area Neutron Scintillation Detector Array (LaNSA) to be used for measuring fusion fuel area density on Shenguang III prototype is presented, including experimental principle, detector working principle, electronics system design and the needs for target chamber etc. The detailed parameters for parts are given and the main causes affecting the system function are analyzed. The realization path is introduced. (authors)

  6. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  7. Identifying Corridors among Large Protected Areas in the United States.

    Directory of Open Access Journals (Sweden)

    R Travis Belote

    Full Text Available Conservation scientists emphasize the importance of maintaining a connected network of protected areas to prevent ecosystems and populations from becoming isolated, reduce the risk of extinction, and ultimately sustain biodiversity. Keeping protected areas connected in a network is increasingly recognized as a conservation priority in the current era of rapid climate change. Models that identify suitable linkages between core areas have been used to prioritize potentially important corridors for maintaining functional connectivity. Here, we identify the most "natural" (i.e., least human-modified corridors between large protected areas in the contiguous Unites States. We aggregated results from multiple connectivity models to develop a composite map of corridors reflecting agreement of models run under different assumptions about how human modification of land may influence connectivity. To identify which land units are most important for sustaining structural connectivity, we used the composite map of corridors to evaluate connectivity priorities in two ways: (1 among land units outside of our pool of large core protected areas and (2 among units administratively protected as Inventoried Roadless (IRAs or Wilderness Study Areas (WSAs. Corridor values varied substantially among classes of "unprotected" non-core land units, and land units of high connectivity value and priority represent diverse ownerships and existing levels of protections. We provide a ranking of IRAs and WSAs that should be prioritized for additional protection to maintain minimal human modification. Our results provide a coarse-scale assessment of connectivity priorities for maintaining a connected network of protected areas.

  8. Large area imaging of forensic evidence with MA-XRF

    NARCIS (Netherlands)

    Langstraat, K.; Knijnenberg, A.; Edelman, G.; van de Merwe, L.; van Loon, A.; Dik, J.; van Asten, A.

    2017-01-01

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces

  9. Large area imaging of forensic evidence with MA-XRF

    NARCIS (Netherlands)

    Langstraat, Kirsten; Knijnenberg, Alwin; Edelman, Gerda; Van De Merwe, Linda; van Loon, A.; Dik, J.; van Asten, Arian C.

    2017-01-01

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces

  10. Large area, low cost solar cell development and production readiness

    Science.gov (United States)

    Michaels, D.

    1982-01-01

    A process sequence for a large area ( or = 25 sq. cm) silicon solar cell was investigated. Generic cell choice was guided by the expected electron fluence, by the packing factors of various cell envelope designs onto each panel to provide needed voltage as well as current, by the weight constraints on the system, and by the cost goals of the contract.

  11. Beam test of a large area silicon drift detector

    International Nuclear Information System (INIS)

    Castoldi, A.; Chinnici, S.; Gatti, E.; Longoni, A.; Palma, F.; Sampietro, M.; Rehak, P.; Ballocchi, G.; Kemmer, J.; Holl, P.; Cox, P.T.; Giacomelli, P.; Vacchi, A.

    1992-01-01

    The results from the tests of the first large area (4 x 4 cm 2 ) planar silicon drift detector prototype in a pion beam are reported. The measured position resolution in the drift direction is (σ=40 ± 10)μm

  12. A fast approach to generate large-scale topographic maps based on new Chinese vehicle-borne Lidar system

    International Nuclear Information System (INIS)

    Youmei, Han; Bogang, Yang

    2014-01-01

    Large -scale topographic maps are important basic information for city and regional planning and management. Traditional large- scale mapping methods are mostly based on artificial mapping and photogrammetry. The traditional mapping method is inefficient and limited by the environments. While the photogrammetry methods(such as low-altitude aerial mapping) is an economical and effective way to map wide and regulate range of large scale topographic map but doesn't work well in the small area due to the high cost of manpower and resources. Recent years, the vehicle-borne LIDAR technology has a rapid development, and its application in surveying and mapping is becoming a new topic. The main objective of this investigation is to explore the potential of vehicle-borne LIDAR technology to be used to fast mapping large scale topographic maps based on new Chinese vehicle-borne LIDAR system. It studied how to use the new Chinese vehicle-borne LIDAR system measurement technology to map large scale topographic maps. After the field data capture, it can be mapped in the office based on the LIDAR data (point cloud) by software which programmed by ourselves. In addition, the detailed process and accuracy analysis were proposed by an actual case. The result show that this new technology provides a new fast method to generate large scale topographic maps, which is high efficient and accuracy compared to traditional methods

  13. A fast and optimized dynamic economic load dispatch for large scale power systems

    International Nuclear Information System (INIS)

    Musse Mohamud Ahmed; Mohd Ruddin Ab Ghani; Ismail Hassan

    2000-01-01

    This paper presents Lagrangian Multipliers (LM) and Linear Programming (LP) based dynamic economic load dispatch (DELD) solution for large-scale power system operations. It is to minimize the operation cost of power generation. units subject to the considered constraints. After individual generator units are economically loaded and periodically dispatched, fast and optimized DELD has been achieved. DELD with period intervals has been taken into consideration The results found from the algorithm based on LM and LP techniques appear to be modest in both optimizing the operation cost and achieving fast computation. (author)

  14. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2009-10-01

    Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

  15. Fabrication of large area flexible nanoplasmonic templates with flow coating

    Science.gov (United States)

    Huang, Qian; Devetter, Brent M.; Roosendaal, Timothy; LaBerge, Max; Bernacki, Bruce E.; Alvine, Kyle J.

    2017-07-01

    We describe the development of a custom-built two-axis flow coater for the deposition of polymeric nanosphere monolayers that could be used in the fabrication of large area nanoplasmonic films. The technique described here has the capability of depositing large areas (up to 7 in. × 10 in.) of self-assembled monolayers of polymeric nanospheres onto polyethylene terephthalate (PET) films. Here, three sets of films consisting of different diameters (ranging from 100 to 300 nm) of polymeric nanospheres were used to demonstrate the capabilities of this instrument. To improve the surface wettability of the PET substrates during wet-deposition, we enhanced the wettability by using a forced air blown-arc plasma treatment system. Both the local microstructure, as confirmed by scanning electron microscopy, describing monolayer and multilayer coverage, and the overall macroscopic uniformity of the resultant nanostructured film were optimized by controlling the relative stage to blade speed and nanosphere concentration. We also show using a smaller nanoparticle template that such monolayers can be used to form nanoplasmonic films. As this flow-coating approach is a scalable technique, large area films such as the ones described here have a variety of crucial emerging applications in areas such as energy, catalysis, and chemical sensing.

  16. Experimental study on generation of large area uniform electron beam

    International Nuclear Information System (INIS)

    Tang Ying; Yi Aiping; Liu Jingru; Qian Hang; Huang Xin; Yu Li; Su Jiancang; Ding Zhenjie; Ding Yongzhong; Yu Jianguo

    2007-01-01

    In the experiment of gas laser pumped by electron beam, large area uniform electron beam is important to generate high efficiency laser output. The experimental study on generation of large area uniform electron beam with SPG-200 pulsed power generator is introduced. SPG-200 is an all-solid-state components pulsed power generator based on SOS, and its open voltage is more than 350 kV. The cathode have the area of 24 mm x 294 mm, and the anode-cathode(A-C)gap spacing is adjustable from 0 to 49 mm. The electron beam of cathode emission is transported to the laser chamber through the diode pressure foil, which sepa-rates the vacuum chamber from the laser chamber. Velvet and graphite cathodes are studied, each generates large area electron beam. The diode parameters are presented, and the uniformity of e-beam is diagnosed. The experimental results show that the diode voltage of the graphite cathode is 240-280 kV, and the diode current is 0.7-1.8 kA. The diode voltage of the velvet cathode is 200-250 kV, and the diode current is 1.5-1.7 kA. The uniformity of the velvet cathode emission is better than that of the graphite cathode. (authors)

  17. Regulations and Strategy for a Loss of Large Area

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heok-soon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Nuclear Regulatory Commission (NRC) has issued 10 CFR 50.54(hh) that requires licensees to develop guidance and strategies for addressing the loss of large areas of the plant due to explosions or fires from a beyond-design basis event through the use of readily available resources and by identifying potential practicable areas for the use of beyond-readily-available resources. These strategies would address licensee response to events that are beyond the design basis of the facility. This paper illustrates overview of Regulations and some important Strategy for a Loss of Large Area of an advanced nuclear power plant. Regulations and Strategy for Loss of Large Area Analysis could be overlooked during the development stage of Physical Protection System. KHNP was done the project of Physical Protection System design including LOLA to meet the criteria of U.S. NRC and IAEA requirements in INFCIRC/225/Rev.5. The New Reactor should meet the regulatory requirements for LOLA. In the future, the results of project will expect to apply new NPPs.

  18. LARGE SUPER-FAST ROTATOR HUNTING USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen [Institute of Astronomy, National Central University, Jhongli, Taiwan (China); Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ; Surace, Jason, E-mail: rex@astro.ncu.edu.tw [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States)

    2016-12-01

    In order to look for large super-fast rotators, in late 2014 and early 2015, five dedicated surveys covering ∼188 deg{sup 2} in the ecliptic plane have been carried out in the R -band, with ∼10 minute cadence using the intermediate Palomar Transient Factory. Among 1029 reliable rotation periods obtained from the surveys, we discovered 1 new large super-fast rotator, (40511) 1999 RE88, and 18 other candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D  = 1.9 ± 0.3 km, a rotation period of P  = 1.96 ± 0.01 hr, and a light curve amplitude of Δ m  ∼ 1.0 mag. To maintain such fast rotation, an internal cohesive strength of ∼780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100–1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotation period is greatly reduced due to our two-day observation time span, the spin-rate distributions of this work show consistent results with Chang et al. (2015), after considering the possible observational bias in our surveys. It shows a number decrease with an increase of spin rate for asteroids with a diameter of 3 ⩽  D  ⩽ 15 km, and a number drop at a spin rate of f  = 5 rev day{sup −1} for asteroids with D  ⩽ 3 km.

  19. Spatially explicit shallow landslide susceptibility mapping over large areas

    Science.gov (United States)

    Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.

  20. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  1. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  2. Uniformity studies in large area triple-GEM based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Akl, M. Abi [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Bouhali, O., E-mail: othmane.bouhali@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Qatar Computing Research Institute, Hamad Bin Khalifa University, PO Box 5825, Doha (Qatar); Castaneda, A.; Maghrbi, Y.; Mohamed, T. [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar)

    2016-10-01

    Gas Electron Multiplier (GEM) based detectors have been used in many applications since their introduction in 1997. Large areas, e.g. exceeding 30×30 cm{sup 2}, of GEM detectors are foreseen in future experiments which puts stringent requirements on the uniformity of response across the detection area. We investigate the effect of small variations of several parameters that could affect the uniformity. Parameters such as the anode pitch, the gas gap, the size and the shape of the holes are investigated. Simulation results are presented and compared to previous experimental data.

  3. Large area, surface discharge pumped, vacuum ultraviolet light source

    Science.gov (United States)

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  4. Development of a spatially uniform fast ionization wave in a large-volume discharge

    International Nuclear Information System (INIS)

    Zatsepin, D.V.; Starikovskaya, S.M.; Starikovskii, A.Yu.

    1998-01-01

    A study is made of a high-voltage nanosecond breakdown in the form of a fast ionization wave produced in a large-volume (401) discharge chamber. The propagation speed of the wave front and the integral energy deposition in a plasma are measured for various regimes of the air discharge at pressures of 10 -2 -4 Torr. A high degree of both the spatial uniformity of the discharge and the reproducibility of the discharge parameters is obtained. The possibility of the development of a fast ionization wave in an electrodeless system is demonstrated. A transition of the breakdown occurring in the form of a fast ionization wave into the streamer breakdown is observed. It is shown that such discharges are promising for technological applications

  5. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  6. Large-area smart glass and integrated photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [Star Science, 8730 Water Road, Cotati, CA 94931-4252 (United States)

    2003-04-01

    Several companies throughout the world are developing dynamic glazing and large-area flat panel displays. University and National Laboratory groups are researching new materials and processes to improve these products. The concept of a switchable glazing for building and vehicle application is very attractive. Conventional glazing only offers fixed transmittance and control of energy passing through it. Given the wide range of illumination conditions and glare, a dynamic glazing with adjustable transmittance offers the best solution. Photovoltaics can be integrated as power sources for smart windows. In this way a switchable window could be a completely stand alone smart system. A new range of large-area flat panel display including light-weight and flexible displays are being developed. These displays can be used for banner advertising, dynamic pricing in stores, electronic paper, and electronic books, to name only a few applications. This study covers selected switching technologies including electrochromism, suspended particles, and encapsulated liquid crystals.

  7. Dwell time considerations for large area cold plasma decontamination

    Science.gov (United States)

    Konesky, Gregory

    2009-05-01

    Atmospheric discharge cold plasmas have been shown to be effective in the reduction of pathogenic bacteria and spores and in the decontamination of simulated chemical warfare agents, without the generation of toxic or harmful by-products. Cold plasmas may also be useful in assisting cleanup of radiological "dirty bombs." For practical applications in realistic scenarios, the plasma applicator must have both a large area of coverage, and a reasonably short dwell time. However, the literature contains a wide range of reported dwell times, from a few seconds to several minutes, needed to achieve a given level of reduction. This is largely due to different experimental conditions, and especially, different methods of generating the decontaminating plasma. We consider these different approaches and attempt to draw equivalencies among them, and use this to develop requirements for a practical, field-deployable plasma decontamination system. A plasma applicator with 12 square inches area and integral high voltage, high frequency generator is described.

  8. An insulating grid spacer for large-area MICROMEGAS chambers

    International Nuclear Information System (INIS)

    Bernard, D.; Delagrange, H.; D'Enterria, D.G.; Guay, M.L.M. Le; Martinez, G.; Mora, M.J.; Pichot, P.; Roy, D.; Schutz, Y.; Gandi, A.; Oliveira, R. de

    2002-01-01

    We present a novel design for large-area gaseous detectors based on the MICROMEGAS technology. This technology incorporates an insulating grid, sandwiched between the micro-mesh and the anode-pad plane, which provides a uniform 200 μm amplification gap. The uniformity of the amplification gap thickness has been verified. The gain performances of the detector are presented and compared to the values obtained with detectors using cylindrical micro spacers. The new design presents several technical and financial advantages

  9. Large area avalanche MRS-photodiodes for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ermalitski, F A; Zalesski, V B

    1996-12-31

    Problems of application of avalanche photodiodes (APD) in readout systems of nuclear spectrometers are considered. APD`s with a large sensitive area of a diameter 1-5 mm and a high multiplication coefficient 200-1000 are created. MPS-photodiodes provide for the energy resolution 80% at temperature 231 K for detecting gamma-quanta with energy 662 keV. 4 refs.

  10. Gravure printing of graphene for large-area flexible electronics.

    Science.gov (United States)

    Secor, Ethan B; Lim, Sooman; Zhang, Heng; Frisbie, C Daniel; Francis, Lorraine F; Hersam, Mark C

    2014-07-09

    Gravure printing of graphene is demonstrated for the rapid production of conductive patterns on flexible substrates. Development of suitable inks and printing parameters enables the fabrication of patterns with a resolution down to 30 μm. A mild annealing step yields conductive lines with high reliability and uniformity, providing an efficient method for the integration of graphene into large-area printed and flexible electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mapping the electrical properties of large-area graphene

    Science.gov (United States)

    Bøggild, Peter; Mackenzie, David M. A.; Whelan, Patrick R.; Petersen, Dirch H.; Due Buron, Jonas; Zurutuza, Amaia; Gallop, John; Hao, Ling; Jepsen, Peter U.

    2017-12-01

    The significant progress in terms of fabricating large-area graphene films for transparent electrodes, barriers, electronics, telecommunication and other applications has not yet been accompanied by efficient methods for characterizing the electrical properties of large-area graphene. While in the early prototyping as well as research and development phases, electrical test devices created by conventional lithography have provided adequate insights, this approach is becoming increasingly problematic due to complications such as irreversible damage to the original graphene film, contamination, and a high measurement effort per device. In this topical review, we provide a comprehensive overview of the issues that need to be addressed by any large-area characterisation method for electrical key performance indicators, with emphasis on electrical uniformity and on how this can be used to provide a more accurate analysis of the graphene film. We review and compare three different, but complementary approaches that rely either on fixed contacts (dry laser lithography), movable contacts (micro four point probes) and non-contact (terahertz time-domain spectroscopy) between the probe and the graphene film, all of which have been optimized for maximal throughput and accuracy, and minimal damage to the graphene film. Of these three, the main emphasis is on THz time-domain spectroscopy, which is non-destructive, highly accurate and allows both conductivity, carrier density and carrier mobility to be mapped across arbitrarily large areas at rates that by far exceed any other known method. We also detail how the THz conductivity spectra give insights on the scattering mechanisms, and through that, the microstructure of graphene films subject to different growth and transfer processes. The perspectives for upscaling to realistic production environments are discussed.

  12. High Energy Astrophysics with the Fermi Large Area Telescope

    Science.gov (United States)

    Hays, Elizabeth

    2009-01-01

    This slide presentation reviews some of the findings of the Large Area Telescope (LAT) aboard the Fermi Observatory. It includes information about the LAT, and the Gamma-Ray Burst Monitor (GBM), detection of the quiet sun and the moon in gamma rays, Pulsars observed by the observatory, Globular Star Clusters, Active Galactic Nucleus, and Gamma-Ray Bursts, with specific information about GRB 080916C.

  13. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  14. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    International Nuclear Information System (INIS)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-01-01

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT 'dark current' background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or 'Back' detector, to both (1) minimize Compton background in the low-energy portion of the 'Front' scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as implemented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors

  15. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration

    2015-01-01

    Resisitve strip Micromegas detectors behave discharge tolerant. They have been tested extensively as smaller detectors of about 10 x 10 cm$^2$ in size and they work reliably at high rates of 100\\,kHz/cm$^2$ and above. Tracking resolutions well below 100\\,$\\mu$m have been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3\\,m$^2$ in size. To investigate possible differences between small and large detectors, a 1\\,m$^2$ detector with 2048 resistive strips at a pitch of 450 $\\mu$m was studied in the LMU Cosmic Ray Facility (CRF) using two 4 $\\times$ 2.2 m$^2$ large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. Segmentation of the resistive strip anode plane in 57.6\\,mm x 95\\,mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by 11 95\\,mm broad trigger scintillators placed along the readout strips.\\\\ This allows for mapping of homogenity in pulse height and efficiency, deter...

  16. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389527; The ATLAS collaboration

    2016-01-01

    Resistive strip Micromegas detectors are discharge tolerant. They have been tested extensively as small detectors of about 10 x 10 cm$^2$ in size and they work reliably at high rates of 100 kHz/cm$^2$ and above. Tracking resolution well below 100 $\\mu$m has been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3 m$^2$ in size. To investigate possible differences between small and large detectors, a 1 m$^2$ detector with 2048 resistive strips at a pitch of 450 $\\mu$m was studied in the LMU Cosmic Ray Measurement Facility (CRMF) using two 4 $\\times$ 2.2 m$^2$ large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. A segmentation of the resistive strip anode plane in 57.6 mm x 93 mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by eleven 93 mm broad trigger scintillators placed along the readout strips. This allows for mapping of homogeneity in pulse height and efficiency, d...

  17. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  18. Safety requirements and options for a large size fast neutron reactor

    International Nuclear Information System (INIS)

    Cogne, F.; Megy, J.; Robert, E.; Benmergui, A.; Villeneuve, J.

    1977-01-01

    Starting from the experience gained in the safety evaluation of the PHENIX reactor, and from results already obtained in the safety studies on fast neutron reactors, the French regulatory bodies have defined since 1973 what could be the requirements and the recommendations in the matter of safety for the first large size ''prototype'' fast neutron power plant of 1200 MWe. Those requirements and recommendations, while not being compulsory due to the evolution of this type of reactors, will be used as a basis for the technical regulation that will be established in France in this field. They define particularly the care to be taken in the following areas which are essential for safety: the protection systems, the primary coolant system, the prevention of accidents at the core level, the measures to be taken with regard to the whole core accident and to the containment, the protection against sodium fires, and the design as a function of external aggressions. In applying these recommendations, the CREYS-MALVILLE plant designers have tried to achieve redundancy in the safety related systems and have justified the safety of the design with regard to the various involved phenomena. In particular, the extensive research made at the levels of the fuel and of the core instrumentation makes it possible to achieve the best defence to avoid the development of core accidents. The overall examination of the measures taken, from the standpoint of prevention and surveyance as well as from the standpoint of means of action led the French regulatory bodies to propose the construction permit of the CREYS MALVILLE plant, provided that additional examinations by the regulatory bodies be made during the construction of the plant on some technological aspects not fully clarified at the authorization time. The conservatism of the corresponding requirements should be demonstrated prior to the commissioning of the power plant. To pursue a programme on reactors of this type, or even more

  19. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  20. Process and device for imploding a micro-area by means of a fast liner

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    The invention describes a process and a device for controlling a fast liner with hot plasma, in order to start or drive a structured micro-area to implode, in turn. In this way a natural pulse formation causes high implosion speeds for generating energy in the form of radiation, neutrons and/or alpha particles. By optimizing the extraordinarily powerful flow instability to heat the very dense plasma, the invention produces effective giving up of radiation energy to heat the plasma and to initiate the fast liner to implode the micro-area. (orig.) [de

  1. The multilevel fast multipole algorithm (MLFMA) for solving large-scale computational electromagnetics problems

    CERN Document Server

    Ergul, Ozgur

    2014-01-01

    The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examplesCovers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objectsDiscusses applications including scattering from airborne targets, scattering from red

  2. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  3. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  4. Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.

    Science.gov (United States)

    Liu, Mengmeng; Pu, Xiong; Jiang, Chunyan; Liu, Ting; Huang, Xin; Chen, Libo; Du, Chunhua; Sun, Jiangman; Hu, Weiguo; Wang, Zhong Lin

    2017-11-01

    Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large-area all-textile-based pressure-sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa -1 ), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real-time pulse wave. Furthermore, large-area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Priority areas for large mammal conservation in Equatorial Guinea.

    Science.gov (United States)

    Murai, Mizuki; Ruffler, Heidi; Berlemont, Antoine; Campbell, Genevieve; Esono, Fidel; Agbor, Anthony; Mbomio, Domingo; Ebana, Agustín; Nze, Antonio; Kühl, Hjalmar S

    2013-01-01

    Hunting is one of the main driving forces behind large mammal density distribution in many regions of the world. In tropical Africa, urban demand for bushmeat has been shown to dominate over subsistence hunting and its impact often overrides spatial-ecological species characteristics. To effectively protect remaining mammal populations the main factors that influence their distribution need to be integrated into conservation area prioritisation and management plans. This information has been lacking for Río Muni, Equatorial Guinea, as prior studies have been outdated or have not systematically covered the continental region of the country. In this study we evaluated: 1) the relative importance of local vs. commercial hunting; 2) wildlife density of protected vs. non-protected areas; and 3) the importance of ecological factors vs. human influence in driving mammal density distribution in Río Muni. We adopted a systematic countrywide line transect approach with particular focus on apes and elephants, but also including other mammal species. For analysis of field data we used generalised linear models with a set of predictor variables representing ecological conditions, anthropogenic pressure and protected areas. We estimate that there are currently 884 (437-1,789) elephants and 11,097 (8,719-13,592) chimpanzees and gorillas remaining in Río Muni. The results indicate strong hunting pressures on both local and commercial levels, with roads demonstrating a negative impact on elephants and overall mammal body mass. Protected areas played no role in determining any of the mammal species distributions and significant human hunting signs were found inside these protected areas, illustrating the lack of environmental law enforcement throughout the country. Río Muni is currently under-represented in conservation efforts in Western Equatorial Africa, and we recommend a focus on cross-boundary conservation, in particular in the Monte Alén-Monts de Cristal and Río Campo

  6. Application issues for large-area electrochromic windows incommercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  7. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  8. Dark Matter Searches with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Meurer, Christine

    2008-01-01

    The Fermi Gamma-Ray Space Telescope, successfully launched on June 11th, 2008, is the next generation satellite experiment for high-energy gamma-ray astronomy. The main instrument, the Fermi Large Area Telescope (LAT), with a wide field of view (>2 sr), a large effective area (>8000 cm 2 at 1 GeV), sub-arcminute source localization, a large energy range (20 MeV-300 GeV) and a good energy resolution (close to 8% at 1 GeV), has excellent potential to either discover or to constrain a Dark Matter signal. The Fermi LAT team pursues complementary searches for signatures of particle Dark Matter in different search regions such as the galactic center, galactic satellites and subhalos, the milky way halo, extragalactic regions as well as the search for spectral lines. In these proceedings we examine the potential of the LAT to detect gamma-rays coming from Weakly Interacting Massive Particle annihilations in these regions with special focus on the galactic center region.

  9. Amplifiers dedicated for large area SiC photodiodes

    Science.gov (United States)

    Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.

    2016-09-01

    Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.

  10. Multimodality treatment of large AVMs in eloquent areas

    International Nuclear Information System (INIS)

    Inoue, Hiroshi K.; Naitou, Isao

    2004-01-01

    Our treatment of arteriovenous malformations (AVMs) with Gamma Knife Radiosurgery (optimal dose treatment) showed 88.4% total obliteration in small AVMs less than 10 ml after the first treatment and very low morbidity (1.7%) in long-term follow-up (5 to 12 years). These results indicate that combined treatment is a good strategy for large AVMs in eloquent areas. Therefore, we evaluated larger AVMs treated with direct surgery including feeder clipping and/or intravascular embolization prior to radiosurgery for further development of radiosurgery of large AVMs. Fifty of 171 patients had combined treatment (embolization: 27, direct surgery: 19, both: 4) and were followed more than 4 years and 6 months. Mean volume at the time of radiosurgery was smallest in the surgery group. Total obliteration was obtained in 94.4% of small AVMs less than 10 ml (surgery: 100%, embolization: 88.9%), although larger AVMs still have a lower obliteration rate. No lethal hemorrhages appeared after combination treatment up to date. We concluded that radiosurgery combined with surgery and/or embolization is a safe and effective treatment for large AVMs in eloquent areas. (author)

  11. Edge field emission of large-area single layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kleshch, Victor I., E-mail: klesch@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bandurin, Denis A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Orekhov, Anton S. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, RAS, Moscow 119333 (Russian Federation); Purcell, Stephen T. [ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, 69622 Villeurbanne (France); Obraztsov, Alexander N. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-12-01

    Graphical abstract: - Highlights: • Stable field emission was observed from the edge of large-area graphene on quartz. • A strong hysteresis in current–voltage characteristics was observed. • The hysteresis was explained by mechanical peeling of graphene edge from substrate. • Reversible peeling of graphene edge may be used in microelectromechanical systems. - Abstract: Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current–voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  12. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.

    Science.gov (United States)

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-06-10

    In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.

  13. Classification of large-sized hyperspectral imagery using fast machine learning algorithms

    Science.gov (United States)

    Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira

    2017-07-01

    We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.

  14. Large area synchrotron X-ray fluorescence mapping of biological samples

    International Nuclear Information System (INIS)

    Kempson, I.; Thierry, B.; Smith, E.; Gao, M.; De Jonge, M.

    2014-01-01

    Large area mapping of inorganic material in biological samples has suffered severely from prohibitively long acquisition times. With the advent of new detector technology we can now generate statistically relevant information for studying cell populations, inter-variability and bioinorganic chemistry in large specimen. We have been implementing ultrafast synchrotron-based XRF mapping afforded by the MAIA detector for large area mapping of biological material. For example, a 2.5 million pixel map can be acquired in 3 hours, compared to a typical synchrotron XRF set-up needing over 1 month of uninterrupted beamtime. Of particular focus to us is the fate of metals and nanoparticles in cells, 3D tissue models and animal tissues. The large area scanning has for the first time provided statistically significant information on sufficiently large numbers of cells to provide data on intercellular variability in uptake of nanoparticles. Techniques such as flow cytometry generally require analysis of thousands of cells for statistically meaningful comparison, due to the large degree of variability. Large area XRF now gives comparable information in a quantifiable manner. Furthermore, we can now image localised deposition of nanoparticles in tissues that would be highly improbable to 'find' by typical XRF imaging. In addition, the ultra fast nature also makes it viable to conduct 3D XRF tomography over large dimensions. This technology avails new opportunities in biomonitoring and understanding metal and nanoparticle fate ex-vivo. Following from this is extension to molecular imaging through specific anti-body targeted nanoparticles to label specific tissues and monitor cellular process or biological consequence

  15. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    Richardson, R.A.; Egan, P.O.; Benjamin, R.D.

    1995-05-01

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  16. realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array

    Science.gov (United States)

    Law, C. J.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Halle, A.; Khudikyan, S.; Lazio, T. J. W.; Pokorny, M.; Robnett, J.; Rupen, M. P.

    2018-05-01

    Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a source at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hr of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways in which real-time analysis can help in other fields of astrophysics.

  17. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  18. An insulating grid spacer for large-area MICROMEGAS chambers

    CERN Document Server

    Bernard, D; D'Enterria, D G; Le Guay, M; Martínez, G; Mora, M J; Pichot, P; Roy, D; Schutz, Y; Gandi, A; De Oliveira, R

    2002-01-01

    We present an original design for large area gaseous detectors based on the MICROMEGAS technology. This technology incorporates an insulating grid, sandwiched between the micro-mesh and the anode-pad plane, which provides an uniform 200 $\\mu$m amplification gap. The uniformity of the amplification gap thickness has been verified under several experimental conditions. The gain performances of the detector are presented and compared to the values obtained with detectors using cylindrical micro spacers. The new design presents several technical and financial advantages.

  19. Development of large area resistive electrodes for ATLAS NSW Micromegas

    Science.gov (United States)

    Ochi, Atsuhiko

    2018-02-01

    Micromegas with resistive anodes will be used for the NSW upgrades of the ATLAS experiment at LHC. Resistive electrodes are used in MPGD devices to prevent sparks in high-rate operation. Large-area resistive electrodes for Micromegas have been developed using two different technologies: screen printing and carbon sputtering. The maximum resistive foil size is 45 × 220 cm with a printed pattern of 425-μm pitch strips. These technologies are also suitable for mass production. Prototypes of a production model series have been successfully produced. In this paper, we report the development, the production status, and the test results of resistive Micromegas.

  20. Position reconstruction in large-area scintillating fibre detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mahata, K. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)], E-mail: kmahata@barc.gov.in; Johansson, H.T. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Department of Fundamental Physics, Chalmers University of Technology, S-412 96 Goeteborg (Sweden); Paschalis, S. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, L69 7ZE (United Kingdom); Simon, H.; Aumann, T. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)

    2009-09-11

    A new analysis procedure has been developed for the large-area scintillating fibre detectors with position-sensitive photomultiplier (PSPM) readout used for heavy ions in the LAND set-up at GSI. It includes gain matching of the PSPM, calibration of the PSPM fibre mask and hit reconstruction. This procedure allows for a quasi-online calibration of this tracking device. It also allows for a precise determination of the position close to the intrinsic detector resolution of 1 mm pitch together with careful treatment of individual event accuracies.

  1. Large area nuclear particle detectors using ET materials

    International Nuclear Information System (INIS)

    1987-08-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated

  2. Investigation of electrically exploded large area foil for current switching

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Boyko, A.M.; Kostyukov, V.N.; Kuzyaev, A.I.; Kulagin, A.A.; Mamyshev, V.I.; Mezhevov, A.B.; Nechaev, A.I.; Petrukhin, A.A.; Protasov, M.S.; Shevtsov, V.I.; Yakubov, V.B.

    1990-01-01

    The possibility of microsecond ∼40 MA current switching from EMG into a quasiconstant inductive load by an electrically exploded foil is investigated. The copper foil of large area, S ∼ 10 4 cm 2 , was placed between thin-walled insulators into a coaxial transmission line (TL). This paper shows a conceptual device scheme. To feed a foil opening switch (FOS), a disc explosive magnetic generator (DEMG) with 20 μs current rise time was employed. An inductive coaxial load was connected to a FOS at a moment, that was close to the foil vaporization start by means of an axisymmetric explosive current commutator (ECC)

  3. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  4. Status review of large fast reactor core designs and their dynamics related features

    International Nuclear Information System (INIS)

    Spenke, H.; Kiefhaber, E.

