WorldWideScience

Sample records for fast chemical separation

  1. Rapid chemical separations

    CERN Document Server

    Trautmann, N

    1976-01-01

    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  2. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies.

    Science.gov (United States)

    Lin, Jonathan S; Hwang, Ken-Pin; Jackson, Edward F; Hazle, John D; Stafford, R Jason; Taylor, Brian A

    2013-10-01

    A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0

  3. Investigation of short-lived neutron-rich palladium and silver isotopes after fast chemical separation from fission fragments

    International Nuclear Information System (INIS)

    Bruechle, W.

    1976-01-01

    In this paper, chemical separation processes are described permitting fast and neat isolation of short-lived palladium and silver nuclides from fusion product mixtures. The process for palladium is based on the stability of palladium diethyldithiophosphate. From fission products of the reactions 238 U(n,f) and 249 Cf(nth,f), the following palladium niclides could be studied for the first time by gamma spectroscopy: 1.66 min 113 Pd, 2.45 min 114 Pd, 29 sec sup(115a)Pd, 54 sec sup(115b)Pd, 12.5 sec 116 Pd. 113 Pd could also be indentified according to the reaction 116 Cd(n,α) 113 Pd. The separation of silver is based on the fast isotopic exchange on AgCl. With this process, the following nuclides have been separated from fission product mixtures and studied by gamma spectroscopy: 70 sec sup(113m)Ag, 5.0 sec 114 Ag, 19.2 sec sup(115m)Ag, 2.65 min sup(116g)Ag, 10.5 sec sup(116m)Ag, 1.3 min sup(117g)Ag, 6.0 sec sup(117m)Ag, 4.0 sec 118 Ag. (orig./WL) [de

  4. Two-column sequential injection chromatography for fast isocratic separation of two analytes of greatly differing chemical properties.

    Science.gov (United States)

    Šatínský, Dalibor; Chocholouš, Petr; Válová, Olga; Hanusová, Lucia; Solich, Petr

    2013-09-30

    This paper deals with a novel approach to separate two analytes with different chemical properties and different lipophilicity. The newly described methodology is based on the two column system that was used for isocratic separation of two analytes with very different lipophilicity-dexamethasone and cinchocaine. Simultaneous separation of model compounds cinchocaine and dexamethasone was carried under the following conditions in two-column sequential injection chromatography system (2-C SIC). A 25×4.6 mm C-18 monolithic column was used in the first dimension for retention and separation of dexamethasone with mobile phase acetonitrile:water 30:70 (v/v), flow rate 0.9 mL min(-1) and consumption of 1.7 mL. A 10×4.6 mm C-18 monolithic column with 5×4.6 mm C-18 precolumn was used in the second dimension for retention and separation of cinchocaine using mobile phase acetonitrile:water 60:40 (v/v), flow rate 0.9 mL min(-1) and consumption 1.5 mL. Whole analysis time including both mobile phase's aspirations and both column separations was performed in less than 4 min. The method was fully validated and used for determination of cinchocaine and dexamethasone in pharmaceutical otic drops. The developed 2-C SIC method was compared with HPLC method under the isocratic conditions of separation on monolithic column (25×4.6 mm C-18). Spectrophotometric detection of both compounds was performed at wavelength 240 nm. System repeatability and method precision were found in the range (0.39-3.12%) for both compounds. Linearity of determination was evaluated in the range 50-500 μg mL(-1) and coefficients of determination were found to be r(2)=0.99912 for dexamethasone and r(2)=0.99969 for cinchocaine. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Estimation of time-variable fast flow path chemical concentrations for application in tracer-based hydrograph separation analyses

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.

    2016-01-01

    Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.

  6. A study of some neutron-rich isotopes of lanthanum, cerium and praseodymium by means of fast chemical on-line separation technique SISAK

    International Nuclear Information System (INIS)

    Skarnemark, G.

    1977-01-01

    The fast on-line chemical separation technique SISAK has been utilized to study the decay properties of neutron-rich isotopes of La, Ce and Pr. The results include partial decay schemes and γ-ray intensity data for 14 min 143 La, 42 s 144 La, 25 s 145 La, 9 s 146 La, 3 min 145 Ce, 14 min 146 Ce, 56 s 147 Ce, 50 s 148 Ce, 12 min 147 Pr, 2 min 148 Pr, 3 min 149 Pr and 6 s 150 Pr. Half-lives and γ-ray energies are reported for the previously unknown nuclides 147 La (Tsub(1/2) = 2.2 s), 148 La (Tsub(1/2) approximately 1 s), 149 Ce (Tsub(1/2) = 5.7 s) and 150 Ce (Tsub(1/2) = 4.1 s). The nuclides were formed in thermal neutron-induced fission of 235 U. The fission products were transferred to the SISAK system via a gas jet recoil transportation (GJRT) system. The combination of the GJRT system with SISAK is discussed, as well as the chemical separation systems used for the isolation of La, Ce and Pr. The appendices I - IX contain previously published material which is included in the thesis. (Auth.)

  7. Fast Monaural Separation of Speech

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Dyrholm, Mads

    2003-01-01

    a Factorial Hidden Markov Model, with non-stationary assumptions on the source autocorrelations modelled through the Factorial Hidden Markov Model, leads to separation in the monaural case. By extending Hansens work we find that Roweis' assumptions are necessary for monaural speech separation. Furthermore we...

  8. Separation of chemical species

    International Nuclear Information System (INIS)

    Rentzepis, P.M.

    1977-01-01

    Isotopic separation is accomplished by (1) a second photon irradiation step for selective ionization of a first isotopic species and (2) selective precipitation of a generally immiscible liquid from the saturating vapor phase on the ionized species. The first photon corresponds with a sharply defined spectral portion of the irradiation which exclusively excites the first species to a vibrational level. The second photon further excites this species to its ionization level. Selective precipitation is by coulombic attraction between the ionized species and the vapor. The procedure is applicable to any vapor phase ionizable material

  9. ARCA II - a new apparatus for fast, repetitive HPLC separations

    International Nuclear Information System (INIS)

    Schaedel, M.; Bruechle, W.; Jaeger, E.; Schimpf, E.; Kratz, J.V.; Scherer, U.W.; Zimmermann, H.P.

    1989-04-01

    The microcomputer controlled Automated Rapid Chemistry Apparatus, ARCA, is described in its newly designed version for the study of chemical properties of element 105 in aqueous solutions. This improved version, ARCA II, is adapted to the needs of fast and repetitive separations to be carried out in a chemically inert automated micro high performance liquid chromatography system. As an example, the separation of several group IIIB, IVB, and VB elements in the system triisooctylamine/hydrochloric acid within 30 s is demonstrated. Furthermore, a new method for the fast preparation of samples for α-particle spectroscopy by evaporation of the aqueous effluent with an intense light source is presented. (orig.)

  10. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  11. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  12. A ''master key'' to chemical separation processes

    International Nuclear Information System (INIS)

    Madic, Ch.; Hill, C.

    2002-01-01

    One of the keys to sorting nuclear waste is extracting minor actinides - the most troublesome long-lived elements - from the flow of waste by separating them from lanthanides, which have very similar chemical properties to actinides, for possible transmutation into shorter-lived elements. Thanks to a European initiative coordinated by CEA, this key is now available: its name is Sanex. There now remains to develop tough, straightforward industrial processes to integrate it into a new nuclear waste management approach by 2005. Sanex joins the Diamex process, used for the combined separation of lanthanides and minor actinides from fission products. A third process, Sesame, designed to separate americium, completes the list of available separation processes. (authors)

  13. A Simple Apparatus for Fast Ion Exchange Separations

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-09-01

    An apparatus suitable for very fast ion exchange group separations in radiochemistry has been elaborated. The apparatus which consists of a system of glass tubes with pistons driven by the same force, allows the exact adjustment of influent solutions to a long series of ion-exchange columns. The practical application of the apparatus to the simultaneous separation of six groups of trace elements in the neutron activation analysis of biological material is described

  14. A Simple Apparatus for Fast Ion Exchange Separations

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1964-09-15

    An apparatus suitable for very fast ion exchange group separations in radiochemistry has been elaborated. The apparatus which consists of a system of glass tubes with pistons driven by the same force, allows the exact adjustment of influent solutions to a long series of ion-exchange columns. The practical application of the apparatus to the simultaneous separation of six groups of trace elements in the neutron activation analysis of biological material is described.

  15. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  16. Blind speech separation system for humanoid robot with FastICA for audio filtering and separation

    Science.gov (United States)

    Budiharto, Widodo; Santoso Gunawan, Alexander Agung

    2016-07-01

    Nowadays, there are many developments in building intelligent humanoid robot, mainly in order to handle voice and image. In this research, we propose blind speech separation system using FastICA for audio filtering and separation that can be used in education or entertainment. Our main problem is to separate the multi speech sources and also to filter irrelevant noises. After speech separation step, the results will be integrated with our previous speech and face recognition system which is based on Bioloid GP robot and Raspberry Pi 2 as controller. The experimental results show the accuracy of our blind speech separation system is about 88% in command and query recognition cases.

  17. New Developments in Membrane-Based Chemical Separations

    National Research Council Canada - National Science Library

    Jirage, Kshama

    1998-01-01

    Membrane based chemical separations is an emerging field of research. This is because membrane-based separations are potentially less energy intensive and more cost effective than competing separation methods...

  18. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria.

    Science.gov (United States)

    Zhou, Xiaoxue; Halladin, David K; Theriot, Julie A

    2016-08-30

    Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae Much of our knowledge on bacterial cytokinesis comes from studying rod-shaped model organisms such as Escherichia coli and Bacillus subtilis Less is known about variations in this process among different bacterial species. While cell division in many bacteria has been characterized to some extent genetically or biochemically, few species have been examined using video microscopy to uncover the kinetics of cytokinesis and daughter cell separation (DCS). In this work, we found that fast (millisecond) DCS is exhibited by species in two independent clades of Gram-positive bacteria and is particularly prevalent

  19. Overview of the French program in chemical separations and transmutation

    International Nuclear Information System (INIS)

    Baudin, G.

    1993-01-01

    A long-range effort has begun in France that is aimed at the reduction of the volume and activity level of wastes containing long half-life radionuclides. This effort constitutes the SPIN (SeParations-INcineration) Program which investigates separations techniques that can improve current reprocessing technologies coupled with destruction of long-lived species through transmutation. Removal and destruction of specific radionuclides (e.g., neptunium, americium, technetium, iodine, cesium, and strontium) will be emphasized. Advanced solvent extraction chemistry focusing, for example, on development and implementation of diamides for actinide-lanthanide separations constitutes an important component of the SPIN program. The second component of the program focuses on inventory reductions through transmutation of such long-lived nuclides in fast reactor systems (Super Phenix). Accelerator-based systems are also being evaluated as a possible long-term option. Both of these components of the SPIN program are aimed at further reduction of the potential radiotoxicity and radiological impact of high-level wastes destined for geological storage. In this presentation, major activities of the SPIN Program will be described with emphasis on activities related to advanced chemical separations

  20. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Xiaoxue Zhou

    2016-08-01

    Full Text Available Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond daughter cell separation (DCS driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives, observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae.

  1. From SRAFAP to SISAK - rapid chemical separations in nuclear research

    International Nuclear Information System (INIS)

    Herrmann, G.

    1988-10-01

    The author gives an overview of rapid radiochemical separations, starting from the early experiments done by Rutherford up to the very sophisticated recoil fragment separations by fast on-line methods as an attempt to produce superheavy elements. Main emphasis is given to developments during the last decades and the extensive work performed by collaborators of the Nuclear Chemistry Institute at the University of Mainz. (RB)

  2. Emerging trends in chemical separations with liquid membranes: an overview

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1997-01-01

    It can be concluded that varied configurations of liquid membranes (LMs) will definitely play an important role in metal separations particularly in situations where other conventional chemical separation techniques fail to deliver goods. Potential areas include decontamination of biotoxic/ radioactive wastes, recovery of precious and strategic metals from lean/ extremely dilute solutions, add on to existing units, hydrometallurgy, etc

  3. Chemical exchange equilibria in isotope separation. Part I : Evaluation of separation factors

    International Nuclear Information System (INIS)

    Dave, S.M.

    1980-01-01

    The theory of chemical exchange equilibria as applied to the isotope separation processes and the isotope effects on equilibrium constants of different exchange reactions has come a long way since its inception by Urey and Rittenberg. An attempt has been made to bring relevant information together and present a unified approach to isotopic chemical exchange equilibrium constant evaluation and its implications to separation processes. (auth.)

  4. Some Chemical Group Separations of Radioactive Trace Elements

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1962-06-15

    As a pretreatment for gamma spectrometric analysis methods have been developed for the chemical separation of traces of P, Sc, Ge, As, Se, Br, Zr, Nb, Ru, Ag, Cd, Sn, Sb, I, Hf, Ta, Re, Os, Au and Hg into 9 different groups. By combining the present methods with already existing chemical group separation methods for traces of Na, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, In, Fe, Cs, Ba, L.a, the rare earths, W and Ir, a complete separation scheme comprising 15 groups of elements has been worked out. The chemical 15-group separation method has been advantageously used in gamma spectrometric routine analysis of biological materials.

  5. Some Chemical Group Separations of Radioactive Trace Elements

    International Nuclear Information System (INIS)

    Samsahl, K.

    1962-06-01

    As a pretreatment for gamma spectrometric analysis methods have been developed for the chemical separation of traces of P, Sc, Ge, As, Se, Br, Zr, Nb, Ru, Ag, Cd, Sn, Sb, I, Hf, Ta, Re, Os, Au and Hg into 9 different groups. By combining the present methods with already existing chemical group separation methods for traces of Na, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, In, Fe, Cs, Ba, L.a, the rare earths, W and Ir, a complete separation scheme comprising 15 groups of elements has been worked out. The chemical 15-group separation method has been advantageously used in gamma spectrometric routine analysis of biological materials

  6. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  7. Chemical technology of the systems, partitioning and separation, disposal

    International Nuclear Information System (INIS)

    Volk, V.I.

    1997-01-01

    A reactor-accelerator reprocessing complex is described. The complex comprises an electronuclear transmutation installation and chemical and technological support units for maintenance of the steady-state of the blanket, separation of short-lived transmutation products to be disposed of from other components of the blanket, chemical conversion to relevant stable species of products to be disposed of for interim storage and disposal

  8. Fast New Method for Temporary Chemical Passivation

    Directory of Open Access Journals (Sweden)

    Marek Solčanský

    2012-12-01

    Full Text Available The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution.The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed.

  9. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  10. Quantum dynamics of fast chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Light, J.C. [Univ. of Chicago, IL (United States)

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  11. Separated Representations and Fast Algorithms for Materials Science

    National Research Council Canada - National Science Library

    Beylkin, Gregory; Monzon, Lucas; Perez, Fernando

    2007-01-01

    ...) and to develop and test algorithms for computing multiparticle wave functions both based on representing operators and functions of many variables as short sums of separable functions the so-called...

  12. Fast response system for vacuum volume emergency separation

    International Nuclear Information System (INIS)

    Gubrienko, K.I.; Lastochkin, Yu.A.

    1982-01-01

    A system which allows to separate vacuum systems of the magnetic-optic beam channels connected with the accelerator has been worked out for case of emergency environment break through the extraction ''window''. The system, consisting of two valve - gate devices and a control unit, allows one in the emergency case to separate more than 20 m long volume from the accelerator without any pressure changes in the latter one

  13. Methods of uranium isotpic separation by chemical exchange chromatography

    International Nuclear Information System (INIS)

    Pena V, L.A.; Valle M, L.

    1985-01-01

    Chemical exchange chromatography as applied to isotope separation has undergone a constant development during the last few years. The results so far indicate that this method could eventually become commercially useful. This work presents a critical review of the experimental methods presently under study by principal research groups, and which have not get been compared. (Author)

  14. New methods of sup(111)In chemical separation

    International Nuclear Information System (INIS)

    Santos, D.F.; Osso Junior, J.A.; Bastos, M.A.V.; Britto, J.L.Q.; Silva, R.F.

    1986-01-01

    The cation exchange and thermochromatography methods for chemical separation of sup(111) In from silver targets are described. The cation exchange method is based on the difference between In and Ag distribution coefficients on cation exchange resin treated with HNO sub(3). The thermochromatography consists of indium diffusion on silver melted after sublimation and posterior condensation. (M.C.K.)

  15. Search for chemical separations of the element 106 homologues in HF and HF-HCl media

    International Nuclear Information System (INIS)

    Trubert, D.; Monroy-Guzman, F.; Hussonnois, M.; Brillard, L.; Le Naour, C.; Constantinescu, O.

    1996-01-01

    In order to study the chemical properties of element 263 106 in aqueous media, fast, efficient and reproducible chromatographic separations were tested on its assumed homologous: Mo, W and U. Corroborative static and dynamic off-line experiments have shown that after fixation of these three elements on anion-exchange resin in HF medium, selective elution could be achieved by using suitable concentration of HCl - HF and HCl solutions. Separations of short-lived W isotopes, produced through heavy ion irradiation were also performed on-line. (author). 27 refs., 14 figs

  16. Fast synthesis and separation of the arsenoglutathione complexes

    Czech Academy of Sciences Publication Activity Database

    Petry-Podgorska, Inga; Balcarová, B.; Matoušek, Tomáš

    2016-01-01

    Roč. 14, č. 5 (2016), s. 192-192 ISSN 2336-7202. [Sjezd chemických společností /68./. 04.09.2016-07.09.2016, Praha] R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : ICP-MS * HPLC * arsenoglutathione complexes Subject RIV: CB - Analytical Chemistry, Separation

  17. Isotope separation by chemical exchange process: Final technical report

    International Nuclear Information System (INIS)

    Schneider, A.

    1987-02-01

    The feasibility of a chemical exchange method for the separation of the isotopes of europium was demonstrated in the system EuCl 2 -EuCl 3 . The single stage separation factor, α, in this system is 1.001 or 1.0005 per mass unit. This value of α is comparable to the separation factors reported for the U 4+ - U 6 and U 3+ - Y 4+ systems. The separation of the ionic species was done by precipitation of the Eu 2+ ions or by extraction of the Eu 3+ ions with HDEHP. Conceptual schemes were developed for a countercurrent reflux cascades consisting of solvent extraction contractors. A regenerative electrocel, combining simultaneous europium reduction, europium oxidation with energy generation, and europium stripping from the organic phase is described. 32 refs., 22 figs., 6 tabs

  18. Separated Representations and Fast Algorithms for Materials Science

    Science.gov (United States)

    2007-10-29

    Quantum Chemisty , 127 (1999), pp. 143–269. [28] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical Sciences, John...Advances in highly correlated approaches. Advances in Quantum Chemisty , 127:143–269, 1999. [58] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis

  19. Chemical separation of Th-230 from uranium ore

    International Nuclear Information System (INIS)

    Kikunaga, H.; Nakanishi, T.; Mitsugashira, T.; Hara, M.

    2001-01-01

    We are studying the decay processes of low energy nuclear isomer of Th-229. Our approach to produce Th-229m is (γ, n) reaction on Th-230, hence, about 100 μg of Th-230 is necessary as a target. However, our stock of Th-230 has run out during several experiments, thus, we tried to separate Th-230 from uranium ore. In this paper, the detail of a chemical separation procedure for Th-230 from uranium ore and the results are reported. (author)

  20. Macrocyclic ligands and their use in chemical separations

    International Nuclear Information System (INIS)

    Izatt, R.M.; Bradshaw, J.S.; Bruening, R.L.; Krakowiak, K.E.; Tarbet, B.J.

    1993-01-01

    Macrocyclic chemistry has had a phenomenal growth curve during the past three decades (Izatt et al.). Interest in this field was catalyzed by Pedersen's report of the synthesis and partial characterization of a large number of novel cyclic polyethers. The unusual affinity of these new compounds for and selectivity among alkali metal cations was noted (Pedersen) and quantitated (Izatt et al.). A 1987 National Academy of Science publication on separations listed three high priority needs in the separations field (King). These were to develop highly selective reagents capable of discriminating among similar chemical species, reagents capable of concentrating trace amounts of solutes even in the presence of large excesses of matrix solutes, and reagents capable of removing solutes from large quantities of solvent. Certain macrocycles offer the promise of being successful in achieving all three of these goals. This promise arises from their high selectivity for particular cations in various series of closely related cations, their large affinities for particular cations, and the ease with which they can be modified to meet particular needs inherent to chemical separations

  1. Rapid separation of bacteria from blood - Chemical aspects.

    Science.gov (United States)

    Alizadeh, Mahsa; Wood, Ryan L; Buchanan, Clara M; Bledsoe, Colin G; Wood, Madison E; McClellan, Daniel S; Blanco, Rae; Ravsten, Tanner V; Husseini, Ghaleb A; Hickey, Caroline L; Robison, Richard A; Pitt, William G

    2017-06-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000rpm for 1min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantitative radio-chemical separation of calcium, strontium and barium

    International Nuclear Information System (INIS)

    Dupuis, M.C.; Dupuis, M.; Le Nagard, M.; Michot, H.

    1965-01-01

    A method for separation of Ca 45 , Sr 89 and Ba 140 has been developed for the radiochemical determination of these isotopes in a solution of fission with a large concentration of mineral salts. After removal of most fission products by solvent extraction (TTA-MIBK) at different pH, the alkaline earths are extracted from the aqueous phase at pH 9. After recovery with diluted hydrochloric acid, the three elements are adsorbed on cationic resin Dowex 50 and eluted sequentially with ammonium α - Hydroxy iso-butyrate using gradient concentration and pH. Ca 45 and Sr 89 are measured by β - counting and Ba 140 by γ spectrometry. The chemical yield approximates 80 per cent for calcium, and 70 per cent for strontium and barium. The decontamination factor is 10 5 for most fission products. Four separations can be performed in twenty hours. (authors) [fr

  3. Production and chemical separation of 48 V radioisotope

    International Nuclear Information System (INIS)

    Szucs, Z.; Dudu, D.; Cimpeanu, C.; Luca, A.; Duta, E.; Sahagia, M.

    2003-01-01

    The positron emitter 48 V isotope (T 1/2 =16 d, γ-lines: 511 keV (100%), 983.5 (100%), 1312 (97.6%)) is of interest in several fields of science. This is valid for transmitting scans in the validation process of PET-camera by positron emission. It can be used as an industrial monitoring isotope by its γ-photons having high energy and intensity. Also, it is suitable for biological study since it is the only radioisotope of the biological trace element vanadium which can be a radiotracer due to its longer half-life. The 48 V was produced by nat Ti (d,xn) 48 V nuclear reaction in the U-120 cyclotron with activity of 6 mCi. The energy of irradiating beam was 13 MeV, its intensity was 5 μA and the metallic Ti target dimensions were 16 x 11 x 2 mm. For target cooling, the water circulation in the back side was used. After 3 cooling days, only 48 V, and some 46 Sc (T 1/2 = 84 d), produced by the side nuclear reaction 48 Ti (d,α) 46 Sc were found in the target. For the preparation of 48 V source, the Ti target was dissolved in HF and sulfuric acid. The ion exchange separation was developed for both dissolving methods. The dissolution of the chemically resistant Ti target is so violent in concentrated (3.5 % m/m) HF, that it is necessary to be carried out in polyethylene tube in order to avoid the splash of the dissolved target. An anion exchange column, Dowex 1-8 (size 100-200 mesh, length 12 cm, ID 10 mm, treated 1 day earlier, prepared fresh), was used for separation in HF media. The reduced ionic form of Ti bonds to resin, therefore the dissolved target was saturated with sulfur-dioxide produced in the Kipp-equipment by the following chemical reaction: Na 2 SO 3 + 2 HCl → 2 NaCl + H 2 SO 3 . The treated solution was diluted to a concentration of 2 mol/l of HF and the same concentration of the HF was used as an eluent for separation. Flow rate of the elution was 1 ml/min. The eluate was cooled fractionally. The fractions were measured by γ-spectrometry, which

  4. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    Directory of Open Access Journals (Sweden)

    Karan H. Mistry

    2013-05-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper develops a consistent basis for comparing the energy consumption of such technologies using Second Law efficiency. The Second Law efficiency for a chemical separation process is defined in terms of the useful exergy output, which is the minimum least work of separation required to extract a unit of product from a feed stream of a given composition. For a desalination process, this is the minimum least work of separation for producing one kilogram of product water from feed of a given salinity. While definitions in terms of work and heat input have been proposed before, this work generalizes the Second Law efficiency to allow for systems that operate on a combination of energy inputs, including fuel. The generalized equation is then evaluated through a parametric study considering work input, heat inputs at various temperatures, and various chemical fuel inputs. Further, since most modern, large-scale desalination plants operate in cogeneration schemes, a methodology for correctly evaluating Second Law efficiency for the desalination plant based on primary energy inputs is demonstrated. It is shown that, from a strictly energetic point of view and based on currently available technology, cogeneration using electricity to power a reverse osmosis system is energetically superior to thermal systems such as multiple effect distillation and multistage flash distillation, despite the very low grade heat input normally applied in those systems.

  5. Fast analysis of narcotic drugs by optical chemical imaging

    International Nuclear Information System (INIS)

    Fisher, Michal; Bulatov, Vallery; Schechter, Israel

    2003-01-01

    A new technique is proposed for fast detection, identification and imaging of narcotic drugs in their solid phase. This technique, which requires only a tiny sample of a few microns, is based on microscopic chemical imaging. Minor sample preparation is required, and results are obtained within seconds. As far as we know, this is the most sensitive detection system available today for solid drugs. The technique can be applied for fast analysis of minute drug residues, and therefore is of considerable importance for forensic applications. It is shown that identification of drug traces in realistic matrixes is possible. Two main methods were applied in this study for detection of drugs and drug derivatives. The first method was based on direct detection and chemical imaging of the auto-fluorescence of the analyzed drugs. This method is applicable when the analyzed drug emits fluorescence under the experiment conditions, such as lysergic acid diethylamide (known as LSD). The second method was used for obtaining chemical imaging of drugs that do not fluoresce under the experiment conditions. In these cases fluorescent labeling dyes were applied to the examined samples (including the drug and the matrix). Both methods are simple and rapid, and require minor or no sample preparation at all. Detection limits are very low in the picogram range

  6. Chemical Separation on Silver Nanorods Surface Monitored by TOF-SIMS

    Directory of Open Access Journals (Sweden)

    Ondrej Petruš

    2017-01-01

    Full Text Available The article introduces a possible chemical separation of a mixture of two compounds on the metal nanorods surface. A silver nanorods surface has been prepared by controlled electrochemical deposition in anodic alumina oxide (AAO template. Rhodamine 6G and 4-aminothiophenol have been directly applied to the sampling point on a silver nanorods surface in an aliquot mixture. The position of the resolved compounds was analysed by time-of-flight secondary ion mass spectrometry (TOF-SIMS which measured the fragments and the molecular ions of the two compounds separated on the silver nanorods surface. Rhodamine 6G has been preconcentrated as 1.5 mm radial from the sampling point while 4-aminothiophenol formed a continuous self-assembled monolayer on the silver nanorods surface with a maximum molecular ion intensity at a distance of 0.5 mm from the sampling point. The separation of the single chemical components from the two-component mixture over the examined silver nanostructured films could clearly be shown. A fast separation on the mentioned nanotextured films was observed (within 50 s. This procedure can be easily integrated into the micro/nanofluidic systems or chips and different detection systems can be applied.

  7. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom

    International Nuclear Information System (INIS)

    Wegrowe, J-E; Olive, E

    2016-01-01

    The Landau–Lifshitz–Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times. (paper)

  8. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom.

    Science.gov (United States)

    Wegrowe, J-E; Olive, E

    2016-03-16

    The Landau-Lifshitz-Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times.

  9. Monte Carlo analysis of thermochromatography as a fast separation method for nuclear forensics

    International Nuclear Information System (INIS)

    Garrison, J.R.; Hanson, D.E.; Hall, H.L.

    2012-01-01

    Nuclear forensic science has become increasingly important for global nuclear security, and enhancing the timeliness of forensic analysis has been established as an important objective in the field. New, faster techniques must be developed to meet this objective. Current approaches for the analysis of minor actinides, fission products, and fuel-specific materials require time-consuming chemical separation coupled with measurement through either nuclear counting or mass spectrometry. These very sensitive measurement techniques can be hindered by impurities or incomplete separation in even the most painstaking chemical separations. High-temperature gas-phase separation or thermochromatography has been used in the past for the rapid separations in the study of newly created elements and as a basis for chemical classification of that element. This work examines the potential for rapid separation of gaseous species to be applied in nuclear forensic investigations. Monte Carlo modeling has been used to evaluate the potential utility of the thermochromatographic separation method, albeit this assessment is necessarily limited due to the lack of available experimental data for validation. (author)

  10. Monte Carlo analysis of thermochromatography as a fast separation method for nuclear forensics

    International Nuclear Information System (INIS)

    Hall, Howard L.

    2012-01-01

    Nuclear forensic science has become increasingly important for global nuclear security, and enhancing the timeliness of forensic analysis has been established as an important objective in the field. New, faster techniques must be developed to meet this objective. Current approaches for the analysis of minor actinides, fission products, and fuel-specific materials require time-consuming chemical separation coupled with measurement through either nuclear counting or mass spectrometry. These very sensitive measurement techniques can be hindered by impurities or incomplete separation in even the most painstaking chemical separations. High-temperature gas-phase separation or thermochromatography has been used in the past for the rapid separations in the study of newly created elements and as a basis for chemical classification of that element. This work examines the potential for rapid separation of gaseous species to be applied in nuclear forensic investigations. Monte Carlo modeling has been used to evaluate the potential utility of the thermochromatographic separation method, albeit this assessment is necessarily limited due to the lack of available experimental data for validation.

  11. Chemical separation and ICP-AES determination of rare earths in Al2O3 matrix

    International Nuclear Information System (INIS)

    Argekar, A.A.; Kulkarni, M.J.; Page, A.G.; Manchanda, V.K.

    2005-01-01

    A chemical separation-ICP-AES method has been developed for determination of rare earths in alumina matrix. The quantitative separation of rare earths has also been confirmed using radiotracers. (author)

  12. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  13. Recent progress in the chemical separations for the Actinex project

    International Nuclear Information System (INIS)

    Musikas, C.; Bourges, J.; Madic, C.; Cuillerdier, C.; Adnet, J.M.

    1991-01-01

    Conceptual flow-sheets and laboratory works have been carried out recently in Fontenay-aux-Roses to gain insight into the partitioning of the actinides contained in various wastes, including the HLLW. The flow-sheets designed to separate the HLLW actinides include two main steps: the first is the removal of the actinide (VI), (IV), (III) from the acidic effluent of the first PUREX process extraction cycle; the second is the separation of the trivalent lanthanides from the trivalent actinides which were co-extracted with the actinides in the first step. N,N'-tetraalkylpropanediamide will be used in the first step. The properties and the advantages-disadvantages of these extractants will be discussed. For the trivalent actinide-lanthanide group separation two ways are explored simultaneously. The first one is a research of new extractants for the group separation of the 4f-5f trivalent ions. Several extraction systems are candidates for this separation; the actinides having an higher affinity for the ligands bearing donor atoms softer than oxygen. The point of the subject will be given. The second way is the separation of Am from the trivalent lanthanides after Am(IV) is protected by unsaturated phosphotungstates and can be extracted as phosphotungstate by primary or secondary amine. The work which must be achieved to apply this flow-sheet to the HLLW partitioning at the industrial scale is pointed out

  14. Reliability of pulse waveform separation analysis: effects of posture and fasting.

    Science.gov (United States)

    Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone

    2017-03-01

    Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.

  15. Tritium separation factors in distillation and chemical exchange processes

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The vapour pressures of different isotopic hydrogen, water and ammonia molecules have been calculated. These vapour pressures can be used to evaluate relative volatilities of different species for separation of tritium isotopes by distillation. The equilibrium constants for various exchange reactions involving different deuterated and tritiated species of hydrogen, water and ammonia molecules have also been calculated for different temperatures. (author)

  16. Open Probe fast GC-MS - combining ambient sampling ultra-fast separation and in-vacuum ionization for real-time analysis.

    Science.gov (United States)

    Keshet, U; Alon, T; Fialkov, A B; Amirav, A

    2017-07-01

    An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Chemical separations schemes for partitioning and transmutation systems

    International Nuclear Information System (INIS)

    Laidler, J.

