WorldWideScience

Sample records for fast coronal mass

  1. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    International Nuclear Information System (INIS)

    Liu Rui; Wang Haimin

    2010-01-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at ∼100 km s -1 at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at ∼6 km s -1 for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  2. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  3. Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Solar Coronal Mass Ejection

    OpenAIRE

    Rollett, T.; Moestl, C.; Temmer, M.; Frahm, R. A.; Davies, J. A.; Veronig, A. M.; Vrsnak, B.; Amerstorfer, U. V.; Farrugia, C. J.; Zic, T.; Zhang, T. L.

    2014-01-01

    We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the...

  4. Shock-related radio emission during coronal mass ejection lift-off?

    OpenAIRE

    Pohjolainen, S.

    2008-01-01

    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-met...

  5. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  6. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  7. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  8. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  9. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  10. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  11. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  12. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  13. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A. [Space Research Group—Space Weather, Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares (Spain)

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  14. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  15. The X-ray signature of solar coronal mass

    Science.gov (United States)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  16. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  17. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  18. Coronal mass ejections and coronal structures

    International Nuclear Information System (INIS)

    Hildner, E.; Bassi, J.; Bougeret, J.L.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties of CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles; observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results

  19. PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it [INAF–Turin Astrophysical Observatory, via Osservatorio 20, I-10025 Pino Torinese (Italy)

    2015-10-20

    We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{sub ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.

  20. CORONAL MASS EJECTION INDUCED OUTFLOWS OBSERVED WITH HINODE/EIS

    International Nuclear Information System (INIS)

    Jin, M.; Ding, M. D.; Chen, P. F.; Fang, C.; Imada, S.

    2009-01-01

    We investigate the outflows associated with two halo coronal mass ejections (CMEs) that occurred on 2006 December 13 and 14 in NOAA 10930, using the Hinode/EIS observations. Each CME was accompanied by an EIT wave and coronal dimmings. Dopplergrams in the dimming regions are obtained from the spectra of seven EIS lines. The results show that strong outflows are visible in the dimming regions during the CME eruption at different heights from the lower transition region to the corona. It is found that the velocity is positively correlated with the photospheric magnetic field, as well as the magnitude of the dimming. We estimate the mass loss based on height-dependent EUV dimmings and find it to be smaller than the CME mass derived from white-light observations. The mass difference is attributed partly to the uncertain atmospheric model, and partly to the transition region outflows, which refill the coronal dimmings.

  1. Development of a current sheet in the wake of a fast coronal mass ejection

    International Nuclear Information System (INIS)

    Ling, A. G.; Webb, D. F.; Burkepile, J. T.; Cliver, E. W.

    2014-01-01

    A bright ray that developed in the wake of a fast coronal mass ejection (CME) on 2005 September 7 presents a unique opportunity to study the early development and physical characteristics of a reconnecting current sheet (CS). Polarization brightness images from the Mk4 K-Coronameter at the Mauna Loa Solar Observatory are used to determine the structure of the ray along its axis low in the corona as it progressed outward. Coverage of the early development of the ray out to ∼1.3 R ☉ for a period of ∼27 hr after the start of the event enables for the first time in white light a measurement of a CME CS from the top of the arcade to the base of the flux rope. Measured widths of the ray are combined to obtain the kinematics of the upper and lower Y- points described in reconnection flux-rope models such as that of Lin and Forbes. The time dependence of these points are used to derive values for the speed and acceleration of the growth of the CS. We note the appearance of a large structure which increases in size as it expands outward in the early development of the ray and an apparent oscillation with a period of ∼0.5 hr in the position angle of the ray.

  2. Characteristics of coronal mass ejections associated with solar frontside and backside metric type II bursts

    International Nuclear Information System (INIS)

    Kahler, S.W.; Cliver, E.W.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Michels, D.J.

    1985-01-01

    We compare fast (v> or =500 km s -1 ) coronal mass ejections (CME's) with reported metric type II bursts to study the properties of CME's associated with coronal shocks. We confirm an earlier report of fast frontside CME's with no associated metric type II bursts and calculate that 33 +- 15% of all fast frontside CME's are not associated with such bursts. Faster CME's are more likely to be associated with type II bursts, as expected from the hypothesis of piston-driven shocks. However, CME brightness and associated peak 3-cm burst intensity are also important factors, as might be inferred from the Wagner and MacQueen (1983) view of type II shocks decoupled from associated CME's. We use the equal visibility of solar frontside and backside CME's to deduce the observability of backside type II bursts. We calculate that 23 +- 7% of all backside type II bursts associated with fast CME's can be observed at the earth and that 13 +- 4% of all type II bursts originate in backside flares. CME speed again is the most important factor in the observability of backside type II bursts

  3. Fast Breakdown as Coronal/Ionization Waves?

    Science.gov (United States)

    Krehbiel, P. R.; Petersen, D.; da Silva, C. L.

    2017-12-01

    Studies of high-power narrow bipolar events (NBEs) have shown they are produced by a newly-recognized breakdown process called fast positive breakdown (FPB, Rison et al., 2016, doi:10.1038/ncomms10721). The breakdown was inferred to be produced by a system of positive streamers that propagate at high speed ( ˜3-6 x 107 m/s) due to occurring in a localized region of strong electric field. The polarity of the breakdown was determined from broadband interferometer (INTF) observations of the propagation direction of its VHF radiation, which was downward into the main negative charge region of a normally-electrified storm. Subsequent INTF observations being conducted in at Kennedy Space Center in Florida have shown a much greater incidence of NBEs than in New Mexico. Among the larger dataset have been clear-cut instances of some NBEs being produced by upward breakdown that would be of negative polarity. The speed and behavior of the negative breakdown is the same as that of the fast positive, leading to it being termed fast negative breakdown (FNB). The similarity (not too mention its occurrence) is surprising, given the fact that negative streamers and breakdown develops much differently than that of positive breakdown. The question is how this happens. In this study, we compare fast breakdown characteristics to well-known streamer properties as inferred from laboratory experiments and theoretical analysis. Additionally, we begin to explore the possibility that both polarities of fast breakdown are produced by what may be called coronal or ionization waves, in which the enhanced electric field produced by streamer or coronal breakdown of either polarity propagates away from the advancing front at the speed of light into a medium that is in a metastable condition of being at the threshold of hydrometeor-mediated corona onset or other ionization processes. The wave would develop at a faster speed than the streamer breakdown that gives rise to it, and thus would be

  4. Reconstructing the Morphology of an Evolving Coronal Mass Ejection

    Science.gov (United States)

    2009-01-01

    694, 707 Wood, B. E., Howard, R. A ., Thernisien, A ., Plunkett, S. P., & Socker, D. G. 2009b, Sol. Phys., 259, 163 Wood, B. E., Karovska , M., Chen, J...Reconstructing the Morphology of an Evolving Coronal Mass Ejection B. E. Wood, R. A . Howard, D. G. Socker Naval Research Laboratory, Space Science...mission, we empirically reconstruct the time-dependent three-dimensional morphology of a coronal mass ejection (CME) from 2008 June 1, which exhibits

  5. The Prospect for Detecting Stellar Coronal Mass Ejections

    Science.gov (United States)

    Osten, Rachel A.; Crosley, Michael Kevin

    2018-06-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications bothfor the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Recent results from exoplanet studies show that planets around M dwarfs are exceedingly common, which together with the commonality of M dwarfs in our galaxy make this the dominant mode of star and planet configurations. The closeness of the exoplanets to the parent M star motivate a comprehensive understanding of habitability for these systems. Radio observations provide the most clear signature of accelerated particles and shocks in stars arising as the result of MHD processes in the stellar outer atmosphere. Stellar coronal mass ejections have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (stellar flares) have. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. I will describe recent results using radio observations to detect stellar coronal mass ejections, and what those results imply about transient stellar mass loss. I will provide some motivation for what could be learned in this topic from space-based low frequency radio experiments.

  6. Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos, E-mail: rkwon@gmu.edu [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-02-20

    We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A , -B , and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s{sup −1}; sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° and 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.

  7. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  8. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  9. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  10. EIT Observations of Coronal Mass Ejections

    Science.gov (United States)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  11. Features of solar wind streams on June 21-28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes

    Science.gov (United States)

    Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.

    2017-11-01

    Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.

  12. A comparison of coronal mass ejections identified by manual and automatic methods

    Directory of Open Access Journals (Sweden)

    S. Yashiro

    2008-10-01

    Full Text Available Coronal mass ejections (CMEs are related to many phenomena (e.g. flares, solar energetic particles, geomagnetic storms, thus compiling of event catalogs is important for a global understanding these phenomena. CMEs have been identified manually for a long time, but in the SOHO era, automatic identification methods are being developed. In order to clarify the advantage and disadvantage of the manual and automatic CME catalogs, we examined the distributions of CME properties listed in the CDAW (manual and CACTus (automatic catalogs. Both catalogs have a good agreement on the wide CMEs (width>120° in their properties, while there is a significant discrepancy on the narrow CMEs (width≤30°: CACTus has a larger number of narrow CMEs than CDAW. We carried out an event-by-event examination of a sample of events and found that the CDAW catalog have missed many narrow CMEs during the solar maximum. Another significant discrepancy was found on the fast CMEs (speed>1000 km/s: the majority of the fast CDAW CMEs are wide and originate from low latitudes, while the fast CACTus CMEs are narrow and originate from all latitudes. Event-by-event examination of a sample of events suggests that CACTus has a problem on the detection of the fast CMEs.

  13. Coronal mass ejections, interplanetary shocks in relation with forbush decreases associated with intense geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Patel, Nand Kumar; Prajapati, Mateswari

    2014-01-01

    Coronal mass ejections (CMEs} are the most energetic solar events in which large amount of solar plasma materials are ejected from the sun into heliosphere, causing major disturbances in solar wind plasma, Interplanetary shocks, Forbush decrease(Fds) in cosmic ray intensity and geomagnetic storms. We have studied Forbush decreases associated with intense geomagnetic storms observed at Oulu super neutron monitor, during the period of May 1998-Dec 2006 with coronal mass ejections (CMEs), X-ray solar flares and interplanetary shocks. We have found that all the (100%) Forbush decreases associated with intense geomagnetic storms are associated with halo and partial halo coronal mass ejections (CMEs). The association rate between halo and partial halo coronal mass ejections are found 96.00%and 04.00% respectively. Most of the Forbush decreases associated with intense geomagnetic storms (96.29%) are associated with X-ray solar flares of different categories . The association rates for X-Class, M-Class, and C- Class X -ray solar flares are found 34.62%, 50.00% and 15.38% respectively .Further we have concluded that majority of the Forbush decrease associated with intense geomagnetic storms are related to interplanetary shocks (92.30 %) and the related shocks are forward shocks. We have found positive co-relation with co-relation co-efficient .7025 between magnitudes of Forbush decreases associated with intense geomagnetic storms and speed of associated coronal mass ejections. Positive co-relation with co-relation co-efficient 0.48 has also been found between magnitudes of intense geomagnetic storms and speed of associated coronal mass ejections.

  14. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  15. FAST DIFFERENTIAL EMISSION MEASURE INVERSION OF SOLAR CORONAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, Joseph; Kankelborg, Charles; Martens, Petrus [Montana State University, Bozeman, MT 59717 (United States)

    2013-07-01

    We present a fast method for reconstructing differential emission measures (DEMs) using solar coronal data. The method consists of a fast, simple regularized inversion in conjunction with an iteration scheme for removal of residual negative emission measure. On average, it computes over 1000 DEMs s{sup -1} for a sample active region observed by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, and achieves reduced chi-squared of order unity with no negative emission in all but a few test cases. The high performance of this method is especially relevant in the context of AIA, which images of order one million solar pixels per second. This paper describes the method, analyzes its fidelity, compares its performance and results with other DEM methods, and applies it to an active region and loop observed by AIA and by the Extreme-ultraviolet Imaging Spectrometer on Hinode.

  16. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Gary, D. E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Bastian, T. S., E-mail: bin.chen@cfa.harvard.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  17. Direct Evidence of an Eruptive, Filament-hosting Magnetic Flux Rope Leading to a Fast Solar Coronal Mass Ejection

    Science.gov (United States)

    Chen, Bin; Bastian, T. S.; Gary, D. E.

    2014-10-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  18. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    International Nuclear Information System (INIS)

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-01-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  19. Global Energetics in Solar Flares and Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.

    2017-08-01

    We present a statistical study of the energetics of coronal mass ejections (CME) and compare it with the magnetic, thermal, and nonthermal energy dissipated in flares. The physical parameters of CME speeds, mass, and kinetic energies are determined with two different independent methods, i.e., the traditional white-light scattering method using LASCO/SOHO data, and the EUV dimming method using AIA/SDO data. We analyze all 860 GOES M- and X-class flare events observed during the first 7 years (2010-2016) of the SDO mission. The new ingredients of our CME modeling includes: (1) CME geometry in terms of a self-similar adiabatic expansion, (2) DEM analysis of CME mass over entire coronal temperature range, (3) deceleration of CME due to gravity force which controls the kinetic and potentail CME energy as a function of time, (4) the critical speed that controls eruptive and confined CMEs, (5) the relationship between the center-of-mass motion during EUV dimming and the leading edge motion observed in white-light coronagraphs. Novel results are: (1) Physical parameters obtained from both the EUV dimming and white-light method can be reconciled; (2) the equi-partition of CME kinetic and thermal flare energy; (3) the Rosner-Tucker-Vaiana scaling law. We find that the two methods in EUV and white-light wavelengths are highly complementary and yield more complete models than each method alone.

  20. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    Science.gov (United States)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  1. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  2. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, T.; Möstl, C.; Temmer, M.; Veronig, A. M.; Amerstorfer, U. V. [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, A-8010 Graz (Austria); Frahm, R. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Davies, J. A. [RAL Space, Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); Vršnak, B.; Žic, T. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, 1000 Zagreb (Croatia); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Zhang, T. L., E-mail: tanja.rollett@gmx.at [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria)

    2014-07-20

    We present an analysis of the fast coronal mass ejection (CME) of 2012  March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ∼2700 km s{sup –1} at 15 R {sub ☉} to ∼1500 km s{sup –1} at 154 R {sub ☉}), the Earth-directed part showed an abrupt retardation below 35 R {sub ☉} (from ∼1700 to ∼900 km s{sup –1}). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  3. Transition region, coronal heating and the fast solar wind

    Science.gov (United States)

    Li, Xing

    2003-07-01

    It is assumed that magnetic flux tubes are strongly concentrated at the boundaries of supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. The waves are capable of creating a steep transition region, a hot corona and a fast solar wind if both the wave frequency is high enough and the magnetic flux concentration is sufficiently strong in the boundaries of the supergranule convection zone. 2. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 3. Plasma species (even ions) may already partially lose thermal equilibrium in the transition region, and minor ions may already be faster than protons at the very base of the corona. 4. The model predicts high temperature alpha particles (Talpha ~ 2 x 107 K) and low proton temperatures (Tp solar radii, suggesting that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.

  4. Active Longitude and Coronal Mass Ejection Occurrences

    International Nuclear Information System (INIS)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R.; Singh, T.; Srivastava, A. K.

    2017-01-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  5. Active Longitude and Coronal Mass Ejection Occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R. [Solar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom); Singh, T.; Srivastava, A. K., E-mail: n.g.gyenge@sheffield.ac.uk [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi (India)

    2017-03-20

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  6. Active Longitude and Coronal Mass Ejection Occurrences

    Science.gov (United States)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  7. SIMULATION OF HOMOLOGOUS AND CANNIBALISTIC CORONAL MASS EJECTIONS PRODUCED BY THE EMERGENCE OF A TWISTED FLUX ROPE INTO THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Chatterjee, Piyali; Fan, Yuhong

    2013-01-01

    We report the first results of a magnetohydrodynamic simulation of the development of a homologous sequence of three coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s –1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and ''sigmoid-under-cusp'' configurations at a low-coronal source of homologous CMEs

  8. AN IMPROVEMENT ON MASS CALCULATIONS OF SOLAR CORONAL MASS EJECTIONS VIA POLARIMETRIC RECONSTRUCTION

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2015-01-01

    The mass of a coronal mass ejection (CME) is calculated from the measured brightness and assumed geometry of Thomson scattering. The simplest geometry for mass calculations is to assume that all of the electrons are in the plane of the sky (POS). With additional information like source region or multiviewpoint observations, the mass can be calculated more precisely under the assumption that the entire CME is in a plane defined by its trajectory. Polarization measurements provide information on the average angle of the CME electrons along the line of sight of each CCD pixel from the POS, and this can further improve the mass calculations as discussed here. A CME event initiating on 2012 July 23 at 2:20 UT observed by the Solar Terrestrial Relations Observatory is employed to validate our method

  9. Initiation and Propagation of Coronal Mass Ejections P. F. Chen

    Indian Academy of Sciences (India)

    Introduction. Coronal mass ejections (CMEs) have been observed for over 30 years. They keep being an intriguing research topic, not only because they are now realized to be the major driver for space weather disturbances, which are intimately connected to human activities, but also because they themselves are full of ...

  10. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.-S.; Kim, R.-S. [Korea Astronomy and Space Science Institute, Whaamdong, Yooseong-ku, Daejeon, 305-348 (Korea, Republic of); Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S., E-mail: kscho@kasi.re.kr [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  11. Activity associated with the solar origin of coronal mass ejections

    Science.gov (United States)

    Webb, D. F.; Hundhausen, A. J.

    1987-01-01

    Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences, and the proportions of association of all types of activity were similar. A high percentage of association between SMM CMEs and X-ray long duration events is also found, in agreement with Skylab results. It is concluded that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.

  12. THE HEIGHT EVOLUTION OF THE ''TRUE'' CORONAL MASS EJECTION MASS DERIVED FROM STEREO COR1 AND COR2 OBSERVATIONS

    International Nuclear Information System (INIS)

    Bein, B. M.; Temmer, M.; Veronig, A. M.; Utz, D.; Vourlidas, A.

    2013-01-01

    Using combined STEREO-A and STEREO-B EUVI, COR1, and COR2 data, we derive deprojected coronal mass ejection (CME) kinematics and CME ''true'' mass evolutions for a sample of 25 events that occurred during 2007 December to 2011 April. We develop a fitting function to describe the CME mass evolution with height. The function considers both the effect of the coronagraph occulter, at the beginning of the CME evolution, and an actual mass increase. The latter becomes important at about 10-15 R ☉ and is assumed to mostly contribute up to 20 R ☉ . The mass increase ranges from 2% to 6% per R ☉ and is positively correlated to the total CME mass. Due to the combination of COR1 and COR2 mass measurements, we are able to estimate the ''true'' mass value for very low coronal heights ( ☉ ). Based on the deprojected CME kinematics and initial ejected masses, we derive the kinetic energies and propelling forces acting on the CME in the low corona ( ☉ ). The derived CME kinetic energies range between 1.0-66 × 10 23 J, and the forces range between 2.2-510 × 10 14 N.

  13. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    Science.gov (United States)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  14. The dynamics of coronal magnetic structures

    International Nuclear Information System (INIS)

    Weber, W.

    1978-01-01

    An analysis is made of the evolution of coronal magnetic fields due to the interaction with the solar wind. An analysis of the formation of coronal streamers, arising as a result of the stretching of bipolar fields, is given. Numerical simulations of the formation of coronal streamers are presented. Fast-mode shocks as triggers of microturbulence in the solar corona are discussed

  15. The environment of the sun during the explosion of Coronal Mass ...

    African Journals Online (AJOL)

    Coronal Mass Ejections (CMEs) have been studied has become the most important phenomena of solar activity because it is the most energetic phenomena on the Sun. Concerning the importance of the impact of solar radio burst, we study the selected event of CMEs to observe the environment of the atmosphere of the ...

  16. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    International Nuclear Information System (INIS)

    Vemareddy, P.

    2017-01-01

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  17. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P., E-mail: vemareddy@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bengalure-560034 (India)

    2017-08-10

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  18. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    Science.gov (United States)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  19. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Magdalenic, J.; Marque, C.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, Kaciceva 26, HR-10000 Zagreb (Croatia); Veronig, A., E-mail: Jasmina.Magdalenic@oma.be [IGAM/Kanzelhoehe Observatory, Institut of Physics, Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  20. ARE DECAYING MAGNETIC FIELDS ABOVE ACTIVE REGIONS RELATED TO CORONAL MASS EJECTION ONSET?

    International Nuclear Information System (INIS)

    Suzuki, J.; Welsch, B. T.; Li, Y.

    2012-01-01

    Coronal mass ejections (CMEs) are powered by magnetic energy stored in non-potential (current-carrying) coronal magnetic fields, with the pre-CME field in balance between outward magnetic pressure of the proto-ejecta and inward magnetic tension from overlying fields that confine the proto-ejecta. In studies of global potential (current-free) models of coronal magnetic fields—Potential Field Source Surface (PFSS) models—it has been reported that model field strengths above flare sites tend to be weaker when CMEs occur than when eruptions fail to occur. This suggests that potential field models might be useful to quantify magnetic confinement. One straightforward implication of this idea is that a decrease in model field strength overlying a possible eruption site should correspond to diminished confinement, implying an eruption is more likely. We have searched for such an effect by post facto investigation of the time evolution of model field strengths above a sample of 10 eruption sites. To check if the strengths of overlying fields were relevant only in relatively slow CMEs, we included both slow and fast CMEs in our sample. In most events we study, we find no statistically significant evolution in either (1) the rate of magnetic field decay with height, (2) the strength of overlying magnetic fields near 50 Mm, or (3) the ratio of fluxes at low and high altitudes (below 1.1 R ☉ , and between 1.1 and 1.5 R ☉ , respectively). We did observe a tendency for overlying field strengths and overlying flux to increase slightly, and their rates of decay with height to become slightly more gradual, consistent with increased confinement. The fact that CMEs occur regardless of whether the parameters we use to quantify confinement are increasing or decreasing suggests that either (1) the parameters that we derive from PFSS models do not accurately characterize the actual large-scale field in CME source regions, (2) systematic evolution in the large-scale magnetic

  1. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  2. Identification of Low Coronal Sources of “Stealth” Coronal Mass Ejections Using New Image Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Alzate, Nathalia; Morgan, Huw, E-mail: naa19@aber.ac.uk [Institute of Mathematics, Physics and Computer Science Prifysgol Aberystwyth Ceredigion, Cymru SY23 3BZ (United Kingdom)

    2017-05-10

    Coronal mass ejections (CMEs) are generally associated with low coronal signatures (LCSs), such as flares, filament eruptions, extreme ultraviolet (EUV) waves, or jets. A number of recent studies have reported the existence of stealth CMEs as events without LCSs, possibly due to observational limitations. Our study focuses on a set of 40 stealth CMEs identified from a study by D’Huys et al. New image processing techniques are applied to high-cadence, multi-instrument sets of images spanning the onset and propagation time of each of these CMEs to search for possible LCSs. Twenty-three of these events are identified as small, low-mass, unstructured blobs or puffs, often occurring in the aftermath of a large CME, but associated with LCSs such as small flares, jets, or filament eruptions. Of the larger CMEs, seven are associated with jets and eight with filament eruptions. Several of these filament eruptions are different from the standard model of an erupting filament/flux tube in that they are eruptions of large, faint flux tubes that seem to exist at large heights for a long time prior to their slow eruption. For two of these events, we see an eruption in Large Angle Spectrometric Coronagraph C2 images and the consequent changes at the bottom edge of the eruption in EUV images. All 40 events in our study are associated with some form of LCS. We conclude that stealth CMEs arise from observational and processing limitations.

  3. THE RELATION BETWEEN EIT WAVES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Chen, P. F.

    2009-01-01

    More and more evidence indicates that 'EIT waves' are strongly related to coronal mass ejections (CMEs). However, it is still not clear how the two phenomena are related to each other. We investigate a CME event on 1997 September 9, which was well observed by both the EUV Imaging Telescope (EIT) and the high-cadence Mark-III K-Coronameter at Mauna Loa Solar Observatory, and compare the spatial relation between the 'EIT wave' fronts and the CME leading loops. It is found that 'EIT wave' fronts are cospatial with the CME leading loops, and the expanding EUV dimmings are cospatial with the CME cavity. It is also found that the CME stopped near the boundary of a coronal hole, a feature common to observations of 'EIT waves'. It is suggested that 'EIT waves'/dimmings are the EUV counterparts of the CME leading loop/cavity, based on which we propose that, as in the case of 'EIT waves', CME leading loops are apparently moving density enhancements that are generated by successive stretching (or opening-up) of magnetic loops.

  4. The classification of ambiguity in polarimetric reconstruction of coronal mass ejection

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2014-01-01

    The Thomson scattering theory indicates that there exist explicit and implicit ambiguities in polarimetric analyses of coronal mass ejection (CME) observations. We suggest a classification for these ambiguities in CME reconstruction. Three samples, including double explicit, mixed, and double implicit ambiguity, are shown with the polarimetric analyses of STEREO CME observations. These samples demonstrate that this classification is helpful for improving polarimetric reconstruction.

  5. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  6. Real-Time Analysis of Global Waves Accompanying Coronal Mass Ejections

    Science.gov (United States)

    2016-06-30

    This allows the intensity variation of the pulse to be measured as a percentage increase in intensity relative to the background corona. To mitigate... intensity of the wave relative to the background chromosphere. Upon completion of the code, it was applied to a series of solar flares observed by both...wave-like features seen in H observations of the solar chromosphere. They are strongly associated with coronal mass ejections (CMEs) and can cover a

  7. A Novel Approach to Resonant Absorption of the Fast Magnetohydrodynamic Eigenmodes of a Coronal Arcade

    Science.gov (United States)

    Hindman, Bradley W.; Jain, Rekha

    2018-05-01

    The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.

  8. The Three-part Structure of a Filament-unrelated Solar Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y.; Wang, B.; Li, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Cheng, X. [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang, J. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Li, L. P. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Hu, Q.; Li, G., E-mail: hqsong@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, AL 35899 (United States)

    2017-10-10

    Coronal mass ejections (CMEs) often exhibit the typical three-part structure in the corona when observed with white-light coronagraphs, i.e., the bright leading front, dark cavity, and bright core, corresponding to a high-low-high density sequence. As CMEs result from eruptions of magnetic flux ropes (MFRs), which can possess either lower (e.g., coronal-cavity MFRs) or higher (e.g., hot-channel MFRs) density compared to their surroundings in the corona, the traditional opinion regards the three-part structure as the manifestations of coronal plasma pileup (high density), coronal-cavity MFR (low density), and filament (high density) contained in the trailing part of MFR, respectively. In this paper, we demonstrate that filament-unrelated CMEs can also exhibit the classical three-part structure. The observations were made from different perspectives through an event that occurred on 2011 October 4. The CME cavity corresponds to the low-density zone between the leading front and the high-density core, and it is obvious in the low corona and gradually becomes fuzzy when propagating outward. The bright core corresponds to a high-density structure that is suggested to be an erupting MFR. The MFR is recorded from both edge-on and face-on perspectives, exhibiting different morphologies that are due to projection effects. We stress that the zone (MFR) with lower (higher) density in comparison to the surroundings can appear as the dark cavity (bright core) when observed through white-light coronagraphs, which is not necessarily the coronal-cavity MFR (erupted filament).

  9. The Three-part Structure of a Filament-unrelated Solar Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Wang, B.; Li, B.; Cheng, X.; Zhang, J.; Li, L. P.; Hu, Q.; Li, G.

    2017-01-01

    Coronal mass ejections (CMEs) often exhibit the typical three-part structure in the corona when observed with white-light coronagraphs, i.e., the bright leading front, dark cavity, and bright core, corresponding to a high-low-high density sequence. As CMEs result from eruptions of magnetic flux ropes (MFRs), which can possess either lower (e.g., coronal-cavity MFRs) or higher (e.g., hot-channel MFRs) density compared to their surroundings in the corona, the traditional opinion regards the three-part structure as the manifestations of coronal plasma pileup (high density), coronal-cavity MFR (low density), and filament (high density) contained in the trailing part of MFR, respectively. In this paper, we demonstrate that filament-unrelated CMEs can also exhibit the classical three-part structure. The observations were made from different perspectives through an event that occurred on 2011 October 4. The CME cavity corresponds to the low-density zone between the leading front and the high-density core, and it is obvious in the low corona and gradually becomes fuzzy when propagating outward. The bright core corresponds to a high-density structure that is suggested to be an erupting MFR. The MFR is recorded from both edge-on and face-on perspectives, exhibiting different morphologies that are due to projection effects. We stress that the zone (MFR) with lower (higher) density in comparison to the surroundings can appear as the dark cavity (bright core) when observed through white-light coronagraphs, which is not necessarily the coronal-cavity MFR (erupted filament).

  10. The Three-part Structure of a Filament-unrelated Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H. Q.; Cheng, X.; Chen, Y.; Zhang, J.; Wang, B.; Li, L. P.; Li, B.; Hu, Q.; Li, G.

    2017-10-01

    Coronal mass ejections (CMEs) often exhibit the typical three-part structure in the corona when observed with white-light coronagraphs, I.e., the bright leading front, dark cavity, and bright core, corresponding to a high-low-high density sequence. As CMEs result from eruptions of magnetic flux ropes (MFRs), which can possess either lower (e.g., coronal-cavity MFRs) or higher (e.g., hot-channel MFRs) density compared to their surroundings in the corona, the traditional opinion regards the three-part structure as the manifestations of coronal plasma pileup (high density), coronal-cavity MFR (low density), and filament (high density) contained in the trailing part of MFR, respectively. In this paper, we demonstrate that filament-unrelated CMEs can also exhibit the classical three-part structure. The observations were made from different perspectives through an event that occurred on 2011 October 4. The CME cavity corresponds to the low-density zone between the leading front and the high-density core, and it is obvious in the low corona and gradually becomes fuzzy when propagating outward. The bright core corresponds to a high-density structure that is suggested to be an erupting MFR. The MFR is recorded from both edge-on and face-on perspectives, exhibiting different morphologies that are due to projection effects. We stress that the zone (MFR) with lower (higher) density in comparison to the surroundings can appear as the dark cavity (bright core) when observed through white-light coronagraphs, which is not necessarily the coronal-cavity MFR (erupted filament).

  11. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  12. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  13. FIRST DETERMINATION OF THE TRUE MASS OF CORONAL MASS EJECTIONS: A NOVEL APPROACH TO USING THE TWO STEREO VIEWPOINTS

    International Nuclear Information System (INIS)

    Colaninno, Robin C.; Vourlidas, Angelos

    2009-01-01

    The twin Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) COR2 coronagraphs of the Solar Terrestrial Relations Observatory (STEREO) provide images of the solar corona from two viewpoints in the solar system. Since their launch in late 2006, the STEREO Ahead (A) and Behind (B) spacecraft have been slowly separating from Earth at a rate of 22. 0 5 per year. By the end of 2007, the two spacecraft were separated by more than 40 deg. from each other. At that time, we began to see large-scale differences in the morphology and total intensity between coronal mass ejections (CMEs) observed with SECCHI-COR2 on STEREO-A and B. Due to the effects of the Thomson scattering geometry, the intensity of an observed CME is dependent on the angle it makes with the observed plane of the sky. From the intensity images, we can calculate the integrated line-of-sight electron density and mass. We demonstrate that it is possible to simultaneously derive the direction and true total mass of the CME if we make the simple assumption that the same mass should be observed in COR2-A and B.

  14. The Relation between Coronal Holes and Coronal Mass Ejections during the Rise, Maximum, and Declining Phases of Solar Cycle 23

    Science.gov (United States)

    Mohamed, A. A.; Gopalswamy, N; Yashiro, S.; Akiyama, S.; Makela, P.; Xie, H.; Jung, H.

    2012-01-01

    We study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all the coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance =15deg) and resulting in magnetic clouds (MCs) and non-MCs in the solar wind. The CHIP is found to be the smallest during the rise phase for MCs and non-MCs. The maximum phase has the largest CHIP value (2.9 G) for non-MCs. The CHIP is the largest (5.8 G) for driverless (DL) shocks, which are shocks at 1 AU with no discernible MC or non-MC. These results suggest that the behavior of non-MCs is similar to that of the DL shocks and different from that of MCs. In other words, the CHs may deflect the CMEs away from the Sun-Earth line and force them to behave like limb CMEs with DL shocks. This finding supports the idea that all CMEs may be flux ropes if viewed from an appropriate vantage point.

  15. A search for the origins of a possible coronal mass ejection in the low corona

    Science.gov (United States)

    Neupert, Werner M.

    1988-01-01

    Evidence for coronal and chromospheric precursors of a hypothesized coronal mass ejection is sought in OSO-7 observations of a filament eruption and the subsequent flare. Large-scale changes in the corona above the active region were clearly present for at least several minutes before the flare, culminating in the activation and eruption of two widely separated filaments; the eruption of one of the preexisting filaments initiated magnetic reconnections and energy releases in the low corona, generating the observed chromospheric flare.

  16. ULYSSES OBSERVATIONS OF THE MAGNETIC CONNECTIVITY BETWEEN CORONAL, MASS EJECTIONS AND THE SUN

    Science.gov (United States)

    Riley, Pete; Goslin, J. T.; Crooker, . U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed buildup of flux during the course of the solar cycle, we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability. Subject headings: solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material: color figure Sun: magnetic fields

  17. FORECASTING A CORONAL MASS EJECTION'S ALTERED TRAJECTORY: ForeCAT

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-01-01

    To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CME's deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a potential field source surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a coronal hole and streamer region, the strong magnetic gradients cause a deflection of 8.°1 in latitude and 26.°4 in longitude for a 10 15 g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt (SB) position with height, leads to a deflection of 1.°6 in latitude and 4.°1 in longitude for the control case. Varying the CME's input parameters within observed ranges leads to the majority of CMEs reaching the SB within the first few solar radii. For these specific backgrounds, the SB acts like a potential well that forces the CME into an equilibrium angular position

  18. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation

    Science.gov (United States)

    Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell

    2018-02-01

    The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.