    1982-01-01

    Since several years conventional and unconventional concepts of large fast reactor cores have been investigated in the Federal Republic of Germany at INTERATOM and Kernforschungszentrum Karlsruhe. The work was performed jointly with Belgonucleaire (Belgium). Basically, the studies were aimed at the determination of the performance potential of different core concepts for large fast reactors. Thus the following points were considered: power distribution, neutron fluence and residence time, doubling time, uranium ore consumption, dynamics and safety related features, economics, cooling strategy, core element bowing behaviour. In this paper, the state of the analysis will be presented with emphasis on those points relevant for this meeting. However, we have to make clear, that dynamic and accident studies are still under way and that we are not yet able to cover these aspects in a quantitative manner. This is due to the fact, that the efforts in the DeBeNe-countries have been concentrated on the work necessary for being granted the different licenses for SNR 300, fast breeder prototype reactor near Kalkar. As we expect to obtain these important licenses at the beginning of 1982, an increased man power can be devoted to studies of dynamic and safety problems of large fast cores from that time on. These studies have to fit into the planning recently announced by the utility ESK who will be ordering SNR 2, the first demonstration breeder reactor of Germany, Belgium, Netherlands and France. The planning calls for concept decisions in 1983, leading to an engineering contract for SNR 2 in 1983/1984. Accordingly we shall have to complete and evaluate the ongoing core concept Investigations till 1983 resulting in a subsequent final choice

  5. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  6. Aerial radiation survey techniques for efficient characterization of large areas

    International Nuclear Information System (INIS)

    Sydelko, T.; Riedhauser, S.

    2006-01-01

    Full text: Accidental or intentional releases of radioactive isotopes over potentially very large surface areas can pose serious health risks to humans and ecological receptors. Timely and appropriate responses to these releases depend upon rapid and accurate characterization of impacted areas. These characterization efforts can be adversely impacted by heavy vegetation, rugged terrain, urban environments, and the presence of unknown levels of radioactivity. Aerial survey techniques have proven highly successful in measuring gamma emissions from radiological contaminates of concern quickly, efficiently, and safely. Examples of accidental releases include the unintentional distribution of uranium mining ores during transportation, the loss of uranium processing and waste materials, unintentional nuclear power plant emissions into the atmosphere, and the distribution of isotopes during major flooding events such as the one recently occurring in New Orleans. Intentional releases have occurred during the use of deleted uranium ammunition test firing and war time use by military organizations. The threat of radiological dispersion device (dirty bomb) use by terrorists is currently a major concern of many major cities worldwide. The U.S. Department of Energy, in cooperation with its Remote Sensing Laboratory and Argonne National Laboratory, has developed a sophisticated aerial measurement system for identifying the locations, types, and quantities of gamma emitting radionuclides over extremely large areas. Helicopter mounted Nal detectors are flown at low altitude and constant speed along parallel paths measuring the full spectrum of gamma activity. Analytical procedures are capable of distinguishing between radiological contamination and changes in natural background emissions. Mapped and tabular results of these accurate, timely and cost effective aerial gamma radiation surveys can be used to assist with emergency response actions, if necessary, and to focus more

  7. MILDOS-AREA: An enhanced version of MILDOS for large-area sources

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Wang, J.H.C.; Zielen, A.

    1989-06-01

    The MILDOS-AREA computer code is a modified version of the MILDOS code, which estimates the radiological impacts of airborne emissions from uranium mining and milling facilities or any other large-area source involving emissions of radioisotopes of the uranium-238 series. MILDOS-AREA is designed for execution on personal computers. The modifications incorporated in the MILDOS-AREA code provide enhanced capabilities for calculating doses from large-area sources and update dosimetry calculations. The major revision from the original MILDOS code is the treatment of atmospheric dispersion from area sources: MILDOS-AREA substitutes a finite element integration approach for the virtual-point method (the algorithm used in the original MILDOS code) when specified by the user. Other revisions include the option of using Martin-Tickvart dispersion coefficients in place of Briggs coefficients for a given source, consideration of plume reflection, and updated internal dosimetry calculations based on the most recent recommendations of the International Commission on Radiation Protection and the age-specific dose calculation methodology developed by Oak Ridge National Laboratory. This report also discusses changes in computer code structure incorporated into MILDOS-AREA, summarizes data input requirements, and provides instructions for installing and using the program on personal computers. 15 refs., 9 figs., 26 tabs

  8. Korean adolescents' perceptions of nutrition and health towards fast foods in Busan area

    Science.gov (United States)

    Yoon, Ji-young; Lee, Kyung-a

    2008-01-01

    Adolescents in Busan area were asked in a survey about their perception and attitudes towards fast food. Most respondents answered that they consume fast food once a month because it is fast, easily accessible and tasty. Although they perceived fast food as unhealthy and less nutritious, they were less aware of its effect on their health and nutritional status. The more knowledgeable respondents were about nutrition and health the less likely they were to choose fast food over other meals. However, respondents who had little or no knowledge about the nutritional factors of fast food accounted for 43.1%. As to their source of dietary information, students relied on themselves (31.0%), parents (20.5%) and friends (19.9%). The medium through which students got the most nutrition and health information was television (66.8%), followed by the Internet (36.7%) and magazines (29.7%). This study will enable educators to plan more effective strategies for improving the dietary knowledge of the adolescent population. PMID:20126603

  9. Comfort Study of Office Buildings with Large Glazed Areas

    Directory of Open Access Journals (Sweden)

    Violeta Motuzienė

    2017-09-01

    Full Text Available In the buildings with large glazed areas the biggest problem is the space overheating during the warm season. This causes increased energy demand for cooling. The survey was carried out during the warm and cold seasons in two office buildings with large glazed areas. The methodology was prepared for evaluating indoor climate parameters using objective and subjective evaluation. The measurements have shown that there are problems with lighting in workplaces of both buildings during both the warm and cold seasons. The biggest problem is too dry air during the cold period, an acceptable temperature is also not always in the building No. 2. The survey has shown that some employees are dissatisfied with the indoor climate in the workplace, the bigger dissatisfaction is in building No. 2. Assessing according to the O. Fanger methodology was obtained that the number of PPD is in the normal range during the cold period, whereas close to the limit when the building can not be operated in the warm period.

  10. An advanced open path atmospheric pollution monitor for large areas

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.; Suhre, D.; Mani, S. [and others

    1996-12-31

    Over 100 million gallons of radioactive and toxic waste materials generated in weapon materials production are stored in 322 tanks buried within large areas at DOE sites. Toxic vapors occur in the tank headspace due to the solvents used and chemical reactions within the tanks. To prevent flammable or explosive concentration of volatile vapors, the headspace are vented, either manually or automatically, to the atmosphere when the headspace pressure exceeds preset values. Furthermore, 67 of the 177 tanks at the DOE Hanford Site are suspected or are known to be leaking into the ground. These underground storage tanks are grouped into tank farms which contain closely spaced tanks in areas as large as 1 km{sup 2}. The objective of this program is to protect DOE personnel and the public by monitoring the air above these tank farms for toxic air pollutants without the monitor entering the tanks farms, which can be radioactive. A secondary objective is to protect personnel by monitoring the air above buried 50 gallon drums containing moderately low radioactive materials but which could also emit toxic air pollutants.

  11. Electrothermal Simulation of Large-Area Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    C Kirsch

    2017-06-01

    Full Text Available The lateral charge transport in thin-film semiconductor devices is affected by the sheet resistance of the various layers. This may lead to a non-uniform current distribution across a large-area device resulting in inhomogeneous luminance, for example, as observed in organic light-emitting diodes (Neyts et al., 2006. The resistive loss in electrical energy is converted into thermal energy via Joule heating, which results in a temperature increase inside the device. On the other hand, the charge transport properties of the device materials are also temperature-dependent, such that we are facing a two-way coupled electrothermal problem. It has been demonstrated that adding thermal effects to an electrical model significantly changes the results (Slawinski et al., 2011. We present a mathematical model for the steady-state distribution of the electric potential and of the temperature across one electrode of a large-area semiconductor device, as well as numerical solutions obtained using the finite element method.

  12. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  13. Simulations of Large-Area Electron Beam Diodes

    Science.gov (United States)

    Swanekamp, S. B.; Friedman, M.; Ludeking, L.; Smithe, D.; Obenschain, S. P.

    1999-11-01

    Large area electron beam diodes are typically used to pump the amplifiers of KrF lasers. Simulations of large-area electron beam diodes using the particle-in-cell code MAGIC3D have shown the electron flow in the diode to be unstable. Since this instability can potentially produce a non-uniform current and energy distribution in the hibachi structure and lasing medium it can be detrimental to laser efficiency. These results are similar to simulations performed using the ISIS code.(M.E. Jones and V.A. Thomas, Proceedings of the 8^th) International Conference on High-Power Particle Beams, 665 (1990). We have identified the instability as the so called ``transit-time" instability(C.K. Birdsall and W.B. Bridges, Electrodynamics of Diode Regions), (Academic Press, New York, 1966).^,(T.M. Antonsen, W.H. Miner, E. Ott, and A.T. Drobot, Phys. Fluids 27), 1257 (1984). and have investigated the role of the applied magnetic field and diode geometry. Experiments are underway to characterize the instability on the Nike KrF laser system and will be compared to simulation. Also some possible ways to mitigate the instability will be presented.

  14. The GLAST Large Area Telescope Detector Performance Monitoring

    International Nuclear Information System (INIS)

    Borgland, A.W.; Charles, E.; SLAC

    2007-01-01

    The Large Area Telescope (LAT) is one of two instruments on board the Gamma-ray Large Area Telescope (GLAST), the next generation high energy gamma-ray space telescope. The LAT contains sixteen identical towers in a four-by-four grid. Each tower contains a silicon-strip tracker and a CsI calorimeter that together will give the incident direction and energy of the pair-converting photon in the energy range 20 MeV - 300 GeV. In addition, the instrument is covered by a finely segmented Anti-Coincidence Detector (ACD) to reject charged particle background. Altogether, the LAT contains more than 864k channels in the trackers, 1536 CsI crystals and 97 ACD plastic scintillator tiles and ribbons. Here we detail some of the strategies and methods for how we are planning to monitor the instrument performance on orbit. It builds on the extensive experience gained from Integration and Test and Commissioning of the instrument on ground

  15. Large area nanoimprint by substrate conformal imprint lithography (SCIL)

    Science.gov (United States)

    Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert

    2017-06-01

    Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.

  16. Characterization of new hexagonal large area Geiger Avalanche Photodiodes

    International Nuclear Information System (INIS)

    Boccone, V.; Aguilar, J.A.; Della Volpe, D.; Christov, A.; Montaruli, T.; Rameez, M.; Basili, A.

    2013-06-01

    Photomultipliers (PMTs) are the standard detector for construction of the current generation of imaging Atmospheric Cherenkov Telescopes (IACTs). Despite impressive improvements in QE and reliability in the last years, these devices suffer from the limitation of being unable to operate in the partially illuminated sky (during full or partial moon periods) as the excess light leads to a significant increase in the rate of ageing of the devices themselves and consequently limit the life of the camera. A viable alternative is the large area Geiger-mode avalanche photodiodes (G-APDs also known as Silicon Photomultipliers or SiPMs) that are commercially available from different producers in various types and dimensions. The sufficiency of the maturity of this technology for application to Cherenkov Astronomy has already been demonstrated by the FACT telescope. One of the camera designs under study for the 4 m Davies Cotton Telescope foresees the utilization of a large area G-APDs coupled to non imaging light concentrators. In collaboration with Hamamatsu and deriving from their current technology, we have designed a new hexagonal shaped large area G-APD HEX S12516 which when coupled to a Winston cone of 24 degrees cutting angle allows for a pixel angular resolution of 0.25 degrees for a f/D 1.4 telescope with a diameter of 4 m. The device, available in 2 different cell size configurations (50 μm and 100 μm), is divided into 4 different channels powered in common cathode mode. A temperature sensor was included for a better temperature evaluation in the characterization phase. The first 3 prototypes were fully characterized and the results are compared to the larger area devices commercially available such as the S10985-050C (2x2 array of 3x3 mm 2 G-APDs). The photo-detection efficiency is measured applying the Poisson statistics method using pulsed LED at 7 different wavelengths from 355 to 670 nm and for different bias over-voltages (V ov ). Optical crosstalk and

  17. Fast Bound Methods for Large Scale Simulation with Application for Engineering Optimization

    Science.gov (United States)

    Patera, Anthony T.; Peraire, Jaime; Zang, Thomas A. (Technical Monitor)

    2002-01-01

    In this work, we have focused on fast bound methods for large scale simulation with application for engineering optimization. The emphasis is on the development of techniques that provide both very fast turnaround and a certificate of Fidelity; these attributes ensure that the results are indeed relevant to - and trustworthy within - the engineering context. The bound methodology which underlies this work has many different instantiations: finite element approximation; iterative solution techniques; and reduced-basis (parameter) approximation. In this grant we have, in fact, treated all three, but most of our effort has been concentrated on the first and third. We describe these below briefly - but with a pointer to an Appendix which describes, in some detail, the current "state of the art."

  18. Priority areas for large mammal conservation in Equatorial Guinea.

    Directory of Open Access Journals (Sweden)

    Mizuki Murai

    Full Text Available Hunting is one of the main driving forces behind large mammal density distribution in many regions of the world. In tropical Africa, urban demand for bushmeat has been shown to dominate over subsistence hunting and its impact often overrides spatial-ecological species characteristics. To effectively protect remaining mammal populations the main factors that influence their distribution need to be integrated into conservation area prioritisation and management plans. This information has been lacking for Río Muni, Equatorial Guinea, as prior studies have been outdated or have not systematically covered the continental region of the country. In this study we evaluated: 1 the relative importance of local vs. commercial hunting; 2 wildlife density of protected vs. non-protected areas; and 3 the importance of ecological factors vs. human influence in driving mammal density distribution in Río Muni. We adopted a systematic countrywide line transect approach with particular focus on apes and elephants, but also including other mammal species. For analysis of field data we used generalised linear models with a set of predictor variables representing ecological conditions, anthropogenic pressure and protected areas. We estimate that there are currently 884 (437-1,789 elephants and 11,097 (8,719-13,592 chimpanzees and gorillas remaining in Río Muni. The results indicate strong hunting pressures on both local and commercial levels, with roads demonstrating a negative impact on elephants and overall mammal body mass. Protected areas played no role in determining any of the mammal species distributions and significant human hunting signs were found inside these protected areas, illustrating the lack of environmental law enforcement throughout the country. Río Muni is currently under-represented in conservation efforts in Western Equatorial Africa, and we recommend a focus on cross-boundary conservation, in particular in the Monte Alén-Monts de Cristal

  19. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...

  20. Fast-ion transport during repetitive burst phenomena of toroidal Alfven eigenmodes in the Large Helical Device

    International Nuclear Information System (INIS)

    Nishiura, M.; Isobe, M.; Yamamoto, S.

    2008-10-01

    Alfven instabilities induced fast-ion losses have been directly observed for the first time by a newly developed scintillator lost ion probe (SLIP) in the Large Helical Device (LHD). The SLIP can measure the pitch angle and gyro radius of escaped fast ions toward loss region. Neutral beam driven Alfven Eigenmodes (AEs) are excited under the reactor relevant conditions: the ratio of fast ion (beam) speed υ b and Alfven speed υ A is more than 0.3 - 4.0. The beta value for fast ions is considered roughly to be ∼10%. Non-linear phenomena related to Alfven instabilities are observed under such conditions. During repetitive Toroidal Alfven Eigenmode (TAE) bursts, synchronized fast ion losses are observed by SLIP. From the orbit calculation the measured fast ion with pitch angle of 130 degrees and beam energy of 150 keV surely pass through the locations of TAE gaps. The orbit analysis found that the observed fast ions interact strongly with the excited TAEs. This result becomes the first experimental evidence of radial transport of fast ions predicted theoretically during TAE activities. In addition, from the correlation between stored energy degradation and fast-ion loss rate, it is found that fast-ion losses induced by TAE activities with low toroidal mode numbers categorize two phenomena without and with fast- ion loss enhancements, which indicate the fast-ion redistribution and loss. (author)

  1. Nitrogen large area proportional counter with gas regeneration

    International Nuclear Information System (INIS)

    Leidner, L.; Sadri, E.

    1984-10-01

    A nitrogen large area proportional chamber with gas regeneration is introduced to measure alpha and beta/gamma activites. In contrast to the flow counters used till now the new detector is independent of an external gas supply. The gas amplification factor of nitrogen keeps constant up to an impurity of 2% of O 2 . Oxygen diffusing through unavoidable leakages into the counting gas is removed by an activated catalyzer using low temperature copper oxidation. Humidty is adsorbed by a molecular sieve. The closed counter consists of three components: the actual detector, a gas purification cartridge and a gas circulating pump. Finally, the report describes long run experiments being carried out with prototypes. (orig./HP) [de

  2. Exposure-rate calibration using large-area calibration pads

    International Nuclear Information System (INIS)

    Novak, E.F.

    1988-09-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the DOE Grand Junction Projects Office (GJPO) in Grand Junction, Colorado, to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. A set of large-area, radioelement-enriched concrete pads was constructed by the DOE in 1978 at the Walker Field Airport in Grand Junction for use as calibration standards for airborne gamma-ray spectrometer systems. The use of these pads was investigated by the TMC as potential calibration standards for portable scintillometers employed in measuring gamma-ray exposure rates at Uranium Mill Tailings Remedial Action (UMTRA) project sites. Data acquired on the pads using a pressurized ionization chamber (PIC) and three scintillometers are presented as an illustration of an instrumental calibration. Conclusions and recommended calibration procedures are discussed, based on the results of these data

  3. Digital radiography with large-area flat-panel detectors

    International Nuclear Information System (INIS)

    Kotter, E.; Langer, M.

    2002-01-01

    Large-area flat-panel detectors with active readout mechanisms have been on the market for the past 2 years. This article describes different detector technologies. An important distinction is made between detectors with direct and those with indirect conversion of X-rays into electrical charges. Detectors with indirect conversion are built with unstructured or structured scintillators, the latter resulting in less lateral diffusion of emitted light. Some important qualities of flat-panel detectors are discussed. The first phantom and clinical studies published report an image quality at least comparable to that of screen-film systems and a potential for dose reduction. The available studies are summarised in this article. (orig.)

  4. Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities.

  5. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

    Science.gov (United States)

    Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

    2009-01-01

    Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

  6. A large area cosmic muon detector located at Ohya stone mine

    Science.gov (United States)

    Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.

    1985-01-01

    The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.

  7. Optimization of Performance Parameters for Large Area Silicon Photomultipliers

    Science.gov (United States)

    Janzen, Kathryn

    2008-10-01

    The goal of the GlueX experiment is to search for exotic hybrid mesons as evidence of gluonic excitations in an effort to better understand confinement. A key component of the GlueX detector is the electromagnetic barrel calorimeter (BCAL) located immediately inside a superconducting solenoid of approximately 2.5T. Because of this arrangement, traditional vacuum photomultiplier tubes (PMTs) which are affected significantly by magnetic fields cannot be used on the BCAL. The use of Silicon photomultipliers (SiPMs) as front-end detectors has been proposed. While the largest SiPMs that have been previously employed by other experiments are 1x1 mm^2, GlueX proposes to use large area SiPMs each composed of 16 - 3x3 mm^2 cells in a 4x4 array. This puts the GlueX collaboration in the unique position of driving the technology for larger area sensors. In this talk I will discuss tests done in Regina regarding performance parameters of prototype SiPM arrays delivered by SensL, a photonics research and development company based in Ireland, as well as sample 1x1 mm^2 and 3x3 mm^2 SiPMs.

  8. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  9. Characterising large area silicon drift detectors with MOS injectors

    International Nuclear Information System (INIS)

    Bonvicini, V.; Rashevsky, A.; Vacchi, A.

    1999-01-01

    In the framework of the INFN DSI project, the first prototypes of a large-area Silicon Drift Detector (SDD) have been designed and produced on 5'' diameter wafers of Neutron Transmutation Doped (NTD) silicon with a resistivity of 3000 Ω·cm. The detector is a 'butterfly' bi-directional structure with a drift length of 32 mm and the drifting charge is collected by two arrays of anodes having a pitch of 200 μm. The high-voltage divider is integrated on-board and is realised with p + implantations. For test and calibration purposes, the detector has a new type of MOS injector. The paper presents results obtained to injecting charge at the maximum drift distance (32mm) from the anodes by means of the MOS injecting structure, As front-end electronics, the authors have used a 32-channels low-noise bipolar VLSI circuit (OLA, Omni-purpose Low-noise Amplifer) specifically designed for silicon drift detectors. The uniformity of the drift time in different regions of the sensitive area and its dependence on the ambient temperature are studied

  10. Addressing Criticisms of Large-Scale Marine Protected Areas

    Science.gov (United States)

    Ban, Natalie C; Fernandez, Miriam; Friedlander, Alan M; García-Borboroglu, Pablo; Golbuu, Yimnang; Guidetti, Paolo; Harris, Jean M; Hawkins, Julie P; Langlois, Tim; McCauley, Douglas J; Pikitch, Ellen K; Richmond, Robert H; Roberts, Callum M

    2018-01-01

    Abstract Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social–ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans. PMID:29731514

  11. Methods for Finding Legacy Wells in Large Areas

    Energy Technology Data Exchange (ETDEWEB)

    Hammack, Richard W. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Veloski, Garret A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hodges, D. Greg [Fugro Airborne Surveys, Mississauga, ON (Canada); White, Jr., Curt M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-06-16

    United States. When abandoned, many wells were not adequately sealed and now provide a potential conduit for the vertical movement of liquids and gases. Today, groundwater aquifers can be contaminated by surface pollutants flowing down wells or by deep, saline water diffusing upwards. Likewise, natural gas, carbon dioxide (CO2), or radon can travel upwards via these wells to endanger structures or human health on the surface. Recently, the need to find and plug wells has become critical with the advent of carbon dioxide injection into geologic formations for enhanced oil recovery (EOR) or carbon storage. The potential for natural gas or brine leakage through existing wells has also been raised as a concern in regions where shale resources are hydraulically fractured for hydrocarbon recovery. In this study, the National Energy Technology Laboratory (NETL) updated existing, effective well finding techniques to be able to survey large areas quickly using helicopter or ground-vehicle-mounted magnetometers, combined with mobile methane detection. For this study, magnetic data were collected using airborne and ground vehicles equipped with two boom-mounted magnetometers, or on foot using a hand-held magnetometer with a single sensor. Data processing techniques were employed to accentuate well-casing-type magnetic signatures. To locate wells with no magnetic signature (wells where the steel well casing had been removed), the team monitored for anomalous concentrations of methane, which could indicate migration of volatile compounds from deeper sedimentary strata along a well or fracture pathway. Methane measurements were obtained using the ALPIS DIfferential Absorption Lidar (DIAL) sensor for helicopter surveys and the Apogee leak detection system (LDS) for ground surveys. These methods were evaluated at a 100-year-old oilfield in Wyoming, where a helicopter magnetic survey accurately located 93% of visible wells. In addition, 20% of the wells found by the survey were

  12. Methods for Finding Legacy Wells in Large Areas

    Energy Technology Data Exchange (ETDEWEB)

    Hammack, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Veloski, Garret [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hodges, D. Greg [Fugro Airborne Surveys, Mississauga, ON (Canada); White, Jr., Charles E. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-06-16

    More than 10 million wells have been drilled during 150 years of oil and gas production in the United States. When abandoned, many wells were not adequately sealed and now provide a potential conduit for the vertical movement of liquids and gases. Today, groundwater aquifers can be contaminated by surface pollutants flowing down wells or by deep, saline water diffusing upwards. Likewise, natural gas, carbon dioxide (CO2), or radon can travel upwards via these wells to endanger structures or human health on the surface. Recently, the need to find and plug wells has become critical with the advent of carbon dioxide injection into geologic formations for enhanced oil recovery (EOR) or carbon storage. The potential for natural gas or brine leakage through existing wells has also been raised as a concern in regions where shale resources are hydraulically fractured for hydrocarbon recovery. In this study, the National Energy Technology Laboratory (NETL) updated existing, effective well finding techniques to be able to survey large areas quickly using helicopter or ground-vehicle-mounted magnetometers, combined with mobile methane detection. For this study, magnetic data were collected using airborne and ground vehicles equipped with two boom-mounted magnetometers, or on foot using a hand-held magnetometer with a single sensor. Data processing techniques were employed to accentuate well-casing-type magnetic signatures. To locate wells with no magnetic signature (wells where the steel well casing had been removed), the team monitored for anomalous concentrations of methane, which could indicate migration of volatile compounds from deeper sedimentary strata along a well or fracture pathway. Methane measurements were obtained using the ALPIS DIfferential Absorption Lidar (DIAL) sensor for helicopter surveys and the Apogee leak detection system (LDS) for ground surveys. These methods were evaluated at a 100-year-old oilfield in Wyoming, where a helicopter magnetic

  13. Large-area landslide susceptibility with optimized slope-units

    Science.gov (United States)

    Alvioli, Massimiliano; Marchesini, Ivan; Reichenbach, Paola; Rossi, Mauro; Ardizzone, Francesca; Fiorucci, Federica; Guzzetti, Fausto

    2017-04-01

    A Slope-Unit (SU) is a type of morphological terrain unit bounded by drainage and divide lines that maximize the within-unit homogeneity and the between-unit heterogeneity across distinct physical and geographical boundaries [1]. Compared to other terrain subdivisions, SU are morphological terrain unit well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental and geomorphological analysis, in particular for landslide susceptibility (LS) modelling. An optimal subdivision of an area into a set of SU depends on multiple factors: size and complexity of the study area, quality and resolution of the available terrain elevation data, purpose of the terrain subdivision, scale and resolution of the phenomena for which SU are delineated. We use the recently developed r.slopeunits software [2,3] for the automatic, parametric delineation of SU within the open source GRASS GIS based on terrain elevation data and a small number of user-defined parameters. The software provides subdivisions consisting of SU with different shapes and sizes, as a function of the input parameters. In this work, we describe a procedure for the optimal selection of the user parameters through the production of a large number of realizations of the LS model. We tested the software and the optimization procedure in a 2,000 km2 area in Umbria, Central Italy. For LS zonation we adopt a logistic regression model implemented in an well-known software [4,5], using about 50 independent variables. To select the optimal SU partition for LS zonation, we want to define a metric which is able to quantify simultaneously: (i) slope-unit internal homogeneity (ii) slope-unit external heterogeneity (iii) landslide susceptibility model performance. To this end, we define a comprehensive objective function S, as the product of three

  14. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lina [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou, Ping [Institute of Organ Transplant of Tongji Hospital, Huazhong University of Science and Technology, Wuhan (China); Zhang, Shengmin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan (China); Yang, Guang, E-mail: yang_sunny@yahoo.com [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing.

  15. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    International Nuclear Information System (INIS)

    Fu, Lina; Zhou, Ping; Zhang, Shengmin; Yang, Guang

    2013-01-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing

  16. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    CERN Document Server

    Chapman, J; Duehrssen, M; Elsing, M; Froidevaux, D; Harrington, R; Jansky, R; Langenberg, R; Mandrysch, R; Marshall, Z; Ritsch, E; Salzburger, A

    2014-01-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during run I relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for run II, and beyond. A number of fast detector simulation, digitization and reconstruction techniques and are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  17. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    Science.gov (United States)

    Ritsch, E.; Atlas Collaboration

    2014-06-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  18. Detections of millisecond pulsars with the FERMI Large Area Telescope

    International Nuclear Information System (INIS)

    Guillemot, L.

    2009-09-01

    The Fermi observatory was launched on June 11, 2008. It hosts the Large Area Telescope (LAT), sensitive to gamma-ray photons from 20 MeV to over 300 GeV. When the LAT began its activity, nine young and energetic pulsars were known in gamma ray range. At least several tens of pulsar detections by the LAT were predicted before launch. The LAT also allowed the study of millisecond pulsars (MSPs), never firmly detected in gamma ray range before Fermi. This thesis first presents the pulsar timing campaign for the LAT, in collaboration with large radio telescopes and X-ray telescopes, allowing for high sensitivity pulsed searches. Furthermore, it lead to quasi-homogeneous coverage of the galactic MSPs, so that the search for pulsations in LAT data for this population of stars was not affected by an a-priori bias. We present a search for pulsations from these objects in LAT data. For the first time, eight galactic MSPs have been detected as sources of pulsed gamma-ray emission over 100 MeV. In addition, a couple of good candidates for future detection are seen. A similar search for globular cluster MSPs was not successful so far. Comparison of the phase-aligned gamma-ray and radio light curves, as well as the spectral shapes, leads to the conclusion that their gamma-ray emission is similar to that of normal pulsars, and is probably produced in the outer-magnetosphere. This discovery suggests that many unresolved gamma-ray sources are unknown MSPs. (author)

  19. Nano/biosensors based on large-area graphene

    Science.gov (United States)

    Ducos, Pedro Jose

    Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an easily scalable fabrication process. A large-area graphene growth, transfer and photolithography process was developed that allowed the scaling of production of devices from a few devices per single transfer in a chip, to over a thousand devices per transfer in a full wafer of fabrication. Two approaches to biomolecules sensing were then investigated, through nanoparticles and through chemical linkers. Gold and platinum Nanoparticles were used as intermediary agents to immobilize a biomolecule. First, gold nanoparticles were monodispersed and functionalized with thiolated probe DNA to yield DNA biosensors with a detection limit of 1 nM and high specificity against noncomplementary DNA. Second, devices are modified with platinum nanoparticles and functionalized with thiolated genetically engineered scFv HER3 antibodies to realize a HER3 biosensor. Sensors retain the high affinity from the scFv fragment and show a detection limit of 300 pM. We then show covalent and non-covalent chemical linkers between graphene and antibodies. The chemical linker 1-pyrenebutanoic acid succinimidyl ester (pyrene) stacks to the graphene by Van der Waals interaction, being a completely non-covalent interaction. The linker 4-Azide-2,3,5,6-tetrafluorobenzoic acid, succinimidyl ester (azide

  20. Searches for Dark Matter with the Fermi Large Area Telescope

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the gamma-ray sky have come to prominence over the last few years, because of the excellent sensitivity and full-sky coverage of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this talk I will describe targets studied for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. I will also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, c...

  1. Assessing trade-offs in large marine protected areas.

    Science.gov (United States)

    Davies, Tammy E; Epstein, Graham; Aguilera, Stacy E; Brooks, Cassandra M; Cox, Michael; Evans, Louisa S; Maxwell, Sara M; Nenadovic, Mateja; Ban, Natalie C

    2018-01-01

    Large marine protected areas (LMPAs) are increasingly being established and have a high profile in marine conservation. LMPAs are expected to achieve multiple objectives, and because of their size are postulated to avoid trade-offs that are common in smaller MPAs. However, evaluations across multiple outcomes are lacking. We used a systematic approach to code several social and ecological outcomes of 12 LMPAs. We found evidence of three types of trade-offs: trade-offs between different ecological resources (supply trade-offs); trade-offs between ecological resource conditions and the well-being of resource users (supply-demand trade-offs); and trade-offs between the well-being outcomes of different resource users (demand trade-offs). We also found several divergent outcomes that were attributed to influences beyond the scope of the LMPA. We suggest that despite their size, trade-offs can develop in LMPAs and should be considered in planning and design. LMPAs may improve their performance across multiple social and ecological objectives if integrated with larger-scale conservation efforts.

  2. Calibration of large area Micromegas using cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Loesel, Philipp; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Mueller, Ralph [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    The high luminosity upgrade of the LHC storage ring implies an upgrade of the Muon Spectrometer of the ATLAS experiment. The presently installed detectors of the inner end-cap region cannot cope with the increased background situation and will be replaced by Micromegas and sTGC detectors. Before installation at CERN, the 2 m{sup 2} sized Micromegas quadruplets (SM2) built in Germany will be calibrated. The LMU Cosmic Ray Measurement Facility (CRF) consists of two Monitored Drift Tube chambers (MDT) with an active area of about 9 m{sup 2} for muon tracking and two trigger hodoscopes with sub-ns time-resolution and with additional position information along the wires of the MDTs. With an angular acceptance of -30 to +30 the CRF allows for centroidal or μTPC position determination and thus for calibration in three dimensions. Of particular interest are potential deviations in the micro pattern readout structures or potential deformations of the whole detector. The Performance of the CRF is presently investigated using a telescope of a 1 m{sup 2} and three 100 cm{sup 2} resistive strip Micromegas. We report on the differences in performance between large and small detectors, report on homogeneity of efficiency and pulse height, and present results on deformation and performance of the 1 m{sup 2} Micromegas.