    2002-01-01

    In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, 99 Tc and 129 I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining

  18. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    Science.gov (United States)

    Ouyang, Ruizhuo; Lei, Jianping; Ju, Huangxian

    2010-05-01

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 × 1018 g - 1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  19. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ruizhuo; Lei Jianping; Ju Huangxian, E-mail: jpl@nju.edu.cn, E-mail: hxju@nju.edu.cn [Key Laboratory of Analytical Chemistry for Life Science (Education Ministry of China), Department of Chemistry, Nanjing University, Nanjing 210093 (China)

    2010-05-07

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 x 10{sup 18} g{sup -1}, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  20. Motion-based, high-yielding, and fast separation of different charged organics in water.

    Science.gov (United States)

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation.

    Science.gov (United States)

    Šilarová, Petra; Česlová, Lenka; Meloun, Milan

    2017-12-15

    The degradation of catechins and other phenolics in green tea infusions were monitored using fast HPLC/MS separation. The final separation was performed within 2.5min using Ascentis Express C18 column (50mm×2.1mm i.d.) packed with 2μm porous shell particles. Degradation was studied in relation to the temperature of water (70, 80, 90°C) and the standing time of the infusion (up to 6h). Along with chromatographic separation, the antioxidant properties of the infusions were monitored using two spectrophotometric methods. During staying of green tea infusion, the degradation of some catechins probably to gallic acid was observed. Finally, the influence of tea bag storage on antioxidant properties of green tea was evaluated. Rapid degradation of antioxidants after 3weeks was observed. The principal component analysis, factor analysis and discriminant analysis were used for the statistical evaluation of obtained experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. New strategies for the chemical separation of actinides and lanthanides

    International Nuclear Information System (INIS)

    Hudson, M.J.; Iveson, P.B.

    2002-01-01

    A general model is proposed for the effective design of ligands for partitioning. There is no doubt that the correct design of a molecule is required for the effective separation by separation of metal ions such as lanthanides(III) and actinides(III). Heterocyclic ligands with aromatic rings systems have a rich chemistry, which is only now becoming sufficiently well understood, in relation to the partitioning process. The synthesis, characterisation and structures of some chosen molecules will be introduced in order to illustrate some important features. For example, the molecule N-butyl-2-amino-4,6-di (2-pyridyl)-1,3,5-triazine (BADPTZ), which is an effective solvent extraction reagent for actinides and lanthanides, has been synthesised, characterised and its interaction with metal ions studied. The interesting and important features of this molecule will be compared with those of other heterocyclic molecules such as 2,6-bis(5-butyl-1,2,4-triazol-3-yl) pyridine (DBTZP), which is a candidate molecule for the commercial separation of actinides and lanthanide elements. Primary Coordination Sphere. One of the most critical features concerning whether a molecule is a suitable extraction reagent is the nature of the binding and co-ordination in the primary co-ordination sphere. This effect will be considered in depth for the selected heterocylic molecules. It will be shown how the bonding of the heterocyclic and nitrate ligands changes as the complete lanthanide series is traversed from lanthanum to lutetium. For effective solvent extraction, the ligand(s) should be able completely to occupy the primary co-ordination sphere of the metal ion to be extracted. Interactions in the secondary co-ordination sphere are of less importance. Inter-complex Hydrogen Bonding Interactions. Another feature that will be considered is the intermolecular binding between ligands when bound to the metal ion. Thus the intermolecular structures between complex molecules will be considered

  3. Method for separating the isotopes of a chemical element

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1977-01-01

    A beam of positive or negative primary ions of at least one compound of a chemical element is accelerated in order to pass through collision boxes placed in series. As a result of inelastic collisions of the ions with the molecules of a neutral target gas within each collision box, a given percentage of primary ions is dissociated into at least two fragments, one of which is a secondary ion in the form of at least two isotopic species. The collision boxes are brought to a potential V 2 so as to trap preferentially one isotopic species which is condensed within each box. 15 claims, 4 figures

  4. Impact of calibration errors on CMB component separation using FastICA and ILC

    Science.gov (United States)

    Dick, Jason; Remazeilles, Mathieu; Delabrouille, Jacques

    2010-01-01

    The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic cosmic microwave background (CMB) radiation, as performed by the Wilkinson Microwave Anisotropy Probe satellite and the more recent Planck mission, launched on 2009 May 14 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the CMB from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components) and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors (less than 1 per cent) with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise ratio regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.

  5. Physico-chemical separation process of nanoparticles in cosmetic formulations

    International Nuclear Information System (INIS)

    Marín, R. R. Retamal; Babick, F.; Stintz, M.

    2017-01-01

    Understanding the world of nanoparticles, especially their interactions with the environment, begins with their correct detection and successive quantification. To achieve this purpose, one needs to perform correctly developed standard operating procedures (SOPs). Furthermore, the study of nanoparticles frequently requires their characterisation in complex media (e.g. in cosmetic formulations). In this study, a set of sample preparation procedures for the detection and extraction of NMs in emulsion-based formulations is proposed and their performance for model and real-life products is discussed. A separation or extraction of lipid phases is achieved by means of organic solvents. The polarity of the lipid phases is decisive for selecting an optimum solvent. The use of the Hansen Solubility Parameters (HSP) may clearly support this decision. (paper)

  6. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  7. Chemical treatment of wastewaters produced during separation of iodine 131

    International Nuclear Information System (INIS)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-01-01

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results

  8. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  9. From chemical or biochemical microsensors to fast detection systems

    International Nuclear Information System (INIS)

    Pistre, J.; Dejous, C.; Rebiere, D.

    2011-01-01

    The market of chemical and biochemical sensors is increasing and represents a large opportunity. The problem of chemical and biochemicaldetection involves the use of one/several transducing layer/interface. Several types of detection exist. Among them, acoustic wave devices present many advantages. The paper deals with surface acoustic waves devices and their implementation. The role and properties of the sensing layer are discussed for chemical sensors and biochemical sensors as well. Examples of realizations are presented taking into account the microfluidic approach.

  10. Innovation in metrology: fast automated radiochemical separation and measurement for strontium 89 and 90

    Energy Technology Data Exchange (ETDEWEB)

    Augeray, C.; Galliez, K.; Mouton, M.; Tarlette, L.; Loyen, J.; Fayolle, C.; Gleizes, M. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France)

    2014-07-01

    Measuring radioactivity in the food and for radiological monitoring of the environment around Nuclear Facilities or mining sites requires the quantification of the radioactive isotopes present in the different compartments (liquids or solids), especially of the beta emitters. Strontium 89 and 90, both pure beta emitters are radioactive isotopes of interest. Because of their toxicity and the similarity of their chemical and physical behavior with calcium, these elements may be found through the food chain. After the Fukushima accident, the necessity of quantifying quickly radioactive isotopes such as strontium 89 and 90 appeared. The technique we are going to present concerns the determination of the activity concentration of strontium 89 and 90 in water, according to the {sup 89}Sr/{sup 90}Sr ratio. It consists of two stages: the chemical separation by ionic chromatography and the measurement of the activity concentration of strontium 89 and 90 by Cerenkov Effect. The automated separation has been developed and allows isolating the isotopes of strontium in particular the radioactive ones: strontium 89 and 90. The separation can be done within one hour. It was realized from the adaptation of existing analytical chemistry equipments with on-line couplings. The protocol of separation is based on the use of ions exchange columns of Ionic chromatography not as a separation and measurement technique of the cation but only as a separation technique. At the release time of the ion to be quantified, a fraction collector allows its recovery. The test portion is then analyzed with a liquid scintillation counter (LSC). The activity concentration is measured by Cerenkov Effect on a quenched sample. The quenching is realized by applying a thin colored film on the sample vial. This color quench is used to make strontium 90 counts disappear on the LS spectrum. This way, only yttrium 90 ingrowth and strontium 89 decay are measured (E{sup 90}Sr < E{sup 89}Sr < E{sup 90}Y

  11. Laboratory studies of 235U enrichment by chemical separation methods

    International Nuclear Information System (INIS)

    Daloisi, P.J.; Orlett, M.J.; Tracy, J.W.; Saraceno, A.J.

    1976-01-01

    Laboratory experiments on 235 U enrichment processes based on column redox ion exchange, electrodialysis, and gas exchange chromatography performed from August 1972 to September 1974 are summarized. Effluent from a 50 to 50 weight mixture of U +4 and U +6 (as UO 2 2+ ), at a total uranium concentration of 5 mg U per ml in 0.25N H 2 SO 4 -0.03N NaF solution, passing through a 100 cm length cation exchange column at 0.5 ml/min flow rates, was enriched in 235 U by 1.00090 +- .00012. The enriched fraction was mostly in the +6 valence form while the depleted fraction was U +4 retained on the resin. At flow rates of 2 ml/min, the enrichment factor decreases to 1.00033 +- .00003. In the electrodialysis experiments, the fraction of uranium diffusing through the membranes (mostly as +6 valence state) in 4.2 hours is enriched in 235 U by 1.00096 +- .00012. Gas exchange chromatography tests involved dynamic and static exposure of UF 6 over NaF. In dynamic tests, no significant change in isotopic abundance occurred in the initial one-half weight cut of UF 6 . The measured relative 235 U/ 238 U mole ratios were 1.00004 +- .00004 for these runs. In static runs, enrichment became evident. For the NaF(UF 6 )/sub x/-UF 6 system, there is 235 U depletion in the gas phase, with a single-stage factor of 1.00033 at 100 0 C and 1.00025 at 25 0 C after 10 days of equilibration. The single-stage or unit holdup time is impractically long for all three chemical processes

  12. Chemical methods for Sm-Nd separation and its application in isotopic geological dating

    International Nuclear Information System (INIS)

    Guo Qifeng.

    1990-01-01

    Three chemical methods for Sm-Nd separation are mainly desribed: low chromatography of butamone-ammonium thiocyanate for hight concentration Sm and Nd separation, P 240 column chromatography for medium concentration Sm-Nd separation, and pressure ion exchange for low concentration Sm-Nd. The first Sm-Nd synchrone obtained in China with Sm-Nd methods is introduced and Sm-Nd isotopic geological dating in Early Archaean rocks in eastern Hebei has been determined

  13. Water-chemical regime of a fast reactor ower complex

    International Nuclear Information System (INIS)

    Musikhin, R.N.; Piskunov, E.M.; Samarkin, A.A.; Yurchenko, D.S.

    1983-01-01

    Some peculiarities of water-chemical regime of a power compleX in Shevchenko are considered. The complex comprises a desalination unit, a gas-masout heating-and-power plant and the BN-350 reactor. The compleX is used for the production of electric and thermal energy and fresh water. The power complex peculiarity is the utilization of disalinated seawater in a technological cycle along with highly mineralized seawater with a total salt content of 13.5 g/l (for cooling) in heat exchanges. A regime of ammoniacal correction of feed water was used as a basic water-chemical regime in the initial period of the BN-350 steam generator operation. Deposits composed mainly of iron oxide slime were observed on steam generator surfaces during the operation under these conditions. A conclusion is made that the regime with chelating agent providing steam generator safe operation without chemical cleaning is the most expedient one

  14. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  15. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    International Nuclear Information System (INIS)

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F.; Landsberger, S.

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration

  16. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  17. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  18. Mixed matrix membranes with fast and selective transport pathways for efficient CO2 separation

    Science.gov (United States)

    Hou, Jinpeng; Li, Xueqin; Guo, Ruili; Zhang, Jianshu; Wang, Zhongming

    2018-03-01

    To improve CO2 separation performance, porous carbon nanosheets (PCNs) were used as a filler into a Pebax MH 1657 (Pebax) matrix, fabricating mixed matrix membranes (MMMs). The PCNs exhibited a preferential horizontal orientation within the Pebax matrix because of the extremely large 2D plane and nanoscale thickness of the matrix. Therefore, the micropores of the PCNs provided fast CO2 transport pathways, which led to increased CO2 permeability. The reduced pore size of the PCNs was a consequence of the overlapping of PCNs and the polymer chains penetrating into the pores of the PCNs. The reduction in the pore size of the PCNs improved the CO2/gas selectivity. As a result, the CO2 permeability and CO2/CH4 selectivity of the Pebax membrane with 10 wt% PCNs-loading (Pebax-PCNs-10) were 520 barrer and 51, respectively, for CO2/CH4 mixed-gas. The CO2 permeability and CO2/N2 selectivity of the Pebax-PCNs-10 membrane were 614 barrer and 61, respectively, for CO2/N2 mixed-gas.

  19. On-line chemical sensors for applications in fast reactors

    International Nuclear Information System (INIS)

    Jayaraman, V.

    2015-01-01

    Hydrogen sensors are essential components of fast reactor sodium circuits. These sensors are needed in fast reactors for the immediate detection of any steam leak into sodium during reactor operation which can lead to failure of steam generator. Depending on the operating power of the reactor, sodium-water reaction results in either an increase in dissolved hydrogen level in sodium or an increase in hydrogen content of argon cover gas used above sodium coolant. Hence, on-line monitoring of hydrogen continuously in sodium and cover circuits helps in detection of any steam leak. In the event of accidental leak of high temperature sodium, it reacts with oxygen and moisture in air leading to sodium fires. These fires produce sodium aerosol containing oxides of sodium (Na 2 O and Na 2 O 2 ) and NaOH. For early detection of sodium fires, sensor systems based on sodium ionization detector, pH measurement and modulation of conductivity of graphite films are known in the literature. This presentation deals with the development of on-line sensors for these two applications. A diffusion based sensor using a thin walled nickel coil at 773 K and a sensitive thermal conductivity detector (TCD) has been developed for monitoring hydrogen levels in argon cover gas. This sensor has a lower detection limit of 30 ppm of hydrogen in argon. To extend the detection limit of the sensor, a surface conductivity based sensor has been developed which makes use of a thin film of semi-conducting tin oxide. Integration of this sensor with the TCD, can extend the lower detection limit to 2 ppm of hydrogen in cover gas. Electrochemical sensor based on sodium-beta-alumina has been designed, fabricated and its performance in laboratory and industrial environment was evaluated. This paper presents the logical development of these sensors highlighting their merits and limitations

  20. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  1. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

    Directory of Open Access Journals (Sweden)

    Ayman L. Hemasa

    2017-07-01

    Full Text Available Carbon nanotubes (CNTs possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs and multi-walled carbon nanotubes (MWCNTs have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC, capillary electrophoresis (CE and gas chromatography (GC. Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.

  2. Differential multiple quantum relaxation caused by chemical exchange outside the fast exchange limit

    International Nuclear Information System (INIS)

    Wang Chunyu; Palmer, Arthur G.

    2002-01-01

    Differential relaxation of multiple quantum coherences is a signature for chemical exchange processes in proteins. Previous analyses of experimental data have used theoretical descriptions applicable only in the limit of fast exchange. Theoretical expressions for differential relaxation rate constants that are accurate outside fast exchange are presented for two-spin-system subject to two-site chemical exchange. The theoretical expressions are validated using experimental results for 15 N- 1 H relaxation in basic pancreatic trypsin inhibitor. The new theoretical expression is valuable for identification and characterization of exchange processes in proteins using differential relaxation of multiple quantum coherences

  3. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  4. Separating topographical and chemical analysis of nanostructure of polymer composite in low voltage SEM

    International Nuclear Information System (INIS)

    Wan, Q; Plenderleith, R A; Claeyssens, F; Rodenburg, C; Dapor, M; Rimmer, S

    2015-01-01

    The possibility of separating the topographical and chemical information in a polymer nano-composite using low-voltage SEM imaging is demonstrated, when images are acquired with a Concentric Backscattered (CBS) detector. This separation of chemical and topographical information is based on the different angular distribution of electron scattering which were calculated using a Monte Carlo simulation. The simulation based on angular restricted detection was applied to a semi-branched PNIPAM/PEGDA interpenetration network for which a linear relationship of topography SEM contrast and feature height data was observed. (paper)

  5. Process and device for uranium isotope separation and application for the manufacture of chemical compounds or for the separation of gaseous mixtures otherwise difficult to separate

    International Nuclear Information System (INIS)

    Gregorius, K.; Janner, K.; Kersting, A.; Schuster, E.; Niemann, H.J.

    1987-01-01

    The U235/U238 isotope separation is done by laser excitation with Ur 6 as the initial gaseous material. This has HBr added as the partner for a chemical reaction, preferably in the ratio of 1:10. In order to increase the selectivity and yield, the two partners in the reaction are cooled by adiabatic expansion to below 100 K before irradiation. This makes the absorption bands narrower. The excitation occurs in the Q branch of the rotation vibration spectrum. (DG) [de

  6. Determination of mercury in ppb level by activation analysis and chemical separation

    International Nuclear Information System (INIS)

    Requejo, C.S.

    1983-02-01

    A method for determining mercury in steel samples was developed. Activation analysis using thermal neutrons, followed by radiochemical separations to eliminate 75 Se interferences, were applied. Sixty hours after the end of the irradiation, the samples were processed and distillation of mercury and selenium bromides were carried out. Selenium was separated as an element and mercury sulfide was precipitaded. The chemical separation procedure was tested by using a tracer technique; the recovery yield was 99,2% + - 2,7%. (C.L.B.) [pt

  7. On the chemical constitution of a molten oxide core of a fast breeder reactor

    International Nuclear Information System (INIS)

    Hodkin, D.J.; Potter, P.E.

    1980-01-01

    A knowledge of the chemical constitution of a molten oxide fast reactor core is of great importance in the assessment of heat transfer from a cooling molten pool of debris and in the selection of materials for the construction of sacrificial beds for core containment. In this paper we describe some thermodynamic assessments of the likely chemical constitution of a molten oxide core, and then support our assessments by experimental observations

  8. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  9. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  10. Development of method to chemical separation of gallium-67 by thermal diffusion technique

    International Nuclear Information System (INIS)

    Martins, Patricia de Andrade

    2012-01-01

    Radioisotopes of gallium have been studied and evaluated for medical applications since 1949. Over the past 50 years 67 Ga has been widely used in the diagnosis of various diseases, including acute and chronic inflammatory lesions, bacterial or sterile and several types of tumors. In Brazil 30% of clinics that provide services for Nuclear Medicine use 67 Ga citrate and the demand for 67 G a at IPEN-CNEN/SP is 37 GBq (1 Ci)/week. The 67 Ga presents physical half-life of 3.26 days (78 hours) and decays 100% by electron capture to stable 67 Zn. Its decay includes the emission of γ rays with energies of 93.3 keV (37%), 184.6 keV (20.4%), 300.2 keV (16.6%) and 888 keV (26%). In the past 67 Ga was produced by the reaction 68 Zn (p, 2n) 67 Ga at IPEN-CNEN/SP. After irradiation, the target was dissolved in concentrated HCl and the solution percolated through a cationic resin DOWEX 50W-X8, 200-400 mesh, conditioned with 10 mol L -1 HCl. Zinc, nickel and copper were eluted in 10 mol L -1 HCl and 67 Ga 3.5 mol L -1 HCl. The final product was obtained as 67 Ga citrate. This work presents a new, fast, direct and efficient method for the chemical separation of 67 G a by thermal diffusion (heating of the target) combined with concentrated acetic acid extraction. Purification was performed by ion exchange chromatography. Natural zinc electrodeposition was performed on nickel/copper plates as substrate and the zinc deposits were adherent to the substrate, slightly shiny and uniform. The targets were irradiated with 26 MeV protons and integrated current of 10 μA.h. After irradiation, the targets were heated at 300 deg C for 2 hours and placed in contact with concentrated acetic acid for 1 hour. The average yield of extraction of 67 Ga was (72 ± 10)%. This solution was evaporated and the residue was taken up in 0.5 mol L -1 NH 4 OH. The 67 G a was purified on cationic resin Dowex 50WX8 in NH 4 OH medium. The 67 Ga recovery was (98 ± 2)%. This solution was evaporated and taken up

  11. Fast blood plasma separation device for point-of-care applications

    Czech Academy of Sciences Publication Activity Database

    Ďurč, P.; Foret, František; Kubáň, Petr

    2018-01-01

    Roč. 183, JUN (2018), s. 55-60 ISSN 0039-9140 Institutional support: RVO:68081715 Keywords : blood plasma separation * capillary electrophoresis * point of care analysis * methanol * metabolites Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  12. A fast pointwise strategy for anisotropic wave-mode separation in TI media

    KAUST Repository

    Liu, Qiancheng

    2017-08-17

    The multi-component wavefield contains both compressional and shear waves. Separating wave-modes has many applications in seismic workflows. Conventionally, anisotropic wave-mode separation is implemented by either directly filtering in the wavenumber domain or nonstationary filtering in the space domain, which are computationally expensive. These methods could be categorized into the pseudo-derivative family and only work well within Finite Difference (FD) methods. In this paper, we establish a relationship between group-velocity direction and polarity direction and propose a method, which could go beyond modeling by FD. In particular, we are interested in performing wave-mode separation in a Spectral Element Method (SEM), which is widely used for seismic wave propagation on various scales. The separation is implemented pointwise, independent of its neighbor points, suitable for running in parallel. Moreover, no correction for amplitude and phase changes caused by the derivative operator is required. We have verified our scheme using numerical examples.

  13. A fast pointwise strategy for anisotropic wave-mode separation in TI media

    KAUST Repository

    Liu, Qiancheng; Peter, Daniel; Lu, Yongming

    2017-01-01

    The multi-component wavefield contains both compressional and shear waves. Separating wave-modes has many applications in seismic workflows. Conventionally, anisotropic wave-mode separation is implemented by either directly filtering in the wavenumber domain or nonstationary filtering in the space domain, which are computationally expensive. These methods could be categorized into the pseudo-derivative family and only work well within Finite Difference (FD) methods. In this paper, we establish a relationship between group-velocity direction and polarity direction and propose a method, which could go beyond modeling by FD. In particular, we are interested in performing wave-mode separation in a Spectral Element Method (SEM), which is widely used for seismic wave propagation on various scales. The separation is implemented pointwise, independent of its neighbor points, suitable for running in parallel. Moreover, no correction for amplitude and phase changes caused by the derivative operator is required. We have verified our scheme using numerical examples.

  14. Separation and sampling technique of light element isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    Kato, Shunsaku; Oi, Kenta; Takagi, Norio; Hirotsu, Takafumi; Kano, Hirofumi; Sonoda, Akinari; Makita, Yoji

    2000-01-01

    Lithium and boron isotope separation technique were studied. Granulation of lithium isotope separation agent was carried out by cure covering in solution. Separation of lithium isotope was stepped up by ammonium carbonate used as elusion agent. Styrene and ester resin derived three kinds of agents such as 2-amino-1, 3-propanediol (1, 3-PD), 2-amino-2-methyl-1, 3-propanediol (Me-1,3-PD) and tris(2-hydroxyethyl)amine (Tris) were used as absorbent.The ester resin with Tris showed larger amount of adsorption (1.4 mmol/g) than other resins. However, all resins with agent indicated more large adsorption volume of boron than the objective value (0.5 mmol/g). Large isotope shift was shown by the unsymmetrical vibration mode of lithium ion on the basis of quantum chemical calculation of isotope effect on dehydration of hydrated lithium ion. (S.Y.)

  15. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    Science.gov (United States)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m2 and 20-40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  16. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  17. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    International Nuclear Information System (INIS)

    Smolyar, V.A.; Eremin, A.V.; Eremin, V.V.

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well [ru

  18. A Chemical Eight Group Separation Method for Routine Use in Gamma Spectrometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1961-04-15

    A method for the separation of chemical elements in 8 groups suitable for gamma spectrometric analysis has been developed. One group of elements is separated by distillation during dissolution of the sample. The other groups are obtained by means of short ion exchange columns coupled in series An anion exchange column saturated with chloride ions separates chloride complexes, peroxides and other anions from a 3-n HCl + 0.3 % H{sub 2}O{sub 2} sample solution. Some of the chloride complexes are eluted with 0.1-n HCl + 0.3 % H{sub 2}O{sub 2} and subsequently adsorbed as cations on a cation exchange column in hydrogen form. A few eluted elements which do not form cations in this case are found in the effluent. Elements passing the anion exchange column in chloride form without adsorption are separated from a H{sub 2}O solution as citrate complexes, hydroxides, cations and hexametaphosphate complexes. This is done by coupling in series two anion exchange columns subsequently in citrate and hydroxide form and followed by a cation exchanger in sodium form. A mixed bed column ends the series. The behaviour in the separation series of most elements forming gamma emitting isotopes with half lives exceeding 10 minutes on irradiation with thermal neutrons has been studied. The method has been used, routinely for one year.

  19. Isothermal and non-isothermal conditions of isotope separation by chemical exchange method

    International Nuclear Information System (INIS)

    Khoroshilov, A.V.; Andreev, B.M.; Katalnikov, S.G.

    1992-01-01

    The published data about the effect of temperature on thermodynamic and mass transfer parameters of isotope separation by the chemical exchange method were used to examine the influence of iso- and non-isothermal conditions on the effectiveness of the separation process. It has been shown that simultaneous fulfillment of several optimization criteria is impossible in optimization of the isothermal process. If the limitation that temperature must be constant in the whole range of concentrational changes for an isolated isotope is removed, then it is possible to solve the problem of optimization with simultaneous fulfillment of several optimization criteria. When the separation process is carried out with non-isothermal conditions, that is, in temperature cascade, then the maximum concentration change takes place at every theoretical separation plate, and whole cascade is characterised by maximum throughput, minimum height and volume, and minimum cost for the stream reflux. From the results of our study, it was concluded that in the optimum temperature cascade, the cost of production of unity quantity of isotope can be decreased at least by a factor of two as compared with the optimal isothermal version of the separation process. (author)

  20. Chiral separation of G-type chemical warfare nerve agents via analytical supercritical fluid chromatography.

    Science.gov (United States)

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-12-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc.

  1. A fast Linear Complementarity Problem (LCP) solver for separating fluid-solid wall boundary Conditions

    DEFF Research Database (Denmark)

    Andersen, Michael; Abel, Sarah Maria Niebe; Erleben, Kenny

    2017-01-01

    We address the task of computing solutions for a separating fluid-solid wall boundary condition model. We present an embarrassingly parallel, easy to implement, fluid LCP solver.We are able to use greater domain sizes than previous works have shown, due to our new solver. The solver exploits matr...

  2. An improved method for fast and selective separation of carotenoids by UPLC-MS

    Science.gov (United States)

    Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical mod...

  3. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading.

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C

    2014-04-01

    This study investigates the optimal supply chain design for commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs and integrated biorefinery facilities are optimized with a mixed integer linear programming model. In this integrated supply chain system, decisions on the biomass chipping methods (roadside chipping vs. facility chipping) are also explored. The economic objective of the supply chain model is to maximize the profit for a 20-year chemicals production system. In addition to the economic objective, the model also incorporates an environmental objective of minimizing life cycle greenhouse gas emissions, analyzing the trade-off between the economic and environmental considerations. The capital cost, operating cost, and revenues for the biorefinery facilities are based on techno-economic analysis, and the proposed approach is illustrated through a case study of Minnesota, with Minneapolis-St. Paul serving as the chemicals distribution hub. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Highly accurate and fast optical penetration-based silkworm gender separation system

    Science.gov (United States)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  5. Validation of an ultra-fast UPLC-UV method for the separation of antituberculosis tablets.

    Science.gov (United States)

    Nguyen, Dao T-T; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc

    2008-04-01

    A simple method using ultra performance LC (UPLC) coupled with UV detection was developed and validated for the determination of antituberculosis drugs in combined dosage form, i. e. isoniazid (ISN), pyrazinamide (PYR) and rifampicin (RIF). Drugs were separated on a short column (2.1 mm x 50 mm) packed with 1.7 mum particles, using an elution gradient procedure. At 30 degrees C, less than 2 min was necessary for the complete separation of the three antituberculosis drugs, while the original USP method was performed in 15 min. Further improvements were obtained with the combination of UPLC and high temperature (up to 90 degrees C), namely HT-UPLC, which allows the application of higher mobile phase flow rates. Therefore, the separation of ISN, PYR and RIF was performed in less than 1 min. After validation (selectivity, trueness, precision and accuracy), both methods (UPLC and HT-UPLC) have proven suitable for the routine quality control analysis of antituberculosis drugs in combined dosage form. Additionally, a large number of samples per day can be analysed due to the short analysis times.

  6. Krypton separation from ambient air for application in collinear fast beam laser spectroscopy.

    Science.gov (United States)

    Mohamed, Tarek; Strohaber, James; Nava, Ricardo; Kolomenskii, Alexandre; Thonnard, Norbert; Schuessler, Hans A

    2012-07-01

    A portable apparatus for the separation of krypton from environmental air samples was tested. The apparatus is based on the cryogenic trapping of gases at liquid nitrogen temperature followed by controlled releases at higher temperatures. The setup consists of a liquid nitrogen trap for the removal of H(2)O and CO(2), followed by charcoal-filled coils that sequentially collect and release krypton and other gases providing four stages of gas chromatography to achieve separation and purification of krypton from mainly N(2), O(2), and Ar. Residual reactive gases remaining after the final stage of chromatography are removed with a hot Ti sponge getter. A thermal conductivity detector is used to monitor the characteristic elution times of the various components of condensed gases in the traps during step-wise warming of the traps from liquid nitrogen temperatures to 0 °C, and then to 100 °C. This allows optimizing the switching times of the valves between the stages of gas chromatography so that mainly krypton is selected and loaded to the next stage while exhausting the other gases using a He carrier. A krypton separation efficiency of ~80 % was determined using a quadrupole mass spectrometer.

  7. Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    Science.gov (United States)

    Huang, Yang; Zhang, Tingting; Zhou, Haibo; Feng, Ying; Fan, Chunlin; Chen, Weijia; Crommen, Jacques; Jiang, Zhengjin

    2016-03-20

    Triterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties. In this study, a rapid and efficient method was developed for the separation of kudinosides, stauntosides and ginsenosides using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The separation conditions for the selected TSs were carefully optimized after the initial screening of eight stationary phases. The best compromise for all compounds in terms of chromatographic performance and MS sensitivity was obtained when water (5-10%) and formic acid (0.05%) were added to the supercritical carbon dioxide/MeOH mobile phase. Beside the composition of the mobile phase, the nature of the make-up solvent for interfacing SFC with MS was also evaluated. Compared to reversed phase liquid chromatography, the SFC approach showed higher resolution and shorter running time. The developed SFC-MS methods were successfully applied to the separation and identification of TSs present in Ilex latifolia Thunb., Panax quinquefolius L. and Panax ginseng C.A. Meyer. These results suggest that this SFC-MS approach could be employed as a useful tool for the quality assessment of natural products containing TSs as active components. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    Science.gov (United States)

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

  9. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation

    Directory of Open Access Journals (Sweden)

    Xingzhong Guo

    2018-04-01

    Full Text Available New flexible methylsilsesquioxane (MSQ aerogels have been facilely prepared by a sol–gel process with methyltrimethoxysilane (MTMS and dimethyldimethoxysilane (DMDMS as co-precursors, followed by surface modification and ambient pressure drying. The microstructure, mechanical properties and hydrophobicity of these MSQ aerogels after surface modifications of hexamethyldisiloxane (HMDSO and/or hexamethyldisilazane (HMDS were investigated in detail, and the applications of surface-modified MSQ aerogels in sound-absorbance, fast dye adsorption and oil/water separation were evaluated, respectively. The MSQ aerogels surface-modified by HMDS possess flexibility, elasticity and superhydrophobicity, and demonstrate good performance in the mentioned applications. The resultant MSQ aerogel used in sound-absorbance has high frequency (about 6 kHz acoustic absorptivity of up to 80%, benefiting from its macroporous structure and porosity of 94%, and it also possesses intermediate frequency acoustic absorptivity (about 1 kHz up to 80% owing to its elasticity. This MSQ aerogel can selectively separate oil from oil/water mixtures with high efficiency due to its superhydrophobicity and superlipophilicity, resulting from a lot of methyl groups, density as low as 0.12 cm3·g−1 and a water contact angle as high as 157°. This MSQ aerogel can be assembled to be a monolithic column applied for fast dye adsorption, and shows selective adsorption for anionic dyes and removal efficiency of methyl orange of up to 95%.

  10. Fast assessment of the critical principal stress direction for multiple separated multiaxial loadings

    Directory of Open Access Journals (Sweden)

    M. Cova

    2015-07-01

    Full Text Available The critical plane calculation for multiaxial damage assessment is often a demanding task, particularly for large FEM models of real components. Anyway, in actual engineering requests, sometime, it is possible to take advantage of the specific properties of the investigated case. This paper deals with the problem of a mechanical component loaded by multiple, but “time-separated”, multiaxial external loads. The specific material damage is dependent from the max principal stress variation with a significant mean stress sensitivity too. A specifically fitted procedure was developed for a fast computation, at each node of a large FEM model, of the direction undergoing the maximum fatigue damage; the procedure is defined according to an effective stress definition based on the max principal stress amplitude and mean value. The procedure is presented in a general form, applicable to the similar cases.