  19. Combined Ulysses Solar Wind and SOHO Coronal Observations of Several West Limb Coronal Mass Ejections. Appendix 8

    Science.gov (United States)

    Funsten, H. O.; Gosling, J. T.; Riley, P.; St.Cyr, O. C.; Forsyth, R. J.; Howard, R. A.; Schwenn, R.

    2001-01-01

    From October 1996 to January 1997, Ulysses was situated roughly above the west limb of the Sun as observed from Earth at a heliocentric distance of about 4.6 AU and a latitude of about 25 deg. This presents the first opportunity to compare Solar and Heliospheric Observatory (SOHO) limb observations of coronal mass ejections (CMEs) directly with their solar wind counterparts far from the Sun using the Ulysses data. During this interval, large eruptive events were observed above the west limb of the Sun by the Large Angle Spectrometric Coronagraph (LASCO) on SOHO on October 5, November 28, and December 21-25, 1996. Using the combined plasma and magnetic field data from Ulysses, the October 5 event was clearly identified by several distinguishing signatures as a CME. The November 28 event was also identified as a CME that trailed fast ambient solar wind, although it was identified only by an extended interval of counterstreaming suprathermal electrons. The December 21 event was apparently characterized by a six-day interval of nearly radial field and a plasma rarefaction. For the numerous eruptive events observed by the LASCO coronagraph during December 23-25, Ulysses showed no distinct, CMEs, perhaps because of intermingling of two or more of the eruptive events. By mapping the Ulysses observations back in time to the Sun assuming a constant flow speed, we have identified intervals of plasma that were accelerated or decelerated between the LASCO and Ulysses observations.

  20. ON THE RELATIONSHIP BETWEEN THE CORONAL MAGNETIC DECAY INDEX AND CORONAL MASS EJECTION SPEED

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yan; Liu Chang; Jing Ju; Wang Haimin, E-mail: yx2@njit.edu [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2012-12-10

    Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter called the decay index (i.e., the coronal magnetic gradient of the overlying fields above the eruptive flux ropes) could play an important role in controlling the kinematics of eruptions. Previous studies have identified a threshold range of the decay index that distinguishes between eruptive and confined configurations. Here we advance the study by investigating if there is a clear correlation between the decay index and coronal mass ejection (CME) speed. Thirty-eight CMEs associated with filament eruptions and/or two-ribbon flares are selected using the H{alpha} data from the Global H{alpha} Network. The filaments and flare ribbons observed in H{alpha} associated with the CMEs help to locate the magnetic polarity inversion line, along which the decay index is calculated based on the potential field extrapolation using Michelson Doppler Imager magnetograms as boundary conditions. The speeds of CMEs are obtained from the LASCO C2 CME catalog available online. We find that the mean decay index increases with CME speed for those CMEs with a speed below 1000 km s{sup -1} and stays flat around 2.2 for the CMEs with higher speeds. In addition, we present a case study of a partial filament eruption, in which the decay indices show different values above the erupted/non-erupted part.

  1. CORONAL MASS EJECTIONS AS A MECHANISM FOR PRODUCING IR VARIABILITY IN DEBRIS DISKS

    International Nuclear Information System (INIS)

    Osten, Rachel; Livio, Mario; Lubow, Steve; Pringle, J. E.; Soderblom, David; Valenti, Jeff

    2013-01-01

    Motivated by recent observations of short-timescale variations in the infrared emission of circumstellar disks, we propose that coronal mass ejections can remove dust grains on timescales as short as a few days. Continuous monitoring of stellar activity, coupled with infrared observations, can place meaningful constraints on the proposed mechanism.

  2. THREE-DIMENSIONAL RECONSTRUCTIONS AND MASS DETERMINATION OF THE 2008 JUNE 2 LASCO CORONAL MASS EJECTION USING STELab INTERPLANETARY SCINTILLATION OBSERVATIONS

    International Nuclear Information System (INIS)

    Bisi, M. M.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Clover, J. M.; Tokumaru, M.; Fujiki, K.

    2010-01-01

    We examine and reconstruct the interplanetary coronal mass ejection (ICME) first seen in space-based coronagraph white-light difference images on 2008 June 1 and 2. We use observations of interplanetary scintillation (IPS) taken with the Solar-Terrestrial Environment Laboratory (STELab), Japan, in our three-dimensional (3D) tomographic reconstruction of density and velocity. The coronal mass ejection (CME) was first observed by the LASCO C3 instrument at around 04:17 UT on 2008 June 2. Its motion subsequently moved across the C3 field of view with a plane-of-the-sky velocity of 192 km s -1 . The 3D reconstructed ICME is consistent with the trajectory and extent of the CME measurements taken from the CDAW CME catalog. However, excess mass estimates vary by an order of magnitude from Solar and Heliospheric Observatory and Solar Terrestrial Relations Observatory coronagraphs to our 3D IPS reconstructions of the inner heliosphere. We discuss the discrepancies and give possible explanations for these differences as well as give an outline for future studies.

  3. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    International Nuclear Information System (INIS)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk

    2013-01-01

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.

  4. Radio and white-light observations of coronal transients

    International Nuclear Information System (INIS)

    Dulk, G.A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. The author reviews the observed properties of coronal transients, concentrating on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones non-thermal. The possible mechanisms involved in the radio bursts are discussed and the estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the Sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the fields, provides a possible driving force for the coronal and interplanetary shock waves. (Auth.)

  5. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  6. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  7. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the sun to 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Möstl, C.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V. [Kanzelhöhe Observatory-IGAM, Institute of Physics, University of Graz (Austria); Amla, K.; Hall, J. R.; Liewer, P. C.; De Jong, E. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Colaninno, R. C. [Space Sciences Division, Naval Research Laboratory, Washington, DC (United States); Davies, J. A.; Harrison, R. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Lugaz, N.; Farrugia, C. J.; Galvin, A. B. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Vršnak, B., E-mail: christian.moestl@uni-graz.at [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000, Zagreb (Croatia)

    2014-06-01

    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700 km s{sup –1}). We track the CMEs to 34.9 ± 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of –26.4 ± 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Φ, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 ± 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 ± 288 km s{sup –1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 ± 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 ± 50 km s{sup –1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.

  8. Radio and white-light observations of coronal transients

    Science.gov (United States)

    Dulk, G. A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.

  9. Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989

    Science.gov (United States)

    Hundhausen, A. J.

    1993-01-01

    A statistical description of the sizes and locations of 1209 mass ejections observed with the SMM coronagraph/polarimeter in 1980 and 1984-1989 is presented. The average width of the coronal mass ejections detected with this instrument was close to 40 deg in angle for the entire period of SMM observations. No evidence was found for a significant change in mass ejection widths as reported by Howard et al. (1986). There is clear evidence for changes in the latitude distribution of mass ejections over this epoch. Mass ejections occurred over a much wider range of latitudes at the times of high solar activity (1980 and 1989) than at times of low activity (1985-1986).

  10. COMPOSITION OF CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, T. H.; Weberg, M.; Lepri, S. T. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (United States); Von Steiger, R. [International Space Science Institute, Bern (Switzerland); Mewaldt, R. A. [California Institute of Technology, Pasadena, CA (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-20

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q {sub Fe} > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  11. Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1984-01-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients. (orig.)

  12. Understanding the Physical Nature of Coronal "EIT Waves".

    Science.gov (United States)

    Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T

    2017-01-01

    For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory . In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.

  13. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  14. An ice-cream cone model for coronal mass ejections

    Science.gov (United States)

    Xue, X. H.; Wang, C. B.; Dou, X. K.

    2005-08-01

    In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.

  15. Fast solar hard X-ray bursts and large scale coronal structures

    International Nuclear Information System (INIS)

    Simnett, G.M.

    1982-01-01

    The conditions at the Sun at the times corresponding to a selected set 22 fast impulsive hard X-ray bursts reported by Crannell et al. are examined. It is suggested that one of the bursts must arise from a precipitating beam of subrelativistic electrons; the source of the electrons is postulated to be in a region very remote from the X-ray site on the basis of type III and other radio data. The connection is via a coronal magnetic loop extending to approx.3 R/sub sun/ above the photosphere. The energy in the electron beam is estimated at 3 x 10 27 ergs. Intense soft X-ray and/or microwave radio storms at times corresponding to many of the impulsive X-ray bursts lead the conclusion that 14, and possibly 18, of the 22 bursts could have the same interpretation. The energy in such an electron beam could be important when considering the trigger phase of some flares

  16. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, R.; Török, T.; Titov, V. S.; Mikić, Z.; Linker, J. A. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E.; Linton, M. G., E-mail: lionel@predsci.com [US Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 (United States)

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  17. The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Cherenkov, A.; Bisikalo, D. [Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya St. 119017, Moscow (Russian Federation); Fossati, L.; Möstl, C., E-mail: bisikalo@inasan.ru [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2017-09-01

    Hot-Jupiters are subject to extreme radiation and plasma flows coming from their host stars. Past ultraviolet Hubble Space Telescope observations, supported by hydrodynamic models, confirmed that these factors lead to the formation of an extended envelope, part of which lies beyond the Roche lobe. We use gas-dynamic simulations to study the impact of time variations in the parameters of the stellar wind, namely that of coronal mass ejections (CMEs), on the envelope of the typical hot-Jupiter HD 209458b. We consider three CMEs characterized by different velocities and densities, taking their parameters from typical CMEs observed for the Sun. The perturbations in the ram-pressure of the stellar wind during the passage of each CME tear off most of the envelope that is located beyond the Roche lobe. This leads to a substantial increase of the mass-loss rates during the interaction with the CME. We find that the mass lost by the planet during the whole crossing of a CME is of ≈10{sup 15} g, regardless of the CME taken into consideration. We also find that over the course of 1 Gyr, the mass lost by the planet because of CME impacts is comparable to that lost because of high-energy stellar irradiation.

  18. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    Science.gov (United States)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  19. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  20. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  1. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  2. HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-05-10

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  3. Why fast solar wind originates from slowly expanding coronal flux tubes

    International Nuclear Information System (INIS)

    Wang, Y.M.; Sheeley, N.R. Jr.

    1991-01-01

    Empirical studies indicate that the solar wind speed at earth is inversely correlated with the divergence rate of the coronal magnetic field. It is shown that this result is consistent with simple wind acceleration models involving Alfven waves, provided that the wave energy flux at the coronal base is taken to be roughly constant within open field regions. 9 refs

  4. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  5. Toward Understanding the Early Stags of an Impulsively Accelerated Coronal Mass Ejection

    Science.gov (United States)

    2010-08-09

    B. E., & Howard, R. A . 2009, ApJ, 702, 901 Wood, B. E., Karovska , M., Chen, J., Brueckner, G. E., Cook, J. W., & Howard, R. A . 1999, ApJ, 512, 484...ar X iv :1 00 8. 11 71 v1 [ as tr o- ph .S R ] 6 A ug 2 01 0 Astronomy & Astrophysics manuscript no. bubble c© ESO 2010 August 9, 2010 Toward...understanding the early stages of an impulsively accelerated coronal mass ejection SECCHI observations S. Patsourakos1, A . Vourlidas2, and B. Kliem3,4

  6. Formation of Radio Type II Bursts During a Multiple Coronal Mass Ejection Event

    Science.gov (United States)

    Al-Hamadani, Firas; Pohjolainen, Silja; Valtonen, Eino

    2017-12-01

    We study the solar event on 27 September 2001 that consisted of three consecutive coronal mass ejections (CMEs) originating from the same active region, which were associated with several periods of radio type II burst emission at decameter-hectometer (DH) wavelengths. Our analysis shows that the first radio burst originated from a low-density environment, formed in the wake of the first, slow CME. The frequency-drift of the burst suggests a low-speed burst driver, or that the shock was not propagating along the large density gradient. There is also evidence of band-splitting within this emission lane. The origin of the first shock remains unclear, as several alternative scenarios exist. The second shock showed separate periods of enhanced radio emission. This shock could have originated from a CME bow shock, caused by the fast and accelerating second or third CME. However, a shock at CME flanks is also possible, as the density depletion caused by the three CMEs would have affected the emission frequencies and hence the radio source heights could have been lower than usual. The last type II burst period showed enhanced emission in a wider bandwidth, which was most probably due to the CME-CME interaction. Only one shock that could reliably be associated with the investigated CMEs was observed to arrive near Earth.

  7. Coronal Mass Ejections: Models and Their Observational Basis

    Directory of Open Access Journals (Sweden)

    P. F. Chen

    2011-04-01

    Full Text Available Coronal mass ejections (CMEs are the largest-scale eruptive phenomenon in the solar system, expanding from active region-sized nonpotential magnetic structure to a much larger size. The bulk of plasma with a mass of ∼10^11 – 10^13 kg is hauled up all the way out to the interplanetary space with a typical velocity of several hundred or even more than 1000 km s^-1, with a chance to impact our Earth, resulting in hazardous space weather conditions. They involve many other much smaller-sized solar eruptive phenomena, such as X-ray sigmoids, filament/prominence eruptions, solar flares, plasma heating and radiation, particle acceleration, EIT waves, EUV dimmings, Moreton waves, solar radio bursts, and so on. It is believed that, by shedding the accumulating magnetic energy and helicity, they complete the last link in the chain of the cycling of the solar magnetic field. In this review, I try to explicate our understanding on each stage of the fantastic phenomenon, including their pre-eruption structure, their triggering mechanisms and the precursors indicating the initiation process, their acceleration and propagation. Particular attention is paid to clarify some hot debates, e.g., whether magnetic reconnection is necessary for the eruption, whether there are two types of CMEs, how the CME frontal loop is formed, and whether halo CMEs are special.

  8. Formation of Magnetic Flux Ropes during a Confined Flaring Well before the Onset of a Pair of Major Coronal Mass Ejections

    Science.gov (United States)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2015-08-01

    NOAA active region (AR) 11429 was the source of twin super-fast coronal mass ejections (CMEs). The CMEs took place within an hour from each other, with the onset of the first taking place in the beginning of 2012 March 7. This AR fulfills all the requirements for a “super active region” namely, Hale's law incompatibility and a δ-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ({D}{st}=-143 nT) was associated with one of these events. Magnetic flux ropes (MFRs) are twisted magnetic structures in the corona, best seen in ˜10 MK hot plasma emission and are often considered the core of erupting structures. However, their “dormant” existence in the solar atmosphere (i.e., prior to eruptions), is an open question. Aided by multi-wavelength observations by the Solar Dynamics Observatory (SDO) and by the Solar Terrestrial Relations Observatory (STEREO) and a nonlinear force-free model for the coronal magnetic field, our work uncovers two separate, weakly twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.

  9. Coronal Mass Ejections: a Summary of Recent Results

    Science.gov (United States)

    Gopalswamy, Nat; Davila, J. M.

    2010-01-01

    Coronal mass ejections (CMEs) have been recognized as the most energetic phenomenon in the heliosphere, deriving their energy from the stressed magnetic fields on the Sun. This paper highlights some of the recent results on CMEs obtained from the Solar and Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO) missions. The summary of the talk follows. SOHO observations revealed that the CME rate is almost a factor of two larger than previously thought and varied with the solar activity cycle in a complex way (e.g., high-latitude CMEs occurred in great abundance during the solar maximum years). CMEs were found to interact with other CMEs as well as with other large-scale structures (coronal holes), resulting in deflections and additional particle acceleration. STEREO observations have confirmed the three-dimensional nature of CMEs and the shocks surrounding them. The EUV signatures (flare arcades, corona) dimming, filament eruption, and EUV waves) associated with CMEs have become vital in the identification of solar sources from which CMEs erupt. CMEs with speeds exceeding the characteristic speeds of the corona and the interplanetary medium drive shocks, which produce type II radio bursts. The wavelength range of type II bursts depends on the CME kinetic energy: type II bursts with emission components at all wavelengths (metric to kilometric) are due to CMEs of the highest kinetic energy. Some CMEs, as fast as 1600 km/s do not produce type II bursts, while slow CMEs (400 km/s) occasionally produce type II bursts. These observations can be explained as the variation in the ambient flow speed (solar wind) and the Alfven speed. Not all CME-driven shocks produce type II bursts because either they are subcritical or do not have the appropriate geometry. The same shocks that produce type II bursts also produce solar energetic particles (SEPs), whose release near the Sun seems to be delayed with respect to the onset of type II bursts

  10. Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections

    Science.gov (United States)

    Al-Haddad, Nada; Nieves-Chinchilla, Teresa; Savani, Neel P.; Lugaz, Noé; Roussev, Ilia I.

    2018-05-01

    Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earth's magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine important geometrical and physical CME properties, such as the orientation of the CME axis, the CME size, and its magnetic flux. In many instances, there is disagreement between different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. This could be due to the geometrical or physical assumptions of the models, but also to the fact that the magnetic field inside CMEs is only measured at one point in space as the CME passes over a spacecraft. In this article we compare three methods that are based on different assumptions for measurements by the Wind spacecraft for 13 CMEs from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on https://wind.nasa.gov/ICMEindex.php https://wind.nasa.gov/ICMEindex.php" TargetType="URL"/> because of their simplicity in terms of: 1) slow expansion speed throughout the CME and 2) weak asymmetry in the magnetic field profile. This makes these 13 events ideal candidates for comparing codes that do not include expansion or distortion. We find that for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six of the 13 events. Using the Grad-Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular-cylindrical non force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a precondition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts

  11. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Science.gov (United States)

    Fainshtein, Victor; Egorov, Yaroslav

    2018-03-01

    In recent years, information about the distance between the body of rapid coronal mass ejection (CME) and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R) applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun-Earth axis. For this purpose, using the "ice-cream cone" model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs) and for HCME-related shocks. With these data, we managed to obtain the B(R) distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME sites moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial) part actually moves in the slow wind.

  12. Evolution of coronal mass ejections and their heliospheric imprints

    International Nuclear Information System (INIS)

    Rollett, T.

    2014-01-01

    Coronal mass ejections (CMEs) are the most powerful eruptions on the Sun and can reach speeds up to more than 3000 km/s. CMEs are the most important drivers of space weather and can cause geomagnetic storms when interacting with the Earth magnetosphere.The evolution and propagation of CMEs in interplanetary space is still not well understood. Interactions with the solar wind as well as other CMEs make accurate forecasting of arrival times difficult. The Constrained Harmonic Mean (CHM) method combines remote sensing white light data of STEREO/HI with in situ data and offers the possibility to derive kinematical profiles for any segment along the CME front to study its evolution in interplanetary space. We studied the influence of the ambient solar wind flow on the propagation behavior for three CME events. The kinematics revealed by the CHM method were compared to the simulated background solar wind. We found that CMEs are highly dependent on speed variations of the ambient medium. The CHM method was tested by analyzing a simulated CME as observed by STEREO/HI. After applying the CHM method, the resulting CME kinematics were compared to the real kinematics of the simulated CME. We found that the CHM method works best for small separation angles between the spacecraft. A case study of a fast CME that has been remotely observed by both STEREO/HI and in situ measured by four spacecraft at different heliocentric distances is also presented. Using this high number of in situ detections and the two side views we derived different speed profiles for the two different segments of the same CME causing a deformation of the overall structure of the CME. The studies presented show the effects of different influences of the ambient solar wind on the CME evolution. Interaction of CMEs with the solar wind or other CMEs lead to disturbances of the speed as well as the shape of CMEs, affecting their arrival time and their geoeffectivity. (author) [de

  13. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  14. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. X. [Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory, Shanghai 200030 (China); Qiu, J., E-mail: chengjx@shao.ac.cn [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  15. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    International Nuclear Information System (INIS)

    Cheng, J. X.; Qiu, J.

    2016-01-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  16. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  17. An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Eastwood, J. P.; Krupařová, Oksana; Santolík, Ondřej; Souček, Jan; Magdalenic, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Oliveros, J.C.M.; Bale, S. D.

    2016-01-01

    Roč. 823, č. 1 (2016) ISSN 2041-8205 R&D Projects: GA ČR GJ16-16050Y; GA ČR(CZ) GAP209/12/2394; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : solar -terrestrial relations * coronal mass ejections (CMEs) * radio radiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.522, year: 2016 http://iopscience.iop.org/article/10.3847/2041-8205/823/1/L5/meta

  18. On interplanetary coronal mass ejection identification at 1 AU

    International Nuclear Information System (INIS)

    Mulligan, T.; Russell, C.T.; Gosling, J.T.

    1999-01-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978 - 1980. copyright 1999 American Institute of Physics

  19. The nature of micro CMEs within coronal holes

    Science.gov (United States)

    Bothmer, Volker; Nistico, Giuseppe; Zimbardo, Gaetano; Patsourakos, Spiros; Bosman, Eckhard

    Whilst investigating the origin and characteristics of coronal jets and large-scale CMEs identi-fied in data from the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument suites on board the two STEREO satellites, we discovered transient events that originated in the low corona with a morphology resembling that of typical three-part struc-tured coronal mass ejections (CMEs). However, the CMEs occurred on considerably smaller spatial scales. In this presentation we show evidence for the existence of small-scale CMEs from inside coronal holes and present quantitative estimates of their speeds and masses. We interprete the origin and evolution of micro CMEs as a natural consequence of the emergence of small-scale magnetic bipoles related to the Sun's ever changing photospheric magnetic flux on various scales and their interactions with the ambient plasma and magnetic field. The analysis of CMEs is performed within the framework of the EU Erasmus and FP7 SOTERIA projects.

  20. MASS LOSS IN PRE-MAIN-SEQUENCE STARS VIA CORONAL MASS EJECTIONS AND IMPLICATIONS FOR ANGULAR MOMENTUM LOSS

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N. [Astronomy Department, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette (France); Stassun, Keivan G., E-mail: aarnio@umich.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2012-11-20

    We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log (M {sub CME}[g]) = 0.63 Multiplication-Sign log (E {sub flare}[erg]) - 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10{sup -12}-10{sup -9} M {sub Sun} yr{sup -1}. We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming that the CME outflow rate for a typical {approx}1 M {sub Sun} T Tauri star is <10{sup -10} M {sub Sun} yr{sup -1}, the resulting spin-down torque is too small during the first {approx}1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is {approx}> 10{sup -10} M {sub Sun} yr{sup -1}, as permitted by our calculations, then the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.

  1. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    Science.gov (United States)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  2. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Directory of Open Access Journals (Sweden)

    Fainshtein V.G.

    2018-03-01

    Full Text Available In recent years, information about the distance between the body of rapid coronal mass ejection (CME and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun–Earth axis. For this purpose, using the “ice-cream cone” model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs and for HCME-related shocks. With these data we managed to obtain the B(R distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME parts moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial part actually moves in the slow wind.

  3. Acceleration of Solar Energetic Particles at a Fast Traveling Shock in Non-uniform Coronal Conditions

    Science.gov (United States)

    Le Roux, J. A.; Arthur, A. D.

    2017-09-01

    Time-dependent solar energetic particle (SEP) acceleration is investigated at a fast, nearly parallel spherical traveling shock in the strongly non-uniform corona by solving the standard focused transport equation for SEPs and transport equations for parallel propagating Alfvén waves that form a set of coupled equations. This enables the modeling of self-excitation of Alfvén waves in the inertial range by SEPs ahead of the shock and its role in enhancing the efficiency of the diffusive shock acceleration (DSA) of SEPs in a self-regulatory fashion. Preliminary results suggest that, because of the highly non-uniform coronal conditions that the shock encounters, both DSA and wave excitation are highly time-dependent processes. Thus, DSA spectra of SEPs strongly deviate from the simple power-law prediction of standard steady-state DSA theory and initially strong wave excitation weakens rapidly. Consequently, the ability of DSA to produce high energy SEPs in the corona of ∼1 GeV, as observed in the strongest gradual SEP events, appears to be strongly curtailed at a fast nearly parallel shock, but further research is needed before final conclusions can be drawn.

  4. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  5. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  6. Advances in fast-atom-bombardment mass spectroscopy

    International Nuclear Information System (INIS)

    Hemling, M.E.

    1986-01-01

    A comparison of fast atom bombardment and field desorption mass spectrometry was made to determine relative sensitivity and applicability. A series of glycosphingolipids and a series of protected oligonucleotides of known structure were analyzed to ascertain the potential utility of fast atom bombardment mass spectrometry in the structural elucidation of novel compounds in these classes. Negative ion mass markers were also developed. Fast atom bombardment was found to be one-to-two orders of magnitude more sensitive than field desorption based on the analysis of a limited number of compounds from several classes. Superior sensitivity was not universal and field desorption was clearly better in certain cases. In the negative ion mode in particular, fast atom bombardment was found to be a useful tool for the determination of the primary structure of glycosphingolipids and oligonucleotides. Carbohydrate sequence and branching information, and a fatty acid and lipid base composition were readily obtained from the mass spectra of glycosphingolipids while bidirectional nucleotide sequence, nucleotide base, and protecting group assignments were obtained for oligonucleotides. Based on this knowledge, a tentative structure of a human peripheral nervous system glycosphingolipid implicated in certain cases of disorders such as amyotrophic lateral sclerosis, Lou Gehrig's Disease, was proposed. Suitable negative ion mass markers were found in dispersions of poly(ethylene) and poly(propylene)glycols in a triethylenetetramine matrix, a matrix which also proved useful in the analysis of glycosphingolipids. These polyglycol dispersions provided ions for calibration to 2300 daltons

  7. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Innes, D. E., E-mail: pankaj@kasi.re.kr [Max-Planck Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{sup −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  8. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E.

    2016-01-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s −1 and it accelerated to ∼1490 km s −1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s −1 ) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  9. Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989

    Science.gov (United States)

    Hundhausen, A. J.; Burkepile, J. T.; St. Cyr, O. C.

    1994-01-01

    The speeds of 936 features in 673 coronal mass ejections have been determined from trajectories observed with the Solar Maximum Mission (SMM) coronagraph in 1980 and 1984 to 1989. The distribution of observed speeds has a range (from 5th to 95th percentile) of 35 to 911 km/s; the average and median speeds are 349 and 285 km/s. The speed distributions of some selected classes of mass ejections are significantly different. For example, the speeds of 331 'outer loops' range from 80 to 1042 km/s; the average and median speeds for this class of ejections are 445 and 372 km/s. The speed distributions from each year of SMM observations show significant changes, with the annual average speeds varying from 157 (1984) to 458 km/s (1985). These variations are not simply related to the solar activity cycle; the annual averages from years near the sunspot maxima and minimum are not significantly different. The widths, latitudes, and speeds of mass ejections determined from the SMM observations are only weakly correlated. In particular, mass ejection speeds vary only slightly with the heliographic latitudes of the ejection. High-latitude ejections, which occur well poleward of the active latitudes, have speeds similar to active latitude ejections.

  10. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the eliophysics System Observatory

    Czech Academy of Sciences Publication Activity Database

    Möstl, C.; Isavnin, A.; Boakes, P. D.; Kilpua, E. K. J.; Davies, J. A.; Harrison, R. A.; Barnes, D.; Krupař, Vratislav; Eastwood, J.; Good, S. W.; Forsyth, R. J.; Bothmer, V.; Reiss, M. A.; Amerstorfer, T.; Winslow, R. M.; Anderson, B.J.; Philpott, L. C.; Rodriguez, L.; Rouillard, A. P.; Gallagher, P.; Nieves-Chinchilla, T.; Zhang, T. L.

    2017-01-01

    Roč. 15, č. 7 (2017), s. 955-970 ISSN 1539-4956 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : space weather * coronal mass ejections * STEREO * heliospheric imagers * Heliophysics System Observatory * heliophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://onlinelibrary.wiley.com/doi/10.1002/2017SW001614/full

  11. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  12. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Zong, Weiguo; Dai, Yu

    2015-01-01

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s −1 and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures

  13. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2015-08-20

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.

  14. ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Liu, Ying D.; Luhmann, Janet G.; Möstl, Christian; Bale, Stuart D.; Lin, Robert P.; Lugaz, Noé; Davies, Jackie A.

    2013-01-01

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtained concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the

  15. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  16. Observations of the Coronal Mass Ejection with a Complex Acceleration Profile

    Science.gov (United States)

    Reva, A. A.; Kirichenko, A. S.; Ulyanov, A. S.; Kuzin, S. V.

    2017-12-01

    We study the coronal mass ejection (CME) with a complex acceleration profile. The event occurred on 2009 April 23. It had an impulsive acceleration phase, an impulsive deceleration phase, and a second impulsive acceleration phase. During its evolution, the CME showed signatures of different acceleration mechanisms: kink instability, prominence drainage, flare reconnection, and a CME–CME collision. The special feature of the observations is the usage of the TESIS EUV telescope. The instrument could image the solar corona in the Fe 171 Å line up to a distance of 2 {R}ȯ from the center of the Sun. This allows us to trace the CME up to the LASCO/C2 field of view without losing the CME from sight. The onset of the CME was caused by kink instability. The mass drainage occurred after the kink instability. The mass drainage played only an auxiliary role: it decreased the CME mass, which helped to accelerate the CME. The first impulsive acceleration phase was caused by the flare reconnection. We observed the two-ribbon flare and an increase of the soft X-ray flux during the first impulsive acceleration phase. The impulsive deceleration and the second impulsive acceleration phases were caused by the CME–CME collision. The studied event shows that CMEs are complex phenomena that cannot be explained with only one acceleration mechanism. We should seek a combination of different mechanisms that accelerate CMEs at different stages of their evolution.

  17. How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.

    2017-12-01

    Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.

  18. FRiED: A NOVEL THREE-DIMENSIONAL MODEL OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Isavnin, A.

    2016-01-01

    We present a novel three-dimensional (3D) model of coronal mass ejections (CMEs) that unifies all key evolutionary aspects of CMEs and encapsulates their 3D magnetic field configuration. This fully analytic model is capable of reproducing the global geometrical shape of a CME with all major deformations taken into account, i.e., deflection, rotation, expansion, “pancaking,” front flattening, and rotational skew. Encapsulation of 3D magnetic structure allows the model to reproduce in-situ measurements of magnetic field for trajectories of spacecraft-CME encounters of any degree of complexity. As such, the model can be used single-handedly for the consistent analysis of both remote and in-situ observations of CMEs at any heliocentric distance. We demonstrate the latter by successfully applying the model for the analysis of two CMEs.

  19. CHROMOSPHERE TO 1 au SIMULATION OF THE 2011 MARCH 7th EVENT: A COMPREHENSIVE STUDY OF CORONAL MASS EJECTION PROPAGATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. [Lockheed Martin Solar and Astrophysics Lab, Palo Alto, CA 94304 (United States); Manchester, W. B.; Holst, B. van der; Sokolov, I.; Tóth, G.; Gombosi, T. I. [Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Vourlidas, A. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Koning, C. A. de, E-mail: jinmeng@lmsal.com, E-mail: chipm@umich.edu, E-mail: angelos.vourlidas@jhuapl.edu, E-mail: curt.a.dekoning@noaa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2017-01-10

    We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R {sub ⊙}. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wave turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel–Kramers–Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A . A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A ).

  20. Magnetic Source Regions of Coronal Mass Ejections Brigitte ...

    Indian Academy of Sciences (India)

    2003) or two rows of opposite polarity field extending to ... sional Alfvén waves which bring up helicity from the sub-photospheric part of the flux tube ... Figure 1. Loss of equilibrium model: sketches of coronal field lines showing ... lines of the quadrupolar reconnection before the flare, (bottom left): TRACE observations of the.

  1. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  2. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  3. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    Science.gov (United States)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  4. Do interacting coronal mass ejections play a role in solar energetic particle events?

    International Nuclear Information System (INIS)

    Kahler, S. W.; Vourlidas, A.

    2014-01-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre , speeds V pre , or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  5. Mass Loss Rates of Fasting Polar Bears.

    Science.gov (United States)

    Pilfold, Nicholas W; Hedman, Daryll; Stirling, Ian; Derocher, Andrew E; Lunn, Nicholas J; Richardson, Evan

    2016-01-01

    Polar bears (Ursus maritimus) have adapted to an annual cyclic regime of feeding and fasting, which is extreme in seasonal sea ice regions of the Arctic. As a consequence of climate change, sea ice breakup has become earlier and the duration of the open-water period through which polar bears must rely on fat reserves has increased. To date, there is limited empirical data with which to evaluate the potential energetic capacity of polar bears to withstand longer fasts. We measured the incoming and outgoing mass of inactive polar bears (n = 142) that were temporarily detained by Manitoba Conservation and Water Stewardship during the open-water period near the town of Churchill, Manitoba, Canada, in 2009-2014. Polar bears were given access to water but not food and held for a median length of 17 d. Median mass loss rates were 1.0 kg/d, while median mass-specific loss rates were 0.5%/d, similar to other species with high adiposity and prolonged fasting capacities. Mass loss by unfed captive adult males was identical to that lost by free-ranging individuals, suggesting that terrestrial feeding contributes little to offset mass loss. The inferred metabolic rate was comparable to a basal mammalian rate, suggesting that while on land, polar bears can maintain a depressed metabolic rate to conserve energy. Finally, we estimated time to starvation for subadults and adult males for the on-land period. Results suggest that at 180 d of fasting, 56%-63% of subadults and 18%-24% of adult males in this study would die of starvation. Results corroborate previous assessments on the limits of polar bear capacity to withstand lengthening ice-free seasons and emphasize the greater sensitivity of subadults to changes in sea ice phenology.