  3. Fermi Large Area Telescope Operations: Progress Over 4 Years

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.; /SLAC

    2012-06-28

    The Fermi Gamma-ray Space Telescope was launched into orbit in June 2008, and is conducting a multi-year gamma-ray all-sky survey, using the main instrument on Fermi, the Large Area Telescope (LAT). Fermi began its science mission in August 2008, and has now been operating for almost 4 years. The SLAC National Accelerator Laboratory hosts the LAT Instrument Science Operations Center (ISOC), which supports the operation of the LAT in conjunction with the Mission Operations Center (MOC) and the Fermi Science Support Center (FSSC), both at NASA's Goddard Space Flight Center. The LAT has a continuous output data rate of about 1.5 Mbits per second, and data from the LAT are stored on Fermi and transmitted to the ground through TDRS and the MOC to the ISOC about 10 times per day. Several hundred computers at SLAC are used to process LAT data to perform event reconstruction, and gamma-ray photon data are subsequently delivered to the FSSC for public release with a few hours of being detected by the LAT. We summarize the current status of the LAT, and the evolution of the data processing and monitoring performed by the ISOC during the first 4 years of the Fermi mission, together with future plans for further changes to detected event data processing and instrument operations and monitoring.

  4. Large-Area, Ensemble Molecular Electronics: Motivation and Challenges.

    Science.gov (United States)

    Vilan, Ayelet; Aswal, Dinesh; Cahen, David

    2017-03-08

    We review charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ). We strive to provide a wide conceptual overview of three main subtopics. First, a broad introduction places NmJ in perspective to related fields of research and to single-molecule junctions (1mJ) in addition to a brief historical account. As charge transport presents an ultrasensitive probe for the electronic perfection of interfaces, in the second part ways to form both the monolayer and the contacts are described to construct reliable, defect-free interfaces. The last part is dedicated to understanding and analyses of current-voltage (I-V) traces across molecular junctions. Notwithstanding the original motivation of MolEl, I-V traces are often not very sensitive to molecular details and then provide a poor probe for chemical information. Instead, we focus on how to analyze the net electrical performance of molecular junctions, from a functional device perspective. Finally, we point to creation of a built-in electric field as a key to achieve functionality, including nonlinear current-voltage characteristics that originate in the molecules or their contacts to the electrodes. This review is complemented by a another review that covers metal-molecule-semiconductor junctions and their unique hybrid effects.

  5. Large area CNT-Si heterojunction for photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Aramo, C., E-mail: aramo@na.infn.it [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Ambrosio, M.; Bonavolontà, C. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Boscardin, M.; Crivellari, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Via Sommarive 18, Povo di Trento, 38123 Trento (Italy); Lisio, C. de [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Grossi, V. [INFN, Sezione di L' Aquila and Dip. Scienze Fisiche e Chimiche, Università degli Studi dell' Aquila, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Maddalena, P. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Passacantando, M. [INFN, Sezione di L' Aquila and Dip. Scienze Fisiche e Chimiche, Università degli Studi dell' Aquila, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Valentino, M. [CNR-SPIN UOS di Napoli, Via Cintia 2, 80126 Napoli (Italy)

    2017-02-11

    Multiwall carbon nanotubes (MWCNTs) consist of multiple layers of graphite sheets arranged in concentric cylinders, from two to many tens. These systems are closely related to graphite layers but in some features, MWCNTs behave quite differently from graphite. In particular, their ability to generate a photocurrent in a wide wavelength range has been demonstrated either without or with the application of a draining voltage. In addition, the photocurrent signal has been found to reproduce the optical absorbance of MWCNTs, showing a maximum in the near UV region. In this paper main characteristics of a novel large area photodetector featuring low noise, high linearity and efficiency are reported. This detector has been obtained by coupling the optoelectronic characteristics of MWCNTs with the well-known properties of silicon. MWCNTs are growth on n-doped silicon layer by chemical vapour deposition creating a p–n heterojunction with high sensitivity to the radiation from UV to IR. An additional MIS junction is obtained with a metallic conductive layer deposited on the back of silicon substrate. Moreover, first results on the signals generated by pulsed laser are also reported.

  6. A Prototype Large Area Detector Module for Muon Scattering Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Boakes, J.; Burns, J.; Snow, S.; Stapleton, M.; Thompson, L.F.; Quillin, S. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree of material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)

  7. FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Hanabata, Y. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Lemoine-Goumard, M. [Universite Bordeaux 1, CNRS/IN2p3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33175 Gradignan (France); Takahashi, T., E-mail: katsuta@slac.stanford.edu, E-mail: uchiyama@slac.stanford.edu [Institute of Space and Astronautical Science, Japanese Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-06-20

    We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 Multiplication-Sign 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent H{alpha} filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

  8. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Atwood, W. B.; Bagagli, R.; Baldini, L.; Bellardi, F.; Bellazzini, R.; Ballet, J.; Band, D. L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bisello, D.; Baughman, B. M.

    2009-01-01

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new γ-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E ≥ 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Γ = 1.51 +0.05 -0.04 with an exponential cutoff at E c = 2.9 ± 0.1 GeV. Spectral fits with generalized cutoffs of the form e -(E/E c ) b require b ≤ 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  9. Large area self-powered gamma ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1994-01-01

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield)

  10. Large area imaging of forensic evidence with MA-XRF.

    Science.gov (United States)

    Langstraat, Kirsten; Knijnenberg, Alwin; Edelman, Gerda; van de Merwe, Linda; van Loon, Annelies; Dik, Joris; van Asten, Arian

    2017-11-08

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces like blood, semen, saliva, sweat and urine on fabric on the basis of Fe, Zn, K, Cl and Ca elemental signatures. With MA-XRF a new chemical contrast is introduced for human stain detection and this can provide a valuable alternative when the evidence item is challenging for conventional techniques. MA-XRF was also successfully employed for the chemical imaging and classification of gunshot residues (GSR). The full and non-invasive elemental mapping (Pb, Ba, Sr, K and Cl) of intact pieces of clothing allows for a detailed shooting incident reconstruction linking firearms and ammunition to point of impact and providing information on the shooting angle. In high resolution mode MA-XRF can even be used to provide information on the shooting order of different ammunition types. Finally, by using the surface penetration of X-rays we demonstrate that the lead signature of a bullet impact can be easily detected even if covered by multiple layers of wall paint or human blood.

  11. Effect of thermal contact resistances on fast charging of large format lithium ion batteries

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Somasundaram, Karthik; Tay, Andrew A.O.

    2014-01-01

    Highlights: • The effect of thermal contact resistance on thermal performance of large format lithium ion batteries. • The effect of temperature gradient on electrochemical performance of large format batteries during fast charging. • The thermal performance of lithium ion battery utilizing pulse charging protocol. • Suggestions on battery geometry design optimization to improve thermal performance. - Abstract: A two dimensional electrochemical thermal model is developed on the cross-plane of a laminate stack plate pouch lithium ion battery to study the thermal performance of large format batteries. The effect of thermal contact resistance is taken into consideration, and is found to greatly increase the maximum temperature and temperature gradient of the battery. The resulting large temperature gradient would induce in-cell non-uniformity of charging-discharging current and state of health. Simply increasing the cooling intensity is inadequate to reduce the maximum temperature and narrow down the temperature difference due to the poor cross-plane thermal conductivity. Pulse charging protocol does not help to mitigate the temperature difference on the bias of same total charging time, because of larger time-averaged heat generation rate than constant current charging. Suggestions on battery geometry optimizations for both prismatic/pouch battery and cylindrical battery are proposed to reduce the maximum temperature and mitigate the temperature gradient within the lithium ion battery

  12. Error Analysis of Fast Moving Target Geo-location in Wide Area Surveillance Ground Moving Target Indication Mode

    Directory of Open Access Journals (Sweden)

    Zheng Shi-chao

    2013-12-01

    Full Text Available As an important mode in airborne radar systems, Wide Area Surveillance Ground Moving Target Indication (WAS-GMTI mode has the ability of monitoring a large area in a short time, and then the detected moving targets can be located quickly. However, in real environment, many factors introduce considerable errors into the location of moving targets. In this paper, a fast location method based on the characteristics of the moving targets in WAS-GMTI mode is utilized. And in order to improve the location performance, those factors that introduce location errors are analyzed and moving targets are relocated. Finally, the analysis of those factors is proved to be reasonable by simulation and real data experiments.

  13. MONITORING OF LARGE INSTABLE AREAS: system reliability and new tools.

    Science.gov (United States)

    Leandro, G.; Mucciarelli, M.; Pellicani, R.; Spilotro, G.

    2009-04-01

    The monitoring of unstable or potentially unstable areas is a necessary operation every time you can not remove the conditions of risk and apply to mitigation measures. In Italian Apennine regions there are many urban or extra-urban areas affected by instability, for which it is impracticable to remove hazard conditions, because of size and cost problems. The technological evolution exportable to the field of land instability monitoring is particularly lively and allows the use of warning systems unthinkable just few years ago. However, the monitoring of unstable or potentially unstable areas requires a very great knowledge of the specific problems, without which the reliability of the system may be dangerously overestimated. The movement may arise, indeed, in areas not covered by instrumentation, or covered with vegetation that prevents the acquisition of both reflected signals in the multi-beam laser techniques and radar signals. Environmental conditions (wind, concentrated sources of light, temperature changes, presence of animals) may also invalidate the accuracy of the measures, by introducing modulations or disturbance at a level well above the threshold of alarm signal, leading consequently to raise the values of the warning threshold. The Authors have gained long experience with the observation and monitoring of some large landslides in the Southern Apennine (Aliano, Buoninventre, Calciano, Carlantino, etc.) and unstable areas also at regional scale. One of the most important experiences is about the case of landslides of extensive areas, where unstable and stables zones coexist along transverse and longitudinal axis. In many of these cases you need the accurate control of the movement at selected points to evaluate the trend of displacement velocity, which can be achieved by means of a single-beam laser. The control of these movements, however, does not provide information on stress pattern into the stable areas. Among the sensitive precursors, acoustic

  14. Exploring Milkyway Halo Substructures with Large-Area Sky Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting [Texas A & M Univ., College Station, TX (United States)

    2016-01-01

    Over the last two decades, our understanding of the Milky Way has been improved thanks to large data sets arising from large-area digital sky surveys. The stellar halo is now known to be inhabited by a variety of spatial and kinematic stellar substructures, including stellar streams and stellar clouds, all of which are predicted by hierarchical Lambda Cold Dark Matter models of galaxy formation. In this dissertation, we first present the analysis of spectroscopic observations of individual stars from the two candidate structures discovered using an M-giant catalog from the Two Micron All-Sky Survey. The follow-up observations show that one of the candidates is a genuine structure which might be associated with the Galactic Anticenter Stellar Structure, while the other one is a false detection due to the systematic photometric errors in the survey or dust extinction in low Galactic latitudes. We then presented the discovery of an excess of main sequence turn-off stars in the direction of the constellations of Eridanus and Phoenix from the first-year data of the Dark Energy Survey (DES) – a five-year, 5,000 deg2 optical imaging survey in the Southern Hemisphere. The Eridanus-Phoenix (EriPhe) overdensity is centered around l ~ 285° and b ~ -60° and the Poisson significance of the detection is at least 9σ. The EriPhe overdensity has a cloud-like morphology and the extent is at least ~ 4 kpc by ~ 3 kpc in projection, with a heliocentric distance of about d ~ 16 kpc. The EriPhe overdensity is morphologically similar to the previously-discovered Virgo overdensity and Hercules-Aquila cloud. These three overdensities lie along a polar plane separated by ~ 120° and may share a common origin. In addition to the scientific discoveries, we also present the work to improve the photometric calibration in DES using auxiliary calibration systems, since the photometric errors can cause false detection in first the halo substructure. We present a detailed description of the two

  15. A fast learning method for large scale and multi-class samples of SVM

    Science.gov (United States)

    Fan, Yu; Guo, Huiming

    2017-06-01

    A multi-class classification SVM(Support Vector Machine) fast learning method based on binary tree is presented to solve its low learning efficiency when SVM processing large scale multi-class samples. This paper adopts bottom-up method to set up binary tree hierarchy structure, according to achieved hierarchy structure, sub-classifier learns from corresponding samples of each node. During the learning, several class clusters are generated after the first clustering of the training samples. Firstly, central points are extracted from those class clusters which just have one type of samples. For those which have two types of samples, cluster numbers of their positive and negative samples are set respectively according to their mixture degree, secondary clustering undertaken afterwards, after which, central points are extracted from achieved sub-class clusters. By learning from the reduced samples formed by the integration of extracted central points above, sub-classifiers are obtained. Simulation experiment shows that, this fast learning method, which is based on multi-level clustering, can guarantee higher classification accuracy, greatly reduce sample numbers and effectively improve learning efficiency.

  16. Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries

    Directory of Open Access Journals (Sweden)

    Sascha Koch

    2018-03-01

    Full Text Available Thermal runaway of single cells within a large scale lithium-ion battery is a well-known risk that can lead to critical situations if no counter measures are taken in today’s lithium-ion traction batteries for battery electric vehicles (BEVs, plug-in hybrid electric vehicles (PHEV and hybrid electric vehicles (HEVs. The United Nations have published a draft global technical regulation on electric vehicle safety (GTR EVS describing a safety feature to warn passengers in case of a thermal runaway. Fast and reliable detection of faulty cells undergoing thermal runaway within the lithium-ion battery is therefore a key factor in battery designs for comprehensive passenger safety. A set of various possible sensors has been chosen based on the determined cell thermal runaway impact. These sensors have been tested in different sized battery setups and compared with respect to their ability of fast and reliable thermal runaway detection and their feasibility for traction batteries.

  17. Evaluating biodiversity conservation around a large Sumatran protected area.

    Science.gov (United States)

    Linkie, Matthew; Smith, Robert J; Zhu, Yu; Martyr, Deborah J; Suedmeyer, Beth; Pramono, Joko; Leader-Williams, Nigel

    2008-06-01

    Many of the large, donor-funded community-based conservation projects that seek to reduce biodiversity loss in the tropics have been unsuccessful. There is, therefore, a need for empirical evaluations to identify the driving factors and to provide evidence that supports the development of context-specific conservation projects. We used a quantitative approach to measure, post hoc, the effectiveness of a US$19 million Integrated Conservation and Development Project (ICDP) that sought to reduce biodiversity loss through the development of villages bordering Kerinci Seblat National Park, a UNESCO World Heritage Site in Indonesia. We focused on the success of the ICDP component that disbursed a total of US$1.5 million through development grants to 66 villages in return for their commitment to stop illegally clearing the forest. To investigate whether the ICDP lowered deforestation rates in focal villages, we selected a subset of non-ICDP villages that had similar physical and socioeconomic features and compared their respective deforestation rates. Village participation in the ICDP and its development schemes had no effect on deforestation. Instead, accessible areas where village land-tenure had been undermined by the designation of selective-logging concessions tended to have the highest deforestation rates. Our results indicate that the goal of the ICDP was not met and, furthermore, suggest that both law enforcement inside the park and local property rights outside the park need to be strengthened. Our results also emphasize the importance of quantitative approaches in helping to inform successful and cost-effective strategies for tropical biodiversity conservation.

  18. Neutral processes forming large clones during colonization of new areas.

    Science.gov (United States)

    Rafajlović, M; Kleinhans, D; Gulliksson, C; Fries, J; Johansson, D; Ardehed, A; Sundqvist, L; Pereyra, R T; Mehlig, B; Jonsson, P R; Johannesson, K

    2017-08-01

    In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species' range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long-distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post-glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported. © 2017 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on Behalf of European Society for Evolutionary Biology.

  19. An Efficient Approach for Fast and Accurate Voltage Stability Margin Computation in Large Power Grids

    Directory of Open Access Journals (Sweden)

    Heng-Yi Su

    2016-11-01

    Full Text Available This paper proposes an efficient approach for the computation of voltage stability margin (VSM in a large-scale power grid. The objective is to accurately and rapidly determine the load power margin which corresponds to voltage collapse phenomena. The proposed approach is based on the impedance match-based technique and the model-based technique. It combines the Thevenin equivalent (TE network method with cubic spline extrapolation technique and the continuation technique to achieve fast and accurate VSM computation for a bulk power grid. Moreover, the generator Q limits are taken into account for practical applications. Extensive case studies carried out on Institute of Electrical and Electronics Engineers (IEEE benchmark systems and the Taiwan Power Company (Taipower, Taipei, Taiwan system are used to demonstrate the effectiveness of the proposed approach.

  20. Operational experience of a large area x-ray camera for protein crystallography

    International Nuclear Information System (INIS)

    Joachimiak, A.; Jorden, A. R.; Loeffen, P. W.; Naday, I.; Sanishvili, R.; Westbrook, E. M.

    1999-01-01

    After 3 years experience of operating very large area (210mm x 210mm) CCD-based detectors at the Advanced Photon Source, operational experience is reported. Four such detectors have been built, two for Structural Biology Center (APS-1 and SBC-2), one for Basic Energy Sciences Synchrotrons Radiation Center (Gold-2) at Argonne National Laboratory's Advanced Photon Source and one for Osaka University by Oxford Instruments, for use at Spring 8 (PX-21O). The detector is specifically designed as a high resolution and fast readout camera for macromolecular crystallography. Design trade-offs for speed and size are reviewed in light of operational experience and future requirements are considered. Operational data and examples of crystallography data are presented, together with plans for more development

  1. Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters

    Science.gov (United States)

    Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis

    2018-03-01

    We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.

  2. Control rod shadowing and anti-shadowing effects in a large gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Girardin, G.; Chawla, R.; Rimpault, G.; Coddington, P.

    2007-01-01

    An investigation of control rod shadowing and anti-shadowing (interaction) effects has been carried out in the context of a design study of the control rod pattern for the large 2400 MWth Generation IV Gas-cooled Fast Reactor (GFR). For the calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European Fast Reactor (EFR)-type pattern for the control rods. More specifically, the core contains a total of 33 control (CSD) and safety (DSD) rods implemented in three banks: -1) a first bank of 6 CSD rods, placed at 64 cm from core centre in the inner fuel zone (Pu content 16.3 % vol.), -2) a safety bank consisting of 9 DSD rods, at an average distance of 118 cm, and -3) a third bank with 18 CSD rods, placed at 171 cm, i.e. at the interface between the inner and outer (Pu content 19.2 % vol.) core regions. Each control rod has been modelled as a homogeneous material containing 90%-enriched B 4 C, steel and helium. Considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual rods within the first bank. Large anti-shadowing effects take place in an even greater number of the studied rod configurations. The largest interaction is between the two CSD banks, the anti-shadowing value being 46% in this case, implying that the total rod worth is increased by a factor of almost 2 when compared to the sum of the individual bank values. Additional investigations have been performed, in particular the computation of the first order eigenvalue and the eigenvalue separation. The main finding is that the interactions are lower when one of the control rod banks is located at a radial position corresponding to half the core radius. (authors)

  3. A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhang

    2015-12-01

    Full Text Available This paper reports a large-range electrothermal bimorph microelectromechanical systems (MEMS mirror with fast thermal response. The actuator of the MEMS mirror is made of three segments of Cu/W bimorphs for lateral shift cancelation and two segments of multimorph beams for obtaining large vertical displacement from the angular motion of the bimorphs. The W layer is also used as the embedded heater. The silicon underneath the entire actuator is completely removed using a unique backside deep-reactive-ion-etching DRIE release process, leading to improved thermal response speed and front-side mirror surface protection. This MEMS mirror can perform both piston and tip-tilt motion. The mirror generates large pure vertical displacement up to 320 μm at only 3 V with a power consumption of 56 mW for each actuator. The maximum optical scan angle achieved is ±18° at 3 V. The measured thermal response time is 15.4 ms and the mechanical resonances of piston and tip-tilt modes are 550 Hz and 832 Hz, respectively.

  4. Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples

    International Nuclear Information System (INIS)

    Jan Kamenik; Henrieta Dulaiova; Ferdinand Sebesta; Kamila St'astna; Czech Technical University, Prague

    2013-01-01

    The method developed for cesium concentration from large freshwater samples was tested and adapted for analysis of cesium radionuclides in seawater. Concentration of dissolved forms of cesium in large seawater samples (about 100 L) was performed using composite absorbers AMP-PAN and KNiFC-PAN with ammonium molybdophosphate and potassium–nickel hexacyanoferrate(II) as active components, respectively, and polyacrylonitrile as a binding polymer. A specially designed chromatography column with bed volume (BV) 25 mL allowed fast flow rates of seawater (up to 1,200 BV h -1 ). The recovery yields were determined by ICP-MS analysis of stable cesium added to seawater sample. Both absorbers proved usability for cesium concentration from large seawater samples. KNiFC-PAN material was slightly more effective in cesium concentration from acidified seawater (recovery yield around 93 % for 700 BV h -1 ). This material showed similar efficiency in cesium concentration also from natural seawater. The activity concentrations of 137 Cs determined in seawater from the central Pacific Ocean were 1.5 ± 0.1 and 1.4 ± 0.1 Bq m -3 for an offshore (January 2012) and a coastal (February 2012) locality, respectively, 134 Cs activities were below detection limit ( -3 ). (author)

  5. Fast food and obesity: a spatial analysis in a large United Kingdom population of children aged 13-15.

    Science.gov (United States)

    Fraser, Lorna K; Clarke, Graham P; Cade, Janet E; Edwards, Kimberly L

    2012-05-01

    The childhood obesity epidemic is a current public health priority in many countries, and the consumption of fast food has been associated with obesity. This study aims to assess the relationship between fast-food consumption and obesity as well as the relationship between fast-food outlet access and consumption in a cohort of United Kingdom teenagers. A weighted accessibility score of the number of fast-food outlets within a 1-km network buffer of the participant's residence at age 13 years was calculated. Geographically weighted regression was used to assess the relationships between fast-food consumption at age 13 years and weight status at ages 13 and 15 years, and separately between fast-food accessibility and consumption. Data were collected from 2004 to 2008. The consumption of fast food was associated with a higher BMI SD score (β=0.08, 95% CI=0.03, 0.14); higher body fat percentage (β=2.06, 95% CI=1.33, 2.79); and increased odds of being obese (OR=1.23, 95% CI=1.02, 1.49). All these relationships were stationary and did not vary over space in the study area. The relationship between the accessibility of outlets and consumption did vary over space, with some areas (more rural areas) showing that increased accessibility was associated with consumption, whereas in some urban areas increased accessibility was associated with lack of consumption. There is continued need for nutritional education regarding fast food, but public health interventions that place restrictions on the location of fast-food outlets may not uniformly decrease consumption. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  6. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX, 77843-4242 (United States); Lacy, M. [North American ALMA Science Center, NRAO Headquarters, Charlottesville, VA 22903 (United States); Ciardullo, R.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Bassett, R. [International Centre for Radio Astronomy Research, University of Western Australia, 7 Fairway, Crawley, WA 6009 (Australia); Behroozi, P. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Blanc, G. A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Jong, R. S. de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Gawiser, E. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hopp, U., E-mail: papovich@physics.tamu.edu, E-mail: papovich@tamu.edu [Max-Planck-Institut für Extraterrestrische Physik, D-85741, Garching (Germany); and others

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg{sup 2} of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc{sup 3} at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  7. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    International Nuclear Information System (INIS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L.; Lacy, M.; Ciardullo, R.; Gronwall, C.; Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S.; Bassett, R.; Behroozi, P.; Blanc, G. A.; Jong, R. S. de; Gawiser, E.; Hopp, U.

    2016-01-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg 2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc 3 at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  8. Arterial roads and area socioeconomic status are predictors of fast food restaurant density in King County, WA

    OpenAIRE

    Hurvitz, Philip M; Moudon, Anne V; Rehm, Colin D; Streichert, Laura C; Drewnowski, Adam

    2009-01-01

    Abstract Background Fast food restaurants reportedly target specific populations by locating in lower-income and in minority neighborhoods. Physical proximity to fast food restaurants has been associated with higher obesity rates. Objective To examine possible associations, at the census tract level, between area demographics, arterial road density, and fast food restaurant density in King County, WA, USA. Methods Data on median household incomes, property values, and race/ethnicity were obta...

  9. Index-antiguided planar waveguide lasers with large mode area

    Science.gov (United States)

    Liu, Yuanye

    The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that

  10. Small-area variations in overweight and obesity in an urban area of Nigeria: The role of fast food outlets

    Directory of Open Access Journals (Sweden)

    Osayomi Tolulope

    2017-12-01

    Full Text Available Overweight and obesity are two related health issues of epidemic proportions. In Nigeria, these health conditions have been emerging only recently. The extant literature shows inter-city variations in the prevalence of overweight and obesity in Nigeria. However, they say little about intra-city variations of these health problems in Nigerian urban centres. Thus, the focus of the study was to determine the small-area variations in the prevalence of overweight and obesity in an urban area of Nigeria and its association with socio-economic, environmental, dietary and lifestyle risk factors. With the aid of a questionnaire, information on the demographic, socio-economic, lifestyle, household and neighbourhood characteristics of respondents was obtained from respondents. Overweight and obesity were computed based on the self-reported height and weight of respondents, using the Body Mass Index (BMI formula. A simple linear regression model was estimated to determine the individual and collective effects of risk factors. Findings showed that there were noticeable spatial variations in the prevalence of overweight and obesity which result from the varying contextual and compositional characteristics among the political wards of the Ibadan North LGA. Physical proximity to fast food outlets was the only significant factor driving the spatial pattern of obesity (b = 0.645; R2 = 0.416. The paper suggests that government and health officials should formulate area-specific obesity prevention and control plans to curb this growing epidemic in Nigeria.

  11. ORCONECTES LIMOSUS COLONISES NEW AREAS FAST ALONG THE DANUBE IN HUNGARY

    Directory of Open Access Journals (Sweden)

    PUKY M.

    2006-01-01

    Full Text Available Introduced species are one of the most important anthropogenic impacts on freshwater ecosystems with many direct and indirect effects on native taxa. Among other invasive groups, such as plants, mussels and fish, several alien Decapoda species have also spread successfully in Europe in the last 110 years. In Hungary three native (Astacus astacus, Astacus leptodactylus, Austropotamobius torrentium and three alien Decapoda species, namely Orconectes limosus, Pacifastacus leniusculus and Eriocheir sinensis are known to be present. O. limosus, which had been tried for use in crayfish farming in the 1950s, was the first to occur in the country’s natural waters. Initially it was found in the Danube at river km 1,653 at Budapest in 1985. Since then, it has been spreading fast and populations have reached high abundances. By 1998, it was already in the Gemenc section of the river colonising five 50 km × 50 km UTM squares. In the early 2000s it was also found at Mohács (and further downstream in Croatia, in canals in the Great Hungarian Plain and in the River Ipoly, which added three new 50 km × 50 km UTM squares to its previously known distribution area in the Carpathian Basin. On the basis of the available records from the past 20 years, the downstream colonisation speed of this decapod was calculated to be more than 13 km yr–1, but if its presence at Kopácsi rét/Kopacki rit in Croatia is also taken into consideration, it is over 16 km yr–1. It is unknown, however, how much this process was helped by deliberate introductions, if at all. Besides the main watercourse of Hungary, O. limosus is also common in its lowland tributaries and spreading towards Lake Balaton along the Sió canal. However, it has not been recorded entering mountain streams in the Danube Bend, where A. torrentium lives, which is important for the conservation of that native species. If O. limosus spreads with the same speed and distribution pattern in the Carpathian Basin

  12. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  13. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  14. MOSS-5: A Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs

    KAUST Repository

    Wang, Pinghui

    2017-09-26

    Counting 3-, 4-, and 5-node graphlets in graphs is important for graph mining applications such as discovering abnormal/evolution patterns in social and biology networks. In addition, it is recently widely used for computing similarities between graphs and graph classification applications such as protein function prediction and malware detection. However, it is challenging to compute these metrics for a large graph or a large set of graphs due to the combinatorial nature of the problem. Despite recent efforts in counting triangles (a 3-node graphlet) and 4-node graphlets, little attention has been paid to characterizing 5-node graphlets. In this paper, we develop a computationally efficient sampling method to estimate 5-node graphlet counts. We not only provide fast sampling methods and unbiased estimators of graphlet counts, but also derive simple yet exact formulas for the variances of the estimators which is of great value in practice-the variances can be used to bound the estimates\\' errors and determine the smallest necessary sampling budget for a desired accuracy. We conduct experiments on a variety of real-world datasets, and the results show that our method is several orders of magnitude faster than the state-of-the-art methods with the same accuracy.

  15. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    KAUST Repository

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  16. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2015-08-13

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  17. Discovery of Fast, Large-amplitude Optical Variability of V648 Car (=SS73-17)

    Science.gov (United States)

    Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.

    2012-09-01

    We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ~520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.

  18. DISCOVERY OF FAST, LARGE-AMPLITUDE OPTICAL VARIABILITY OF V648 Car (=SS73-17)

    International Nuclear Information System (INIS)

    Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.

    2012-01-01

    We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ∼520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.

  19. Plan for support of large-plant (post-CRBR) needs in large-leak sodium-water reaction area

    International Nuclear Information System (INIS)

    Whipple, J.C.

    1980-03-01

    Work in the large leak test and analysis area of steam generator development has been carried out at GE-ARSD under 189a SG037 since 1973. The currently planned master schedule for the SG037 program is shown. Principal activities are the large leak testing program being carried out at the Large Leak Test Rig and the analysis methods development. The plan for supporting the large plant (post-CRBR) needs in the large leak sodium-water reaction area is outlined. Most of the needs will be answered in the current SG037 large leak program

  20. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    Science.gov (United States)

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Centre-surround organization of fast sensorimotor integration in human motor hand area

    DEFF Research Database (Denmark)

    Dubbioso, Raffaele; Raffin, Estelle; Karabanov, Anke

    2017-01-01

    Using the short-latency afferent inhibition (SAI) paradigm, transcranial magnetic stimulation (TMS) of the primary motor hand area (M1HAND) can probe how sensory input from limbs modulates corticomotor output in humans. Here we applied a novel TMS mapping approach to chart the spatial representat......Using the short-latency afferent inhibition (SAI) paradigm, transcranial magnetic stimulation (TMS) of the primary motor hand area (M1HAND) can probe how sensory input from limbs modulates corticomotor output in humans. Here we applied a novel TMS mapping approach to chart the spatial...... in M1HAND. Like homotopic SAI, heterotopic SAF was somatotopically expressed in M1HAND. Together, the results provide first-time evidence that fast sensorimotor integration involves centre-inhibition and surround-facilitation in human M1HAND....

  2. A risk characterization of safety research areas for integral fast reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tibbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01

    This paper characterizes the areas of integral fast reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure to critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR safety and related base technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorities

  3. A risk characterization of safety research areas for Integral Fast Reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.

    1988-01-01

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites

  4. Four large coastal upwelling areas are created by eastern boundary ...

    African Journals Online (AJOL)

    spamer

    large deep-water hake Merluccius paradoxus, 2.7% small M. paradoxus, 1.3% ... hake in the Benguela region, the shallow-water species. Merluccius capensis .... sharks are not included in the estimate, and neither is the proportion of sharks ...

  5. Irradiation of large area Mylar membrane and characterization of ...

    Indian Academy of Sciences (India)

    Unknown

    of its energy in areas away from the trajectory or just de- excites in time depending on the type of material. In insu- lators electronic excitation can induce extended defects along the ion path due to the secondary ionization (Mehta. 1996). Many polymers are able to recover the track halo up to a certain limit of the order of a ...