  11. Literature file on 'fast kickers and septa', componenets for deflection and separation of particle beams

    International Nuclear Information System (INIS)

    Linden, A. van der.

    1988-11-01

    The File consists of classified and numbered articles from the literature on the following subjects: 1 - Kickers: fast switching (electro-)magnetic or electrostatic components for small deflection; 2 - Septum Magnets: both small and great deflecting components, with the purpose to create or bridge over space between the deflected beam and the other, unperturbed beam; 3 - Electrostatic Septa: low loss, beam splitting components which give small deflection for the extracted part of the beam and no perturbation for the rest of the beam. The articles have been classified per institute or laboratory, eventually with further classification per project. The classified articles are then numbered chronologically. Extension of the File is still possible. The contents of the articles are summarized by means of catchwords. Specifications of the described kickers, septum magnets and electrostatic septa are represented in a tabular form

  12. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  13. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    International Nuclear Information System (INIS)

    Bauer, C.B.; Rogers, R.D.

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K d ) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles

  14. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation.

    Science.gov (United States)

    Biswal, Bishnu P; Chaudhari, Harshal D; Banerjee, Rahul; Kharul, Ulhas K

    2016-03-24

    Highly flexible, TpPa-1@PBI-BuI and TpBD@PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemical separation of plutonium from air filters and preparation of filaments for resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Eberhardt, K.; Erdmann, N.; Funk, H.; Herrmann, G.; Naehler, A.; Passler, G.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the determination of plutonium in environmental samples. A chemical procedure based on an ion-exchange technique for the separation of plutonium from a polycarbonate filter is described. The overall yield is about 60% as determined by α-particle spectroscopy. A technique for the subsequent preparation of samples for RIMS measurements is developed. Plutonium is electrode-posited as hydroxide and covered with a thin metallic layer. While heating such a sandwich filament the plutonium hydroxide is reduced to the metal and an atomic beam is evaporated from the surface, as required for RIMS. copyright American Institute of Physics 1995

  16. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.B.; Rogers, R.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F. [Argonne National Lab., IL (United States)

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  17. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  18. Modelling of fast hydrogen permeability of alloys for membrane gas separation

    Science.gov (United States)

    Zaika, Yu. V.; Rodchenkova, N. I.

    2017-05-01

    The method of measuring the specific hydrogen permeability is used to study various alloys that are promising for gas separation installations. The nonlinear boundary value problem of hydrogen permeability complying with the specific features of the experiment and its modifications taking into account the high transfer rate is presented. Substantial difference from the quasi-equilibrium model (Richardson approximation in the assumption of the equilibrium Sieverts' law near the surface) has been discussed. The model is tested on published experimental data on Ta77Nb23 alloy.

  19. Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films

    Directory of Open Access Journals (Sweden)

    Richard A. Farrell

    2009-08-01

    Full Text Available The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry and graphoepitaxy (topographical alignment but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed.

  20. Fast vertical growth of ZnO nanorods using a modified chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-hyun [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-06-01

    Highlights: • We grew vertical ZnO nanorods by a modified CBD process with a fast growth rate. • We studied the effects of the CBD process by varying growth temperature, time, and concentration. • The ZnO nanorods grown by the modified CBD showed good morphological and structural properties. - Abstract: In this study, we grew vertical ZnO nanorods on seeded Si (1 0 0) substrates using a modified chemical bath deposition (CBD). We investigated the effects of the growth temperature, growth time and concentration on the morphological and structural properties of the ZnO nanorods using field emission gun scanning electron microscopy (FEG-SEM) and X-ray diffraction. This modified CBD method shows improved results over conventional CBD. ZnO nanorods with good structural XRD properties were grown with a very fast growth rate in a wide range of growth conditions and did not require post-growth annealing.

  1. Fast Separation and Determination of Flavonoids in Honey Samples by Capillary Zone Electrophoresis

    Directory of Open Access Journals (Sweden)

    Jian-Qiu Tu

    2017-03-01

    Full Text Available Flavonoids have crucial applications in the biological and physiological fields. Honey, as an important sweet food made by bees, is rich in flavonoids. In this paper, the analytical method for flavonoids determination in different sorts of honey from different geographical locations was developed by capillary zone electrophoresis with direct ultraviolet detection. With a running buffer (borate, 20 mmol l−1 at pH of 8.4, four typical flavonoids, rutin, quercetin, kaempferol and myricetin, were separated in five minutes under a applied potential of 25 kV. A linear relationship within the range of 2.0 – 500 mg l−1 was found for these four kinds of flavonoids. Moreover, the detection limits ranged from 1.17 to 1.76 mg l−1. The recoveries lie in the range between 80 % – 107 %. The developed method was then used in the separation and determination of flavonoids in real honey samples collected from 12 geographical locations in the Henan Province of China. Rutin was detected in six, and quercetin in eight honey samples, which may be the markers for the identification of honey from different geographical origins.

  2. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...

  3. Isobaric (vapour + liquid) equilibria of binary systems containing butyl acetate for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil

    International Nuclear Information System (INIS)

    Li, Hao; Xia, Shuqian; Wu, Meng; Ma, Peisheng

    2015-01-01

    Highlights: • The two binary systems related to pyrolysis oil have been reported. • The VLE data were correlated well by the activity coefficient models. • The UNIFAC (Do) model was applied to predict the experimental VLE data. • The interaction parameter (ACOCH 3 –CH 3 COO) was obtained and proved to be reliable. • The obtained interaction parameters by NRTL model were used in the separation process design for the ternary mixture. - Abstract: Developing value-added chemicals from pyrolysis oil has been gaining increasing attention. Thus effective separation and purification of the pyrolysis oil are important and the phase equilibrium data are essential for the design and simulation of the processes. In this study, isobaric vapour–liquid equilibrium (VLE) for the two binary mixtures (butyl acetate + anisole) and (butyl acetate + guaiacol) have been determined at 101.33 kPa, a knowledge of which is essential for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil using butyl acetate as a solvent. All the experimental values were confirmed to be thermodynamically consistent using the van Ness method. The NRTL, UNIQUAC, and Wilson activity coefficient models were applied to regress the experimental values. The calculated results agreed well with the measured values. Furthermore, the results were calculated by the UNIFAC (Do) method (modified UNIFAC model) in which aromatic methoxyl is treated as a group (ACOCH 3 ). The new interaction parameter (ACOCH 3 –CH 3 COO) was obtained and proved to be reliable. Based on the preceding results, a feasible separation process for the ternary mixture (butyl acetate + anisole + guaiacol) has been designed to obtain the required products

  4. Novel Protic Ionic Liquid Composite Membranes with Fast and Selective Gas Transport Nanochannels for Ethylene/Ethane Separation.

    Science.gov (United States)

    Dou, Haozhen; Jiang, Bin; Xiao, Xiaoming; Xu, Mi; Tantai, Xiaowei; Wang, Baoyu; Sun, Yongli; Zhang, Luhong

    2018-04-25

    Protic ionic liquids (PILs) were utilized for the fabrication of composite membranes containing silver salt as the C 2 H 4 transport carrier to perform C 2 H 4 /C 2 H 6 separation for the first time. The intrinsic nanostructures of PILs were adopted to construct fast and selective C 2 H 4 transport nanochannels. The investigation of structure-performance relationships of composite membranes suggested that transport nanochannels (polar domains of PILs) could be tuned by the sizes of cations, which greatly manipulated activity of the carrier and determined the separation performances of membranes. The role of different carriers in the facilitated transport was studied, which revealed that the PILs were good solvents for dissolution and activation of the carrier due to their hydrogen bond networks and waterlike properties. The operating conditions of separation process were investigated systemically and optimized, confirming C 2 H 4 /C 2 H 6 selectivity was enhanced with the increase of silver salt concentration, the flow rate of sweep gas, and the feed ratio of C 2 H 4 to C 2 H 6 , as well as the decrease of the transmembrane pressure and operating temperature. Furthermore, the composite membranes exhibited long-term stability and obtained very competitive separation performances compared with other results. In summary, PIL composite membranes, which possess good long-term stability, high C 2 H 4 /C 2 H 6 selectivity, and excellent C 2 H 4 permeability, may have a good perspective in industrial C 2 H 4 /C 2 H 6 separation.

  5. The influence of chemicals on water quality in a high pressure separation rig

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Einar E.; Hemmingsen, Paal V.; Mediaas, Heidi; Svarstad, May Britt E.; Westvik, Arild

    2006-03-15

    In the research laboratory of Statoil at Rotvoll, Trondheim, a high pressure experimental rig used for separation and foaming studies has been developed. There have been several studies to ensure that the high pressure separation rig produces reliable and consistent results with regard to the water-in-oil and oil-in-water contents. The results are consistent with available field data and, just as important, consistent when changing variables like temperature, pressure drop and water cut. The results are also consistent when changing hydrodynamic variables like flow velocity and mixing point (using different choke valves) and when using oil with and without gas saturation. At equal experimental conditions, the high pressure separation rig is able to differentiate between separation characteristics of oil and water from different fields and from different wells at the same field. The high pressure separation and foam rig can be used from -10 deg C to 175 deg C and at pressures up to 200 bar. Crude oil and water are studied under relevant process conditions with respect to temperature, pressure, shear, water cut and separation time. In the present work the influence of chemicals on the oil and water quality has been studied. Chemicals have been mixed into the oil and/or water beforehand or added in situ (on-stream; simulated well stream). The amount of oil in the water after a given residence time in the separation cell has been measured. The results from the high pressure rig show that some demulsifiers, with their primary purpose of giving less water in oil, also have influence on the water quality. Improvement of water quality has been observed as well as no effect or aggravation. The experimental results have been compared to results from bottle tests at the field. The results from the bottle tests and from the laboratory are not corresponding, and only a full-scale field test can tell which of them are the correct results, if any. (Experience from corresponding

  6. Can nanofluidic chemical release enable fast, high resolution neurotransmitter-based neurostimulation?

    Directory of Open Access Journals (Sweden)

    Peter D Jones

    2016-03-01

    Full Text Available Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology — rather than microfluidic — will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission.This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.

  7. Chemical etching studies of a Brazilian polycarbonate to fast neutron detection

    International Nuclear Information System (INIS)

    Souto, E.B.; Campos, L.L.

    2006-01-01

    The Dosimetric Materials Laboratory (LMD) of the Radiation Metrology Center (CMR) is developing a personal dosimeter for fast neutrons using the technique of solid state nuclear track detectors (SSNTD). This technique is based on the recorded damage (tracks) in dielectric materials due to the impact of charged particles. The tracks are revealed and amplified for visualization in optic microscope through a technique known as chemical etching. The LMD is investigating a Brazilian commercial polycarbonate as a new passive fast neutron's detector in substitution to the traditional materials, as the cellulose nitrate LR-115 and the polycarbonates Makrofol and CR-39. The variation of the etching parameters (chemical solution, time and temperature) alters the response of the material; the best revelation conditions provide the best relationship among the amount of revealed tracks, their clearness and the time spent for this. The polycarbonate studied is a resin of same chemical monomer of Makrofol (C,6H,403). Samples of 3 x 1 cm 2 of the polycarbonate were irradiated with 5 mSv of fast neutrons ( 241 Am-Be) and revealed with the chemical solution PEW-40 (15% KOH, 45% H 2 O, 40% C 2 H 5 OH), commonly used for Makrofol. The studied etching parameters were time and temperature. Groups of four samples were revealed at temperatures of 50, 65, 75, 90 and 100 C with etching times varying from one to six hours. The used track's counting procedure was that referred in the literature. The best response to fast neutrons was obtained at 75 C; in spite of their similar answers, smaller temperatures join larger uncertainties in the track's counting and poorer clearness. At this temperature, the number of revealed tracks increases with the etching time approximately until a plateau at three hours. For etching times higher than four hours the polycarbonate presents overlap of tracks. If the temperature is adjusted to 75 C, the etching time should be in the plateau to avoid that small

  8. Chemical etching studies of a Brazilian polycarbonate to fast neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Souto, E.B.; Campos, L.L. [Instituto de Pesquisas Energeticas e Nucleares, IPEN- CNEN/SP Radiation Metrology Center (CMR) Av. Prof. Lineu Prestes, 2242 CEP: 05508-000 Sao Paulo - SP (Brazil)]. e-mail: ebsouto@ipen.br

    2006-07-01

    The Dosimetric Materials Laboratory (LMD) of the Radiation Metrology Center (CMR) is developing a personal dosimeter for fast neutrons using the technique of solid state nuclear track detectors (SSNTD). This technique is based on the recorded damage (tracks) in dielectric materials due to the impact of charged particles. The tracks are revealed and amplified for visualization in optic microscope through a technique known as chemical etching. The LMD is investigating a Brazilian commercial polycarbonate as a new passive fast neutron's detector in substitution to the traditional materials, as the cellulose nitrate LR-115 and the polycarbonates Makrofol and CR-39. The variation of the etching parameters (chemical solution, time and temperature) alters the response of the material; the best revelation conditions provide the best relationship among the amount of revealed tracks, their clearness and the time spent for this. The polycarbonate studied is a resin of same chemical monomer of Makrofol (C,6H,403). Samples of 3 x 1 cm{sup 2} of the polycarbonate were irradiated with 5 mSv of fast neutrons ({sup 241}Am-Be) and revealed with the chemical solution PEW-40 (15% KOH, 45% H{sub 2}O, 40% C{sub 2}H{sub 5}OH), commonly used for Makrofol. The studied etching parameters were time and temperature. Groups of four samples were revealed at temperatures of 50, 65, 75, 90 and 100 C with etching times varying from one to six hours. The used track's counting procedure was that referred in the literature. The best response to fast neutrons was obtained at 75 C; in spite of their similar answers, smaller temperatures join larger uncertainties in the track's counting and poorer clearness. At this temperature, the number of revealed tracks increases with the etching time approximately until a plateau at three hours. For etching times higher than four hours the polycarbonate presents overlap of tracks. If the temperature is adjusted to 75 C, the etching time should be in

  9. Investigation of the 168Hf electron capture decay using fast radiochemical separation

    International Nuclear Information System (INIS)

    Trubert, D.; Hussonnois, M.; Brillard, L.; Barci, V.; Ardisson, G.; Szeglowski, Z.; Constantinescu, O.

    1995-01-01

    The (EC + β + ) decay of 168 Hf, produced by the 156 Gd ( 16 O,4n) reaction, has been studied, with high efficiency HPGe coaxial detectors, using on-line measurements carried out with the RACHEL setup, built to investigate the chemical properties of transactinide elements. Off-line measurements were also carried out using catcher collection technique. Energies and intensities of 119 γ-lines are reported among which only two were known in the earlier study of Chu and Reednick. The 168 Lu level scheme built on the basis of single and γ-γ coincidence measurements, allows the interpretation of more than 79 γ-transitions, between 38 excited states reported for the first time. (orig.)

  10. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  11. Optimal and fast E/B separation with a dual messenger field

    Science.gov (United States)

    Kodi Ramanah, Doogesh; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-05-01

    We adapt our recently proposed dual messenger algorithm for spin field reconstruction and showcase its efficiency and effectiveness in Wiener filtering polarized cosmic microwave background (CMB) maps. Unlike conventional preconditioned conjugate gradient (PCG) solvers, our preconditioner-free technique can deal with high-resolution joint temperature and polarization maps with inhomogeneous noise distributions and arbitrary mask geometries with relative ease. Various convergence diagnostics illustrate the high quality of the dual messenger reconstruction. In contrast, the PCG implementation fails to converge to a reasonable solution for the specific problem considered. The implementation of the dual messenger method is straightforward and guarantees numerical stability and convergence. We show how the algorithm can be modified to generate fluctuation maps, which, combined with the Wiener filter solution, yield unbiased constrained signal realizations, consistent with observed data. This algorithm presents a pathway to exact global analyses of high-resolution and high-sensitivity CMB data for a statistically optimal separation of E and B modes. It is therefore relevant for current and next-generation CMB experiments, in the quest for the elusive primordial B-mode signal.

  12. The impact of chemical cleaning on separation efficiency and properties of reverse osmosis membrane

    KAUST Repository

    Baatiyyah, Hani

    2018-04-01

    One of most major concerns from both cost-effective and technical point of view in membrane process industry is membrane cleaning. The aim of the project was to investigate the variations in membrane surface properties and separation efficiency of reverse osmosis membrane. Compativtive analysis have to be performed on four RO membrane before and after exposing the virgin membrane into chemical cleaning to identify and analysis the impact of the chemical cleaning on the performance of RO membrane. Commerical chemical cleaning used in this project were caustic and acidic cleaning agent. The project’s aim is the investigation of simulation software’s precision for the four membranes performance projection at different conditions of the feed water. The assessment of the membranes performance was done in the Innovation Cluster at pilot plant that was industrial in size. The main commercial elements used were the thin-film composite membranes with a spiral-wound of 8-inch polyamide. Ultrafiltration (UF) and seawater RO membrane pretreatment process was done for the red sea sourced feed water. A pressure vessel dimensioned at 8-inch was operated in conjunction with an individual element at 8 -20 m3/hr feed flow rate, with an 8 to 12 % recovery and an average 35,000-42,000 mg/L of total dissolved solids (TDS) composition for the feed water. To achieve the project’s aim in assessing the membranes, three phase experimental stages were completed. The membranes performance was assessed in terms of their water flux, salt rejection, boron rejection, bicarbonate rejection and permeate quality. In addition, the membrane surfaces were characterized after exposing the fresh membranes with a chemical cleaning reagent. The experimental results showed an increase in both permeate flow and salt passage for all studied elements. The changes in the membranes performance were systematically explained based on the changes in the charge density and chemical structure of the membranes

  13. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.; Jang, Gyoung G.

    2016-10-20

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a result of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.

  14. Wood anatomy and physical and chemical properties of fast growing Athel tamarisk (Tamarix aphylla L.

    Directory of Open Access Journals (Sweden)

    Reza oladi

    2017-02-01

    Full Text Available Athel tamarisk (Tamarix aphylla is a fast growing, evergreen tree succeeding in the most soils and can tolerate the saline conditions. Despite its ecological importance and wide distribution in central and southern parts of Iran, wood properties of this species has little been concerned. However, the potential of this species in cellulosic industries of Middle East dry countries has recently been focused. Hence, to study wood anatomy and physical and chemical properties of Athel tamarisk, 3 stands were selected and felled from the Zabol region (Sistan and Baluchestan province. Wood anatomical features of this species were studied and listed according to the list of microscopic features for hardwood identification by IAWA Committee. In addition, lignin distribution in xylem was studied using fluorescence microscopy. Calculating fiber biometry features assessed that although fiber quality is not perfect but meets the standards of paper production, comparing other commercially used hardwoods in this industry. According to chemical composition analysis, cellulose content of this wood is rather low (39% which could be a result of large amount of thin-walled paranchyma cells in xylem. Lignin content is a bit higher than average hardwoods and this component is concentrated in vessels and fibers. Physical properties of studied wood samples (specific gravity and shrinkage values were in the range of other light-weight and fast growing hardwoods and thus this wood is expected to have similar end-use quality.

  15. An improved method for fast and selective separation of carotenoids by LC-MS.

    Science.gov (United States)

    Abate-Pella, Daniel; Freund, Dana M; Slovin, Janet P; Hegeman, Adrian D; Cohen, Jerry D

    2017-11-01

    Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical modifications. Carotenoids are important because of their potent antioxidant activity and are the pigments responsible for color in a wide variety of foods. Human consumption is correlated to many health benefits including prevention of cancer, cardiovascular disease, and age-related disease. Extreme hydrophobicity, poor stability, and low concentration in biological samples make these compounds difficult to analyze and difficult to develop analytical methods for aimed towards identification and quantification. Examples in the literature frequently report the use of exotic stationary phases, solvents, and additives, such as ethyl acetate, dichloromethane, and methyl tert-butyl ether that are incompatible with liquid chromatography mass spectrometry (LC-MS). In order to address these issues, we implemented the use of LC-MS friendly conditions using a low-hydrophobicity cyano-propyl column (Agilent Zorbax SB-CN). We successfully differentiated between isomeric carotenoids by optimizing two gradient methods and using a mixture of 11 standards and LC-MS in positive ionization mode. Three complex biological samples from strawberry leaf, chicken feed supplement, and the photosynthetic bacterium Chloroflexus aurantiacus were analyzed and several carotenoids were resolved in these diverse backgrounds. Our results show this methodology is a significant improvement over other alternatives for analyzing carotenoids because of its ease of use, rapid analysis time, high selectivity, and, most importantly, its compatibility with typical LC-MS conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  17. Plutonium contents of broadleaf vegetable crops grown near a nuclear fuel chemical separations facility

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K W; Alberts, J J; Adriano, D C; Pinder, III, J E

    1984-02-01

    Among agricultural crops, broadleaf vegetables are particularly prone to intercept and retain aerially released contaminants. The plutonium concentration of four broadleaf crops (broccoli, cabbage, lettuce and turnip greens) was determined, when grown in close proximity to a nuclear-fuel chemical-separations facility. Concentrations varied among species, apparently influenced by the crop morphology, with Pu concentrations increasing in the sequence: cabbage < broccoli < turnip greens < lettuce. Washing of the crops significantly reduced the Pu concentration of lettuce, but had no effect on Pu concentration of broccoli and cabbage. The vast majority of Pu found in the crops was due to direct deposition of recently released Pu and resuspension of Pu-bearing soil particles, and was not due to root uptake. Resultant doses from consumption are small relative to the annual background dose.

  18. Neutron activation of selenium and arsenic with or without chemical separation

    International Nuclear Information System (INIS)

    Woittiez, J.R.W.

    1988-01-01

    At the Netherland Energy Research Foundation, neutron activation analysis (NAA) is one of the available techniques for elemental analysis. As the technique is potentially very powerful, considerable effort has been invested during the last 2 yr to optimize the multielement performance and to focus simultaneously on the best achievable single-element determination. This last activity implies concentrating the attention on measuring a well-defined signal rather than on software to evaluate complicated signals. As several irradiation facilities can be used, it is possible to choose the best obtainable instrumental activation technique. For the analysis of trace elements on the nanogram per gram level in biological material, however, the reintroduction of chemical separation of irradiated samples is inevitable. This paper presents recent results on applications of this approach. Although several well-documented techniques have been adapted, installed, and applied, and results are obtained for cadmium, molybdenum, chromium, cobalt, tin, iron, and mercury, this discussion is limited to selenium and arsenic

  19. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gas separation performance of 6FDA-based polyimides with different chemical structures

    KAUST Repository

    Qiu, Wulin

    2013-10-01

    This work reports the gas separation performance of several 6FDA-based polyimides with different chemical structures, to correlate chemical structure with gas transport properties with a special focus on CO2 and CH 4 transport and plasticization stability of the polyimides membranes relevant to natural gas purification. The consideration of the other gases (He, O2 and N2) provided additional insights regarding effects of backbone structure on detailed penetrant properties. The polyimides studied include 6FDA-DAM, 6FDA-mPDA, 6FDA-DABA, 6FDA-DAM:DABA (3:2), 6FDA-DAM:mPDA (3:2) and 6FDA-mPDA:DABA (3:2). Both pure and binary gas permeation were investigated. The packing density, which is tunable by adjusting monomer type and composition of the various samples, correlated with transport permeability and selectivity. The separation performance of the polyimides for various gas pairs were also plotted for comparison to the upper bound curves, and it was found that this family of materials shows attractive performance. The CO 2 plasticization responses for the un-cross-linked polyimides showed good plasticization resistance to CO2/CH4 mixed gas with 10% CO2; however, only the cross-linked polyimides showed good plasticization resistance under aggressive gas feed conditions (CO 2/CH4 mixed gas with 50% CO2 or pure CO 2). For future work, asymmetric hollow fibers and carbon molecular sieve membranes based on the most attractive members of the family will be considered. © 2013 Elsevier Ltd. All rights reserved.

  1. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic.

    Science.gov (United States)

    Khan, Muhammad Shar Jhahan; Wang, Ya-Wen; Senge, Mathias O; Peng, Yu

    2018-01-15

    Two highly sensitive probes bearing a nucleophilic imine moiety have been utilized for the selective detection of chemical warfare agent (CWA) mimics. Diethyl chlorophosphate (DCP) was used as mimic CWAs. Both iminocoumarin-benzothiazole-based probes not only demonstrated a remarkable fluorescence ON-OFF response and good recognition, but also exhibited fast response times (10s) along with color changes upon addition of DCP. Limits of detection for the two sensors 1 and 2 were calculated as 0.065μM and 0.21μM, respectively, which are much lower than most other reported probes. These two probes not only show high sensitivity and selectivity in solution, but can also be applied for the recognition of DCP in the gas state, with significant color changes easily observed by the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs.

    Science.gov (United States)

    Zhao, Junjie; Lee, Dennis T; Yaga, Robert W; Hall, Morgan G; Barton, Heather F; Woodward, Ian R; Oldham, Christopher J; Walls, Howard J; Peterson, Gregory W; Parsons, Gregory N

    2016-10-10

    The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs. We found TiO 2 coatings deposited via atomic layer deposition (ALD) onto polyamide-6 nanofibers enable the formation of conformal Zr-based MOF thin films including UiO-66, UiO-66-NH 2 , and UiO-67. Cross-sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF-functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half-lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF-nanofiber textile composites capable of ultra-fast degradation of CWAs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  4. Fast separation and quantification of three anti-glaucoma drugs by high-performance liquid chromatography UV detection

    Directory of Open Access Journals (Sweden)

    Mohamed Walash

    2016-04-01

    Full Text Available In this study, a simple and accurate high-performance liquid chromatography method was developed and validated for fast separation of three anti-glaucoma drugs: timolol maleate (TM, brimonidine tartrate (BM, and latanoprost (LP. Separation of the three drugs was achieved in < 6 minutes using a BDS Hypersil phenyl column and a mobile phase consisting of acetonitrile: 25mM phosphate buffer, pH 4.0 (50: 50, v/v at 1.2 mL/min with UV detection at 210 nm. The method was linear over the concentration ranges of 5.0–200.0 μg/mL, 2.0–80.0 μg/mL and 1.0–25.0 μg/mL with lower detection limits of 0.21 μg/mL, 0.10 μg/mL and 0.11 μg/mL for TM, BM and LP, respectively. The method was applied for the determination of two fixed-dose combination eye drops for the treatment of glaucoma, containing TM together with either BM or LP. Commercial samples of single-ingredient ophthalmic solutions containing the studied drugs were also successfully analyzed. The results obtained by the proposed method were favorably compared with those obtained by the comparison methods using Student's t test and the variance ratio F test.

  5. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.

    Science.gov (United States)

    Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter

    2012-04-01

    This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

  7. Studies on the remediation of environment contaminated with radioactive pollutants using the chemical separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurotaki, Katsumi; Yonehara, Hidenori; Sahoo, S.K. [National Inst. of Radiological Sciences, Chiba (Japan); Ishii, Toshiaki [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Lab. for Radioecology

    2001-12-01

    Remediation of soil and drinking water contaminated with radioactive nuclides is important for the mitigation of radiation exposure. Then we attempted to construct the remediation system including the dose estimation system using the chemical separation technique to remove pollutants from the environment. The information on air dose rate is important for assessment of risk from the radiation exposure. Then we measured the air dose rate and analysed the relationship between air dose rate and the contamination of soil at the area in Russia (Bryansk district) contaminated by Chernobyl Nuclear Power Plant accident. Moreover, we analysed the soil of Bryansk district on the concentration of rare earth elements, thorium and uranium and on the isotope ratio of strontium. On the other hand, we tried to develop the rapid measurement method of radioactivity of Sr-90 which is one of the dangerous radionuclides, because the method of radioactivity measurement in the literature is too time-consuming. It was reported recently that the molecules containing SH group form the covalent bond with gold atoms at the surface of gold plate and that crown ether compounds have strong affinity to strontium. Then we attempted to synthesize the crown ether containing SH group. In addition, we search the inorganic elements accumulated to special organisms of fishes and other animals in sea in order to find out new reagent for trace elements. Transition metal such as Co, Fe, Ni, Ti, V and Zn were detected from the intracellular granules in the bronchial heart of octopus. (author)

  8. Chemical recovery of thallium-203 following production and separation of lead-201

    International Nuclear Information System (INIS)

    Kayfus, G.P.; Boothe, T.E.; Campbell, J.A.; Finn, R.D.; Gilson, A.J.

    1982-01-01

    Because of the cost and limited availabilty of isotopically enriched thallium (>92% 203 Tl), its use in the 203 Tl(p, 3n) 201 Pb nuclear reaction necessitates chemical recovery. An adaptive method has been developed and evaluated. After the separation of 201 Pb, the 203 Tl(I) is oxidized to 203 Tl(III) by Cl 2 , Br 2 or [Fe(CN) 6 ] -2 , precipitated as Tl(OH) 3 with NaOH and subsequently converted to Tl 2 O 3 by heating. Due to potential loss during recovery, the solubilities of Tl(OH) 3 and Tl 2 O 3 in aqueous solution as a function of pH have been studied using the internal tracer 202 Tl(T=12.2 d), produced during cyclotron irradiation. Effective solubility product constants have been determined to be 5.4x10 -48 and 2.5x10 -47 for Tl(OH) 3 and Tl 2 O 3 , respectively. (author)

  9. The thermal oxide reprocessing plant at Sellafield: three years of active operation in the chemical separation plant

    International Nuclear Information System (INIS)

    Philips, C.

    1998-01-01

    The Thermal Oxide Reprocessing Plant at British Nuclear Fuels' Sellafield site started operating in March 1994 with the shearing of its first irradiated fuel. In January 1995 the Chemical Separation part of the plant commenced processing the irradiated fuel feed solution that had been produced in the previous year by the Head End plant. By the Spring of 1998 over 1400 t of irradiated fuel has been reprocessed in Thorp, and the plant is being steadily and successfully ramped up to its normal operating throughput. The performance of the Thorp Chemical Separation Plant has been excellent, with the solvent extraction contactors performing as predicted by the extensive development programme. In particular the uranium-plutonium separation stage, which received intensive development to deal with the effects of the fission product technetium, has given an overall separation performance well in excess of the minimum flowsheet requirement. Decontamination of the uranium and plutonium products from fission products has in general been better than flowsheet requirements and the solvent extraction equipment has operated stably under the automatic controls developed during the R and D programme. Discharges of contaminants to waste streams have generally been in line with, or better than, expectation. This paper compares with flowsheet predictions a range of the key fission product and transuranic decontamination factors achieved in Thorp, shows how waste stream discharges are a small fraction of Sellafield Site discharge limits, demonstrates how uranium - plutonium separation performance has compared with expectation and summarises the overall performance of the Chemical Separation Plant. (author)

  10. A Chemical Eight Group Separation Method for Routine Use in Gamma Spectrometric Analysis. II. Detailed analytical schema

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1961-06-15

    A detailed ion-exchange procedure for the separation of chemical elements in eight groups suitable for subsequent gamma spectrometric analysis is described. The method has been in use for gamma spectrometry of some inorganic - but mostly organic - samples for one year. The separation time for inorganic samples, is usually about 1.5 hours and for organic samples as least 2 hours. One man can separate and count three samples per day. In comparative measurements of short-lived isotopes in biological material 10-12 elements can be analysed thus making possible 30 - 35 determinations per day for one man.

  11. Chemical composition and fuel wood characteristics of fast growing tree species in India

    Science.gov (United States)

    Chauhan, S. K.; Soni, R.

    2012-04-01

    India is one of the growing economy in the world and energy is a critical input to sustain the growth of development. Country aims at security and efficiency of energy. Though fossil fuel will continue to play a dominant role in energy scenario but country is committed to global environmental well being thus stressing on environment friendly technologies. Concerns of energy security in this changing climatic situation have led to increasing support for the development of new renewable source of energy. Government though is determined to facilitate bio-energy and many projects have been established but initial after-affects more specifically on the domestic fuelwood are evident. Even the biomass power generating units are facing biomass crisis and accordingly the prices are going up. The CDM projects are supporting the viability of these units resultantly the Indian basket has a large number of biomass projects (144 out of total 506 with 28 per cent CERs). The use for fuelwood as a primary source of energy for domestic purpose by the poor people (approx. 80 per cent) and establishment of bio-energy plants may lead to deforestation to a great extent and only solution to this dilemma is to shift the wood harvest from the natural forests to energy plantations. However, there is conspicuous lack of knowledge with regards to the fuelwood characteristics of fast growing tree species for their selection for energy plantations. The calorific value of the species is important criteria for selection for fuel but it is affected by the proportions of biochemical constituents present in them. The aim of the present work was to study the biomass production, calorific value and chemical composition of different short rotation tree species. The study was done from the perspective of using the fast growing tree species for energy production at short rotation and the study concluded that short rotation tree species like Gmelina arborea, Eucalyptus tereticornis, Pongamia pinnata

  12. Chemical process to separate iron oxides particles in pottery sample for EPR dating

    Science.gov (United States)

    Watanabe, S.; Farias, T. M. B.; Gennari, R. F.; Ferraz, G. M.; Kunzli, R.; Chubaci, J. F. D.