  6. Regarding the detectability and measurement of coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Howard Timothy A.

    2015-01-01

    Full Text Available In this review I discuss the problems associated with the detection and measurement of coronal mass ejections (CMEs. CMEs are important phenomena both scientifically, as they play a crucial role in the evolution of the solar corona, and technologically, as their impact with the Earth leads to severe space weather activity in the form of magnetic storms. I focus on the observation of CMEs using visible white light imagers (coronagraphs and heliospheric imagers, as they may be regarded as the binding agents between different datasets and different models that are used to reconstruct them. Our ability to accurately measure CMEs observed by these imagers is hampered by many factors, from instrumental to geometrical to physical. Following a brief review of the history of CME observation and measurement, I explore the impediments to our ability to measure them and describe possible means for which we may be able to mitigate those impediments. I conclude with a discussion of the claim that we have reached the limit of the information that we can extract from the current generation of white light imagers, and discuss possible ways forward regarding future instrument capabilities.

  7. AUTOMATICALLY DETECTING AND TRACKING CORONAL MASS EJECTIONS. I. SEPARATION OF DYNAMIC AND QUIESCENT COMPONENTS IN CORONAGRAPH IMAGES

    International Nuclear Information System (INIS)

    Morgan, Huw; Byrne, Jason P.; Habbal, Shadia Rifai

    2012-01-01

    Automated techniques for detecting and tracking coronal mass ejections (CMEs) in coronagraph data are of ever increasing importance for space weather monitoring and forecasting. They serve to remove the biases and tedium of human interpretation, and provide the robust analysis necessary for statistical studies across large numbers of observations. An important requirement in their operation is that they satisfactorily distinguish the CME structure from the background quiescent coronal structure (streamers, coronal holes). Many studies resort to some form of time differencing to achieve this, despite the errors inherent in such an approach—notably spatiotemporal crosstalk. This article describes a new deconvolution technique that separates coronagraph images into quiescent and dynamic components. A set of synthetic observations made from a sophisticated model corona and CME demonstrates the validity and effectiveness of the technique in isolating the CME signal. Applied to observations by the LASCO C2 and C3 coronagraphs, the structure of a faint CME is revealed in detail despite the presence of background streamers that are several times brighter than the CME. The technique is also demonstrated to work on SECCHI/COR2 data, and new possibilities for estimating the three-dimensional structure of CMEs using the multiple viewing angles are discussed. Although quiescent coronal structures and CMEs are intrinsically linked, and although their interaction is an unavoidable source of error in any separation process, we show in a companion paper that the deconvolution approach outlined here is a robust and accurate method for rigorous CME analysis. Such an approach is a prerequisite to the higher-level detection and classification of CME structure and kinematics.

  8. Observations and Numerical Models of Solar Coronal Heating Associated with Spicules

    Energy Technology Data Exchange (ETDEWEB)

    Pontieu, B. De; Martinez-Sykora, J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Building 252, Palo Alto, CA 94304 (United States); Moortel, I. De [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); McIntosh, S. W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-08-20

    Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.

  9. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, Yunnan (China); Jiang, C. W. [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 5180055 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, H. S., E-mail: yanxl@ynao.ac.cn [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, Jiangsu (China)

    2017-08-10

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observatory, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling of the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.

  10. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  11. Modeling Coronal Mass Ejections with EUHFORIA: A Parameter Study of the Gibson-Low Flux Rope Model using Multi-Viewpoint Observations

    Science.gov (United States)

    Verbeke, C.; Asvestari, E.; Scolini, C.; Pomoell, J.; Poedts, S.; Kilpua, E.

    2017-12-01

    Coronal Mass Ejections (CMEs) are one of the big influencers on the coronal and interplanetary dynamics. Understanding their origin and evolution from the Sun to the Earth is crucial in order to determine the impact on our Earth and society. One of the key parameters that determine the geo-effectiveness of the coronal mass ejection is its internal magnetic configuration. We present a detailed parameter study of the Gibson-Low flux rope model. We focus on changes in the input parameters and how these changes affect the characteristics of the CME at Earth. Recently, the Gibson-Low flux rope model has been implemented into the inner heliosphere model EUHFORIA, a magnetohydrodynamics forecasting model of large-scale dynamics from 0.1 AU up to 2 AU. Coronagraph observations can be used to constrain the kinematics and morphology of the flux rope. One of the key parameters, the magnetic field, is difficult to determine directly from observations. In this work, we approach the problem by conducting a parameter study in which flux ropes with varying magnetic configurations are simulated. We then use the obtained dataset to look for signatures in imaging observations and in-situ observations in order to find an empirical way of constraining the parameters related to the magnetic field of the flux rope. In particular, we focus on events observed by at least two spacecraft (STEREO + L1) in order to discuss the merits of using observations from multiple viewpoints in constraining the parameters.

  12. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  13. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  14. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  15. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    2000-11-01

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  16. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.

    Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  17. Origin of coronal mass ejection and magnetic cloud: Thermal or magnetic driven?

    Science.gov (United States)

    Zhang, Gong-Liang; Wang, Chi; He, Shuang-Hua

    1995-01-01

    A fundamental problem in Solar-Terrestrial Physics is the origin of the solar transient plasma output, which includes the coronal mass ejection and its interplanetary manifestation, e.g. the magnetic cloud. The traditional blast wave model resulted from solar thermal pressure impulse has faced with challenge during recent years. In the MHD numerical simulation study of CME, the authors find that the basic feature of the asymmetrical event on 18 August 1980 can be reproduced neither by a thermal pressure nor by a speed increment. Also, the thermal pressure model fails in simulating the interplanetary structure with low thermal pressure and strong magnetic field strength, representative of a typical magnetic cloud. Instead, the numerical simulation results are in favor of the magnetic field expansion as the likely mechanism for both the asymmetrical CME event and magnetic cloud.

  18. Studying the Kinematic Behavior of Coronal Mass Ejections and Other Solar Phenomena using the Time-Convolution Mapping Method

    Science.gov (United States)

    Hess Webber, Shea A.; Thompson, Barbara J.; Kwon, Ryun Young; Ireland, Jack

    2018-01-01

    An improved understanding of the kinematic properties of CMEs and CME-associated phenomena has several impacts: 1) a less ambiguous method of mapping propagating structures into their inner coronal manifestations, 2) a clearer view of the relationship between the “main” CME and CME-associated brightenings, and 3) an improved identification of the heliospheric sources of shocks, Type II bursts, and SEPs. We present the results of a mapping technique that facilitates the separation of CMEs and CME-associated brightenings (such as shocks) from background corona. The Time Convolution Mapping Method (TCMM) segments coronagraph data to identify the time history of coronal evolution, the advantage being that the spatiotemporal evolution profiles allow users to separate features with different propagation characteristics. For example, separating “main” CME mass from CME-associated brightenings or shocks is a well-known obstacle, which the TCMM aids in differentiating. A TCMM CME map is made by first recording the maximum value each individual pixel in the image reaches during the traversal of the CME. Then the maximum value is convolved with an index to indicate the time that the pixel reached that value. The TCMM user is then able to identify continuous “kinematic profiles,” indicating related kinematic behavior, and also identify breaks in the profiles that indicate a discontinuity in kinematic history (i.e. different structures or different propagation characteristics). The maps obtained from multiple spacecraft viewpoints (i.e., STEREO and SOHO) can then be fit with advanced structural models to obtain the 3D properties of the evolving phenomena. We will also comment on the TCMM's further applicability toward the tracking of prominences, coronal hole boundaries and coronal cavities.

  19. A numerical study of two interacting coronal mass ejections

    Directory of Open Access Journals (Sweden)

    J. M. Schmidt

    2004-06-01

    Full Text Available The interaction in the solar wind between two coronal mass ejections (CMEs is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.

  20. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  1. Added value of using a CT coronal reformation to diagnose adnexal torsion

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Il; Park, Hee Sun; Yim, Young Hee; Jeon, Hae Jeong; Yu, Mi Hye; Kim, Young Jun [Dept. of Radiology, Konkuk University School of Medicine, Research Institute of Medical Science, Seoul (Korea, Republic of); Jeong, Kyung Ah [Dept. of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2015-08-15

    To evaluate the increased value of using coronal reformation of a transverse computed tomography (CT) scan for detecting adnexal torsion. This study included 106 woman suspected of having adnexal torsion who underwent CT with coronal reformations and subsequent surgical exploration. Two readers independently recorded the CT findings, such as the thickening of a fallopian tube, twisting of the adnexal pedicle, eccentric smooth wall thickening of the torsed adnexal mass, eccentric septal thickening of the torsed adnexal mass, eccentric poor enhancement of the torsed adnexal mass, uterine deviation to the twisted side, ascites or infiltration of pelvic fat, and the overall impression of adnexal torsion with a transverse scan alone or combined with coronal reformation and a transverse scan. The areas under the receiver operating characteristic curves (AUCs), sensitivity, specificity, and positive predictive value were used to compare diagnostic performance. Fifty-two patients were confirmed to have adnexal torsion. The addition of coronal reformations to the transverse scan improved AUCs for readers 1 and 2 from 0.74 and 0.75 to 0.92 and 0.87, respectively, for detecting adnexal torsion (p < 0.001 and p = 0.004, respectively). Sensitivity of CT for detecting twisting of the adnexal pedicle increased significantly for readers 1 and 2 from 0.27 and 0.29 with a transverse scan alone to 0.79 and 0.77 with a combined coronal reformation and a transverse scan, respectively (p < 0.001 and p < 0.001, respectively). Use of a coronal reformation with transverse CT images improves detection of adnexal torsion.

  2. Double-coronal X-Ray and Microwave Sources Associated with a Magnetic Breakout Solar Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yao; Wu, Zhao; Zhao, Di; Wang, Bing; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Schwartz, Richard A., E-mail: yaochen@sdu.edu.cn [NASA Goddard Space Flight Center and American University, Greenbelt, MD 20771 (United States)

    2017-07-01

    Double-coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in large-scale current sheets in solar flares. Here, we present a study on double-coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (2014 April 25, starting at 00:17 UT) and a coronal mass ejection that were likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially occulted flare loops and the upper source co-incident with rapidly squeezing-in side lobes (at a speed of ∼250 km s{sup −1} on both sides). The upper source can be identified at energies as high as 70–100 keV. The X-ray upper source is characterized by flux curves that differ from those of the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration, and an HXR photon spectrum slightly harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double-source structure and the microwave spectra at both sources are in line with gyrosynchrotron emission given by non-thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (and possibly caused by) this fast motion of arcades. This sheds new light on the origin of the corona double-source structure observed in both HXRs and microwaves.

  3. QUANTITATIVE MEASUREMENTS OF CORONAL MASS EJECTION-DRIVEN SHOCKS FROM LASCO OBSERVATIONS

    International Nuclear Information System (INIS)

    Ontiveros, Veronica; Vourlidas, Angelos

    2009-01-01

    In this paper, we demonstrate that coronal mass ejection (CME)-driven shocks can be detected in white light coronagraph images and in which properties such as the density compression ratio and shock direction can be measured. Also, their propagation direction can be deduced via simple modeling. We focused on CMEs during the ascending phase of solar cycle 23 when the large-scale morphology of the corona was simple. We selected events which were good candidates to drive a shock due to their high speeds (V > 1500 km s -1 ). The final list includes 15 CMEs. For each event, we calibrated the LASCO data, constructed excess mass images, and searched for indications of faint and relatively sharp fronts ahead of the bright CME front. We found such signatures in 86% (13/15) of the events and measured the upstream/downstream densities to estimate the shock strength. Our values are in agreement with theoretical expectations and show good correlations with the CME kinetic energy and momentum. Finally, we used a simple forward modeling technique to estimate the three-dimensional shape and orientation of the white light shock features. We found excellent agreement with the observed density profiles and the locations of the CME source regions. Our results strongly suggest that the observed brightness enhancements result from density enhancements due to a bow-shock structure driven by the CME.

  4. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  5. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A. J. B.; Mooney, M. K. [School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Leake, J. E. [Naval Research Laboratory, Washington, DC 20375 (United States); Hudson, H. S. [Space Sciences Lab, University of California Berkeley, Berkeley, CA 94720 (United States)

    2016-11-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.

  6. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    International Nuclear Information System (INIS)

    Russell, A. J. B.; Mooney, M. K.; Leake, J. E.; Hudson, H. S.

    2016-01-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.

  7. SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2016-02-20

    Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.

  8. DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. [Lockheed Martin Solar and Astrophysics Lab, Palo Alto, CA 94304 (United States); Manchester, W. B.; Van der Holst, B.; Sokolov, I.; Tóth, G.; Gombosi, T. I. [Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Mullinix, R. E.; Taktakishvili, A.; Chulaki, A., E-mail: jinmeng@lmsal.com, E-mail: chipm@umich.edu, E-mail: richard.e.mullinix@nasa.gov, E-mail: Aleksandre.Taktakishvili-1@nasa.gov [Community Coordinated Modeling Center, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux-rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO /LASCO, and STEREO /COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator using Gibson–Low configuration, we present a method to derive Gibson–Low flux rope parameters through a handful of observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms is shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, which is capable of predicting the CME direction of propagation, arrival time, and ICME magnetic field at 1 au (see the companion paper by Jin et al. 2016a).

  9. Constraining Stellar Coronal Mass Ejections through Multi-wavelength Analysis of the Active M Dwarf EQ Peg

    Science.gov (United States)

    Crosley, M. K.; Osten, R. A.

    2018-03-01

    Stellar coronal mass ejections remain experimentally unconstrained, unlike their stellar flare counterparts, which are observed ubiquitously across the electromagnetic spectrum. Low-frequency radio bursts in the form of a type II burst offer the best means of identifying and constraining the rate and properties of stellar CMEs. CME properties can be further improved through the use of proposed solar-stellar scaling relations and multi-wavelength observations of CMEs through the use of type II bursts and the associated flares expected to occur alongside them. We report on 20 hr of observation of the nearby, magnetically active, and well-characterized M dwarf star EQ Peg. The observations are simultaneously observed with the Jansky Very Large Array at their P-band (230–470 MHz) and at the Apache Point observatory in the SDSS u‧ filter (λ = 3557 Å). Dynamic spectra of the P-band data, constructed to search for signals in the frequency-time domains, did not reveal evidence of drifting radio bursts that could be ascribed to type II bursts. Given the sensitivity of our observations, we are able to place limits on the brightness temperature and source size of any bursts that may have occurred. Using solar scaling rations on four observed stellar flares, we predict CME parameters. Given the constraints on coronal density and photospheric field strength, our models suggest that the observed flares would have been insufficient to produce detectable type II bursts at our observed frequencies. We consider the implications of these results, and other recent findings, on stellar mass loss.

  10. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, B. J.; Kazachenko, M. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Edmondson, J. K. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Guidoni, S. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  11. Inflows in the Inner White-light Corona: The Closing-down of Flux after Coronal Mass Ejections

    Science.gov (United States)

    Hess, P.; Wang, Y.-M.

    2017-11-01

    During times of high solar activity, the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 coronagraph has recorded multitudes of small features moving inward through its 2{--}6 {R}⊙ field of view. These outer-coronal inflows, which are concentrated around the heliospheric current sheet, tend to be poorly correlated with individual coronal mass ejection (CME) events. Using running-difference movies constructed from Solar Terrestrial Relations Observatory/COR1 coronagraph images taken during 2008-2014, we have identified large numbers of inward-moving features at heliocentric distances below 2 {R}⊙ , with the rate increasing with sunspot and CME activity. Most of these inner-coronal inflows are closely associated with CMEs, being observed during and in the days immediately following the eruptions. Here, we describe several examples of the pinching-off of tapered streamer structures in the wake of CMEs. This type of inflow event is characterized by a separation of the flow into incoming and outgoing components connected by a thin spike, which is interpreted as a continually elongating current sheet viewed edge-on; by the prior convergence of narrow rays toward the current sheet; and by a succession of collapsing loops that form a cusp-shaped structure at the base of the current sheet. The re-forming streamer overlies a growing post-eruption arcade that is visible in EUV images. These observations provide support for standard reconnection models for the formation/evolution of flux ropes during solar eruptive events. We suggest that inflow streams that occur over a relatively wide range of position angles result from the pinching-off of loop arcades whose axes are oriented parallel rather than perpendicular to the sky plane.

  12. MAXIMUM CORONAL MASS EJECTION SPEED AS AN INDICATOR OF SOLAR AND GEOMAGNETIC ACTIVITIES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  13. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  14. Predicting Coronal Mass Ejections Using Machine Learning Methods

    Science.gov (United States)

    Bobra, M. G.; Ilonidis, S.

    2016-04-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections (CMEs). Usually, solar active regions that produce large flares will also produce a CME, but this is not always true. Despite advances in numerical modeling, it is still unclear which circumstances will produce a CME. Therefore, it is worthwhile to empirically determine which features distinguish flares associated with CMEs from flares that are not. At this time, no extensive study has used physically meaningful features of active regions to distinguish between these two populations. As such, we attempt to do so by using features derived from (1) photospheric vector magnetic field data taken by the Solar Dynamics Observatory’s Helioseismic and Magnetic Imager instrument and (2) X-ray flux data from the Geostationary Operational Environmental Satellite’s X-ray Flux instrument. We build a catalog of active regions that either produced both a flare and a CME (the positive class) or simply a flare (the negative class). We then use machine-learning algorithms to (1) determine which features distinguish these two populations, and (2) forecast whether an active region that produces an M- or X-class flare will also produce a CME. We compute the True Skill Statistic, a forecast verification metric, and find that it is a relatively high value of ∼0.8 ± 0.2. We conclude that a combination of six parameters, which are all intensive in nature, will capture most of the relevant information contained in the photospheric magnetic field.

  15. PREDICTING CORONAL MASS EJECTIONS USING MACHINE LEARNING METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Bobra, M. G.; Ilonidis, S. [W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2016-04-20

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections (CMEs). Usually, solar active regions that produce large flares will also produce a CME, but this is not always true. Despite advances in numerical modeling, it is still unclear which circumstances will produce a CME. Therefore, it is worthwhile to empirically determine which features distinguish flares associated with CMEs from flares that are not. At this time, no extensive study has used physically meaningful features of active regions to distinguish between these two populations. As such, we attempt to do so by using features derived from (1) photospheric vector magnetic field data taken by the Solar Dynamics Observatory ’s Helioseismic and Magnetic Imager instrument and (2) X-ray flux data from the Geostationary Operational Environmental Satellite’s X-ray Flux instrument. We build a catalog of active regions that either produced both a flare and a CME (the positive class) or simply a flare (the negative class). We then use machine-learning algorithms to (1) determine which features distinguish these two populations, and (2) forecast whether an active region that produces an M- or X-class flare will also produce a CME. We compute the True Skill Statistic, a forecast verification metric, and find that it is a relatively high value of ∼0.8 ± 0.2. We conclude that a combination of six parameters, which are all intensive in nature, will capture most of the relevant information contained in the photospheric magnetic field.

  16. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  17. Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity

    Science.gov (United States)

    Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin

    2017-07-01

    Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.

  18. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data

    Directory of Open Access Journals (Sweden)

    M. Mierla

    2010-01-01

    Full Text Available Coronal Mass ejections (CMEs are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view (up to 15 R⊙. Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

  19. The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.

    2015-01-01

    We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.

  20. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    International Nuclear Information System (INIS)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J.

    1991-01-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R e upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance

  1. Determination of Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Mikic, Zoran

    1997-01-01

    magnetic nonequilibrium can disrupt sheared coronal arcades, and that helmet streamers can disrupt, leading to coronal mass ejections. Our model has significantly extended the realism with which the coronal magnetic field can be inferred from actual observations. In a subsequent contract awarded by NASA, we have continued to apply and improve the evolutionary technique, to study the physical properties of active regions, and to develop theoretical models of magnetic fields.

  2. CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES

    International Nuclear Information System (INIS)

    Howard, T. A.; Pizzo, V. J.

    2016-01-01

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  3. CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Pizzo, V. J., E-mail: howard@boulder.swri.edu [NOAA Space Weather Prediction Center, Boulder, CO (United States)

    2016-06-20

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  4. Do Solar Coronal Holes Affect the Properties of Solar Energetic Particle Events?

    Science.gov (United States)

    Kahler, S. W.; Arge, C. N.; Akiyama, S.; Gopalswamy, N.

    2013-01-01

    The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E (is) approx. 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang-Sheeley-Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.

  5. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  6. SAUSAGE WAVES IN TRANSVERSELY NONUNIFORM MONOLITHIC CORONAL TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk astrophysical observatory, Russion Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2015-09-10

    We investigate fast sausage waves in a monolithic coronal magnetic tube, modeled as a local density inhomogeneity with a continuous radial profile. This work is a natural extension of our previous results, obtained for a slab loop model for the case of cylindrical geometry. Using Kneser’s oscillating theorem, we provided the criteria for the existence of trapped and leaky wave regimes as a function of the profile features. For a number of density profiles there are only trapped modes for the entire range of longitudinal wave numbers. The phase speed of these modes tends toward the external Alfvén speed in the long wavelength limit. The generalized results were supported by the analytic solution of the wave equation for the specific density profiles. The approximate Wentzel–Kramers–Brillouin solutions allowed us to obtain the desired dispersion relations and to study their properties as a function of the profile parameters. The multicomponent quasi-periodic pulsations in flaring loops, observed on 2001 May 2 and 2002 July 3, are interpreted in terms of the transversely fundamental trapped fast sausage mode with several longitudinal harmonics in a smooth coronal waveguide.

  7. Fast DNA analysis by laser mass spectrometry for human genome analysis

    International Nuclear Information System (INIS)

    Tang, K.; Taranenko, N. I.; Allman, S. L.; Chang, L. Y.; Chen, C. H.

    1995-01-01

    Fast DNA sequencing by laser mass spectrometry is possible if the following 3 criteria are met: (1) Size of DNA fragment should be greater than 300 nucleotides. (2) Enough sensitivity to detect DNA produce from polymerases chain reactins (PCR). (3) Higher resolution of mass spectr. So far, the firt 2 criteria are met: If the resolution can be significantly improve, fast DNA sequencing by laser mass spectrometry weil be a reality in the near feature

  8. Image-based reconstruction of the Newtonian dynamics of solar coronal ejecta

    Science.gov (United States)

    Uritsky, Vadim M.; Thompson, Barbara J.

    2016-10-01

    We present a new methodology for analyzing rising and falling dynamics of unstable coronal material as represented by high-cadence SDO AIA images. The technique involves an adaptive spatiotemporal tracking of propagating intensity gradients and their characterization in terms of time-evolving areas swept out by the position vector originated from the Sun disk center. The measured values of the areal velocity and acceleration are used to obtain quantitative information on the angular momentum and acceleration along the paths of the rising and falling coronal plasma. In the absence of other forces, solar gravitation results in purely ballistic motions consistent with the Kepler's second law; non-central forces such as the Lorentz force introduce non-zero torques resulting in more complex motions. The developed algorithms enable direct evaluation of the line-of-sight component of the net torque applied to a unit mass of the ejected coronal material which is proportional to the image-plane projection of the observed areal acceleration. The current implementation of the method cannot reliably distinguish torque modulations caused by the coronal force field from those imposed by abrupt changes of plasma mass density and nontrivial projection effects. However, it can provide valid observational constraints on the evolution of large-scale unstable magnetic topologies driving major solar-coronal eruptions as demonstrated in the related talk by B. Thompson et al.

  9. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, Bojan [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia); Odstrcil, Dusan [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO (United States)

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  10. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Temmer, Manuela; Rollett, Tanja; Möstl, Christian; Veronig, Astrid M.; Vršnak, Bojan; Odstrčil, Dusan

    2011-01-01

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R ☉ , to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  11. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  12. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  13. Hot prominence detected in the core of a coronal mass ejection II. Analysis of the C III line detected by SOHO/UVCS

    Czech Academy of Sciences Publication Activity Database

    Jejčič, S.; Susino, R.; Heinzel, Petr; Dzifčáková, Elena; Bemporad, A.; Anzer, U.

    2017-01-01

    Roč. 607, November (2017), A80/1-A80/10 E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GA16-18495S Institutional support: RVO:67985815 Keywords : line formation * radiative transfer * coronal mass ejections Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  14. Heating of an Erupting Prominence Associated with a Solar Coronal Mass Ejection on 2012 January 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-07-20

    We investigate the heating of an erupting prominence and loops associated with a coronal mass ejection and X-class flare. The prominence is seen as absorption in EUV at the beginning of its eruption. Later, the prominence changes to emission, which indicates heating of the erupting plasma. We find the densities of the erupting prominence using the absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting prominence and loops seen as emission features using the differential emission measure method, which uses both EUV and X-ray observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the X-ray Telescope on board Hinode . We consider synthetic spectra using both photospheric and coronal abundances in these calculations. We verify the methods for the estimation of temperatures and densities for the erupting plasmas. Then, we estimate the thermal, kinetic, radiative loss, thermal conduction, and heating energies of the erupting prominence and loops. We find that the heating of the erupting prominence and loop occurs strongly at early times in the eruption. This event shows a writhing motion of the erupting prominence, which may indicate a hot flux rope heated by thermal energy release during magnetic reconnection.

  15. Coronal mass ejections and their sheath regions in interplanetary space

    Science.gov (United States)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  16. Coronal mass ejections and their sheath regions in interplanetary space

    Directory of Open Access Journals (Sweden)

    Emilia Kilpua

    2017-11-01

    Full Text Available Abstract Interplanetary coronal mass ejections (ICMEs are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  17. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  18. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Gaskell, S.J.

    1990-01-01

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  19. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim, E-mail: nho0512@khu.ac.kr, E-mail: moonyj@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of)

    2017-04-20

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  20. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-01-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  1. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-04-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory (STEREO)/Sun-Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft (SOHO or one of STEREO A and B) and limb ones by the other spacecraft (One of STEREO A and B or SOHO). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (I.e., a triangulation method and a Graduated Cylindrical Shell model).

  2. ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Dalmasse, Kevin; Nychka, Douglas W.; Gibson, Sarah E.; Fan, Yuhong; Flyer, Natasha

    2016-01-01

    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 and 10798 lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analog. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.

  3. RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-01-01

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.

  4. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  5. FIRST MEASUREMENTS OF THE MASS OF CORONAL MASS EJECTIONS FROM THE EUV DIMMING OBSERVED WITH STEREO EUVI A+B SPACECRAFT

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Nitta, Nariaki V.; Wuelser, Jean-Pierre; Lemen, James R.; Sandman, Anne; Vourlidas, Angelos; Colaninno, Robin C.

    2009-01-01

    The masses of coronal mass ejections (CMEs) have traditionally been determined from white-light coronagraphs (based on Thomson scattering of electrons), as well as from extreme ultraviolet (EUV) dimming observed with one spacecraft. Here we develop an improved method of measuring CME masses based on EUV dimming observed with the dual STEREO/EUVI spacecraft in multiple temperature filters that includes three-dimensional volume and density modeling in the dimming region and background corona. As a test, we investigate eight CME events with previous mass determinations from STEREO/COR2, of which six cases are reliably detected with the Extreme Ultraviolet Imager (EUVI) using our automated multi-wavelength detection code. We find CME masses in the range of m CME = (2-7) x 10 15 g. The agreement between the two EUVI/A and B spacecraft is m A /m B = 1.3 ± 0.6 and the consistency with white-light measurements by COR2 is m EUVI /m COR2 = 1.1 ± 0.3. The consistency between EUVI and COR2 implies no significant mass backflows (or inflows) at r sun and adequate temperature coverage for the bulk of the CME mass in the range of T ∼ 0.5-3.0 MK. The temporal evolution of the EUV dimming allows us to also model the evolution of the CME density n e (t), volume V(t), height-time h(t), and propagation speed v(t) in terms of an adiabatically expanding self-similar geometry. We determine e-folding EUV dimming times of t D = 1.3 ± 1.4 hr. We test the adiabatic expansion model in terms of the predicted detection delay (Δt ∼ 0.7 hr) between EUVI and COR2 for the fastest CME event (2008 March 25) and find good agreement with the observed delay (Δt ∼ 0.8 hr).

  6. A fast mass spring model solver for high-resolution elastic objects

    Science.gov (United States)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  7. Can coronal hole spicules reach coronal temperatures?

    Science.gov (United States)

    Madjarska, M. S.; Vanninathan, K.; Doyle, J. G.

    2011-08-01

    Aims: The present study aims to provide observational evidence of whether coronal hole spicules reach coronal temperatures. Methods: We combine multi-instrument co-observations obtained with the SUMER/SoHO and with the EIS/SOT/XRT/Hinode. Results: The analysed three large spicules were found to be comprised of numerous thin spicules that rise, rotate, and descend simultaneously forming a bush-like feature. Their rotation resembles the untwisting of a large flux rope. They show velocities ranging from 50 to 250 kms-1. We clearly associated the red- and blue-shifted emissions in transition region lines not only with rotating but also with rising and descending plasmas. Our main result is that these spicules although very large and dynamic, are not present in the spectral lines formed at temperatures above 300 000 K. Conclusions: In this paper we present the analysis of three Ca ii H large spicules that are composed of numerous dynamic thin spicules but appear as macrospicules in lower resolution EUV images. We found no coronal counterpart of these and smaller spicules. We believe that the identification of phenomena that have very different origins as macrospicules is due to the interpretation of the transition region emission, and especially the He ii emission, wherein both chromospheric large spicules and coronal X-ray jets are present. We suggest that the recent observation of spicules in the coronal AIA/SDO 171 Å and 211 Å channels probably comes from the existence of transition region emission there. Movie is available in electronic form at http://www.aanda.org

  8. Solar wind heavy ions from energetic coronal events

    International Nuclear Information System (INIS)

    Bame, S.J.

    1978-01-01

    Ions heavier than those of He can be resolved in the solar wind with electrostatic E/q analyzers when the local thermal temperatures are low. Ordinarily this condition prevails in the low speed solar wind found between high speed streams, i.e. the interstream, IS, solar wind. Various ions of O, Si and Fe are resolved in IS heavy ion spectra. Relative ion peak intensities indicate that the O ionization state is established in the IS coronal source regions at approx. 2.1 x 10 6 K while the state of Fe is frozen in at approx. 1.5 x 10 6 K farther out. Occasionally, anomalous spectra are observed in which the usually third most prominent ion peak, O 8+ , is depressed as are the Fe peaks ranging from Fe 12+ to Fe 7+ . A prominent peak in the usual Si 8+ position of IS spectra is self-consistently shown to be Fe 16+ . These features demonstrate that the ionization states were frozen in at higher than usual coronal temperatures. The source regions of these hot heavy ion spectra are identified as energetic coronal events including flares and nonflare coronal mass ejections. 24 references

  9. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    Science.gov (United States)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-07-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  10. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    Science.gov (United States)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  11. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data

    Directory of Open Access Journals (Sweden)

    M. Mierla

    2010-01-01

    Full Text Available Coronal Mass ejections (CMEs are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view (up to 15 R⊙. Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

  12. PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi; Zhang, Lingqian [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); He, Jiansen [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Richardson, John D.; Belcher, John W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); Tu, Cui, E-mail: hli@spaceweather.ac.cn [Laboratory of Near Space Environment, National Space Science Center, CAS, Beijing, 100190 (China)

    2016-11-10

    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar “W”-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  13. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  14. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B., E-mail: paulo.simoes@glasgow.ac.uk, E-mail: lyndsay.fletcher@glasgow.ac.uk, E-mail: arussell@maths.dundee.ac.uk, E-mail: hhudson@ssl.berkeley.edu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  15. Association of 3He-rich solar energetic particles with large-scale coronal waves

    Science.gov (United States)

    Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark

    2016-07-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  16. Swift X-ray monitoring of stellar coronal variability

    Science.gov (United States)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  17. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-01-01

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  18. Mass spectrometric studies of fast pyrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Degenstein, John; Hurt, Matt; Murria, Priya; Easton, McKay; Choudhari, Harshavardhan; Yang, Linan; Riedeman, James; Carlsen, Mark; Nash, John; Agrawal, Rakesh; Delgass, W.; Ribeiro, Fabio; Kenttämaa, Hilkka

    2015-01-01

    A fast pyrolysis probe/linear quadrupole ion trap mass spectrometer combination was used to study the primary fast pyrolysis products (those that first leave the hot pyrolysis surface) of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well as of cellobiosan, cellotriosan, and cellopentosan, at 600°C. Similar products with different branching ratios were found for the oligosaccharides and cellulose, as reported previously. However, identical products (with the exception of two) with similar branching ratios were measured for cellotriosan (and cellopentosan) and cellulose. This result demonstrates that cellotriosan is an excellent small-molecule surrogate for studies of the fast pyrolysis of cellulose and also that most fast pyrolysis products of cellulose do not originate from the reducing end. Based on several observations, the fast pyrolysis of cellulose is suggested to initiate predominantly via two competing processes: the formation of anhydro-oligosaccharides, such as cellobiosan, cellotriosan, and cellopentosan (major route), and the elimination of glycolaldehyde (or isomeric) units from the reducing end of oligosaccharides formed from cellulose during fast pyrolysis.

  19. CME Interaction with Coronal Holes and Their Interplanetary Consequences

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2008-01-01

    A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.

  20. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  1. DISPELLING ILLUSIONS OF REFLECTION: A NEW ANALYSIS OF THE 2007 MAY 19 CORONAL 'WAVE' EVENT

    International Nuclear Information System (INIS)

    Attrill, Gemma D. R.