  6. Arterial roads and area socioeconomic status are predictors of fast food restaurant density in King County, WA

    Directory of Open Access Journals (Sweden)

    Streichert Laura C

    2009-07-01

    Full Text Available Abstract Background Fast food restaurants reportedly target specific populations by locating in lower-income and in minority neighborhoods. Physical proximity to fast food restaurants has been associated with higher obesity rates. Objective To examine possible associations, at the census tract level, between area demographics, arterial road density, and fast food restaurant density in King County, WA, USA. Methods Data on median household incomes, property values, and race/ethnicity were obtained from King County and from US Census data. Fast food restaurant addresses were obtained from Public Health-Seattle & King County and were geocoded. Fast food density was expressed per tract unit area and per capita. Arterial road density was a measure of vehicular and pedestrian access. Multivariate logistic regression models containing both socioeconomic status and road density were used in data analyses. Results Over one half (53.1% of King County census tracts had at least one fast food restaurant. Mean network distance from dwelling units to a fast food restaurant countywide was 1.40 km, and 1.07 km for census tracts containing at least one fast food restaurant. Fast food restaurant density was significantly associated in regression models with low median household income (p Conclusion No significant association was observed between census tract minority status and fast food density in King County. Although restaurant density was linked to low household incomes, that effect was attenuated by arterial road density. Fast food restaurants in King County are more likely to be located in lower income neighborhoods and higher traffic areas.

  7. Fast and reliable methods for extracting functional connectivity in large populations

    DEFF Research Database (Denmark)

    Roudi, Yasser; Tyrcha, Joanna; Hertz, John

    2009-01-01

    in that time bin, and 1 if it has emitted one spike or more. One then can construct an Ising model, P(s )=Z-1exp{h.s+sJs} for the spike patterns with the same means and pair correlations as the data, using Boltzmann learning, which is in principle exact.  The elements Jij , of the matrix J can be considered...... to be functional couplings. However, Boltzmann learning is prohibitively time-consuming for large networks. Here, we compare the results from five fast approximate methods for finding the couplings with those from Boltzmann learning.      We used data from a simulated network of spiking neurons operating...... in a balanced state of asynchronous firing with a mean rate of ~10 Hz for excitatory neurons. Employing a bin size of 10 ms, we performed Boltzmann learning to fit Ising models for populations of size N up to 200 excitatory neurons chosen randomly from the 800 in the simulated network.  We studied the following...

  8. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  9. Development of three-dimensional nuclear design program for large fast breeder reactor

    International Nuclear Information System (INIS)

    Inoue, Kohtaro

    1987-01-01

    The report describes a calculation program for core design, called HICOM, and its calculation accuracy. HICOM is designed for three-dimensional neutron diffusion calculation and combustion calculation for large fast breeder reactors to be conducted according to a control rod plan and fuel replacement plan. The improved coarse mesh technique is applied to neutron diffusion calculation. It is demostrated that HICOM permits rapid and accurate operation. For the evaluation of the applicability of HICOM, three-dimensional six-group neutron diffusion calculation is conducted for a 1,000 MWe axial heterogeneous FBR core. Results demonstrate that the program can perform numerical calculation in a time period shorter than 1-40 that for calculation by CITATION (triangle mesh method). This is achieved by using the improved coarse mesh method and carrying out the operation by a vectorial procedure. For the evaluation of the nuclear calculation accuracy of HICOM, analysis is made of reactivity, output distribution and B 4 C control rod worth emasured in an FCA criticality experiment carried out by the Japan Atomic Energy Research Institute. Calculations are found to agree with measurements within a permissible error. The same level of calculation accuracy is obtained for homogneous core, axial heterogeneous core and cores with internal blankets with different forms. (Nogami, K.)

  10. Avian surveys of large geographical areas: A systematic approach

    Science.gov (United States)

    Scott, J.M.; Jacobi, J.D.; Ramsey, F.L.

    1981-01-01

    A multidisciplinary team approach was used to simultaneously map the distribution of birds, selected food items, and major vegetation types in 34,000- to 140,000-ha tracts in native Hawaiian forests. By using a team approach, large savings in time can be realized over attempts to conduct similar surveys of smaller scope, and a systems approach to management problems is made easier. The methods used in survey design, training observers, and documenting bird numbersand habitat descriptions are discussed in detail.

  11. Performance of the Antares large area cold cathode electron gun

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Mansfield, C.R.

    1983-01-01

    The performance of the electron gun which supplies ionization for the Antares high-power electron-beam-sustained CO 2 -laser power amplifier is described. This electron gun is a coaxial cylindrical cold cathode vacuum triode having a total electron aperture area of approximately 9 m 2 . Electrons are extracted from the gun in pulses of 3 to 6 μs duration, average current densities of 40 to 60 mA/cm 2 , and electron energies of 450 to 500 keV. The main areas of discussion in this paper are the performance in terms of grid control, current-density balance, and current runaway due to breakdown limitations. Comparison of the experimental results with the predictions of a theoretical model for the electron gun are also presented

  12. Performance of the Antares large area cold cathode electron gun

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Mansfield, C.R.

    1983-01-01

    The performance of the electron gun which supplies ionization for the Antares high power electron beam sustained CO 2 laser power amplifier is described. This electron gun is a coaxial cylindrical cold cathode vacuum triode having a total electron aperture area of approximately 9 m 2 . Electrons are extracted from the gun in pulses of 3-6 μs duration, average current densities of 40-60 ma/cm2, and electron energies of 450-500 keV. The main areas of discussion in this paper are the performance in terms of grid control, current density balance, and current runaway due to breakdown limitations. Comparison of the experimental results with the predictions of a theoretical model for the electron gun will also be presented

  13. Monitoring gamma radioactivity over large land areas using portable equipment

    International Nuclear Information System (INIS)

    Mac Mahon, T.D.; Gray, P.W.; Eer, A.M. D'; Naboulsi, A.H.; Koutsoyannopoulos, C.

    1990-01-01

    The principal objective of this research has been to provide information on cost-effective techniques to detect localized areas of gamma-emitting radionuclides. This objective has been achieved by determining the time required to scan unit area as a function of depth of the gamma source below the site surface, the activity of the gamma source, the energy of the emitted gamma-ray, and the gamma transport properties of the site material. A comparison between survey and sampling techniques is made, and the advantages of using survey techniques to detect localized gamma-ray sources are discussed. A survey technique based on an adaptive moving array detector system is described. A field experiment has been carried out to verify the results of calculations of the sensitivity of the techniques described

  14. A large area transition radiation detector for the NOMAD experiment

    Science.gov (United States)

    Bassompierre, G.; Bermond, M.; Berthet, M.; Bertozzi, T.; Détraz, C.; Dubois, J.-M.; Dumps, L.; Engster, C.; Fazio, T.; Gaillard, G.; Gaillard, J.-M.; Gouanère, M.; Manola-Poggioli, E.; Mossuz, L.; Mendiburu, J.-P.; Nédélec, P.; Palazzini, E.; Pessard, H.; Petit, P.; Petitpas, P.; Placci, A.; Sillou, D.; Sottile, R.; Valuev, V.; Verkindt, D.; Vey, H.; Wachnik, M.

    1998-02-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  15. A large area transition radiation detector for the NOMAD experiment

    CERN Document Server

    Bassompierre, Gabriel; Berthet, M; Bertozzi, T; Détraz, C; Dubois, J M; Dumps, Ludwig; Engster, Claude; Fazio, T; Gaillard, G; Gaillard, Jean-Marc; Gouanère, M; Manola-Poggioli, E; Mossuz, L; Mendiburu, J P; Nédélec, P; Palazzini, E; Pessard, H; Petit, P; Petitpas, P; Placci, Alfredo; Sillou, D; Sottile, R; Valuev, V Yu; Verkindt, D; Vey, H; Wachnik, M

    1997-01-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  16. Possibility of simulation experiments for fast particle physics in the large helical device (LHD)

    International Nuclear Information System (INIS)

    Sato, K.N.; Murakami, S.; Nakajima, N.; Itoh, K.

    1995-01-01

    The confinement of fusion produced or high energy particles is one of the most important issues to be studied in the helical confinement system. A preliminary study has been carried out on the possibility of developing techniques for simulation experiments for the study of high energy particle physics in the Large Helical Device (LHD) project. Candidate methods have been considered as follows: (a) a high energy (∼ 3.5 MeV) He 0 beam injection method; (b) a medium energy (∼ 200 keV) H 0 beam injection method; (c) a method involving high energy tail production by an ICRF wave and/or a method of reaction rate enhancement by an ICRF wave; and (d) a method involving the combination of neutral beam injection and ICRF wave. Various features of each method have been considered. Although the high energy He 0 beam injection method has some advantages, the technique for production of this beam is extremely difficult because of the difficulties of the production of both negative helium and ground state neutral helium by neutralization. It is pointed out, on the other hand, that a wide range of simulation experiments for fast particle physics may be carried out even by the medium energy beam method, because the typical orbit deviation (e.g. equivalent super-banana size in a classical sense) can be largely controlled by controlling the magnetic field configuration in the case of a helical system, for example by shifting the magnetic axis. This is one of the unique features of a helical system in contrast to an axisymmetric system. (author). 12 refs, 6 figs, 2 tabs

  17. A GPU-based solution for fast calculation of the betweenness centrality in large weighted networks

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2017-12-01

    Full Text Available Betweenness, a widely employed centrality measure in network science, is a decent proxy for investigating network loads and rankings. However, its extremely high computational cost greatly hinders its applicability in large networks. Although several parallel algorithms have been presented to reduce its calculation cost for unweighted networks, a fast solution for weighted networks, which are commonly encountered in many realistic applications, is still lacking. In this study, we develop an efficient parallel GPU-based approach to boost the calculation of the betweenness centrality (BC for large weighted networks. We parallelize the traditional Dijkstra algorithm by selecting more than one frontier vertex each time and then inspecting the frontier vertices simultaneously. By combining the parallel SSSP algorithm with the parallel BC framework, our GPU-based betweenness algorithm achieves much better performance than its CPU counterparts. Moreover, to further improve performance, we integrate the work-efficient strategy, and to address the load-imbalance problem, we introduce a warp-centric technique, which assigns many threads rather than one to a single frontier vertex. Experiments on both realistic and synthetic networks demonstrate the efficiency of our solution, which achieves 2.9× to 8.44× speedups over the parallel CPU implementation. Our algorithm is open-source and free to the community; it is publicly available through https://dx.doi.org/10.6084/m9.figshare.4542405. Considering the pervasive deployment and declining price of GPUs in personal computers and servers, our solution will offer unprecedented opportunities for exploring betweenness-related problems and will motivate follow-up efforts in network science.

  18. Experimental study of the large-scale axially heterogeneous liquid-metal fast breeder reactor at the fast critical assembly: Power distribution measurements and their analyses

    International Nuclear Information System (INIS)

    Iijima, S.; Obu, M.; Hayase, T.; Ohno, A.; Nemoto, T.; Okajima, S.

    1988-01-01

    Power distributions of the large-scale axially heterogeneous liquid-metal fast breeder reactor were studied by using the experiment results of fast critical assemblies XI, XII, and XIII and the results of their analyses. The power distributions were examined by the gamma-scanning method and fission rate measurements using /sup 239/Pu and /sup 238/U fission counters and the foil irradiation method. In addition to the measurements in the reference core, the power distributions were measured in the core with a control rod inserted and in a modified core where the shape of the internal blanket was determined by the radial boundary. The calculation was made by using JENDL-2 and the Japan Atomic Energy Research Institute's standard calculation system for fast reactor neutronics. The power flattening trend, caused by the decrease of the fast neutron flux, was observed in the axial and radial power distributions. The effect of the radial boundary shape of the internal blanket on the power distribution was determined in the core. The thickness of the internal blanket was reduced at its radial boundary. The influence of the internal blanket was observed in the power distributions in the core with a control rod inserted. The calculation predicted the neutron spectrum harder in the internal blanket. In the radial distributions of /sup 239/Pu fission rates, the space dependency of the calculated-to-experiment values was found at the active core close to the internal blanket

  19. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  20. Progress in amorphous silicon based large-area multijunction modules

    Science.gov (United States)

    Carlson, D. E.; Arya, R. R.; Bennett, M.; Chen, L.-F.; Jansen, K.; Li, Y.-M.; Maley, N.; Morris, J.; Newton, J.; Oswald, R. S.; Rajan, K.; Vezzetti, D.; Willing, F.; Yang, L.

    1996-01-01

    Solarex, a business unit of Amoco/Enron Solar, is scaling up its a-Si:H/a-SiGe:H tandem device technology for the production of 8 ft2 modules. The current R&D effort is focused on improving the performance, reliability and cost-effectiveness of the tandem junction technology by systematically optimizing the materials and interfaces in small-area single- and tandem junction cells. Average initial conversion efficiencies of 8.8% at 85% yield have been obtained in pilot production runs with 4 ft2 tandem modules.

  1. Fully low voltage and large area searching scanning tunneling microscope

    International Nuclear Information System (INIS)

    Pang, Zongqiang; Wang, Jihui; Lu, Qingyou

    2009-01-01

    We present a novel scanning tunneling microscope (STM), which allows the tip to travel a large distance (millimeters) on the sample and take images (to find microscopic targets) anywhere it reaches without losing atomic resolution. This broad range searching capability, together with the coarse approach and scan motion, is all done with only one single piezoelectric tube scanner as well as with only low voltages (<15 V). Simple structure, low interference and high precision are thus achieved. To this end, a pillar and a tube scanner are mounted in parallel on a base with one ball glued on the pillar top and two balls glued on the scanner top. These three balls form a narrow triangle, which supports a triangular slider piece. By inertial stepping, the scanner can move the slider toward the pillar (coarse approach) or rotate the slider about the pillar (travel along sample surface). Since all the stepping motions are driven by the scanner's lateral bending which is large per unit voltage, high voltages are unnecessary. The technology is also applicable to scanning force microscopes (SFM) such as atomic force microscopes (AFM), etc

  2. 102(ℎ/2π)k Large Area Atom Interferometers

    International Nuclear Information System (INIS)

    Chiow, Sheng-wey; Kovachy, Tim; Chien, Hui-Chun; Kasevich, Mark A.

    2011-01-01

    We demonstrate atom interferometers utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom interferometers with momentum splittings of up to 102 photon recoil momenta (102(ℎ/2π)k). To our knowledge, this is the highest momentum splitting achieved in any atom interferometer, advancing the state-of-the-art by an order of magnitude. We also demonstrate strong noise correlation between two simultaneous SB-LMT interferometers, which alleviates the need for ultralow noise lasers and ultrastable inertial environments in some future applications. Our method is intrinsically scalable and can be used to dramatically increase the sensitivity of atom interferometers in a wide range of applications, including inertial sensing, measuring the fine structure constant, and detecting gravitational waves.

  3. Large area spark counters with fine time and position resolution

    International Nuclear Information System (INIS)

    Ogawa, A.; Atwood, W.B.; Fujiwara, N.; Pestov, Yu.N.; Sugahara, R.

    1983-10-01

    Spark counters trace their history back over three decades but have been used in only a limited number of experiments. The key properties of these devices include their capability of precision timing (at the sub 100 ps level) and of measuring the position of the charged particle to high accuracy. At SLAC we have undertaken a program to develop these devices for use in high energy physics experiments involving large detectors. A spark counter of size 1.2 m x 0.1 m has been constructed and has been operating continuously in our test setup for several months. In this talk I will discuss some details of its construction and its properties as a particle detector. 14 references

  4. LSSA large area silicon sheet task continuous Czochralski process development

    Science.gov (United States)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  5. Electron Emission from Ultra-Large Area MOS Electron Emitters

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar; Nielsen, Gunver; Vendelbo, Søren Bastholm

    2009-01-01

    Ultralarge metal-oxide-semiconductor (MOS) devices with an active oxide area of 1 cm2 have been fabricated for use as electron emitters. The MOS structures consist of a Si substrate, a SiO2 tunnel barrier (~5 nm), a Ti wetting layer (3–10 Å), and a Au top layer (5–60 nm). Electron emission from...... layer is varied from 3 to 10 Å which changes the emission efficiency by more than one order of magnitude. The apparent mean free path of ~5 eV electrons in Au is found to be 52 Å. Deposition of Cs on the Au film increased the electron emission efficiency to 4.3% at 4 V by lowering the work function....... Electron emission under high pressures (up to 2 bars) of Ar was observed. ©2009 American Vacuum Society...

  6. Large-area sheet task advanced dendritic web growth development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.

    1984-01-01

    The thermal models used for analyzing dendritic web growth and calculating the thermal stress were reexamined to establish the validity limits imposed by the assumptions of the models. Also, the effects of thermal conduction through the gas phase were evaluated and found to be small. New growth designs, both static and dynamic, were generated using the modeling results. Residual stress effects in dendritic web were examined. In the laboratory, new techniques for the control of temperature distributions in three dimensions were developed. A new maximum undeformed web width of 5.8 cm was achieved. A 58% increase in growth velocity of 150 micrometers thickness was achieved with dynamic hardware. The area throughput goals for transient growth of 30 and 35 sq cm/min were exceeded.

  7. Fast and low-cost method for VBES bathymetry generation in coastal areas

    Science.gov (United States)

    Sánchez-Carnero, N.; Aceña, S.; Rodríguez-Pérez, D.; Couñago, E.; Fraile, P.; Freire, J.

    2012-12-01

    Sea floor topography is key information in coastal area management. Nowadays, LiDAR and multibeam technologies provide accurate bathymetries in those areas; however these methodologies are yet too expensive for small customers (fishermen associations, small research groups) willing to keep a periodic surveillance of environmental resources. In this paper, we analyse a simple methodology for vertical beam echosounder (VBES) bathymetric data acquisition and postprocessing, using low-cost means and free customizable tools such as ECOSONS and gvSIG (that is compared with industry standard ArcGIS). Echosounder data was filtered, resampled and, interpolated (using kriging or radial basis functions). Moreover, the presented methodology includes two data correction processes: Monte Carlo simulation, used to reduce GPS errors, and manually applied bathymetric line transformations, both improving the obtained results. As an example, we present the bathymetry of the Ría de Cedeira (Galicia, NW Spain), a good testbed area for coastal bathymetry methodologies given its extension and rich topography. The statistical analysis, performed by direct ground-truthing, rendered an upper bound of 1.7 m error, at 95% confidence level, and 0.7 m r.m.s. (cross-validation provided 30 cm and 25 cm, respectively). The methodology presented is fast and easy to implement, accurate outside transects (accuracy can be estimated), and can be used as a low-cost periodical monitoring method.

  8. Research status of large mode area single polarization active fiber

    Science.gov (United States)

    Xiao, Chun; Zhang, Ge; Yang, Bin-hua; Cheng, Wei-feng; Gu, Shao-yi

    2018-03-01

    As high power fiber laser used more and more widely, to increase the output power of fiber laser and beam quality improvement have become an important goal for the development of high power fiber lasers. The use of large mode fiber is the most direct and effective way to solve the nonlinear effect and fiber damage in the fiber laser power lifting process. In order to reduce the effect of polarization of the fiber laser system, the study found that when introduces a birefringence in the single-mode fiber, the polarization state changes caused by the birefringence is far greater than the random polarization state changes, then the external disturbance is completely submerged, finally the polarization can be controlled and stabilized. Through the fine design of the fiber structure, if the birefringence is high enough to achieve the separation of the two polarization states, the fiber will have a different cut-off mechanism to eliminate polarization which is not need, which will realize single mode single polarization transmission in a band. In this paper, different types of single polarization fiber design are presented and the application of these fibers are also discussed.

  9. A large-area RF source for negative hydrogen ions

    International Nuclear Information System (INIS)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-01-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H - /D - ) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm 2 net extraction area. First results from BATMAN (Bavarian T lowbar est Machine for N lowbar egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm 2 H - (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature T e >2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way

  10. Readout for a large area neutron sensitive microchannel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiming [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Yang, Yigang, E-mail: yangyigang@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Wang, Xuewu; Li, Yuanjing [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  11. A large area diamond-based beam tagging hodoscope for ion therapy monitoring

    Science.gov (United States)

    Gallin-Martel, M.-L.; Abbassi, L.; Bes, A.; Bosson, G.; Collot, J.; Crozes, T.; Curtoni, S.; Dauvergne, D.; De Nolf, W.; Fontana, M.; Gallin-Martel, L.; Hostachy, J.-Y.; Krimmer, J.; Lacoste, A.; Marcatili, S.; Morse, J.; Motte, J.-F.; Muraz, J.-F.; Rarbi, F. E.; Rossetto, O.; Salomé, M.; Testa, É.; Vuiart, R.; Yamouni, M.

    2018-01-01

    The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l'hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused ( 1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.

  12. Re-entering fast ion effects on NBI heating power in high-beta plasmas of the Large Helical Device

    International Nuclear Information System (INIS)

    Seki, Ryosuke; Watanabe, Kiyomasa; Funaba, Hisamichi; Suzuki, Yasuhiro; Sakakibara, Satoru; Ohdachi, Satoshi; Matsumoto, Yutaka; Hamamatsu, Kiyotaka

    2011-10-01

    We calculate the heating power of the neutral beam injection (NBI) in the = 4.8% high-beta discharge achieved in the Large Helical Device (LHD). We investigate the difference of the heating efficiency and the heating power profile between with and without the re-entering fast ion effects. When the re-entering fast ion effects are taken into account, the heating efficiency in the co injection of the NBI (co-NBI case) is improved and it is about 1.8 times larger than that without the re-entering effects. In contrast, the heating efficiency with the re-entering effects in the counter injection of the NBI (ctr-NBI case) rarely differs from that without the re-entering ones. We also study the re-entering fast ion effects on the transport properties in the LHD high beta discharges. It is found that the tendency of the thermal conductivities on the beta value is not so much sensitive with and without the re-entering effects. In addition, we investigate the difference in the re-entering fast ion effects caused by the field strength and the magnetic configuration. In the co-NBI case, the re-entering fast ion effects on the heating efficiency increases with the decrease of the field strength. In the contrast, the re-entering fast ion effects in the ctr-NBI case rarely differs by changing the field strength. (author)

  13. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  14. Fast steering and quick positioning of large field-of-regard, two-axis, four-gimbaled sight

    Science.gov (United States)

    Ansari, Zahir Ahmed; Nigam, Madhav Ji; Kumar, Avnish

    2017-07-01

    Fast steering and quick positioning are prime requirements of the current electro-optical tracking system to achieve quick target acquisition. A scheme has been proposed for realizing these features using two-axis, four-gimbaled sight. For steering the line of sight in the stabilization mode, outer gimbal is slaved to the gyro stabilized inner gimbal. Typically, the inner gimbals have direct drives and outer gimbals have geared drives, which result in a mismatch in the acceleration capability of their servo loops. This limits the allowable control bandwidth for the inner gimbal. However, to achieve high stabilization accuracy, high bandwidth control loops are essential. This contradictory requirement has been addressed by designing a suitable command conditioning module for the inner gimbals. Also, large line-of-sight freedom in pitch axis is required to provide a wide area surveillance capacity for airborne application. This leads to a loss of freedom along the yaw axis as the pitch angle goes beyond 70 deg or so. This is addressed by making the outer gimbal master after certain pitch angle. Moreover, a mounting scheme for gyro has been proposed to accomplish yaw axis stabilization for 110-deg pitch angle movement with a single two-axis gyro.

  15. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  16. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    OpenAIRE

    Bogdan Sobczak; Robert Rink; Rafał Kuczyński; Robert Trębski

    2014-01-01

    Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power syst...

  17. A large area Micromegas TPC for tracking at the ILC

    International Nuclear Information System (INIS)

    Wang, Wenxin

    2013-01-01

    The study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e + e - collider. The leading project for this is called ILC. The team that I joined is working on the R and D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a 55 Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion back-flow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several

  18. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; Dool, Teun van den; Es, Maarten H. van [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands)

    2015-11-15

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  19. The treatment of absorber rod heterogeneity effects using homogeneous equivalent cross-sections and their application in large fast reactors

    International Nuclear Information System (INIS)

    Newton, T.D.

    1988-01-01

    This paper examines the application of homogeneous equivalent absorber rod cross-sections to the calculation of control rod anti-reactivities in large fast reactors. The method used to obtain the equivalent cross-sections is described and their validity in simple whole core geometry calculations is verified. Finally, they are employed in the calculation of control rod anti-reactivity worths in the Super Phenix 1 fast reactor and the results are compared with measured values. (author). 5 refs, 5 figs, 9 tabs

  20. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    International Nuclear Information System (INIS)

    Iyengar, A.; Beach, M.; Newby, R.J.; Fabris, L.; Heilbronn, L.H.; Hayward, J.P.

    2015-01-01

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m 2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric

  1. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    Energy Technology Data Exchange (ETDEWEB)

    Iyengar, A., E-mail: aiyengar@utk.edu [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Beach, M. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Newby, R.J.; Fabris, L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Heilbronn, L.H. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Hayward, J.P. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-02-11

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m{sup 2} system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.

  2. Large area avalanche photodiodes in scintillation and X-rays detection

    International Nuclear Information System (INIS)

    Moszynski, M.; Szawlowski, M.; Kapusta, M.; Balcerzyk, M.

    2002-01-01

    The presented paper summarizes our earlier studies on application of beveled-edge Large Area Avalanche Photodiodes (LAAPDs) in γ-rays scintillation detection. LAAPDs, due to their high quantum efficiency and low excess noise factor allow for better statistical accuracy of the signal as compared to photomultipliers. The device dark noise contribution significantly affects energy resolution only for γ-rays with energy below 50 keV. Notably better or comparable energy resolutions to those observed with a XP2020Q photomultiplier were obtained with the LAAPDs for a number of different scintillators. Particularly, the recorded energy resolutions of 4.3±0.2% and 4.8±0.14% measured with YAP and CsI(Tl) crystals, respectively, for the 662 keV γ-peak from a 137 Cs source belong to the best observed ever with these scintillation detectors. Results of the study of timing with fast scintillators coupled to the LAAPD showed subnanosecond time resolution of 570±30 ps for 60 Co γ-rays detected in LSO crystal. The response of LAAPD to X-rays and factors limiting energy resolution have been discussed too

  3. Large area avalanche photodiodes in scintillation and X-rays detection

    CERN Document Server

    Moszynski, M; Kapusta, M; Balcerzyk, M

    2002-01-01

    The presented paper summarizes our earlier studies on application of beveled-edge Large Area Avalanche Photodiodes (LAAPDs) in gamma-rays scintillation detection. LAAPDs, due to their high quantum efficiency and low excess noise factor allow for better statistical accuracy of the signal as compared to photomultipliers. The device dark noise contribution significantly affects energy resolution only for gamma-rays with energy below 50 keV. Notably better or comparable energy resolutions to those observed with a XP2020Q photomultiplier were obtained with the LAAPDs for a number of different scintillators. Particularly, the recorded energy resolutions of 4.3+-0.2% and 4.8+-0.14% measured with YAP and CsI(Tl) crystals, respectively, for the 662 keV gamma-peak from a sup 1 sup 3 sup 7 Cs source belong to the best observed ever with these scintillation detectors. Results of the study of timing with fast scintillators coupled to the LAAPD showed subnanosecond time resolution of 570+-30 ps for sup 6 sup 0 Co gamma-ray...

  4. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Science.gov (United States)

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  5. Pork carcass injury in slaughterhouse waiting area and nutrient addition in pre-slaughter fasting

    Directory of Open Access Journals (Sweden)

    Tiago G Petrolli

    2017-01-01

    Full Text Available Objective. Two experiments were conducted on a slaughterhouse located in Brazil, which the first aimed at evaluating the injuries on pig skin and carcass resulting from slaughterhouse waiting area management and the second aimed at assessing how glucose (G, sodium bicarbonate (SB and vitamin E (VE added to water during pre-slaughter fasting may affect carcass yield, organ relative weight and pork meat quality characteristics. Materials and methods. First trial included 1000 pigs, which were observed in the slaughterhouse resting area until the moment they entered the stunning process area. In the second trial were used 500 animals distributed on the last pre-slaughter day in a completely randomized design, including ten treatments and ten replicates. The treatments were: water; 50 g/L G; 50 g/L G + 200 mg/L of VE; 75 g/L of G; 75 g/L of G + 200 mg VE; 0.45% SB; 0.45% SB + 200 mg/L of VE; 0.55% SB; 0.55% SB + 200 mg/L of VE; 200 mg/L of VE. Results. Carcass yield and relative organ weight were not affected by treatments. The addition of 0.55% SB + 200 mg VE reduced the final pH of meat, and of 0.45% SB reduced the red pigment intensity. Conclusions. The main occurrences of injuries to the skin and carcass of pigs are due to fights. Also, adding glucose, sodium bicarbonate, and vitamin E to diet did not affect the carcass and viscera yield and meat quality.

  6. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    Science.gov (United States)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  7. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  8. Suppression of fast electron leakage from large openings in a plasma neutralizer for N-NB systems

    International Nuclear Information System (INIS)

    Kashiwagi, Mieko; Hanada, Masaya; Yamana, Takashi; Inoue, Takashi; Imai, Tsuyoshi; Taniguchi, Masaki; Watanabe, Kazuhiro

    2006-01-01

    To produce highly ionized plasmas at low operating pressure in a plasma neutralizer of negative ion based neutral beam (N-NB) systems, it is a critical issue to suppress leakage of fast electrons through large openings as the beam entrance/exit. The authors propose to form weak transverse magnetic fields without a significant beam deflection, called the shield field, across the large openings of the neutralizer. A numerical study showed that the shield field of only few tens of Gauss is sufficient to suppress the fast electron leakage from the openings. By measuring of an electron energy distribution function (EEDF), it was confirmed that such a weak magnetic field is enough to repel the fast electrons back into the neutralizer plasma. As the result, the plasma density increased with the shield field strength and saturated at 30 G. The plasma density reached 50% higher value than that without the shield field. Thus it was found that reflected fast electrons by the shield field of only 30 G work effectively for the plasma generation. It was also estimated that such a weak magnetic field sufficiently suppresses the deflection of a 1 MeV beam. This weak magnetic field would be applicable to the plasma neutralizer for the fusion demonstration (DEMO) plant

  9. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  10. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    International Nuclear Information System (INIS)

    Kessinger, G.F.

    1993-10-01

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO 2 pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams

  11. Prospecting direction and favourable target areas for exploration of large and super-large uranium deposits in China

    International Nuclear Information System (INIS)

    Liu Xingzhong

    1993-01-01

    A host of large uranium deposits have been successively discovered abroad by means of geological exploration, metallogenetic model studies and the application of new geophysical and geochemical methods since 1970's. Thorough undertaking geological research relevant to prospecting for super large uranium deposits have attracted great attention of the worldwide geological circle. The important task for the vast numbers of uranium geological workers is to make an afford to discover more numerous large and super large uranium deposits in China. The author comprehensively analyses the regional geological setting and geological metallogenetic conditions for the super large uranium deposits in the world. Comparative studies have been undertaken and the prospecting direction and favourable target areas for the exploration of super large uranium deposits in China have been proposed

  12. Development of a Methodology for Predicting Forest Area for Large-Area Resource Monitoring

    Science.gov (United States)

    William H. Cooke

    2001-01-01

    The U.S. Department of Agriculture, Forest Service, Southcm Research Station, appointed a remote-sensing team to develop an image-processing methodology for mapping forest lands over large geographic areds. The team has presented a repeatable methodology, which is based on regression modeling of Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic...

  13. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    OpenAIRE

    Wang Hao; Gao Wen; Huang Qingming; Zhao Feng

    2010-01-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matchin...

  14. Reflections on the political economy of large-scale technology using the example of German fast-breeder development

    International Nuclear Information System (INIS)

    Keck, O.

    1981-01-01

    Proceeding from Anglo-Saxon opinions which, from a liberal point of view, criticize the German practice of research policy - state centres of large-scale research and state subventions for research and development in industry - to be inefficient, the author empirically verified these statements taking the German fast breeder project as an example. If the case of the German fast breeder can be generalized, this had consequences for the research political practice and for other technologies. Supporters as well as opponents of large-scale technology today proceed from the assumption that almost every technology can be made commercially viable when using sufficient amounts of money and persons. This is a migth which owes its existence to the technical success of great projects in non-commercial fields. The German fast breeder project confirms the opinion that the recipes for success of these non-commercial projects cannot be applied to the field of commercial technology. The results of this study suggest that practice and theory of technology policy can be misdirected if they are uncritically oriented according to the form of state intervention so far used in large-scale technology. (orig./HSCH) [de

  15. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...... to enable efficient operation. These valves are complex components to design, as multiple design aspects are present in these integrated valve units, with conflicting objectives and interdependencies. A preliminary study on a small scale single-cylinder digital hydraulic pump has initially been conducted...