    2008-12-01

    Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na 6(H 2W 12O 40)·H 2O] becomes useful. However, the sodium polytungstate is very expensive in Brazil; hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCl, HNO 3 and H 2O 2 for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g = 2.00 region, possibly due to a radical of (SiO 3) 3-, mixed with signal of remaining iron [M. Ikeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under γ-irradiation. However, still due to iron influence, the additive method yielded too

  13. Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter

    International Nuclear Information System (INIS)

    Karnani, Hari

    1986-08-01

    the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93m Nb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel

  14. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  15. Determination of the interfacial area of a continuous integrated mixer/separator (CINC) using a chemical reaction method

    NARCIS (Netherlands)

    Schuur, B.; Jansma, W. J.; Winkelman, J. G. M.; Heeres, H. J.

    The effect of the liquid flow rates (18-100 mL/min) and rotor frequency (30-60 Hz) on the interfacial area of a liquid-liquid system in a CINC-V02 continuous integrated mixer/separator have been studied using a chemical reaction method. Topical specific interfacial areas were in the range of 3.2 x

  16. Chemical and physical changes at sodium-stainless steel interfaces in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, C K [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.

    1977-01-01

    In the sodium loops of a fast reactor, mass transfer occurs due to the interaction of flowing sodium on stainless steel surfaces. Under the non-isothermal conditions prevailing in the loop some elements are preferentially leached from the surface layers of the hot zone and transported by sodium to the cooled zone where deposition may take place. The available information on the mass transport in non-isothermal sodium loops has been summarised, and an attempt has been made to understand the mechanisms involved, of which the chemical reactions at the sodium-stainless steel interface are especially important. The rate of diffusion towards the solid/liquid interface may be the rate-determining step in some of these reactions. When a ferritic surface layer is formed by the selective removal of austenitic stabilizing elements, diffusion of alloying constituents through the ferritic layer limits the growth of this layer. Only when the surface film is adherent, the diffusion across this layer becomes important. NaCrO/sub 2/, for instance, has poor adherence, and a surface film of this compound may not inhibit further corrosion.

  17. Establishment of a Fast Chemical Identification System for screening of counterfeit drugs of macrolide antibiotics.

    Science.gov (United States)

    Hu, Chang-Qin; Zou, Wen-Buo; Hu, Wang-Sheng; Ma, Xiao-Kang; Yang, Min-Zhi; Zhou, Shi-Lin; Sheng, Jin-Fang; Li, Yuan; Cheng, Shuang-Hong; Xue, Jing

    2006-01-23

    A Fast Chemical Identification System (FCIS) consisting of two colour reactions based on functional groups in molecules of macrolide antibiotics and two TLC methods was developed for screening of fake macrolide drugs. The active ingredients could be extracted from their oral preparations by absolute alcohol. Sulfuric acid reaction as a common reaction of macrolides was first used to distinguish the macrolides from other types of drugs and then 16-membered macrolides and 14-membered ones were distinguished by potassium permanganate reactions depending on the time of loss of colour in the test solution; after which a TLC method carried out on a GF(254) plate (5 cm x 10 cm) was chosen to further identification of the macrolides. The mobile phase A consisting of ethyl acetate, hexane and ammonia (100:15:15, v/v) was used for the identification of 14-membered macrolides, and the mobile phase B consisting of trichloromethane, methanol and ammonia (100:5:1, v/v) was used for the identification of 16-membered ones. A suspected counterfeit macrolide preparation can be identified within 40 min. The system can be used under different conditions and has the virtues of robustness, simplicity and speed.

  18. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    Duie, P.; Dirian, G.

    1962-01-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40 Ca and 46 Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH) 2 ; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H 2 bubbles. (authors) [fr

  19. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  20. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    Science.gov (United States)

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigation of equilibrium core by recycling MA and LLFP in fast reactor cycle. 2. Investigation of LLFP confined in Equilibrium Core with element separation

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Shono, Akira; Ishikawa, Makoto

    2000-02-01

    A feasibility study has been performed on a self-consistent fuel cycle system in the nuclear fuel recycle system with fast reactors. In this system, the self-generated MAs (Minor Actinides) and LLFPs (Long-Lived Fission Products) are confined and incinerated in the fast reactor, which is called the 'Equilibrium Core' concept. However, as the isotope separations for selected LLFPs have been assumed in this cycle system, it seems that this assumption is far from realistic one from the viewpoint of economy with respect to the fuel cycle system. In this study, the possibility for realization of the 'Equilibrium Core' concept is evaluated for three fuel types such as oxide, nitride and metallic fuels, provided that the isotopic separation of LLFPs is changed to the element one. This study provides, that is to say, how many LLFP elements can be confined in the 'Equilibrium Core' with element separation. This report examines the nuclear properties of the Equilibrium Core' for various combinations of LLFP incineration schemes from the viewpoints of the risk of geological disposal and the limit in confinable quantity of LLFPs. From the viewpoint of the risk of geological disposal estimated by the retardation factor, it is possible to confine with element separation for Tc, I and Se even in the oxide fueled core. From the standpoint of the limit of confinable amounts of LLFPs, on the other hand, Tc, I, Se, Sn and Cs can be confined with element separate only in case that the nitride fuel is chosen. (author)

  2. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Tomikawa, Hiroki [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  3. Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated from microbial-based conversions.

    Science.gov (United States)

    Yenkie, Kirti M; Wu, Wenzhao; Maravelias, Christos T

    2017-01-01

    Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactor effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the

  4. Simulation codes of chemical separation process of spent fuel reprocessing. Tool for process development and safety research

    International Nuclear Information System (INIS)

    Asakura, Toshihide; Sato, Makoto; Matsumura, Masakazu; Morita, Yasuji

    2005-01-01

    This paper reviews the succeeding development and utilization of Extraction System Simulation Code for Advanced Reprocessing (ESSCAR). From the viewpoint of development, more tests with spent fuel and calculations should be performed with better understanding of the physico-chemical phenomena in a separation process. From the viewpoint of process safety research on fuel cycle facilities, it is important to know the process behavior of a key substance; being highly reactive but existing only trace amount. (author)

  5. WORKSHOP ON NEW DEVELOPMENTS IN CHEMICAL SEPARATIONS FROM COMBINATORIAL CHEMISTRY AND RELATED SYNTHETIC STRATEGIES

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Stephen G. [University of Pittsburgh, Pittsburgh, Pennsylvania

    1998-08-22

    The power of combinatorial chemistry and related high throughput synthetic strategies is currently being pursued as a fruitful way to develop molecules and materials with new properties. The strategy is motivated, for example in the pharmaceutical industry, by the difficulty of designing molecules to bind to specific sites on target biomolecules. By synthesizing a variety of similar structures, and then finding the one that has the most potent activity, new so-called lead structures will be found rapidly. Existing lead structures can be optimized. This relatively new approach has many implications for separation science. The most obvious is the call for more separations power: higher resolution, lower concentrations, higher speed. This pressure butresses the traditional directions of research into the development of more useful separations. The advent of chip-based, electroosmotically pumped systems1 will certainly accelerate progress in this traditional direction. The progress in combinatorial chemistry and related synthetic strategies gives rise to two other, broadly significant possibilities for large changes in separation science. One possibility results from the unique requirements of the synthesis of a huge number of products simultaneously. Can syntheses and separations be designed to work together to create strategies that lead to mixtures containing only desired products but without side products? The other possibility results from the need for molecular selectivity in separations. Can combinatorial syntheses and related strategies be used in the development of better separations media? A workshop in two parts was held. In one half-day session, pedagogical presentations educated across the barriers of discipline and scale. In the second half-day session, the participants broke into small groups to flesh out new ideas. A panel summarized the breakout discussions.

  6. Radiochemical studies in chemical separation and spectrographic determination of rare earths in thorium oxide matrix (Preprint No. RA.06)

    International Nuclear Information System (INIS)

    Adya, V.C.; Dhawale, B.A.; Rajeshwari, B.; Bangia, T.R.; Sastry, M.D.

    1989-01-01

    A chemical separation procedure was standardised for the separation of traces of rare earths from ThO 2 matrix using HDEHP (Di 2-ethyl hexyl phosphoric acid). The studies were carried out using both nitric acid and hydrochloric acid medium in different concentrations. The extraction studies were also carried out using radioactive isotopes of rare earths viz. 141 Ce, 152-154 Eu, 153 Gd, 170 Tm etc. The extraction was effective in both media. In 0.1 M HDEHP/xylene and 3 M HNO 3 , Ce was partially extracted into organic phase. So HCl/xylene medium was chosen for extraction purposes. The recovery was confirmed by both gamma counting and emission spectropgraphic method. It was found to be quantitative within experimental error. The separation procedure development here was used for determination of rare earths in thorium oxide matrix by emission spectrographic method. (author)

  7. Relation between separation factor of carbon isotope and chemical reaction of CO2 with amine in nonaqueous solvent

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1989-01-01

    The separation factor for carbon isotope exchange reaction between CO 2 and amine in nonaqueous solvent was related to absorption reaction of CO 2 in a solution. The test solutions were mixtures of primary amine (such as butylamine and tert-butylamine) or secondary amine (such as diethylamine, dipropylamine and dibutylamine) diluted with nonpolar solvent (octane or triethyalmine) or polar solvent (methanol), respectively. The isotope exchange reaction consists of three steps related to chemical reaction of CO 2 in amine and nonaqueous solvent mixture, namely the reaction between CO 2 and carbamic acid, that between CO 2 and amine carbamate, and that between CO 2 and carbamic ion. Above all, the isotope separation factor between CO 2 and carbamic acid had the highest value. The overall separation factor can be higher in amine-nonaqueous solvent mixture where the concentration of carbamic acid becomes higher. (author)

  8. Renovation of CPF (Chemical Processing Facility) for Development of Advanced Fast Reactor Fuel Cycle System

    International Nuclear Information System (INIS)

    Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara; Kazunori Nomura; Shigehiko Miyachi; Yoshiaki Ichige; Tadahiro Shinozaki; Shinichi Ohuchi

    2008-01-01

    CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as a dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation

  9. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    Science.gov (United States)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  10. Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters.

    Science.gov (United States)

    Šebestová, Andrea; Petr, Jan

    2017-12-01

    The combination of capillaries with different internal diameters was used to accelerate the separation of enantiomers in capillary electrophoresis. Separation of R,S-1,1'-binaphthalene-2,2'-diyl hydrogen phosphate using isopropyl derivative of cyclofructan 6 was studied as a model system. The best separation conditions included 500 mM sodium borate pH 9.5 with 60 mM concentration of the chiral selector. Separation lasted approx. 1.5 min using the combination of 50 and 100 μm id capillaries of 9.7 cm and 22.9 cm, respectively. It allowed approx. 12-fold acceleration in comparison to the traditional long-end separation mainly due to the higher electroosmotic flow generated in the connected capillaries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Determination of phosphorus in metals by neutron activation and chemical separation as hydride

    International Nuclear Information System (INIS)

    Rouchaud, J.C.; Fedoroff, M.

    1993-01-01

    Phosphorous at trace levels alters the properties of metals and alloys. Its determination was investigated by radiochemical neutron activation analysis. Separation by solvent extraction or by evolution as P 0 showed to be neither selective nor quantitative in presence of a metallic matrix. Therefore, a new method of separation by reduction to phosphorous hydride followed by liquid scintillation counting was investigated. This method is quantitative in the case of non-radioactive iron doped with radioactive phosphorus. At present, the separation is not quantitative for irradiation iron samples, owing probably to hot atom or radiation effects. A detection limit of 0.002 μg is expected. (author) 10 refs.; 1 fig.; 3 tabs

  12. A fast chemical route for the synthesis of TBHQ functionalized reduced graphene oxide and its electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Subhasis; Sen, Pintu, E-mail: psen@vecc.gov.in; Bandyopadhyay, S.K.

    2016-02-01

    A fast chemical route for the synthesis of tertiary butyl hydroquinone (TBHQ) functionalized reduced graphene oxide (FRGO) and their application as high performance electrode materials for supercapacitors have been reported. Reductions of chemically exfoliated graphene oxides (GO) in the presence of small amount of TBHQ (1–2 wt % with respect to GO) at various time periods were investigated through XRD, FTIR and Raman studies. Reappearance of broad diffraction peak close to graphite peak (002) reveals an efficient method of reduction of different oxygen containing functional groups present in GO/FGO resulting in a decrease of interlayer d-spacing (∼3.5 Å). Absence of the absorption peaks in FTIR for –C=O, t-O–H, epoxide and alkoxy groups supports the complete reduction of GO to FRGO by hydrazine hydrate within a short time period of 4 h reduction under reflux condition. A large red shift in UV spectrum of FRGO – 4 h (270 nm) reveals the complete reduction of graphene oxide. The average crystallite sp{sup 2} domains sizes have been estimated through Raman spectroscopy. Plausible mechanism of TBHQ assisted fast chemical reduction of FGO has been enumerated. 1.5 wt % TBHQ in FRGO shows the best electrochemical performance where TBHQ not only acts as a reducing agent during functionalization, but also plays as an active redox molecule for enhanced capacitance of 200 F/g. - Highlights: • A fast chemical route has been adopted for the synthesis of TBHQ functionalized RGO. • The kinetics of chemical reduction becomes faster in the presence of TBHQ. • The FTIR spectrum of functionalized RGO supports the complete reduction process. • TBHQ also plays a vital role for enhancing capacitance of functionalized RGO.

  13. Proceedings of the 23. International Symposium on Physico-Chemical Methods of Separation - Ars Separatoria 2008

    International Nuclear Information System (INIS)

    Koter, S.; Koter, I.

    2008-01-01

    Annual symposia '' Ars Separatoria '' offer the scientists and engineers information on the latest achievements in the separation sciences. In 2008 participants presented 6 lectures, 16 short lectures and 74 posters. Of special interest were results obtained using solvent extraction and ion exchange methods

  14. Proceedings of the 22. International Symposium on Physico-Chemical Methods of Separation - Ars Separatoria 2007

    International Nuclear Information System (INIS)

    Trochimczuk, A.W.; Walkowiak, W.

    2007-01-01

    Annual symposia '' Ars Separatoria '' offer the scientists and engineers information on the latest achievements in the separation sciences. In 2007 participants presented 9 plenary lectures, 15 communications and 45 posters. Of special interest were results obtained using solvent extraction and ion exchange methods

  15. Proceedings of the 22. International Symposium on Physico-Chemical Methods of Separation - Ars Separatoria 2007

    Energy Technology Data Exchange (ETDEWEB)

    Trochimczuk, A W; Walkowiak, W [eds.

    2007-07-01

    Annual symposia '' Ars Separatoria '' offer the scientists and engineers information on the latest achievements in the separation sciences. In 2007 participants presented 9 plenary lectures, 15 communications and 45 posters. Of special interest were results obtained using solvent extraction and ion exchange methods.

  16. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Development of a Systems Engineering Model of the Chemical Separations Process

    International Nuclear Information System (INIS)

    Sun, Lijian; Li, Jianhong; Chen, Yitung; Clarksean, Randy; Ladler, Jim; Vandergrift, George

    2002-01-01

    Work is being performed to develop a general-purpose systems engineering model for the AAA separation process. The work centers on the development of a new user interface for the AMUSE code and on the specification of a systems engineering model. This paper presents background information and an overview of work completed to date. (authors)

  18. Proceedings of the 24. International Symposium on Physico-Chemical Methods of Separation - Ars Separatoria 2009

    International Nuclear Information System (INIS)

    Trochimczuk, A.W.; Walkowiak, W.

    2009-01-01

    Annual symposia '' Ars Separatoria '' offer the scientists and engineers information on the latest achievements in the separation sciences. In 2009 participants presented 9 lectures, 16 short lectures and 63 posters. Of special interest were results obtained using solvent extraction and ion exchange methods

  19. Polyacrylonitrile based composite materials with extracting agents containing chemically bonded CMPO groups for separation of actinoids

    Czech Academy of Sciences Publication Activity Database

    Kameník, Jan; Šebesta, F.; John, J.; Böhmer, V.; Rudzevich, V.; Grüner, Bohumír

    2015-01-01

    Roč. 304, č. 1 (2015), s. 313-319 ISSN 0236-5731 Institutional support: RVO:61388980 ; RVO:61389005 Keywords : actinoids * CMPO * Calix[4]arene * cobalt bis(dicarbollide) * polyacrylonitrile * composite material Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.983, year: 2015

  20. Polyaniline/polybenzimidazole blends: characterisation of its physico-chemical properties and gas separation behaviour

    Czech Academy of Sciences Publication Activity Database

    Giel, Verena; Kredatusová, Jana; Trchová, Miroslava; Brus, Jiří; Žitka, Jan; Peter, Jakub

    2016-01-01

    Roč. 77, April (2016), s. 98-113 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GPP106/12/P643 Institutional support: RVO:61389013 Keywords : gas separation * gas sorption * gas permeation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.531, year: 2016

  1. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome

    DEFF Research Database (Denmark)

    Lüdemann, Gesa; Solov'yov, Ilia; Kubar, Tomás

    2015-01-01

    upon the electron transfer. This approach allows us to follow the time evolution of the electron transfer in an unbiased fashion and to reveal the molecular driving force which ensures fast electron transfer in cryptochrome guaranteeing formation of a persistent radical pair suitable...

  2. Separate and unequal: the influence of neighborhood and school characteristics on spatial proximity between fast food and schools.

    Science.gov (United States)

    Kwate, Naa Oyo A; Loh, Ji Meng

    2010-08-01

    Social science and health literature have identified residential segregation as a critical factor in exposure to health-related resources, including food environments. Differential spatial patterning of food environments surrounding schools has significant import for youth. We examined whether fast food restaurants clustered around schools in New York City, and whether any observed clustering varied as a function of school type, school racial demographics, and area racial and socioeconomic demographics. We geocoded fast food locations from 2006 (n=817) and schools from 2004-2005 (n=2096; public and private, elementary and secondary) in the five boroughs of New York City. A point process model (inhomogeneous cross-K function) examined spatial clustering. A minimum of 25% of schools had a fast food restaurant within 400 m. High schools had higher fast food clustering than elementary schools. Public elementary and high schools with large proportions of Black students or in block groups with large proportions of Black residents had higher clustering than White counterparts. Finally, public high schools had higher clustering than private counterparts, with 1.25 to 2 times as many restaurants than expected by chance. The results suggest that the geography of opportunity as it relates to school food environments is unequal in New York City. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Metal–organic covalent network chemical vapor deposition for gas separation

    NARCIS (Netherlands)

    Boscher, N.D.; Wang, M.; Perrotta, A.; Heinze, K.; Creatore, A.; Gleason, K.K.

    2016-01-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal–organic covalent network (MOCN) layers. The resulting hyper-thin and flexible

  4. Computer Aided Methods & Tools for Separation & Purification of Fine Chemical & Pharmaceutical Products

    DEFF Research Database (Denmark)

    Afonso, Maria B.C.; Soni, Vipasha; Mitkowski, Piotr Tomasz

    2006-01-01

    An integrated approach that is particularly suitable for solving problems related to product-process design from the fine chemicals, agrochemicals, food and pharmaceutical industries is presented together with the corresponding methods and tools, which forms the basis for an integrated computer...

  5. Effect of Separation Method on Chemical Composition and Insecticidal Activity of Lamiaceae Isolates

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena; Karban, Jindřich; Rochová, Kristina; Pavela, R.; Barnet, M.

    2013-01-01

    Roč. 47, MAY (2013), s. 69-77 ISSN 0926-6690 R&D Projects: GA MŠk 2B06049; GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * iInsecticidal activity * lamiaceae Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.208, year: 2013

  6. Characterization of high level waste for minor actinides by chemical separation and alpha spectrometry

    International Nuclear Information System (INIS)

    Murali, M.S.; Bhattacharayya, A.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2010-01-01

    Quantification of minor actinides present in of High Level Waste (HLW) solutions originating from the power reactors is important in view of management of radioactive wastes and actinide partitioning. Several methods such as ICP-MS, X-ray fluorescence methods, ICP-AES, alpha spectrometry are used in characterizing such types of wastes. As alpha spectrometry is simple and reliable, this technique has been used for the estimation of minor actinides after devising steps of separation for estimating Np and Pu present in HLW solutions of PHWR origin. Using a wealth of knowledge appropriate to the solution chemistry of actinides, the task of separation, though appears easy, it is challenging job for a radiochemist handling high-dose HLW samples, for obtaining clean alpha peaks for Np and Pu. This paper reports on the successful attempt made to quantify 241 Am, 244 Cm, Pu (239 mainly) and 237 Np present in HLW-PHWR obtained from PREFRE, Tarapur

  7. Development of a fully automated open-column chemical-separation system—COLUMNSPIDER—and its application to Sr-Nd-Pb isotope analyses of igneous rock samples

    Science.gov (United States)

    Miyazaki, Takashi; Vaglarov, Bogdan Stefanov; Takei, Masakazu; Suzuki, Masahiro; Suzuki, Hiroaki; Ohsawa, Kouzou; Chang, Qing; Takahashi, Toshiro; Hirahara, Yuka; Hanyu, Takeshi; Kimura, Jun-Ichi; Tatsumi, Yoshiyuki

    A fully automated open-column resin-bed chemical-separation system, named COLUMNSPIDER, has been developed. The system consists of a programmable micropipetting robot that dispenses chemical reagents and sample solutions into an open-column resin bed for elemental separation. After the initial set up of resin columns, chemical reagents, and beakers for the separated chemical components, all separation procedures are automated. As many as ten samples can be eluted in parallel in a single automated run. Many separation procedures, such as radiogenic isotope ratio analyses for Sr and Nd, involve the use of multiple column separations with different resin columns, chemical reagents, and beakers of various volumes. COLUMNSPIDER completes these separations using multiple runs. Programmable functions, including the positioning of the micropipetter, reagent volume, and elution time, enable flexible operation. Optimized movements for solution take-up and high-efficiency column flushing allow the system to perform as precisely as when carried out manually by a skilled operator. Procedural blanks, examined for COLUMNSPIDER separations of Sr, Nd, and Pb, are low and negligible. The measured Sr, Nd, and Pb isotope ratios for JB-2 and Nd isotope ratios for JB-3 and BCR-2 rock standards all fall within the ranges reported previously in high-accuracy analyses. COLUMNSPIDER is a versatile tool for the efficient elemental separation of igneous rock samples, a process that is both labor intensive and time consuming.

  8. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Ziemer, M.; Dyrkacz, G.; Kaminski, M.; Vandegrift, G.F.; Atkins, K.J.; Bos, F.M.; Elder, G.R.; Swift, C.A.

    1994-12-01

    Magnetic particles (MAG*SEP SM ) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEP SM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEP SM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEP SM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  9. ICP-AES determination of rare earths in zirconium with prior chemical separation of the matrix

    International Nuclear Information System (INIS)

    Rajeswari, B.; Dhawale, B.A.; Page, A.G.; Sastry, M.D.

    2002-01-01

    Zirconium being one of the most important material in nuclear industry used as a fuel cladding in reactors and an additive in advanced fuels necessitates its characterization for trace metallic contents. Zirconium, as refractory in nature as the rare earth elements, has a complex spectrum comprising of several emission lines. Rare earths, which are high neutron absorbers have to be analysed at very low limits. Hence, to achieve the desired limits, the major matrix has to be separated prior to rare earth determination. The present paper describes the method developed for the separation of rare earths from zirconium by solvent extraction using Trioctyl Phosphine Oxide (TOPO) as the extractant followed by their determination using Inductively Coupled Plasma - Atomic Emission Spectrometric (ICP-AES) method. Initially, radiochemical studies were carried out using known amounts of gamma active tracers of 141 Ce, 152-154 Eu, 153 Gd and 95 Zr for optimisation of extraction conditions using Tl- activated NaI detector. The optimum conditions at 0.5 M TOPO/xylene in 6 M HCl so as to achieve a quantitative recovery of rare earth analytes alongwith a near total extraction of zirconium in the organic phase, was further extended to carry out the studies using ICP-AES method. The recovery of rare earths was found to be quantitative within experimental error with a precision better than 10% RSD. (author)

  10. Rate enhancement in microfabricated chemical reactors under fast forced temperature oscillations

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Olsen, Jakob L.; Jensen, Søren

    2006-01-01

    Oxidation of CO under fast forced temperature oscillations shows increased reaction rate compared to steady state. A maximum increase of 40% is observed relative to steady state. The reaction rate is investigated for varying mean temperature, amplitude and frequency. As function of mean temperatu...

  11. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    Science.gov (United States)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  12. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    Science.gov (United States)

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  13. Role of the chemical engineering technician in applied research related to tritium separation from aqueous effluents

    International Nuclear Information System (INIS)

    Nelson, S.D.

    1978-01-01

    Applied research and development activities related to the removal of tritium from aqueous effluent streams have presented broad opportunities to the chemical engineering technician for professional growth. Technician job activities involve operating complex analytical instrumentation and constructing, maintaining, and operating experimental electrolysis apparatus. The technician is a member of a professional team including scientific, engineering, and other technical personnel and as such is expected to exercise creative thought. Proximity of a large university and availability of formalized ''in house'' training courses provide incentives for technicians to broaden their academic base concurrent with their work involvement

  14. Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation

    International Nuclear Information System (INIS)

    Rochedo, Pedro R.R.; Szklo, Alexandre

    2013-01-01

    Highlights: • This work defines the minimum work of separation (MWS) for a capture process. • Findings of the analysis indicated a MWS of 0.158 GJ/t for post-combustion. • A review of commercially available processes based on chemical absorption was made. • A review of learning models was conducted, with the addition on a novel model. • A learning curve for post-combustion carbon capture was successfully designed. - Abstract: Carbon capture is one of the most important alternatives for mitigating greenhouse gas emissions in energy facilities. The post-combustion route based on chemical absorption with amine solvents is the most feasible alternative for the short term. However, this route implies in huge energy penalties, mainly related to the solvent regeneration. By defining the minimum work of separation (MWS), this study estimated the minimum energy required to capture the CO 2 emitted by coal-fired thermal power plants. Then, by evaluating solvents and processes and comparing it to the MWS, it proposes the learning model with the best fit for the post-combustion chemical absorption of CO 2 . Learning models are based on earnings from experience, which can include the intensity of research and development. In this study, three models are tested: Wright, DeJong and D and L. Findings of the thermochemical analysis indicated a MWS of 0.158 GJ/t for post-combustion. Conventional solvents currently present an energy penalty eight times the MWS. By using the MWS as a constraint, this study found that the D and L provided the best fit to the available data of chemical solvents and absorption plants. The learning rate determined through this model is very similar to the ones found in the literature

  15. Application of a Fast Separation Method for Anti-diabetics in Pharmaceuticals Using Monolithic Column: Comparative Study With Silica Based C-18 Particle Packed Column.

    Science.gov (United States)

    Hemdan, A; Abdel-Aziz, Omar

    2018-04-01

    Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.

  16. A chemically selective laser ion source for the on-line isotope separation

    International Nuclear Information System (INIS)

    Scheerer, F.

    1993-03-01

    In this thesis a laser ion source is presented. In a hot chamber the atoms of the elements to be studied are resonantly by light of pulsed dye lasers, which are pumped by pulsed copper-vapor lasers with extremely high pulse repetition rate (ν rep ∼ 10 kHz), stepwise excited and ionized. By the storage of the atoms in a hot chamber and the high pulse repetition rate of the copper-vapor lasers beyond the required high efficiency (ε ∼ 10%) can be reached. First preparing measurements were performed at the off-line separator at CERN with the rare earth elements ytterbium and thulium. Starting from the results of these measurements further tests of the laser ion source were performed at the on-line separator with in a thick tantalum target produced neutron-deficient ytterbium isotopes. Under application of a time-of-flight mass spectrometer in Mainz an efficient excitation scheme on the resonance ionization of tin was found. This excitation scheme is condition for an experiment at the GSI for the production of the extremely neutron-deficient, short-lived nucleus 102 Sn. In the summer 1993 is as first application of the newly developed laser ion source at the PSB-ISOLDE at CERN an astrophysically relevant experiment for the nuclear spectroscopy of the neutron-rich silver isotopes 124-129 Ag is planned. This experiment can because of the lacking selectivity of conventional ion sources only be performed by means of the here presented laser ion source. The laser ion source shall at the PSB-ISOLDE 1993 also be applied for the selective ionization of manganese. (orig./HSI) [de

  17. A systematic chemical separation for thermal neutron activation analysis of seven noble metals in rock

    International Nuclear Information System (INIS)

    Ayabe, Muneo

    1980-01-01

    A method for the systematic activation analysis of seven noble metals - ruthenium, silver, rhenium, osmium, iridium, platinum and gold - in rocks were developed and examined with radiotracers and irradiated rock samples. After the fusion of the irradiated rock sample with sodium hydroxide and sodium peroxide, 10% sodium sulfide solution is added and rhenium is extracted with pyridine-benzene mixture from 6N sodium hydroxide solution. From the hydroxide-sulfide precipitate fraction, ruthenium and osmium are distilled as tetroxides, silver is precipitated as chloride, gold is extracted with ethyl acetate, and iridium and platinum are extracted with diantipyrylmethane. Each fraction is purified and subjected to the γ-ray spectrometry. Chemical yields for the elements are more than 60%. Determination limits are given for the seven elements. (author)

  18. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence; Burrage, Kevin; Zygalakis, Konstantinos C.

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when

  19. Ambient Pressure Laser Desorption—Chemical Ionization Mass Spectrometry for Fast and Reliable Detection of Explosives, Drugs, and Their Precursors

    Directory of Open Access Journals (Sweden)

    René Reiss

    2018-06-01

    Full Text Available Fast and reliable information is crucial for first responders to draw correct conclusions at crime scenes. An ambient pressure laser desorption (APLD mass spectrometer is introduced for this scenario, which enables detecting substances on surfaces without sample pretreatment. It is especially useful for substances with low vapor pressure and thermolabile ones. The APLD allows for the separation of desorption and ionization into two steps and, therefore, both can be optimized separately. Within this work, an improved version of the developed system is shown that achieves limits of detection (LOD down to 500 pg while remaining fast and flexible. Furthermore, realistic scenarios are applied to prove the usability of this system in real-world issues. For this purpose, post-blast residues of a bomb from the Second World War were analyzed, and the presence of PETN was proven without sample pretreatment. In addition, the analyzable substance range could be expanded by various drugs and drug precursors. Thus, the presented instrumentation can be utilized for an increased number of forensically important compound classes without changing the setup. Drug precursors revealed a LOD ranging from 6 to 100 ng. Drugs such as cocaine hydrochloride, heroin, (3,4-methylendioxy-methamphetamine hydrochloride (MDMA hydrochloride, and others exhibit a LOD between 10 to 200 ng.

  20. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    Science.gov (United States)

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  1. Fast Formation of Conductive Material by Simultaneous Chemical Process for Infilling Through-Silicon Via

    Science.gov (United States)

    Kawakita, Jin; Chikyow, Toyohiro

    2012-06-01

    It is necessary to develop a fast and inexpensive fabrication process of vertical electric wiring by through-silicon via (TSV) technology for advanced three-dimensional semiconductor devices. In this research, a fast-forming conductive composite was successfully developed by simultaneous deposition of conductive organic polymer (polypyrrole) and metal (silver) from the liquid phase, accelerated by photoirradiation. The growth rate of the composite was 38 nm·s-1, which is more than 10 times higher than that of copper by conventional plating. The electric conductivity of the composite was 2.1×104 Ω-1·cm-1, which is on the same level as general metal conductors. In addition, the effects of reaction conditions on the growth rate and the conductivity of the composites were revealed. From these results, the infilling time of the TSV was expected to shorten from the present 2-10 h to 5-10 m.

  2. Emissions of Volatile Organic Compounds (VOCs) from Animal Husbandry: Chemical Compositions, Separation of Sources and Animal Types

    Science.gov (United States)

    Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.

    2016-12-01

    Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.

  3. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  4. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  5. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  6. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  7. Atomization of Cd in U+Zr matrix after chemical separation using GF-AAS

    International Nuclear Information System (INIS)

    Thulasidas, S.K.; Gupta, Santosh Kumar; Natarajan, V.