    2010-01-01

    A new analysis of the 2007 May 19 coronal wave-coronal mass ejection-dimmings event is offered employing base difference extreme-ultraviolet (EUV) images. Previous work analyzing the coronal wave associated with this event concluded strongly in favor of purely an MHD wave interpretation for the expanding bright front. This conclusion was based to a significant extent on the identification of multiple reflections of the coronal wave front. The analysis presented here shows that the previously identified 'reflections' are actually optical illusions and result from a misinterpretation of the running difference EUV data. The results of this new multiwavelength analysis indicate that two coronal wave fronts actually developed during the eruption. This new analysis has implications for our understanding of diffuse coronal waves and questions the validity of the analysis and conclusions reached in previous studies.

  2. Self consistent MHD modeling of the solar wind from polar coronal holes

    International Nuclear Information System (INIS)

    Stewart, G. A.; Bravo, S.

    1996-01-01

    We have developed a 2D self consistent MHD model for solar wind flow from antisymmetric magnetic geometries. We present results in the case of a photospheric magnetic field which has a dipolar configuration, in order to investigate some of the general characteristics of the wind at solar minimum. As in previous studies, we find that the magnetic configuration is that of a closed field region (a coronal helmet belt) around the solar equator, extending up to about 1.6 R · , and two large open field regions centred over the poles (polar coronal holes), whose magnetic and plasma fluxes expand to fill both hemispheres in interplanetary space. In addition, we find that the different geometries of the magnetic field lines across each hole (from the almost radial central polar lines to the highly curved border equatorial lines) cause the solar wind to have greatly different properties depending on which region it flows from. We find that, even though our simplified model cannot produce realistic wind values, we can obtain a polar wind that is faster, less dense and hotter than equatorial wind, and found that, close to the Sun, there exists a sharp transition between the two wind types. As these characteristics coincide with observations we conclude that both fast and slow solar wind can originate from coronal holes, fast wind from the centre, slow wind from the border

  3. NO TRACE LEFT BEHIND: STEREO OBSERVATION OF A CORONAL MASS EJECTION WITHOUT LOW CORONAL SIGNATURES

    International Nuclear Information System (INIS)

    Robbrecht, Eva; Patsourakos, Spiros; Vourlidas, Angelos

    2009-01-01

    The availability of high-quality synoptic observations of the extreme-ultraviolet (EUV) and visible corona during the SOHO mission has advanced our understanding of the low corona manifestations of coronal mass ejections (CMEs). The EUV imager/white light coronagraph connection has been proven so powerful, it is routinely assumed that if no EUV signatures are present when a CME is observed by a coronagraph, then the event must originate behind the visible limb. This assumption carries strong implications for space weather forecasting but has not been put to the test. This paper presents the first detailed analysis of a frontside, large-scale CME that has no obvious counterparts in the low corona as observed in EUV and Hα wavelengths. The event was observed by the SECCHI instruments onboard the STEREO mission. The COR2A coronagraph observed a slow flux-rope-type CME, while an extremely faint partial halo was observed in COR2B. The event evolved very slowly and is typical of the streamer-blowout CME class. EUVI A 171 A images show a concave feature above the east limb, relatively stable for about two days before the eruption, when it rises into the coronagraphic fields and develops into the core of the CME. None of the typical low corona signatures of a CME (flaring, EUV dimming, filament eruption, waves) were observed in the EUVI B images, which we attribute to the unusually large height from which the flux rope lifted off. This interpretation is supported by the CME mass measurements and estimates of the expected EUV dimming intensity. Only thanks to the availability of the two viewpoints we were able to identify the likely source region. The event originated along a neutral line over the quiet-Sun. No active regions were present anywhere on the visible (from STEREO B) face of the disk. Leaving no trace behind on the solar disk, this observation shows unambiguously that a CME eruption does not need to have clear on-disk signatures. Also it sheds light on the

  4. Plasma Diagnostics of Coronal Dimming Events

    Science.gov (United States)

    Vanninathan, Kamalam; Veronig, Astrid M.; Dissauer, Karin; Temmer, Manuela

    2018-04-01

    Coronal mass ejections are often associated with coronal dimmings, i.e., transient dark regions that are most distinctly observed in Extreme Ultra-violet wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Emission Measure diagnostics to study the plasma characteristics of six coronal dimming events. In the core dimming region, we find a steep and impulsive decrease of density with values up to 50%–70%. Five of the events also reveal an associated drop in temperature of 5%–25%. The secondary dimming regions also show a distinct decrease in density, but less strong, decreasing by 10%–45%. In both the core and the secondary dimming the density changes are much larger than the temperature changes, confirming that the dimming regions are mainly caused by plasma evacuation. In the core dimming, the plasma density reduces rapidly within the first 20–30 minutes after the flare start and does not recover for at least 10 hr later, whereas the secondary dimming tends to be more gradual and starts to replenish after 1–2 hr. The pre-event temperatures are higher in the core dimming (1.7–2.6 MK) than in the secondary dimming regions (1.6–2.0 MK). Both core and secondary dimmings are best observed in the AIA 211 and 193 Å filters. These findings suggest that the core dimming corresponds to the footpoints of the erupting flux rope rooted in the AR, while the secondary dimming represents plasma from overlying coronal structures that expand during the CME eruption.

  5. Inertial picobalance reveals fast mass fluctuations in mammalian cells

    Science.gov (United States)

    Martínez-Martín, David; Fläschner, Gotthold; Gaub, Benjamin; Martin, Sascha; Newton, Richard; Beerli, Corina; Mercer, Jason; Gerber, Christoph; Müller, Daniel J.

    2017-10-01

    The regulation of size, volume and mass in living cells is physiologically important, and dysregulation of these parameters gives rise to many diseases. Cell mass is largely determined by the amount of water, proteins, lipids, carbohydrates and nucleic acids present in a cell, and is tightly linked to metabolism, proliferation and gene expression. Technologies have emerged in recent years that make it possible to track the masses of single suspended cells and adherent cells. However, it has not been possible to track individual adherent cells in physiological conditions at the mass and time resolutions required to observe fast cellular dynamics. Here we introduce a cell balance (a ‘picobalance’), based on an optically excited microresonator, that measures the total mass of single or multiple adherent cells in culture conditions over days with millisecond time resolution and picogram mass sensitivity. Using our technique, we observe that the mass of living mammalian cells fluctuates intrinsically by around one to four per cent over timescales of seconds throughout the cell cycle. Perturbation experiments link these mass fluctuations to the basic cellular processes of ATP synthesis and water transport. Furthermore, we show that growth and cell cycle progression are arrested in cells infected with vaccinia virus, but mass fluctuations continue until cell death. Our measurements suggest that all living cells show fast and subtle mass fluctuations throughout the cell cycle. As our cell balance is easy to handle and compatible with fluorescence microscopy, we anticipate that our approach will contribute to the understanding of cell mass regulation in various cell states and across timescales, which is important in areas including physiology, cancer research, stem-cell differentiation and drug discovery.

  6. Automated Identification of Coronal Holes from Synoptic EUV Maps

    Science.gov (United States)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  7. Coronal Activity in the R CrA T Association

    Science.gov (United States)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    Brian Patten is the Principal Investigator of the NASA ROSS-ADP project Coronal Activity in the R CrA T Association. For this project we have extracted net counts and variability information for all of the X-ray sources found in 23 archival ROSAT PSPC and HRI images in the region of the R CrA T association. These data have been merged with an extensive database of optical and near-infrared photometry, optical spectroscopy, and parallax data. These data have been used to (1) identify new association members and clarify the membership status of a number of previously suspected members of the association, and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association and make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters. We have used our survey data to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  8. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction

    Directory of Open Access Journals (Sweden)

    I. I. Roussev

    2009-09-01

    Full Text Available We present general considerations regarding the derivation of the radial distances of coronal mass ejections (CMEs from elongation angle measurements such as those provided by SECCHI and SMEI, focusing on measurements in the Heliospheric Imager 2 (HI-2 field of view (i.e. past 0.3 AU. This study is based on a three-dimensional (3-D magneto-hydrodynamics (MHD simulation of two CMEs observed by SECCHI on 24–27 January 2007. Having a 3-D simulation with synthetic HI images, we are able to compare the two basic methods used to derive CME positions from elongation angles, the so-called "Point-P" and "Fixed-φ" approximations. We confirm, following similar works, that both methods, while valid in the most inner heliosphere, yield increasingly large errors in HI-2 field of view for fast and wide CMEs. Using a simple model of a CME as an expanding self-similar sphere, we derive an analytical relationship between elongation angles and radial distances for wide CMEs. This relationship is simply the harmonic mean of the "Point-P" and "Fixed-φ" approximations and it is aimed at complementing 3-D fitting of CMEs by cone models or flux rope shapes. It proves better at getting the kinematics of the simulated CME right when we compare the results of our line-of-sights to the MHD simulation. Based on this approximation, we re-analyze the J-maps (time-elongation maps in 26–27 January 2007 and present the first observational evidence that the merging of CMEs is associated with a momentum exchange from the faster ejection to the slower one due to the propagation of the shock wave associated with the fast eruption through the slow eruption.

  9. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  10. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL

    International Nuclear Information System (INIS)

    G.S. Choe; C.Z. Cheng

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  11. Is Flux Rope a Necessary Condition for the Progenitor of Coronal Mass Ejections?

    Science.gov (United States)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-12-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  12. MODELING THE INITIATION OF THE 2006 DECEMBER 13 CORONAL MASS EJECTION IN AR 10930: THE STRUCTURE AND DYNAMICS OF THE ERUPTING FLUX ROPE

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2016-06-20

    We carry out a 3D magnetohydrodynamic simulation to model the initiation of the coronal mass ejection (CME) on 2006 December 13 in the emerging δ -sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan, but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east–west oriented twisted flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope in the simulation accelerates to a terminal speed that exceeds 1500 km s{sup −1} and undergoes a counter-clockwise rotation of nearly 180° such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. With continued driving of flux emergence, the source region coronal magnetic field also shows the reformation of a coronal flux rope underlying the flare current sheet of the erupting flux rope, ready for a second eruption. This may explain the build up for another X-class eruptive flare that occurred the following day from the same region.

  13. Statistical Study of Interplanetary Coronal Mass Ejections with Strong Magnetic Fields

    Science.gov (United States)

    Murphy, Matthew E.

    Coronal Mass Ejections (CMEs) with strong magnetic fields (B ) are typically associated with significant Solar Energetic Particle (SEP) events, high solar wind speed and solar flare events. Successful prediction of the arrival time of a CME at Earth is required to maximize the time available for satellite, infrastructure, and space travel programs to take protective action against the coming flux of high-energy particles. It is known that the magnetic field strength of a CME is linked to the strength of a geomagnetic storm on Earth. Unfortunately, the correlations between strong magnetic field CMEs from the entire sun (especially from the far side or non-Earth facing side of the sun) to SEP and flare events, solar source regions and other relevant solar variables are not well known. New correlation studies using an artificial intelligence engine (Eureqa) were performed to study CME events with magnetic field strength readings over 30 nanoteslas (nT) from January 2010 to October 17, 2014. This thesis presents the results of this study, validates Eureqa to obtain previously published results, and presents previously unknown functional relationships between solar source magnetic field data, CME initial speed and the CME magnetic field. These new results enable the development of more accurate CME magnetic field predictions and should help scientists develop better forecasts thereby helping to prevent damage to humanity's space and Earth assets.

  14. Steady three-fluid coronal expansion for nonspherical geometries

    International Nuclear Information System (INIS)

    Joselyn, J.; Holzer, T.E.

    1978-01-01

    A steady three-fluid model of the solar coronal expansionk in which 4 He ++ ions (alphas) are treated as a nonminor species, is developed for nonspherically symmetric flow geometries of the general sort thought to be characteristic of coronal holes. It is found that the very high mass fluxes in the low corona, which are associated with rapidly diverging flow geometries, lead to a locally enhanced frictional coupling between protons and alphas and consequently to a significant reduction of the He/H abundance ratio in the lower corona from that normally predicted by multifluid models. In the models considered, the frictional drag on the protons by the alphas (a process neglected in most studies) is found to play an important role near the sun. Heavy ions, other than alphas, are treated as minor species and are seen to exhibit varying responses to the rapidly diverging flow geometries, depending on the ion mass and charge. As for the protons, the frictional effect of the alphas on the heavier ions is found to be significant in the models considered

  15. Influence of coronal holes on CMEs in causing SEP events

    International Nuclear Information System (INIS)

    Shen Chenglong; Yao Jia; Wang Yuming; Ye Pinzhong; Wang Shui; Zhao Xuepu

    2010-01-01

    The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events. (research papers)

  16. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations

    International Nuclear Information System (INIS)

    Howard, T. A.; DeForest, C. E.

    2014-01-01

    We present a data-driven narrative of the launch and early evolution of the magnetic structure that gave rise to the coronal mass ejection (CME) on 2008 December 12. The structure formed on December 7 and launched early on December 12. We interpret this structure as a flux rope based on prelaunch morphology, postlaunch magnetic measurements, and the lack of large-scale magnetic reconnection signatures at launch. We ascribe three separate onset mechanisms to the complete disconnection of the flux rope from the Sun. It took 19 hr for the flux rope to be fully removed from the Sun, by which time the segment that first disconnected was around 40 R ☉ away. This implies that the original flux rope was stretched or broken; we provide evidence for a possible bisection. A transient dark arcade was observed on the Sun that was later obscured by a bright arcade, which we interpret as the strapping field stretching and magnetically reconnecting as it disconnected from the coronal field. We identify three separate structures in coronagraph images to be manifestations of the same original flux rope, and we describe the implications for CME interpretation. We cite the rotation in the central flux rope vector of the magnetic clouds observed in situ by ACE/Wind and STEREO-B as evidence of the kink instability of the eastern segment of the flux rope. Finally, we discuss possible alternative narratives, including multiple prelaunch magnetic structures and the nonflux rope scenario. Our results support the view that, in at least some CMEs, flux rope formation occurs before launch.

  17. Coronal Mass Ejection Data Clustering and Visualization of Decision Trees

    Science.gov (United States)

    Ma, Ruizhe; Angryk, Rafal A.; Riley, Pete; Filali Boubrahimi, Soukaina

    2018-05-01

    Coronal mass ejections (CMEs) can be categorized as either “magnetic clouds” (MCs) or non-MCs. Features such as a large magnetic field, low plasma-beta, and low proton temperature suggest that a CME event is also an MC event; however, so far there is neither a definitive method nor an automatic process to distinguish the two. Human labeling is time-consuming, and results can fluctuate owing to the imprecise definition of such events. In this study, we approach the problem of MC and non-MC distinction from a time series data analysis perspective and show how clustering can shed some light on this problem. Although many algorithms exist for traditional data clustering in the Euclidean space, they are not well suited for time series data. Problems such as inadequate distance measure, inaccurate cluster center description, and lack of intuitive cluster representations need to be addressed for effective time series clustering. Our data analysis in this work is twofold: clustering and visualization. For clustering we compared the results from the popular hierarchical agglomerative clustering technique to a distance density clustering heuristic we developed previously for time series data clustering. In both cases, dynamic time warping will be used for similarity measure. For classification as well as visualization, we use decision trees to aggregate single-dimensional clustering results to form a multidimensional time series decision tree, with averaged time series to present each decision. In this study, we achieved modest accuracy and, more importantly, an intuitive interpretation of how different parameters contribute to an MC event.

  18. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    International Nuclear Information System (INIS)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K.; Martínez, Lurdes M.; Buleje, Yovanny J.; Morita, Satoshi; Asai, Ayumi; UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari

    2017-01-01

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.

  19. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K. [Geophysical Institute of Peru, Calle Badajoz 169, Mayorazgo IV Etapa, Ate Vitarte, Lima (Peru); Martínez, Lurdes M.; Buleje, Yovanny J. [Centro de Investigación del Estudio de la Actividad Solar y sus Efectos Sobre la Tierra, Facultad de Ciencias, Universidad Nacional San Luis Gonzaga de Ica, Av. Los Maestros S/N, Ica (Peru); Morita, Satoshi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari, E-mail: denis@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan)

    2017-02-10

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.

  20. New experiments in organic, fast-atom-bomdardment, and secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    DiDonato, G.C.

    1987-01-01

    The goal of research presented in this dissertation is the creative use of new ionization and instrumental techniques in mass spectrometry. This goal manifests itself in three areas of mass spectrometry. In the first portion, modern, state-of-the-art instrumentation and new experiments were used to re-examine the mass spectra of transition-metal acetates and acetylacetonates. High resolution, chemical ionization, negative chemical ionization, and extended-mass-range mass spectrometry uncovered a wealth of new gas-phase ionic species. Energy-resolved mass spectrometry/mass spectrometry was applied to the characterization of molecular and fragment ion first-row transition-metal acetylacetonates, and comprises the second portion of the thesis. Studies in fast-atom-bombardment mass spectrometry are the subject of the third portion of the dissertation. Since fast-atom bombardment samples a liquid matrix, absolute and relative abundances of sputtered secondary ions are influenced by solution chemistry. The design and construction of an imaging secondary-ion mass spectrometer is the subject of the final portion of the thesis. This instrument provides for direct mass-spectrometric analysis of thin-layer and paper chromatograms and electrophoretograms

  1. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.; Yang, K.; Chen, P. F., E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2015-12-10

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  2. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    International Nuclear Information System (INIS)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-01-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure

  3. Prospective Out-of-ecliptic White-light Imaging of Coronal Mass Ejections Traveling through the Corona and Heliosphere

    Science.gov (United States)

    Xiong, Ming; Davies, Jackie A.; Harrison, Richard A.; Zhou, Yufen; Feng, Xueshang; Xia, Lidong; Li, Bo; Liu, Ying D.; Hayashi, Keiji; Li, Huichao; Yang, Liping

    2018-01-01

    The in-flight performance of the Coriolis/SMEI and STEREO/HI instruments substantiates the high-technology readiness level of white-light (WL) imaging of coronal mass ejections (CMEs) in the inner heliosphere. The WL intensity of a propagating CME is jointly determined by its evolving mass distribution and the fixed Thomson-scattering geometry. From their in-ecliptic viewpoints, SMEI and HI, the only heliospheric imagers that have been flown to date, integrate the longitudinal dimension of CMEs. In this paper, using forward magnetohydrodynamic modeling, we synthesize the WL radiance pattern of a typical halo CME viewed from an out-of-ecliptic (OOE) vantage point. The major anatomical elements of the CME identified in WL imagery are a leading sheath and a trailing ejecta; the ejecta-driven sheath is the brightest feature of the CME. The sheath, a three-dimensional (3D) dome-like density structure, occupies a wide angular extent ahead of the ejecta itself. The 2D radiance pattern of the sheath depends critically on viewpoint. For a CME modeled under solar minimum conditions, the WL radiance pattern of the sheath is generally a quasi-straight band when viewed from an in-ecliptic viewpoint and a semicircular arc from an OOE viewpoint. The dependence of the radiance pattern of the ejecta-driven sheath on viewpoint is attributed to the bimodal nature of the 3D background solar wind flow. Our forward-modeling results suggest that OOE imaging in WL radiance can enable (1) a near-ecliptic CME to be continuously tracked from its coronal initiation, (2) the longitudinal span of the CME to be readily charted, and (3) the transporting speed of the CME to be reliably determined. Additional WL polarization measurements can significantly limit the ambiguity of localizing CMEs. We assert that a panoramic OOE view in WL would be highly beneficial in revealing CME morphology and kinematics in the hitherto-unresolved longitudinal dimension and hence for monitoring the propagation and

  4. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  5. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  6. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    Energy Technology Data Exchange (ETDEWEB)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.

  7. Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations

    International Nuclear Information System (INIS)

    Gosling, J.T.; Riley, P.; McComas, D.J.; Pizzo, V.J.

    1998-01-01

    Ulysses observations reveal that most coronal mass ejections (CMEs) observed in the solar wind far from the Sun at high heliographic latitudes have large radial widths and are still expanding as they pass the spacecraft. CME radial widths ranging between 0.5 and 2.5 AU have been observed at heliocentric distances between 1.4 and 4.6 AU and at latitudes greater than 22 degree. A CME may expand simply because it is ejected from the Sun with a leading edge speed that is greater than its trailing edge speed. Rarefaction waves produced by relative motion between a CME and the surrounding wind also can cause a CME to expand. Finally, a CME may expand because it is ejected into the wind with an internal pressure that is greater than that of the surrounding wind. In the latter case, which we have called 'overexpansion', the expansion tends to drive compressive waves into the surrounding solar wind; these waves commonly steepen into shocks at large distances from the Sun. The relative importance of these various expansion processes differs from event to event depending upon initial conditions within the CME and the surrounding wind. Using Ulysses observations and a simple one-dimensional, gasdynamic code, we have explored how initial conditions affect the radial evolution of solar wind disturbances associated with overexpanding CMEs. We find good qualitative agreement between the results of our simulations and Ulysses observations of such disturbances. copyright 1998 American Geophysical Union

  8. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  9. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    International Nuclear Information System (INIS)

    Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R.

    2015-01-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere

  10. Gastrointestinal absorption of neptunium in primates: effect of ingested mass, diet, and fasting

    International Nuclear Information System (INIS)

    Metivier, H.; Bourges, J.; Fritsch, P.; Nolibe, D.; Masse, R.

    1986-01-01

    Absorption and retention of neptunium were determined in baboons after intragastric administration of neptunium nitrate solutions at pH 1. The effects of mass, diet, and fasting on absorption were studied. At higher mass levels (400-800 micrograms Np/kg), absorption was about 1%; at lower mass intakes (0.0009-0.005 micrograms Np/kg), absorption was reduced by 10- to 20-fold. The addition of an oxidizing agent (Fe3+) increased gastrointestinal absorption and supported the hypothesis of a reduction of Np (V) when loss masses were ingested. Diets depleted of or enriched with hydroxy acids did not modify retention of neptunium but increased urinary excretion with increasing hydroxy acid content. The diet enriched with milk components reduced absorption by a factor of 5. Potatoes increased absorption and retention by a factor 5, not necessarily due to the effect of phytate. Fasting for 12 or 24 h increased retention and absorption by factors of about 3 and 10, respectively. Data obtained in baboons when low masses of neptunium were administered suggest that the f1 factor used by ICRP should be decreased. However, fasting as encountered in certain nutritional habits is a factor to be taken into consideration

  11. A COMPARISON OF ELEMENTAL ABUNDANCE RATIOS IN SEP EVENTS IN FAST AND SLOW SOLAR WIND REGIONS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Tylka, A. J.; Reames, D. V.

    2009-01-01

    The solar energetic (E > 1 MeV nucleon -1 ) particles (SEPs) observed in gradual events at 1 AU are assumed to be accelerated by coronal/interplanetary shocks from ambient thermal or suprathermal seed particles. If so, then the elemental abundances of SEPs produced in different solar wind (SW) stream types (transient, fast, and slow) might be systematically distinguished from each other. We look for these differences in SEP energy spectra and in elemental abundance ratios (including Mg/Ne and Fe/C, which compare low/high first ionization potential elements), in a large number of SEP time intervals over the past solar cycle. The SW regions are characterized by the three-component stream classification of Richardson et al. Our survey shows no significant compositional or energy spectral differences in the 5-10 MeV nucleon -1 range for SEP events of different SW stream types. This result extends the earlier finding that SEP events are observed frequently in fast SW streams, although their higher Alfven and SW flow speeds should constrain SEP production by coronal mass ejection-driven shocks in those regions. We discuss the implications of our results for shock seed populations and cross-field propagation.

  12. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C. T. [University of California, Los Angeles, CA 90095-1567 (United States); Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Luhmann, J. G. [University of California, Berkeley, CA 94720 (United States); Mason, G. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Von Rosenvinge, T. T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gomez-Herrero, R. [University of Alcala, E-28871 Alcala de Henares (Spain); Klassen, A. [Kiel University, D-24118 Kiel (Germany); Galvin, A. B.; Simunac, K. D. C., E-mail: ctrussell@igpp.ucla.edu [University of New Hampshire, Durham, NH 03824 (United States)

    2013-06-10

    The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

  13. The Coronal Analysis of SHocks and Waves (CASHeW) framework

    Science.gov (United States)

    Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste

    2017-11-01

    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.

  14. Sinonasal polyposis: investigation by direct coronal CT

    International Nuclear Information System (INIS)

    Drutman, J.; Harnsberger, H.R.; Babbel, R.W.; Sonkens, J.W.; Braby, D.

    1994-01-01

    To demonstrate the typical clinical and CT features of sinonasal polyposis, we reviewed the clinical records and preoperative direct coronal CT scans of 35 patients with surgically proven disease. Symptoms included progressive nasal stuffiness (100 %), rhinorrhea (69 %), facial pain (60 %), headache (43 %) and anosmia (17 %). We found associations with rhinitis (46 %), asthma (29 %) and aspirin sensitivity (9 %). Coronal CT features included polypoid masses in the nasal cavity (91 %), partial or complete pansinus opacification (90 %), enlargement of infundibula (89 %), bony attenuation of the ethmoid trabeculae (63 %) and nasal septum (37 %), opacified ethmoid sinuses with convex lateral walls (51 %) and air-fluid levels (43 %). The latter feature correlated with symptoms and signs of acute sinusitis in only 40 % of patients. Recognition of sinonasal polyposis is important to the endoscopic surgeon since it can be the most troubling sinonasal inflammatory disease to manage due to its aggressive nature and tendency to recur despite appropriate treatment. (orig.)

  15. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    Science.gov (United States)

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  16. Ramadan Fasting Decreases Body Fat but Not Protein Mass.

    Science.gov (United States)

    Fahrial Syam, Ari; Suryani Sobur, Cecep; Abdullah, Murdani; Makmun, Dadang

    2016-01-01

    Many studies have shown various results regarding the effects of Ramadan fasting on weight and body composition in healthy individuals. This study aimed to evaluate the effect of Ramadan fasting on body composition in healthy Indonesian medical staff. In this study, we examined the influence of Ramadan fasting on body composition in healthy medical staff. The longitudinal study was performed during and after Ramadan fasting in 2013 (August to October). Fourty-three medical staff members (physicians, nurses and nutritionists) at the Internal Medicine Ward of the Dr. Cipto Mangunkusumo General Hospital were measured to compare their calorie intake, weight, body mass index, waist-to-hip ratio (WHR), and body composition, including body fat, protein, minerals and water, on the first and 28(th) days of Ramadan and also 4-5 weeks after Ramadan fasting. Measurements were obtained for all 43 subjects on the 28(th) day of Ramadan, but they were obtained for only 25 subjects 4 - 5 weeks after Ramadan. By the 28(th) day of Ramadan, it was found that the body weight, BMI, body fat, water and mineral measures had decreased significantly (-0.874 ± 0.859 kg, P Ramadan, body weight and composition had returned to the same levels as on the first day of Ramadan. Ramadan fasting resulted in weight loss even it was only a temporary effect, as the weight was quickly regained within one month after fasting. The catabolism catabolic state, which is related to protein loss, was not triggered during Ramadan fasting. Further research is needed to evaluate the effects of weight loss during Ramadan fasting in healthy individuals.

  17. MEASURING THE MAGNETIC FIELD OF CORONAL MASS EJECTIONS NEAR THE SUN USING PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Stovall, K.; Dowell, J.; Taylor, G. B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM (United States); White, S. M., E-mail: howard@boulder.swri.edu [Air Force Research Laboratory, Space Vehicles Directorate, Albuquerque, NM (United States)

    2016-11-10

    The utility of Faraday rotation to measure the magnetic field of the solar corona and large-scale transients within is a small, yet growing field in solar physics. This is largely because it has been recognized as a potentially valuable frontier in space weather studies, because the ability to measure the intrinsic magnetic field within coronal mass ejections (CMEs) when they are close to the Sun is of great interest for understanding a key element of space weather. Such measurements have been attempted over the last few decades using radio signals from artificial sources (i.e., spacecraft on the far side of the Sun), but studies involving natural radio sources are scarce in the literature. We report on a preliminary study involving an attempt to detect the Faraday rotation of a CME that passed in front of a pulsar (PSR B0950+08) in 2015 August. We combine radio measurements with those from a broadband visible light coronagraph, to estimate the upper limit of the magnetic field of the CME when it was in the corona. We find agreement between different approaches for obtaining its density, and values that are consistent with those predicted from prior studies of CME density close to the Sun.

  18. Pseudo-automatic Determination of Coronal Mass Ejections’ Kinematics in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Carlos Roberto; Dal Lago, Alisson; Echer, Ezequiel; Souza de Mendonça, Rafael Rodrigues [National Institute for Space Research—INPE, Av. dos Astronautas, 1758, São José dos Campos, SP, 12227-010 (Brazil); Stenborg, Guillermo, E-mail: carlos.braga@inpe.br [Space Science Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW Washington, DC 20375 (United States)

    2017-06-20

    Coronal mass ejection (CME) events are among the main drivers of geomagnetic disturbances, and hence play a central role in the Sun–Earth system. Their monitoring and, in particular, the determination of their speed and direction of propagation are key issues for the forecasting of space weather near to Earth. We have implemented a method to track CME events in three dimensions by combining triangulation and tie-pointing analysis with a supervised computer vision algorithm. This novel approach does not rely on any geometric constraint, and eliminates the need for visual identification of the CME boundaries. We applied our method to 17 CME events observed simultaneously by the twin Solar Terrestrial Relations Observatory ( STEREO ) COR2 coronagraph imagers from 2008 December to 2011 November in order to obtain their 3D kinematical characterization (i.e., the velocity vector) along with their morphological properties. About ten of these events have already been analyzed using other methodologies. In these cases, we carried out a thorough comparison with our results and found that, in spite of the different nature and spatial coverage range of the other methods with respect to CORSET3D, the majority of the results agree. We found, however, that three events exhibited discrepancies in the magnitude of the velocity vector, four in the longitudinal direction of propagation, and in only one case was there a discrepancy in latitude. The discrepancies appeared in those cases where quasi-simultaneous, quasi-co-located events were observed in the coronagraphs’ fields of view.

  19. STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.

    2018-03-01

    We have conducted a survey of 341 interplanetary coronal mass ejections (ICMEs) using STEREO A/B data, analyzing their properties while extending a Level 3 product through 2016. Among the 192 ICMEs with distinguishable sheath region and magnetic obstacle, the magnetic field maxima in the two regions are comparable, and the dynamic pressure peaks mostly in the sheath. The north/south direction of the magnetic field does not present any clear relationship between the sheath region and the magnetic obstacle. About 71% of ICMEs are expanding at 1 au, and their expansion speed varies roughly linearly with their maximum speed except for ICMEs faster than 700 km s‑1. The total pressure generally peaks near the middle of the well-defined magnetic cloud (MC) passage, while it often declines along with the non-MC ICME passage, consistent with our previous interpretation concerning the effects of sampling geometry on what is observed. The hourly average iron charge state reaches above 12+ ∼31% of the time for MCs, ∼16% of the time for non-MC ICMEs, and ∼1% of the time for non-ICME solar wind. In four ICMEs abrupt deviations of the magnetic field from the nominal field rotations occur in the magnetic obstacles, coincident with a brief drop or increase in field strength—features could be related to the interaction with dust. In comparison with the similar phases of solar cycle 23, the STEREO ICMEs in this cycle occur less often and are generally weaker and slower, although their field and pressure compressions weaken less than the background solar wind.

  20. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  1. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    Science.gov (United States)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  2. Photon Mass Limits from Fast Radio Bursts

    CERN Document Server

    Bonetti, Luca; Mavromatos, Nikolaos E.; Sakharov, Alexander S.; Sarkisyan-Grinbaum, Edward K.G.; Spallicci, Alessandro D.A.M.

    2016-06-10

    The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on $m_\\gamma$. The redshift of FRB 150418 has been measured to $\\sim 2$% and its dispersion measure (DM) is known to $\\sim 0.1$%, but the strength of the constraint on $m_\\gamma$ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that $m_\\gamma \\lesssim 1.7 \\times 10^{-14}$ eV c$^{-2}$ ($4.6 \\times 10^{-50}$ kg). In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to $m_\\gamma$ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic cont...

  3. Interpretation of coronal synoptic observations

    International Nuclear Information System (INIS)

    Munro, R.H.; Fisher, R.R.

    1986-01-01

    Three-dimensional reconstruction techniques used to determine coronal density distributions from synoptic data are complicated and time consuming to employ. Current techniques also assume time invariant structures and thus mix both temporal and spatial variations present in the coronal data. The observed distribution of polarized brightness, pB, and brightness, B, of coronal features observed either at eclipses or with coronagraphs depends upon both the three-dimensional distribution of electron density within the structure and the location of the feature with respect to the plane-of-the-sky. By theoretically studying the signature of various coronal structures as they would appear during a limb transit, it is possible to recognize these patterns in real synoptic data as well as estimate temporal evolutionary effects

  4. Merging of coronal and heliospheric numerical two dimensional MHD models

    Czech Academy of Sciences Publication Activity Database

    Odstrčil, Dušan; Linker, J. A.; Lionello, R.; Mikic, Z.; Riley, P.; Pizzo, J. V.; Luhmann, J. G.

    2002-01-01

    Roč. 107, A12 (2002), s. SSH14-1 - SSH14-11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3003003 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejection * interplanetary shock * numerical MHD simulation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002

  5. About the Las Acacias, Trelew and Vassouras Magnetic Observatories Monitoring the South Atlantic Magnetic Anomaly Region Response to an Interplanetary Coronal Mass Ejection

    Science.gov (United States)

    Gianibelli, J. C.; Quaglino, N. M.