  16. Development of a photogrammetry technique for large-area deformation monitoring in coal mining areas

    International Nuclear Information System (INIS)

    Redweik, P.M.

    1993-01-01

    The investigations of ground movements in coal mining areas during the past 10 years have been performed by methods of aerial photogrammetry. The ground points used for the determination of the movement in urban areas are manhole covers. The measurements must be repeated every three or four years. These facts have motivated the development of a new automatic method for measuring photo coordinates. This method is implemented on the Rollei RS1 (Reseau-Scanner Monocomparator. The approximate photo coordinates that are needed for this instrument can be computed from the old ground coordinates of each point. The manhole cover will be first recognised with a sort of template matching. Its central point will then be computed by using an ellipse operator. (orig.) [de

  17. A fast large dynamic range shaping amplifier for particle detector front-end

    International Nuclear Information System (INIS)

    Rivetti, Angelo; Delaurenti, Paolo

    2007-01-01

    The paper describes a fast shaping amplifier with rail-to-rail output swing. The circuit is based on a CMOS operational amplifier with a class AB output stage. A baseline holder, incorporating a closed-loop unity gain buffer with slew rate limitation, performs the AC coupling with the preamplifier and guarantees a baseline shift smaller than 3 mV for unipolar output pulses of 3 V and 10 MHz rate

  18. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  19. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates

    Science.gov (United States)

    Ronald E. McRoberts; James A. Westfall

    2014-01-01

    Forest inventory estimates of tree volume for large areas are typically calculated by adding model predictions of volumes for individual trees. However, the uncertainty in the model predictions is generally ignored with the result that the precision of the large area volume estimates is overestimated. The primary study objective was to estimate the effects of model...

  20. Fast and accurate: high-speed metrological large-range AFM for surface and nanometrology

    Science.gov (United States)

    Dai, Gaoliang; Koenders, Ludger; Fluegge, Jens; Hemmleb, Matthias

    2018-05-01

    Low measurement speed remains a major shortcoming of the scanning probe microscopic technique. It not only leads to a low measurement throughput, but a significant measurement drift over the long measurement time needed (up to hours or even days). To overcome this challenge, PTB, the national metrology institute of Germany, has developed a high-speed metrological large-range atomic force microscope (HS Met. LR-AFM) capable of measuring speeds up to 1 mm s‑1. This paper has introduced the design concept in detail. After modelling scanning probe microscopic measurements, our results suggest that the signal spectrum of the surface to be measured is the spatial spectrum of the surface scaled by the scanning speed. The higher the scanning speed , the broader the spectrum to be measured. To realise an accurate HS Met. LR-AFM, our solution is to combine different stages/sensors synchronously in measurements, which provide a much larger spectrum area for high-speed measurement capability. Two application examples have been demonstrated. The first is a new concept called reference areal surface metrology. Using the developed HS Met. LR-AFM, surfaces are measured accurately and traceably at a speed of 500 µm s‑1 and the results are applied as a reference 3D data map of the surfaces. By correlating the reference 3D data sets and 3D data sets of tools under calibration, which are measured at the same surface, it has the potential to comprehensively characterise the tools, for instance, the spectrum properties of the tools. The investigation results of two commercial confocal microscopes are demonstrated, indicating very promising results. The second example is the calibration of a kind of 3D nano standard, which has spatially distributed landmarks, i.e. special unique features defined by 3D-coordinates. Experimental investigations confirmed that the calibration accuracy is maintained at a measurement speed of 100 µm s‑1, which improves the calibration efficiency by a

  1. Highly Flexible and High-Performance Complementary Inverters of Large-Area Transition Metal Dichalcogenide Monolayers

    KAUST Repository

    Pu, Jiang

    2016-03-23

    Complementary inverters constructed from large-area monolayers of WSe2 and MoS2 achieve excellent logic swings and yield an extremely high gain, large total noise margin, low power consumption, and good switching speed. Moreover, the WSe2 complementary-like inverters built on plastic substrates exhibit high mechanical stability. The results provide a path toward large-area flexible electronics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Feasibility of Small Hydro-Electric Generation in a Large Urban Area

    OpenAIRE

    Benson Y. Zhang; Adam Taylor

    2012-01-01

    The possibilities of generating electric power from relatively small hydro-electric sources in a large urban area is investigated. Two different aspects of hydro-electric sources have been studied: storm/waste water pipes in large multi-tenanted residential buildings and urban storm water discharge area (CSI area). The potential to generate from these sources has been investigated using a micro-turbine. The potential electric power which could be extracted from the sources was estimated using...

  3. Site survey for large wind turbines in the Rijnmond area. Plaatsingsmogelijkheden grote windturbines in het Rijnmondgebied

    Energy Technology Data Exchange (ETDEWEB)

    Arkesteyn, L A; Van der Ham, P

    1985-01-01

    This paper reveals only preliminary results of a study on site selection for large wind turbines in a heavily industrialized and urbanized area of The Netherlands: the Rijnmond area. Factors like average wind speed, coupling to electric power grid, acquisition of land, noise pollution, safety aspects, avoiding harm to birds, and fitting in the existent physical structure of the area are evaluated.

  4. Fast symplectic mapping and quasi-invariants for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Warnock, R.L.; Berg, J.S.; Forest, E.

    1995-05-01

    Beginning with a tracking code for the LHC, we construct the canonical generator of the full-turn map in polar coordinates. For very fast mapping we adopt a model in which the momentum is modulated sinusoidally with a period of 130 turns (very close to the synchrotron period). We achieve symplectic mapping of 10 7 turns in 3.6 hours on a workstation. Quasi-invariant tori are constructed on the Poincare section corresponding to multiples of the synchrotron period. The possible use of quasi-invariants in derivin, long-term bounds on the motion is discussed

  5. Correlations at large scales and the onset of turbulence in the fast solar wind

    International Nuclear Information System (INIS)

    Wicks, R. T.; Roberts, D. A.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Chen, C. H. K.

    2013-01-01

    We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and equipartitioned (residual energy ∼0) have steep structure functions reminiscent of 'turbulent' scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼–1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned magnetic and velocity vectors, have wide '1/f' ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus the onset scale for the turbulent cascade.

  6. When bigger is not better: selection against large size, high condition and fast growth in juvenile lemon sharks.

    Science.gov (United States)

    Dibattista, J D; Feldheim, K A; Gruber, S H; Hendry, A P

    2007-01-01

    Selection acting on large marine vertebrates may be qualitatively different from that acting on terrestrial or freshwater organisms, but logistical constraints have thus far precluded selection estimates for the former. We overcame these constraints by exhaustively sampling and repeatedly recapturing individuals in six cohorts of juvenile lemon sharks (450 age-0 and 255 age-1 fish) at an enclosed nursery site (Bimini, Bahamas). Data on individual size, condition factor, growth rate and inter-annual survival were used to test the 'bigger is better', 'fatter is better' and 'faster is better' hypotheses of life-history theory. For age-0 sharks, selection on all measured traits was weak, and generally acted against large size and high condition. For age-1 sharks, selection was much stronger, and consistently acted against large size and fast growth. These results suggest that selective pressures at Bimini may be constraining the evolution of large size and fast growth, an observation that fits well with the observed small size and low growth rate of juveniles at this site. Our results support those of some other recent studies in suggesting that bigger/fatter/faster is not always better, and may often be worse.

  7. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  8. A fast method for large-scale isolation of phages from hospital ...

    African Journals Online (AJOL)

    This plaque-forming method could be adopted to isolate E. coli phage easily, rapidly and in large quantities. Among the 18 isolated E. coli phages, 10 of them had a broad host range in E. coli and warrant further study. Key words: Escherichia coli phages, large-scale isolation, drug resistance, biological properties.

  9. Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique

    Science.gov (United States)

    Ivanov, Ilia N; Simpson, John T

    2012-06-26

    A method of making a large area substrate comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes. Each cut drawn tube has a first end and a second end along the longitudinal direction of the respective cut drawn tube. The cut drawn tubes collectively have a predetermined periodicity. The method of making a large area substrate also comprises forming a metal layer on the first ends of the cut drawn tubes to provide a large area substrate.

  10. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  11. Developing the Physics Basis of Fast Ignition Experiments at Future Large Fusion-class lasers

    International Nuclear Information System (INIS)

    Mackinnon, A J; Key, M H; Hatchett, S; MacPhee, A G; Foord, M; Tabak, M; Town, R J; Patel, P K

    2008-01-01

    The Fast Ignition (FI) concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional 'central hot spot' (CHS) target ignition by using one driver (laser, heavy ion beam or Z-pinch) to create a dense fuel and a separate ultra-short, ultra-intense laser beam to ignite the dense core. FI targets can burn with ∼ 3X lower density fuel than CHS targets, resulting in (all other things being equal) lower required compression energy, relaxed drive symmetry, relaxed target smoothness tolerances, and, importantly, higher gain. The short, intense ignition pulse that drives this process interacts with extremely high energy density plasmas; the physics that controls this interaction is only now becoming accessible in the lab, and is still not well understood. The attraction of obtaining higher gains in smaller facilities has led to a worldwide explosion of effort in the studies of FI. In particular, two new US facilities to be completed in 2009/2010, OMEGA/OMEGA EP and NIF-ARC (as well as others overseas) will include FI investigations as part of their program. These new facilities will be able to approach FI conditions much more closely than heretofore using direct drive (dd) for OMEGA/OMEGA EP and indirect drive (id) for NIF-ARC. This LDRD has provided the physics basis for the development of the detailed design for integrated Fast ignition experiments on these facilities on the 2010/2011 timescale. A strategic initiative LDRD has now been formed to carry out integrated experiments using NIF ARC beams to heat a full scale FI assembled core by the end of 2010

  12. Fast-wave current drive modelling for large non-circular tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Goldfinger, R.C.; Jaeger, E.F.; Carter, M.D.; Swain, D.W.; Ehst, D.; Karney, C.F.F.

    1990-01-01

    It is widely recognized that a key element in the development of an attractive tokamak reactor, and in the successful achievement of the mission of ITER, is the development of an efficient steady-state current drive technique. Fast waves in the ion cyclotron range of frequencies hold the promise to drive steady-state currents with the required efficiency and to effectively heat the plasma to ignition. Advantages over other heating and current drive techniques include low cost per watt and the ability to penetrate to the center of high-density plasmas. The primary issues that must be resolved are: can an antenna array be designed to radiate the required spectrum of waves and have adequate coupling properties? Will the rf power be efficiently absorbed by electrons in the desired velocity range without unacceptable parasitic damping by fuel ions or α particles? What will the efficiency of current drive be when toroidal effects such as trapped particles are included? Can a practical rf system be designed and integrated into the device? We have addressed these issues by performing extensive calculations with ORION, a 2-D code, and the ray tracing code RAYS, which calculate wave propagation, absorption and current drive in tokamak geometry, and with RIP, a 2-D code that self-consistently calculates current drive with MHD equilibrium. An important figure of merit in this context is the integrated, normalized current drive efficiency. The calculations that we present here emphasize the ITER device. We consider a low-frequency scenario such that no ion resonances appear in the machine, and a high-frequency scenario such that the deuterium second harmonic resonance is just outside the plasma and the tritium second harmonic is in the plasma, midway between the magnetic axis and the inside edge. In both cases electron currents are driven by combined TTMP and Landau damping of the fast waves

  13. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    International Nuclear Information System (INIS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2016-01-01

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT

  14. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  15. Ultra-large size austenitic stainless steel forgings for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Tsukada, Hisashi; Suzuki, Komei; Sato, Ikuo; Miura, Ritsu.

    1988-01-01

    The large SUS 304 austenitic stainless steel forgings for the reactor vessel of the prototype FBR 'Monju' of 280 MWe output were successfully manufactured. The reactor vessel contains the heart of the reactor and sodium coolant at 530 deg C, and its inside diameter is about 7 m, and height is about 18 m. It is composed of 12 large forgings, that is, very thick flanges and shalls made by ring forging and an end plate made by disk forging and hot forming, using a special press machine. The manufacture of these large forgings utilized the results of the basic test on the material properties in high temperature environment and the effect that the manufacturing factors exert on the material properties and the results of the development of manufacturing techniques for superlarge forgings. The problems were the manufacturing techniques for the large ingots of 250 t class of high purity, the hot working techniques for stainless steel of fine grain size, the forging techniques for superlarge rings and disks, and the machining techniques of high precision for particularly large diameter, thin wall rings. The manufacture of these large stainless steel forgings is reported. (Kako, I.)

  16. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.

    Science.gov (United States)

    Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine

    2015-03-15

    Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.

  17. EnviroAtlas - Percent Large, Medium, and Small Natural Areas for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains the percentage of small, medium, and large natural areas for each Watershed Boundary Dataset (WBD) 12-Digit Hydrologic Unit Code...

  18. Large Area Diamond Tribological Surfaces with Negligible Wear in Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I we propose to demonstrate the processing of very large area diamond sliding bearings and tribological surfaces. The bearings and surfaces will experience...

  19. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad; Karimi, Muhammad Akram; Salama, Khaled N.; Shamim, Atif

    2017-01-01

    disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept

  20. Characterisation of large area THGEMs and experimental measurement of the Townsend coefficients for CF4

    Science.gov (United States)

    Burns, J.; Crane, T.; Ezeribe, A. C.; Grove, C. L.; Lynch, W.; Scarff, A.; Spooner, N. J. C.; Steer, C.

    2017-10-01

    Whilst the performance of small THGEMs is well known, here we consider the challenges in scaling these up to large area charge readouts. We first verify the expected gain of larger THGEMs by reporting experimental Townsend coefficients for a 10 cm diameter THGEM in low-pressure CF4. Large area 50 cm by 50 cm THGEMs were sourced from a commercial PCB supplier and geometrical imperfections were observed which we quantified using an optical camera setup. The large area THGEMs were experimentally characterised at Boulby Underground Laboratory through a series of gain calibrations and alpha spectrum measurements. ANSYS, Magboltz and Garfield++ simulations of the design of a TPC based on the large area THGEMs are presented. We also consider their implications for directional dark matter research and potential applications within nuclear security.

  1. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  2. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Banavoth, Murali; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tao; Bakr, Osman

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid

  3. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying; Tee, Benjamin C-K.; Giri, Gaurav; Xu, Jie; Kim, Do Hwan; Becerril, Hector A.; Stoltenberg, Randall M.; Lee, Tae Hoon; Xue, Gi; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2013-01-01

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control

  4. 55-68 Impact of Area Enclosures on Density and Diversity of Large ...

    African Journals Online (AJOL)

    1Department of Land Resources Management and Environmental Protection, Mekelle University, ... The enclosures have higher density and diversity of large wild mammals ..... in it. Figure 4 Human interference in enclosures of the study area ...

  5. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  6. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  7. Consultancy on 'Knowledge preservation in the area of fast reactor technology'. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks is a resource that will be needed when economic uranium supplies for the advanced light water reactors or other thermal-spectrum options diminish. Further, the fast-fission fuel cycle in which material is recycled offers the flexibility needed to contribute decisively towards solving the problem of growing spent fuel inventories by greatly reducing the volume of high-level waste that must be disposed of in long-term repositories. This is a waste management option that also should be retained for future generations. The fast reactor has been the subject of research and development programs in a number of countries for upwards of 40 years. Now, despite early sharing and innovative worldwide research and development, ongoing work is confined to China, India, Japan, the Republic of Korea, and Russia. Information generated worldwide will be needed in the future. Presently, it is in danger of being lost even in those countries continuing the work. Some countries have already taken the issue of knowledge preservation seriously: Japan, France, Britain, and Russia, in particular. At worst, valuable contributory information elsewhere will be lost and would have to be regenerated when needed. The IAEA initiative seeks to establish a comprehensive, international inventory of fast reactor data and knowledge, which would be sufficient to form the basis for fast reactor development in 20 to 40 years from now. The Agency is in a good position to provide the framework for knowledge preservation efforts. Under Article III of its Statute, the IAEA is mandated to encourage and assist research on, and development and practical application of atomic energy for peaceful uses throughout the world. Obviously, an important aspect of this mandate is maintaining and increasing the knowledge that is necessary for the technological development. The main objectives of the consultancy

  8. Influence of design features on decommissioning of a large fast breeder reactor

    International Nuclear Information System (INIS)

    Fournie, J.-L.; Alary, C.; Maire, D.; Seroux, N. de; Peyrard, G.

    1990-01-01

    The evolution of FBR design in Europe shows that pool-type design will become the reference design for future FBR and the projected European Fast Reactor (EFR) is based on this concept. The identification of design features shows that the main contributors of the sodium and structures activity are the Co60 for gamma radiation source and low decay, Ni63, Nb94 and Ni59 for long time decay. So, the technical benefits of a Co content reduction are interesting for the high activated structures and for diagrid thimbles coating and we made proposals to lower Co content in steels or alloys and to substitute coatings. We identify measures which must facilitate both the sodium draining and the reactor block and internal cleaning: all which improve the gravity draining and the downing of the sodium flow make easier the penetration of cleaning products. The features, connected with the dismantling of the very activated internal structures, of the roof and of the lay-out, are mentioned. (author)

  9. Fast solar hard X-ray bursts and large scale coronal structures

    International Nuclear Information System (INIS)

    Simnett, G.M.

    1982-01-01

    The conditions at the Sun at the times corresponding to a selected set 22 fast impulsive hard X-ray bursts reported by Crannell et al. are examined. It is suggested that one of the bursts must arise from a precipitating beam of subrelativistic electrons; the source of the electrons is postulated to be in a region very remote from the X-ray site on the basis of type III and other radio data. The connection is via a coronal magnetic loop extending to approx.3 R/sub sun/ above the photosphere. The energy in the electron beam is estimated at 3 x 10 27 ergs. Intense soft X-ray and/or microwave radio storms at times corresponding to many of the impulsive X-ray bursts lead the conclusion that 14, and possibly 18, of the 22 bursts could have the same interpretation. The energy in such an electron beam could be important when considering the trigger phase of some flares

  10. A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases.

    Science.gov (United States)

    Jain, Chirag; Dilthey, Alexander; Koren, Sergey; Aluru, Srinivas; Phillippy, Adam M

    2018-04-30

    Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-and-extend methods demonstrate good accuracy, but face limited scalability, while faster alignment-free methods typically trade decreased precision for efficiency. In this article, we combine a fast approximate read mapping algorithm based on minimizers with a novel MinHash identity estimation technique to achieve both scalability and precision. In contrast to prior methods, we develop a mathematical framework that defines the types of mapping targets we uncover, establish probabilistic estimates of p-value and sensitivity, and demonstrate tolerance for alignment error rates up to 20%. With this framework, our algorithm automatically adapts to different minimum length and identity requirements and provides both positional and identity estimates for each mapping reported. For mapping human PacBio reads to the hg38 reference, our method is 290 × faster than Burrows-Wheeler Aligner-MEM with a lower memory footprint and recall rate of 96%. We further demonstrate the scalability of our method by mapping noisy PacBio reads (each ≥5 kbp in length) to the complete NCBI RefSeq database containing 838 Gbp of sequence and >60,000 genomes.

  11. Large-scale inverse model analyses employing fast randomized data reduction

    Science.gov (United States)

    Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan

    2017-08-01

    When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

  12. Fast sampling from a Hidden Markov Model posterior for large data

    DEFF Research Database (Denmark)

    Bonnevie, Rasmus; Hansen, Lars Kai

    2014-01-01

    Hidden Markov Models are of interest in a broad set of applications including modern data driven systems involving very large data sets. However, approximate inference methods based on Bayesian averaging are precluded in such applications as each sampling step requires a full sweep over the data...

  13. Detecting Change in Landscape Greenness over Large Areas: An Example for New Mexico, USA

    Science.gov (United States)

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can potentially detect large-scale, slow changes (e.g., climate change), as well as more local and rapid changes (e.g., fire, land development). A useful indicator for detecting change i...

  14. Period doubling and chaos in large area Josephson junctions induced by rf signals

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1985-01-01

    The influence of an applied rf signal on the emitted radiation from a large area Josephson junction is examined. A model of the system is presented in the framework of the one-dimensional sine-Gordon equation. The model linearizes for small and large values of the amplitude of the applied signal...

  15. Highly Flexible and High-Performance Complementary Inverters of Large-Area Transition Metal Dichalcogenide Monolayers

    KAUST Repository

    Pu, Jiang; Funahashi, Kazuma; Chen, Chang-Hsiao; Li, Ming-yang; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    Complementary inverters constructed from large-area monolayers of WSe2 and MoS2 achieve excellent logic swings and yield an extremely high gain, large total noise margin, low power consumption, and good switching speed. Moreover, the WSe2

  16. Fast, large field-of-view, telecentric optical-CT scanning system for 3D radiochromic dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A; Oldham, M, E-mail: ast5@duke.ed [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2010-11-01

    We describe initial experiences with an in-house, fast, large field-of-view optical-CT telecentric scanner (the Duke Large field of view Optical-CT Scanner (DLOS)). The DLOS system is designed to enable telecentric optical-CT imaging of dosimeters up to 24 cm in diameter with a spatial resolution of 1 mm{sup 3}, in approximately 10 minutes. These capabilities render the DLOS system a unique device at present. The system is a scaled up version of early prototypes in our lab. This scaling introduces several challenges, including the accurate measurement of a greatly increased range of light attenuation within the dosimeter, and the need to reduce even minor reflections and scattered light within the imaging chain. We present several corrections and techniques that enable accurate, low noise, 3D dosimetery with the DLOS system.

  17. Validity of the top-down approach of inverse dynamics analysis in fast and large rotational trunk movements.

    Science.gov (United States)

    Iino, Yoichi; Kojima, Takeji

    2012-08-01

    This study investigated the validity of the top-down approach of inverse dynamics analysis in fast and large rotational movements of the trunk about three orthogonal axes of the pelvis for nine male collegiate students. The maximum angles of the upper trunk relative to the pelvis were approximately 47°, 49°, 32°, and 55° for lateral bending, flexion, extension, and axial rotation, respectively, with maximum angular velocities of 209°/s, 201°/s, 145°/s, and 288°/s, respectively. The pelvic moments about the axes during the movements were determined using the top-down and bottom-up approaches of inverse dynamics and compared between the two approaches. Three body segment inertial parameter sets were estimated using anthropometric data sets (Ae et al., Biomechanism 11, 1992; De Leva, J Biomech, 1996; Dumas et al., J Biomech, 2007). The root-mean-square errors of the moments and the absolute errors of the peaks of the moments were generally smaller than 10 N·m. The results suggest that the pelvic moment in motions involving fast and large trunk movements can be determined with a certain level of validity using the top-down approach in which the trunk is modeled as two or three rigid-link segments.

  18. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); College of Sciences, China Three Gorges University, Yichang 443002 (China); Mei, D.-M., E-mail: dongming.mei@usd.edu [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Davis, P.; Woltman, B. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Gray, F. [Department of Physics and Computational Science, Regis University, Denver, CO 80221 (United States)

    2013-11-21

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron–gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  19. Studies on a pulse shaping system for fast coincidence with very large volume HPGe detectors

    International Nuclear Information System (INIS)

    Bose, S.; Chatterjee, M.B.; Sinha, B.K.; Bhattacharya, R.

    1987-01-01

    A variant of the leading edge timing (LET) has been proposed which compensates the ''walk'' due to risetime spread in very large volume (∝100 cm 3 ) HPGe detectors. The method - shape compensated leading edge timing (SCLET) - can be used over a wide dynamic range of energies with 100% efficiency and has been compared with the LET and ARC methods. A time resolution of 10 ns fwhm and 21 ns fwtm has been obtained with 22 Na gamma rays and two HPGe detectors of 96 and 114 cm 3 volume. This circuit is easy to duplicate and use can be a low cost alternative to commercial circuits in experiments requiring a large number of detectors. (orig.)

  20. On the testing fast response NPP's valves of large nominal bores and high parameters

    International Nuclear Information System (INIS)

    Majorov, A.P.; Ostretsov, I.N.

    1990-01-01

    Investigation technique for valves of large norminal bores and high parameters which is based on application of simulation effect for operation and accident loadings during movement of valve lock at bench tests with medium flow rate by 100-1000 times less than during operation is given. Loading simulation technique is provided using simulator of lock loading. Investigation results are essential to make decision concerning advisability of serial production of fittings without full-scale test conducting

  1. 4P: fast computing of population genetics statistics from large DNA polymorphism panels.

    Science.gov (United States)

    Benazzo, Andrea; Panziera, Alex; Bertorelle, Giorgio

    2015-01-01

    Massive DNA sequencing has significantly increased the amount of data available for population genetics and molecular ecology studies. However, the parallel computation of simple statistics within and between populations from large panels of polymorphic sites is not yet available, making the exploratory analyses of a set or subset of data a very laborious task. Here, we present 4P (parallel processing of polymorphism panels), a stand-alone software program for the rapid computation of genetic variation statistics (including the joint frequency spectrum) from millions of DNA variants in multiple individuals and multiple populations. It handles a standard input file format commonly used to store DNA variation from empirical or simulation experiments. The computational performance of 4P was evaluated using large SNP (single nucleotide polymorphism) datasets from human genomes or obtained by simulations. 4P was faster or much faster than other comparable programs, and the impact of parallel computing using multicore computers or servers was evident. 4P is a useful tool for biologists who need a simple and rapid computer program to run exploratory population genetics analyses in large panels of genomic data. It is also particularly suitable to analyze multiple data sets produced in simulation studies. Unix, Windows, and MacOs versions are provided, as well as the source code for easier pipeline implementations.

  2. Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.

    Science.gov (United States)

    Youji Feng; Lixin Fan; Yihong Wu

    2016-01-01

    The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key

  3. A new method for protein estimation in large seeds using fast-neutron-activation analysis

    International Nuclear Information System (INIS)

    Gupta, U.C.; Misra, S.C.; Rao, U.S.

    1974-01-01

    A new method was developed for the determination of protein content of large seeds, using powders of different N content. The powders were obtained by mixing glucose with amino acids in different proportions and were irradiated with and without the seeds in the MeV neutron flux. The irradiated samples were counted under identical conditions and their activities were used to calculate the protein content of the seeds. The results were compared with those obtained by conventional activation technique and were found to be in good agreement. This new method has the advantage of being non-destructive. (author)

  4. A Fast Tool for Assessing the Power Performance of Large WEC arrays

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé

    In the present work, a tool for computing wave energy converter array hydrodynamic forces and power performance is developed. The tool leads to a significant reduction on computation time compared with standard boundary element method based codes while keeping similar levels of accuracy. This mak...... it suitable for array layout optimization, where large numbers of simulations are required. Furthermore, the tool is developed within an open-source environment such as Python 2.7 so that it is fully accessible to anyone willing to make use of it....

  5. COMPARISON OF MULTI-SCALE DIGITAL ELEVATION MODELS FOR DEFINING WATERWAYS AND CATCHMENTS OVER LARGE AREAS

    Directory of Open Access Journals (Sweden)

    B. Harris

    2012-07-01

    Full Text Available Digital Elevation Models (DEMs allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas are adequate for the creation of waterways and catchments at a regional scale.

  6. Comparison of Multi-Scale Digital Elevation Models for Defining Waterways and Catchments Over Large Areas

    Science.gov (United States)

    Harris, B.; McDougall, K.; Barry, M.

    2012-07-01

    Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.

  7. Solving Large-Scale TSP Using a Fast Wedging Insertion Partitioning Approach

    Directory of Open Access Journals (Sweden)

    Zuoyong Xiang

    2015-01-01

    Full Text Available A new partitioning method, called Wedging Insertion, is proposed for solving large-scale symmetric Traveling Salesman Problem (TSP. The idea of our proposed algorithm is to cut a TSP tour into four segments by nodes’ coordinate (not by rectangle, such as Strip, FRP, and Karp. Each node is located in one of their segments, which excludes four particular nodes, and each segment does not twist with other segments. After the partitioning process, this algorithm utilizes traditional construction method, that is, the insertion method, for each segment to improve the quality of tour, and then connects the starting node and the ending node of each segment to obtain the complete tour. In order to test the performance of our proposed algorithm, we conduct the experiments on various TSPLIB instances. The experimental results show that our proposed algorithm in this paper is more efficient for solving large-scale TSPs. Specifically, our approach is able to obviously reduce the time complexity for running the algorithm; meanwhile, it will lose only about 10% of the algorithm’s performance.

  8. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    International Nuclear Information System (INIS)

    Guerard, Bruno

    2015-01-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, 3 He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using 3 He PSDs mounted side by side to cover tens of m 2 . As a result of the so-called ' 3 He shortage crisis , the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B 4 C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of

  9. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Guerard, Bruno [ILL-ESS-LiU collaboration, CRISP project, Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard

  10. Productivity and efficiency of economic activity of the Lower Silesia's large area farms in comparison with other large area farms in Poland

    Directory of Open Access Journals (Sweden)

    Stanisław Minta

    2009-01-01

    Full Text Available The paper shows economical and financial situation of the agricultural companies which have most of the grounds in lease. Analysed objects were settled on Lower Silesia (the province in the south – west Poland. The main part of the results of research was about productivity and efficiency of economic resources in these objects. The research was made in years 2000-2002. The results of research in analyzed Lower Silesia’s companies were compared with the best Polish large area farms in order of law and organisation forms: leased farms, private farms and partnerships of Polish public agency AWRSP.

  11. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    Directory of Open Access Journals (Sweden)

    Eric Auchter

    2017-12-01

    Full Text Available A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated the effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.

  12. Concurrent Driving Method with Fast Scan Rate for Large Mutual Capacitance Touch Screens

    Directory of Open Access Journals (Sweden)

    Mohamed Gamal Ahmed Mohamed

    2015-01-01

    Full Text Available A novel touch screen control technique is introduced, which scans each frame in two steps of concurrent multichannel driving and differential sensing. The proposed technique substantially increases the scan rate and reduces the ambient noise effectively. It is also extended to a multichip architecture to support excessively large touch screens with great scan rate improvement. The proposed method has been implemented using 0.18 μm CMOS TowerJazz process and tested with FPGA and AFE board connecting a 23-inch touch screen. Experimental results show a scan rate improvement of up to 23.8 times and an SNR improvement of 24.6 dB over the conventional method.

  13. Simulations of fast crab cavity failures in the high luminosity Large Hadron Collider

    Science.gov (United States)

    Yee-Rendon, Bruce; Lopez-Fernandez, Ricardo; Barranco, Javier; Calaga, Rama; Marsili, Aurelien; Tomás, Rogelio; Zimmermann, Frank; Bouly, Frédéric

    2014-05-01

    Crab cavities (CCs) are a key ingredient of the high luminosity Large Hadron Collider (HL-LHC) project for increasing the luminosity of the LHC. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns and considering the significant stored energy in the HL-LHC beam, CC failures represent a serious threat in regard to LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasistationary-state distribution to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails are on the same order of the limit. Additionally, some mitigation strategies are studied for reducing the damage caused by the CC failures.

  14. Distributed weighted least-squares estimation with fast convergence for large-scale systems.

    Science.gov (United States)

    Marelli, Damián Edgardo; Fu, Minyue

    2015-01-01

    In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.

  15. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  16. Development and characterization of the control assembly system for the large 2400 MWth Generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Girardin, G.; Rimpault, G.; Morin, F.; Bosq, J.C.; Coddington, P.; Mikityuk, K.; Chawla, R.