    2014-01-01

    Studies on the direct atomization of Cd in U+Zr matrix were carried out and the effect of matrix composition and matrix concentration on the analyte absorbance were investigated. Development of a method using graphite furnace atomic absorption spectrometry (GF-AAS) for determination of Cd is required for FBR fuel (U+20%Zr) materials. It was reported that the absorbance signal for Cd is reduced with matrix, 50% at 20 mg/mL of U and 10 mg/mL of Zr matrix as compared to matrix free solution. To use the method for U+Zr mixed oxide samples, effect of varying composition of Zr in U+Zr mixed matrix was studied. The results indicated that Cd absorbance signal remained unaffected in the range 0-40% Zr in (U+Zr) mixed matrix with 20 mg/mL total matrix. Based on these studies, an analytical method was developed for the direct determination of Cd with 20% Zr in 20 mg/mL of U+Zr solution with optimized experimental parameters. The range of analysis was found to be 0.005-0.1 g/mL for Cd with 20 mg/mL matrix; this leads to detection limits of 0.25 ppm. To meet the specification limits at 0.1 ppm level for Cd, it was necessary to separate the matrix from the sample using solvent extraction method. It was reported that with 30%TBP+70%CCl 4 in 7M HNO 3 , a selective simultaneous extraction of U and Zr into the organic phase can be achieved. In the present studies, same extraction procedure was used with 100 mg U+Zr sample. The effect of U+Zr in raffinate on Cd was also estimated. To validate the method, the extracted aqueous samples were also analyzed by ICP-AES SPECTRO ARCOS SOP technique independently and the results were compared. It was seen that Cd estimation was not affected in the presence of 10-50 μg/mL U+Zr by ICP-AES as well

  8. chemical studies on the reactivity of some organic extractants for extraction and separation of certain elements from aqueous solutions

    International Nuclear Information System (INIS)

    Aly, M.M.I.

    2010-01-01

    Lanthanide elements such as lanthanum and neodymium are important elements in photo-electronic and metallurgical industries as well as in nuclear technology. The main constituents of the spent nuclear fuel are actinides like uranium, thorium and various fission products including lanthanides. The co-ordination compounds of the trivalent lanthanum and neodymium continues to be an active research area, which includes the specific spectroscopic and magnetic properties of rare earth ions and their applications as super molecular device, contrast-enhancing agents in magnetic resonance imaging, optical signal amplifiers and electroluminescent (EL) devices. Hence, the separation and purification of these elements is of great concern. Solvent extraction technique is employed to separate and purify rare earth elements in an industrial scale, but the separation of lanthanum and neodymium is a difficult task, as lanthanide ions exhibit similar chemical and physical properties. They have generally common and stable +3 oxidation state that requires synthesis of certain extractants which are able to extract them from different aqueous solutions. During the last twenty years, different publications have pointed out the remarkable properties of alkyl amide in the field of separation chemistry. These extractants are able to form stable co-ordination compounds with different metallic ions. In this concern, this thesis deals with the synthesis of different amide extractants namely N, N diethylacetoamide (DEAA), N, N Teteraphenyl malonamide (TPMA), N, N diphenylbenzamide (DPBA), N, N' diphenylacetoamide (DPAA), and N, N' Teteraethyl malonamide (TEMA), which were synthesized, characterized and compared with Aliquat-336 in kerosene for extraction and separation of La (III) and Nd (III). The effect of the different parameters affecting the extraction of these metals from aqueous nitric acid medium in the different systems has been studied in terms of shaking time, nitric acid, hydrogen

  9. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.

    Science.gov (United States)

    Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-08-22

    In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high

  10. Development of New Generation of Ceramics for Environmentally Focused Chemical Separations

    Science.gov (United States)

    Ramakrishnan, Girish

    This dissertation focuses on the use of composite materials for environmental applications. For the first time, applications of both fresh and aged concrete as inexpensive adsorbents for nitrogen dioxide (NO2) removal is demonstrated. Concrete is the most widely used composite material of the modern era. Cement manufacturing (a major component of concrete) is considered to be one of the leading contributors to air pollution, resulting in 7% of the global carbon dioxide emissions along with a number of other harmful pollutants such as oxides, mercury and particulates. These emissions aide in the formation of acid rain, smog, and toxic ground level ozone, causing detrimental effects such as respiratory illnesses, visibility reduction, eutrification and global warming. This thesis offers a novel and sustainable solution in mitigating NOX emissions, by introducing the significant adsorption potential of recycled concrete. The work is based on both commercially available cement paste and already aged concrete samples, providing truly scalable solutions. The concrete samples aged for different periods of time were exposed to NO2 to measure their adsorption capacity. The results show that all of the concrete samples (fresh and aged) exhibited excellent NO2 adsorption capacity, with the fresh concrete samples removing almost 100% of the NO2. Furthermore, to compare the effects of long term aging, 12 year-old recently demolished concrete samples were obtained and its NOX removal was shown to be almost 60%. The experimental results provide evidence of nitrate and nitrite species formation from chemical reactions occurring between NO2 and surface alkaline species. This important discovery can be utilized for NO2 removal and subsequent NOX sequestered demolished concrete (NSDC) recycling in new concrete, either as a set accelerating admixture or as a corrosion inhibitor, a big leap towards better sustainability and longevity of the new reinforced concrete structures. The rest

  11. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation

    KAUST Repository

    Choi, Seung Hak; Jansen, Johannes C.; Tasselli, Franco; Barbieri, Giuseppe; Drioli, Enrico

    2010-01-01

    In this study, chemically cross-linked asymmetric P84® co-polyimide hollow fibre membranes with enhanced separation performance were fabricated, using a dry-wet spinning process with an innovative in-line cross-linking step. The chemical

  12. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    Science.gov (United States)

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  13. Significance of the molecular diffusion for chemical and isotopic separation during the formation and degradation of natural gas reservoirs

    International Nuclear Information System (INIS)

    Hermichen, W.D.; Schuetze, H.

    1987-01-01

    Investigations at natural gas fields as well as modelling experiments have pointed out that changes of the chemical and isotopic composition occur in the course of migration, accumulation and dispersion of natural gas. Dissolution and sorption processes as well as in particular the diffusion process are considered to be the elementary separation processes. The influences on dissolved and freely flowing gases and on stationary gas accumulation are described by differential equations. The simulation of the following phenomena is shown: (1) immigration of gas into the pore space which is hydrodynamically passive, (2) diffusive migration of gas into the environment of the accumulation, and (3) diffusive 'decompression' into the roof and the floor of a gas bed and a gas containing subsoil water stratum, respectively. (author)

  14. Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals.

    Science.gov (United States)

    Braga, Rodolpho C; Alves, Vinicius M; Muratov, Eugene N; Strickland, Judy; Kleinstreuer, Nicole; Trospsha, Alexander; Andrade, Carolina Horta

    2017-05-22

    Chemically induced skin sensitization is a complex immunological disease with a profound impact on quality of life and working ability. Despite some progress in developing alternative methods for assessing the skin sensitization potential of chemical substances, there is no in vitro test that correlates well with human data. Computational QSAR models provide a rapid screening approach and contribute valuable information for the assessment of chemical toxicity. We describe the development of a freely accessible web-based and mobile application for the identification of potential skin sensitizers. The application is based on previously developed binary QSAR models of skin sensitization potential from human (109 compounds) and murine local lymph node assay (LLNA, 515 compounds) data with good external correct classification rate (0.70-0.81 and 0.72-0.84, respectively). We also included a multiclass skin sensitization potency model based on LLNA data (accuracy ranging between 0.73 and 0.76). When a user evaluates a compound in the web app, the outputs are (i) binary predictions of human and murine skin sensitization potential; (ii) multiclass prediction of murine skin sensitization; and (iii) probability maps illustrating the predicted contribution of chemical fragments. The app is the first tool available that incorporates quantitative structure-activity relationship (QSAR) models based on human data as well as multiclass models for LLNA. The Pred-Skin web app version 1.0 is freely available for the web, iOS, and Android (in development) at the LabMol web portal ( http://labmol.com.br/predskin/ ), in the Apple Store, and on Google Play, respectively. We will continuously update the app as new skin sensitization data and respective models become available.

  15. Fast neutron sensor for detection of explosives and chemical warfare agents

    International Nuclear Information System (INIS)

    Valkovic, Vladivoj; Sudac, Davorin; Matika, Dario

    2010-01-01

    Once the presence of the anomaly on the bottom of the shallow coastal sea water has been confirmed it is necessary to establish if it contains explosive or chemical warfare charge. We propose that this be performed by using neutron sensor installed within an underwater vessel. When positioned above the object, or to its side, the system can inspect the object for the presence of the threat materials by using alpha particle tagged neutrons from the sealed tube d+t neutron generator.

  16. Fast neutron sensor for detection of explosives and chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Valkovic, Vladivoj [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia)], E-mail: valkovic@irb.hr; Sudac, Davorin [Institute Ruder Boskovic, Bijenicka c.54, 10000 Zagreb (Croatia); Matika, Dario [Institute for Researches and Development of Defense Systems, Ilica 256b, 10000 Zagreb (Croatia)

    2010-04-15

    Once the presence of the anomaly on the bottom of the shallow coastal sea water has been confirmed it is necessary to establish if it contains explosive or chemical warfare charge. We propose that this be performed by using neutron sensor installed within an underwater vessel. When positioned above the object, or to its side, the system can inspect the object for the presence of the threat materials by using alpha particle tagged neutrons from the sealed tube d+t neutron generator.

  17. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    International Nuclear Information System (INIS)

    Li, G.-W.; Xu, Z.; Chen, Q.-W.; Tian, Y.-N.; Wang, X.-Y.; Zhou, L.; Chang, S.-X.

    2014-01-01

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  18. Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils.

    Science.gov (United States)

    Crepier, Julien; Le Masle, Agnès; Charon, Nadège; Albrieux, Florian; Duchene, Pascal; Heinisch, Sabine

    2018-06-01

    Extensive characterization of complex mixtures requires the combination of powerful analytical techniques. A Supercritical Fluid Chromatography (SFC) method was previously developed, for the specific case of fast pyrolysis bio oils, as an alternative to gas chromatography (GC and GC × GC) or liquid chromatography (LC and LC × LC), both separation methods being generally used prior to mass spectrometry (MS) for the characterization of such complex matrices. In this study we investigated the potential of SFC hyphenated to high resolution mass spectrometry (SFC-HRMS) for this characterization using Negative ion Atmospheric Pressure Chemical ionization ((-)APCI) for the ionization source. The interface between SFC and (-)APCI/HRMS was optimized from a mix of model compounds with the objective of maximizing the signal to noise ratio. The main studied parameters included both make-up flow-rate and make-up composition. A methodology for the treatment of APCI/HRMS data is proposed. This latter allowed for the identification of molecular formulae. Both SFC-APCI/HRMS method and data processing method were applied to a mixture of 36 model compounds, first analyzed alone and then spiked in a bio-oil. In both cases, 19 compounds could be detected. Among them 9 could be detected in a fast pyrolysis bio-oil by targeted analysis. The whole procedure was applied to the characterization of a bio-oil using helpful representations such as mass-plots, van Krevelen diagrams and heteroatom class distributions. Finally the results were compared with those obtained with a Fourier Transform ion-cyclotron resonance mass spectrometer (FT-ICR/MS). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Room temperature chemically oxidized La2CuO4+y: Phase separation induced by thermal treatment

    DEFF Research Database (Denmark)

    Rial,C.; Moran, E.; Alario-Franco, M.A.

    1997-01-01

    The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured for this m......The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured...... a short treatment at 433 K, La2CuO4.103(4) undergoes a phase separation into two phases: phase 1, with estimated y(1) = 0.086(4) and T-cl = 30 K, and phase 2, with estimated y(2) = 0.12(1) and T-c2 = 17 K. By increasing the annealing times, phase 2 transforms to phase I and finally disappears. Therefore...

  20. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  1. Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    Science.gov (United States)

    Cazorla, Constantin; Morel, Thierry; Nazé, Yaël; Rauw, Gregor; Semaan, Thierry; Daflon, Simone; Oey, M. S.

    2017-07-01

    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way. Based on observations obtained with the Heidelberg Extended Range Optical Spectrograph (HEROS) at the Telescopio Internacional de Guanajuato (TIGRE) with the SOPHIE échelle spectrograph at the Haute-Provence Observatory (OHP; Institut Pytheas; CNRS, France), and with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph at the Magellan II Clay telescope

  2. Fusion of microlitre water-in-oil droplets for simple, fast and green chemical assays.

    Science.gov (United States)

    Chiu, S-H; Urban, P L

    2015-08-07

    A simple format for microscale chemical assays is proposed. It does not require the use of test tubes, microchips or microtiter plates. Microlitre-range (ca. 0.7-5.0 μL) aqueous droplets are generated by a commercial micropipette in a non-polar matrix inside a Petri dish. When two droplets are pipetted nearby, they spontaneously coalesce within seconds, priming a chemical reaction. Detection of the reaction product is accomplished by colorimetry, spectrophotometry, or fluorimetry using simple light-emitting diode (LED) arrays as the sources of monochromatic light, while chemiluminescence detection of the analytes present in single droplets is conducted in the dark. A smartphone camera is used as the detector. The limits of detection obtained for the developed in-droplet assays are estimated to be: 1.4 nmol (potassium permanganate by colorimetry), 1.4 pmol (fluorescein by fluorimetry), and 580 fmol (sodium hypochlorite by chemiluminescence detection). The format has successfully been used to monitor the progress of chemical and biochemical reactions over time with sub-second resolution. A semi-quantitative analysis of ascorbic acid using Tillman's reagent is presented. A few tens of individual droplets can be scanned in parallel. Rapid switching of the LED light sources with different wavelengths enables a spectral analysis of multiple droplets. Very little solid waste is produced. The assay matrix is readily recycled, thus the volume of liquid waste produced each time is also very small (typically, 1-10 μL per analysis). Various water-immiscible translucent liquids can be used as the reaction matrix: including silicone oil, 1-octanol as well as soybean cooking oil.

  3. An aircraft-borne chemical ionization – ion trap mass spectrometer (CI-ITMS for fast PAN and PPN measurements

    Directory of Open Access Journals (Sweden)

    H. Schlager

    2011-02-01

    Full Text Available An airborne chemical ionization ion trap mass spectrometer instrument (CI-ITMS has been developed for tropospheric and stratospheric fast in-situ measurements of PAN (peroxyacetyl nitrate and PPN (peroxypropionyl nitrate. The first scientific deployment of the FASTPEX instrument (FASTPEX = Fast Measurement of Peroxyacyl nitrates took place in the Arctic during 18 missions aboard the DLR research aircraft Falcon, within the framework of the POLARCAT-GRACE campaign in the summer of 2008. The FASTPEX instrument is described and characteristic properties of the employed ion trap mass spectrometer are discussed. Atmospheric data obtained at altitudes of up to ~12 km are presented, from the boundary layer to the lowermost stratosphere. Data were sampled with a time resolution of 2 s and a 2σ detection limit of 25 pmol mol−1. An isotopically labelled standard was used for a permanent on-line calibration. For this reason the accuracy of the PAN measurements is better than ±10% for mixing ratios greater than 200 pmol mol−1. PAN mixing ratios in the summer Arctic troposphere were in the order of a few hundred pmol mol−1 and generally correlated well with CO. In the Arctic boundary layer and lowermost stratosphere smaller PAN mixing ratios were observed due to a combination of missing local sources of PAN precursor gases and efficient removal processes (thermolysis/photolysis. PPN, the second most abundant PAN homologue, was measured simultaneously. Observed PPN/PAN ratios range between ~0.03 and 0.3.

  4. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  5. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry.

    Science.gov (United States)

    Jumaah, Firas; Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta; Sandahl, Margareta

    2016-08-01

    In this study, a rapid and sensitive ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS) method has been developed and partially validated for the separation of carotenoids within less than 6 min. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The length of polyene chain as well as the number of hydroxyl groups in the structure of the studied carotenoids determines their differences in the physiochemical properties and thus the separation that is achieved on this column. All of the investigated carotenoids were baseline separated with resolution values greater than 1.5. The effects of gradient program, back pressure, and column temperature were studied with respect to chromatographic properties such as retention and selectivity. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in both positive and negative mode, using both direct infusion and hyphenated with UHPSFC. The ESI in positive mode provided the highest response. The coefficient of determination (R (2)) for all calibration curves were greater than 0.998. Limit of detection (LOD) was in the range of 2.6 and 25.2 ng/mL for α-carotene and astaxanthin, respectively, whereas limit of quantification (LOQ) was in the range of 7.8 and 58.0 ng/mL for α-carotene and astaxanthin, respectively. Repeatability and intermediate precision of the developed UHPSFC-MS method were determined and found to be RSD supercritical fluid extracts of microalgae and rosehip. Graphical Abstract Ultra-high performance supercritical fluid chromatography-a rapid separation method for the analysis of carotenoids in rosehip and microalgae samples.

  6. Effect of gamma irradiation on microbial load, chemical and sensory properties of locally prepared fast meal

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2006-12-01

    Locally prepared meal (Kubba, Borak, Cheese borak and Sheesh Tawoq) was treated with 0, 2, 4, or 6 kGy doses of gamma irradiation. treated and untreated samples were kept in a refrigerators (1- 4 centigrade degree). Microbiological and chemical analyses were performed on each treated sample immediately after processing, and weekly throughout storage period which lasted for 3 weeks for Kubba, 6 weeks for Borak and Cheese Borak and 20 weeks for Sheesh Tawoq. Sensory evaluation and proximate analysis were done within one week after irradiation. Results of the proximate analysis of Borak, Cheese Borak and Sheesh Tawoq showed that irradiation doses did not have a significant effect on moisture, protein and fat content of meals. Whereas, irradiation decreased the major constituents of Kubba moisture, protein and fats. Used doses of gamma irradiation decreased the microorganisms load and increased the shelf-life of Kubba, Borak, Cheese Borak and Sheesh Tawoq. The radiation doses required to reduce the microorganisms load one log cycle (D 1 0) in Borak were 456 and 510 Gy and in cheese Borak 303 and 500 Gy for the Salmonella and E. coli respectively. The three chemical parameters, total acidity, lipid peroxide and volatile basic nitrogen, which were chosen as the indices of freshness, were all well within the acceptable limit for up to 3 weeks for Kubba, 6 weeks for Borak and Cheese Borak and 20 weeks for Sheesh Tawoq treated with 6 kGy. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples. (author)

  7. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.

  8. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.

    Science.gov (United States)

    Liang, Huixin; Yao, Aonan; Jiao, Xiuling; Li, Cheng; Chen, Dairong

    2018-06-20

    Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH 2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

  9. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    Science.gov (United States)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  10. Remote control air sampling and fast chemical analysis of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Kukuczka, A; Golisz, T

    1981-01-01

    In 1979 the Central mine rescue station in Bytom (Poland) developed and introduced into use a new method of remote control air and gas (from fires) sampling and swift chemical analysis of the samples' composition. The device in this method includes: a probe (situated beyond the fire detector directly in the control zone), thick-walled elastic hose, direr, piston pump, rotameter, chromatograph and minicomputer. The basic technical data included in the set: the capacity of the pump 8 1/min, 2.5 kg mass. run on 12 V current (built at the Main Mining Affairs Inst. in Poland); the chromatograph is VARIAN 1420-10 (USA produced),the working gas is helium (balloon volume 40 1), feed--alternating 220V, capacity--1.5 kW, time for measuring gas from fires-- 15 to 20 min (as apposed to the 1.5h spent before when the SRC device was being used) at an accuracy of /sup + -/ 0.05% (volume); the chromatograph works with a mini-computer (model CDS-111C) with a 20 kg mass.and a size of 16 x 46 x 56 cm. As tests in Moszczenica coal mines, where a fire in 504/2 occurred, showed (the chromatograph was located 750m from the probe for burning gases), the method proved to be a good one although the VARIAN 1420-10 was insufficiently reliable and the VARIAN-1400-AEROGRAF proved to be better.

  11. A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: Matching biological and process feasibility.

    Science.gov (United States)

    Yenkie, Kirti M; Wu, WenZhao; Clark, Ryan L; Pfleger, Brian F; Root, Thatcher W; Maravelias, Christos T

    2016-12-01

    Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO 2 emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process. Separation of biologically synthesized chemicals from process streams is a major challenge that can contribute to >70% of the total production costs. Thus, process feasibility is dependent upon the efficient selection of separation technologies. This selection is dependent on upstream processing or biological parameters, such as microbial species, product titer and yield, and localization. Our goal is to present a roadmap for selection of appropriate technologies and generation of separation schemes for efficient recovery of bio-based chemicals by utilizing information from upstream processing, separation science and commercial requirements. To achieve this, we use a separation system comprising of three stages: (I) cell and product isolation, (II) product concentration, and (III) product purification and refinement. In each stage, we review the technology alternatives available for different tasks in terms of separation principles, important operating conditions, performance parameters, advantages and disadvantages. We generate separation schemes based on product localization and its solubility in water, the two most distinguishing properties. Subsequently, we present ideas for simplification of these schemes based on additional properties, such as physical state, density, volatility, and intended use. This simplification selectively narrows down the technology options and can be used for systematic process synthesis and optimal recovery of bio-based chemicals. Copyright © 2016 Elsevier

  12. Speciation of trace elements in biological samples by nuclear analytical and related techniques coupled with chemical and biochemical separation

    International Nuclear Information System (INIS)

    Chen, C.Y.; Gao, Y.X.; Li, B.; Yu, H.W.; Li, Y.F.; Sun, J.; Chai, Z.F.

    2005-01-01

    In the past, most analytical problems relating to biological systems were addressed by measuring the total concentrations of elements. Now there is increasing interest of the importance of their chemical forms, in which an element is present in biological systems, e.g., the oxidation state, the binding state with macromolecules, or even the molecular structure. The biological effects of chromium, which is classified as an essential nutrient, are dependent upon its oxidation. state. In general, trivalent chromium is biochemically active, whereas hexavalent chromium is considered to be toxic. Mercury is one of serious environmental persistent pollutants. However, organic forms of mercury are known to possess much higher toxicity than inorganic mercury. Therefore, information on speciation is critically required in order to better understanding of their bioavailability, metabolism, transformation, and toxicity in vivo. Recently, chemical speciation of selenium, mercury, copper, zinc, iron, and so on, has been investigated by INAA, ICP-MS, XRF, EXAFS and related techniques combined with chemical and biochemical separation (extraction, chromatography, gel electrophoresis, etc.). INAA, XRF, and ICP-MS have superior advantages in aspect of multielemental analysis with high accuracy and sensitivity, which render the possibility of analyzing various elements of interest simultaneously. These offline or online techniques have been flexibly applied to different biological matrixes, such as human hair, serum, urine, various tissues and organs in our researches. In addition, EXAFS provides structural information about the moiety of metal centers up to a distance of approximately 4-5 Anstrom. For instance, hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Imbalance of elements, such as Se, Zn, Fe, Cu, Cd, Ca, etc., has been found in the whole blood or serum of patients with HCC. We found that the profiles of Se, Cd, Fe, Zn and Cu-containing proteins

  13. The rim zone of cement based materials - barrier or fast lane for chemical degradation?

    International Nuclear Information System (INIS)

    Schwotzer, M.; Kaltenbach, J.; Heck, P.F.; Konno, K.; Gerdes, A.

    2015-01-01

    This contribution focuses exemplarily on the chemical and mineralogical changes in the rim zone of cement paste samples exposed to different chloride solutions (NaCl, KCl, MgCl 2 and CaCl 2 ), to hard tap water and to demineralized water. The determination of the Ca(OH) 2 and Mg(OH) 2 content of the solid phases was performed by means of thermogravimetry with pulverized samples (TGA/SDTA 851, Mettler-Toledo). A potential relation between temperature and the time dependant development of the material due to reactive transport processes will also be addressed. The experiments with tap water showed that the contact between the cement paste samples and hard tap water did not lead to significant changes in the composition of the solid samples or of the reaction solution. This can be attributed to a rapid formation of a protective calcium carbonate layer on the surface of the cement paste. The slight decrease of the Ca 2+ content in the solution indicates that the growth of this layer occurs within the first few hours. In contrast to the tap water exposure, the results of the experiments with the MgCl 2 solutions show features of an intense attack despite the presence of crystalline covering layers. The quick formation of a thick and dense Mg(OH) 2 layer does not provide any protection against reactive transport processes. In this experiment, the degradation rate of Ca(OH) 2 as well as the Ca 2+ release was higher than in all other experiments. In addition the rapid formation of a Mg(OH) 2 layer starting already during the first hour of the experiment did not prevent the chloride ingress compared to the other experiments with chloride solutions. The pH value of the reaction solution remains stable and relatively low which indicates a crystallisation process. In the other experiments, performed with demineralized water, alkali chloride solutions, and the CaCl 2 solution, no significant formation of potentially protective covering layers and no development of transport

  14. Chemical structure, comparison antioxidant capacity and separation antioxidant of hen, duck and quail egg white protein hydrolysate

    Science.gov (United States)

    Fatah, A.; Meihu, M.; Ning, Q.; Setiani, B. E.; Bintoro, V. P.

    2018-01-01

    Amino acid linkages as proteins are nutritional substance which important for diet intake. Purification protein procesing undergo heating procedure process followed by additional of proteolytic enzymes or acid had been resulting in protein hydrolysates. A protein hydrolysate describe as many free amino acids bound together through a complex mixture of peptides. Egg white protein hydrolysates is one of subject interested to study for human health or industry product. The objectives of the research are to determine and identification the antioxidant derived from egg white hydrolysate protein. Identification of chemical structure of albumen and albumen protein hydrolysate was examine using IR Spectrophotometry. While comparison of antioxidant capacity and antioxidant separation egg albumen was also investigate using FTIR method (Fourier Transform Infrared Spectroscopy). Hen, duck and quail albumen egg white and on hydrolisate form were used as research materials. The results were showing that different time and enzyme of hydrolysis were not influence at secondary structure of hydrolysate albumen protein. Phytochemical content such as alcohol and hydroxyl compound which have potential as functional group of antioxidant were detected in all of the samples. Their results of radical scavenging activities samples hydrolyzed by pepsin were respectively 89.40%, 50.25% and 85.13%. Whereas the radical scavenging activities of hydrolysates hydrolyzed by papain were 72.85%, 61% and 76.45% respectively.

  15. Chemical Separation Technique of Strontium-90 in the Soil Water as theStandard Methods for Environmental Radioactivity Analysis

    International Nuclear Information System (INIS)

    Ngasifudin-Hamdani; Suratman; Djoko-Sardjono, Ign; Winduanto-Wahyu SP

    2000-01-01

    Research about separation technique of strontium-90 from its materialmatrix using chemical precipitation method has been done. That technique wasapplied on the detection of radionuclide strontium-90 containing in the soilwater of near nuclear reactor facility P3TM BATAN in three location. The twoimportant parameters used in this technique were growth time of Y-90 andstirring time. The result shown that activity of strontium-90 in the pos-01was between 1.801x10 -19 - 9.616x10 -17 μCi/cm 3 , pos-02 was8.448x10 -19 - 1.003x X 10 -16 μCi/cm 3 and pos-03 was 6.719x10 -19 - 11.644x10 -16 μCi/cm 3 . From those data shown that activity of Sr-90in the soil water of near nuclear reactor facility P3TM BATAN was still belowthe limit value of maximum concentration permitted i.e. 4.0x10 -7 -3.5x10 -6 μCi/cm 3 . The statistic test using analysis of varian twofactorial with random block design shown that the activity of Sr-90 in thesoil water was influenced by the interaction which take place between growthlong time of Y-90 and stirring long time. (author)

  16. Improvement on the concentrated grape juice physico-chemical characteristics by an enzymatic treatment and Membrane Separation Processes

    Directory of Open Access Journals (Sweden)

    PLÍNIO R.F. CAMPOS

    2016-03-01

    Full Text Available ABSTRACT In this work, the improvement on the concentrated grape juice physico-chemical characteristics by using an enzymatic treatment followed by Membrane Separation Process (MSP has been investigated. By using Novozym 33095(r and Ultrazym AFP L(r enzymes varying three operating parameters, the best result on the grape pulp characteristics was attained for the Novozym 33095(r performed at 35oC, 15 min. and 50 mgL-1. In micro/ultra filtration processes after enzymatic pretreatment, the best performance of the MSP with high permeate flux value and suitable grape juice characteristics was attained using 0.05 mm membrane pore size, 1 bar pressure and 40 oC treatment temperature. When reverse osmosis process is operated at 40 bar and 40oC, high soluble solid and low turbidity values are attained. An enzymatic treatment along with MSP has shown an alternative and efficient grape juice processing system, being possible to extend to other foods.

  17. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    Science.gov (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    This paper is a continuation of our previous research focusing on development of micro-TLC methodology under temperature-controlled conditions. The main goal of present paper is to demonstrate separation and detection capability of micro-TLC technique involving simple analytical protocols without multi-steps sample pre-purification. One of the advantages of planar chromatography over its column counterpart is that each TLC run can be performed using non-previously used stationary phase. Therefore, it is possible to fractionate or separate complex samples characterized by heavy biological matrix loading. In present studies components of interest, mainly steroids, were isolated from biological samples like fish bile using single pre-treatment steps involving direct organic liquid extraction and/or deproteinization by freeze-drying method. Low-molecular mass compounds with polarity ranging from estetrol to progesterone derived from the environmental samples (lake water, untreated and treated sewage waters) were concentrated using optimized solid-phase extraction (SPE). Specific bands patterns for samples derived from surface water of the Middle Pomerania in northern part of Poland can be easily observed on obtained micro-TLC chromatograms. This approach can be useful as simple and non-expensive complementary method for fast control and screening of treated sewage water discharged by the municipal wastewater treatment plants. Moreover, our experimental results show the potential of micro-TLC as an efficient tool for retention measurements of a wide range of steroids under reversed-phase (RP) chromatographic conditions. These data can be used for further optimalization of SPE or HPLC systems working under RP conditions. Furthermore, we also demonstrated that micro-TLC based analytical approach can be applied as an effective method for the internal standard (IS) substance search. Generally, described methodology can be applied for fast fractionation or screening of the

  18. Low-parachor solvents extraction and thermostated micro-thin-layer chromatography separation for fast screening and classification of spirulina from pharmaceutical formulations and food samples.

    Science.gov (United States)

    Zarzycki, Paweł K; Zarzycka, Magdalena B; Clifton, Vicki L; Adamski, Jerzy; Głód, Bronisław K

    2011-08-19

    The goal of this paper is to demonstrate the separation and detection capability of eco-friendly micro-TLC technique for the classification of spirulina and selected herbs from pharmaceutical and food products. Target compounds were extracted using relatively low-parachor liquids. A number of the spirulina samples which originated from pharmaceutical formulations and food products, were isolated using a simple one step extraction with small volume of methanol, acetone or tetrahydrofuran. Herb samples rich in chlorophyll dyes were analyzed as reference materials. Quantitative data derived from micro-plates under visible light conditions and after iodine staining were explored using chemometrics tools including cluster analysis and principal components analysis. Using this method we could easily distinguish genuine spirulina and non-spirulina samples as well as fresh from expired commercial products and furthermore, we could identify some biodegradation peaks appearing on micro-TLC profiles. This methodology can be applied as a fast screening or fingerprinting tool for the classification of genuine spirulina and herb samples and in particular may be used commercially for the rapid quality control screening of products. Furthermore, this approach allows low-cost fractionation of target substances including cyanobacteria pigments in raw biological or environmental samples for preliminary chemotaxonomic investigations. Due to the low consumption of the mobile phase (usually less than 1 mL per run), this method can be considered as environmentally friendly analytical tool, which may be an alternative for fingerprinting protocols based on HPLC machines and simple separation systems involving planar micro-fluidic or micro-chip devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

    Science.gov (United States)

    Yuan, Bin; Coggon, Matthew M.; Koss, Abigail R.; Warneke, Carsten; Eilerman, Scott; Peischl, Jeff; Aikin, Kenneth C.; Ryerson, Thomas B.; de Gouw, Joost A.

    2017-04-01

    Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.