    2007-05-01

    The South Atlantic Magnetic Anomaly (SAMA) Region presents evolutive characteristics very important as were observed by a variety of satelital sensors. Important Magnetic Observatories with digital record monitor the effects of the Sun-Earth interaction, such as San Juan de Puerto Rico (SJG), Kourou (KOU), Vassouras (VSS), Las Acacias (LAS), Trelew (TRW), Vernadsky (AIA), Hermanus (HER) and Huancayo (HUA). In the present work we present the features registered during the geomagnetic storm in January 21, 2005, produced by a geoeffective Coronal Mass Ejection (CME) whose Interplanetary Coronal Mass Ejection (ICME) was detected by the instrumental onboard the Advanced Composition Explorer (ACE) Sonde. We analize how the Magnetic Total Intensity records at VSS, TRW and LAS Observatories shows the effect of the entering particles to ionospherical dephts producing a field enhancement following the first Interplanetary Shock (IP) arrival of the ICME. This process manifest in the digital record as an increment over the magnetospheric Ring Current field effect and superinpossed effects over the Antarctic Auroral Electrojet. The analysis and comparison of the records demonstrate that the Ring Current effects are important in SJG and KOU but not in VSS, LAS and TRW observatories, concluding that SAMA region shows a enhancement of the ionospherical currents oposed to those generated at magnetospheric heighs. Moreover in TRW, 5 hours after the ICME shock arrival, shows the effect of the Antarctic Auroral Electrojet counteracting to fields generated by the Ring Current.

  6. The Coronal Place; Why is It Special?

    Directory of Open Access Journals (Sweden)

    Azhar Alkazwini

    2017-10-01

    Full Text Available To prove the existence of arguments about the exact place that can bear the term ‘coronal’, it would be enough to check the explanatory dictionary’s entry. There are different arguments regarding the exact place of coronal. In this paper, some of the linguistic evidence regarding the coronal place shall be mentioned. Then, I shall discuss the classes of coronal that lend support to the fact that coronal place is believed to be special, and that is by discussing the different typologies of coronal consonants and giving their description.

  7. Table of solar activity associated with coronal mass ejections observed by the SMM coronagraph/polarimeter in 1980. Technical note

    International Nuclear Information System (INIS)

    Webb, D.F.

    1987-10-01

    This report is the description and presentation of a table of solar activity considered to be associated with coronal mass ejections (CMEs) as observed during 1980 with the High Altitude Observatory's Coronagraph/Polarimeter (C/P) on the SMM spacecraft. The list has formed the basic data set for several studies, most prominently a study of CME associations published by Webb and Hundhausen (1987). An attendant source of CME data is the unpublished C/P Event List for 1980, which co-evolved with the association list under the guidance of Art Hundhausen. Discussions of the details of the selection and verification of the list of SMM CMEs are contained in the above paper as well as in this papers of Hundhausen et al. (1984) and Hundhausen (1987)

  8. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    Science.gov (United States)

    Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars

    2015-01-01

    In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.

  9. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Hannes L Röst

    Full Text Available In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size.Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11, making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data.Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.

  10. Multi-point Shock and Flux Rope Analysis of Multiple Interplanetary Coronal Mass Ejections around 2010 August 1 in the Inner Heliosphere

    Science.gov (United States)

    Möstl, C.; Farrugia, C. J.; Kilpua, E. K. J.; Jian, L. K.; Liu, Y.; Eastwood, J. P.; Harrison, R. A.; Webb, D. F.; Temmer, M.; Odstrcil, D.; Davies, J. A.; Rollett, T.; Luhmann, J. G.; Nitta, N.; Mulligan, T.; Jensen, E. A.; Forsyth, R.; Lavraud, B.; de Koning, C. A.; Veronig, A. M.; Galvin, A. B.; Zhang, T. L.; Anderson, B. J.

    2012-10-01

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120° in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index (≈ - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  11. MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Moestl, C.; Liu, Y.; Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Kilpua, E. K. J. [Department of Physics, University of Helsinki, FI-00560 Helsinki (Finland); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD (United States); Eastwood, J. P.; Forsyth, R. [The Blackett Laboratory, Imperial College, London (United Kingdom); Harrison, R. A.; Davies, J. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Webb, D. F. [Institute for Scientific Research, Boston College, Newton, MA (United States); Temmer, M.; Rollett, T.; Veronig, A. M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, A-8010 Graz (Austria); Odstrcil, D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Nitta, N. [Solar and Astrophysics Laboratory, Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Mulligan, T. [Space Science Applications Laboratory, The Aerospace Corporation, El Segundo, CA (United States); Jensen, E. A. [ACS Consulting, Houston, TX (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planetologie, Universite de Toulouse (UPS), F-31400 Toulouse (France); De Koning, C. A., E-mail: christian.moestl@uni-graz.at [NOAA/SWPC, Boulder, Colorado (United States); and others

    2012-10-10

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120 Degree-Sign in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index ( Almost-Equal-To - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  12. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  13. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    Science.gov (United States)

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  14. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  15. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    International Nuclear Information System (INIS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-01-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  16. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  17. Influence of coronal mass ejections on parameters of high-speed solar wind: a case study

    Science.gov (United States)

    Shugay, Yulia; Slemzin, Vladimir; Rodkin, Denis; Yermolaev, Yuri; Veselovsky, Igor

    2018-05-01

    We investigate the case of disagreement between predicted and observed in-situ parameters of the recurrent high-speed solar wind streams (HSSs) existing for Carrington rotation (CR) 2118 (December 2011) in comparison with CRs 2117 and 2119. The HSSs originated at the Sun from a recurrent polar coronal hole (CH) expanding to mid-latitudes, and its area in the central part of the solar disk increased with the rotation number. This part of the CH was responsible for the equatorial flank of the HSS directed to the Earth. The time and speed of arrival for this part of the HSS to the Earth were predicted by the hierarchical empirical model based on EUV-imaging and the Wang-Sheeley-Arge ENLIL semi-empirical replace model and compared with the parameters measured in-situ by model. The predicted parameters were compared with those measured in-situ. It was found, that for CR 2117 and CR 2119, the predicted HSS speed values agreed with the measured ones within the typical accuracy of ±100 km s-1. During CR 2118, the measured speed was on 217 km s-1 less than the value predicted in accordance with the increased area of the CH. We suppose that at CR 2118, the HSS overtook and interacted with complex ejecta formed from three merged coronal mass ejections (CMEs) with a mean speed about 400 km s-1. According to simulations of the Drag-based model, this complex ejecta might be created by several CMEs starting from the Sun in the period between 25 and 27 December 2011 and arriving to the Earth simultaneously with the HSS. Due to its higher density and magnetic field strength, the complex ejecta became an obstacle for the equatorial flank of the HSS and slowed it down. During CR 2117 and CR 2119, the CMEs appeared before the arrival of the HSSs, so the CMEs did not influence on the HSSs kinematics.

  18. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  19. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    prominences, have a significantly higher rate of occurrence in the vicinity of coronal .... coronal holes due to the birth of new holes or the growth of existing holes. .... Statistics of newly formed coronal hole areas (NFOCHA) associated with ...

  20. The interaction of two coronal mass ejections: Influence of relative orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lugaz, N.; Farrugia, C. J.; Schwadron, N. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Manchester IV, W. B. [Center for Space Environment Modeling, University of Michigan, Ann Arbor, MI (United States)

    2013-11-20

    We report on a numerical investigation of two coronal mass ejections (CMEs) that interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90° from one simulation to the next. Each magnetohydrodynamic simulation is performed in three dimensions with the Space Weather Modeling Framework in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180°. Due to reconnection, the second CME only appears as an extended 'tail', and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic-cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.

  1. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2017-10-20

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  2. Comparison of Asymmetric and Ice-cream Cone Models for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, H.; Moon, Y.

    2011-12-01

    Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observation, several cone models have been suggested: an ice-cream cone model, an asymmetric cone model etc. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and central axis of the cone. In this study, we compare these parameters obtained from different models using 48 well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (RMS error) between measured projection speeds and calculated projection speeds for both cone models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R = 0.86), and the correlation coefficient of angular width is 0.6. The correlation coefficient of the angle between sky plane and central axis of the cone is 0.31, which is much smaller than expected. The reason may be due to the fact that the source locations of the asymmetric cone model are distributed near the center, while those of the ice-cream cone model are located in a wide range. The average RMS error of the asymmetric cone model (85.6km/s) is slightly smaller than that of the ice-cream cone model (87.8km/s).

  3. The Medical Examiner/Coroner's Guide for Contaminated Deceased Body Management.

    Science.gov (United States)

    Hanzlick, Randy; Nolte, Kurt; deJong, Joyce

    2009-12-01

    In the past few years, a number of publications and other resources have appeared concerning the management of mass fatality incidents. Some are geared toward the general management of incidents while others cover more specific topics such as decontamination procedures. Still others cover selected agents, including chemical, biologic, or radiologic ones. Few publications have been written specifically for medical examiners and coroners. The Medical Examiner and Coroner's Guide for Contaminated Deceased Body Management is written specifically for the medical examiner or coroner who will be in charge of investigations of fatalities that result from terrorism or other events that result in contaminated remains. In some such cases, agents may be used that will require mitigation of environmental hazards and decontamination of human bodies. To that end, this Guide provides information and suggestions that may be useful in understanding the principles involved in decontamination procedures, recognizing that it may not be the medical examiner or coroner staff who actually conducts decontamination procedures. The suggestions in this guide may differ slightly from those in other publications. However, those who have contributed to this guide believe that the recommendations are practical, workable, have a scientific basis, and do not differ much in substance when compared with other relevant publications. The contents of this Guide may be reproduced for practical use but the Guide may not be sold and it may not be cited for advertisement purposes. Reference to specific commercial products is for informational purposes only and does not constitute endorsement of the product or company which produces the product. The recommendations contained in this Guide are not mandated nor are they required by federal, state, or local law. Rather, the recommendations are intended to assist medical examiners and coroners for the purposes of planning and providing a set of reasonable

  4. Multi-wave band SMM-VLA observations of an M2 flare and an associated coronal mass ejection

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.; Schmelz, Joan T.; Gonzalez, Raymond D.; Smith, Kermit L.

    1991-01-01

    Results are presented of observations of an M2 flare and an associated coronal mass ejection CME by instruments on the SMM as well as by the VLA and other ground-based observatories on September 30, 1988. The multiwave band data show a gradual slowly changing event which lasted several hours. The microwave burst emission was found to originate in compact moderately circularly polarized sources located near the sites of bright H-alpha and soft X-ray emission. These data are combined with estimates of an electron temperature of 1.5 x 10 to the 7th K and an emission measure of about 2.0 x 10 to the 49th/cu cm obtained from Ca XIX and Fe XXV spectra to show that the microwave emission can be attributed to thermal gyrosynchrotron radiation in regions where the magnetic field strength is 425-650 G. The CME acceleration at low altitudes is measured on the basis of ground- and space-based coronagraphs.

  5. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  6. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  7. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  8. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  9. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    International Nuclear Information System (INIS)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui; Luhmann, Janet G.; Richardson, John D.; Lugaz, Noé

    2014-01-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished

  10. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Richardson, John D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lugaz, Noé, E-mail: liuxying@spaceweather.ac.cn [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-10-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished.

  11. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections

    Science.gov (United States)

    Thernisien, A.

    2011-06-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  12. IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Thernisien, A.

    2011-01-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  13. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Science.gov (United States)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  14. History and Development of Coronal Mass Ejections as a Key Player in Solar Terrestrial Relationship

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are relatively a recently discovered phenomenon in 1971, some 15 years into the Space Era. It took another two decades to realize that CMEs are the most important players in solar terrestrial relationship as the root cause of severe weather in Earths space environment. CMEs are now counted among the major natural hazards because they cause large solar energetic particle (SEP) events and major geomagnetic storms, both of which pose danger to humans and their technology in space and ground. Geomagnetic storms discovered in the 1700s, solar flares discovered in the 1800s, and SEP events discovered in the 1900s are all now found to be closely related to CMEs via various physical processes occurring at various locations in and around CMEs, when they interact with the ambient medium. This article identifies a number of key developments that preceded the discovery of white-light CMEs suggesting that CMEs were waiting to be discovered. The last two decades witnessed an explosion of CME research following the launch of the Solar and Heliospheric Observatory mission in 1995, resulting in the establishment of a full picture of CMEs.

  15. FIELD TOPOLOGY ANALYSIS OF A LONG-LASTING CORONAL SIGMOID

    International Nuclear Information System (INIS)

    Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.

    2012-01-01

    We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.

  16. Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations

    Science.gov (United States)

    Patsourakos, S.; Vourlidas, A.

    2011-01-01

    Context. Ray-like features observed by coronagraphs in the wake of coronal mass ejections (CMEs) are sometimes interpreted as the white light counterparts of current sheets (CSs) produced by the eruption. The 3D geometry of these ray-like features is largely unknown and its knowledge should clarify their association to the CS and place constraints on CME physics and coronal conditions. Aims: If these rays are related to field relaxation behind CMEs, therefore representing current sheets, then they should be aligned to the CME axis. With this study we test these important implications for the first time. Methods: An example of such a post-CME ray was observed by various coronagraphs, including these of the Sun Earth Connection Coronal and Heliospheric investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO) twin spacecraft and the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). The ray was observed in the aftermath of a CME which occurred on 9 April 2008. The twin STEREO spacecraft were separated by about 48° on that day. This significant separation combined with a third “eye” view supplied by LASCO allow for a truly multi-viewpoint observation of the ray and of the CME. We applied 3D forward geometrical modeling to the CME and to the ray as simultaneously viewed by SECCHI-A and B and by SECCHI-A and LASCO, respectively. Results: We found that the ray can be approximated by a rectangular slab, nearly aligned with the CME axis, and much smaller than the CME in both terms of thickness and depth (≈0.05 and 0.15 R⊙ respectively). The ray electron density and temperature were substantially higher than their values in the ambient corona. We found that the ray and CME are significantly displaced from the associated post-CME flaring loops. Conclusions: The properties and location of the ray are fully consistent with the expectations of the standard CME theories for post-CME current

  17. Future space missions and ground observatory for measurements of coronal magnetic fields

    Science.gov (United States)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    structure' in space. The paired satellites will together form a 150-m long solar coronagraph (ASPIICS) to study the Sun's faint corona closer to the solar limb than has ever before been achieved. High-resolution imaging in polarized visible-light of shock waves generated by Coronal Mass Ejections would provide a diagnostics of the magnetic field in the pre-shock ambient corona.

  18. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-01-20

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  19. On the Collision Nature of Two Coronal Mass Ejections: A Review

    Science.gov (United States)

    Shen, Fang; Wang, Yuming; Shen, Chenglong; Feng, Xueshang

    2017-08-01

    Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton's classical definition, the energy definition, Poisson's definition, and Stronge's definition, of which the first two were used in the studies of CME-CME collisions. Then, we review the recent research progresses on the nature of CME-CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.

  20. PROJECTION EFFECTS IN CORONAL DIMMINGS AND ASSOCIATED EUV WAVE EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Dissauer, K.; Temmer, M.; Veronig, A. M.; Vanninathan, K. [IGAM/Institute of Physics, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Magdalenić, J., E-mail: karin.dissauer@uni-graz.at [Solar-Terrestrial Center of Excellence-SIDC, Royal Observatory of Belgium, Av. Circulaire 3, B-1180 Brussels (Belgium)

    2016-10-20

    We investigate the high-speed ( v > 1000 km s{sup −1}) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures; in particular, we observe an intermittent “disappearance” of the front for 120 s in Solar Dynamics Observatory ( SDO )/AIA 171, 193, 211 Å data, whereas the 335 Å filter, sensitive to hotter plasmas ( T ∼ 2.5 MK), shows a continuous evolution of the wave front. The eruption was also accompanied by localized coronal dimming regions. We exploit the multi-point quadrature position of SDO and STEREO-A , to make a thorough analysis of the EUV wave evolution, with respect to its kinematics and amplitude evolution and reconstruct the SDO line-of-sight (LOS) direction of the identified coronal dimming regions in STEREO-A . We show that the observed intensities of the dimming regions in SDO /AIA depend on the structures that are lying along their LOS and are the combination of their individual intensities, e.g., the expanding CME body, the enhanced EUV wave, and the CME front. In this context, we conclude that the intermittent disappearance of the EUV wave in the AIA 171, 193, and 211 Å filters, which are channels sensitive to plasma with temperatures below ∼2 MK is also caused by such LOS integration effects. These observations clearly demonstrate that single-view image data provide us with limited insight to correctly interpret coronal features.

  1. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  2. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  3. Coronal Heating: Testing Models of Coronal Heating by Forward-Modeling the AIA Emission of the Ansample of Coronal Loops

    Science.gov (United States)

    Malanushenko, A. V.

    2015-12-01

    We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.

  4. Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere

    Science.gov (United States)

    Hannah, I. G.; Kontar, E. P.

    2013-05-01

    Aims: The aim of this work is to determine the multi-thermal characteristics and plasma energetics of an eruptive plasmoid and occulted flare observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). Methods: We study a 2010 Nov. 3 event (peaking at 12:20 UT in GOES soft X-rays) of a coronal mass ejection and occulted flare that demonstrates the morphology of a classic erupting flux rope. The high spatial and time resolution and six coronal channels of the SDO/AIA images allows the dynamics of the multi-thermal emission during the initial phases of eruption to be studied in detail. The differential emission measure is calculated, using an optimized version of a regularized inversion method, for each pixel across the six channels at different times, resulting in emission measure maps and movies in a variety of temperature ranges. Results: We find that the core of the erupting plasmoid is hot (8-11, 11-14 MK) with a similarly hot filamentary "stem" structure connecting it to the lower atmosphere, which could be interpreted as the current sheet in the flux rope model, though is wider than these models suggest. The velocity of the leading edge of the eruption is 597-664 km s-1 in the temperature range ≥3-4 MK and between 1029-1246 km s-1 for ≤2-3 MK. We estimate the density (in 11-14 MK) of the erupting core and stem during the impulsive phase to be about 3 × 109 cm-3, 6 × 109 cm-3, 9 × 108 cm-3 in the plasmoid core, stem, and surrounding envelope of material. This gives thermal energy estimates of 5 × 1029 erg, 1 × 1029 erg, and 2 × 1030 erg. The kinetic energy for the core and envelope is slightly lower. The thermal energy of the core and current sheet grows during the eruption, suggesting continuous influx of energy presumably via reconnection. Conclusions: The combination of the optimized regularized inversion method and SDO/AIA data allows the multi-thermal characteristics (i.e. velocity, density, and thermal energies) of the

  5. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    Science.gov (United States)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  6. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    Science.gov (United States)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  7. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    Science.gov (United States)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  8. A Comparison of Coronal Dimming Behavior Between XRT and AIA Data

    Science.gov (United States)

    King, C. A.; Weber, M.; Jibben, P.

    2017-12-01

    A coronal dimming is an event that takes place in the sun's atmosphere, in which a patch of bright plasma seemingly disappears leaving a dark spot. These events are often associated with other solar phenomena such as flares and coronal mass ejections. Over the lifetimes of the SDO/AIA and Hinode/XRT telescopes many of these dimmings have been observed, however very few have been studied using XRT data. For this project one event was selected, and the goal was to measure how the area of the dimming region behaved over time in relation to other events in the area. In doing this, a new objective method for determining a threshold between the dimming region and the surrounding area was developed which can now be used to analyze the area of almost any dimming region. After comparing the region's behavior over multiple wavelengths, our results support the common theory that these dimmings are caused by an evacuation of plasma due to opening magnetic field lines, rather than a sudden temperature change. Keywords: coronal, dimmings, XRT This work supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  9. STUDY OF THE RECURRING DIMMING REGION DETECTED AT AR 11305 USING THE CORONAL DIMMING TRACKER (CoDiT)

    Energy Technology Data Exchange (ETDEWEB)

    Krista, Larisza D.; Reinard, Alysha [University of Colorado/Cooperative Institute for Research in Environmental Sciences, Boulder, CO 80205 (United States)

    2013-01-10

    We present a new approach to coronal dimming detection using the COronal DImming Tracker tool (CODIT), which was found to be successful in locating and tracking multiple dimming regions. This tool, an extension of a previously developed coronal hole tracking software, allows us to study the properties and the spatial evolution of dimming regions at high temporal and spatial cadence from the time of their appearance to their disappearance. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly 193 A wavelength observations and Helioseismic and Magnetic Imager magnetograms to study dimmings. As a demonstration of the detection technique we analyzed six recurrences of a dimming observed near AR 11305 between 2011 September 29 and October 2. The dimming repeatedly appeared and formed in a similar way, first expanding then shrinking and occasionally stabilizing in the same location until the next eruption. The dimming areas were studied in conjunction with the corresponding flare magnitudes and coronal mass ejection (CME) masses. These properties were found to follow a similar trend during the observation period, which is consistent with the idea that the magnitude of the eruption and the CME mass affect the relative sizes of the consecutive dimmings. We also present a hypothesis to explain the evolution of the recurrent single dimming through interchange reconnection. This process would accommodate the relocation of quasi-open magnetic field lines and hence allow the CME flux rope footpoint (the dimming) to expand into quiet-Sun regions. By relating the properties of dimmings, flares, and CMEs we improve our understanding of the magnetic field reconfiguration caused by reconnection.

  10. STUDY OF THE RECURRING DIMMING REGION DETECTED AT AR 11305 USING THE CORONAL DIMMING TRACKER (CoDiT)

    International Nuclear Information System (INIS)

    Krista, Larisza D.; Reinard, Alysha

    2013-01-01

    We present a new approach to coronal dimming detection using the COronal DImming Tracker tool (CODIT), which was found to be successful in locating and tracking multiple dimming regions. This tool, an extension of a previously developed coronal hole tracking software, allows us to study the properties and the spatial evolution of dimming regions at high temporal and spatial cadence from the time of their appearance to their disappearance. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly 193 Å wavelength observations and Helioseismic and Magnetic Imager magnetograms to study dimmings. As a demonstration of the detection technique we analyzed six recurrences of a dimming observed near AR 11305 between 2011 September 29 and October 2. The dimming repeatedly appeared and formed in a similar way, first expanding then shrinking and occasionally stabilizing in the same location until the next eruption. The dimming areas were studied in conjunction with the corresponding flare magnitudes and coronal mass ejection (CME) masses. These properties were found to follow a similar trend during the observation period, which is consistent with the idea that the magnitude of the eruption and the CME mass affect the relative sizes of the consecutive dimmings. We also present a hypothesis to explain the evolution of the recurrent single dimming through interchange reconnection. This process would accommodate the relocation of quasi-open magnetic field lines and hence allow the CME flux rope footpoint (the dimming) to expand into quiet-Sun regions. By relating the properties of dimmings, flares, and CMEs we improve our understanding of the magnetic field reconfiguration caused by reconnection.

  11. Visceral organ mass and hepatic protein synthetic capacity in fed and fasted rats

    International Nuclear Information System (INIS)

    Burrin, D.G.; Britton, R.A.; Ferrell, C.L.

    1986-01-01

    Forty-two male rats (avg wt. = 320 g) were used to assess the effect of severe nutrient restriction (72 h fast) on visceral organ mass and hepatic protein synthetic capacity as measured by in vitro incorporation of U- 14 -C-VALINE ( 14 C-VAL) into isolated hepatocytes. Organ weights expressed as a percent of empty body weight for fed vs. fasted rats were; liver (5.21 +/- .54 vs 3.82 +/- .46), kidney (.87 +/- 0.6 vs .89 +/- .05), stomach (.60 +/- .06 vs .61 +/- .06), intestines (3.70 +/- .44 vs 3.41 +/- .37). No differences were observed in in vitro oxygen consumption (15.7 +/- 3.1 vs 16.1 +/- 3.3, umole min -1 g -1 dry tissue) or 14 -C VAL incorporation (4.93 +/- 1.28 vs 4.31 +/- 1.48, dpm min -1 mg -1 dry tissue) for hepatocytes from fed vs. fasted rats. Analysis of perfused liver tissue indicated fed rats had higher protein (152.1 +/- 16.3 vs 136.6 +/- 29.6, mg/g tissue) and RNA (8.81 +/- 1.66 vs 5.97 +/- 1.87, mg/g tissue) with lower DNA (2.19 +/- .31 vs 3.19 +/- .54, mg/g tissue) compared to fasted rats. Protein-nucleic acid ratios suggest liver tissue from fed rats had a greater capacity for protein synthesis compared to fasted rats, however, this was not evident from in vitro hepatocyte 14 -C VAL incorporation estimates. These data indicate that severe nutrient restriction (72 h fast) affects visceral organ mass largely by reduced liver and gut size as well as decreased hepatic protein synthetic capacity

  12. ACCELERATING WAVES IN POLAR CORONAL HOLES AS SEEN BY EIS AND SUMER

    International Nuclear Information System (INIS)

    Gupta, G. R.; Banerjee, D.; Teriaca, L.; Solanki, S.; Imada, S.

    2010-01-01

    We present EIS/Hinode and SUMER/SOHO observations of propagating disturbances detected in coronal lines in inter-plume and plume regions of a polar coronal hole. The observation was carried out on 2007 November 13 as part of the JOP196/HOP045 program. The SUMER spectroscopic observation gives information about fluctuations in radiance and on both resolved (Doppler shift) and unresolved (Doppler width) line-of-sight velocities, whereas EIS 40'' wide slot images detect fluctuations only in radiance but maximize the probability of overlapping field of view between the two instruments. From distance-time radiance maps, we detect the presence of propagating waves in a polar inter-plume region with a period of 15-20 minutes and a propagation speed increasing from 130 ± 14 km s -1 just above the limb to 330 ± 140 km s -1 around 160'' above the limb. These waves can be traced to originate from a bright region of the on-disk part of the coronal hole where the propagation speed is in the range of 25 ± 1.3 to 38 ± 4.5 km s -1 , with the same periodicity. These on-disk bright regions can be visualized as the base of the coronal funnels. The adjacent plume region also shows the presence of propagating disturbances with the same range of periodicity but with propagation speeds in the range of 135 ± 18 to 165 ± 43 km s -1 only. A comparison between the distance-time radiance map of the two regions indicates that the waves within the plumes are not observable (may be getting dissipated) far off-limb, whereas this is not the case in the inter-plume region. A correlation analysis was also performed to find out the time delay between the oscillations at several heights in the off-limb region, finding results consistent with those from the analysis of the distance-time maps. To our knowledge, this result provides first spectroscopic evidence of the acceleration of propagating disturbances in the polar region close to the Sun (within 1.2 R/R sun ), which provides clues to the

  13. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  14. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  15. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  16. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  17. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  18. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    International Nuclear Information System (INIS)

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-01-01

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, Δ, as a fraction of the CME radial half-width, D OB (i.e., Δ/D OB ). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; ρ u /ρ d ) measured across the bow shock. The DR coefficient, k dr , which is the proportionality constant between the relative standoff distance (Δ/D OB ) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 ± 0.1 is more appropriate for small heliocentric distances ( dr value increases linearly with heliocentric distance, such that k dr = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k dr = 1.8 ± 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  19. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Antolin, P.; Rouppe van der Voort, L.

    2012-01-01

    occurs simultaneously in general suggesting a similar thermodynamic evolution among strands, which can be explained by a common footpoint heating process. Constraints for coronal heating models of loops are thus provided. Estimates of the fraction of coronal volume with coronal rain give values between 7% and 30%. Estimates of the occurrence time of the phenomenon in loops set times between 5 and 20 hr, implying that coronal rain may be a common phenomenon, in agreement with the frequent observations of cool downflows in extreme-ultraviolet lines. The coronal mass drain rate in the form of coronal rain is estimated to be on the order of 5 × 10 9 g s –1 , a significant quantity compared to the estimate of mass flux into the corona from spicules.

  20. COUPLING OF CORONAL AND HELIOSPHERIC MAGNETOHYDRODYNAMIC MODELS: SOLUTION COMPARISONS AND VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Merkin, V. G. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Lionello, R.; Linker, J.; Török, T.; Downs, C. [Predictive Science, Inc., San Diego, CA 92121 (United States); Lyon, J. G., E-mail: slava.merkin@jhuapl.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2016-11-01

    Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use the same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.

  1. Symposium on fast atom and ion induced mass spectrometry of nonvolatile organic solids

    International Nuclear Information System (INIS)

    McNeal, C.J.

    1982-01-01

    The mechanisms of molecular and fragment ion production and the various parameters affecting ion yields were discussed by 6 invited speakers from Europe, Canada, and the US at this symposium. The work reported was almost equally divided between that using low-energy (keV) primary ion (or atom) beams, e.g. fast atom bombardment mass spectrometry (FABMS) and secondary ion mass spectrometry (SIMS) and that using high energy (MeV) particles, e.g. heavy ion induced mass spectrometry (HIIDMS) and 252 Cf-plasma desorption mass spectrometry ( 252 Cf-PDMS). Both theoretical foundations and observed experimental results for both techniques are included

  2. Evaluation of uterine peristalsis using cine MRI on the coronal plane in comparison with the sagittal plane.

    Science.gov (United States)

    Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori

    2016-01-01

    Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.

  3. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    Science.gov (United States)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  4. NEAR-SIMULTANEOUS OBSERVATIONS OF X-RAY PLASMA EJECTION, CORONAL MASS EJECTION, AND TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kim, Yeon-Han; Bong, Su-Chan; Park, Y.-D.; Cho, K.-S.; Moon, Y.-J.

    2009-01-01

    We report the first simultaneous observation of X-ray plasma ejection (XPE), coronal mass ejection (CME), and type II solar radio burst on 1999 October 26. First, an XPE was observed from 21:12 UT to 21:24 UT in the Yohkoh SXT field of view (1.1 to 1.4 R sun ). The XPE was accelerated with a speed range from 190 to 410 km s -1 and its average speed is about 290 km s -1 . Second, the associated CME was observed by the Mauna Loa Mk4 coronameter (1.1-2.8 R sun ) from 21:16 UT. The CME front was clearly identified at 21:26 UT and propagated with a deceleration of about -110 m s -2 . Its average speed is about 360 km s -1 . At the type II burst start time (21:25 UT), the height of the CME front is around 1.7 R sun and its speed is about 470 km s -1 . Third, a type II solar radio burst was observed from 21:25 UT to 21:43 UT by the Culgoora solar radio spectrograph. The burst shows three emission patches during this observing period and the emission heights of the burst are estimated to be about 1.3 R sun (21:25 UT), 1.4 R sun (21:30 UT), and 1.8 R sun (21:40 UT). By comparing these three phenomena, we find that: (1) kinematically, while the XPE shows acceleration, the associated CME front shows deceleration; (2) there is an obvious height difference (0.3 R sun ) between the CME front and the XPE front around 21:24 UT and the formation height of the type II burst is close to the trajectory extrapolated from the XPE front; (3) both speeds of the XPE and the CME are comparable with each other around the starting time of the type II burst. Considering the formation height and the speed of the type II burst, we suggest that its first emission is due to the coronal shock generated by the XPE and the other two emissions are driven by the CME flank interacting with the high-density streamer.

  5. ON THE NATURE OF THE SOLAR WIND FROM CORONAL PSEUDOSTREAMERS

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R. J.R.; Grappin, R.; Robbrecht, E.

    2012-01-01

    Coronal pseudostreamers, which separate like-polarity coronal holes, do not have current sheet extensions, unlike the familiar helmet streamers that separate opposite-polarity holes. Both types of streamers taper into narrow plasma sheets that are maintained by continual interchange reconnection with the adjacent open magnetic field lines. White-light observations show that pseudostreamers do not emit plasma blobs; this important difference from helmet streamers is due to the convergence of like-polarity field lines above the X-point, which prevents the underlying loops from expanding outward and pinching off. The main component of the pseudostreamer wind has the form of steady outflow along the open field lines rooted just inside the boundaries of the adjacent coronal holes. These flux tubes are characterized by very rapid expansion below the X-point, followed by reconvergence at greater heights. Analysis of an idealized pseudostreamer configuration shows that, as the separation between the underlying holes increases, the X-point rises and the expansion factor f ss at the source surface increases. In situ observations of pseudostreamer crossings indicate wind speeds v ranging from ∼350 to ∼550 km s –1 , with O 7+ /O 6+ ratios that are enhanced compared with those in high-speed streams but substantially lower than in the slow solar wind. Hydrodynamic energy-balance models show that the empirical v-f ss relation overestimates the wind speeds from nonmonotonically expanding flux tubes, particularly when the X-point is located at low heights and f ss is small. We conclude that pseudostreamers produce a 'hybrid' type of outflow that is intermediate between classical slow and fast solar wind.

  6. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  7. Coronal Flux Rope Catastrophe Associated With Internal Energy Release

    Science.gov (United States)

    Zhuang, Bin; Hu, Youqiu; Wang, Yuming; Zhang, Quanhao; Liu, Rui; Gou, Tingyu; Shen, Chenglong

    2018-04-01

    Magnetic energy during the catastrophe was predominantly studied by the previous catastrophe works since it is believed to be the main energy supplier for the solar eruptions. However, the contribution of other types of energies during the catastrophe cannot be neglected. This paper studies the catastrophe of the coronal flux rope system in the solar wind background, with emphasis on the transformation of different types of energies during the catastrophe. The coronal flux rope is characterized by its axial and poloidal magnetic fluxes and total mass. It is shown that a catastrophe can be triggered by not only an increase but also a decrease of the axial magnetic flux. Moreover, the internal energy of the rope is found to be released during the catastrophe so as to provide energy for the upward eruption of the flux rope. As far as the magnetic energy is concerned, it provides only part of the energy release, or even increases during the catastrophe, so the internal energy may act as the dominant or even the unique energy supplier during the catastrophe.