    2008-01-01

    The present paper is related to the design and neutronic characterization of the principal control assembly system for the reference large (2400 MWth) Generation IV gas-cooled fast reactor (GFR), which makes use of ceramic-ceramic (CERCER) plate-type fuel-elements with (U-Pu) carbide fuel contained within a SiC inert matrix. For the neutronic calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European fast reactor (EFR)-type pattern for the control assemblies as a starting point. More specifically, the core contains a total of 33 control (control system device: CSD) and safety (diverse safety device: DSD) assemblies implemented in three banks. In the design of the new control assembly system, particular attention was given to the heat generation within the assemblies, so that both neutronic and thermal-hydraulic constraints could be appropriately accounted for. The thermal-hydraulic calculations have been performed with the code COPERNIC, significant coolant mass flow rates being found necessary to maintain acceptable cladding temperatures of the absorber pins. Complementary to the design study, neutronic investigations have been performed to assess the impact of the control assemblies in the GFR core in greater detail (rod interactions, shift of the flux, peaking factors, etc.). Thus, considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual assemblies within the first bank. Large anti-shadowing effects also occur, the most prominent being that between the two CSD banks, where the total assembly worth is almost doubled in comparison to the sum of the individual values. Additional investigations have been performed and, in this context, it has been found that computation of the first-order eigenvalue and the eigenvalue separation is a robust tool to anticipate control assembly interactions in a large fast-spectrum core. One interesting

  17. UTILIZING TYPE Ia SUPERNOVAE IN A LARGE, FAST, IMAGING SURVEY TO CONSTRAIN DARK ENERGY

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Bhattacharya, Suman

    2009-01-01

    We study the utility of a large sample of Type Ia supernovae (SNe Ia) that might be observed in an imaging survey that rapidly scans a large fraction of the sky for constraining dark energy. We consider both the information contained in the traditional luminosity distance test as well as the spread in Ia SN fluxes at fixed redshift induced by gravitational lensing. As would be required from an imaging survey, we include a treatment of photometric redshift uncertainties in our analysis. Our primary result is that the information contained in the mean distance moduli of SNe Ia and the dispersion of SN Ia distance moduli complement each other, breaking a degeneracy between the present dark energy equation of state and its time variation without the need for a high-redshift (z ∼> 0.8) SN sample. Including lensing information also allows for some internal calibration of photometric redshifts. To address photometric redshift uncertainties, we present dark energy constraints as a function of the size of an external set of spectroscopically observed SNe that may be used for redshift calibration, N spec . Depending upon the details of potentially available, external SN data sets, we find that an imaging survey can constrain the dark energy equation of state at the epoch where it is best constrained w p , with a 1σ error of σ(w p ) ∼ 0.03-0.09. In addition, the marginal improvement in the error σ(w p ) from an increase in the spectroscopic calibration sample drops once N spec ∼ a few x 10 3 . This result is important because it is of the order of the size of calibration samples likely to be compiled in the coming decade and because, for samples of this size, the spectroscopic and imaging surveys individually place comparable constraints on the dark energy equation of state. In all cases, it is best to calibrate photometric redshifts with a set of spectroscopically observed SNe with relatively more objects at high redshift (z ∼> 0.5) than the parent sample of

  18. Fast and accurate detection of spread source in large complex networks.

    Science.gov (United States)

    Paluch, Robert; Lu, Xiaoyan; Suchecki, Krzysztof; Szymański, Bolesław K; Hołyst, Janusz A

    2018-02-06

    Spread over complex networks is a ubiquitous process with increasingly wide applications. Locating spread sources is often important, e.g. finding the patient one in epidemics, or source of rumor spreading in social network. Pinto, Thiran and Vetterli introduced an algorithm (PTVA) to solve the important case of this problem in which a limited set of nodes act as observers and report times at which the spread reached them. PTVA uses all observers to find a solution. Here we propose a new approach in which observers with low quality information (i.e. with large spread encounter times) are ignored and potential sources are selected based on the likelihood gradient from high quality observers. The original complexity of PTVA is O(N α ), where α ∈ (3,4) depends on the network topology and number of observers (N denotes the number of nodes in the network). Our Gradient Maximum Likelihood Algorithm (GMLA) reduces this complexity to O (N 2 log (N)). Extensive numerical tests performed on synthetic networks and real Gnutella network with limitation that id's of spreaders are unknown to observers demonstrate that for scale-free networks with such limitation GMLA yields higher quality localization results than PTVA does.

  19. Simulations of fast crab cavity failures in the high luminosity Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Bruce Yee-Rendon

    2014-05-01

    Full Text Available Crab cavities (CCs are a key ingredient of the high luminosity Large Hadron Collider (HL-LHC project for increasing the luminosity of the LHC. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns and considering the significant stored energy in the HL-LHC beam, CC failures represent a serious threat in regard to LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasistationary-state distribution to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails are on the same order of the limit. Additionally, some mitigation strategies are studied for reducing the damage caused by the CC failures.

  20. Distributed weighted least-squares estimation with fast convergence for large-scale systems☆

    Science.gov (United States)

    Marelli, Damián Edgardo; Fu, Minyue

    2015-01-01

    In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976

  1. Technique for positioning hologram for balancing large data capacity with fast readout

    Science.gov (United States)

    Shimada, Ken-ichi; Hosaka, Makoto; Yamazaki, Kazuyoshi; Onoe, Shinsuke; Ide, Tatsuro

    2017-09-01

    The technical difficulty of balancing large data capacity with a high data transfer rate in holographic data storage systems (HDSSs) is significantly high because of tight tolerances for physical perturbation. From a system margin perspective in terabyte-class HDSSs, the positioning error of a holographic disc should be within about 10 µm to ensure high readout quality. Furthermore, fine control of the positioning should be accomplished within a time frame of about 10 ms for a high data transfer rate of the Gbps class, while a conventional method based on servo control of spindle or sled motors can rarely satisfy the requirement. In this study, a new compensation method for the effect of positioning error, which precisely controls the positioning of a Nyquist aperture instead of a holographic disc, has been developed. The method relaxes the markedly low positional tolerance of a holographic disc. Moreover, owing to the markedly light weight of the aperture, positioning control within the required time frame becomes feasible.

  2. Design of a broadband ultra-large area acoustic cloak based on a fluid medium

    Science.gov (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Jiang, Ping

    2014-10-01

    A broadband ultra-large area acoustic cloak based on fluid medium was designed and numerically implemented with homogeneous metamaterials according to the transformation acoustics. In the present work, fluid medium as the body of the inclusion could be tuned by changing the fluid to satisfy the variant acoustic parameters instead of redesign the whole cloak. The effective density and bulk modulus of the composite materials were designed to agree with the parameters calculated from the coordinate transformation methodology by using the effective medium theory. Numerical simulation results showed that the sound propagation and scattering signature could be controlled in the broadband ultra-large area acoustic invisibility cloak, and good cloaking performance has been achieved and physically realized with homogeneous materials. The broadband ultra-large area acoustic cloaking properties have demonstrated great potentials in the promotion of the practical applications of acoustic cloak.

  3. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo

    2017-05-08

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  4. Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant

    KAUST Repository

    Matsuoka, Hirofumi; Kanahashi, Kaito; Tanaka, Naoki; Shoji, Yoshiaki; Li, Lain-Jong; Pu, Jiang; Ito, Hiroshi; Ohta, Hiromichi; Fukushima, Takanori; Takenobu, Taishi

    2018-01-01

    Hole carrier doping into single-crystalline transition metal dichalcogenide (TMDC) films can be achieved with various chemical reagents. However, large-area polycrystalline TMDC monolayers produced by a chemical vapor deposition (CVD) growth method have yet to be chemically doped. Here, we report that a salt of a two-coordinate boron cation, Mes2B+ (Mes: 2,4,6-trimethylphenyl group), with a chemically stable tetrakis(pentafluorophenyl)borate anion, [(C6F5)4B]−, can serve as an efficient hole-doping reagent for large-area CVD-grown tungsten diselenide (WSe2) films. Upon doping, the sheet resistance of large-area polycrystalline WSe2 monolayers decreased from 90 GΩ/sq to 3.2 kΩ/sq.

  5. Programmable and functional electrothermal bimorph actuators based on large-area anisotropic carbon nanotube paper

    Science.gov (United States)

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2018-04-01

    Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.

  6. Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant

    KAUST Repository

    Matsuoka, Hirofumi

    2018-01-18

    Hole carrier doping into single-crystalline transition metal dichalcogenide (TMDC) films can be achieved with various chemical reagents. However, large-area polycrystalline TMDC monolayers produced by a chemical vapor deposition (CVD) growth method have yet to be chemically doped. Here, we report that a salt of a two-coordinate boron cation, Mes2B+ (Mes: 2,4,6-trimethylphenyl group), with a chemically stable tetrakis(pentafluorophenyl)borate anion, [(C6F5)4B]−, can serve as an efficient hole-doping reagent for large-area CVD-grown tungsten diselenide (WSe2) films. Upon doping, the sheet resistance of large-area polycrystalline WSe2 monolayers decreased from 90 GΩ/sq to 3.2 kΩ/sq.

  7. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  8. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo; Liu, Yucheng; Ren, Xiaodong; Yang, Zhou; Li, Ruipeng; Su, Hang; Yang, Xiaoming; Xu, Junzhuo; Xu, Hua; Hu, Jian-Yong; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2017-01-01

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  9. Voltage uniformity study in large-area reactors for RF plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sansonnens, L.; Pletzer, A.; Magni, D.; Howling, A.A.; Hollenstein, C. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Schmitt, J.P.M. [Balzers Process Systems, Palaiseau (France)

    1996-09-01

    Non-uniform voltage distribution across the electrode area results in inhomogeneous thin-film RF plasma deposition in large area reactors. In this work, a two-dimensional analytic model for the calculation of the voltage distribution across the electrode area is presented. The results of this model are in good agreement with measurements performed without plasma at 13.56 MHz and 70 MHz in a large area reactor. The principal voltage inhomogeneities are caused by logarithmic singularities in the vicinity of RF connections and not by standing waves. These singularities are only described by a two-dimensional model and cannot be intuitively predicted by analogy to a one-dimensional case. Plasma light emission measurements and thickness homogeneity studies of a-Si:H films show that the plasma reproduces these voltage inhomogeneities. Improvement of the voltage uniformity is investigated by changing the number and position of the RF connections. (author) 13 figs., 20 refs.

  10. The use of large area silicon sensors for thermal neutron detection

    International Nuclear Information System (INIS)

    Schulte, R.L.; Swanson, F.; Kesselman, M.

    1994-01-01

    The use of large area planar silicon detectors coupled with gadolinium foils has been investigated to develop a thermal neutron detector having a large area-efficiency (Aε) product. Noise levels due to high detector capacitance limit the size of silicon detectors that can be utilized. Calculations using the Monte Carlo code, MCNP, have been made to determine the variation of intrinsic detection efficiency as a function of the discriminator threshold level required to eliminate the detector noise. Measurements of the noise levels for planar silicon detectors of various resistivities (400, 3000 and 5000 Ω cm) have been made and the optimal detector area-efficiency products have been determined. The response of a Si-Gd-Si sandwich detector with areas between 1 cm 2 and 10.5 cm 2 is presented and the effects of the detector capacitance and reverse current are discussed. ((orig.))

  11. The use of large area silicon sensors for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, R.L. (Research and Development Center, Mail Stop: A01-26, Grumman Aerospace Corporation, Bethpage, NY 11714 (United States)); Swanson, F. (Research and Development Center, Mail Stop: A01-26, Grumman Aerospace Corporation, Bethpage, NY 11714 (United States)); Kesselman, M. (Research and Development Center, Mail Stop: A01-26, Grumman Aerospace Corporation, Bethpage, NY 11714 (United States))

    1994-12-30

    The use of large area planar silicon detectors coupled with gadolinium foils has been investigated to develop a thermal neutron detector having a large area-efficiency (A[epsilon]) product. Noise levels due to high detector capacitance limit the size of silicon detectors that can be utilized. Calculations using the Monte Carlo code, MCNP, have been made to determine the variation of intrinsic detection efficiency as a function of the discriminator threshold level required to eliminate the detector noise. Measurements of the noise levels for planar silicon detectors of various resistivities (400, 3000 and 5000 [Omega] cm) have been made and the optimal detector area-efficiency products have been determined. The response of a Si-Gd-Si sandwich detector with areas between 1 cm[sup 2] and 10.5 cm[sup 2] is presented and the effects of the detector capacitance and reverse current are discussed. ((orig.))

  12. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors

    International Nuclear Information System (INIS)

    Wu Yiming; Zhang Xiujuan; Pan Huanhuan; Zhang Xiwei; Zhang Yuping; Zhang Xiaozhen; Jie Jiansheng

    2013-01-01

    Due to their extraordinary properties, single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices. However, it remains a critical challenge to assemble organic NWs rationally in an orientation-, dimensionality- and location-controlled manner. Herein, we demonstrate a feasible method for aligned growth of single-crystalline copper phthalocyanine (CuPc) NW arrays with high density, large-area uniformity and perfect crossed alignment by using Au film as a template. The growth process was investigated in detail. The Au film was found to have a critical function in the aligned growth of NWs, but may only serve as the active site for NW nucleation because of the large surface energy, as well as direct the subsequent aligned growth. The as-prepared NWs were then transferred to construct single NW-based photoconductive devices, which demonstrated excellent photoresponse properties with robust stability and reproducibility; the device showed a high switching ratio of ∼180, a fast response speed of ∼100 ms and could stand continuous operation up to 2 h. Importantly, this strategy can be extended to other organic molecules for their synthesis of NW arrays, revealing great potential for use in the construction of large-scale high-performance functional nano-optoelectronic devices. (paper)

  13. Clean-lifting transfer of large-area residual-free graphene films.

    Science.gov (United States)

    Wang, Di-Yan; Huang, I-Sheng; Ho, Po-Hsun; Li, Shao-Sian; Yeh, Yun-Chieh; Wang, Duan-Wei; Chen, Wei-Liang; Lee, Yu-Yang; Chang, Yu-Ming; Chen, Chia-Chun; Liang, Chi-Te; Chen, Chun-Wei

    2013-08-27

    A unique "clean-lifting transfer" (CLT) technique that applies a controllable electrostatic force to transfer large-area and high-quality CVD-grown graphene onto various rigid or flexible substrates is reported. The CLT technique without using any organic support or adhesives can produce residual-free graphene films with large-area processability, and has great potential for future industrial production of graphene-based electronics or optoelectronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantum efficiency measurement system for large area CsI photodetectors

    CERN Document Server

    Cusanno, F; Colilli, S; Crateri, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Lucentini, M; Mostarda, A; Santavenere, F; Veneroni, P; Breuer, H; Iodice, M; Urciuoli, G M; De Cataldo, G; De Leo, R; Lagamba, L; Braem, André

    2003-01-01

    A proximity focusing freon/CsI RICH detector has been built for kaon physics at Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab), Hall A. The Cherenkov photons are detected by a UV photosensitive CsI film which has been obtained by vacuum evaporation. A dedicated evaporation facility for large area photocathodes has been built for this task. A measuring system has been built to allow the evaluation of the absolute quantum efficiency (QE) just after the evaporation. The evaporation facility is described here, as well as the quantum efficiency measurement device. Results of the QE on-line measurements, for the first time on large area photocathodes, are reported.

  15. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source.......Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  16. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B.W.; et al.

    2016-03-06

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\\&D to commercialization.

  17. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  18. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    Science.gov (United States)

    Zhao, Feng; Huang, Qingming; Wang, Hao; Gao, Wen

    2010-12-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  19. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2010-01-01

    Full Text Available Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  20. Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked?

    KAUST Repository

    Sun, Ying

    2012-10-01

    © 2012 John Wiley & Sons, Ltd. Band depth is an important nonparametric measure that generalizes order statistics and makes univariate methods based on order statistics possible for functional data. However, the computational burden of band depth limits its applicability when large functional or image datasets are considered. This paper proposes an exact fast method to speed up the band depth computation when bands are defined by two curves. Remarkable computational gains are demonstrated through simulation studies comparing our proposal with the original computation and one existing approximate method. For example, we report an experiment where our method can rank one million curves, evaluated at fifty time points each, in 12.4 seconds with Matlab.

  1. The allocation of fast core storage in large computer programs: design and use of the VARY package

    International Nuclear Information System (INIS)

    Symonds, A.G.

    1975-12-01

    In the design of a large computer program which will be used to solve a wide range of problems, consideration must be given to more than just the processing algorithms in the program. For example, such programs must be flexible, readable, easily modified and must make efficient use of fast storage. A subroutine package written in Fortran IV is described here which formalises the demands and eases the job of the programmer in meeting them. In the design of programs for modular code schemes it is found that the extra demands of standardisation of programming practices where possible makes obligatory the use of such a subroutine. The use of the subroutine in a modular code scheme is specfically exemplified. (author)

  2. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  3. Seismic sloshing experiments of large pool-type fast breeder reactors

    International Nuclear Information System (INIS)

    Sakurai, A.; Masuko, Y.; Kurihara, C.; Ishihama, K.; Yashiro, T.; Rodwell, E.

    1989-01-01

    This paper presents the results of seismic sloshing experiments performed on large pool-type LMFBR vessels. Two types of tests were performed. The first type of test was designed to understand the basis phenomena of sloshing (limited to linear sloshing only) and evaluate the effects of the deck-mounted components (i.e., IHXs, pumps, and UIS) on sloshing wave heights using a 1/10-scale model (diameter 2.23 m x H 1.03 m) of the LSPB 1340 MWe pool plant. The second type of test was designed to evaluate the structural integrity of the thermal baffles of the roof-deck to withstand sloshing impulsive pressures (focused on nonlinear sloshing), using a two-dimensional 1/3-scale model (L 8 m x W 3 m x H 2.6 m) of a typical 1000 MWe pool plant. The results of the linear sloshing tests have shown that: 1. the vessel wall stiffness has no effect on the sloshing natural frequency; 2. sloshing wave heights are lowered by 30% to 50% in the presence of the deck-mounted components; and 3. damping factors of sloshing are not influenced by the wall stiffness while they are increased by the presence of the deck-mounted components. The results of the nonlinear sloshing tests are that: 1. the maximum impulsive pressure occurs when the first effective wave strikes at the roof-deck, and thereafter the impulsive pressure decreases irrespective of the impact velocity of the fluid; 2. the first effective wave refers to the case in which the height of the fluid free surface becomes nearly twice the height of the cover gas space; and 3. the structural integrity of the thermal baffles for the roof-deck against the sloshing load was confirmed. In addition to these results, two sloshing-caused problems were identified. The first one is the spillover of hot sodium into the gas-dam type thermal insulator. The second one is cover-gas entrainment into sodium which might lead to a transient overpower (TOP) incident because of the presence of gas bubbles in the reactor core. (orig./HP)

  4. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  5. Identification of a large, fast-expanding HIV-1 subtype B transmission cluster among MSM in Valencia, Spain.

    Science.gov (United States)

    Patiño-Galindo, Juan Ángel; Torres-Puente, Manoli; Bracho, María Alma; Alastrué, Ignacio; Juan, Amparo; Navarro, David; Galindo, María José; Gimeno, Concepción; Ortega, Enrique; González-Candelas, Fernando

    2017-01-01

    We describe and characterize an exceptionally large HIV-1 subtype B transmission cluster occurring in the Comunidad Valenciana (CV, Spain). A total of 1806 HIV-1 protease-reverse transcriptase (PR/RT) sequences from different patients were obtained in the CV between 2004 and 2014. After subtyping and generating a phylogenetic tree with additional HIV-1 subtype B sequences, a very large transmission cluster which included almost exclusively sequences from the CV was detected (n = 143 patients). This cluster was then validated and characterized with further maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. With these analyses, the CV cluster was delimited to 113 patients, predominately men who have sex with men (MSM). Although it was significantly located in the city of Valencia (n = 105), phylogenetic analyses suggested this cluster derives from a larger HIV lineage affecting other Spanish localities (n = 194). Coalescent analyses estimated its expansion in Valencia to have started between 1998 and 2004. From 2004 to 2009, members of this cluster represented only 1.46% of the HIV-1 subtype B samples studied in Valencia (n = 5/143), whereas from 2010 onwards its prevalence raised to 12.64% (n = 100/791). In conclusion, we have detected a very large transmission cluster in the CV where it has experienced a very fast growth in the recent years in the city of Valencia, thus contributing significantly to the HIV epidemic in this locality. Its transmission efficiency evidences shortcomings in HIV control measures in Spain and particularly in Valencia.

  6. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    Science.gov (United States)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  7. A large-scale deforestation experiment: Effects of patch area and isolation on Amazon birds

    Science.gov (United States)

    Ferraz, G.; Nichols, J.D.; Hines, J.E.; Stouffer, P.C.; Bierregaard, R.O.; Lovejoy, T.E.

    2007-01-01

    As compared with extensive contiguous areas, small isolated habitat patches lack many species. Some species disappear after isolation; others are rarely found in any small patch, regardless of isolation. We used a 13-year data set of bird captures from a large landscape-manipulation experiment in a Brazilian Amazon forest to model the extinction-colonization dynamics of 55 species and tested basic predictions of island biogeography and metapopulation theory. From our models, we derived two metrics of species vulnerability to changes in isolation and patch area. We found a strong effect of area and a variable effect of isolation on the predicted patch occupancy by birds.

  8. A qualitative study into the impact of fasting within a large tertiary hospital in Australia--the patients' perspective.

    Science.gov (United States)

    Carey, Sharon K; Conchin, Simone; Bloomfield-Stone, Susan

    2015-07-01

    This qualitative study aims to explore the physical and emotional impact of fasting from the patients' perspective. Fasting patients in hospital is common practice and generally viewed as necessary for symptom management or for safety of healthcare provision. Negative impacts of repeated or prolonged fasting on nutritional status have been well researched, but little is documented as to how fasting impacts an individual patient's psyche. Qualitative descriptive design within a tertiary hospital in Sydney, Australia. Twelve patients having had prolonged periods of continuous or intermittent fasting were invited to participate in a semi-structured interview between January-September 2012. Questions for interview explored each patient's experience of fasting, including physical and emotional impacts, interpretation of communication regarding fasting and the process of recommencing on fluids or foods. An inductive thematic analysis approach was used. Analyses showed six main themes: physical impacts; emotional impacts; food as structure; nil by mouth as jargon; fear of food re-introduction; and dissatisfaction regarding unnecessary fasting. Overwhelmingly, thirst was reported as the worst physical effect of fasting. In the first few days of fasting, patients became emotionally fixated on food. This quickly dissipated leading to a lack of appetite and fear of starting to eat again. Discomfort experienced by patients coupled with lack of appetite resulting from prolonged fasting and difficulty with food re-introduction strengthens the argument for reducing fasting times in hospital. When patients are fasted, proper hydration and establishing alternate routes of medication administration should be a priority. It is well recognised that fasting for prolonged periods is detrimental to health outcomes, but this study also shows the distress that fasting can cause. Inadequate hospital systems and out-dated practices need to be replaced with evidence-based, patient

  9. Omniscopes: Large area telescope arrays with only NlogN computational cost

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2010-01-01

    We show that the class of antenna layouts for telescope arrays allowing cheap analysis hardware (with correlator cost scaling as NlogN rather than N 2 with the number of antennas N) is encouragingly large, including not only previously discussed rectangular grids but also arbitrary hierarchies of such grids, with arbitrary rotations and shears at each level. We show that all correlations for such a 2D array with an n-level hierarchy can be efficiently computed via a fast Fourier transform in not two but 2n dimensions. This can allow major correlator cost reductions for science applications requiring exquisite sensitivity at widely separated angular scales, for example, 21 cm tomography (where short baselines are needed to probe the cosmological signal and long baselines are needed for point source removal), helping enable future 21 cm experiments with thousands or millions of cheap dipolelike antennas. Such hierarchical grids combine the angular resolution advantage of traditional array layouts with the cost advantage of a rectangular fast Fourier transform telescope. We also describe an algorithm for how a subclass of hierarchical arrays can efficiently use rotation synthesis to produce global sky maps with minimal noise and a well-characterized synthesized beam.

  10. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  11. Single-grain Silicon Technology for Large Area X-ray Imaging

    NARCIS (Netherlands)

    Arslan, A.

    2015-01-01

    Digital flat panel X-ray imagers are currently using a-Si and poly-Si thin-film-transistors (TFTs). a-Si TFT permits the use of large area substrates, however, due to the amorphous nature, the carrier mobility is very low (<1 cm2/Vs). Poly-Si TFT improves the mobility (~150 cm2/Vs) but due to random

  12. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi E-mail: momose@exp.t.u-tokyo.ac.jp; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-21

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mmx20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  13. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  14. Homeless Students and Academic Achievement: Evidence from a Large Urban Area

    Science.gov (United States)

    Tobin, Kerri J.

    2016-01-01

    Child homelessness has recently reached levels unprecedented in the United States since the Great Depression. Contemporary research has attempted to isolate the effects of homelessness on education, with mixed results. This study reports results from a study in one large urban area and finds that there is no meaningful difference in achievement…

  15. Large area flexible lighting foils using distributed bare LED dies on polyester substrates

    NARCIS (Netherlands)

    Ende, D.A. van den; Kusters, R.H.L.; Cauwe, M.; Waal, A. van der; Brand, J. van den

    2013-01-01

    Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and for backlights for flexible displays. Such a large area lighting device can be made by integrating a matrix of closely spaced LEDs on a flexible foil substrate. Preferably, these LEDs are integrated

  16. Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces

    Directory of Open Access Journals (Sweden)

    Suzan Biran Ay

    2015-01-01

    Full Text Available Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.

  17. Large-area and highly crystalline MoSe2 for optical modulator

    Science.gov (United States)

    Yin, Jinde; Chen, Hao; Lu, Wei; Liu, Mengli; Li, Irene Ling; Zhang, Min; Zhang, Wenfei; Wang, Jinzhang; Xu, Zihan; Yan, Peiguang; Liu, Wenjun; Ruan, Shuangchen

    2017-12-01

    Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm-2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.

  18. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high

  19. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  20. Long period gratings written in large-mode area photonic crystal fiber

    DEFF Research Database (Denmark)

    Nodop, D.; Linke, S.; Jansen, F.

    2008-01-01

    We report for the first time, to the best of our knowledge, on the fabrication and characterization of CO2-laser written long-period gratings in a large-mode area photonic crystal fiber with a core diameter of 25 mu m. The gratings have low insertion losses ( 10 d...

  1. 2π proportional counting chamber for large-area-coated β sources

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. 2 π proportional counting chamber for large-area-coated β sources ... A provision is made for change ofthe source and immediate measurement of source activity. These sources are used to calibrate the efficiency of contamination monitors at radiological ...

  2. The European Large-Area ISO Survey (ELAIS): the final band-merged catalogue

    DEFF Research Database (Denmark)

    Rowan-Robinson, M.; Lari, C.; Perez-Fournon, I.

    2004-01-01

    We present the final band-merged European Large-Area ISO Survey (ELAIS) Catalogue at 6.7, 15, 90 and 175 mum, and the associated data at U, g', r', i', Z, J, H, K and 20 cm. The origin of the survey, infrared and radio observations, data-reduction and optical identifications are briefly reviewed...

  3. The Large Area Telescope in the context of the extended Fermi mission

    International Nuclear Information System (INIS)

    Baldini, Luca

    2013-01-01

    Launched on June 11, 2008 with the goal of a 10-year lifetime, the Fermi observatory is nearing completion of the 5-year prime phase of the mission. In this paper we briefly review the prospects of the Large Area Telescope (the main instrument on board Fermi) in the context of the extended mission

  4. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  5. Process variations in surface nano geometries manufacture on large area substrates

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2014-01-01

    The need of transporting, treating and measuring increasingly smaller biomedical samples has pushed the integration of a far reaching number of nanofeatures over large substrates size in respect to the conventional processes working area windows. Dimensional stability of nano fabrication processe...

  6. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  7. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    Science.gov (United States)

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service

  8. Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2.

    Science.gov (United States)

    Zhou, Lin; Xu, Kai; Zubair, Ahmad; Liao, Albert D; Fang, Wenjing; Ouyang, Fangping; Lee, Yi-Hsien; Ueno, Keiji; Saito, Riichiro; Palacios, Tomás; Kong, Jing; Dresselhaus, Mildred S

    2015-09-23

    The controlled synthesis of large-area, atomically thin molybdenum ditelluride (MoTe2) crystals is crucial for its various applications based on the attractive properties of this emerging material. In this work, we developed a chemical vapor deposition synthesis to produce large-area, uniform, and highly crystalline few-layer 2H and 1T' MoTe2 films. It was found that these two different phases of MoTe2 can be grown depending on the choice of Mo precursor. Because of the highly crystalline structure, the as-grown few-layer 2H MoTe2 films display electronic properties that are comparable to those of mechanically exfoliated MoTe2 flakes. Our growth method paves the way for the large-scale application of MoTe2 in high-performance nanoelectronics and optoelectronics.

  9. A facility for the test of large area muon chambers at high rates

    CERN Document Server

    Agosteo, S; Belli, G; Bonifas, A; Carabelli, V; Gatignon, L; Hessey, N P; Maggi, M; Peigneux, J P; Reithler, H; Silari, Marco; Vitulo, P; Wegner, M

    2000-01-01

    Operation of large area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz/\\scm. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate.

  10. Scalable and reusable micro-bubble removal method to flatten large-area 2D materials

    Science.gov (United States)

    Pham, Phi H. Q.; Quach, Nhi V.; Li, Jinfeng; Burke, Peter J.

    2018-04-01

    Bubbles generated during electro-delamination and chemical etch during large-area two-dimensional (2D) material transfer has been shown to cause rippling, and consequently, results in tears and wrinkles in the transferred film. Here, we demonstrate a scalable and reusable method to remove surface adhered micro-bubbles by using hydrophobic surfaces modified by self-assembled monolayers (SAMs). Bubble removal allows the 2D film to flatten out and prevents the formation of defects. Electrical characterization was used to verify improved transfer quality and was confirmed by increased field-effect mobility and decreased sheet resistance. Raman spectroscopy was also used to validate enhanced electrical quality following transfer. The bubble removal method can be applied to an assortment of 2D materials using diverse hydrophobic SAM variants. Our studies can be integrated into large scale applications and will lead to improved large-area 2D electronics in general.

  11. A facility for the test of large-area muon chambers at high rates

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S.; Altieri, S.; Belli, G.; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M.; Peigneux, J.-P.; Reithler, H. E-mail: hans.reithler@cern.ch; Silari, M.; Vitulo, P.; Wegner, M

    2000-09-21

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm{sup -2}. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate. (authors)

  12. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  13. Large area strain analysis using scanning transmission electron microscopy across multiple images

    International Nuclear Information System (INIS)

    Oni, A. A.; Sang, X.; LeBeau, J. M.; Raju, S. V.; Saxena, S.; Dumpala, S.; Broderick, S.; Rajan, K.; Kumar, A.; Sinnott, S.

    2015-01-01

    Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase

  14. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells

    Science.gov (United States)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-09-01

    The vanadium redox flow battery (VRFB) is a promising electrochemical storage system for stationary megawatt-class applications. The currently limited cell area determined by the bipolar plate (BPP) could be enlarged significantly with a novel extruded large-area plate. For the first time a techno-economic assessment of VRFB in a power range of 1 MW-20 MW and energy capacities of up to 160 MWh is presented on the basis of the production cost model of large-area BPP. The economic model is based on the configuration of a 250 kW stack and the overall system including stacks, power electronics, electrolyte and auxiliaries. Final results include a simple function for the calculation of system costs within the above described scope. In addition, the impact of cost reduction potentials for key components (membrane, electrode, BPP, vanadium electrolyte) on stack and system costs is quantified and validated.

  15. The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Moiseev, A.A.; Hartman, R.C.; Ormes, J.F.; Thompson, D.J.; Amato, M.J.; Johnson, T.E.; Segal, K.N.; Sheppard, D.A.

    2007-03-23

    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT's first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of {approx}8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.

  16. Large-area burns with pandrug-resistant Pseudomonas aeruginosa infection and respiratory failure.

    Science.gov (United States)

    Ning, Fang-Gang; Zhao, Xiao-Zhuo; Bian, Jing; Zhang, Guo-An

    2011-02-01

    Infection due to pandrug-resistant Pseudomonas aeruginosa (PDRPA) has become a challenge in clinical practice. The aim of this research was to summarize the treatment of large-area burns (60% - 80%) with PDRPA infection and respiratory failure in our hospital over the last two years, and to explore a feasible treatment protocol for such patients. We retrospectively analyzed the treatment of five patients with large-area burns accompanied by PDRPA infection and respiratory failure transferred to our hospital from burn units in hospitals in other Chinese cities from January 2008 to February 2010. Before PDRPA infection occurred, all five patients had open wounds with large areas of granulation because of the failure of surgery and dissolving of scar tissue; they had also undergone long-term administration of carbapenems. This therapy included ventilatory support, rigorous repair of wounds, and combined antibiotic therapy targeted at drug-resistance mechanisms, including carbapenems, ciprofloxacin, macrolide antibiotics and β-lactamase inhibitors. Four patients recovered from burns and one died after therapy. First, compromised immunity caused by delayed healing of burn wounds in patients with large-area burns and long-term administration of carbapenems may be the important factors in the initiation and progression of PDRPA infection. Second, if targeted at drug-resistance mechanisms, combined antibiotic therapy using carbapenems, ciprofloxacin, macrolide antibiotics and β-lactamase inhibitors could effectively control PDRPA infection. Third, although patients with large-area burns suffered respiratory failure and had high risks from anesthesia and surgery, only aggressive skin grafting with ventilatory support could control the infection and save lives. Patients may not be able to tolerate a long surgical procedure, so the duration of surgery should be minimized, and the frequency of surgery increased.