  20. Mechanical and chemical cleaning of the tubes bundles of the moisture separator reheaters (GSS) of Nuclear power plants

    International Nuclear Information System (INIS)

    Guerra, Patrice; Ruiz, Jose T.; Ureta, Roman; Carreres, Cristina; Virginie, Le-Guerroue

    2012-09-01

    The cleaning operation concerns the 'GSS' system (GSS stands for moisture separator reheaters, MSR) which are classified as 'watch quality guarantee', not classified as safety facility and subjected to Pressure Equipment regulations. The follow-up of the operational GSS (steel carbon) of EDF nuclear power plants CP0 group reveals a clog rate due to a relevant magnetite deposits that could result in equipment damage, loss of availability and loss of plant productivity. The pressure drop between inlet and outlet of the heating steam is close to maximum design criterion. The service consisted in designing, developing, qualifying and carrying out a process which removes clog from the inside of GSS U-tubes bundle located in the vapor circuit and which respects the equipment integrity and ensures the process harmlessness. This cleaning has to enable the complete removal of deposits and oxides (magnetite) in order to recover a passage diameter and a surface finish equivalent to the origin, thus avoiding the replacement of the GSS and obtaining a considerable reduction of costs. To do so, LAINSA and SOLARCA designed, developed, qualified and operated on 14 GSS bundles, by carrying out the following operations: - Cartography of the GSS tubes bundles clogging state; - Pre-Mechanical cleaning to un-block the sealed tubes and release the inside tubes passing; - Isolation of the bundle and check of leaks of the system; - Chemical cleaning with the efficiency and harmlessness parameters follow-up: - Acid Phase by means of weak organic acids to eliminate all the deposits; - Passivation phase; - Final Rinsing respecting the customer criteria; - Drying; - Waste management and waste treatment. The implementation of this operation enables the elimination of the whole deposits (magnetite) and oxides located inside the GSS tube bundle and thus to recover a passage diameter inside the tubes, and a pressure drop close to a new system and therefore to enables the

  1. Development of method to chemical separation of gallium-67 by thermal diffusion technique; Desenvolvimento de metodo para separacao quimica de galio-67 pela tecnica de difusao termica

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Patricia de Andrade

    2012-07-01

    Radioisotopes of gallium have been studied and evaluated for medical applications since 1949. Over the past 50 years {sup 67}Ga has been widely used in the diagnosis of various diseases, including acute and chronic inflammatory lesions, bacterial or sterile and several types of tumors. In Brazil 30% of clinics that provide services for Nuclear Medicine use {sup 67}Ga citrate and the demand for 67{sup G}a at IPEN-CNEN/SP is 37 GBq (1 Ci)/week. The {sup 67}Ga presents physical half-life of 3.26 days (78 hours) and decays 100% by electron capture to stable {sup 67}Zn. Its decay includes the emission of {gamma} rays with energies of 93.3 keV (37%), 184.6 keV (20.4%), 300.2 keV (16.6%) and 888 keV (26%). In the past {sup 67}Ga was produced by the reaction {sup 68}Zn (p, 2n) {sup 67}Ga at IPEN-CNEN/SP. After irradiation, the target was dissolved in concentrated HCl and the solution percolated through a cationic resin DOWEX 50W-X8, 200-400 mesh, conditioned with 10 mol L{sup -1} HCl. Zinc, nickel and copper were eluted in 10 mol L{sup -1} HCl and {sup 67}Ga 3.5 mol L{sup -1} HCl. The final product was obtained as {sup 67}Ga citrate. This work presents a new, fast, direct and efficient method for the chemical separation of 67{sup G}a by thermal diffusion (heating of the target) combined with concentrated acetic acid extraction. Purification was performed by ion exchange chromatography. Natural zinc electrodeposition was performed on nickel/copper plates as substrate and the zinc deposits were adherent to the substrate, slightly shiny and uniform. The targets were irradiated with 26 MeV protons and integrated current of 10 {mu}A.h. After irradiation, the targets were heated at 300 deg C for 2 hours and placed in contact with concentrated acetic acid for 1 hour. The average yield of extraction of {sup 67}Ga was (72 {+-} 10)%. This solution was evaporated and the residue was taken up in 0.5 mol L{sup -1} NH{sub 4}OH. The 67{sup G}a was purified on cationic resin Dowex 50WX8

  2. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  3. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  4. Graphene-based solid-phase extraction disk for fast separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Wang, Zonghua; Han, Qiang; Xia, Jianfei; Xia, Linhua; Ding, Mingyu; Tang, Jie

    2013-06-01

    Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene-based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π-π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC-MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84-13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene-based SPE disk in environmental analytical. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ju; Park, Young-Kwon; Kim, Joo Sik [Faculty of Environmental Engineering, University of Seoul, 90 Jeonnong-Dong, Dondaemun-Gu, Seoul 130-743 (Korea)

    2008-08-15

    Radiata pine sawdust was pyrolyzed in a bubbling fluidized bed equipped with a char separation system. The influence of the reaction conditions on the production of bio-oil was investigated through the establishment of mass balance, and the examination of the products' chemical and physical characteristics. The optimal reaction temperature for the production of bio-oil was between 673 and 723 K, and the yield was above 50 wt.% of the product. An optimal feed size also existed. In a particle with a size that was less than 0.3 mm, the bio-oil yield decreased due to overheating, which led to gas formation. A higher flow rate and feeding rate were found to be more effective for the production of bio-oil, but did not significantly affect it. The main compounds of bio-oil were phenolics, including cresol, guaiacol, eugenol, benzendiol and their derivatives, ketones, and aldehydes. In addition, high-quality bio-oils, which contained less than 0.005 wt.% of solid, no ash and low concentrations of alkali and alkaline earth metals, were produced due to the char removal system. (author)

  6. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    Science.gov (United States)

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. © 2014 American Institute of Chemical Engineers.

  7. Influence of separate and combined impact both of radiation and chemical factors on state of lipid peroxide oxidation system and antioxidant protection at pregnant rats

    International Nuclear Information System (INIS)

    Danil'chik, V.S.; Spivak, L.V.; Kolb, V.G.; Zubovskaya, E.T.; Rogov, Yu.I.

    2000-01-01

    Influence of low dozed ionizing irradiation and chemical toxicant was studied both under separate and combined action in the process of pregnancy. The lipid peroxidation (LPO) indices and antioxidant protection (AOP) parameters of females rats were studied. The result received proved that irradiation during pregnancy induced activation both of lipids free radical oxidation and of antioxidant protection in female rats. Chemical toxicants introduction resulted in shifts on the LPO-AOP system the hydrogen peroxide blood level increasing and the antioxidants ones reducing. Combined action of both factors led to development of a new level of LPO-AOP

  8. FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres

    Science.gov (United States)

    Stock, Joachim W.; Kitzmann, Daniel; Patzer, A. Beate C.; Sedlmayr, Erwin

    2018-06-01

    For the calculation of complex neutral/ionized gas phase chemical equilibria, we present a semi-analytical versatile and efficient computer program, called FastChem. The applied method is based on the solution of a system of coupled nonlinear (and linear) algebraic equations, namely the law of mass action and the element conservation equations including charge balance, in many variables. Specifically, the system of equations is decomposed into a set of coupled nonlinear equations in one variable each, which are solved analytically whenever feasible to reduce computation time. Notably, the electron density is determined by using the method of Nelder and Mead at low temperatures. The program is written in object-oriented C++ which makes it easy to couple the code with other programs, although a stand-alone version is provided. FastChem can be used in parallel or sequentially and is available under the GNU General Public License version 3 at https://github.com/exoclime/FastChem together with several sample applications. The code has been successfully validated against previous studies and its convergence behavior has been tested even for extreme physical parameter ranges down to 100 K and up to 1000 bar. FastChem converges stable and robust in even most demanding chemical situations, which posed sometimes extreme challenges for previous algorithms.

  9. A simple chemical method for the separation of phosphorus interfering the trace element determinations by neutron activation analysis in high doped silicon wafers

    International Nuclear Information System (INIS)

    Wagler, H.; Flachowsky, J.

    1986-01-01

    Neutron activation analysis is one of the most available method for the determination of trace elements, but in the case of P-doped silicon wafers the 32 P-activity interferes the gamma spectrometry. It is not possible to determine the trace elements without chemical manipulations. On the other hand, time consuming chemical separations should be avoided. Therefore, a simple and rapid P-separation method has to be developed, in which the following twelve trace elements should be taken into consideration: Ag, As, Au, Co, Cr, Cu, Fe, Mo, Na, Sb, W, and Zn. After acid oxidative dissolution of the activated sample, P is present as phosphate ion. The phosphate ion is removed by precipitation as BiPO 4 . (author)

  10. Demonstration of Fast and Accurate Discrimination and Quantification of Chemically Similar Species Utilizing a Single Cross-Selective Chemiresistor

    Science.gov (United States)

    2015-01-01

    Performance characteristics of gas-phase microsensors will determine the ultimate utility of these devices for a wide range of chemical monitoring applications. Commonly employed chemiresistor elements are quite sensitive to selected analytes, and relatively new methods have increased the selectivity to specific compounds, even in the presence of interfering species. Here, we have focused on determining whether purposefully driven temperature modulation can produce faster sensor-response characteristics, which could enable measurements for a broader range of applications involving dynamic compositional analysis. We investigated the response speed of a single chemiresitive In2O3 microhotplate sensor to four analytes (methanol, ethanol, acetone, 2-butanone) by systematically varying the oscillating frequency (semicycle periods of 20–120 ms) of a bilevel temperature cycle applied to the sensing element. It was determined that the fastest response (≈ 9 s), as indicated by a 98% signal-change metric, occurred for a period of 30 ms and that responses under such modulation were dramatically faster than for isothermal operation of the same device (>300 s). Rapid modulation between 150 and 450 °C exerts kinetic control over transient processes, including adsorption, desorption, diffusion, and reaction phenomena, which are important for charge transfer occurring in transduction processes and the observed response times. We also demonstrate that the fastest operation is accompanied by excellent discrimination within a challenging 16-category recognition problem (consisting of the four analytes at four separate concentrations). This critical finding demonstrates that both speed and high discriminatory capabilities can be realized through temperature modulation. PMID:24931319

  11. Neutron activation analysis with pre- and post-irradiation chemical separation for the value assignments of Al, V, and Ni in the new bovine liver SRM 1577C

    International Nuclear Information System (INIS)

    Zeisler, R.; Tomlin, B.E.; Murphy, K.E.

    2009-01-01

    Instrumental neutron activation analysis as carried out at the National Institute of Standards and Technology (NIST) is inadequate for determining Al, Ni, and V at the levels found in the newly prepared Standard Reference Material R (SRM) 1577c Bovine Liver. To overcome shortcomings in the value assignment, the authors initiated a cooperative approach using NAA with previously established chemical separation procedures and with significantly different neutron energy spectra to determine Al and V with pre-irradiation separation of the elements at NIST, and V and Ni with post-irradiation separation at the Nuclear Physics Institute Rez. The determinations were confirmed with the analyses of several SRMs. The work supported the certification of mass fraction values for V and Ni in SRM 1577c. (author)

  12. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  13. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  14. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions; Etude physico-chimique de la separation des isotopes du calcium par echange chimique entre amalgame et solution saline

    Energy Technology Data Exchange (ETDEWEB)

    Duie, P; Dirian, G [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between {sup 40}Ca and {sup 46}Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH){sub 2}; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H{sub 2} bubbles. (authors) [French] On a fait une etude preliminaire, pour des systemes amalgame de calcium - solution aqueuse ou organique de sels de calcium, des principaux parametres pouvant intervenir dans l'application d'un procede d'echange a l'enrichissement isotopique du calcium: facteur de separation, cinetique de l'echange, cinetique de la decomposition de l'amalgame. Les facteurs de separation {sup 40}Ca-{sup 46}Ca sont de l'ordre de 1,02. L'echange est assez lent pour les solutions aqueuses, extremement lent pour les solutions organiques. La decomposition de l'amalgame est pratiquement inexistante avec les solutions dans le dimethyl- formamide, appreciable pour les solutions alcooliques, rapide pour les solutions aqueuses d'halogenures; elle est normalement lente pour les solutions aqueuses de formiate et surtout de chaux, mais la decomposition est en general acceleree par une reaction parasite entre l'amalgame et l'eau a l'etat vapeur, reaction que l'on n'evite dans des conditions tres particulieres. (auteurs)

  15. Simple and fast fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam based on consecutive chemical reactions

    International Nuclear Information System (INIS)

    Chen Wei; Shi Wen; Li Zhao; Ma Huimin; Liu Yang; Zhang Jinghua; Liu Qingjun

    2011-01-01

    Graphical abstract: A simple and fast method for fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam (1) is proposed based on consecutive chemical reactions. Highlights: ► Benzoyl peroxide can oxidize Fe 2+ into Fe 3+ . ► Fe 3+ selectively induces the opening of rhodamine spirolactam ring. ► The two reactions led to the development of a new fluorescent method for benzoyl peroxide. ► The method is simple and fast, and is used to detect benzoyl peroxide in wheat flour. - Abstract: Benzoyl peroxide (BPO) as a brightener is often added to wheat flour, and excessive use of this food additive is receiving increasing concern. Herein, a simple and fast method for fluorescence detection of BPO is proposed based on consecutive chemical reactions. In this approach, BPO first oxidizes Fe 2+ into Fe 3+ and the resulting Fe 3+ then induces the opening of the spirolactam ring of a new rhodamine derivative, N-methoxy rhodamine-6G spirolactam, switching on fluorescence of the detection system. More importantly, the fluorescence response of the reaction system to BPO is rather rapid and sensitive, with a detection limit of 6 mg kg −1 (k = 3), which makes it to be of great potential use in food safety analysis. The applicability of the proposed method has been successfully demonstrated on the determination of BPO in wheat flour samples.

  16. Applying a method of chemical separation and mass spectrometry for the determination of radium-226 in surface water

    International Nuclear Information System (INIS)

    Sibello Hernandez, Rita Y; Cozzella, Maria Letizia; Guillen Arruebarrena, Aniel

    2014-01-01

    Radium-226 ( 226 Ra) is a naturally occurring radionuclide, alpha emitter with half-life of 1 622 years originating from uranium-238 ( 238 U). Its presence in drinking water is a major radiological hazards, which requires constant monitoring. The analytical techniques used in the determination of 226 Ra generally require the establishment of secular equilibrium and/or tedious separation of other elements. The main objective of this paper is to demonstrate the efficiency and speed of a method of preconcentration and separation of 226 Ra in natural water samples using coprecipitation with MnO 2 radius and purification by cation exchange resin Dowex 50WX8. Measurement technique was Quadrupole Mass Spectrometry and associated induced plasma ICP-Q-MS. The 226 Ra values obtained are in the range of 0,010-0,219 pg/L in natural waters analyzed

  17. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-07-01

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  18. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation

    KAUST Repository

    Choi, Seung Hak

    2010-12-13

    In this study, chemically cross-linked asymmetric P84® co-polyimide hollow fibre membranes with enhanced separation performance were fabricated, using a dry-wet spinning process with an innovative in-line cross-linking step. The chemical modification was conducted by controlled immersion of the coagulated fibre in an aqueous 1,5-diamino-2-methylpentane (DAMP) cross-linker solution before the take-up. The effect of the cross-linker concentration on the thermal, mechanical, chemical and gas transport properties of the membranes was investigated. FT-IR/ATR analysis was used to identify the chemical changes in the polymer, while DSC analysis confirmed the changes in the Tg and the specific heat of the polymer upon cross-linking. Chemical cross-linking with a 10 wt.% aqueous DAMP solution strongly enhanced the H2/CO2 ideal selectivity from 5.3 to 16.1, while the H2 permeance of the membranes decreased from 7.06 × 10−3 to 1.01 × 10−3 m3(STP) m−2 h−1 bar−1 for a feed pressure of 1 bar at 25 °C. The increase of selectivity with decreasing permeance is somewhat higher than the slope in the Robeson upper bound, evidencing the positive effect of the cross-linking on the separation performance of the fibres. Simultaneously, the cross-linking leads to improved mechanical resistance of the membranes, which could be further enhanced by an additional thermal treatment. The produced membranes are therefore more suitable for use under harsh conditions and have a better overall performance than the uncross-linked ones.

  19. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on.

    Science.gov (United States)

    Bergö, Martin; Wu, Gengshu; Ruge, Toralph; Olivecrona, Thomas

    2002-04-05

    During short term fasting, lipoprotein lipase (LPL) activity in rat adipose tissue is rapidly down-regulated. This down-regulation occurs on a posttranslational level; it is not accompanied by changes in LPL mRNA or protein levels. The LPL activity can be restored within 4 h by refeeding. Previously, we showed that during fasting there is a shift in the distribution of lipase protein toward an inactive form with low heparin affinity. To study the nature of the regulatory mechanism, we determined the in vivo turnover of LPL activity, protein mass, and mRNA in rat adipose tissue. When protein synthesis was inhibited with cycloheximide, LPL activity and protein mass decreased rapidly and in parallel with half-lives of around 2 h, and the effect of refeeding was blocked. This indicates that maintaining high levels of LPL activity requires continuous synthesis of new enzyme protein. When transcription was inhibited by actinomycin, LPL mRNA decreased with half-lives of 13.3 and 16.8 h in the fed and fasted states, respectively, demonstrating slow turnover of the LPL transcript. Surprisingly, when actinomycin was given to fed rats, LPL activity was not down-regulated during fasting, indicating that actinomycin interferes with the transcription of a gene that blocks the activation of newly synthesized LPL protein. When actinomycin was given to fasted rats, LPL activity increased 4-fold within 6 h, even in the absence of refeeding. The same effect was seen with alpha-amanitin, another inhibitor of transcription. The response to actinomycin was much less pronounced in aging rats, which are obese and insulin-resistant. These data suggest a default state where LPL protein is synthesized on a relatively stable mRNA and is processed into its active form. During fasting, a gene is switched on whose product prevents the enzyme from becoming active even though synthesis of LPL protein continues unabated.

  20. Process for improving the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids and gases

    International Nuclear Information System (INIS)

    Schmidberger, R.; Kirch, R.; Kock, W.

    1986-01-01

    In the process for the improvement of the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids or gases by ion exchange and adsorption, non-radioactive isotopes of the element to be isolated are added to the fluid before the isolation, whereas at the same time a large surplus of the non-radioactive isotopes to the radioactive isotopes is achieved by addition of only small quantities of compounds of the non-radioactive isotopes. (orig./RB) [de

  1. Chromatographic separation of metal cations on silica gel chemically modified with a polymeric derivative of diaza-18-crown-6

    International Nuclear Information System (INIS)

    Basyuk, V.A.

    1991-01-01

    Sorbent on the basis of γ-aminopropyl silica gel, containing chemically grafted polymer derivatives of diaza-18-crown-6, has been synthesized. Retaining of certain metal cations when acid mobile phases are used is studied. Acetate buffer solution, 0.005% aqueous solution of acetic acid and 10 mM aqueous solution of oxalic acid were used as mobile phases. Rare earth cations (including Sr 2+ ones) are weakly retained when any mobile phase is used. Retention of VO 2+ cations is the strongest one

  2. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    International Nuclear Information System (INIS)

    Wittwer, D.; Abdullin, F.Sh.; Aksenov, N.V.; Albin, Yu.V.; Bozhikov, G.A.; Dmitriev, S.N.; Dressler, R.; Eichler, R.; Gaeggeler, H.W.; Henderson, R.A.; Huebener, S.; Kenneally, J.M.; Lebedev, V.Ya.; Lobanov, Yu.V.; Moody, K.J.; Oganessian, Yu.Ts.; Petrushkin, O.V.; Polyakov, A.N.; Piguet, D.; Rasmussen, P.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244 Pu( 48 Ca; 3n) 289 114. One decay chain assigned to an atom of 285 112, the α-decay product of 289 114, was observed.

  3. Understanding Am3+/Cm3+ separation with H4TPAEN and its hydrophilic derivatives: a quantum chemical study.

    Science.gov (United States)

    Huang, Pin-Wen; Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Song, Gang; Chai, Zhi-Fang; Shi, Wei-Qun

    2018-05-10

    Am3+/Cm3+ separation is an extremely hard but important task in nuclear waste treatment. In this study, Am and Cm complexes formed with a back-extraction agent N,N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]ethylene-diamine (H4TPAEN) and its two derivatives with hydrophilic substituents (methoxy and morpholine groups) were investigated using the density functional theory (DFT). The optimized geometrical structures indicated that the Am3+ cation matched better with the cavities of the three studied ligands than Cm3+, and the Am3+ cations were located deeper in the cavities of the ligands. The bond order and quantum theory of atoms in molecules (QTAIM) analyses suggested that ionic interactions dominated An-N and An-O (An = Cm and Am) bonds. However, weak and different extents of partial covalency could also be found in the Am-N and Cm-N bonds. The O donor atoms in the carboxylate groups preferably coordinated with Cm3+ rather than Am3+, whereas the N atoms preferred Am3+. Therefore, the Am3+/Cm3+ selectivity of H4TPAEN and its two hydrophilic derivatives may be ascribed to the competition between the An-N and An-O interactions and the few dissimilarities in their geometrical structures. Based on our calculations, the methoxy and morpholine groups in the two derivatives can serve as electron-donating groups and enhance the strength of the An-NPY bonds (NPY denotes the nitrogen atom of pyridine ring). When compared with the Am-complex, the Cm-complex exhibited significant strength effect, resulting in the relatively lower Am3+/Cm3+ separation ability of the H4TPAEN's hydrophilic derivatives.

  4. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  5. Design of injection system for separated sector cyclotron proposed at the Institute of Physical and Chemical Research, (1)

    International Nuclear Information System (INIS)

    Yano, Yasushige

    1980-01-01

    A beam injection system has been proposed for the separated-sector cyclotron (SSC) planned at the IPCR. In the central region of the SSC, a beam transported from a variable frequency linac or an AVF cyclotron is guided onto the first equilibrium orbit by means of three types of inflecting elements. These equipments consist of three bending magnets, a magnetic inflection channel and an electrostatic inflection channel. The latter two elements are placed between the magnetic poles of the sector magnets. The bending magnets are of a modified window-frame design with a pure iron yoke. The magnetic field distribution generated by these magnets was calculated and ascertained to have the satisfactory homogeniety. The magnetic inflection channel is composed of two sets of coils. One is used to accomplish an adequate field rise and the other to compensate for the main field fall which is brought about in the accelerating area by the former set of coils. With the aid of a computer code solving the Laplace equation, shapes of the anode and the cathode of the electrostatic inflector have been determined to produce a sufficiently uniform electric field. Finally, the present method of injection is concluded to be feasible for our SSC. (author)

  6. Characterization of diesel fuel by chemical separation combined with capillary gas chromatography (GC) isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    Harvey, Scott D; Jarman, Kristin H; Moran, James J; Sorensen, Christina M; Wright, Bob W

    2012-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for discovering fuel tax evasion schemes or for environmental forensic studies. Two urea adduction-based techniques were used to isolate the n-alkanes from the fuel. Both carbon isotope ratio (δ(13)C) and hydrogen isotope ratio (δD) values for the n-alkanes were then determined by CSIA in each sample. The samples investigated had δ(13)C values that ranged from -30.1‰ to -26.8‰, whereas δD values ranged from -83‰ to -156‰. Plots of δD versus δ(13)C with sample n-alkane points connected in order of increasing carbon number gave well-separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ(13)C, δD, or combined δ(13)C and δD data was applied to extract the maximum information content. PCA scores plots could clearly differentiate the samples, thereby demonstrating the potential of this approach for distinguishing (e.g., fingerprinting) fuel samples using δ(13)C and δD values. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    Science.gov (United States)

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    Science.gov (United States)

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  9. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women.

    Science.gov (United States)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M

    2012-07-01

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.

  10. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  11. Fast Growth of GaN Epilayers via Laser-Assisted Metal-Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications.

    Science.gov (United States)

    Rabiee Golgir, Hossein; Li, Da Wei; Keramatnejad, Kamran; Zou, Qi Ming; Xiao, Jun; Wang, Fei; Jiang, Lan; Silvain, Jean-François; Lu, Yong Feng

    2017-06-28

    In this study, we successfully developed a carbon dioxide (CO 2 )-laser-assisted metal-organic chemical vapor deposition (LMOCVD) approach to fast synthesis of high-quality gallium nitride (GaN) epilayers on Al 2 O 3 [sapphire(0001)] substrates. By employing a two-step growth procedure, high crystallinity and smooth GaN epilayers with a fast growth rate of 25.8 μm/h were obtained. The high crystallinity was confirmed by a combination of techniques, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and atomic force microscopy. By optimizing growth parameters, the ∼4.3-μm-thick GaN films grown at 990 °C for 10 min showed a smooth surface with a root-mean-square surface roughness of ∼1.9 nm and excellent thickness uniformity with sharp GaN/substrate interfaces. The full-width at half-maximum values of the GaN(0002) X-ray rocking curve of 313 arcsec and the GaN(101̅2) X-ray rocking curve of 390 arcsec further confirmed the high crystallinity of the GaN epilayers. We also fabricated ultraviolet (UV) photodetectors based on the as-grown GaN layers, which exhibited a high responsivity of 0.108 A W -1 at 367 nm and a fast response time of ∼125 ns, demonstrating its high optical quality with potential in optoelectronic applications. Our strategy thus provides a simple and cost-effective means toward fast and high-quality GaN heteroepitaxy growth suitable for fabricating high-performance GaN-based UV detectors.

  12. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Zhang, Weifeng; Zhong, Weilong; Luo, Zhongyang; Cen, Kefa

    2008-01-01

    This paper firstly evaluated the CO 2 absorption performance of a membrane gas absorption system (MAS) and chemical absorption system (CAS) using the overall mass transfer coefficient (K G a V ) as a basis for comparison. MAS selected microporous polypropylene (PP) hollow fiber membrane contactors to capture CO 2 from the simulated flue gas while CAS used a randomly packed column containing stainless Pall packing. Aqueous monoethanolamine (MEA) solution was adopted in both absorbers. Experimental results show that if the fresh membranes were tested, MAS has the higher K G a V values than that of CAS. However, when all the membrane pores were completely wetted or 50% pores were plugged, CAS inversely performs better than MAS in terms of K G a V values. In addition, the economic performance of MAS and CAS was also estimated. Results indicate that if the real operational time of membrane module is reduced to less than the critical value affected by the membrane price, the CO 2 captured cost of MAS is inversely higher than that of CAS. Therefore, the current well-accepted statement that MAS is superior to CAS in any case may be somewhat arbitrary unless membrane pore-wetting and pore-plugging problems, how to reduce the membrane price and how to prolong the membrane lifetime can be solved perfectly in the future. (author)

  13. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, J.P.

    1999-01-27

    Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

  14. Fast, sensitive, and selective gas chromatography tandem mass spectrometry method for the target analysis of chemical secretions from femoral glands in lizards.

    Science.gov (United States)

    Sáiz, Jorge; García-Roa, Roberto; Martín, José; Gómara, Belén

    2017-09-08

    Chemical signaling is a widespread mode of communication among living organisms that is used to establish social organization, territoriality and/or for mate choice. In lizards, femoral and precloacal glands are important sources of chemical signals. These glands protrude chemical secretions used to mark territories and also, to provide valuable information from the bearer to other individuals. Ecologists have studied these chemical secretions for decades in order to increase the knowledge of chemical communication in lizards. Although several studies have focused on the chemical analysis of these secretions, there is a lack of faster, more sensitive and more selective analytical methodologies for their study. In this work a new GC coupled to tandem triple quadrupole MS (GC-QqQ (MS/MS)) methodology is developed and proposed for the target study of 12 relevant compounds often found in lizard secretions (i.e. 1-hexadecanol, palmitic acid, 1-octadecanol, oleic acid, stearic acid, 1-tetracosanol, squalene, cholesta-3,5-diene, α-tocopherol, cholesterol, ergosterol and campesterol). The method baseline-separated the analytes in less than 7min, with instrumental limits of detection ranging from 0.04 to 6.0ng/mL. It was possible to identify differences in the composition of the samples from the lizards analyzed, which depended on the species, the habitat occupied and the diet of the individuals. Moreover, α-tocopherol has been determined for the first time in a lizard species, which was thought to lack its expression in chemical secretions. Globally, the methodology has been proven to be a valuable alternative to other published methods with important improvements in terms of analysis time, sensitivity, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis.

    Science.gov (United States)

    Rosenberg, Erwin

    2003-06-06

    The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS-MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to

  16. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots.

    Science.gov (United States)

    Dohnalová, Kateřina; Fučíková, Anna; Umesh, Chinnaswamy P; Humpolíčková, Jana; Paulusse, Jos M J; Valenta, Jan; Zuilhof, Han; Hof, Martin; Gregorkiewicz, Tom

    2012-10-22

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl-terminated Si-QDs of 2-3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano-object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron-hole pairs confined in the Si-QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si-QDs with tunable sizes and bandgaps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes

    DEFF Research Database (Denmark)

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka

    2016-01-01

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging...... as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate...... the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using...

  18. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  19. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    Science.gov (United States)

    Gerald, II, Rex E.; Ruscic, Katarina J [Chicago, IL; Sears, Devin N [Spruce Grove, CA; Smith, Luis J [Natick, MA; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  20. Study and application of ion chromatography and activation analysis without chemical separation for the determination of sodium and potassium in muscle tissues

    International Nuclear Information System (INIS)

    Haber, E.P.

    1984-01-01

    The simultaneous determination of Na and K in small amounts of muscular tissue by use of two methods, namely activation analysis and ion chromatography, is presented. For the activation analysis the samples were irradiated for 30 minutes in a 5 X 10 11 n cm sup(-) 2 s sup(-) 1 flux. The induced activities of 24 Na and 42 K were determined, without chemical separation, using a Ge(Li) detector equipped with a 4096 channel analyser on-line with a computer. The gamma ray spectra registered from the samples and standards were analysed and compared by the computer. For the ion chromatography analysis the samples and standards in solution were injected into the apparatus. The ions were separated by an ion-exchange system of columns and the concentrations were measured by conductivity. In addition, the two analytical methods were compared in regard to sensitivity, precision and accuracy as well as simplicity, cost and working time involved in the analysis. From the point of view of the reliability of the results, both techniques proved to be excelent and might be of great value in medical research. (Author) [pt

  1. Design of high-power, broadband 180o pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the design of high-power, broadband 180 o pulses and mixing sequences for generating dipolar and scalar coupling mediated 13 C- 13 C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1 H decoupling during mixing is presented. Considering RF field strengths in the range of 100-120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here

  2. A Fast and Robust UHPLC-MRM-MS Method to Characterize and Quantify Grape Skin Tannins after Chemical Depolymerization.

    Science.gov (United States)

    Pinasseau, Lucie; Verbaere, Arnaud; Roques, Maryline; Meudec, Emmanuelle; Vallverdú-Queralt, Anna; Terrier, Nancy; Boulet, Jean-Claude; Cheynier, Véronique; Sommerer, Nicolas

    2016-10-21

    A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated. The results of triplicate analyses confirmed the robustness of the method, which was thus proven to be suitable for high-throughput and large-scale metabolomics studies. Moreover, these preliminary results suggest that analysis of tannin composition is relevant to investigate the genetic bases of grape response to drought.

  3. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Futao, E-mail: dongft@sina.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China)

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boron combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.

  4. Ketamine metabolites with antidepressant effects: Fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection.

    Science.gov (United States)

    Fassauer, Georg M; Hofstetter, Robert; Hasan, Mahmoud; Oswald, Stefan; Modeß, Christina; Siegmund, Werner; Link, Andreas

    2017-11-30

    Increasing evidence accumulates that metabolites of the dissociative anesthetic ketamine contribute considerably to the biological effects of this drug and could be developed as next generation antidepressants, especially for acute treatment of patients with therapy-refractory major depression. Analytical methods for the simultaneous determination of the plethora of hydroxylated, dehydrogenated and/or demethylated compounds formed after administration of ketamine hydrochloride are a prerequisite for future clinical investigations and a deeper understanding of the individual role of the isomers of these metabolites. In this study, we present development and validation of a method based on supercritical-fluid chromatography (SFC) coupled to single quadrupole MS detection that allows the separation of ketamine as well as all of its relevant metabolites detected in urine of healthy volunteers. Inherently to SFC methods, the run times of the novel protocol are four times shorter than in a comparable HPLC method, the use of organic solvents is reduced and we were able to demonstrate and validate the successful enantioselective separation and quantification of R- and S-ketamine, R- and S-norketamine, R- and S-dehydronorketamine and (2R,6R)- and (2S,6S)-hydroxynorketamine isomers differing in either constitution, stereochemistry, or both, in one run. The developed method may be useful in investigating the antidepressant efficacy of ketamine in clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: Separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons

    Directory of Open Access Journals (Sweden)

    Dorea Vierling-Claassen

    2010-11-01

    Full Text Available Selective optogenetic drive of fast spiking interneurons (FS leads to enhanced local field potential (LFP power across the traditional gamma frequency band (20-80Hz; Cardin et al., 2009. In contrast, drive to regular-spiking pyramidal cells (RS enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS and low-threshold-spiking (LTS interneurons. Cells were modeled with detailed cell anatomy and physiology, multiple dendritic compartments, and included active somatic and dendritic ionic currents. Consistent with prior studies, the model demonstrated gamma resonance during FS drive, dependent on the time-constant of GABAA inhibition induced by synchronous FS activity. Lower frequency enhancement during RS drive was replicated only on inclusion of an inhibitory LTS population, whose activation was critically dependent on RS synchrony and evoked longer-lasting inhibition. Our results predict that differential recruitment of FS and LTS inhibitory populations is essential to the observed cortical dynamics and may provide a means for amplifying the natural expression of distinct oscillations in normal cortical processing.