  8. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Aiying; Zhang, Huai [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Chaowei [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China); Hu, Qiang; Gary, G. Allen; Wu, S. T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn [School of Space and Environment, Beihang University, Beijing 100191 (China)

    2017-06-20

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  9. Mass and energy supply of a cool coronal loop near its apex

    Science.gov (United States)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before

  10. Observational Analysis of Coronal Fans

    Science.gov (United States)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  11. Intermittent fasting induces hypothalamic modifications resulting in low feeding efficiency, low body mass and overeating.

    Science.gov (United States)

    Chausse, Bruno; Solon, Carina; Caldeira da Silva, Camille C; Masselli Dos Reis, Ivan G; Manchado-Gobatto, Fúlvia B; Gobatto, Claudio A; Velloso, Licio A; Kowaltowski, Alicia J

    2014-07-01

    Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.

  12. A study of fast bunch rotation in the negative mass region

    CERN Document Server

    Rumolo, Giovanni

    2001-01-01

    Fast bunch rotation of high-intensity proton or ion bunches above transition is - in principle - supported by the self-bunching effect of the attractive space charge force ("negative instabilities"). Due to the broad-band nature of the space charge impedance, the highest harmonics of this negative mass mode grow fast and inhibit compression, unless the bunch rotation is accelerated by a sufficiently high rf-voltage. Using particle-in-cell simulation we establish the threshold below which effective compression is still possible. We find that the required rf-voltage for compression of a given bunch above transition can be reduced at most by a factor 2 compared with compression below transition, where space charge requires extra voltage.

  13. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang, E-mail: kongx@sdu.edu.cn; Chen, Yao, E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan, E-mail: guofan.ustc@gmail.com [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-03-25

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  14. The physical structure of coronal holes

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1978-11-01

    The longitudinal geometrical structure of solar wind streams as observed at the orbit of earth is governed by two mechanisms - solar rotation and, most importantly, the geometry of the inner coronal magnetic fields. Here, we study the influence of the latter for the polar coronal hole observed by Skylab in 1973 and modeled by Munro and Jackson (1977). The influence of coronal heating on the properties of the solar wind in this geometry is also investigated. To do this, a crude exponentially damped heating function similar to that used by Kopp and Orrall (1976) is introduced into the solar wind equations. We find that increased heating produces higher temperatures in the inner corona but has little effect upon the temperature at 1 A.U. However, the density at 1 A.U. is increased significantly due to the increase in scale height. The most surprising consequence of coronal heating is its effect on the solar wind velocity, being that the velocity at 1 A.U. is actually decreased by heating in the inner corona. Physical reasons for this effect are discussed. (orig./WL) [de

  15. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  16. Space- and Ground-based Coronal Spectro-Polarimetry

    Science.gov (United States)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  17. THE CORONAL ABUNDANCES OF MID-F DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin

    2013-01-01

    A Chandra spectrum of the moderately active nearby F6 V star π 3 Ori is used to study the coronal properties of mid-F dwarfs. We find that π 3 Ori's coronal emission measure distribution is very similar to those of moderately active G and K dwarfs, with an emission measure peak near log T = 6.6 seeming to be ubiquitous for such stars. In contrast to coronal temperature, coronal abundances are known to depend on spectral type for main sequence stars. Based on this previously known relation, we expected π 3 Ori's corona to exhibit an extremely strong ''first ionization potential (FIP) effect'', a phenomenon first identified on the Sun where elements with low FIP are enhanced in the corona. We instead find that π 3 Ori's corona exhibits a FIP effect essentially identical to that of the Sun and other early G dwarfs, perhaps indicating that the increase in FIP bias toward earlier spectral types stops or at least slows for F stars. We find that π 3 Ori's coronal characteristics are significantly different from two previously studied mid-F stars, Procyon (F5 IV-V) and τ Boo (F7 V). We believe π 3 Ori is more representative of the coronal characteristics of mid-F dwarfs, with Procyon being different because of luminosity class, and τ Boo being different because of the effects of one of two close companions, one stellar (τ Boo B: M2 V) and one planetary.

  18. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  19. New Evidence that Magnetoconvection Drives Solar–Stellar Coronal Heating

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ST 13, Huntsville, AL 35812 (United States); Thalmann, Julia K., E-mail: sanjivtiwari80@gmail.com [Institute of Physics/IGAM, University of Graz, Universittsplatz 5/II, A-8010 Graz (Austria)

    2017-07-10

    How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.

  20. Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet

    Energy Technology Data Exchange (ETDEWEB)

    Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-03-10

    Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.

  1. A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E.; Wu, Chin-Chun; Howard, Russell A.; Linton, Mark G.; Socker, Dennis G. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Lepping, Ronald P.; Nieves-Chinchilla, Teresa, E-mail: brian.wood@nrl.navy.mil [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-04-01

    We identify coronal mass ejections (CMEs) associated with magnetic clouds (MCs) observed near Earth by the Wind spacecraft from 2008 to mid-2012, a time period when the two STEREO spacecraft were well positioned to study Earth-directed CMEs. We find 31 out of 48 Wind MCs during this period can be clearly connected with a CME that is trackable in STEREO imagery all the way from the Sun to near 1 au. For these events, we perform full 3D reconstructions of the CME structure and kinematics, assuming a flux rope (FR) morphology for the CME shape, considering the full complement of STEREO and SOHO imaging constraints. We find that the FR orientations and sizes inferred from imaging are not well correlated with MC orientations and sizes inferred from the Wind data. However, velocities within the MC region are reproduced reasonably well by the image-based reconstruction. Our kinematic measurements are used to provide simple prescriptions for predicting CME arrival times at Earth, provided for a range of distances from the Sun where CME velocity measurements might be made. Finally, we discuss the differences in the morphology and kinematics of CME FRs associated with different surface phenomena (flares, filament eruptions, or no surface activity).

  2. Observations and Analyses of Heliospheric Faraday Rotation of a Coronal Mass Ejection (CME) Using the LOw Frequency ARray (LOFAR) and Space-Based Imaging Techniques

    Science.gov (United States)

    Bisi, Mario Mark; Jensen, Elizabeth; Sobey, Charlotte; Fallows, Richard; Jackson, Bernard; Barnes, David; Giunta, Alessandra; Hick, Paul; Eftekhari, Tarraneh; Yu, Hsiu-Shan; Odstrcil, Dusan; Tokumaru, Munetoshi; Wood, Brian

    2017-04-01

    Geomagnetic storms of the highest intensity are general driven by coronal mass ejections (CMEs) impacting the Earth's space environment. Their intensity is driven by the speed, density, and, most-importantly, their magnetic-field orientation and magnitude of the incoming solar plasma. The most-significant magnetic-field factor is the North-South component (Bz in Geocentric Solar Magnetic - GSM - coordinates). At present, there are no reliable prediction methods available for this magnetic-field component ahead of the in-situ monitors around the Sun-Earth L1 point. Observations of Faraday rotation (FR) can be used to attempt to determine average magnetic-field orientations in the inner heliosphere. Such a technique has already been well demonstrated through the corona, ionosphere, and also the interstellar medium. Measurements of the polarisation of astronomical (or spacecraft in superior conjunction) radio sources (beacons/radio frequency carriers) through the inner corona of the Sun to obtain the FR have been demonstrated but mostly at relatively-high radio frequencies. Here we show some initial results of true heliospheric FR using the Low Frequency Array (LOFAR) below 200 MHz to investigate the passage of a coronal mass ejection (CME) across the line of sight. LOFAR is a next-generation low-frequency radio interferometer, and a pathfinder to the Square Kilometre Array (SKA) - LOW telescope. We demonstrate preliminary heliospheric FR results through the analysis of observations of pulsar J1022+1001, which commenced on 13 August 2014 at 13:00UT and spanned over 150 minutes in duration. We also show initial comparisons to the FR results via various modelling techniques and additional context information to understand the structure of the inner heliosphere being detected. This observation could indeed pave the way to an experiment which might be implemented for space-weather purposes that will eventually lead to a near-global method for determining the magnetic

  3. Three-dimensional configuration and damping effect of flare coronal transients

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.

    1989-01-01

    Inverse problem of searching for three - dimensional configuration of coronal mass outburst (CMO) in the class of flattened spheroids was solved on the basis of solving primal problem of projecting CMO of the given configuration on celestial plane, using experimental data of white light coronograph. It was obtained that CMO, as interplanetary shock waves, were oblate with ∼ 1.25 ratio of axes to the plane of great circle, passing through the flare, parallel to magnetic axis of the nearest bipolar group

  4. Free Magnetic Energy and Coronal Heating

    Science.gov (United States)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  5. Prominence Bubbles and Plumes: Thermo-magnetic Buoyancy in Coronal Cavity Systems

    Science.gov (United States)

    Berger, Thomas; Hurlburt, N.

    2009-05-01

    The Hinode/Solar Optical Telescope continues to produce high spatial and temporal resolution images of solar prominences in both the Ca II 396.8 nm H-line and the H-alpha 656.3 nm line. Time series of these images show that many quiescent prominences produce large scale (50 Mm) dark "bubbles" that "inflate" into, and sometimes burst through, the prominence material. In addition, small-scale (2--5 Mm) dark plumes are seen rising into many quiescent prominences. We show typical examples of both phenomena and argue that they originate from the same mechanism: concentrated and heated magnetic flux that rises due to thermal and magnetic buoyancy to equilibrium heights in the prominence/coronal-cavity system. More generally, these bubbles and upflows offer a source of both magnetic flux and mass to the overlying coronal cavity, supporting B.C. Low's theory of CME initiation via steadily increasing magnetic buoyancy breaking through the overlying helmut streamer tension forces. Quiescent prominences are thus seen as the lowermost parts of the larger coronal cavity system, revealing through thermal effects both the cooled downflowing "drainage" from the cavity and the heated upflowing magnetic "plasmoids" supplying the cavity. We compare SOT movies to new 3D compressible MHD simulations that reproduce the dark turbulent plume dynamics to establish the magnetic and thermal character of these buoyancy-driven flows into the corona.

  6. Measurements of EUV coronal holes and open magnetic flux

    International Nuclear Information System (INIS)

    Lowder, C.; Qiu, J.; Leamon, R.; Liu, Y.

    2014-01-01

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10 22 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10 22 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  7. DERIVING THE PROPERTIES OF CORONAL PRESSURE FRONTS IN 3D: APPLICATION TO THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rouillard, A. P.; Plotnikov, I.; Pinto, R. F.; Tirole, M.; Lavarra, M. [Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse III (UPS) (France); Zucca, P. [LESIA-UMR 8109—Observatoire de Paris, CNRS, Univ. Paris 6 and 7, F-92190, Meudon (France); Vainio, R. [University of Turku, Turku (Finland); Tylka, A. J. [Emeritus, NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Vourlidas, A. [Johns Hopkins Applied Physics Laboratory, Laurel, Maryland (United States); Rosa, M. L. De [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, California (United States); Linker, J. [Predictive Sciences Inc., San Diego, California (United States); Warmuth, A.; Mann, G. [Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam (Germany); Cohen, C. M. S.; Mewaldt, R. A., E-mail: arouillard@irap.omp.eu [California Institute of Technology, Pasadena, California (United States)

    2016-12-10

    We study the link between an expanding coronal shock and the energetic particles measured near Earth during the ground level enhancement of 2012 May 17. We developed a new technique based on multipoint imaging to triangulate the three-dimensional (3D) expansion of the shock forming in the corona. It uses images from three vantage points by mapping the outermost extent of the coronal region perturbed by the pressure front. We derive for the first time the 3D velocity vector and the distribution of Mach numbers, M {sub FM}, of the entire front as a function of time. Our approach uses magnetic field reconstructions of the coronal field, full magnetohydrodynamic simulations and imaging inversion techniques. We find that the highest M {sub FM} values appear near the coronal neutral line within a few minutes of the coronal mass ejection onset; this neutral line is usually associated with the source of the heliospheric current and plasma sheet. We illustrate the variability of the shock speed, shock geometry, and Mach number along different modeled magnetic field lines. Despite the level of uncertainty in deriving the shock Mach numbers, all employed reconstruction techniques show that the release time of GeV particles occurs when the coronal shock becomes super-critical ( M {sub FM} > 3). Combining in situ measurements with heliospheric imagery, we also demonstrate that magnetic connectivity between the accelerator (the coronal shock of 2012 May 17) and the near-Earth environment is established via a magnetic cloud that erupted from the same active region roughly five days earlier.

  8. DERIVING THE PROPERTIES OF CORONAL PRESSURE FRONTS IN 3D: APPLICATION TO THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT

    International Nuclear Information System (INIS)

    Rouillard, A. P.; Plotnikov, I.; Pinto, R. F.; Tirole, M.; Lavarra, M.; Zucca, P.; Vainio, R.; Tylka, A. J.; Vourlidas, A.; Rosa, M. L. De; Linker, J.; Warmuth, A.; Mann, G.; Cohen, C. M. S.; Mewaldt, R. A.

    2016-01-01

    We study the link between an expanding coronal shock and the energetic particles measured near Earth during the ground level enhancement of 2012 May 17. We developed a new technique based on multipoint imaging to triangulate the three-dimensional (3D) expansion of the shock forming in the corona. It uses images from three vantage points by mapping the outermost extent of the coronal region perturbed by the pressure front. We derive for the first time the 3D velocity vector and the distribution of Mach numbers, M FM , of the entire front as a function of time. Our approach uses magnetic field reconstructions of the coronal field, full magnetohydrodynamic simulations and imaging inversion techniques. We find that the highest M FM values appear near the coronal neutral line within a few minutes of the coronal mass ejection onset; this neutral line is usually associated with the source of the heliospheric current and plasma sheet. We illustrate the variability of the shock speed, shock geometry, and Mach number along different modeled magnetic field lines. Despite the level of uncertainty in deriving the shock Mach numbers, all employed reconstruction techniques show that the release time of GeV particles occurs when the coronal shock becomes super-critical ( M FM > 3). Combining in situ measurements with heliospheric imagery, we also demonstrate that magnetic connectivity between the accelerator (the coronal shock of 2012 May 17) and the near-Earth environment is established via a magnetic cloud that erupted from the same active region roughly five days earlier.

  9. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... coronal hole and solar wind. For both the wavelength bands, we also com- pute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength. 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and ...

  10. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  11. TETHER-CUTTING RECONNECTION BETWEEN TWO SOLAR FILAMENTS TRIGGERING OUTFLOWS AND A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ma, Suli, E-mail: hdchen@nao.cas.cn [College of Science, China University of Petroleum, Qingdao 266580 (China)

    2016-02-20

    Triggering mechanisms of solar eruptions have long been a challenge. A few previous case studies have indicated that preceding gentle filament merging via magnetic reconnection may launch following intense eruption, according to the tether-cutting (TC) model. However, the detailed process of TC reconnection between filaments has not been exhibited yet. In this work, we report the high-resolution observations from the Interface Region Imaging Spectrometer (IRIS) of TC reconnection between two sheared filaments in NOAA active region 12146. The TC reconnection commenced on ∼15:35 UT on 2014 August 29 and triggered an eruptive GOES C4.3-class flare ∼8 minutes later. An associated coronal mass ejection appeared in the field of view of the Solar and Heliospheric Observatory/LASCO C2 about 40 minutes later. Thanks to the high spatial resolution of IRIS data, bright plasma outflows generated by the TC reconnection are clearly observed, which moved along the subarcsecond fine-scale flux tube structures in the erupting filament. Based on the imaging and spectral observations, the mean plane-of-sky and line-of-sight velocities of the TC reconnection outflows are separately measured to be ∼79 and 86 km s{sup −1}, which derives an average real speed of ∼120 km s{sup −1}. In addition, it is found that spectral features, such as peak intensities, Doppler shifts, and line widths in the TC reconnection region are evidently enhanced compared to those in the nearby region just before the flare.

  12. LATERAL OFFSET OF THE CORONAL MASS EJECTIONS FROM THE X-FLARE OF 2006 DECEMBER 13 AND ITS TWO PRECURSOR ERUPTIONS

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K.

    2011-01-01

    Two GOES sub-C-class precursor eruptions occurred within ∼10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset (∼> 45°) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursor was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting ∼1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.

  13. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  14. LONG-TERM TREND OF SOLAR CORONAL HOLE DISTRIBUTION FROM 1975 TO 2014

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, K.; Tokumaru, M.; Hayashi, K.; Satonaka, D. [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Furo-cho, Chikusa, Nagoya Aichi 464-8601 (Japan); Hakamada, K., E-mail: fujiki@isee.nagoya-u.ac.jp [Department of Natural Science and Mathematics, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2016-08-20

    We developed an automated prediction technique for coronal holes using potential magnetic field extrapolation in the solar corona to construct a database of coronal holes appearing from 1975 February to 2015 July (Carrington rotations from 1625 to 2165). Coronal holes are labeled with the location, size, and average magnetic field of each coronal hole on the photosphere and source surface. As a result, we identified 3335 coronal holes and found that the long-term distribution of coronal holes shows a similar pattern known as the magnetic butterfly diagram, and polar/low-latitude coronal holes tend to decrease/increase in the last solar minimum relative to the previous two minima.

  15. Independent prognostic value of left ventricular mass, diastolic function, and fasting plasma glucose

    DEFF Research Database (Denmark)

    Pareek, Manan; Nielsen, Mette Lundgren; Leósdóttir, Margrét

    2016-01-01

    OBJECTIVE: To explore the independent prognostic value of left ventricular (LV) mass, diastolic function, and fasting plasma glucose (FPG) for the prediction of incident cardiac events in a random population sample. DESIGN AND METHOD: 415 women and 999 men aged 56-79 years, included between 2002...

  16. New techniques for the characterisation of dynamical phenomena in solar coronal images

    Science.gov (United States)

    Robbrecht, E.

    2007-02-01

    ) was an important step on the way to subarcsecond telescopes. It allows a spatial resolution of 1" in the EUV and UV bands and, simultaneously, a temporal resolution of the order of a few seconds. Coronal physics studies are dominated by two major and interlinked problems: coronal heating and solar wind acceleration. Above the chromosphere there is a thin transition layer in which the temperature suddenly increases and density drops. How can the temperature of the solar corona be three orders of magnitude higher than the temperature of the photosphere? In order for this huge temperature gradient to be stationary, non-thermal energy must be transported from below the photosphere towards the chromosphere and corona and converted into heat to balance the radiative and conductive losses. This puzzle of origin, transport and conversion of energy is referred to as the "coronal heating problem". Due to its fundamental role in the structuring of the corona, the magnetic field is supposed to play an important role in the heating. In this dissertation we describe two aspects of solar coronal dynamics: waves in coronal loops (Part I) and coronal mass ejections (Part II). We investigate the influence of (semi-) automated techniques on solar coronal research. This is a timely discussion since the observation of solar phenomena is transitioning from manual detection to "Solar Image Processing". Our results are mainly based on images from the Extreme UV Imaging Telescope (EIT) and the Large Angle and Spectrometric Coronagraph (LASCO), two instruments onboard the satellite SOHO (Solar and Heliospheric Observatory) of which we recently celebrated its 11th anniversary. The high quality of the images together with the long timespan created a valuable database for solar physics research. Part I reports on the first detection of slow magnetoacoustic waves in transequatorial coronal loops observed in high cadence image sequences simultaneously produced by EIT and TRACE (Transition Region

  17. Introduction of hind foot coronal alignment view

    International Nuclear Information System (INIS)

    Moon, Il Bong; Jeon, Ju Seob; Yoon, Kang Cheol; Choi, Nam Kil; Kim, Seung Kook

    2006-01-01

    Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hind foot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hind foot coronal alignment view. Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. Both feet stood on a radiolucent platform with equal weight on both feet. Both feet are located foot axis longitudinal perpendicular to the platform. Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. The x-ray beam is angled down approximately 15 .deg. to 20 .deg. This image described tibial axis and medial, lateral tuberosity of calcaneus. Calcaneus do not rotated. The view is showed by talotibial joint space. Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hind foot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hind foot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hind foot and varus, valgus deformity of calcaneus

  18. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    Science.gov (United States)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  19. Quality of coroner's post-mortems in a UK hospital.

    Science.gov (United States)

    Al Mahdy, Husayn

    2014-01-01

    The aim of this paper was, principally, to look at the coroner's post-mortem report quality regarding adult medical patients admitted to an English hospital; and to compare results with Royal College of Pathologists guidelines. Hospital clinical notes of adult medical patients dying in 2011 and who were referred to the coroner's office to determine the cause of death were scrutinised. Their clinical care was also reviewed. There needs to be a comprehensive approach to coroner's post-mortems such as routinely taking histological and microbiological specimens. Acute adult medical patient care needs to improve. Steps should be taken to ensure that comprehensive coroner's post-mortems are performed throughout the UK, including with routine histological and microbiological specimens examination. Additionally, closer collaboration between clinicians and pathologists needs to occur to improve emergency adult medical patient clinical care. The study highlights inadequacies in coroner's pathology services.

  20. Stationarity and periodicities of linear speed of coronal mass ejection: a statistical signal processing approach

    Science.gov (United States)

    Chattopadhyay, Anirban; Khondekar, Mofazzal Hossain; Bhattacharjee, Anup Kumar

    2017-09-01

    In this paper initiative has been taken to search the periodicities of linear speed of Coronal Mass Ejection in solar cycle 23. Double exponential smoothing and Discrete Wavelet Transform are being used for detrending and filtering of the CME linear speed time series. To choose the appropriate statistical methodology for the said purpose, Smoothed Pseudo Wigner-Ville distribution (SPWVD) has been used beforehand to confirm the non-stationarity of the time series. The Time-Frequency representation tool like Hilbert Huang Transform and Empirical Mode decomposition has been implemented to unearth the underneath periodicities in the non-stationary time series of the linear speed of CME. Of all the periodicities having more than 95% Confidence Level, the relevant periodicities have been segregated out using Integral peak detection algorithm. The periodicities observed are of low scale ranging from 2-159 days with some relevant periods like 4 days, 10 days, 11 days, 12 days, 13.7 days, 14.5 and 21.6 days. These short range periodicities indicate the probable origin of the CME is the active longitude and the magnetic flux network of the sun. The results also insinuate about the probable mutual influence and causality with other solar activities (like solar radio emission, Ap index, solar wind speed, etc.) owing to the similitude between their periods and CME linear speed periods. The periodicities of 4 days and 10 days indicate the possible existence of the Rossby-type waves or planetary waves in Sun.

  1. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  2. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States)

    2017-09-10

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  3. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhao, Lulu

    2017-01-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  4. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  5. ASSOCIATION OF {sup 3}He-RICH SOLAR ENERGETIC PARTICLES WITH LARGE-SCALE CORONAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Innes, Davina E. [Max-Planck-Institut für Sonnensystemforschung, D-37077, Göttingen (Germany); Mason, Glenn M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wiedenbeck, Mark E., E-mail: bucik@mps.mpg.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-12-10

    Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory ( STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.

  6. Measurements of EUV coronal holes and open magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, C.; Qiu, J.; Leamon, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Liu, Y., E-mail: clowder@solar.physics.montana.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-03-10

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10{sup 22} Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10{sup 22} Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  7. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    International Nuclear Information System (INIS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-01-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  8. AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Feng, S. W.; Chen, Y.; Song, H. Q.; Wang, B.; Kong, X. L., E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China)

    2016-08-10

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.

  9. Evaluating Uncertainties in Coronal Electron Temperature and Radial Speed Measurements Using a Simulation of the Bastille Day Eruption

    Science.gov (United States)

    Reginald, Nelson; St. Cyr, Orville; Davila, Joseph; Rastaetter, Lutz; Török, Tibor

    2018-05-01

    Obtaining reliable measurements of plasma parameters in the Sun's corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.

  10. Unambiguous Evidence of Coronal Implosions during Solar Eruptions and Flares

    Science.gov (United States)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.

    2018-05-01

    In the implosion conjecture, coronal loops contract as the result of magnetic energy release in solar eruptions and flares. However, after almost two decades, observations of this phenomenon are still rare and most previous reports are plagued by projection effects so that loop contraction could be either true implosion or just a change in loop inclination. In this paper, to demonstrate the reality of loop contractions in the global coronal dynamics, we present four events with the continuously contracting loops in an almost edge-on geometry from the perspective of SDO/AIA, which are free from the ambiguity caused by the projection effects, also supplemented by contemporary observations from STEREO for examination. In the wider context of observations, simulations and theories, we argue that the implosion conjecture is valid in interpreting these events. Furthermore, distinct properties of the events allow us to identify two physical categories of implosion. One type demonstrates a rapid contraction at the beginning of the flare impulsive phase, as magnetic free energy is removed rapidly by a filament eruption. The other type, which has no visible eruption, shows a continuous loop shrinkage during the entire flare impulsive phase, which we suggest shows the ongoing conversion of magnetic free energy in a coronal volume. Corresponding scenarios are described that can provide reasonable explanations for the observations. We also point out that implosions may be suppressed in cases when a heavily mass-loaded filament is involved, possibly serving as an alternative account for their observational rarity.

  11. Case report: pre-eruptive intra-coronal radiolucencies revisited.

    LENUS (Irish Health Repository)

    Counihan, K P

    2012-08-01

    Pre-eruptive intra-coronal radiolucency (PEIR) describes a radiolucent lesion located in the coronal dentine, just beneath the enamel-dentine junction of unerupted teeth. The prevalence of this lesion varies depending on the type and quality of radiographic exposure and age of patients used for assessment. The aetiology of pre-eruptive intra-coronal radiolucent lesions is not fully understood, but published clinical and histological evidence suggest that these lesions are resorptive in nature. Issues around the diagnosis, treatment planning and clinical management of this lesion are explored using previously unreported cases.

  12. The first coronation churches of medieval Serbia

    Directory of Open Access Journals (Sweden)

    Kalić Jovanka

    2017-01-01

    Full Text Available The medieval ceremony of coronation as a rule took place in the most important church of a realm. The sites of the coronation of Serbian rulers before the establishment of the Žiča monastery church as the coronation church of Serbian kings in the first half of the thirteenth century have not been reliably identified so far. Based on the surviving medieval sources and the archaeological record, this paper provides background information about the titles of Serbian rulers prior to the creation of the Nemanjić state, and proposes that Stefan, son of the founder of the Nemanjić dynasty, was crowned king (1217 in the church of St Peter in Ras.

  13. Fast-food consumption and child body mass index in China: Application of an endogenous switching regression model

    OpenAIRE

    Akpalu, Wisdom; Zhang, Xu

    2014-01-01

    The rapid economic growth experienced within the past two decades in China highly correlates with childhood overweightness. The epidemic has become an issue of grave concern. A principal factor considered to be responsible for the epidemic in the literature is unhealthy food intake, such as fast-food consumption. This paper has found a positive impact of fast-food consumption on children's body mass index. In addition to our finding of different characteristics between children who eat fast f...

  14. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd, E-mail: chifu@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO /HMI, SDO /AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  15. Effect of modified fasting therapy on body weight, fat and muscle mass, and blood chemistry in patients with obesity.

    Science.gov (United States)

    Kim, Koh-Woon; Song, Mi-Yeon; Chung, Seok-Hee; Chung, Won-Seok

    2016-02-01

    The aim of this study was to investigate the effects and safety of modified fasting therapy using fermented medicinal herbs and exercise on body weight, fat and muscle mass, and blood chemistry in obese subjects. Twenty-six patients participated in a 14-day fast, during which they ingested a supplement made from fermented medicinal herbs and carbohydrates (intake: 400-600 kcal/d). The schedule included 7 prefasting relief days and 14 days of stepwise reintroduction of food. The patients also took part in an exercise program that incorporated Qigong, weight training, and walking exercises. The efficacy of treatments was observed by assessing body fat mass and muscle mass, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides in each study period. Specific symptoms or side effects were reported. Body weight and body fat mass both decreased significantly by (5.16 ± 0.95) and (3.89 ± 0.79) kg (both P fasting therapy using fermented medicinal herbs and exercise could be effective and safe on obese patients.

  16. Magnetic Topology of Coronal Hole Linkages

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  17. Energy released by the interaction of coronal magnetic fields

    International Nuclear Information System (INIS)

    Sheeley, N.R. Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields in continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared to the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares. (Auth.)

  18. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    Science.gov (United States)

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  19. Electrochemically assisted fast-atom-bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Phillips, L.R.

    1988-01-01

    The hybridization of electrochemistry and fast atom bombardment (FAB) mass spectrometry (MS) creates a new hyphenated technique, referred to as electrochemically assisted FAB (EFAB) MS, which improves the applicability of FAB MS in selectivity and extends the range of compounds to include low polarity molecules, and also reduces mass spectral complications due to matrix-related artifacts. FAB MS has proven to be indispensable in analysis of samples that are otherwise too intractable for conventional MS, such as peptides, oligosaccharides, and oligonucleotides, due to low volatility and ready thermal degradation. There are limits on its applicability, however, in that it works best with samples that are already ionic, or predisposed to become so by simple proton transfer to or from the matrix. A wide range of chemical substances can be ionized/analyzed by electrochemical methods. Therefore, a possible approach towards improving applicability of FAB MS is through its hybridization with electrochemistry. Samples are activated by electrolysis, carried out directly in the sample matrix through use of a modified FAB sample probe which was constructed containing a small electrolytic cell on the tip. In operation, one electrode is held at normal sample-probe/ion-source voltage, while the other electrode can be continuously varied ±15 volts to create electrochemical potentials. Several chemical substances, known to be unresponsive to FAB MS, have been examined by EFAB MS. Resultant spectra generally show a dramatic increases in signal/chemical noise ratio of structurally significant ions when compared to normal FAB spectra

  20. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  1. Evaluation of thoracic abnormalities on 64-row multi-detector row CT: Comparison between axial images versus coronal reformations

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States)]. E-mail: mnishino@bidmc.harvard.edu; Kubo, Takeshi [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Kataoka, Milliam L. [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Gautam, Shiva [Department of General Clinical Research Center and Biometrics, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Raptopoulos, Vassilios [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Hatabu, Hiroto [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States)

    2006-07-15

    Purpose: To evaluate the capability of coronal reformations of chest on 64-row MDCT in demonstrating thoracic abnormalities in comparison with axial images. Materials and methods: Thirty-eight consecutive patients who underwent pulmonary CTA on 64-row MDCT were retrospectively studied with institutional review board (IRB) approval. Contiguous 2 mm axial and coronal images were reviewed independently with a 1-week interval, by consensus reading of two board-certified radiologists. Overall image quality was graded using a five-point scale. Abnormalities in mediastinum, hilum, pulmonary vessels, aorta, heart, esophagus, pleura, chest wall, and lung parenchyma were scored: 1 = definitely absent, 2 = probably absent, 3 = equivocal, 4 probably present, 5 = definitely present. Scores on axial and coronal images were compared using weighted {kappa} analysis. Results: Overall image quality was not different with statistical relevance between axial and coronal images (mean/median scores; 3.7/4; 3.6/4, respectively, P = 0.286, Wilcoxon signed-rank test). Significant agreement was observed between axial and coronal scores (mean weighted {kappa}, 0.661; range, 0.362-1). Agreement was almost perfect for pneumothorax, lung and pleural mass, effusion and consolidation (weighted {kappa} = 0.833-1); substantial for pulmonary embolism, trachea, mediastinal lymphadenopathy and non-skeletal chest wall lesion, heart, esophagus, and emphysema (weighted {kappa}, 0.618-0.799); moderate for atelectasis, mediastinum, hilar nodes, aorta, other lung lesions, skeletal chest wall lesions, linear scarring, nodules >1 cm, pulmonary artery abnormalities and pleural thickening (weighted {kappa}, 0.405-0.592); and fair for nodules <1 cm (weighted {kappa} = 0.362). Conclusion: Coronal reformations on 64-row MDCT had substantial agreement with axial images for evaluation of the majority of thoracic abnormalities.

  2. Evaluation of thoracic abnormalities on 64-row multi-detector row CT: Comparison between axial images versus coronal reformations

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Kubo, Takeshi; Kataoka, Milliam L.; Gautam, Shiva; Raptopoulos, Vassilios; Hatabu, Hiroto

    2006-01-01

    Purpose: To evaluate the capability of coronal reformations of chest on 64-row MDCT in demonstrating thoracic abnormalities in comparison with axial images. Materials and methods: Thirty-eight consecutive patients who underwent pulmonary CTA on 64-row MDCT were retrospectively studied with institutional review board (IRB) approval. Contiguous 2 mm axial and coronal images were reviewed independently with a 1-week interval, by consensus reading of two board-certified radiologists. Overall image quality was graded using a five-point scale. Abnormalities in mediastinum, hilum, pulmonary vessels, aorta, heart, esophagus, pleura, chest wall, and lung parenchyma were scored: 1 = definitely absent, 2 = probably absent, 3 = equivocal, 4 probably present, 5 = definitely present. Scores on axial and coronal images were compared using weighted κ analysis. Results: Overall image quality was not different with statistical relevance between axial and coronal images (mean/median scores; 3.7/4; 3.6/4, respectively, P = 0.286, Wilcoxon signed-rank test). Significant agreement was observed between axial and coronal scores (mean weighted κ, 0.661; range, 0.362-1). Agreement was almost perfect for pneumothorax, lung and pleural mass, effusion and consolidation (weighted κ = 0.833-1); substantial for pulmonary embolism, trachea, mediastinal lymphadenopathy and non-skeletal chest wall lesion, heart, esophagus, and emphysema (weighted κ, 0.618-0.799); moderate for atelectasis, mediastinum, hilar nodes, aorta, other lung lesions, skeletal chest wall lesions, linear scarring, nodules >1 cm, pulmonary artery abnormalities and pleural thickening (weighted κ, 0.405-0.592); and fair for nodules <1 cm (weighted κ = 0.362). Conclusion: Coronal reformations on 64-row MDCT had substantial agreement with axial images for evaluation of the majority of thoracic abnormalities

  3. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-10

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillations traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.