  17. A large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxide

    Science.gov (United States)

    Zhang, Tian-Yu; Wang, Qian; Deng, Ning-Qin; Zhao, Hai-Ming; Wang, Dan-Yang; Yang, Zhen; Liu, Ying; Yang, Yi; Ren, Tian-Ling

    2017-09-01

    In this paper, we have developed a high-performance graphene electrothermal actuator (ETA). The fabrication method is easy, fast, environmentally friendly, and suitable for preparing both large-size and miniature graphene ETAs. When applied with the driving voltage of 65 V, the graphene ETA achieves a large bending angle of 270° with a fast response of 8 s and the recovery process costs 19 s. The large bending deformation is reversible and can be precisely controlled by the driving voltage. A simple robotic hand prepared by using a single graphene ETA can hold the object, which is more than ten times the weight of itself. By virtue of its large-strain, fast response, and easy-to-manufacture, we believe that the graphene ETA has tremendous potential in extensive applications involving biomimetic robotics, artificial muscles, switches, and microsensors in both macroscopic and microscopic fields.

  18. A large-area glass-resistive plate chamber with multistrip readout

    CERN Document Server

    Petrovici, M; Hildenbrand, K D; Augustinski, G; Ciobanu, M; Cruceru, I; Duma, M; Hartmann, O; Koczón, P; Kress, T; Marquardt, M; Moisa, D; Petris, M; Schröder, C; Simion, V; Stoicea, G; Weinert, J

    2002-01-01

    A completely new configuration of a glass resistive-plate chamber (GRPC) was built and tested. It consists of a double two-gap structure of electrodes with an active area of about 400 cm sup 2 and is read out via a central multistrip printed circuit board. In measurements with a sup 6 sup 0 Co source and p, d particles of 1.5 A GeV time resolutions better than 80 ps, position resolution along the strips of 5-6 mm and efficiencies larger than 95% were obtained using available fast standard electronics. These results open the possibility of constructing compact TOF detectors of high resolution and high granularity.

  19. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  20. Two-group modeling of interfacial area transport in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65409 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)

    2015-11-15

    Highlights: • Implemented updated constitutive models and benchmarking method for IATE in large pipes. • New model and method with new data improved the overall IATE prediction for large pipes. • Not all conditions well predicted shows that further development is still required. - Abstract: A comparison of the existing two-group interfacial area transport equation source and sink terms for large diameter channels with recently collected interfacial area concentration measurements (Schlegel et al., 2012, 2014. Int. J. Heat Fluid Flow 47, 42) has indicated that the model does not perform well in predicting interfacial area transport outside of the range of flow conditions used in the original benchmarking effort. In order to reduce the error in the prediction of interfacial area concentration by the interfacial area transport equation, several constitutive relations have been updated including the turbulence model and relative velocity correlation. The transport equation utilizing these updated models has been modified by updating the inter-group transfer and Group 2 coalescence and disintegration kernels using an expanded range of experimental conditions extending to pipe sizes of 0.304 m [12 in.], gas velocities of up to nearly 11 m/s [36.1 ft/s] and liquid velocities of up to 2 m/s [6.56 ft/s], as well as conditions with both bubbly flow and cap-bubbly flow injection (Schlegel et al., 2012, 2014). The modifications to the transport equation have resulted in a decrease in the RMS error for void fraction and interfacial area concentration from 17.32% to 12.3% and 21.26% to 19.6%. The combined RMS error, for both void fraction and interfacial area concentration, is below 15% for most of the experiments used in the comparison, a distinct improvement over the previous version of the model.

  1. Application of direct agglutination test (DAT) and fast agglutination screening test (FAST) for sero-diagnosis of visceral leishmaniasis in endemic area of Minas Gerais, Brazil

    NARCIS (Netherlands)

    Silva, Eduardo S.; Schoone, Gerard J.; Gontijo, Celia M. F.; Brazil, Reginaldo P.; Pacheco, Raquel S.; Schallig, Henk D. F. H.

    2005-01-01

    The direct agglutination test (DAT) has proved to be a very important sero-diagnostic tool combining high levels of intrinsic validity and ease of performance. Otherwise, fast agglutination screening test (FAST) utilises only one serum dilution making the test very suitable for the screening of

  2. Activity of CERN and LNF groups on large area GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, M. [CERN, Geneva (Switzerland); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Brock, I. [Physikalisches Institute der Universitat Bonn, Bonn (Germany); Cerioni, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Croci, G.; David, E. [CERN, Geneva (Switzerland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Oliveira, R. [CERN, Geneva (Switzerland); De Robertis, G. [Sezione INFN di Bari, Bari (Italy); Domenici, D., E-mail: Danilo.Domenici@lnf.infn.i [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Duarte Pinto, S. [CERN, Geneva (Switzerland); Felici, G.; Gatta, M.; Jacewicz, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Loddo, F. [Sezione INFN di Bari, Bari (Italy); Morello, G. [Dipeartimento di Fisica Universita della Calabria e INFN, Cosenza (Italy); Pistilli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ranieri, A. [Sezione INFN di Bari, Bari (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy)

    2010-05-21

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm{sup 2}. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm{sup 2}. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm{sup 2} GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne {Phi}-factory in Frascati.

  3. Activity of CERN and LNF groups on large area GEM detectors

    International Nuclear Information System (INIS)

    Alfonsi, M.; Bencivenni, G.; Brock, I.; Cerioni, S.; Croci, G.; David, E.; De Lucia, E.; De Oliveira, R.; De Robertis, G.; Domenici, D.; Duarte Pinto, S.; Felici, G.; Gatta, M.; Jacewicz, M.; Loddo, F.; Morello, G.; Pistilli, M.; Ranieri, A.; Ropelewski, L.; Sauli, F.

    2010-01-01

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm 2 . Now a single-mask technology is used allowing foils to be made as large as 450x2000mm 2 . The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm 2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  4. Tianmujian caldera. A potential area for locating rich and large uranium deposit

    International Nuclear Information System (INIS)

    Lin Ziyu; Xu Jinshan; Chen Mingzhuo; Jiang Jinyuan; Fan Honghai; Cheng Qi

    2001-01-01

    Based on the comprehensive analysis on geologic, remote sensing, gravimetric, magnetic and geochemical data, and the field geologic investigation, the author has preliminarily ascertained the formation and the distribution characteristics of the Tianmujian caldera, and recognized the porphyroclastic lava system which is extensively distributed in the area. The authors suggest that the Tianmujian volcanic basin experienced two evolution stages--the thermal uplifting and the formation of caldera, that large concealed uranium-rich granitic massif occurs in the area, and during the vertical evolution process the uranium showed its concentration in the lower part and depletion in the upper part, and large amount of ore-forming material moved upward along with the magmatic hydrothermals entering the caldera to form uranium deposit. In addition, it is clarified that the NE-NW rhombic-formed basement structural pattern is predominated by the NE-trending fault. At the same time, the important role of the basement faults in controlling the magmatic activities, in the formation of volcanic basins, as well as the formation of uranium mineralization is emphasized. On the basis of the above comprehensive analysis the authors suggest that the Tianmujian caldera is a quite favourable potential area for possessing the basic conditions necessary for the formation of rich and large uranium deposit including uranium 'source, migration, concentration, preservation' and favourable multiple metallogenic information is displayed in the Tianmujian area

  5. Identification of a large, fast-expanding HIV-1 subtype B transmission cluster among MSM in Valencia, Spain.

    Directory of Open Access Journals (Sweden)

    Juan Ángel Patiño-Galindo

    Full Text Available We describe and characterize an exceptionally large HIV-1 subtype B transmission cluster occurring in the Comunidad Valenciana (CV, Spain. A total of 1806 HIV-1 protease-reverse transcriptase (PR/RT sequences from different patients were obtained in the CV between 2004 and 2014. After subtyping and generating a phylogenetic tree with additional HIV-1 subtype B sequences, a very large transmission cluster which included almost exclusively sequences from the CV was detected (n = 143 patients. This cluster was then validated and characterized with further maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. With these analyses, the CV cluster was delimited to 113 patients, predominately men who have sex with men (MSM. Although it was significantly located in the city of Valencia (n = 105, phylogenetic analyses suggested this cluster derives from a larger HIV lineage affecting other Spanish localities (n = 194. Coalescent analyses estimated its expansion in Valencia to have started between 1998 and 2004. From 2004 to 2009, members of this cluster represented only 1.46% of the HIV-1 subtype B samples studied in Valencia (n = 5/143, whereas from 2010 onwards its prevalence raised to 12.64% (n = 100/791. In conclusion, we have detected a very large transmission cluster in the CV where it has experienced a very fast growth in the recent years in the city of Valencia, thus contributing significantly to the HIV epidemic in this locality. Its transmission efficiency evidences shortcomings in HIV control measures in Spain and particularly in Valencia.

  6. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Science.gov (United States)

    White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.

    2017-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

  7. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    Science.gov (United States)

    Iyengar, A.; Beach, M.; Newby, R. J.; Fabris, L.; Heilbronn, L. H.; Hayward, J. P.

    2015-02-01

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.

  8. Comparison of fast food consumption and dietary guideline practices for children and adolescents by clustering of fast food outlets around schools in the Gyeonggi area of Korea.

    Science.gov (United States)

    Joo, Soonnam; Ju, Seyoung; Chang, Hyeja

    2015-01-01

    This study investigated the distribution density of fast food outlets around schools, and the relationship between dietary health of children and adolescents and the density of fast food outlets in Korea. A distribution map of fast food outlets was drawn by collecting information on 401 locations of 16 brands within a 15-minute walk (800 meter) of 342 elementary and secondary schools in Suwon, Hwaseong and Osan. A questionnaire was used to gather data on the dietary life of 243 sixth and eighth grade students at eight schools. Schools in the upper 20% and lower 20% of the fast food outlet distribution were classified as high-density and low-density groups, respectively. The practice rate of dietary guidelines published by the Health and Welfare Ministry and the fast food consumption pattern of children and adolescents from low and high density groups were determined. The number of schools with a fast food outlet within 200 meters or in the Green Food Zone around its location was 48 of 189 (25.4%) in Suwon and 14 of 153 (9.2%) in Hwaseong and Osan. Students in the low-density group visited fast food outlets less often than those in the high-density group (pfast food outlets within 200 meters of schools was useful for identifying the effectiveness of the Green Food Zone Act and nutrition education programs.

  9. Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films

    KAUST Repository

    Matsuki, Keiichiro; Pu, Jiang; Kozawa, Daichi; Matsuda, Kazunari; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    We fabricated electric double-layer transistors comprising large-area WSe2 monolayers and investigated the effects of electrolyte gating on their photoluminescence (PL) spectra. Using the efficient gating effects of electric double layers, we succeeded in the application of a large electric field (>107Vcm%1) and the accumulation of high carrier density (>1013cm%2). As a result, we observed PL spectra based on both positively and negatively charged excitons and their gate-voltage-dependent redshifts, suggesting the effects of both an electric field and charge accumulation. © 2016 The Japan Society of Applied Physics.

  10. Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography

    Science.gov (United States)

    Kirley, Matthew P.; Aloui, Tanouir; Glass, Jeffrey T.

    2017-06-01

    The rapid adoption of nanotechnology in fields as varied as semiconductors, energy, and medicine requires the continual improvement of nanopatterning tools. Lithography is central to this evolving nanotechnology landscape, but current production systems are subject to high costs, low throughput, or low resolution. Herein, we present a solution to these problems with the use of monolayer graphene in a graphene-insulator-semiconductor (GIS) electron emitter device for large-area electron lithography. Our GIS device displayed high emission efficiency (up to 13%) and transferred large patterns (500 × 500 μm) with high fidelity (industries and opening opportunities in nanomanufacturing.

  11. Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films

    KAUST Repository

    Matsuki, Keiichiro

    2016-05-24

    We fabricated electric double-layer transistors comprising large-area WSe2 monolayers and investigated the effects of electrolyte gating on their photoluminescence (PL) spectra. Using the efficient gating effects of electric double layers, we succeeded in the application of a large electric field (>107Vcm%1) and the accumulation of high carrier density (>1013cm%2). As a result, we observed PL spectra based on both positively and negatively charged excitons and their gate-voltage-dependent redshifts, suggesting the effects of both an electric field and charge accumulation. © 2016 The Japan Society of Applied Physics.

  12. The European large area ISO survey - III. 90-mu m extragalactic source counts

    DEFF Research Database (Denmark)

    Efstathiou, A.; Oliver, S.; Rowan-Robinson, M.

    2000-01-01

    We present results and source counts at 90 mum extracted from the preliminary analysis of the European Large Area ISO Survey (ELAIS). The survey covered about 12 deg(2) of the sky in four main areas and was carried out with the ISOPHOT instrument onboard the Infrared Space Observatory (ISO...... or small groups of galaxies, suggesting that the sample may include a significant fraction of luminous infrared galaxies. The source counts extracted from a reliable subset of the detected sources are in agreement with strongly evolving models of the starburst galaxy population....

  13. On the stability of large-area Al-p-Si junction

    International Nuclear Information System (INIS)

    Tsyganov, Yu.S.

    2006-01-01

    Design of silicon radiation detector made of 12 kΩ · cm p-silicon with both amine- and amine-free hardeners epoxy resin junction edge passivation is presented. Before producing large-area detectors for measurements of efficiency of evaporation residues collection at the focal plane of the Dubna Gas-Filled Recoil Separator (DGFRS), a set of small-area test detectors was produced. Stability of the Al-(p)Si junction has been studied for a long time. Estimate of a realistic lifetime for the mentioned type of Al-Si rectifying junction is done

  14. Highly segmented large-area hybrid photodiodes with bialkali photocathodes and enclosed VLSI readout electronics

    CERN Document Server

    Braem, André; Filthaut, Frank; Go, A; Joram, C; Weilhammer, Peter; Wicht, P; Dulinski, W; Séguinot, Jacques; Wenzel, H; Ypsilantis, Thomas

    2000-01-01

    We report on the principles, design, fabrication, and operation of a highly segmented, large-area hybrid photodiode, which is being developed in the framework of the LHCb RICH project. The device consists of a cylindrical, 127 mm diameter vacuum envelope capped with a spherical borosilicate UV-glass entrance window, with an active-to-total-area fraction of 81A fountain-focusing electron optics is used to demagnify the image onto a 50 mm diameter silicon sensor, containing 2048 pads of size 1*1 mm/sup 2/. (10 refs).

  15. Radiocaesium levels in roe deer and wild boar in two large forest areas in Austria

    International Nuclear Information System (INIS)

    Tataruch, F.; Klansek, E.; Schoenhofer, F.

    1996-01-01

    A report is given on the course of radiocaesium contamination in roe deer and wild boar in two large forest areas in Austria. In autumn 1987 and winter 1987/88 radiocaesium levels rose to values higher than those recorded in 1986 in these regions. The reason for this increase was the very specific feeding selection of roe deer in these forest areas resulting in the ingestion of an unusual high amount of blueberries, ferns and mushrooms. An explanation for the changes of wild boar's contamination has not been found yet, but possible reasons are discussed. (author)

  16. Bend-resistant large mode area fiber with novel segmented cladding

    Science.gov (United States)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  17. Thick and large area PIN diodes for hard X-ray astronomy

    CERN Document Server

    Ota, N; Sugizaki, M; Kaneda, M; Tamura, T; Ozawa, H; Kamae, T; Makishima, K; Takahashi, T; Tashiro, M; Fukazawa, Y; Kataoka, J; Yamaoka, K; Kubo, S; Tanihata, C; Uchiyama, Y; Matsuzaki, K; Iyomoto, N; Kokubun, M; Nakazawa, T; Kubota, A; Mizuno, T; Matsumoto, Y; Isobe, N; Terada, Y; Sugiho, M; Onishi, T; Kubo, H; Ikeda, H; Nomachi, M; Ohsugi, T; Muramatsu, M; Akahori, H

    1999-01-01

    Thick and large area PIN diodes for the hard X-ray astronomy in the 10-60 keV range are developed. To cover this energy range in a room temperature and in a low background environment, Si PIN junction diodes of 2 mm in thickness with 2.5 cm sup 2 in effective area were developed, and will be used in the bottom of the Phoswich Hard X-ray Detector (HXD), on-board the ASTRO-E satellite. Problems related to a high purity Si and a thick depletion layer during our development and performance of the PIN diodes are presented in detail.

  18. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  19. Highlights of a recycling behaviour study in South Africa’s large urban areas

    CSIR Research Space (South Africa)

    Strydom, WF

    2012-10-01

    Full Text Available behaviour study in South Africa?s large urban areas WF STRYDOM CSIR Natural Resources and the Environment, PO Box 395, Pretoria 0001 Email: wstrydom@csir.co.za ? www.csir.co.za INTRODUCTION The recently promulgated National Environmental Management... representative sample of 2 004 respondents in 11 of the larger South African urban areas, including all the metropolitan municipalities. The survey was conducted in November 2010, before the Waste Act was widely implemented. The objective of the study was...

  20. Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics.

    Science.gov (United States)

    Fini, John M; Nicholson, Jeffrey W

    2013-08-12

    Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.

  1. Large-scale performance studies of the Resistive Plate Chamber fast tracker for the ATLAS 1st-level muon trigger

    CERN Document Server

    Cattani, G; The ATLAS collaboration

    2009-01-01

    In the ATLAS experiment, Resistive Plate Chambers provide the first-level muon trigger and bunch crossing identification over large area of the barrel region, as well as being used as a very fast 2D tracker. To achieve these goals a system of about ~4000 gas gaps operating in avalanche mode was built (resulting in a total readout surface of about 16000 m2 segmented into 350000 strips) and is now fully operational in the ATLAS pit, where its functionality has been widely tested up to now using cosmic rays. Such a large scale system allows to study the performance of RPCs (both from the point of view of gas gaps and readout electronics) with unprecedented sensitivity to rare effects, as well as providing the means to correlate (in a statistically significant way) characteristics at production sites with performance during operation. Calibrating such a system means fine tuning thousands of parameters (involving both front-end electronics and gap voltage), as well as constantly monitoring performance and environm...

  2. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Mirsafaei, Mina; Cielecki, Pawel Piotr

    2017-01-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order...... patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor of the large-scale OSCs fabricated on ITO...... with embedded Ag grids was enhanced by 18 % for the line grids pattern and 30 % for the square grids pattern compared to that of the reference OSCs. The increase in the Fill Factor was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE...

  3. Large-area imaging micro-well detectors for high-energy astrophysics

    CERN Document Server

    Deines-Jones, P; Hunter, S D; Jahoda, K; Owens, S M

    2002-01-01

    Micro-well detectors are pixelized imaging sensors that can be inexpensively fabricated in very large arrays. Owing to their intrinsic gain and operation at room temperature, they can be instrumented at very low power, per unit area, making them valuable for a variety of space-flight applications where wide-angle X-ray imaging or large-area particle tracking is required. For example, micro-well detectors have been chosen as the focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor. We have fabricated detectors which image X-rays with 200 mu m FWHM resolution at 3 keV. In agreement with other groups using similar geometries, we find nominal proportional counter energy resolution (20% at 6 keV in P-10), and stable operation at gas gains up to 30,000.

  4. Clinical observation on the reconstruction of large areas lower eyelid defect with Medpor spacer graft

    Directory of Open Access Journals (Sweden)

    Hai-Yan Li

    2014-08-01

    Full Text Available AIM: To observe the effects of porous polyethylene(Medporas a spacer graft in the reconstruction of large areas eyelid defect after the operation of malignant tumors of lower eyelids.METHODS: Nineteen cases(19 eyesof malignant tumors of lower eyelid underwent the eyelid reconstruction were selected. Medpor lower eyelid inserts implantation were used to replace tarsal joint sliding conjunctival flap and pedicle flap, and repaired full-thickness lower eyelid defects then underwent eyelid reconstruction. RESULTS: Appearance of eyelids and functional improvements were satisfactory with no stimulation on the eyeball and no effect on the visual function. Implants is with no absorption, shift, exclusion or infection and no tumor recurrence in all cases during the follow up for 6-36mo.CONCLUSION: Medpor lower eyelid inserts implantation can instead tarsal plate for the reconstruction of medium to large areas lower eyelid defect, which is easy performing with rare complications. It is an ideal alternatives of tarsal plate.

  5. ArCLight—A Compact Dielectric Large-Area Photon Detector

    Directory of Open Access Journals (Sweden)

    Martin Auger

    2018-02-01

    Full Text Available ArgonCube Light readout system (ArCLight is a novel device for detecting scintillation light over large areas with Photon Detection Efficiency (PDE of the order of a few percent. Its robust technological design allows for efficient use in large-volume particle detectors, such as Liquid Argon Time Projection Chambers (LArTPCs or liquid scintillator detectors. Due to its dielectric structure it can be placed inside volumes with high electric field. It could potentially replace vacuum PhotoMultiplier Tubes (PMTs in applications where high PDE is not required. The photon detection efficiency for a 10 × 10 cm2 detector prototype was measured to be in the range of 0.8% to 2.2% across the active area.

  6. Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope

    Science.gov (United States)

    Yao, Zhan-Wei; Lu, Si-Bin; Li, Run-Bing; Luo, Jun; Wang, Jin; Zhan, Ming-Sheng

    2018-01-01

    We propose and demonstrate a method for calibrating atomic trajectories in a large-area dual-atom-interferometer gyroscope. The atom trajectories are monitored by modulating and delaying the Raman transition, and they are precisely calibrated by controlling the laser orientation and the bias magnetic field. To improve the immunity to the gravity effect and the common phase noise, the symmetry and the overlap of two large-area atomic interference loops are optimized by calibrating the atomic trajectories and by aligning the Raman-laser orientations. The dual-atom-interferometer gyroscope is applied in the measurement of the Earth's rotation. The sensitivity is 1.2 ×10-6 rad s -1 Hz-1/2, and the long-term stability is 6.2 ×10-8 rad/s at 2000 s.

  7. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma; Pu, Jiang; Li, Ming Yang; Li, Lain-Jong; Iwasa, Yoshihiro; Takenobu, Taishi

    2015-01-01

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  8. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film

    International Nuclear Information System (INIS)

    Fan Tian-Ju; Yuan Chun-Qiu; Tang Wei; Tong Song-Zhao; Huang Wei; Min Yong-Gang; Liu Yi-Dong; Epstein, Arthur J.

    2015-01-01

    We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO 3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476 Ω/sq and transmittance of 76% at 550 nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens. (paper)

  9. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  10. An open-flow pulse ionization chamber for alpha spectrometry of large-area samples

    International Nuclear Information System (INIS)

    Johansson, L.; Roos, B.; Samuelsson, C.

    1992-01-01

    The presented open-flow pulse ionization chamber was developed to make alpha spectrometry on large-area surfaces easy. One side of the chamber is left open, where the sample is to be placed. The sample acts as a chamber wall and therby defeins the detector volume. The sample area can be as large as 400 cm 2 . To prevent air from entering the volume there is a constant gas flow through the detector, coming in at the bottom of the chamber and leaking at the sides of the sample. The method results in good energy resolution and has considerable applicability in the retrospective radon research. Alpha spectra obtained in the retrospective measurements descend from 210 Po, built up in the sample from the radon daughters recoiled into a glass surface. (au)

  11. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    International Nuclear Information System (INIS)

    Wang Zhechen; Ding Xunlei; Ma Yanping; Xue Wei; He Shenggui; Xiao Wenchang

    2008-01-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  12. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    Science.gov (United States)

    Wang, Zhe-Chen; Xiao, Wen-Chang; Ding, Xun-Lei; Ma, Yan-Ping; Xue, Wei; He, Sheng-Gui

    2008-12-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  13. A gas proportional scintillation counter for use in large area detector systems without photomultipliers

    International Nuclear Information System (INIS)

    Baruch, J.E.F.; Brooke, G.; Kellerman, E.W.; Bateman, J.E.; Connolly, J.F.

    1979-01-01

    The properties of a prototype gas proportional scintillation (GPS) detector module are described. The module (25X25X14cm 3 ) is intended to form the basic unit of large area (up to approximately 100 m 2 ) calorimetric cosmic ray burst detector. Ionisation from particle tracks in the module is collected onto a point electrode where the GPS signal is generated. A concave mirror focusses this point source onto the end of a fibre optic light guide. In the proposed large area detector these fibres are brought together onto a low light level TV camera which performs the readout. The prototype module has demonstrated an adequate light output for the detection of single muons by such a readout system and also permitted the investigation of the main operating parameters (gas mixture, EHT, pressure, etc) and operational requirements such as proportionality and long term stability. (Auth.)

  14. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma

    2015-04-27

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  15. Large-Area Binary Blazed Grating Coupler between Nanophotonic Waveguide and LED

    Directory of Open Access Journals (Sweden)

    Hongqiang Li

    2014-01-01

    Full Text Available A large-area binary blazed grating coupler for the arrayed waveguide grating (AWG demodulation integrated microsystem on silicon-on-insulator (SOI was designed for the first time. Through the coupler, light can be coupled into the SOI waveguide from the InP-based C-band LED for the AWG demodulation integrated microsystem to function. Both the length and width of the grating coupler are 360 μm, as large as the InP-based C-band LED light emitting area in the system. The coupler was designed and optimized based on the finite difference time domain method. When the incident angle of the light source is 0°, the coupling efficiency of the binary blazed grating is 40.92%, and the 3 dB bandwidth is 72 nm at a wavelength of 1550 nm.

  16. Development of an Evaluation Methodology for Loss of Large Area induced from extreme events

    International Nuclear Information System (INIS)

    Kim, Sok Chul; Park, Jong Seuk; Kim, Byung Soon; Jang, Dong Ju; Lee, Seung Woo

    2015-01-01

    USNRC announced several regulatory requirements and guidance documents regarding the event of loss of large area including 10CFR 50.54(hh), Regulatory Guide 1.214 and SRP 19.4. In Korea, consideration of loss of large area has been limitedly taken into account for newly constructing NPPs as voluntary based. In general, it is hardly possible to find available information on methodology and key assumptions for the assessment of LOLA due to 'need to know based approach'. Urgent needs exists for developing country specific regulatory requirements, guidance and evaluation methodology by themselves with the consideration of their own geographical and nuclear safety and security environments. Currently, Korea Hydro and Nuclear Power Company (KHNP) has developed an Extended Damage Mitigation Guideline (EDMG) for APR1400 under contract with foreign consulting company. The submittal guidance NEI 06-12 related to B.5.b Phase 2 and 3 focused on unit-wise mitigation strategy instead of site level mitigation or response strategy. Phase 1 mitigating strategy and guideline for LOLA (Loss of Large Area) provides emphasis on site level arrangement including cooperative networking outside organizations and agile command and control system. Korea Institute of Nuclear Safety has carried out a pilot in-house research project to develop the methodology and guideline for evaluation of LOLA since 2014. This paper introduces the summary of major results and outcomes of the aforementioned research project. After Fukushima Dai-Ichi accident, the awareness on countering the event of loss of large area induced from extreme man-made hazards or extreme beyond design basis external event. Urgent need exists to develop regulatory guidance for coping with this undesirable situation, which has been out of consideration at existing nuclear safety regulatory framework due to the expectation of rare possibility of occurrence

  17. Large-area thin self-supporting carbon foils with MgO coatings

    Science.gov (United States)

    Stolarz, Anna; Maier-Komor, Peter

    2002-03-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  18. X-ray spectrometry with Peltier-cooled large area avalanche photodiodes

    International Nuclear Information System (INIS)

    Fernandes, L.M.P.; Lopes, J.A.M.; Santos, J.M.F. dos; Conde, C.A.N.

    2004-01-01

    Performance characteristics of the response of a Peltier-cooled large-area avalanche photodiode are investigated. Detector gain, energy linearity, energy resolution and minimum detectable energy are studied at different operation temperatures. Detector energy resolution and lowest detectable X-ray energy present a strong improvement as the operation temperature is reduced from 25 to 15 deg. C and slower improvements are achieved for temperatures below 10 deg. C

  19. The European Large Area ISO Survey - IV. The preliminary 90-mu m luminosity function

    DEFF Research Database (Denmark)

    Serjeant, S.; Efstathiou, A.; Oliver, S.

    2001-01-01

    We present the luminosity function of 90-mum-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z = 0.3. Their luminosities are in the range 10(9)

  20. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    Science.gov (United States)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  1. An economic analysis of the value of research and development in the area of fourth generation fast reactors

    International Nuclear Information System (INIS)

    Taverdet-Popiolek, N.; Mathonniere, G.

    2010-01-01

    According to forecasts, the uranium market could start to become strained by the middle of the century. It is because of this hypothesis that we are in a position to evaluate the value of public research and development in the area of fourth generation fast reactors. In fact, as opposed to current reactors, fast neutron reactors allow for better use of natural uranium, and they will also be able to play an essential role in a 'sustainable' perspective. However, these technologies only emerge as a result of significant progress and require important investments in research and development. In this article, we try to evaluate the economic value of this research and development, ad analyse the interest in having this innovative technology available to cope with the expected increase in the price of uranium. If this increase in price is an entry criterion of a model, the dissemination of this innovation onto the market at the end of the research and development phase is supposedly a risky variable, conditioned by the the implementation of two probable scenarios (p and l-p respectively): 'the fast reactor is competitive and adopted by the industrialists' or 'it does not fulfill these conditions'. In view of its simplified hypotheses, the model gives the value of research and development according to an a priori estimate of p. It is then possible to judge, from a strictly economical standpoint, the relevance of pursuing a research and development programme or not in 2010, which is the date when the public authorities will have to announce their decision. With the deduced data, and a low estimation of research and development costs, the research and development programme is considered profitable, if the probability of p is above 20 %. This threshold increases with the cost of research and development, reaching close to 70 % in an extreme, unrealistic case, where it would be necessary to fund all the research and development (including the prototype) with public funds

  2. Implications of Harvest on the Boundaries of Protected Areas for Large Carnivore Viewing Opportunities.

    Directory of Open Access Journals (Sweden)

    Bridget L Borg

    Full Text Available The desire to see free ranging large carnivores in their natural habitat is a driver of tourism in protected areas around the globe. However, large carnivores are wide-ranging and subject to human-caused mortality outside protected area boundaries. The impact of harvest (trapping or hunting on wildlife viewing opportunities has been the subject of intense debate and speculation, but quantitative analyses have been lacking. We examined the effect of legal harvest of wolves (Canis lupus along the boundaries of two North American National Parks, Denali (DNPP and Yellowstone (YNP, on wolf viewing opportunities within the parks during peak tourist season. We used data on wolf sightings, pack sizes, den site locations, and harvest adjacent to DNPP from 1997-2013 and YNP from 2008-2013 to evaluate the relationship between harvest and wolf viewing opportunities. Although sightings were largely driven by wolf population size and proximity of den sites to roads, sightings in both parks were significantly reduced by harvest. Sightings in YNP increased by 45% following years with no harvest of a wolf from a pack, and sightings in DNPP were more than twice as likely during a period with a harvest buffer zone than in years without the buffer. These findings show that harvest of wolves adjacent to protected areas can reduce sightings within those areas despite minimal impacts on the size of protected wolf populations. Consumptive use of carnivores adjacent to protected areas may therefore reduce their potential for non-consumptive use, and these tradeoffs should be considered when developing regional wildlife management policies.