  6. Effect of gamma irradiation on the microbial load and chemical and sensory properties of locally prepared fast meals

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2009-01-01

    Locally prepared meals (kubba, borak, cheese borak and sheesh tawoq) were treated with 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1-4 deg. C). Microbiological and chemical analyses were performed on each treated sample immediately after processing, and weekly throughout the storage period, which lasted for 3 weeks for kubba, 6 weeks for borak and cheese borak and 20 weeks for sheesh tawoq. Sensory evaluation and proximate analysis were done within one week after irradiation. Results of the proximate analysis of borak, cheese borak and sheesh tawoq showed that the irradiation doses did not have a significant effect on the moisture, protein and fat contents of meals, whereas for kubba, irradiation decreased the moisture, protein and fat contents. The doses of gamma irradiation selected decreased the microorganism load and increased the shelf life of all meals studied. The radiation doses required to reduce Salmonella and Escherichia coli by one log cycle (D 10 ) in borak were 0.46 and 0.51 kGy, in cheese borak 0.30 and 0.50 kGy and for sheesh tawoq 0.44 and 0.39 kGy, respectively. The three chemical parameters, total acidity, lipid peroxide and volatile basic nitrogen, which were chosen as the indices of freshness, were all well within the acceptable limit for up to 3 weeks for kubba, 6 weeks for borak and cheese borak and 20 weeks for sheesh tawoq treated with 6 kGy. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples. (author)

  7. Estimating representative background PM2.5 concentration in heavily polluted areas using baseline separation technique and chemical mass balance model

    Science.gov (United States)

    Gao, Shuang; Yang, Wen; Zhang, Hui; Sun, Yanling; Mao, Jian; Ma, Zhenxing; Cong, Zhiyuan; Zhang, Xian; Tian, Shasha; Azzi, Merched; Chen, Li; Bai, Zhipeng

    2018-02-01

    The determination of background concentration of PM2.5 is important to understand the contribution of local emission sources to total PM2.5 concentration. The purpose of this study was to exam the performance of baseline separation techniques to estimate PM2.5 background concentration. Five separation methods, which included recursive digital filters (Lyne-Hollick, one-parameter algorithm, and Boughton two-parameter algorithm), sliding interval and smoothed minima, were applied to one-year PM2.5 time-series data in two heavily polluted cities, Tianjin and Jinan. To obtain the proper filter parameters and recession constants for the separation techniques, we conducted regression analysis at a background site during the emission reduction period enforced by the Government for the 2014 Asia-Pacific Economic Cooperation (APEC) meeting in Beijing. Background concentrations in Tianjin and Jinan were then estimated by applying the determined filter parameters and recession constants. The chemical mass balance (CMB) model was also applied to ascertain the effectiveness of the new approach. Our results showed that the contribution of background PM concentration to ambient pollution was at a comparable level to the contribution obtained from the previous study. The best performance was achieved using the Boughton two-parameter algorithm. The background concentrations were estimated at (27 ± 2) μg/m3 for the whole year, (34 ± 4) μg/m3 for the heating period (winter), (21 ± 2) μg/m3 for the non-heating period (summer), and (25 ± 2) μg/m3 for the sandstorm period in Tianjin. The corresponding values in Jinan were (30 ± 3) μg/m3, (40 ± 4) μg/m3, (24 ± 5) μg/m3, and (26 ± 2) μg/m3, respectively. The study revealed that these baseline separation techniques are valid for estimating levels of PM2.5 air pollution, and that our proposed method has great potential for estimating the background level of other air pollutants.

  8. Direct determination of arsenic in soil samples by fast pyrolysis–chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis – chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min{sup −1} and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values. - Highlights: • Sodium formate can react with trace arsenic to form volatile species via pyrolysis–chemical vapor generation. • Thiourea can enhance the generation efficiency and eliminate the interference of copper. • Arsenic in soil Sample can be directly determined without sample pretreatment.

  9. The influence of the physico-chemical form of the aerosol on the radiological consequences of notional accidental releases of radioactivity from a fast breeder reactor

    International Nuclear Information System (INIS)

    Kelly, G.N.; Jones, J.A.; Simmonds, J.R.

    1979-01-01

    The radiological consequences of a wide range of notional accidental releases from a 1300 MW(e) LMFBR (Liquid Metal-cooled Fast Breeder Reactor) were assessed in a study published by the National Radiological Protection Board (NRPB) in 1977. In that study representative values were in general adopted for each of the important parameters while recognising that in reality they could vary considerably. The present study is concerned with the sensitivity of the predicted consequences to the physico-chemical form of the released aerosol. Of particular interest is the importance of a mixed sodium-transuranium element aerosol which may be formed in accidental releases of activity from sodium cooled FBRs. Two significant findings emerge from the study. First the predicted consequences in general are relatively insensitive to the range of physico-chemical forms analysed. For generic assessments therefore it is sufficient to assume the properties of the aerosol adopted in the initial study (1 μm AMAD and each element in the oxide form); the exception concerns the estimation of the incidence of early morbidity, and to a lesser extent early mortality, but only for a limited range of release composition. The second finding is that the radiological consequences are not, contrary to what might have been expected, significantly increased for the release of a mixed sodium-element aerosol

  10. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Li, Pan-lin; Liu, Meng-hua; Hu, Jie-hui; Su, Wei-wei

    2014-03-01

    Citrus grandis 'Tomentosa', as the original plant of the traditional Chinese medicine "Huajuhong", has been used as antitussive and expectorant in clinic for thousands of years. The fruit epicarp and whole fruit of this plant were both literarily recorded and commonly used. In the present study, an ultra-fast liquid chromatography coupled with diode-array detection and quadrupole/time-of-flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) based chemical profiling method was developed for rapid holistic quality evaluation of C. grandis 'Tomentosa', which laid basis for chemical comparison of two medicinal parts. As a result, forty-eight constituents, mainly belonging to flavonoids and coumarins, were unambiguously identified by comparison with reference standards and/or tentatively characterized by elucidating UV spectra, quasi-molecular ions and fragment ions referring to information available in literature. Both of the epicarp and whole fruit samples were rich in flavonoids and coumarins, but major flavonoids contents in whole fruit were significantly higher than in epicarp (P<0.5). The proposed method could be useful in quality control and standardization of C. grandis 'Tomentosa' raw materials and its products. Results obtained in this study will provide a basis for quality assessment and further study in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Reduction of hexavalent chromium by fasted and fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity

    Energy Technology Data Exchange (ETDEWEB)

    De Flora, Silvio, E-mail: sdf@unige.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); Camoirano, Anna, E-mail: Anna.Fiorenza.Camoirano@unige.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); Micale, Rosanna T., E-mail: rosannamicale@yahoo.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); La Maestra, Sebastiano, E-mail: lamaestra78@yahoo.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); Savarino, Vincenzo, E-mail: vsavarin@unige.it [Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa (Italy); Zentilin, Patrizia, E-mail: Patrizia.Zentilin@unige.it [Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa (Italy); Marabotto, Elisa, E-mail: emarabotto@libero.it [Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa (Italy); Suh, Mina, E-mail: msuh@toxstrategies.com [ToxStrategies, Mission Viejo, CA 92692 (United States); Proctor, Deborah M., E-mail: dproctor@toxstrategies.com [ToxStrategies, Mission Viejo, CA 92692 (United States)

    2016-09-01

    Evaluation of the reducing capacity of human gastric fluid from healthy individuals, under fasted and fed conditions, is critical for assessing the cancer hazard posed by ingested hexavalent chromium [Cr(VI)] and for developing quantitative physiologically-based pharmacokinetic models used in risk assessment. In the present study, the patterns of Cr(VI) reduction were evaluated in 16 paired pre- and post-meal gastric fluid samples collected from 8 healthy volunteers. Human gastric fluid was effective both in reducing Cr(VI), as measured by using the s-diphenylcarbazide colorimetric method, and in attenuating mutagenicity in the Ames test. The mean (± SE) Cr(VI)-reducing ability of post-meal samples (20.4 ± 2.6 μg Cr(VI)/mL gastric fluid) was significantly higher than that of pre-meal samples (10.2 ± 2.3 μg Cr(VI)/mL gastric fluid). When using the mutagenicity assay, the decrease of mutagenicity produced by pre-meal and post-meal samples corresponded to reduction of 13.3 ± 1.9 and 25.6 ± 2.8 μg Cr(VI)/mL gastric fluid, respectively. These data are comparable to parallel results conducted by using speciated isotope dilution mass spectrometry. Cr(VI) reduction was rapid, with > 70% of total reduction occurring within 1 min and 98% of reduction is achieved within 30 min with post-meal gastric fluid at pH 2.0. pH dependence was observed with decreasing Cr(VI) reducing capacity at higher pH. Attenuation of the mutagenic response is consistent with the lack of DNA damage observed in the gastrointestinal tract of rodents following administration of ≤ 180 ppm Cr(VI) for up to 90 days in drinking water. Quantifying Cr(VI) reduction kinetics in the human gastrointestinal tract is necessary for assessing the potential hazards posed by Cr(VI) in drinking water. - Highlights: • Cr(VI) reduction capacity was greater in post-meal than paired pre-meal samples. • Cr(VI) reduction was rapid, pH dependent, and due to heat stable components. • Gastric fluid attenuates

  12. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals

    Science.gov (United States)

    Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg

    2017-01-01

    An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.

  13. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1980-01-01

    This invention relates to the isotope separation art and, more particularly, to a selectively photon-induced energy level transition of an isotopic molecule containing the isotope to be separated and a chemical reaction with a chemically reactive agent to provide a chemical compound containing atoms of the isotope desired. In particular a description is given of a method of laser isotope separation applied to the separation of 235 UF 6 from 238 UF 6 . (U.K.)

  14. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    Science.gov (United States)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  15. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  16. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  17. Production of carrier-free 28Mg and 24Na by 50-180 MeV protons on Si, P, S, Cl, Ar and K. Excitation functions and chemical separation

    International Nuclear Information System (INIS)

    Lundqvist, H.; Malmborg, P.

    1976-01-01

    This work investigates the possible use of high energy proton bomardment of silicon, phosphorous, sulphur, chlorine, argon or potassium for production of carrier-free 28 Mg. A chemical separation is essential in this preparation in order to get rid of the bulk of target material and contaminating radionuclides. A simple and efficient method to get carrier-free 28 Mg with neglectible amounts of radio-chemical impurities has been established. (Auth.)

  18. Process for isotope separation

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.; Gebauhr, W.

    1980-01-01

    Isotope separation in UF 6 gas takes place on the principle of selective excitation by laser irradiation and separation by chemical conversion with a partner in a reaction. Atomic H, N or O or the CH 3 or CHO radicals are suitable partners in the reaction. The recombination takes place by catalytic acceleration on leaving the reaction area. (DG) [de

  19. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1980-01-01

    Methods and apparatus are disclosed for separation of uranium isotopes by selective isotopic excitation of photochemically reactive uranyl salt source material at cryogenic temperatures, followed by chemical separation of selectively photochemically reduced U+4 thereby produced from remaining uranyl source material

  20. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1979-01-01

    A method is described for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption after which more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  1. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1976-01-01

    The invention comprises a method for separating different isotopes of elements from each other by contacting a feed solution containing the different isotopes with a macrocyclic polyether to preferentially form a macrocyclic polyether complex with the lighter of the different isotopes. The macrocyclic polyether complex is then separated from the lighter isotope depleted feed solution. A chemical separation of isotopes is carried out in which a constant refluxing system permits a continuous countercurrent liquid-liquid extraction. (LL)

  2. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  3. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  4. Magnetic separations in biotechnology.

    Science.gov (United States)

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  6. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1976-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically-identical but isotopically-different molecules by either photon-induced pure revibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically-reactive agent to form a chemical compound containing primarily the atoms of the isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically-identical but isotopically-different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope. The laser configuration used to generate the photon beam is fully described

  7. Separation of L-aspartic acid and L-glutamic acid mixtures for use in the production of bio-based chemicals

    NARCIS (Netherlands)

    Teng, Y.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    BACKGROUND: Amino acids are promising feedstocks for the chemical industry due to their chemical functionality. They can be obtained by the hydrolysis of potentially inexpensive protein streams such as the byproduct of biofuel production. However, individual amino acids are required before they can

  8. Computer modelling of the chemical speciation of caesium, uranium(VI) and neptunium(V) in human duodenal fluids under fasting conditions

    International Nuclear Information System (INIS)

    Jones, P.W.; Taylor, D.M.; Webb, L.M.; Williams, D.R.

    2002-01-01

    A model simulating the human duodenal contents under physiologically realistic, fasting conditions was developed using the joint expert speciation system (JESS) computer program and database and used to investigate the chemical speciation of caesium, uranium(VI) and neptunium(V). Over the pH range 5.0-9.0, and the concentration range 5x10 -15 -5x10 -5 mol dm -3 , caesium was predicted to occur predominantly as the absorbable free monovalent cation Cs + (∼95%) with species such as CsHPO 4 - and CsCl representing the remainder. The presence or absence of sulphate at 2.1x10 -3 mol dm -3 did not influence the predicted speciation. Uranium was predicted to be present entirely as a soluble, highly charged species, both in the absence and in the presence of sulphate. Between pH 5.0 and ∼6.5 the UO 2 H 2 (PO 4 ) 2 2- predominated, above this pH carbonate species, either UO 2 (CO 3 ) 4 6- or, possibly, UO 2 (CO 3 ) 5 8- . At pH 8.0, and in the presence of sulphate, neptunium(V) was predicted to exist solely as the tetrasulphate species, whilst in the absence of sulphate, an array of negatively charged soluble carbonate species predominated. Studies over the pH range 5.0-9.0 predicted the formation of a spectrum of negatively charged carbonate and phosphate species, ∼40% of the total neptunium was predicted to be present as the electrically net-neutral species NpO 2 HCO 3 at pH6.0, ∼20% at pH 7.0, ∼10% at pH 7.5 and ∼1% at pH 8.0. The observed speciation patterns of uranium and neptunium did not change over the concentration range 5x10 -15 -5x10 -5 mol dm -3 and no solid species were predicted to occur under the conditions simulated. Whether the predicted electrically net-neutral neptunium species or the uranium pentacarbonate species do actually occur under true physiological conditions remains to be established. The observed speciation patterns for caesium and uranium are consistent with the observed absorption of these elements by humans; however, the

  9. Superhydrophobic Cu{sub 2}S@Cu{sub 2}O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Pihui, E-mail: phpi@scut.edu.cn; Hou, Kun; Zhou, Cailong; Li, Guidong; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Wang, Shuangfeng

    2017-02-28

    Highlights: • A superhydrophobic film with macro/nano structure was fabricated on copper surface. • The as-prepared film shows outstanding water repellency and long-term storage stability. • The same method was used to fabricate superhydrophobic/superoleophilic copper mesh. • The obtained mesh could realize separation of various oily sewages with separation efficiency above 94%. - Abstract: Cu{sub 2}S and Cu{sub 2}O composite (Cu{sub 2}S@Cu{sub 2}O) film with micro/nano binary structure was created on copper surface using the mixing solution of sodium thiosulphate and copper sulfate by a facile chemical bath deposition method. After modification with low-cost polydimethylsioxane (PDMS), the superhydrophobic Cu{sub 2}S@Cu{sub 2}O film was obtained. The as-prepared film shows outstanding water repellency with a water contact angle larger than 150° and long-term storage stability. The geometric morphology and chemical composition of the film were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Moreover, the same method was used to fabricate superhydrophobic/superoleophilic copper mesh, and it could realize separation of various oily sewages with separation efficiency above 94%. This strategy has potential to fabricate the practical superhydrophobic Cu{sub 2}S@Cu{sub 2}O film on copper surface on a large scale due to its simplicity and low cost.

  10. The Cryo-Thermochromatographic Separator (CTS) A new rapid separation and alpha-detection system for on-line chemical studies of highly volatile osmium and hassium (Z=108) tetroxides

    CERN Document Server

    Kirbach, U W; Gregorich, K E; Lee, D M; Ninov, V; Omtvedt, J P; Patin, J B; Seward, N K; Strellis, D A; Sudowe, R; Türler, A; Wilk, P A; Zielinski, P M; Hoffman, D C; Nitsche, H

    2002-01-01

    The Cryo-Thermochromatographic Separator (CTS) was designed and constructed for rapid, continuous on-line separation and simultaneous detection of highly volatile compounds of short-lived alpha-decaying isotopes of osmium and hassium (Hs, Z=108). A flowing carrier gas containing the volatile species is passed through a channel formed by two facing rows of 32 alpha-particle detectors, cooled to form a temperature gradient extending from 247 K at the channel entrance down to 176 K at the exit. The volatile species adsorb onto the SiO sub 2 -coated detector surfaces at a characteristic deposition temperature and are identified by their observed alpha-decay energies. The CTS was tested on-line with OsO sub 4 prepared from sup 1 sup 6 sup 9 sup - sup 1 sup 7 sup 3 Os isotopes produced in sup 1 sup 1 sup 8 sup , sup 1 sup 2 sup 0 Sn( sup 5 sup 6 Fe, 3,4,5n) reactions. An adsorption enthalpy for OsO sub 4 of -40.2+-1.5 kJ/mol on SiO sub 2 was deduced by comparing the measured deposition distribution with Monte Carlo...

  11. A separator

    Energy Technology Data Exchange (ETDEWEB)

    Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.

    1982-01-01

    A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.

  12. Deuterium isotope separation

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    Deuterium-containing molecules are separated and enriched by exposing commercially available ethylene, vinyl chloride, 1,2-dichloroethane or propylene to the radiation of tuned infrared lasers to selectively decompose these compounds into enriched molecular products containing deuterium atoms. The deuterium containing molecules can be easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. (author)

  13. Fast beam radiofrequency spectroscopy

    International Nuclear Information System (INIS)

    Pipkin, F.M.

    1983-01-01

    The combination of a fast atom or ion beam derived from a small accelerator with radiofrequency spectroscopy methods provides a powerful method for measuring the fine structure of atomic and molecular systems. The fast beam makes possible measurements in which two separated oscillatory fields are used to obtain resonance lines whose widths are less than the natural line width due to the lifetimes of the states. The separated oscillatory field lines have, in addition, a number of features which make possible measurements with greater precision and less sensitivity to systematic errors. The fast beam also makes accessible multiple photon radiofrequency transitions whose line width is intrinsically narrower than that of the single photon transitions and which offer great potential for high precision measurements. This report focuses on the techniques and their promise. Recent measurements of the fine structure of H and He + are used as illustrations

  14. Near-infrared spectra of Penicillium camemberti strains separated by extended multiplicative signal correction improved prediction of physical and chemical variations

    DEFF Research Database (Denmark)

    Decker, Marianne; Nielsen, Per Væggemose; Martens, Harald

    2005-01-01

    signal correction (TWEMSC) preprocessing, whereby three patterns of variation in near-infrared (NIR) log(1/R) spectra of fungal colonies could be separated mathematically: (1) physical light scattering and its wavelength dependency, (2) differences in light absorption of water due to varying sample...

  15. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan

    2017-09-29

    Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  17. The Use of Atmospheric Pressure Chemical Ionization Mass Spectrometry with High Performance Liquid Chromatography and Other Separation Techniques for Identification of Triacylglycerols

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Sigler, Karel

    2007-01-01

    Roč. 3, - (2007), s. 252-271 ISSN 1573-4110 R&D Projects: GA ČR GA203/06/0219 Institutional research plan: CEZ:AV0Z50200510 Keywords : triacylglycerols * atmospheric presssure chemical ionization * mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 1.815, year: 2007

  18. [Process monitoring of dissolution of valsartan and hydrochlorothiazide tablets by fiber-chemical sensor assisted by mathematical separation model of linear equations].

    Science.gov (United States)

    Ding, Hai-Yan; Li, Gai-Ru; Yu, Ying-Ge; Guo, Wei; Zhi, Ling; Li, Xin-Xia

    2014-04-01

    A method for on-line monitoring the dissolution of Valsartan and hydrochlorothiazide tablets assisted by mathematical separation model of linear equations was established. UV spectrums of valsartan and hydrochlorothiazide were overlapping completely at the maximum absorption wavelength respectively. According to the Beer-Lambert principle of absorbance additivity, the absorptivity of Valsartan and hydrochlorothiazide was determined at the maximum absorption wavelength, and the dissolubility of Valsartan and hydrochlorothiazide tablets was detected by fiber-optic dissolution test (FODT) assisted by the mathematical separation model of linear equations and compared with the HPLC method. Results show that two ingredients were real-time determined simultaneously in given medium. There was no significant difference for FODT compared with HPLC (p > 0.05). Due to the dissolution behavior consistency, the preparation process of different batches was stable and with good uniformity. The dissolution curves of valsartan were faster and higher than hydrochlorothiazide. The dissolutions at 30 min of Valsartan and hydrochlorothiazide were concordant with US Pharmacopoeia. It was concluded that fiber-optic dissolution test system assisted by the mathematical separation model of linear equations that can detect the dissolubility of Valsartan and hydrochlorothiazide simultaneously, and get dissolution profiles and overall data, which can directly reflect the dissolution speed at each time. It can provide the basis for establishing standards of the drug. Compared to HPLC method with one-point data, there are obvious advantages to evaluate and analyze quality of sampling drug by FODT.

  19. Industrial separation processes : fundamentals

    NARCIS (Netherlands)

    Haan, de A.B.; Bosch, Hans

    2013-01-01

    Separation processes on an industrial scale comprise well over half of the capital and operating costs. They are basic knowledge in every chemical engineering and process engineering study. This book provides comprehensive and fundamental knowledge of university teaching in this discipline,

  20. FastChem: An ultra-fast equilibrium chemistry

    Science.gov (United States)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  1. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  2. Microparticle Separation by Cyclonic Separation

    Science.gov (United States)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  3. Observation of chemical separation of In{sub 3}Sb{sub 1}Te{sub 2} thin film during phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.M.; Baik, J.; Shin, H.-J. [Beamline Division, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Y.S. [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 680-749 (Korea, Republic of); Yoon, S.G., E-mail: sgyoon@cnu.ac.kr [Brain Korea 21 Project (BK21) and Department of Materials Engineering, Chungnam University, Daejeon 305-764 (Korea, Republic of); Jung, M.-C., E-mail: mcjung@oist.jp [Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 (Japan); Qi, Y.B. [Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 (Japan)

    2014-02-15

    We investigated the chemical states of In{sub 3}Sb{sub 1}Te{sub 2} (IST) thin film using high-resolution X-ray photoelectron spectroscopy (HRXPS) with the synchrotron radiation during in-situ annealing in ultra-high vacuum. To obtain the oxygen-free amorphous IST (a-IST), we performed the mild Ne{sup +} ion sputtering. And also we confirmed the relative a-IST stoichiometry to be 54%:17%:29% based on HRXPS data. At the first and second phase transition temperatures of 350 and 400 °C, we observed the dramatic changes of chemical states from a-IST to InSb and the mixture of crystalline-IST and InTe, respectively. There was a depletion of Sb atoms on the surface after annealing at 750 °C. We assume that Sb atom is a key for the phase transition in IST. However, chemical state of the Sb in IST is unstable during the phase transition and it will be caused with the non-reversible process by this structural instability.

  4. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  5. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  6. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  7. A Fast Radiochemical Method for the Determination of Some Essential Trace Elements in Biology and Medicine

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-12-01

    A method has been developed for the determination with neutron-activation analysis of the following trace elements in soft biological tissues: Br, Ca, Cl, Cu, K, Mg, Mn, Mo, Na, P, Sr and Zn. The method consists in performing a short-term irradiation of the samples with a high thermal neutron flux, followed by fast chemical separations and gamma-spectrometric measurements. The chemical separations and the measurements of short-lived nuclides from a run are finished within 70 min, after the end of irradiation

  8. A Fast Radiochemical Method for the Determination of Some Essential Trace Elements in Biology and Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1964-12-15

    A method has been developed for the determination with neutron-activation analysis of the following trace elements in soft biological tissues: Br, Ca, Cl, Cu, K, Mg, Mn, Mo, Na, P, Sr and Zn. The method consists in performing a short-term irradiation of the samples with a high thermal neutron flux, followed by fast chemical separations and gamma-spectrometric measurements. The chemical separations and the measurements of short-lived nuclides from a run are finished within 70 min, after the end of irradiation.

  9. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by mc-ICP-MS

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Baker, J.A.; Ulfbeck, D.

    2003-01-01

    for isotopic analysis of the Sm-Nd system and/or the other HFSE (Ti, Zr). Total procedural blanks for this technique are 5 g) samples. We present data from replicate digestions of international rock reference materials which....... The relative simplicity of this technique, coupled with the ease of digestion (and samplespike equilibration) of large difficult-to-dissolve samples, and the speed (2 days) with which samples can be digested and processed through the chemical separation scheme makes it an attractive new method for preparing...

  10. Separations by centrifugal phenomena

    International Nuclear Information System (INIS)

    Hsu, H.W.

    1981-01-01

    The technical information presented herein emphasizes the uniqueness of the centrifugal separations methodology and pertinent theory for various kinds of centrifugation. The topics are arranged according to gas, liquid, and solid phases, in the order of increasing densities. Much space is devoted to liquid centrifugation because of the importance of this technique in chemical and biological laboratories. Many separational and characterizational examples are illustrated in detail. The material has been divided into 7 chapters entitled: 1) Introduction, 2) Basic Theory of Centrifugation, 3) Gas Centrifuges, 4) Preparative Liquid Centrifuges, 5) Analytical Liquid Centrifuges, 6) Liquid Centrifuges in Practice, and 7) Mechanical Separations by Centrifuges. Separate abstracts have been prepared for each chapter except the introduction

  11. Separation system

    International Nuclear Information System (INIS)

    Rubin, L.S.

    1986-01-01

    A disposal container is described for use in disposal of radioactive waste materials consisting of: top wall structure, bottom wall structure, and circumferential side wall structure interconnecting the top and bottom wall structures to define an enclosed container, separation structure in the container adjacent the inner surface of the side wall structure for allowing passage of liquid and retention of solids, inlet port structure in the top wall structure, discharge port structure at the periphery of the container in communication with the outer surface of the separation structure for receiving liquid that passes through the separation structure, first centrifugally actuated valve structure having a normal position closing the inlet port structure and a centrifugally actuated position opening the inlet port structure, second centrifugally actuated valve structure having a normal position closing the discharge port structure and a centrifugally actuated position opening the discharge port structure, and coupling structure integral with wall structure of the container for releasable engagement with centrifugal drive structure

  12. Separable algebras

    CERN Document Server

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  13. Accurate Quantitation of Water-amide Proton Exchange Rates Using the Phase-Modulated CLEAN Chemical EXchange (CLEANEX-PM) Approach with a Fast-HSQC (FHSQC) Detection Scheme

    International Nuclear Information System (INIS)

    Hwang, Tsang-Lin; Zijl, Peter C.M. van; Mori, Susumu

    1998-01-01

    Measurement of exchange rates between water and NH protons by magnetization transfer methods is often complicated by artifacts, such as intramolecular NOEs, and/or TOCSY transfer from Cα protons coincident with the water frequency, or exchange-relayed NOEs from fast exchanging hydroxyl or amine protons. By applying the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) spin-locking sequence, 135 o (x) 120 o (-x) 110 o (x) 110 o (-x) 120 o (x) 135 o (-x) during the mixing period, these artifacts can be eliminated, revealing an unambiguous water-NH exchange spectrum. In this paper, the CLEANEX-PM mixing scheme is combined with Fast-HSQC (FHSQC) detection and used to obtain accurate chemical exchange rates from the initial slope analysis for a sample of 15N labeled staphylococcal nuclease. The results are compared to rates obtained using Water EXchange filter (WEX) II-FHSQC, and spin-echo-filtered WEX II-FHSQC measurements, and clearly identify the spurious NOE contributions in the exchange system

  14. Isotope separation process

    International Nuclear Information System (INIS)

    Cox, D.M.; Maas, E.T.

    1982-01-01

    Processes are disclosed for the separation of isotopes of an element comprising vaporizing uranyl compounds having the formula (UO2a2)n, where a is a monovalent anion and n in an integer from 2 to 4, the compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing said element which is to be separated, and then irradiating the uranyl compound with infrared radiation which is preferentially absorbed by a molecular vibration of uranyl ions of the compound containing a predetermined isotope of that element so that excited molecules of the compound are provided which are enriched in the molecules of the compound containing that predetermined isotope, thus enabling separation of these excited molecules. The processes disclosed include separation of the excited molecules by irradiating under conditions such that the excited molecules dissociate, and also separating the excited molecules by a discrete separation step. The latter includes irradiating the excited molecules by a second infrared laser in order to convert the excited molecules into a separable product, or also by chemically converting the excited molecules, preferably by reaction with a gaseous reactant

  15. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  16. Chemical modification of silica gel with synthesized Schiff base hydrazone derivative and application for preconcentration and separation of U(VI) ions from aqueous solutions

    International Nuclear Information System (INIS)

    Gamze Karayel Incili; Gul Asiye Aycik

    2014-01-01

    Schiff base hydrazone derivative (HL) sorbent was synthesized according to the literature to be used in the adsorption and preconcentration of U(VI) ions from aqueous solution and it was exposed to immobilization, and new solid support material was obtained. For this purpose, Schiff base hydrazone derivative (HL) was chemically bonded to silica gel surface immobilized 3-aminopropyl trimethoxysilane, then analyzed by Fourier transform infrared, Brunauer-Emmett-Teller, scanning electron microscopy and elemental analysis. The influence of the solution pH, amount of sorbent, contact time, temperature, foreign ion effect and initial U(VI) concentration was investigated. The maximum U(VI) uptake capacity was found to be 8.46 mg/g. (author)

  17. Chemical treatment of wastewaters produced during separation of iodine 131; Traitement chimique des eaux residuaires provenant de la preparation d'iode-131

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-06-22

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results.

  18. Production of a refined biooil derived by fast pyrolysis of chicken manure with chemical and physical characteristics close to those of fossil fuels.

    Science.gov (United States)

    Monreal, Carlos M; Schnitzer, Morris

    2011-01-01

    The chemical and physical properties of raw biooils prevent their direct use in combustion engines. We processed raw pyrolytic biooil derived from chicken manure to yield a colorless refined biooil with diesel qualities. Chemical characterization of the refined biooil involved elemental and several spectroscopic analyses. The physical measurements employed were viscosity, density and heat of combustion. The elemental composition (% wt/wt) of the refined biooil was 82.7 % C, 15.3 % H, 0.2 % N and 1.8 % O, no S. Its viscosity was 0.006 Pa.s and a heat of combustion of 43 MJ kg(-1). The refined biooil fraction contains n-alkanes, ranging from n-C(14) to n-C(27), alkenes varying from C(10:1) to C(22:1), and long-chain alcohols. The refined biooil makes a good diesel fuel due to its chemical and physical properties.

  19. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    Smith, R.D.

    1977-01-01

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  20. Advances in laser isotope separation

    International Nuclear Information System (INIS)

    Herman, I.P.; Bernhardt, A.F.

    1988-01-01

    The physical and chemical concepts required to understand laser isotope separation are presented and discussed. The numerous successful demonstrations of separating isotopes using lasers are reviewed to 1983. Emphasis is placed on the separation of 235-U from 238-U by multi-step selective ioniation of uranium atomic vapor, and on the separation of D and H and of T from D, by pulsed infrared laser multiple-photon dissociation of fluoroform and chloroform, respectively, because they are among the most successful and important examples of laser isotope separation to date. 161 refs.; 7 figs

  1. Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates.