  4. Coronal Heating Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  5. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  6. A contemporary view of coronal heating.

    Science.gov (United States)

    Parnell, Clare E; De Moortel, Ineke

    2012-07-13

    Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that 'coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.

  7. MRI of the popliteofibular ligament: isotropic 3D WE-DESS versus coronal oblique fat-suppressed T2W MRI

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Lee, J.C.; Healy, J.C.

    2007-01-01

    The objective was to compare isotropic 3D water excitation double-echo steady state (WE-DESS) MRI with coronal oblique fat-suppressed T2-weighted (FS T2W) images in the identification of the popliteofibular ligament (PFL). A prospective analysis of 122 consecutive knee MRIs was performed in patients referred for knee pain from the orthopaedic clinic. In addition to the standard knee sequences, isotropic WE-DESS volume acquisition through the whole knee and coronal oblique FS T2W fast spin echo sequences through the posterolateral corner were obtained. The presence of the popliteus and biceps femoris tendons, lateral collateral and PFL was documented. Anterior cruciate ligament injury was present in 33 cases and these were excluded from the study because of the risk of associated PFL injury, leaving a total of 89 cases. Of the 42 patients in whom arthroscopic evaluation was subsequently obtained, none were found to have an injury to the PFL. The lateral collateral ligament, biceps femoris and popliteus tendon were identified in all cases on all sequences. The PFL was seen in 81 (91.0%; 95% CI 85.1-97.0%) patients using the WE-DESS sequence and 63 (70.8%; 95% CI 61.3-80.2%) patients using the coronal oblique FS T2W sequence, a statistically significant difference (p < 0.00005). Isotropic 3D WE-DESS MRI significantly enhances our ability to identify the popliteofibular ligament compared with coronal oblique fat-suppressed T2-weighted images. (orig.)

  8. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2013-01-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME , and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  9. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    Science.gov (United States)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  10. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2017-07-20

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.

  11. The impact of coronal mass ejection on the horizontal geomagnetic fields and the induced geoelectric fields

    Science.gov (United States)

    Falayi, E. O.; Adebesin, B. O.; Bolaji, O. S.

    2018-02-01

    This work investigates the influence of coronal mass ejection (CME) on the time derivatives of horizontal geomagnetic and geoelectric fields, proxy parameters for identifying GICs. 16 events were identified for the year 2003 from the CORONAS-PHOTON spacecraft. Five of the events (May 29, June 9, October 28, October 29, and November 4) were extensively discussed over four magnetic observatories, were analyzed using the time derivatives of the horizontal geomagnetic (dH/dt) and geoelectric (EH) fields obtained from data of the INTERMAGNET network. It was observed that energy distributions of the wavelet power spectrum of the horizontal geoelectric field are noticed at the nighttime on both 29 May and 9 June 2003 across the stations. Daytime and nighttime intensification of energy distribution of the wavelet power spectrum of the horizontal geoelectric field are observed on both 28 and 29 October 2003 due to strong westward electrojet. The 4 November 2003 event depicts daytime amplification of energy distributions of the wavelet power spectrum across the stations. The highest correlation magnitude is obtained in the event of 4 November 2003 between dH/dt and EH relationships during the intense solar flare of class X 17.4. We observed that the correlation magnitude between dH/dt and EH increases with increase in CME activity. We concluded that the response of the surface impedance model for different stations plays a key role in determining the surface electric field strength, due to large electric field changes at different stations.

  12. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia)

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  13. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    International Nuclear Information System (INIS)

    Ding, Liu-Guan; Xu, Fei; Gu, Bin; Zhang, Ya-Nan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao

    2014-01-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event

  14. Empirical Reconstruction and Numerical Modeling of the First Geoeffective Coronal Mass Ejection of Solar Cycle 24

    Science.gov (United States)

    Wood, B. E.; Wu, C.-C.; Howard, R. A.; Socker, D. G.; Rouillard, A. P.

    2011-03-01

    We analyze the kinematics and morphology of a coronal mass ejection (CME) from 2010 April 3, which was responsible for the first significant geomagnetic storm of solar cycle 24. The analysis utilizes coronagraphic and heliospheric images from the two STEREO spacecraft, and coronagraphic images from SOHO/LASCO. Using an empirical three-dimensional (3D) reconstruction technique, we demonstrate that the CME can be reproduced reasonably well at all times with a 3D flux rope shape, but the case for a flux rope being the correct interpretation is not as strong as some events studied with STEREO in the past, given that we are unable to infer a unique orientation for the flux rope. A model with an orientation angle of -80° from the ecliptic plane (i.e., nearly N-S) works best close to the Sun, but a model at 10° (i.e., nearly E-W) works better far from the Sun. Both interpretations require the cross section of the flux rope to be significantly elliptical rather than circular. In addition to our empirical modeling, we also present a fully 3D numerical MHD model of the CME. This physical model appears to effectively reproduce aspects of the shape and kinematics of the CME's leading edge. It is particularly encouraging that the model reproduces the amount of interplanetary deceleration observed for the CME during its journey from the Sun to 1 AU.

  15. EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Wood, B. E.; Wu, C.-C.; Howard, R. A.; Socker, D. G.; Rouillard, A. P.

    2011-01-01

    We analyze the kinematics and morphology of a coronal mass ejection (CME) from 2010 April 3, which was responsible for the first significant geomagnetic storm of solar cycle 24. The analysis utilizes coronagraphic and heliospheric images from the two STEREO spacecraft, and coronagraphic images from SOHO/LASCO. Using an empirical three-dimensional (3D) reconstruction technique, we demonstrate that the CME can be reproduced reasonably well at all times with a 3D flux rope shape, but the case for a flux rope being the correct interpretation is not as strong as some events studied with STEREO in the past, given that we are unable to infer a unique orientation for the flux rope. A model with an orientation angle of -80 deg. from the ecliptic plane (i.e., nearly N-S) works best close to the Sun, but a model at 10 deg. (i.e., nearly E-W) works better far from the Sun. Both interpretations require the cross section of the flux rope to be significantly elliptical rather than circular. In addition to our empirical modeling, we also present a fully 3D numerical MHD model of the CME. This physical model appears to effectively reproduce aspects of the shape and kinematics of the CME's leading edge. It is particularly encouraging that the model reproduces the amount of interplanetary deceleration observed for the CME during its journey from the Sun to 1 AU.

  16. INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-01-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  17. Simulating coronal condensation dynamics in 3D

    Science.gov (United States)

    Moschou, S. P.; Keppens, R.; Xia, C.; Fang, X.

    2015-12-01

    We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the system's evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.

  18. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  19. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS

    International Nuclear Information System (INIS)

    Kramar, M.; Inhester, B.; Lin, H.; Davila, J.

    2013-01-01

    In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field

  20. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  1. 14 July 2000, a near-global coronal event and its association with energetic electron events detected in the interplanetary medium

    Czech Academy of Sciences Publication Activity Database

    Maia, D.; Pick, M.; Hawkins, S. E.; Fomichev, V. V.; Jiřička, Karel

    2001-01-01

    Roč. 204, 1/2 (2001), s. 199-214 ISSN 0038-0938 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejections * solar radio emissions * interplanetary particles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  2. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    International Nuclear Information System (INIS)

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-01-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  3. Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.; Temmer, Manuela [University of Graz, Institute of Physics, IGAM-Kanzelhöhe Observatory, Graz (Austria); Vennerstrom, Susanne [National Space Institute, DTU Space (Denmark); Vršnak, Bojan [Hvar Observatory, Faculty of Geodesy, Zagreb (Croatia); Heber, Bernd, E-mail: stefan.hofmeister@uni-graz.at [Universität Kiel, Institut für Experimentelle und Angewandte Physik, Kiel (Germany)

    2017-02-01

    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO /AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO /AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 ± 1.6 G, and the percentaged unbalanced magnetic flux is 49 ± 16%. The mean magnetic field density, the mean unsigned magnetic field density, and the percentaged unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38% (81%) of the unbalanced magnetic flux of coronal holes arises from only 1% (10%) of the coronal hole area, clustered in magnetic flux tubes with field strengths >50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc>0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.

  4. Detection of Propagating Fast Sausage Waves through Detailed Analysis of a Zebra-pattern Fine Structure in a Solar Radio Burst

    Science.gov (United States)

    Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.

    2018-03-01

    Various magnetohydrodynamic (MHD) waves have recently been detected in the solar corona and investigated intensively in the context of coronal heating and coronal seismology. In this Letter, we report the first detection of short-period propagating fast sausage mode waves in a metric radio spectral fine structure observed with the Assembly of Metric-band Aperture Telescope and Real-time Analysis System. Analysis of Zebra patterns (ZPs) in a type-IV burst revealed a quasi-periodic modulation in the frequency separation between the adjacent stripes of the ZPs (Δf ). The observed quasi-periodic modulation had a period of 1–2 s and exhibited a characteristic negative frequency drift with a rate of 3–8 MHz s‑1. Based on the double plasma resonance model, the most accepted generation model of ZPs, the observed quasi-periodic modulation of the ZP can be interpreted in terms of fast sausage mode waves propagating upward at phase speeds of 3000–8000 km s‑1. These results provide us with new insights for probing the fine structure of coronal loops.

  5. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  6. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  7. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  8. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  9. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua [School of Earth and Space Sciences, Peking University No. 5 Yiheyuan Road, Haidian District Beijing, 100871 (China); Zhang, Lei, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences No.1 Nanertiao, Zhongguancun, Haidian district Beijing, 100190 (China)

    2017-06-20

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  10. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    International Nuclear Information System (INIS)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua; Zhang, Lei

    2017-01-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  11. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    Science.gov (United States)

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  12. Calcium K-line network in coronal holes

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K A [Hale Observatories, Pasadena, Calif. (USA)

    1977-05-01

    Microphotometry of calcium K-line photographs in the regions of polar coronal holes shows that the chromospheric network exterior to a hole has a slightly broader intensity distribution than that inside the hole itself, a fact which can be attributed to a greater number of bright network elements outside the hole. These bright elements presumably represent the enhanced network resulting from the dispersal of magnetic flux from old active regions, a hypothesis which is consistent with current ideas of coronal hole formation.

  13. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  14. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  15. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory.

    Science.gov (United States)

    Möstl, C; Isavnin, A; Boakes, P D; Kilpua, E K J; Davies, J A; Harrison, R A; Barnes, D; Krupar, V; Eastwood, J P; Good, S W; Forsyth, R J; Bothmer, V; Reiss, M A; Amerstorfer, T; Winslow, R M; Anderson, B J; Philpott, L C; Rodriguez, L; Rouillard, A P; Gallagher, P; Nieves-Chinchilla, T; Zhang, T L

    2017-07-01

    We present an advance toward accurately predicting the arrivals of coronal mass ejections (CMEs) at the terrestrial planets, including Earth. For the first time, we are able to assess a CME prediction model using data over two thirds of a solar cycle of observations with the Heliophysics System Observatory. We validate modeling results of 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) (science data) from 8 years of observations by five in situ observing spacecraft. We use the self-similar expansion model for CME fronts assuming 60° longitudinal width, constant speed, and constant propagation direction. With these assumptions we find that 23%-35% of all CMEs that were predicted to hit a certain spacecraft lead to clear in situ signatures, so that for one correct prediction, two to three false alarms would have been issued. In addition, we find that the prediction accuracy does not degrade with the HI longitudinal separation from Earth. Predicted arrival times are on average within 2.6 ± 16.6 h difference of the in situ arrival time, similar to analytical and numerical modeling, and a true skill statistic of 0.21. We also discuss various factors that may improve the accuracy of space weather forecasting using wide-angle heliospheric imager observations. These results form a first-order approximated baseline of the prediction accuracy that is possible with HI and other methods used for data by an operational space weather mission at the Sun-Earth L5 point.

  16. FAST DETECTION OF ACETYLSALICYLIC ACID BY LIQUID CHROMATOGRAPHY TANDEM MASS SPECTROMETRY(LC-MSMS)

    OpenAIRE

    Abusoglu, Sedat; Unlu, Ali; Sivrikaya, Abdullah

    2018-01-01

    ObjectivesAcetylsalicylic acid (ASA) is themost widely used as an analgesic, anti-inflammatory and antipyretic drug, andalso used to inhibit cyclooxygenase dependent platelet aggregation.   The aimof this study was to develop a simple, fast and accurate tandem mass method fordetermination and quantification of ASA.  MethodsChromatographic seperation was performedusing an Shimadzu LC-20-AD (Kyoto, Japan) coupledwith a ABSCIEX API 3200 triple quadrupole massspectromete...

  17. Alfvénic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2006-03-01

    Full Text Available The mid-latitude phases of the Ulysses mission offer an excellent opportunity to investigate the solar wind originating near the coronal hole boundaries. Here we report on Alfvénic turbulence features, revealing a relevant presence of in-situ generated fluctuations, observed during the wind rarefaction phase that charaterizes the transition from fast to slow wind. Heavy-ion composition and magnetic field measurements indicate a strict time correspondence of the locally generated fluctuations with 1 the crossing of the interface between fast and slow wind and 2 the presence of strongly underwound magnetic field lines (with respect to the Parker spiral. Recent studies suggest that such underwound magnetic configurations correspond to fast wind magnetic lines that, due to footpoint motions at the Sun, have their inner leg transferred to slow wind and are stretched out by the velocity gradient. If this is a valid scenario, the existence of a magnetic connection across the fast-slow wind interface is a condition that, given the different state of the two kinds of wind, may favour the development of processes acting as local sources of turbulence. We suggest that heavy-ion effects could be responsible of the observed turbulence features.

  18. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  19. Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids.

    Science.gov (United States)

    Fleischer, Heidi; Thurow, Kerstin

    2013-03-01

    A rapid determination of the enantiomeric excess of proteinogenic amino acids is of great importance in various fields of chemical and biologic research and industries. Owing to their different biologic effects, enantiomers are interesting research subjects in drug development for the design of new and more efficient pharmaceuticals. Usually, the enantiomeric composition of amino acids is determined by conventional analytical methods such as liquid or gas chromatography or capillary electrophoresis. These analytical techniques do not fulfill the requirements of high-throughput screening due to their relative long analysis times. The method presented allows a fast analysis of chiral amino acids without previous time consuming chromatographic separation. The analytical measurements base on parallel kinetic resolution with pseudoenantiomeric mass tagged auxiliaries and were carried out by mass spectrometry with electrospray ionization. All 19 chiral proteinogenic amino acids were tested and Pro, Ser, Trp, His, and Glu were selected as model substrates for verification measurements. The enantiomeric excesses of amino acids with non-polar and aliphatic side chains as well as Trp and Phe (aromatic side chains) were determined with maximum deviations of the expected value less than or equal to 10ee%. Ser, Cys, His, Glu, and Asp were determined with deviations lower or equal to 14ee% and the enantiomeric excess of Tyr were calculated with 17ee% deviation. The total screening process is fully automated from the sample pretreatment to the data processing. The method presented enables fast measurement times about 1.38 min per sample and is applicable in the scope of high-throughput screenings.

  20. CONSTRAINING A MODEL OF TURBULENT CORONAL HEATING FOR AU MICROSCOPII WITH X-RAY, RADIO, AND MILLIMETER OBSERVATIONS

    International Nuclear Information System (INIS)

    Cranmer, Steven R.; Wilner, David J.; MacGregor, Meredith A.

    2013-01-01

    Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We also synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central emission peak that was suggested to be the result of an inner 'asteroid belt' within 3 AU of the star. However, it is also possible that the central 1.3 mm peak is caused by a combination of active coronal emission and a bright inner source of dusty debris. Additional observations of this source's spatial extent and spectral energy distribution at millimeter and radio wavelengths will better constrain the relative contributions of the proposed mechanisms

  1. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    International Nuclear Information System (INIS)

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-01-01

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 ± 30 s and the damping time is 1000 ± 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  2. Initiation and early evolution of the coronal mass ejection on 2009 May 13 from extreme-ultraviolet and white-light observations

    International Nuclear Information System (INIS)

    Reva, A. A.; Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2014-01-01

    We present the results of the observations of a coronal mass ejection (CME) that occurred on 2009 May 13. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii (R ☉ ). Below 2 R ☉ , we used the data from the TESIS extreme-ultraviolet telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R ☉ , we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5R ☉ from the Sun's surface as a U-shaped structure, which was observed both in the 171 Å images and in the white light. Observations in the He 304 Å line showed that the CME was associated with an erupting prominence, which was not located above—as the standard model predicts—but rather in the lowest part of the U-shaped structure close to the magnetic X point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curved—its heliolatitude decreased with time. The CME started at a latitude of 50° and reached the ecliptic plane at distances of 2.5 R ☉ . The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME, onset GOES registered a sub-A-class flare.

  3. Initiation and Early Evolution of the Coronal Mass Ejection on 2009 May 13 from Extreme-ultraviolet and White-light Observations

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2014-10-01

    We present the results of the observations of a coronal mass ejection (CME) that occurred on 2009 May 13. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii (R ⊙). Below 2 R ⊙, we used the data from the TESIS extreme-ultraviolet telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R ⊙, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5R ⊙ from the Sun's surface as a U-shaped structure, which was observed both in the 171 Å images and in the white light. Observations in the He 304 Å line showed that the CME was associated with an erupting prominence, which was not located above—as the standard model predicts—but rather in the lowest part of the U-shaped structure close to the magnetic X point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curved—its heliolatitude decreased with time. The CME started at a latitude of 50° and reached the ecliptic plane at distances of 2.5 R ⊙. The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME, onset GOES registered a sub-A-class flare.

  4. Initiation and early evolution of the coronal mass ejection on 2009 May 13 from extreme-ultraviolet and white-light observations

    Energy Technology Data Exchange (ETDEWEB)

    Reva, A. A.; Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskij Prospekt, 119991 Moscow (Russian Federation)

    2014-10-01

    We present the results of the observations of a coronal mass ejection (CME) that occurred on 2009 May 13. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii (R {sub ☉}). Below 2 R {sub ☉}, we used the data from the TESIS extreme-ultraviolet telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R {sub ☉}, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5R {sub ☉} from the Sun's surface as a U-shaped structure, which was observed both in the 171 Å images and in the white light. Observations in the He 304 Å line showed that the CME was associated with an erupting prominence, which was not located above—as the standard model predicts—but rather in the lowest part of the U-shaped structure close to the magnetic X point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curved—its heliolatitude decreased with time. The CME started at a latitude of 50° and reached the ecliptic plane at distances of 2.5 R {sub ☉}. The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME, onset GOES registered a sub-A-class flare.

  5. CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME-CME INTERACTION EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, Manuela; Rollett, Tanja; Bein, Bianca; Moestl, Christian; Veronig, Astrid M.; Flor, Olga [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, Bojan; Zic, Tomislav [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia); De Koning, Curt A. [NOAA Space Weather Prediction Center, Boulder, CO 80305 (United States); Liu, Ying [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Bosman, Eckhard [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria); Davies, Jackie A.; Bothmer, Volker [Institut fuer Astrophysik, Goettingen University, Friedrich-Hund Platz 1, D-37077 Goettingen (Germany); Harrison, Richard [RAL Space, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Nitta, Nariaki [Solar and Astrophysics Laboratory, Lockheed Martin Advanced Technology Centre, Palo Alto, CA 94304-1191 (United States); Bisi, Mario [Institute of Mathematics and Physics, Aberystwyth University, Ceredigion SY23 3BZ (United Kingdom); Eastwood, Jonathan; Forsyth, Robert [The Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Odstrcil, Dusan, E-mail: mat@igam.uni-graz.at [Computational and Data Sciences, George Mason University/NASA Goddard Space Flight Center, Mail Code 674, Greenbelt, MD 20771 (United States)

    2012-04-10

    We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and heliospheric imager (HI) data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field of view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; {approx}1200 km s{sup -1}) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; {approx}700 km s{sup -1}). By applying a drag-based model we are able to reproduce the kinematical profile of CME2, suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.

  6. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  7. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Directory of Open Access Journals (Sweden)

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  8. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  9. Quantitation of stable isotopic tracers of calcium by fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Jiang, X.; Smith, D.L.

    1987-01-01

    Instrumentation and methodology developed for quantitation of stable isotopic traces in urine are described. Calcium is isolated from urine as the insoluble oxalate salt which is subsequently dissolved in hydrochloric acid. The isotopic content of the acid solution is determined by use of a conventional mass spectrometer equipped with a fast atom bombardment ion source. Calcium ions are desorbed from the sample surface by a beam of high-energy xenon atoms and detected with a high-resolution mass spectrometer. A data acquisition system has been developed to control the mass spectrometer and record the ion signals. Detailed analysis of potential sources of error indicates that the precision of the method is presently limited primarily by an isotope effect that occurs during ion desorption. Results presented here demonstrate that the relative abundances of calcium isotopes in urine can be determined with high precision (coefficient of variation < 0.2%) and that the method is a viable alternative to conventional thermal ionization mass spectrometry. The method is especially attractive because it uses a conventional high-resolution mass spectrometer which is routinely used for analysis of organic substances

  10. Coronal mass ejection hits mercury: A.I.K.E.F. hybrid-code results compared to MESSENGER data

    Science.gov (United States)

    Exner, W.; Heyner, D.; Liuzzo, L.; Motschmann, U.; Shiota, D.; Kusano, K.; Shibayama, T.

    2018-04-01

    Mercury is the closest orbiting planet around the sun and is therefore embedded in an intensive and highly varying solar wind. In-situ data from the MESSENGER spacecraft of the plasma environment near Mercury indicates that a coronal mass ejection (CME) passed the planet on 23 November 2011 over the span of the 12 h MESSENGER orbit. Slavin et al. (2014) derived the upstream parameters of the solar wind at the time of that orbit, and were able to explain the observed MESSENGER data in the cusp and magnetopause segments of MESSENGER's trajectory. These upstream parameters will be used for our first simulation run. We use the hybrid code A.I.K.E.F. which treats ions as individual particles and electrons as a mass-less fluid, to conduct hybrid simulations of Mercury's magnetospheric response to the impact of the CME on ion gyro time scales. Results from the simulation are in agreement with magnetic field measurements from the inner day-side magnetosphere and the bow-shock region. However, at the planet's nightside, Mercury's plasma environment seemed to be governed by different solar wind conditions, in conclusion, Mercury's interaction with the CME is not sufficiently describable by only one set of upstream parameters. Therefore, to simulate the magnetospheric response while MESSENGER was located in the tail region, we use parameters obtained from the MHD solar wind simulation code SUSANOO (Shiota et al. (2014)) for our second simulation run. The parameters of the SUSANOO model achieve a good agreement of the data concerning the plasma tail crossing and the night-side approach to Mercury. However, the polar and closest approach are hardly described by both upstream parameters, namely, neither upstream dataset is able to reproduce the MESSENGER crossing of Mercury's magnetospheric cusp. We conclude that the respective CME was too variable on the timescale of the MESSENGER orbit to be described by only two sets of upstream conditions. Our results suggest locally strong

  11. Mid-term periodicities and heliospheric modulation of coronal index ...

    Indian Academy of Sciences (India)

    PRITHVI RAJ SINGH

    2018-03-06

    Mar 6, 2018 ... long-term periodicity of ∼11 years, with different solar activities. The physical processes that occur inside the. Sun are reflected by a periodic character in terms of coronal index of coronal emission (Fe XIV 530.3 nm) during solar activity cycles. Recently, a link between the strength of photospheric magnetic ...

  12. Associations Between Fast-Food Consumption and Body Mass Index: A Cross-Sectional Study in Adult Twins.

    Science.gov (United States)

    Cohen-Cline, Hannah; Lau, Richard; Moudon, Anne V; Turkheimer, Eric; Duncan, Glen E

    2015-08-01

    Obesity is a substantial health problem in the United States, and is associated with many chronic diseases. Previous studies have linked poor dietary habits to obesity. This cross-sectional study aimed to identify the association between body mass index (BMI) and fast-food consumption among 669 same-sex adult twin pairs residing in the Puget Sound region around Seattle, Washington. We calculated twin-pair correlations for BMI and fast-food consumption. We next regressed BMI on fast-food consumption using generalized estimating equations (GEE), and finally estimated the within-pair difference in BMI associated with a difference in fast-food consumption, which controls for all potential genetic and environment characteristics shared between twins within a pair. Twin-pair correlations for fast-food consumption were similar for identical (monozygotic; MZ) and fraternal (dizygotic; DZ) twins, but were substantially higher in MZ than DZ twins for BMI. In the unadjusted GEE model, greater fast-food consumption was associated with larger BMI. For twin pairs overall, and for MZ twins, there was no association between within-pair differences in fast-food consumption and BMI in any model. In contrast, there was a significant association between within-pair differences in fast-food consumption and BMI among DZ twins, suggesting that genetic factors play a role in the observed association. Thus, although variance in fast-food consumption itself is largely driven by environmental factors, the overall association between this specific eating behavior and BMI is largely due to genetic factors.

  13. Solar Coronal Plumes and the Fast Solar Wind Bhola N. Dwivedi1 ...

    Indian Academy of Sciences (India)

    Is there any contribution of plume plasma to the fast SW streams at all? ..... but to a slow diminution of the reconnection activity, presumably with the effect ... might think, even if the thermal energy could be dumped at the base of the plume,.

  14. Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2017-10-01

    Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.

  15. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A [Predictive Science Incorporated, 9990 Mesa Rim Rd. Suite 170, San Diego, CA 92121 (United States); Velli, Marco, E-mail: cdowns@predsci.com [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  16. Culex coronator in coastal Georgia and South Carolina.

    Science.gov (United States)

    Moulis, Robert A; Russell, Jennifer D; Lewandowski, Henry B; Thompson, Pamela S; Heusel, Jeffrey L

    2008-12-01

    In 2007, adult Culex coronator were collected in Chatham County, Georgia, and Jasper County, South Carolina, during nuisance and disease vector surveillance efforts. A total of 75 specimens of this species were collected at 8 widely separated locations in Chatham County, Georgia, and 4 closely situated sites in Jasper County, South Carolina. These represent the first Atlantic coastal records of this species in Georgia and the first confirmed records of Cx. coronator in South Carolina.

  17. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C. [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore—560034 (India); Gopalswamy, N., E-mail: kishore@iiap.res.in [Code 671, Solar Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  18. Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  19. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    Science.gov (United States)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  20. Intermittent heating of the corona as an alternative to generate fast solar wind flows

    International Nuclear Information System (INIS)

    Grappin, R.; Mangeney, A.; Schwartz, S.J.; Feldman, W.C.

    1999-01-01

    We discuss a new alternative to the generation of fast streams which does not require momentum addition beyond the critical point. We consider the consequences on the solar wind of temporally intermittent heat depositions at the base of the wind. With the help of 1d hydrodynamic simulations we show that the instantaneous wind velocity profile fluctuates around an average profile well above the one corresponding to the Parker solution with a coronal temperature equal to the average coronal temperature imposed at the bottom of the numerical domain. The origin of this result lies in a previously overlooked phenomenon, the overexpansion of hot plasma regions in the subsonic wind. copyright 1999 American Institute of Physics

  1. Decision-making in a death investigation: Emotion, families and the coroner.

    Science.gov (United States)

    Tait, Gordon; Carpenter, Belinda; Quadrelli, Carol; Barnes, Michael

    2016-03-01

    The role of the coroner in common law countries such as Australia, England, Canada and New Zealand is to preside over death investigations where there is uncertainty as to the manner of death, a need to identify the deceased, a death of unknown cause, or a violent or unnatural death. The vast majority of these deaths are not suspicious and thus require coroners to engage with grieving families who have been thrust into a legal process through the misfortune of a loved one's sudden or unexpected death. In this research, 10 experienced coroners discussed how they negotiated the grief and trauma evident in a death investigation. In doing so, they articulated two distinct ways in which legal officers engaged with emotions, which are also evident in the literature. The first engages the script of judicial dispassion, articulating a hierarchical relationship between reason and emotion, while the second introduces an ethic of care via the principles of therapeutic jurisprudence, and thus offers a challenge to the role of emotion in the personae of the professional judicial officer. By using Hochschild's work on the sociology of emotions, this article discusses the various ways in which coroners manage the emotion of a death investigation through emotion work. While emotional distance may be an understandable response by coroners to the grief and trauma experienced by families and directed at cleaner coronial decision-making, the article concludes that coroners may be better served by offering emotions such as sympathy, consideration and compassion directly to the family in those situations where families are struggling to accept, or are resistant to, coroners' decisions.

  2. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    We examined both X-ray and Magnetic field data in order to determine if there is a correlation between emerging magnetic flux and the production of Coronal jets. It was proposed that emerging flux can be a trigger to a coronal jet. The jet is thought to be caused when local bipoles reconnect or when a region of magnetic polarity emerges through a uniform field. In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was centered on the disk. Of the 15 that we studied 6 were shown to have an increase of magnetic flux within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  3. A NEW VIEW OF CORONAL WAVES FROM STEREO

    International Nuclear Information System (INIS)

    Ma, S.; Lin, J.; Zhao, S.; Li, Q.; Wills-Davey, M. J.; Attrill, G. D. R.; Golub, L.; Chen, P. F.; Chen, H.

    2009-01-01

    On 2007 December 7, there was an eruption from AR 10977, which also hosted a sigmoid. An EUV Imaging Telescope (EIT) wave associated with this eruption was observed by EUVI on board the Solar Terrestrial Relations Observatory (STEREO). Using EUVI images in the 171 A and the 195 A passbands from both STEREO A and B, we study the morphology and kinematics of this EIT wave. In the early stages, images of the EIT wave from the two STEREO spacecrafts differ markedly. We determine that the EUV fronts observed at the very beginning of the eruption likely include some intensity contribution from the associated coronal mass ejection (CME). Additionally, our velocity measurements suggest that the EIT wave front may propagate at nearly constant velocity. Both results offer constraints on current models and understanding of EIT waves.

  4. Multidetector CT enteroclysis: comparison of the reading performance for axial and coronal views

    International Nuclear Information System (INIS)

    Schmidt, Sabine; Chalaron, Marc; Schnyder, Pierre; Denys, Alban; Chevallier, Patrick; Bessoud, Bertrand; Verdun, Francis R.; Frascarolo, Philippe

    2005-01-01

    The purpose of this study was to compare the diagnostic performance of axial and coronal views in multidetector CT enteroclysis (MDCTE). We retrospectively evaluated 48 patients with pathological correlation investigated by MDCTE for small bowel disorders. After nasojejunal administration of 2 l of 5% methylcellulose axial arterial and venous acquisition of MDCTE was followed by coronal reconstructions using equal slice thicknesses of 2.5 mm with 2 mm increments. Spatial resolution of both planes was evaluated by phantom. Three radiologists independently read axial and coronal images concerning 12 pathological features. The interobserver agreement and time of reading was calculated. Sensitivity and specificity resulted from comparison with histopathology (n=39) or follow-up (n=9). Phantom study revealed higher spatial resolution for axial than coronal views, whatever reconstruction interval was used. However, spatial frequency always remained high. Most pathological signs, such as bowel wall thickening (BWT), bowel wall enhancement (BWE) and intraperitoneal fluid (IPF), showed better interobserver agreement on axial than coronal views (BWT: 0.61 vs. 0.44; BWE: 0.56 vs. 0.5; IPF:0.53 vs. 0.43). The Wilcoxon signed-rank test revealed significantly higher sensitivity for axial than coronal views (P=0.0453); the time of reading was significantly shorter for the latter (P=0.0146). The diagnostic value of axial slices is superior to coronal reconstructions despite the reduced data volume and display of the physiological course of bowel loops on the coronal plane. (orig.)

  5. More Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  6. Automated coronal hole identification via multi-thermal intensity segmentation

    Science.gov (United States)

    Garton, Tadhg M.; Gallagher, Peter T.; Murray, Sophie A.

    2018-01-01

    Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.

  7. Analysis of Solar Coronal Holes with Synoptic Magnetogram Data

    Science.gov (United States)

    Canner, A.; Kim, T. K.; Pogorelov, N.; Yalim, M. S.

    2017-12-01

    Coronal holes are regions in which the magnetic field of the Sun is open with high magnetic flux and low plasma density. Because of the low plasma beta in these regions, the open field lines transport plasma from the Sun throughout the heliosphere. Coronal hole area is closely related to the expansion factor of the magnetic flux tube, as demonstrated by Tokumaru et al. (2017). Following the approach of Tokumaru et al. (2017), we employ a potential field source surface model to identify the open field regions on the photosphere and estimate the area and expansion factor for each coronal hole. While Tokumaru et al. (2017) analyzed synoptic maps from Kitt Peak National Observatory for the period 1995-2011, we use different magnetograph observations with higher spatial resolution (e.g., SOHO-MDI) for the same time period. We compare the coronal hole area - expansion factor relationship with the original results of Tokumaru et al (2017). This work was supported by the NSF-funded Research Experience for Undergraduates program "Solar and Heliospheric Physics at UAH and MSFC" run by the University of Alabama in Huntsville in partnership with the Marshall Space Flight Center through grant AGS-1460767.