  3. Implications of Harvest on the Boundaries of Protected Areas for Large Carnivore Viewing Opportunities.

    Science.gov (United States)

    Borg, Bridget L; Arthur, Stephen M; Bromen, Nicholas A; Cassidy, Kira A; McIntyre, Rick; Smith, Douglas W; Prugh, Laura R

    2016-01-01

    The desire to see free ranging large carnivores in their natural habitat is a driver of tourism in protected areas around the globe. However, large carnivores are wide-ranging and subject to human-caused mortality outside protected area boundaries. The impact of harvest (trapping or hunting) on wildlife viewing opportunities has been the subject of intense debate and speculation, but quantitative analyses have been lacking. We examined the effect of legal harvest of wolves (Canis lupus) along the boundaries of two North American National Parks, Denali (DNPP) and Yellowstone (YNP), on wolf viewing opportunities within the parks during peak tourist season. We used data on wolf sightings, pack sizes, den site locations, and harvest adjacent to DNPP from 1997-2013 and YNP from 2008-2013 to evaluate the relationship between harvest and wolf viewing opportunities. Although sightings were largely driven by wolf population size and proximity of den sites to roads, sightings in both parks were significantly reduced by harvest. Sightings in YNP increased by 45% following years with no harvest of a wolf from a pack, and sightings in DNPP were more than twice as likely during a period with a harvest buffer zone than in years without the buffer. These findings show that harvest of wolves adjacent to protected areas can reduce sightings within those areas despite minimal impacts on the size of protected wolf populations. Consumptive use of carnivores adjacent to protected areas may therefore reduce their potential for non-consumptive use, and these tradeoffs should be considered when developing regional wildlife management policies.

  4. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Mirsafaei, Mina; Piotr Cielecki, Paweł; Fernandes Cauduro, André Luis; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  5. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  6. Roll-to-roll hot embossing system with shape preserving mechanism for the large-area fabrication of microstructures

    Science.gov (United States)

    Peng, Linfa; Wu, Hao; Shu, Yunyi; Yi, Peiyun; Deng, Yujun; Lai, Xinmin

    2016-10-01

    Roll-to-roll (R2R) hot embossing is a promising approach to fulfilling the demands of high throughput fabrication of large-area polymeric components with micro-structure arrays which have been widely employed in the domains of optics, optoelectronics, biology, chemistry, etc. Nevertheless, the characteristic of continuous and fast forming for the R2R hot embossing process limits material flow during filling stage and results in significant springback during demolding stage. As a result, forming defects usually appear and the process window is very narrow which hinders the industrialization of this technology. This study developed a R2R hot embossing machine and proposed a shape preserving mechanism to extend the material filling time and realized the cooling effect during the demolding process. Comparative experiments were conducted on the R2R hot embossing process for micro-pyramid arrays to understand the effect of shape preserving mechanism. The influence of tension force and encapsulation angle to the forming quality was systematically analyzed. Furthermore, the influence of processing parameters has been investigated by using the one-variable-at-a-time method. Afterwards, a series of experiments based on the central composite design approach have been conducted for the analysis of variance and the establishment of empirical models of the R2R hot embossing process. As a result, the process window was extended by the shape preserving mechanism. More importantly, the feeding speed was improved from 0.5 m min-1 to 2.5 m min-1 for the large-area fabrication of micro-pyramid arrays, which is very attractive to the industrialization of this technology.

  7. Efficiency of different techniques of physical flattening by fuel while selection of optimum arrangement of large fast reactor core

    International Nuclear Information System (INIS)

    Grachev, E.A.; Dejnega, N.L.; Mitin, A.M.

    1974-01-01

    Results are given of calculations for selecting the parameters of the large fast breeder reactor core (1500 Mw) operating on oxide fuel with a sodium coolant. A complex optimum criterion was selected for energy intensity, energy distribution, breeding ratio and critical load factor, run duration, burning, reactivity variations, influence of CV3, fuel overloads, and calculated fue fuel expenses. The effectivities of various methods for physical grading of fuel (enrichment and composition) were examined in accordance with the optimum criterion. Parameters of reactor cores optimum arrangements are presented. Continuous reactor operation during 0.8-1.0 yr. at energy intensity more than 400 kW was shown to be essential for attaining the optimum chosen. Accounting for the CV3 system and partial fuel overloads, the methods of balancing energy release either by enriching fuel or by changing its composition proved to be almost equally effective. All calculations were performed with the aid of a 18-4-RZ-15B program on the basis of a BNAB-26 constant system [ru

  8. Fast analysis of wide-band scattering from electrically large targets with time-domain parabolic equation method

    Science.gov (United States)

    He, Zi; Chen, Ru-Shan

    2016-03-01

    An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.

  9. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  10. [Effects of large-area planting water hyacinth on macro-benthos community structure and biomass].

    Science.gov (United States)

    Liu, Guo-Feng; Liu, Hai-Qin; Zhang, Zhi-Yong; Zhang, Ying-Ying; Yan, Shao-Hua; Zhong, Ji-Cheng; Fan, Cheng-Xin

    2010-12-01

    The effects on macro-benthos and benthos environment of planting 200 hm2 water hyacinth (E. crassipens) in Zhushan Bay, Lake Taihu, were studied during 8-10 months consecutive surveys. Results indicated that average densities of mollusca (the main species were Bellamya aeruginosa) in far-planting, near-planting and planting area were 276.67, 371.11 and 440.00 ind/m2, respectively, and biomass were 373.15, 486.57 and 672.54 g/m2, respectively, showed that average density and biomass of planting area's were higher than those of others. However, the average density and biomass of Oligochaeta (the main species was Limodrilus hoffmeisteri) and Chironomidae in planting area were lower than that of outside planting area. The density and biomass of three dominant species of benthic animal increased quickly during 8-9 months, decreased quickly in October inside and outside water hyacinth planting area. The reason of this phenomenon could be possible that lots of cyanobacteria cells died and consumed dissolve oxygen in proceed decomposing. Algae cells released lots of phosphorus and nitrogen simultaneously, so macro-benthos died in this environment. The indexes of Shannon-Weaver and Simpson indicated that water environment was in moderate polluted state. On the basis of the survey results, the large-area and high-density planting water hyacinth haven't demonstrated a great impact on macrobenthos and benthos environment in short planting time (about 6 months planting time).

  11. PERF: an exhaustive algorithm for ultra-fast and efficient identification of microsatellites from large DNA sequences.

    Science.gov (United States)

    Avvaru, Akshay Kumar; Sowpati, Divya Tej; Mishra, Rakesh Kumar

    2018-03-15

    Microsatellites or Simple Sequence Repeats (SSRs) are short tandem repeats of DNA motifs present in all genomes. They have long been used for a variety of purposes in the areas of population genetics, genotyping, marker-assisted selection and forensics. Numerous studies have highlighted their functional roles in genome organization and gene regulation. Though several tools are currently available to identify SSRs from genomic sequences, they have significant limitations. We present a novel algorithm called PERF for extremely fast and comprehensive identification of microsatellites from DNA sequences of any size. PERF is several fold faster than existing algorithms and uses up to 5-fold lesser memory. It provides a clean and flexible command-line interface to change the default settings, and produces output in an easily-parseable tab-separated format. In addition, PERF generates an interactive and stand-alone HTML report with charts and tables for easy downstream analysis. PERF is implemented in the Python programming language. It is freely available on PyPI under the package name perf_ssr, and can be installed directly using pip or easy_install. The documentation of PERF is available at https://github.com/rkmlab/perf. The source code of PERF is deposited in GitHub at https://github.com/rkmlab/perf under an MIT license. tej@ccmb.res.in. Supplementary data are available at Bioinformatics online.

  12. Analysis on Dangerous Source of Large Safety Accident in Storage Tank Area

    Science.gov (United States)

    Wang, Tong; Li, Ying; Xie, Tiansheng; Liu, Yu; Zhu, Xueyuan

    2018-01-01

    The difference between a large safety accident and a general accident is that the consequences of a large safety accident are particularly serious. To study the tank area which factors directly or indirectly lead to the occurrence of large-sized safety accidents. According to the three kinds of hazard source theory and the consequence cause analysis of the super safety accident, this paper analyzes the dangerous source of the super safety accident in the tank area from four aspects, such as energy source, large-sized safety accident reason, management missing, environmental impact Based on the analysis of three kinds of hazard sources and environmental analysis to derive the main risk factors and the AHP evaluation model is established, and after rigorous and scientific calculation, the weights of the related factors in four kinds of risk factors and each type of risk factors are obtained. The result of analytic hierarchy process shows that management reasons is the most important one, and then the environmental factors and the direct cause and Energy source. It should be noted that although the direct cause is relatively low overall importance, the direct cause of Failure of emergency measures and Failure of prevention and control facilities in greater weight.

  13. DATA SECURITY IN LOCAL AREA NETWORK BASED ON FAST ENCRYPTION ALGORITHM

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-06-01

    Full Text Available Hacking is one of the greatest problems in the wireless local area networks. Many algorithms have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user safely and correctly. In this paper, a new symmetrical encryption algorithm is proposed that prevents the outside attacks. The new algorithm avoids key exchange between users and reduces the time taken for the encryption and decryption. It operates at high data rate in comparison with The Data Encryption Standard (DES, Triple DES (TDES, Advanced Encryption Standard (AES-256, and RC6 algorithms. The new algorithm is applied successfully on both text file and voice message.

  14. Research progress on large-area perovskite thin films and solar modules

    Directory of Open Access Journals (Sweden)

    Zhichun Yang

    2017-12-01

    Full Text Available Organometal halide perovskites have exhibited a bright future as photovoltaic semiconductor in next generation solar cells due to their unique and promising physicochemical properties. Over the past few years, we have witnessed a tremendous progress of efficiency record evolution of perovskite solar cells (PSCs. Up to now, the highest efficiency record of PSCs has reached 22.1%; however, it was achieved at a very small device area of <0.1 cm2. With the device area increasing to mini-module scale, the efficiency record dropped dramatically. The inherent causes are mainly ascribed to inadequate quality control of large-area perovskite thin films and insufficient optimization of solar module design. In current stage of PSCs research and development, to overcome these two obstacles is in urgent need before this new technology could realize scale-up industrialization. Herein, we present an overview of recently developed strategies for preparing large-area perovskite thin films and perovskite solar modules (PSMs. At last, cost analysis and future application directions of PSMs have also been discussed.

  15. Self-alignment of a compact large-area atomic Sagnac interferometer

    International Nuclear Information System (INIS)

    Tackmann, G; Berg, P; Schubert, C; Abend, S; Gilowski, M; Ertmer, W; Rasel, E M

    2012-01-01

    We report on the realization of a compact atomic Mach-Zehnder-type Sagnac interferometer of 13.7 cm length, which covers an area of 19 mm 2 previously reported only for large thermal beam interferometers. According to Sagnac's formula, which holds for both light and atoms, the sensitivity for rotation rates increases linearly with the area enclosed by the interferometer. The use of cold atoms instead of thermal atoms enables miniaturization of Sagnac interferometers without sacrificing large areas. In comparison with thermal beams, slow atoms offer better matching of the initial beam velocity and the velocity with which the matter waves separate. In our case, the area is spanned by a cold atomic beam of 2.79 m s -1 , which is split, deflected and combined by driving a Raman transition between the two hyperfine ground states of 87 Rb in three spatially separated light zones. The use of cold atoms requires a precise angular alignment and high wave front quality of the three independent light zones over the cloud envelope. We present a procedure for mutually aligning the beam splitters at the microradian level by making use of the atom interferometer itself in different configurations. With this method, we currently achieve a sensitivity of 6.1×10 -7 rad s -1 Hz -1/2 . (paper)

  16. Freight distribution problems in congested urban areas : fast and effective solution procedures to time-dependent vehicle routing problems

    Science.gov (United States)

    2011-01-01

    Congestion is a common phenomenon in all medium to large cities of the world. Reliability of freight movement in urban areas is an important : issue to manufacturing or service companies whose operation is based in just-in-time approaches. These comp...

  17. Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction

    Energy Technology Data Exchange (ETDEWEB)

    Seyedi, M. A., E-mail: seyedi@usc.edu; Yao, M.; O' Brien, J.; Dapkus, P. D. [Center for Energy Nanoscience, University of Southern California, Los Angeles, California 90089 (United States); Wang, S. Y. [Center for Energy Nanoscience, University of Southern California, Los Angeles, California 90089 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, California 95064, USA and NASA Ames Research Center, Moffett Field, California 94035 (United States)

    2013-12-16

    We present experimental results on a GaAs/Indium-Tin-Oxide Schottky-like heterojunction photodetector based on a nanowire device geometry. By distributing the active detecting area over an array of nanowires, it is possible to achieve large area detection with low capacitance. Devices with bare GaAs and passivated AlGaAs/GaAs nanowires are fabricated to compare the responsivity with and without surface passivation. We are able to achieve responsivity of >0.5A/W and Signal-Noise-Ratio in excess of 7 dB for 2 V applied reverse bias with passivated nanowire devices. Capacitance-voltage measurement yields <5 nF/cm{sup 2}, which shows a strong possibility for high-speed applications with a broad area device.

  18. Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction

    International Nuclear Information System (INIS)

    Seyedi, M. A.; Yao, M.; O'Brien, J.; Dapkus, P. D.; Wang, S. Y.

    2013-01-01

    We present experimental results on a GaAs/Indium-Tin-Oxide Schottky-like heterojunction photodetector based on a nanowire device geometry. By distributing the active detecting area over an array of nanowires, it is possible to achieve large area detection with low capacitance. Devices with bare GaAs and passivated AlGaAs/GaAs nanowires are fabricated to compare the responsivity with and without surface passivation. We are able to achieve responsivity of >0.5A/W and Signal-Noise-Ratio in excess of 7 dB for 2 V applied reverse bias with passivated nanowire devices. Capacitance-voltage measurement yields 2 , which shows a strong possibility for high-speed applications with a broad area device

  19. Fabrication of Large Area Fishnet Optical Metamaterial Structures Operational at Near-IR Wavelengths

    Directory of Open Access Journals (Sweden)

    Dennis W. Prather

    2010-12-01

    Full Text Available In this paper, we demonstrate a fabrication process for large area (2 mm × 2 mm fishnet metamaterial structures for near IR wavelengths. This process involves: (a defining a sacrificial Si template structure onto a quartz wafer using deep-UV lithography and a dry etching process (b deposition of a stack of Au-SiO2-Au layers and (c a ‘lift-off’ process which removes the sacrificial template structure to yield the fishnet structure. The fabrication steps in this process are compatible with today’s CMOS technology making it eminently well suited for batch fabrication. Also, depending on area of the exposure mask available for patterning the template structure, this fabrication process can potentially lead to optical metamaterials spanning across wafer-size areas.

  20. Two-group interfacial area concentration correlations of two-phase flows in large diameter pipes

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Hibiki, Takashi

    2015-01-01

    The reliable empirical correlations and models are one of the important ways to predict the interfacial area concentration (IAC) in two-phase flows. However, up to now, no correlation or model is available for the prediction of the IAC in the two-phase flows in large diameter pipes. This study collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes and presented a systematic way to predict the IAC for two-phase flows from bubbly, cap-bubbly to churn flow in large diameter pipes by categorizing bubbles into two groups (group-1: spherical and distorted bubble, group-2: cap bubble). Correlations were developed to predict the group-1 void fraction from the void fraction of all bubble. The IAC contribution from group-1 bubbles was modeled by using the dominant parameters of group-1 bubble void fraction and Reynolds number based on the parameter-dependent analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. A new drift velocity correlation for two-phase flow with large cap bubbles in large diameter pipes was derived in this study. By comparing the newly-derived drift velocity correlation with the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes and using the characteristics of the representative bubbles among the group 2 bubbles, we developed the model of IAC and bubble size for group 2 cap bubbles. The developed models for estimating the IAC are compared with the entire collected database. A reasonable agreement was obtained with average relative errors of ±28.1%, ±54.4% and ±29.6% for group 1, group 2 and all bubbles respectively. (author)

  1. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass

    International Nuclear Information System (INIS)

    Danish, Mohammed; Hashim, Rokiah; Ibrahim, M.N. Mohamad; Sulaiman, Othman

    2014-01-01

    The preparation of activated carbon from date stone treated with phosphoric acid was optimized using rotatable central composite design of response surface methodology (RSM). The chemical activating agent concentration and temperature of activation plays a crucial role in preparation of large surface area activated carbons. The optimized activated carbon was characterized using thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the larger surface area of activated carbon from date stone can be achieved under optimum activating agent (phosphoric acid) concentration, 50.0% (8.674 mol L −1 ) and activation temperature, 900 °C. The Brunauer–Emmett–Teller (BET) surface area of optimized activated carbon was found to be 1225 m 2  g −1 , and thermogravimetric analysis revealed that 55.2% mass of optimized activated carbon was found thermally stable till 900 °C. The leading chemical functional groups found in the date stone activated carbon were aliphatic carboxylic acid salt ν(C=O) 1561.22 cm −1 and 1384.52 cm −1 , aliphatic hydrocarbons ν(C–H) 2922.99 cm −1 (C–H sym./asym. stretch frequency), aliphatic phosphates ν(P–O–C) 1054.09 cm −1 , and secondary aliphatic alcohols ν(O–H) 3419.81 cm −1 and 1159.83 cm −1 . - Highlights: • RSM optimization was done for the production of large surface area activated carbon. • Two independent variables with two responses were selected for optimization. • Characterization was done for surface area, morphology and chemical constituents. • Optimized date stone activated carbon achieved surface area 1225 m 2  g −1

  2. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Mlynek, A.

    2015-01-01

    with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic...

  3. Experimental and simulated fast ion velocity distributions on collective Thomson scattering diagnostic in the Large Helical Device

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2012-01-01

    We have developed a collective Thomson scattering diagnostic system in the LHD. The CTS spectrum spread is observed in the frequency region corresponding to the bulk and fast ions during NB injection. The NB originated fast ions are evaluated by the MORH code for understanding the measured CTS sp...

  4. Septum magnet MNP-23 for the CERN PS experimental area and its fast interlock system

    CERN Document Server

    Borburgh, J; Prost, A; Zickler, T

    2004-01-01

    Two MNP-23 septum-like magnets are installed at CERN in the transfer line from the Proton Synchrotron (PS) to the East Hall Experimental Area. They are exposed to extremely high doses of ionizing radiation. In the past, the magnets experienced two catastrophic failures due to overheating of its coils and cannot be repaired. The magnets of improved design which is subject of this article are built as replacements for the magnets presently installed. The MNP-23 is a resistive C shaped iron-dominated magnet made of solid low carbon steel blocks. The excitation windings consist of two water-cooled coils wound from hollow copper conductor. The septum design of these magnets implies a high current density which requires an efficient water cooling system. The newly designed cooling circuit provides better cooling performance and more reliability. To avoid failures due to coil overheating, an elaborate interlock system was developed and installed. It consists of two parts: firstly a slow, more classic sensor, to dete...

  5. Interfacial area concentration in gas–liquid bubbly to churn flow regimes in large diameter pipes

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Hibiki, Takashi

    2015-01-01

    Highlights: • A systematic method to predict interfacial area concentration (IAC) is presented. • A correlation for group 1 bubble void fraction is proposed. • Correlations of IAC and bubble diameter are developed for group 1 bubbles. • Correlations of IAC and bubble diameter are developed for group 2 bubbles. • The newly-developed two-group IAC model compares well with collected databases. - Abstract: This study performed a survey on existing correlations for interfacial area concentration (IAC) prediction and collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes. Although some of these existing correlations were developed by partly using the IAC databases taken in the low-void-fraction two-phase flows in large diameter pipes, no correlation can satisfactorily predict the IAC in the two-phase flows changing from bubbly, cap bubbly to churn flow in the collected database of large diameter pipes. So this study presented a systematic way to predict the IAC for the bubbly-to-churn flows in large diameter pipes by categorizing bubbles into two groups (group 1: spherical or distorted bubble, group 2: cap bubble). A correlation was developed to predict the group 1 void fraction by using the void fraction for all bubble. The group 1 bubble IAC and bubble diameter were modeled by using the key parameters such as group 1 void fraction and bubble Reynolds number based on the analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. The correlations of IAC and bubble diameter for group 2 cap bubbles were developed by taking into account the characteristics of the representative bubbles among the group 2 bubbles and the comparison between a newly-derived drift velocity correlation for large diameter pipes and the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes. The predictions from the newly

  6. A small-scale, rolled-membrane microfluidic artificial lung designed towards future large area manufacturing.

    Science.gov (United States)

    Thompson, A J; Marks, L H; Goudie, M J; Rojas-Pena, A; Handa, H; Potkay, J A

    2017-03-01

    Artificial lungs have been used in the clinic for multiple decades to supplement patient pulmonary function. Recently, small-scale microfluidic artificial lungs (μAL) have been demonstrated with large surface area to blood volume ratios, biomimetic blood flow paths, and pressure drops compatible with pumpless operation. Initial small-scale microfluidic devices with blood flow rates in the μ l/min to ml/min range have exhibited excellent gas transfer efficiencies; however, current manufacturing techniques may not be suitable for scaling up to human applications. Here, we present a new manufacturing technology for a microfluidic artificial lung in which the structure is assembled via a continuous "rolling" and bonding procedure from a single, patterned layer of polydimethyl siloxane (PDMS). This method is demonstrated in a small-scale four-layer device, but is expected to easily scale to larger area devices. The presented devices have a biomimetic branching blood flow network, 10  μ m tall artificial capillaries, and a 66  μ m thick gas transfer membrane. Gas transfer efficiency in blood was evaluated over a range of blood flow rates (0.1-1.25 ml/min) for two different sweep gases (pure O 2 , atmospheric air). The achieved gas transfer data closely follow predicted theoretical values for oxygenation and CO 2 removal, while pressure drop is marginally higher than predicted. This work is the first step in developing a scalable method for creating large area microfluidic artificial lungs. Although designed for microfluidic artificial lungs, the presented technique is expected to result in the first manufacturing method capable of simply and easily creating large area microfluidic devices from PDMS.

  7. Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics

    International Nuclear Information System (INIS)

    Niggemann, M.; Zimmermann, B.; Haschke, J.; Glatthaar, M.; Gombert, A.

    2008-01-01

    We report on the development of two types of organic solar cell modules one for energy autonomous systems and one for large area energy harvesting. The first requires a specific tailoring of the solar cell geometry and cell interconnection in order to power an energy autonomous system under its specific operating conditions. We present an organic solar cell module with 22 interconnected solar cells. A power conversion efficiency of 2% under solar illumination has been reached on the active area of 46.2 cm 2 . A voltage of 4 V at the maximum power point has been obtained under indoor illumination conditions. Micro contact printing of a self assembling monolayer was employed for the patterning of the polymer anode. Large area photovoltaic modules have to meet the requirements on efficiency, lifetime and costs simultaneously. To minimize the production costs, a suitable concept for efficient reel-to-reel production of large area modules is needed. A major contribution to reduce the costs is the substitution of the commonly used indium tin oxide electrode by a cheap material. We present the state of the art of the anode wrap through concept as a reel-to-reel suited module concept and show comparative calculations of the module interconnection of the wrap through concept and the standard ITO-based cell architecture. As a result, the calculated overall module efficiency of the anode wrap through module exceeds the overall efficiency of modules based on ITO on glass (sheet resistance 15 Ω/square) and on foils (sheet resistance 60 Ω/square)

  8. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  9. The impact of a fast track area on quality and effectiveness outcomes: a Middle Eastern emergency department perspective.

    LENUS (Irish Health Repository)

    Devkaran, Subashnie

    2009-01-01

    BACKGROUND: Emergency department (ED) overcrowding is a ubiquitous problem with serious public health implications. The fast track area is a novel method which aims to reduce waiting time, patient dissatisfaction and morbidity. |The study objective was to determine the impact of a fast track area (FTA) on both effectiveness measures (i.e. waiting times [WT] and length of stay [LOS]) and quality measures (i.e. LWBS rates and mortality rates) in non-urgent patients. The secondary objective was to assess if a FTA negatively impacted on urgent patients entering the ED. METHODS: The study took place in a 500 bed, urban, tertiary care hospital in Abu Dhabi, United Arab Emirates. This was a quasi-experimental, which examined the impact of a FTA on a pre-intervention control group (January 2005) (n = 4,779) versus a post-intervention study group (January 2006) (n = 5,706). RESULTS: Mean WTs of Canadian Triage Acuity Scale (CTAS) 4 patients decreased by 22 min (95% CI 21 min to 24 min, P < 0.001). Similarly, mean WTs of CTAS 5 patients decreased by 28 min (95% CI 19 min to 37 min, P < 0.001) post FTA. The mean WTs of urgent patients (CTAS 2\\/3) were also significantly reduced after the FTA was opened (P < 0.001). The LWBS rate was reduced from 4.7% to 0.7% (95% CI 3.37 to 4.64; P < 0.001). Opening a FTA had no significant impact on mortality rates (P = 0.88). CONCLUSION: The FTA improved ED effectiveness (WTs and LOS) and quality measures (LWBS rates) whereas mortality rate remained unchanged.

  10. Conflict resolution in the zoning of eco-protected areas in fast-growing regions based on game theory.

    Science.gov (United States)

    Lin, Jinyao; Li, Xia

    2016-04-01

    Zoning eco-protected areas is important for ecological conservation and environmental management. Rapid and continuous urban expansion, however, may exert negative effects on the performance of practical zoning designs. Various methods have been developed for protected area zoning, but most of them failed to consider the conflicts between urban development (for the benefit of land developers) and ecological protection (local government). Some real-world zoning schemes even have to be modified occasionally after the lengthy negotiations between the government and land developers. Therefore, our study has presented a game theory-based method to deal with this problem. Future urban expansion in the study area will be predicted by a logistic regression cellular automaton, while eco-protected areas will be delimitated using multi-objective optimization algorithm. Then, two types of conflicts between them can be resolved based on game theory, a theory of decision-making. We established a two-person dynamic game for each conflict zone. The ecological compensation mechanism was taken into account by simulating the negotiation processes between the government and land developers. A final zoning scheme can be obtained when the two sides reach agreements. The proposed method is applied to the eco-protected area zoning in Guangzhou, a fast-growing city in China. The experiments indicate that the conflicts between eco-protection and urban development will inevitably arise when using only traditional zoning methods. Based on game theory, our method can effectively resolve those conflicts, and can provide a relatively reasonable zoning scheme. This method is expected to support policy-making in environmental management and urban planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Interpretation of the peak areas in gamma-ray spectra that have a large relative uncertainty

    International Nuclear Information System (INIS)

    Korun, M.; Maver Modec, P.; Vodenik, B.

    2012-01-01

    Empirical evidence is provided that the areas of peaks having a relative uncertainty in excess of 30% are overestimated. This systematic influence is of a statistical nature and originates in way the peak-analyzing routine recognizes the small peaks. It is not easy to detect this influence since it is smaller than the peak-area uncertainty. However, the systematic influence can be revealed in repeated measurements under the same experimental conditions, e.g., in background measurements. To evaluate the systematic influence, background measurements were analyzed with the peak-analyzing procedure described by Korun et al. (2008). The magnitude of the influence depends on the relative uncertainty of the peak area and may amount, in the conditions used in the peak analysis, to a factor of 5 at relative uncertainties exceeding 60%. From the measurements, the probability for type-II errors, as a function of the relative uncertainty of the peak area, was extracted. This probability is near zero below an uncertainty of 30% and rises to 90% at uncertainties exceeding 50%. - Highlights: ► A systematic influence affecting small peak areas in gamma-ray spectra is described. ► The influence originates in the peak locating procedure, using a pre-determined sensitivity. ► The predetermined sensitivity makes peak areas with large uncertainties to be overestimated. ► The influence depends on the relative uncertainty of the number of counts in the peak. ► Corrections exceeding a factor of 3 are attained at peak area uncertainties exceeding 60%.

  12. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  13. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride.

    Science.gov (United States)

    Knapp, Marius; Hoffmann, René; Cimalla, Volker; Ambacher, Oliver

    2017-08-18

    The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects . We report on an optimization of the commonly used wet transfer technique for large-area graphene, grown via chemical vapor deposition, onto aluminum nitride (AlN), which is mainly used as an active, piezoelectric material for acoustic devices. Today, graphene wet transfer is well-engineered for silicon dioxide (SiO₂). Investigations on AlN substrates reveal highly different surface properties compared to SiO₂ regarding wettability, which strongly influences the quality of transferred graphene monolayers. Both physical and chemical effects of a plasma treatment of AlN surfaces change wettability and avoid large-scale cracks in the transferred graphene sheet during desiccation. Spatially-resolved Raman spectroscopy reveals a strong strain and doping dependence on AlN plasma pretreatments correlating with the electrical conductivity of graphene. In our work, we achieved transferred crack-free large-area (40 × 40 mm²) graphene monolayers with sheet resistances down to 350 Ω/sq. These achievements make graphene more powerful as an eco-friendly and cheaper replacement for conventional electrode materials used in radio frequency resonator devices.

  14. Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy.

    Science.gov (United States)

    Zhang, Jianqi; Zhao, Yifan; Fang, Jin; Yuan, Liu; Xia, Benzheng; Wang, Guodong; Wang, Zaiyu; Zhang, Yajie; Ma, Wei; Yan, Wei; Su, Wenming; Wei, Zhixiang

    2017-06-01

    Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm 2 for a single cell and 5.18% for a 20 cm 2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing.

    Science.gov (United States)

    Kang, Junmo; Hwang, Soonhwi; Kim, Jae Hwan; Kim, Min Hyeok; Ryu, Jaechul; Seo, Sang Jae; Hong, Byung Hee; Kim, Moon Ki; Choi, Jae-Boong

    2012-06-26

    Graphene films grown on metal substrates by chemical vapor deposition (CVD) method have to be safely transferred onto desired substrates for further applications. Recently, a roll-to-roll (R2R) method has been developed for large-area transfer, which is particularly efficient for flexible target substrates. However, in the case of rigid substrates such as glass or wafers, the roll-based method is found to induce considerable mechanical damages on graphene films during the transfer process, resulting in the degradation of electrical property. Here we introduce an improved dry transfer technique based on a hot-pressing method that can minimize damage on graphene by neutralizing mechanical stress. Thus, we enhanced the transfer efficiency of the large-area graphene films on a substrate with arbitrary thickness and rigidity, evidenced by scanning electron microscope (SEM) and atomic force microscope (AFM) images, Raman spectra, and various electrical characterizations. We also performed a theoretical multiscale simulation from continuum to atomic level to compare the mechanical stresses caused by the R2R and the hot-pressing methods, which also supports our conclusion. Consequently, we believe that the proposed hot-pressing method will be immediately useful for display and solar cell applications that currently require rigid and large substrates.

  16. Development of large-area high-temperature fixed-point blackbodies for photometry and radiometry

    Science.gov (United States)

    Khlevnoy, Boris; Grigoryeva, Irina; Anhalt, Klaus; Waehmer, Martin; Ivashin, Evgeniy; Otryaskin, Denis; Solodilov, Maxim; Sapritsky, Victor

    2018-04-01

    Large-area high-temperature fixed-point (HTFP) blackbodies with working temperatures of approximately 2748 K and 3021 K, based on an Re-C eutectic and a WC-C peritectic respectively, have been developed and investigated. The blackbodies have an emissivity of 0.9997, show high-quality phase-transition plateaus and have high repeatability of the melting temperatures, but demonstrate temperature differences (from 0.2 K to 0.6 K) compared with small-cell blackbodies of the same HTFP. We associate these temperature differences with the temperature drop effect, which may differ from cell to cell. The large radiating cavity diameter of 14 mm allows developed HTFP blackbodies to be used for photometric and radiometric applications in irradiance mode with uncertainties as small as 0.12% (k  =  1) in the visible. A photometer and an irradiance-mode filter radiometer (visible range), previously calibrated at VNIIOFI, were used to measure illuminance and irradiance of the HTFP blackbodies equipped with a precise outer aperture. The values measured by the detectors agreed with those based on the blackbody calculation to within 0.2%. The large-area HTFP blackbodies will be used in a joint PTB-VNIIOFI experiment on measuring thermodynamic temperature.

  17. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  18. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    Science.gov (United States)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  19. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    KAUST Repository

    Ryu, Sang-Gil

    2012-09-01

    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. © 2012 Elsevier B.V.

  20. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor

    Directory of Open Access Journals (Sweden)

    Jules L. Hammond

    2016-12-01

    Full Text Available Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL to pattern an 11 mm long serpentine nanogap (215 nm between two electrodes. For the second method we use inductively-coupled plasma (ICP reactive ion etching (RIE to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA−DNA binding events using dielectric spectroscopy with the horizontal coplanar device.