  8. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations

    Science.gov (United States)

    Dzifčáková, E.; Dudík, J.; Mackovjak, Š.

    2016-05-01

    Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org

  9. Halo-coronal mass ejections near the 23rd solar minimum: lift-off, inner heliosphere, and in situ (1 AU signatures

    Directory of Open Access Journals (Sweden)

    D. B. Berdichevsky

    2002-07-01

    Full Text Available The extreme ultraviolet (EUV signatures of a solar lift-off, decametric and kilometric radio burst emissions and energetic particle (EP inner heliospheric signatures of an interplanetary shock, and in situ identification of its driver through solar wind observations are discussed for 12 isolated halo coronal mass ejections (H-CMEs occurring between December 1996 and 1997. For the aforementioned twelve and the one event added in the discussion, it is found that ten passed several necessary conditions for being a "Sun-Earth connection". It is found that low corona EUV and Ha chromospheric signatures indicate filament eruption as the cause of H-CME. These signatures indicate that the 12 events can be divided into two major subsets, 7 related to active regions (ARs and 5 unrelated or related to decayed AR. In the case of events related to AR, there is indication of a faster lift-off, while a more gradual lift-off appears to characterize the second set. Inner heliospheric signatures – the presence of long lasting enhanced energetic particle flux and/or kilometric type II radio bursts – of a driven shock were identified in half of the 12 events. The in situ (1 AU analyses using five different solar wind ejecta signatures and comparisons with the bidirectional flow of suprathermal particles and Forbush decreases result in indications of a strong solar wind ejecta signatures for 11 out of 12 cases. From the discussion of these results, combined with work by other authors for overlapping events, we conclude that good Sun-Earth connection candidates originate most likely from solar filament eruptions with at least one of its extremities located closer to the central meridian than ~ 30° E or ~ 35° W with a larger extension in latitudinal location possible. In seven of the twelve cases it appears that the encountered ejecta was driving a shock at 1 AU. Support for this interpretation is found on the approximately equal velocity of the shock and the

  10. Halo-coronal mass ejections near the 23rd solar minimum: lift-off, inner heliosphere, and in situ (1 AU signatures

    Directory of Open Access Journals (Sweden)

    D. B. Berdichevsky

    Full Text Available The extreme ultraviolet (EUV signatures of a solar lift-off, decametric and kilometric radio burst emissions and energetic particle (EP inner heliospheric signatures of an interplanetary shock, and in situ identification of its driver through solar wind observations are discussed for 12 isolated halo coronal mass ejections (H-CMEs occurring between December 1996 and 1997. For the aforementioned twelve and the one event added in the discussion, it is found that ten passed several necessary conditions for being a "Sun-Earth connection". It is found that low corona EUV and Ha chromospheric signatures indicate filament eruption as the cause of H-CME. These signatures indicate that the 12 events can be divided into two major subsets, 7 related to active regions (ARs and 5 unrelated or related to decayed AR. In the case of events related to AR, there is indication of a faster lift-off, while a more gradual lift-off appears to characterize the second set. Inner heliospheric signatures – the presence of long lasting enhanced energetic particle flux and/or kilometric type II radio bursts – of a driven shock were identified in half of the 12 events. The in situ (1 AU analyses using five different solar wind ejecta signatures and comparisons with the bidirectional flow of suprathermal particles and Forbush decreases result in indications of a strong solar wind ejecta signatures for 11 out of 12 cases. From the discussion of these results, combined with work by other authors for overlapping events, we conclude that good Sun-Earth connection candidates originate most likely from solar filament eruptions with at least one of its extremities located closer to the central meridian than ~ 30° E or ~ 35° W with a larger extension in latitudinal location possible. In seven of the twelve cases it appears that the encountered ejecta was driving a shock at 1 AU. Support for this interpretation is found on the approximately equal

  11. Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms

    Science.gov (United States)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.

    2013-09-01

    This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.

  12. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  13. An Analysis of the Origin and Propagation of the Multiple Coronal Mass Ejections of 2010 August 1

    Science.gov (United States)

    Harrison, R. A.; Davies, J. A.; Moestl, C.; Liu, Y.; Temmer, M.; Bisi, M. M.; Eastwood, J. P.; DeKoning, C. A.; Nitta, N.; Rollett, T.; hide

    2012-01-01

    On 2010 August 1, the northern solar hemisphere underwent significant activity that involved a complex set of active regions near central meridian with, nearby, two large prominences and other more distant active regions. This activity culminated in the eruption of four major coronal mass ejections (CMEs), effects of which were detected at Earth and other solar system bodies. Recognizing the unprecedented wealth of data from the wide range of spacecraft that were available-providing the potential for us to explore methods for CME identification and tracking, and to assess issues regarding onset and planetary impact-we present a comprehensive analysis of this sequence of CMEs.We show that, for three of the four major CMEs, onset is associated with prominence eruption, while the remaining CME appears to be closely associated with a flare. Using instrumentation on board the Solar Terrestrial Relations Observatory spacecraft, three of the CMEs could be tracked out to elongations beyond 50?; their directions and speeds have been determined by various methods, not least to assess their potential for Earth impact. The analysis techniques that can be applied to the other CME, the first to erupt, are more limited since that CME was obscured by the subsequent, much faster event before it had propagated far from the Sun; we discuss the speculation that these two CMEs interact. The consistency of the results, derived from the wide variety of methods applied to such an extraordinarily complete data set, has allowed us to converge on robust interpretations of the CME onsets and their arrivals at 1 AU.

  14. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  15. Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity?

    Science.gov (United States)

    Daubs, Michael D; Lenke, Lawrence G; Bridwell, Keith H; Kim, Yongjung J; Hung, Man; Cheh, Gene; Koester, Linda A

    2013-03-15

    Retrospective study with prospectively collected outcomes data. Determine the significance of coronal balance on spinal deformity surgery outcomes. Sagittal balance has been confirmed as an important radiographic parameter correlating with adult deformity treatment outcomes. The significance of coronal balance on functional outcomes is less clear. Eighty-five patients with more than 4 cm of coronal imbalance who underwent reconstructive spinal surgery were evaluated to determine the significance of coronal balance on functional outcomes as measured with the Oswestry Disability Index (ODI) and Scoliosis Research Society outcomes questionnaires. Sixty-two patients had combined coronal (>4 cm) and sagittal imbalance (>5 cm), while 23 patients had coronal imbalance alone. Postoperatively, 85% of patients demonstrated improved coronal balance. The mean improvement in the coronal C7 plumb line was 26 mm for a mean correction of 42%. The mean preoperative sagittal C7 plumb line in patients with combined coronal and sagittal imbalance was 118 mm (range, 50-310 mm) and improved to a mean 49 mm. The mean preoperative and postoperative ODI scores were 42 (range, 0-90) and 27 (range, 0-78), for a mean improvement of 15 (36%) (P = 0.00001; 95% CI, 12-20). The mean Scoliosis Research Society scores improved by 17 points (29%) (P = 0.00). Younger age (P = 0.008) and improvement in sagittal balance (P = 0.014) were positive predictors for improved ODI scores. Improvement in sagittal balance (P = 0.010) was a positive predictor for improved Scoliosis Research Society scores. In patients with combined coronal and sagittal imbalance, improvement in sagittal balance was the most significant predictor for improved ODI scores (P = 0.009). In patients with preoperative coronal imbalance alone, improvement in coronal balance trended toward, but was not a significant predictor for improved ODI (P = 0.092). Sagittal balance improvement is the strongest predictor of improved outcomes in

  16. Remaking the medico-legal scene: a social history of the late-Victorian coroner in Oxford.

    Science.gov (United States)

    Hurren, Elizabeth T

    2010-04-01

    There have been wide-ranging debates about medicine and the law encapsulated in the figure of the coroner in Victorian England. Recently the historical literature on coroners has been enriched by macro-studies. Despite this important research, the social lives of coroners and their daily interactions remain relatively neglected in standard historical accounts. This article redresses that issue by examining the working life of the coroner for Oxford during the late-Victorian era. Edward Law Hussey kept very detailed records of his time in office as coroner. New research material makes it feasible to trace his professional background, from doctor of the sick poor, to hospital house surgeon and then busy coroner. His career trajectory, personal interactions, and professional disputes, provide an important historical prism illuminating contemporary debates that occupied coroners in their working lives. Hussey tried to improve his medico-legal reach and the public image of his coroner's office by reducing infanticide rates, converting a public mortuary, and acquiring a proper coroner's court. His campaigns had limited success because the social scene in which he worked was complicated by the dominance of health and welfare agencies that resented his role as an expanding arm of the Victorian information state.

  17. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    Science.gov (United States)

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  18. The origin of coronal lines in Seyfert galaxies

    International Nuclear Information System (INIS)

    Korista, K.T.; Ferland, G.J.

    1989-01-01

    This paper examines the possibility that the coronal line region in Seyfert galaxies may be the result of an interstellar medium (ISM) exposed to, and subsequently photoionized by, a 'bare' Seyfert nucleus. It is shown that a 'generic' AGN continuum illuminating the warm-phase of the ISM of a spiral galaxy can produce the observed emission. In this picture the same UV-radiation cone that is responsible for the high-excitation extended narrow-line emission clouds observed out to 1-2 kpc or farther from the nuclei of some Seyfert galaxies also produces the coronal lines. Soft X-rays originating in the nucleus are Compton-scattered off the ISM, thus producing extended soft X-ray emission, as observed in NGC 4151. The results of the calculations show a basic insensitivity to the ISM density, which explains why similar coronal line spectra are found in many Seyfert galaxies of varying physical environments. 60 refs

  19. Coronal Loop Evolution Observed with AIA and Hi-C

    Science.gov (United States)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; hide

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.

  20. Propagation and Interaction Properties of Successive Coronal Mass Ejections in Relation to a Complex Type II Radio Burst

    Science.gov (United States)

    Liu, Y. D.; Zhao, X.; Zhu, B.

    2017-12-01

    We examine the propagation and interaction properties of three successive coronal mass ejections (CMEs) from 2001 November 21-22, with a focus on their connection with the behaviors of the associated long-duration complex type II radio burst. In combination with coronagraph and multi-point in situ observations, the long-duration type II burst provides key features that help resolve the propagation and interaction complexities of the three CMEs. The two CMEs from November 22 interacted first and then overtook the November 21 CME at a distance of about 0.85 AU from the Sun. The time scale that the shock originally driven by the last CME spent inside the preceding two CMEs is estimated to be about 14 and 6 hr, respectively. We present a simple analytical model without any free parameters to characterize the whole Sun-to-Earth propagation of the shock, which shows a remarkable consistency with all the available data and MHD simulations even out to the distance of Ulysses (2.34 AU). The coordination of in situ measurements at the Earth and Ulysses, which were separated by 73o in latitude, gives important clues for the understanding of shock structure and the interpretation of in situ signatures. The results also indicate means to increase geo-effectiveness with three CMEs, similar to the the ``perfect storm" scenario proposed by te{liu14a} although the current case is not ``super" in the same sense as the 2012 July 23 event.

  1. Additional merit of coronal STIR imaging for MR imaging of lumbar spine

    Directory of Open Access Journals (Sweden)

    Ranjana Gupta

    2015-01-01

    Full Text Available Introduction: Back pain is a common clinical problem and is the frequent complaint for referral of lumbar spine magnetic resonance imaging (MRI. Coronal short tau inversion recovery sequence (STIR can provide diagnostically significant information in small percentage of patients. Materials and Methods: MRI examinations of a total of 350 patients were retrospectively included in the study. MR sequences were evaluated in two settings. One radiologist evaluated sagittal and axial images only, while another radiologist evaluated all sequences, including coronal STIR sequence. After recording the diagnoses, we compared the MRI findings in two subsets of patients to evaluate additional merit of coronal STIR imaging. Results: With addition of coronal STIR imaging, significant findings were observed in 24 subjects (6.8%. Twenty-one of these subjects were considered to be normal on other sequences and in three subjects diagnosis was changed with the addition of coronal STIR. Additional diagnoses on STIR included sacroiliitis, sacroiliac joint degenerative disease, sacral stress/insufficiency fracture/Looser′s zones, muscular sprain and atypical appendicitis. Conclusion: Coronal STIR imaging can provide additional diagnoses in a small percentage of patients presenting for lumbar spine MRI for back pain. Therefore, it should be included in the routine protocol for MR imaging of lumbar spine.

  2. Performance of a liquid-junction interface for capillary electrophoresis mass spectrometry using continuous-flow fast-atom bombardment

    NARCIS (Netherlands)

    Reinhoud, N.J.; Niessen, W.M.A.; Tjaden, U.R.; Gramberg, L.G.; Verheij, E.R.; Greef, J. van der

    1989-01-01

    The on-line coupling of capillary electrophoresis and mass spectrometry using a continuous-flow fast-atom bombardment system in combination with a liquid-junction interface is described. The influence of the liquid-junction coupling on the efficiency and the resolution is investigated. Qualitative

  3. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    DEFF Research Database (Denmark)

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A

    2012-01-01

    pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci...... associated with fasting insulin at P triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci...

  4. [Development of electroforming apparatus for coronal restoration].

    Science.gov (United States)

    Watanabe, M; Sawada, T; Ukiya, M

    1989-03-01

    As dental technologies become highly developed, techniques have been more diversified. From as aspect of prosthodontic practice, both esthetic and functional requirements are emphasized for coronal restoration and consequently, these should be considered in the routine procedure. In fabrication of coronal restorations, metal, porcelain and resin are commonly used, and there exists the various disadvantages for metal cast method due to complicated processes by using different dental materials. Therefore, an electroforming apparatus was developed by us to replace the conventional procedure by a cathode rotary system. It was applied for coronal restorations to allow an electroforming directly on a working model. An experiment was successfully conducted to apply for a veneer crown on abutment tooth of upper central incisor on plaster model. The results were obtained as follows, 1. It was become possible to construct a metal framework by the electroforming. 2. Metal framework can be constructed on the same working model without a duplication of it. 3. The combined system for cathode rotation and liquid circulation could shorten the electroposition time, and allows a high current density extending to 50 A/dm2.

  5. Anatomy-Based navigation for ventriculostomy: Nasion-coronal suture distance measurement

    Directory of Open Access Journals (Sweden)

    Mevci Özdemir

    2014-09-01

    Full Text Available Objective: In this study we aimed to determine a landmark that can be measured through the skin with nasal mid-point (bregma to coronal suture, and additionally an average value was calculated. We report, to our knowledge, the distance between the nasion-coronal sutures is reported for the first time in Turkish population. Methods: The study included 30 craniums and 30 frontal bones. Each skull from midline nasal suture to coronal suture curved up at the distance was measured with tape measure. Results: Mean values were determined. Nasal suture between coronal suture distance average 12,2 cm (min10,3 cm, up to 13,5 cm were detected. Conclusion: Nasal suture is an easily palpable area through the skin. A small incision is carried down through skin to bone at the spot 12 cm back from the nasion 3 cm lateral to the midline for ventricular drainage operation. This data provide practical information for neurosurgeon and is available everywhere. J Clin Exp Invest 2014; 5 (3: 368-370

  6. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  7. Recurring coronal holes and their rotation rates during the solar cycles 22-24

    Science.gov (United States)

    Prabhu, K.; Ravindra, B.; Hegde, Manjunath; Doddamani, Vijayakumar H.

    2018-05-01

    Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between ± 20° latitudes. In this period, more number of recurring coronal holes appeared in and around 100° and 200° Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area <10^{21} cm2 appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between ± 60° latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.

  8. Assessment of Coronal Radiographic Parameters of the Spine in the Treatment of Adolescent Idiopathic Scoliosis.

    Science.gov (United States)

    Karami, Mohsen; Maleki, Arash; Mazda, Keyvan

    2016-10-01

    To determine the most important preoperative factors that affect postoperative coronal parameters of scoliotic curves. All Adolescent Idiopathic Scoliosis (AIS) patients included in the study were classified according to Lenke and King Classification. The fusion levels were selected according to the rigidity of the existing curves (correction less than 50%), tilt of T1 and shoulders, sagittal angle of the curves and with considering stable and neutral end vertebra. The radiographic coronal parameters: shoulders tilt angle, iliolumbar angle and coronal balance were measured in all patients before, after, and in the last follow-up visit. One hundred twenty patients after mean of 25 months follow-up (18-40 months) were included in the study. Before operation, abnormal coronal balance (more than 2 cm shift) was noticed in 46 patents (38%) and in the last visit, was noted in 22 patients (18%). Multivariate regression analysis revealed a significant predictive value of the preoperative coronal balance on the last visit coronal balance ( P value=0.01). Preoperative coronal balance is very important to make a balanced spine after surgery. Other parameters like Lenke classification or main thoracic overcorrection did not affect postoperative coronal decompensation.

  9. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    Science.gov (United States)

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

  10. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  11. SUN-TO-EARTH CHARACTERISTICS OF THE 2012 JULY 12 CORONAL MASS EJECTION AND ASSOCIATED GEO-EFFECTIVENESS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Möstl, Christian, E-mail: liuxying@spaceweather.ac.cn [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria)

    2016-10-01

    We analyze multi-spacecraft observations associated with the 2012 July 12 coronal mass ejection (CME), covering the source region on the Sun from the Solar Dynamics Observatory , stereoscopic imaging observations from the Solar Terrestrial Relations Observatory ( STEREO ), magnetic field characteristics from Mercury Surface, Space Environment, Geochemistry, and Ranging ( MESSENGER ), and type II radio burst and in situ measurements from Wind . A triangulation method based on STEREO stereoscopic observations is employed to determine the kinematics of the CME, and the outcome is compared with the results derived from the type II radio burst using a solar wind electron density model. A Grad–Shafranov technique is applied to Wind in situ data to reconstruct the flux-rope structure and compare it with the observations of the solar source region, which helps in understanding the geo-effectiveness associated with the CME structure. Our conclusions are as follows: (1) the CME undergoes an impulsive acceleration, a rapid deceleration before reaching MESSENGER , and then a gradual deceleration out to 1 au, which should be considered in CME kinematics models; (2) the type II radio burst was probably produced from a high-density interaction region between the CME-driven shock and a nearby streamer or from the shock flank with lower heights, which implies uncertainties in the determination of CME kinematics using solely type II radio bursts; (3) the flux-rope orientation and chirality deduced from in situ reconstructions at Wind agree with those obtained from solar source observations; (4) the prolonged southward magnetic field near the Earth is mainly from the axial component of the largely southward inclined flux rope, which indicates the importance of predicting both the flux-rope orientation and magnetic field components in geomagnetic activity forecasting.

  12. SUN-TO-EARTH CHARACTERISTICS OF THE 2012 JULY 12 CORONAL MASS EJECTION AND ASSOCIATED GEO-EFFECTIVENESS

    International Nuclear Information System (INIS)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Yang, Zhongwei; Möstl, Christian

    2016-01-01

    We analyze multi-spacecraft observations associated with the 2012 July 12 coronal mass ejection (CME), covering the source region on the Sun from the Solar Dynamics Observatory , stereoscopic imaging observations from the Solar Terrestrial Relations Observatory ( STEREO ), magnetic field characteristics from Mercury Surface, Space Environment, Geochemistry, and Ranging ( MESSENGER ), and type II radio burst and in situ measurements from Wind . A triangulation method based on STEREO stereoscopic observations is employed to determine the kinematics of the CME, and the outcome is compared with the results derived from the type II radio burst using a solar wind electron density model. A Grad–Shafranov technique is applied to Wind in situ data to reconstruct the flux-rope structure and compare it with the observations of the solar source region, which helps in understanding the geo-effectiveness associated with the CME structure. Our conclusions are as follows: (1) the CME undergoes an impulsive acceleration, a rapid deceleration before reaching MESSENGER , and then a gradual deceleration out to 1 au, which should be considered in CME kinematics models; (2) the type II radio burst was probably produced from a high-density interaction region between the CME-driven shock and a nearby streamer or from the shock flank with lower heights, which implies uncertainties in the determination of CME kinematics using solely type II radio bursts; (3) the flux-rope orientation and chirality deduced from in situ reconstructions at Wind agree with those obtained from solar source observations; (4) the prolonged southward magnetic field near the Earth is mainly from the axial component of the largely southward inclined flux rope, which indicates the importance of predicting both the flux-rope orientation and magnetic field components in geomagnetic activity forecasting.

  13. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    Science.gov (United States)

    2016-09-19

    synthesize observable emission . In future, the computational speed of the MF model makes it a potential avenue for near- real time and/or ensemble...AFRL-AFOSR-UK-TR-2016-0030 PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD SIMULATIONS Anthony Yeates UNIVERSITY OF DURHAM Final Report...Final 3. DATES COVERED (From - To)  15 Sep 2014 to 14 Sep 2017 4. TITLE AND SUBTITLE PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD

  14. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  15. Diagnostics of Coronal Heating in Solar Active Regions

    Science.gov (United States)

    Fludra, Andrzej; Hornsey, Christopher; Nakariakov, Valery

    2015-04-01

    We aim to develop a diagnostic method for the coronal heating mechanism in active region loops. Observational constraints on coronal heating models have been sought using measurements in the X-ray and EUV wavelengths. Statistical analysis, using EUV emission from many active regions, was done by Fludra and Ireland (2008) who studied power-law relationships between active region integrated magnetic flux and emission line intensities. A subsequent study by Fludra and Warren (2010) for the first time compared fully resolved images in an EUV spectral line of OV 63.0 nm with the photospheric magnetic field, leading to the identification of a dominant, ubiquitous variable component of the transition region EUV emission and a discovery of a steady basal heating, and deriving the dependence of the basal heating rate on the photospheric magnetic flux density. In this study, we compare models of single coronal loops with EUV observations. We assess to what degree observations of individual coronal loops made in the EUV range are capable of providing constraints on the heating mechanism. We model the coronal magnetic field in an active region using an NLFF extrapolation code applied to a photospheric vector magnetogram from SDO/HMI and select several loops that match an SDO/AIA 171 image of the same active region. We then model the plasma in these loops using a 1D hydrostatic code capable of applying an arbitrary heating rate as a function of magnetic field strength along the loop. From the plasma parameters derived from this model, we calculate the EUV emission along the loop in AIA 171 and 335 bands, and in pure spectral lines of Fe IX 17.1 nm and Fe XVI 33.5 nm. We use different spatial distributions of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints, and investigate their effect on the modelled EUV intensities. We find a diagnostics based on the dependence of the total loop intensity on the shape of the heating function

  16. Using the Coronal Evolution to Successfully Forward Model CMEs' In Situ Magnetic Profiles

    Science.gov (United States)

    Kay, C.; Gopalswamy, N.

    2017-12-01

    Predicting the effects of a coronal mass ejection (CME) impact requires knowing if impact will occur, which part of the CME impacts, and its magnetic properties. We explore the relation between CME deflections and rotations, which change the position and orientation of a CME, and the resulting magnetic profiles at 1 AU. For 45 STEREO-era, Earth-impacting CMEs, we determine the solar source of each CME, reconstruct its coronal position and orientation, and perform a ForeCAT (Forecasting a CME's Altered Trajectory) simulation of the coronal deflection and rotation. From the reconstructed and modeled CME deflections and rotations, we determine the solar cycle variation and correlations with CME properties. We assume no evolution between the outer corona and 1 AU and use the ForeCAT results to drive the ForeCAT In situ Data Observer (FIDO) in situ magnetic field model, allowing for comparisons with ACE and Wind observations. We do not attempt to reproduce the arrival time. On average FIDO reproduces the in situ magnetic field for each vector component with an error equivalent to 35% of the average total magnetic field strength when the total modeled magnetic field is scaled to match the average observed value. Random walk best fits distinguish between ForeCAT's ability to determine FIDO's input parameters and the limitations of the simple flux rope model. These best fits reduce the average error to 30%. The FIDO results are sensitive to changes of order a degree in the CME latitude, longitude, and tilt, suggesting that accurate space weather predictions require accurate measurements of a CME's position and orientation.

  17. Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Zhao, Xiaowei; Zhu, Bei; Yang, Zhongwei, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-10

    We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.

  18. Fast quantitative detection of cocaine in beverages using nanoextractive electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Hu, Bin; Peng, Xuejiao; Yang, Shuiping; Gu, Haiwei; Chen, Huanwen; Huan, Yanfu; Zhang, Tingting; Qiao, Xiaolin

    2010-02-01

    Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7-15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS(3) experiments. Typical relative standard deviation and recovery of this method were 6.9%-8.6% and 104%-108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages. 2010. Published by Elsevier Inc.

  19. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    Science.gov (United States)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  20. Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines

    Energy Technology Data Exchange (ETDEWEB)

    Raouafi, Nour E. [The John Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Riley, Pete [Predictive Science Inc., San Diego, CA (United States); Gibson, Sarah [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Fineschi, Silvano [The Astrophysical Observatory of Turin, National Institute for Astrophysics, Turin (Italy); Solanki, Sami K., E-mail: noureddine.raouafi@jhuapl.edu [Max-Planck-Institut für Sonnensystemforschung, Göttingen (Germany); School of Space Research, Kyung Hee University, Yongin, South (Korea, Republic of)

    2016-06-22

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H i Ly-α and the He i 10,830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.

  1. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.

  2. Time resolved mass flow measurements for a fast gas delivery system

    International Nuclear Information System (INIS)

    Ruden, E.L.; Degnan, J.H.; Hussey, T.W.; Scott, M.C.; Graham, J.D.; Coffey, S.K.

    1992-01-01

    A technique is demonstrated whereby the delivered mass and flow rate vs. time of a short rise time gas delivery system may be accurately determined. The gas mass M which flows past a point in a gas delivery system by an arbitrary time t may be accurately measured if that point is sealed off within a time interval short compared to the mass flow time scale. If the ejected mass is allowed to equilibrate in a known volume after being cut off from its source, a conventional static pressure measurement before and after injection, and application of the ideal gas law suffices. Assuming reproducibility, a time history M(t) may be generated, allowing the flow rate vs. time dM(t)/dt to be determined. Mass flow measurements are presented for a fast delivery system in which the flow of argon through a 3.2 mm I.D., 0.76 mm thick copper tube is cut off by imploding (θ pinching) the tube using a single turn tungsten magnetic field coil. Pinch discharge parameters are 44 μf, 20 kV, 47 nH, 3.5 mΩ, 584 kA, and 8.63 ps current period. Optical measurements of the tube's internal area vs. time indicate that the tube is sealed 2 ps from the time the tube is still 90% open (7 μs from the start of pinch current). The pinch delay is varied from 500--1,500 ps from the valve trigger (0--1,000 ps from the start of gas flow). The mass injected into the test volume is ∼ 100 μg during this interval. The leak rate of the sealed tube results in a mass increase of only ∼ 0.1 μg by the time the pressure gauge stabilizes (6 s). Results are correlated with piezoelectric probe measurements of the gas flow and 2-D axisymmetric numerical simulations of the θ pinch process. Simulations of a θ pinch suitable for characterizing an annular supersonic nozzle typical of those used in gas puff z pinches are discussed

  3. Data-driven Simulations of Magnetic Connectivity in Behind-the-Limb Gamma-ray Flares and Associated Coronal Mass Ejections

    Science.gov (United States)

    Jin, M.; Petrosian, V.; Liu, W.; Nitta, N.; Omodei, N.; Rubio da Costa, F.; Effenberger, F.; Li, G.; Pesce-Rollins, M.

    2017-12-01

    Recent Fermi detection of high-energy gamma-ray emission from the behind-the-limb (BTL) solar flares pose a puzzle on the particle acceleration and transport mechanisms in such events. Due to the large separation between the flare site and the location of gamma-ray emission, it is believed that the associated coronal mass ejections (CMEs) play an important role in accelerating and subsequently transporting particles back to the Sun to produce obseved gamma-rays. We explore this scenario by simulating the CME associated with a well-observed flare on 2014 September 1 about 40 degrees behind the east solar limb and by comparing the simulation and observational results. We utilize a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model) to track the dynamical evolution of the global magnetic field during the event and investigate the magnetic connectivity between the CME/CME-driven shock and the Fermi emission region. Moreover, we derive the time-varying shock parameters (e.g., compression ratio, Alfven Mach number, and ThetaBN) over the area that is magnetically connected to the visible solar disk where Fermi gamma-ray emission originates. Our simulation shows that the visible solar disk develops connections both to the flare site and to the CME-driven shock during the eruption, which indicate that the CME's interaction with the global solar corona is critical for understanding such Fermi BTL events and gamma-ray flares in general. We discuss the causes and implications of Fermi BTL events, in the framework of a potential shift of paradigm on particle acceleration in solar flares/CMEs.

  4. Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects

    Science.gov (United States)

    Murray, Sophie A.; Guerra, Jordan A.; Zucca, Pietro; Park, Sung-Hong; Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole; Bothmer, Volker

    2018-04-01

    Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.

  5. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  6. Added-Mass Effects on a Horizontal-Axis Tidal Turbine Using FAST v8

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-09

    Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and a case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.

  7. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    Science.gov (United States)

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-01-01

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  9. Hyphenation of supercritical fluid chromatography with tandem mass spectrometry for fast determination of four aflatoxins in edible oil.

    Science.gov (United States)

    Lei, Fang; Li, Chenglong; Zhou, Shuang; Wang, Dan; Zhao, Yunfeng; Wu, Yongning

    2016-08-01

    Aflatoxins (AFTs) are of great concern all over the world. Supercritical fluid chromatography (SFC) has the advantage of fast, high resolution and excellent compatibility with a broad range of organic solvents and samples, thus hyphenating SFC with tandem mass spectrometry (MS/MS) can be used for the easy and fast determination of AFTs in edible oils. Edible oil was spiked with isotope-labeled aflatoxin standards, diluted with hexane and extracted with acetonitrile. The extraction was directly loaded to an SFC apparatus and separated on a UPC(2) 2-EP column with CO2 -methanol gradient elution. A post-column make-up flow was introduced to facilitate mass spectrometry performance, and the mixture was analyzed by MS/MS with an electrospray ionization (ESI) source. The SFC conditions including separation column, modifier and sample solvent were optimized, and the four target aflatoxins were baseline separated. The ESI interface parameters were also investigated, implicating the make-up flow as a critical factor for sensitive determination by SFC-MS/MS. The LOQs for the AFTs were 0.05-0.12 μg L(-1) , while the RSDs were lower than 8.5%. Supercritical fluid chromatography was successfully coupled to tandem mass spectrometry to establish a simple, fast and sensitive method for the analysis of four aflatoxins in edible oil. This shows the combination of SFC-MS/MS has great potential in determination of trace contaminants in food. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Fasting Ghrelin Levels Are Decreased in Obese Subjects and Are Significantly Related With Insulin Resistance and Body Mass Index

    Directory of Open Access Journals (Sweden)

    Dimitrios Papandreou

    2017-10-01

    CONCLUSION: Obese subjects have low fasting ghrelin levels that they are significantly related to insulin resistance and body mass index. More prospective studies are needed to establish the role of ghrelin in the pathogenesis of human obesity.

  11. Spectroscopic observations of Nova Cygni 1975: The coronal line region revisited

    International Nuclear Information System (INIS)

    Ferland, G.J.; Lambert, D.L.; Woodman, J.H.

    1986-01-01

    A synopsis of the McDonald Observatory spectrophotometric observations of Nova Cyg 1975 (V1500 Cyg) is presented. We present these data in a form in which they can be readily accessed in the future, and also study the continous spectrum during the early nebular phase. We show that (1) the remnant probably maintained a luminosity at or above the Eddington limit for at least a year after outburst, (2) free-free emission from the coronal line region made a significant contribution to the optical continuum, and (3) the coronal line region was probably a significant source of ionizing radiation. The energetics of this nova appear to be dominated by the lift-off energy from the white dwarf and radiation from the coronal line region. Thus the light curve of Nova Cyg may tell more about the cooling of the coronal line region than about the decline of the central object. In appendices we discuss the argon abundance of Nova Cyg (less than 8 times solar) and describe how to obtain copies of the McDonald nova data

  12. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    Science.gov (United States)

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Do coronal holes influence cosmic ray daily harmonics

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1977-01-01

    Coronal holes are identified by their low emissivity in either EUV (Munro and Withrobe, 1973) or in X-rays (Krieger et al, 1973). They are seats of unidirectional magnetic fields. Also, high speed solar wind streams originate in them. Also, high speed solar wind streams originate in then (Krieger et al, 1973; Neupert and Pizzo, 1974; Nolte et al, 1976). Coronal holes often extend over a wide range of heliolatitudes (Timothy et al, 1975). Elsewhere in the Proceedings we have presented results on the long term changes observed in the amplitudes and the times of maximum of the diurnal, the semidiurnal and the tridiurnal variations of cosmic rays, at low (neutrons) and at high (underground muons) primary rigidities (Ahluwalia, 1977). We have shown that a dramatic shift to early hours is noticeable in the times of maxima of the harmonics during 1971-72 period. In this paper we examine the nature of the contributions of off-ecliptic cosmic rays of high enough rigidity, streaming under the influence of large scale ordered interplanetary magnetic field set up by the coronal holes, to the cosmic ray daily harmonics. Some models are presented and discussed in a preliminary fashion. (author)

  14. Coronal Physics and the Chandra Emission Line Project

    Science.gov (United States)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  15. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  16. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  17. Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry.

    Science.gov (United States)

    Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel

    2016-06-16

    Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E.; Laming, J. Martin [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Karovska, Margarita, E-mail: brian.wood@nrl.navy.mil [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  19. The Coronal Abundance Anomalies of M Dwarfs

    Science.gov (United States)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an "inverse FIP effect" is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  20. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-01-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.