    Science.gov (United States)

    Kanyal, Supriya S; Häbe, Tim T; Cushman, Cody V; Dhunna, Manan; Roychowdhury, Tuhin; Farnsworth, Paul B; Morlock, Gertrud E; Linford, Matthew R

    2015-07-24

    Microfabrication of ultrathin-layer chromatography (UTLC) plates via conformal deposition of silicon nitride by low-pressure chemical vapor deposition onto patterned carbon nanotube (CNT) scaffolds was demonstrated. After removal of the CNTs and hydroxylation, the resulting UTLC phase showed no expansion or distortion of their microfeatures and the absence/reduction of remaining nitrogenic species. Developing time of a mixture of lipophilic dyes on this UTLC plates was 86% shorter than on high-performance thin-layer chromatography (HPTLC) plates. A water-soluble food dye mixture was also separated resulting in low band broadening and reduced developing time compared to HPTLC. For the latter example, mobile phase optimization on a single UTLC plate consisted of 14 developments with different mobile phases, each preceded by a plate prewashing step. The same plate was again reused for additional 11 separations under varying conditions resulting in a development procedure with a mean separation efficiency of 233,000theoretical plates/m and a reduced mobile phase consumption of only 400μL. This repeated use proved the physical robustness of the ultrathin layer and its resistance to damage. The layer was highly suited for hyphenation to ambient mass spectrometry, including desorption electrospray ionization (DESI) mass spectrometry imaging and direct analysis in real time (DART) mass spectrometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Fast harmonic field mapper

    International Nuclear Information System (INIS)

    Au, R.; Fowler, M.; Hanawa, H.; Riedel, J.; Qua, Z.G.

    1984-01-01

    In early 1983 it was decided to mount coils on arms separated by 120 degrees and buck them out so that the third harmonic dphi/dt component would be cancelled and thus the first and second field harmonics could be very accurately measured. The original intention was to do as others had done, namely, use fast ADC's to read the voltages, and computer process the result to get the Fourier components. However, because of the 100 to 1 dynamic range of the fast ADC's and the likelihood that noise would be a problem, the authors decided to do things differently. Using a fast Fourier transform analyzer was considered, but this instrument is very expensive, so they decided to use a completely electronic analog approach: The authors decided to use active bandpass filters to render the harmonic components

  3. The simultaneous separation and determination of chloropropanols in soy sauce and other flavoring with gas chromatography-mass spectrometry in negative chemical and electron impact ionization modes.

    Science.gov (United States)

    Xu, Xiaomin; Ren, Yiping; Wu, Pinggu; Han, Jianlong; Shen, Xianghong

    2006-02-01

    Both gas chromatography-mass spectrometry in electron ionization (GC-MS-EI) and negative chemical ionization (GC-MS-NCI) modes are reported in this paper for the simultaneous determination of 1,3-dichloropropan-2-ol (1,3-DCP), 2,3-dichloropropan-1-ol (2,3-DCP), 3-chloropropane-1,2-diol (3-MCPD) and 2-chloropropane-1,3-diol (2-MCPD) in soy sauce and other flavoring. D(5)-3-MCPD (for 3-MCPD and 2-MCPD) and d(5)-1,3-DCP (for 1,3-DCP and 2,3-DCP) were used as the deuterium isotopic labelled internal standards. The feasibility of using heptafluorobutyric anhydride modified with triethylamine (HFBA-Et(3)N) as a new derivatization reagent to replace heptafluorobutyrylimidazole (HFBI) is proposed. Liquid/liquid extraction with hexane was introduced for high lipid content samples. A small survey was carried out of soy sauces (103 samples) and instant noodles (45 samples) and the applicability of GC-MS-NCI and GC-MS-EI was assessed in these different matrices.

  4. Luminescence process, refractory stabilities, and new novel electronic states: scanning chemical reactions and novel products for laser induced isotope separation. Progress report, December 1, 1975--July 15, 1976

    International Nuclear Information System (INIS)

    Gole, J.L.

    1976-08-01

    The formulation, development, and use of versatile oven systems for high temperature metal vaporization at temperatures in excess of 2000 0 C are discussed. Refinements of an apparatus appropriate for the production and study of small metal aggregates M/sub n/(2 less than or equal to n less than or equal to 6) are discussed at length. Improvements in the argon ion and nitrogen pumped dye laser systems, and necessary additions for effective interfacing of these dye lasers to the aggregates apparatus are described. Internal calibration standards are discussed. Progress on the production of carbon vapor and the reaction of this vapor with metal atoms and metal dimers to form metal carbides is outlined. Metal sulfide chemistry is discussed. Several specific studies of the luminescence process are outlined. Included in these studies are completed work on aluminum oxidation. Studies of germanium and silicon oxidation are outlined, and new investigations of inorganic hydride oxidation are presented. The status of our efforts to form new and novel surfaces via aggregate deposition is outlined. Quantum chemical calculations on small metal aggregates are discussed. The first applications of dynamic laser induced fluorescence to the AlO molecule are presented

  5. Vision 2020: 2000 Separations Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Stephen [Center for Waster Reduction Technologies; Beaver, Earl [Practical Sustainability; Bryan, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-01-01

    This report documents the results of four workshops on the technology barriers, research needs, and priorities of the chemical, agricultural, petroleum, and pharmaceutical industries as they relate to separation technologies utilizing adsorbents, crystallization, distillation, extraction, membranes, separative reactors, ion exchange, bioseparations, and dilute solutions.

  6. PBI treated polypropylene battery separator

    Science.gov (United States)

    Veryzwyvelt, S. A.

    1981-01-01

    A generalized procedure for fabricating the separator is described. Some of the desired properties considered in fabricating the separator material for nickel-cadmium cells were good mechanical strength, good chemical stability, good wettability to the electrolyte, high electrolyte retention, and gas passage.

  7. The production of fuels and chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1991--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year`s project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  8. Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity {sup 186g}Re using WO{sub 3} targets

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, M.E.; Ballard, B.; Birnbaum, E.R. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.] [and others

    2013-08-01

    Rhenium-186g (T{sub 1/2} = 89.2 h) is a {beta}{sup -} emitter suitable for therapeutic applications. Current production methods rely on reactor production via {sup 185}Re(n,{gamma}) which results in low specific activities, thereby limiting its use. Production by p,d activation of enriched {sup 186}W results in a {sup 186g}Re product with a higher specific activity, allowing it to be used for targeted therapy with limited receptors. A test target consisting of pressed, sintered {sup nat}WO{sub 3} was proton irradiated at Los Alamos (LANL-IPF) to evaluate product yield and impurities, irradiation parameters and wet chemical Re recovery for proof-of-concept for bulk production of {sup 186g}Re. We demonstrated isolation of {sup 186g}Re in 97% yield from irradiated {sup nat}WO{sub 3} targets within 12 h of end of bombardment (EOB) via an alkaline dissolution followed by anion exchange. The recovery process has potential for automation, and WO{sub 3} can be easily recycled for recurrent irradiations. A {sup 186g}Re batch yield of 42.7 {+-} 2.2 {mu}Ci/{mu}Ah or 439 {+-} 23 MBq/C was obtained after 24 h in an 18.5 {mu}A proton beam. The target entrance energy was determined to be 15.6 MeV. The specific activity of {sup 186g}Re at EOB was measured to be 1.9 kCi (70.3 TBq) mmol{sup -1}, which agrees well with the result of a previous {sup 185,186m}Re co-production EMPIRE and TALYS modeling study assuming similar conditions. Utilizing enriched {sup 186}WO{sub 3}, we anticipate that a proton beam of 250 {mu}A for 24 h will provide batch yields of 256 mCi (9.5 GBq) of {sup 186g}Re at EOB with specific activities even higher than 1.9 kCi (70.3 TBq) mmol{sup -1}, suitable for therapy applications. (orig.)

  9. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1977-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 15 claims, 1 figure

  10. Isotope separation process

    International Nuclear Information System (INIS)

    Thomas, W.R.L.

    1979-01-01

    The instant invention relates to an improved process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same element in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than non-excited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  11. Efficient separations & processing crosscutting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

  12. Composite separators and redox flow batteries based on porous separators

    Science.gov (United States)

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  13. Gas separating

    Science.gov (United States)

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  14. Isotope separation

    International Nuclear Information System (INIS)

    Rosevear, A.; Sims, H.E.

    1985-01-01

    sup(195m)Au for medical usage is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg by contacting the solution with an adsorbing agent to adsorb 195 Hgsup(H) thereon, followed by selective elution of sup(195m)Au generated by radioactive decay of the sup(195m)Hg. The adsorbing agent comprises a composite material in the form of an inert porous inorganic substrate (e.g. Kieselguhr),the pores of which are occupied by a hydrogel of a polysaccharide (e.g. agarose) carrying terminal thiol groups for binding Hgsup(H) ions. (author)

  15. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    Science.gov (United States)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic

  16. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  18. Combined method for the fast determination of pure beta emitting radioisotopes in food samples

    International Nuclear Information System (INIS)

    Kabai, Eva; Savkin, Birgit; Mehlsam, Isabell; Poppitz-Spuhler, Angela

    2017-01-01

    Fast radioanalytical methods are essential for a rapid response of decision makers. A fast method for the simultaneous determination of the pure beta emitting radionuclides 89 Sr/ 90 Sr and 99 Tc in food samples was developed. It includes the precipitation of fat and proteins with trichloroacetic acid for milk and dairy products and microwave digestion for other food products, followed by an anion exchange step to separate strontium from technetium. The purification steps for strontium and technetium are done using Sr-resin and TEVA-resin, respectively. Typical chemical yields are around 70 % for both radionuclides. The whole determination takes only around 20 h. (author)

  19. Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties

    International Nuclear Information System (INIS)

    Liu, Cai; Li, Jiangang; Zhao, Pengxiang; Guo, Wenli; Yang, Xiaoping

    2015-01-01

    This paper describes a high NaOH concentration hydrothermal soft chemical reaction to prepare Na 0.44 MnO 2 nanorods. In this process, Na-birnessite precursors and concentrated NaOH solution are introduced into the hydrothermal reaction. As a result, the hydrothermal time can be significantly shortened from 96 to 24 h, the hydrothermal temperature can be reduced from 205 to 180 °C and the yield of Na 0.44 MnO 2 can be increased from about 0.6 to about 2.4 g/(mL . day), respectively. Furthermore, the obtained Na 0.44 MnO 2 nanorods with one-dimensional tunnel structures exhibit favorable electrochemical lithium storage properties, which make them promising for the cathode materials of lithium-ion batteries

  20. High mass isotope separation process and arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1978-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically identical but isotopically different molecules by either photon-induced pure rovibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically reactive agent to form a chemical compound containing primarily the atoms of isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically identical but isotopically different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope

  1. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  2. Fast ejendom

    DEFF Research Database (Denmark)

    Pagh, Peter

    Bogen omfatter en gennemgang af lovgivning, praksis og teori vedrørende køb af fast ejendom og offentligretlig og privatretlig regulering. Bogen belyser bl.a. de privatretlige emner: købers misligholdelsesbeføjelser, servitutter, naboret, hævd og erstatningsansvar for miljøskader samt den...

  3. Simultaneous Qualitative and Quantitative Analysis of Multiple Chemical Constituents in YiQiFuMai Injection by Ultra-Fast Liquid Chromatography Coupled with Ion Trap Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Chunhua Liu

    2016-05-01

    Full Text Available YiQiFuMai injection (YQFM is a modern lyophilized powder preparation derived from the traditional Chinese medicine Sheng-mai san (SMS used for treating cardiovascular diseases, such as chronic heart failure. However, its chemical composition has not been fully elucidated, particularly for the preparation derived from Ophiopogon japonicus. This study aimed to establish a systematic and reliable method to quickly and simultaneously analyze the chemical constituents in YQFM by ultra-fast liquid chromatography coupled with ion trap time-of-flight mass spectrometry (UFLC-IT-TOF/MS. Sixty-five compounds in YQFM were tentatively identified by comparison with reference substances or literature data. Furthermore, twenty-one compounds, including three ophiopogonins, fifteen ginsenosides and three lignans were quantified by UFLC-IT-TOF/MS. Notably, this is the first determination of steroidal saponins from O. japonicus in YQFM. The relative standard deviations (RSDs of intra- and inter-day precision, reproducibility and stability were <4.9% and all analytes showed good linearity (R2 ≥ 0.9952 and acceptable recovery of 91.8%–104.2% (RSD ≤ 5.4%, indicating that the methods were reliable. These methods were successfully applied to quantitative analysis of ten batches of YQFM. The developed approach can provide useful and comprehensive information for quality control, further mechanistic studies in vivo and clinical application of YQFM.

  4. Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: Understanding alcohol participation, chemical composition, and energy efficiency

    International Nuclear Information System (INIS)

    Jo, Heuntae; Prajitno, Hermawan; Zeb, Hassan; Kim, Jaehoon

    2017-01-01

    Highlights: • Non-catalytic and non-hydrogen based bio-oil upgrading was conducted using scMeOH. • 16–40 wt% alcohols were consumed during the upgrading. • High bio-oil yield of 78.4 wt% and low TAN of 4.0 mg KOH/g were achieved. • Effect of supercritical alcohols, reaction times, temperature and bio-oil concentration was conducted. • scMeOH upgrading has good energy recovery (ER) and energy efficiency (EE) compared with scEtOH and scIPA. - Abstract: Herein, a supercritical methanol (scMeOH) route for efficient upgrading of the low-boiling fraction of fast pyrolysis bio-oil containing a large amount of low-molecular-weight acids and water was investigated. The effects of various reaction parameters, including the temperature, concentration, and time, were explored. The yield of bio-oil and the energy efficiency of the scMeOH upgrading process were determined based on the amount of methanol that participated in the reaction during upgrading and fractionation of the upgraded heavy-fraction bio-oils (UHBOs) and upgraded light-fraction bio-oils (ULBOs). Upgrading at 400 °C with 9.1 wt% bio-oil for 30 min generated a high bio-oil yield of 78.4 wt% with a low total acid number (TAN) of 4.0 mg-KOH/g-oil and a higher heating value of 29.9 MJ kg −1 . The energy recovery (ER) was 94–131% and the energy efficiency (EE) was in the range of 79–109% depending on the calorific values of the ULBOs. Compared with upgrading in supercritical ethanol and supercritical isopropanol, less alcohol participation, a lower TAN, and higher ER and EE were achieved with scMeOH upgrading. Plausible pathways for bio-oil upgrading in supercritical alcohols based on detailed compositional analysis of the UHBO, ULBO, and gaseous products were discussed.

  5. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Infrared spectra of Pu(IV) polymer show effects of CO 2 adsorption and of aging. Uv light (300 nm) increases the rate of reduction of PuO 2 2+ and Pu 4+ to Pu 3+ and the Pu--U separation factor using TBP. Distribution ratios for Zr and Hf between Dowex 50W--X8 resin and H 2 SO 4 solutions were found to decrease sharply with H 2 SO 4 content. Octylphenyl acid phosphate, a mixture of monooctylphenyl and dioctylphenyl phosphoric acids, is being studied for U recovery from wet-process phosphoric acid. A study of HNO 3 leaching of Ra from U ores was completed. Effects of particle size of the packed bed on the dispersion of the boundary of the miscible phase used in oil recovery are being studied. Effects of sulfonates on toluene--n-butanol--water phase relations were determined, as were the effects of salts and solutes on the max water content of 1:1 toluene--alcohol solutions. A study was begun of hydrocarbon solubility in water--surfactant--alcohol. The mechanism of the formation of hydrous ZrO 2 --polyacrylate membranes and their use for sulfate rejection were studied. Salt rejection through hyperfiltration by clay membranes (bentonite and kaolin) was also investigated. Preliminary results are given for hyperfiltration of wood-pulping wastes by ZrO 2 membranes. 13 figures

  6. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  7. Chemical development Separations Technology Unit. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, F.W.

    1952-07-31

    The Redox Plant operated at a 76.7% time efficiency (IAF basis) and averaged 3.16 tons of uranium per operating day during the month. During the period from July 4 through July 13, 38,000 gallons of 72% ANN from Tygon-lined storage tank SS-112 were used in aqueous salt solution make-ups with some emulsion difficulty and fission-product carry-over resulting. New ANN, from stainless-steel tanks, was used for the balance of the month. An extensive (thermally) hot 60% HNO{sub 3} cleanout was given to the IA, IB, 2D, 3D, 2A, and 3A columns and associated salt solution head tanks to prepare the solvent-extraction battery for operation using 90-day `cooled` uranium. Continuous cross-over oxidation to improve 2A Column waste losses, and employment of KOH (vice NaOH) in 2DS, ICU, and 2EU butt additions to minimize Na in 3EU, were begun concurrently on July 20. Aged (90-day) uranium in head-end treated feed batches, was started to the IA Column on July 21, with early data indicating adequate two-cycle decontamination for both uranium and plutonium.

  8. Laser separation of uranium isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1981-01-01

    Method and apparatus for separating uranium isotopes are claimed. The method comprises the steps of irradiating a uranyl source material at a wavelength selective to a desired isotope and at an effective temperature for isotope spectral line splitting below about 77 deg.K., further irradiating the source material within the fluorescent lifetime of the source material to selectively photochemically reduce the excited isotopic species, and chemically separating the reduced isotope species from the remaining uranyl salt compound

  9. Phase separator safety valve blow-off.

    CERN Multimedia

    G. Perinic

    2006-01-01

    The fast discharge of the CMS solenoid leads to a pressure rise in the phase separator. On August 28th, a fast discharge was triggered at a current level of 19.1 kA. The pressure in the phase separator increased up to the set pressure of the safety valve and some helium was discharged. In consequence of this and prevoious similar observations the liquid helium level in the phase separator has been reduced from 60% to 50% and later to 45% in order to reduce the helium inventory in the magnet.

  10. A novel nano-hydroxyapatite — PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    G, Radha [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025 (India); S, Balakumar, E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025 (India); Venkatesan, Balaji; Vellaichamy, Elangovan [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025 (India)

    2017-06-01

    In this study, we report the preparation of nano-hydroxyapatite (nHAp) incorporated poly(methyl methacrylate) (PMMA) scaffolds by conjugated thermal induced phase separation (TIPS) and wet-chemical approach, which essentially facilitates the enhancement of both mechanical as well as biological properties of the scaffolds. The dissolution of PMMA was accomplished by acetone (Ace scaffold), ethanol-water (E-W scaffold) and isopropanol-water (I-W scaffold) mixtures as solvents. The existence of nHAp in PMMA matrix was investigated systematically. The higher degree of porous architecture was achieved from Ace scaffolds compared to both I-W and E-W scaffolds. On the other hand, the dense porous architecture of the I-W scaffold exhibited superior hardness and compressive strength than that of the Ace and E-W scaffolds. All the fabricated samples demonstrated enhanced in vitro bioactivity with respect to increasing immersion period as a result of flower-like in vitro apatite layer formation. The MTT assay was carried out for 1 day and 3 day culture using Saos-2 osteoblast-like cells, which showed better cell proliferation with increasing culture period owing to the interconnected pore architecture of scaffolds and the rational hemocompatibility as per the ASTM standard F756-00. - Highlights: • Conjugated TIPS – wet chemical derived strategy was adopted for PMMA-nHAp composite scaffolds preparation. • TIPS method was carried out by varying solvents such as acetone, isopropanol-water and ethanol-water mixtures. • The impact of solvents on porosity and mechanical properties has been explored. • The existence of nHAp in PMMA has improved in-vitro bioactivity through apatitic-flowers formation. • Hemocompatibility of the scaffolds are in agreement with ASTM standards.

  11. A novel nano-hydroxyapatite – PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Radha, G. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai 600025 (India); Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai 600025 (India); Venkatesan, Balaji; Vellaichamy, Elangovan [Department of Biochemistry, University of Madras, Guindy campus, Chennai 600025 (India)

    2017-04-01

    In this study, we report the preparation of nano-hydroxyapatite (nHAp) incorporated poly(methyl methacrylate) (PMMA) scaffolds by conjugated thermal induced phase separation (TIPS) and wet-chemical approach, which essentially facilitates the enhancement of both mechanical as well as biological properties of the scaffolds. The dissolution of PMMA was accomplished by acetone (Ace scaffold), ethanol-water (E-W scaffold) and isopropanol-water (I-W scaffold) mixtures as solvents. The existence of nHAp in PMMA matrix was investigated systematically. The porosity of ~ 57.89% was achieved from Ace scaffold that was higher degree compared to both I-W and E-W scaffolds. On the other hand, the dense porous architecture of I-W scaffold exhibited superior hardness of ~ 65.6 HR ‘D’ than that of the Ace and E-W scaffolds. All the fabricated samples demonstrated enhanced in vitro bioactivity with respect to increasing immersion period as a result of flower-like in vitro apatite layer formation. The MTT assay was carried out for 1 day and 3 day culture using Saos-2 osteoblast-like cells, which showed better cell proliferation with increasing culture period owing to the interconnected pore architecture of scaffolds and the rational hemocompatibility as per the ASTM standard F756-00. - Highlights: • Conjugated TIPS – wet chemical derived strategy was adopted for PMMA-nHAp composite scaffolds preparation. • TIPS method was carried out by varying solvents such as acetone, isopropanol-water and ethanol-water mixtures. • The impact of solvents on porosity and mechanical properties has been explored. • The existence of nHAp in PMMA has improved in-vitro bioactivity through apatitic-flowers formation. • Hemocompatibility of the scaffolds are in agreement with ASTM standards.

  12. Fast Timing for Collider Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  13. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  14. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wá ng, Yì ; Yu, Bo; Sun, Shuyu

    2012-01-01

    , the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering

  15. Fast tomosynthesis

    International Nuclear Information System (INIS)

    Klotz, E.; Linde, R.; Tiemens, U.; Weiss, H.

    1978-01-01

    A system has been constructed for fast tomosynthesis, whereby X-ray photographs are made of a single layer of an object. Twenty five X-ray tubes illuminate the object simultaneously at different angles. The resulting coded image is decoded by projecting it with a pattern of lenses that have the same form as the pattern of X-ray tubes. The coded image is optically correlated with the pattern of the sources. The scale of this can be adjusted so that the desired layer of the object is portrayed. Experimental results of its use in a hospital are presented. (C.F.)

  16. Rapid screening of nuclear grade zirconium silicate without separation of hafnium from the bulk matrix

    International Nuclear Information System (INIS)

    Venkatesh, Manisha; Sharma, P.K.; Avhad, D.K.; Basu, H.; Singhal, R.K.; Reddy, A.V.R.

    2014-01-01

    Zirconium silicate, also zirconium orthosilicate, (ZrSiO 4 ) is a chemical compound, and occurs in nature as zircon, a silicate mineral. The concentration of Hafnium in nuclear grade Zirconium must be less than 0.2% w/w of Zr. In view of this it must be accurately chemically characterized before issuing a certification for export under non nuclear category. As the chemistry of Zr and Hf is similar, it is difficult to separate Hf by direct wet chemical method. During this work, concentration of Hf in zirconium silicate was measured by Field Portable X-ray Fluorescence (FPXRF) and results obtained were validated by using detailed chemical method. FPXRF spectrometry has become a common analytical technique for on-site screening and fast turnaround analysis of contaminant elements in environmental samples

  17. Isotopic separation by ion chromatography

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1994-01-01

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs

  18. Separation parameters of gas centrifuges

    International Nuclear Information System (INIS)

    May, W.G.

    1977-01-01

    Early work on development of the gas centrifuge for separation of uranium isotopes has recently been reviewed. Several configurations were investigated. The preferred configuration eventually turned out to be a countercurrent centrifuge. In this form, an internal circulation is set up, and as a consequence, light isotope concentrates at one end of the centrifuge, heavy isotope at the other. In many ways the effect resembles the separation obtained in packed columns in the chemical and petroleum industries. It is the purpose of this paper to develop this analogy between countercurrent gas centrifuges and packed towers and to illustrate its usefulness in understanding the separation process in the centrifuge. 8 figures

  19. A generic approach for expanding homolog-targeted residue screening of sulfonamides using a fast matrix separation and class-specific fragmentation-dependent acquisition with a hybrid quadrupole-linear ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Huang Chunlin; Guo Bin; Wang Xiaoying; Li Jie; Zhu Weitao; Chen Bo; Ouyang Shan; Yao Shouzhuo

    2012-01-01

    Highlights: ► Generic homolog-targeted screening approach for multi-residual sulfonamide analogs. ► Single-tube extraction/partitioning-multifunction adsorption cleanup for direct injection. ► Class-specific fragmentation for expanding coverage of N 4 -acetyl and N-OH metabolites. ► PreS–IDA–EPI in LC–QqLIT for simultaneous screening and confirmation of real samples. - Abstract: A generic and efficient homolog-targeted approach was used to expand screening and detection of target class of sulfonamides and structural analogs, based on a fast single-tube extraction/partitioning-multifunction adsorption cleanup (SEP/MAC) for class-specific fragmentation-dependent acquisition with a liquid chromatography–hybrid triple-quadrupole linear ion trap mass spectrometer (LC–QqLIT). By combining the two-stage process conducted in a single tube as one-pot protocol, the straightforward SEP/MAC procedure was optimized to offer clean extracts with reasonable recovery (71–109% with RSDs 4 -acetyl and hydroxylamine metabolites plus their possible dimers. Moreover, the PreS-triggered automatically enhanced product ion spectral acquisition enabled simultaneous screening, profiling and confirmation of an unlimited number of analytes belonging to the sulfonamide class within a single analysis. The validation and application results of the generic SEP/MAC-based LC–QqLIT strategy consistently demonstrated favorable performances with acceptable accuracy (67–116%), precision (RSDs −1 ) to meet the acceptance criteria for all the sulfonamide–tissue combinations. Thus, the integration of the matrix-independent SEP/MAC procedure and the multiparameter matching algorithm with the unit-resolution LC–QqLIT instrument can serve as a valuable semi-targeted discovery strategy for rapid screening and reliable quantitative/confirmatory analysis of real samples.

  20. Particle separations by electrophoretic techniques

    International Nuclear Information System (INIS)

    Ballou, N.E.; Petersen, S.L.; Ducatte, G.R.; Remcho, V.T.

    1996-03-01

    A new method for particle separations based on capillary electrophoresis has been developed and characterized. It uniquely separates particles according to their chemical nature. Separations have been demonstrated with chemically modified latex particles and with inorganic oxide and silicate particles. Separations have been shown both experimentally and theoretically to be essentially independent of particle size in the range of about 0.2 μm to 10 μm. The method has been applied to separations of U0 2 particles from environmental particulate material. For this, an integrated method was developed for capillary electrophoretic separation, collection of separated fractions, and determinations of U0 2 and environmental particles in each fraction. Experimental runs with the integrated method on mixtures of UO 2 particles and environmental particulate material demonstrated enrichment factors of 20 for UO 2 particles in respect to environmental particles in the U0 2 containing fractions. This enrichment factor reduces the costs and time for processing particulate samples by the lexan process by a factor of about 20

  1. A generic approach for expanding homolog-targeted residue screening of sulfonamides using a fast matrix separation and class-specific fragmentation-dependent acquisition with a hybrid quadrupole-linear ion trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Huang Chunlin [Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science, University of South China, Hengyang 421001 (China); Guo Bin, E-mail: binnguo@126.com [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081 (China); Wang Xiaoying [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081 (China); Li Jie [Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science, University of South China, Hengyang 421001 (China); Zhu Weitao; Chen Bo [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081 (China); Ouyang Shan [Food Inspection and Quarantine Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau of the People' s Republic of China, Shenzhen 518067 (China); Yao Shouzhuo [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081 (China)

    2012-08-06

    Highlights: Black-Right-Pointing-Pointer Generic homolog-targeted screening approach for multi-residual sulfonamide analogs. Black-Right-Pointing-Pointer Single-tube extraction/partitioning-multifunction adsorption cleanup for direct injection. Black-Right-Pointing-Pointer Class-specific fragmentation for expanding coverage of N{sup 4}-acetyl and N-OH metabolites. Black-Right-Pointing-Pointer PreS-IDA-EPI in LC-QqLIT for simultaneous screening and confirmation of real samples. - Abstract: A generic and efficient homolog-targeted approach was used to expand screening and detection of target class of sulfonamides and structural analogs, based on a fast single-tube extraction/partitioning-multifunction adsorption cleanup (SEP/MAC) for class-specific fragmentation-dependent acquisition with a liquid chromatography-hybrid triple-quadrupole linear ion trap mass spectrometer (LC-QqLIT). By combining the two-stage process conducted in a single tube as one-pot protocol, the straightforward SEP/MAC procedure was optimized to offer clean extracts with reasonable recovery (71-109% with RSDs < 20%) and decreased matrix interferences (-9 to 19%) of multiresidual sulfonamide extraction from different tissue samples. The novel use of neutral loss scan of 66 Da (NLS) or precursor ion scanning of m/z 108 (PreS) in positive ion mode was found to achieve more comprehensive coverage of protonated molecular ions of a wide array of sulfonamides including N{sup 4}-acetyl and hydroxylamine metabolites plus their possible dimers. Moreover, the PreS-triggered automatically enhanced product ion spectral acquisition enabled simultaneous screening, profiling and confirmation of an unlimited number of analytes belonging to the sulfonamide class within a single analysis. The validation and application results of the generic SEP/MAC-based LC-QqLIT strategy consistently demonstrated favorable performances with acceptable accuracy (67-116%), precision (RSDs < 25%), and sensitivity (LOQs {<=} 7.5 ng

  2. Gas separation membranes current status

    International Nuclear Information System (INIS)

    Puri, S.P.

    1996-01-01

    Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical and allied industries. Following their successful commercialization in the late Seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications

  3. Fast food: unfriendly and unhealthy.

    Science.gov (United States)

    Stender, S; Dyerberg, J; Astrup, A

    2007-06-01

    Although nutrition experts might be able to navigate the menus of fast-food restaurant chains, and based on the nutritional information, compose apparently 'healthy' meals, there are still many reasons why frequent fast-food consumption at most chains is unhealthy and contributes to weight gain, obesity, type 2 diabetes and coronary artery disease. Fast food generally has a high-energy density, which, together with large portion sizes, induces over consumption of calories. In addition, we have found it to be a myth that the typical fast-food meal is the same worldwide. Chemical analyses of 74 samples of fast-food menus consisting of French fries and fried chicken (nuggets/hot wings) bought in McDonalds and KFC outlets in 35 countries in 2005-2006 showed that the total fat content of the same menu varies from 41 to 65 g at McDonalds and from 42 to 74 g at KFC. In addition, fast food from major chains in most countries still contains unacceptably high levels of industrially produced trans-fatty acids (IP-TFA). IP-TFA have powerful biological effects and may contribute to increased weight gain, abdominal obesity, type 2 diabetes and coronary artery disease. The food quality and portion size need to be improved before it is safe to eat frequently at most fast-food chains.

  4. Work control in separations facilities

    International Nuclear Information System (INIS)

    Olson, L.D.

    1990-01-01

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment

  5. Comparison between analyzed and calculated nutrient content of fast foods using two consecutive versions of the Danish food composition databank: FOODCOMP and FRIDA

    DEFF Research Database (Denmark)

    Biltoft-Jensen, Anja Pia; Knuthsen, Pia; Saxholt, Erling

    2017-01-01

    -to-eat fast foods were collected from fast food outlets, separated into their components and weighed. Typical components were bread, French fries, vegetables, meat and dressings. The fast foods were analyzed, and energy, protein, saturated fat, iron, thiamin, potassium and sodium contents were compared......The objective of this study was to compare the content of selected nutrients of fast foods determined by chemical analysis versus estimated by recipe calculation based on data from two versions of the Danish food composition databank, FOODCOMP and the latest FRIDA. A total of 155 samples of ready....... For the individual fast foods, the error percentages were both acceptable (50%). Future challenges for the databank in relation to recipe calculation are to include more varieties, a better coverage of foods used as ingredients, and inclusion of analytical values of mixed dishes...

  6. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  7. Pseudo-stationary separation materials for highly parallel separations.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Palmer, Christopher (University of Montana, Missoula, MT)

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  8. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  9. Using Biomolecules to Separate Plutonium

    Science.gov (United States)

    Gogolski, Jarrod

    Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.

  10. Direct Fast-Neutron Detection

    International Nuclear Information System (INIS)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here

  11. Marcoule Institute for Separation Chemistry - 2009-2012 Scientific report

    International Nuclear Information System (INIS)

    Pellet-Rostaing, Stephane; Zemb, Thomas

    2013-01-01

    The mixed research unit 'Institute for Separation Chemistry' was created jointly by CEA, CNRS, University of Montpellier and Ecole Nationale Superieure de Chimie de Montpellier in March 2007. The building has been inaugurated in June 2009, with laboratories opened in the fall 2009 and has obtained authorisation to start experiments including a few grams of depleted uranium and natural thorium in January 2010. Last take-off was the theory group, who started in October 2009. Resources in Uranium are scarce, if only the 235 isotope is used and wastes related to nuclear energy production are potentially dangerous. The use of fast neutrons allows to multiply existing resources in national independence, but will be based on new separation processes, that can be modelled using predictive theory. Understanding and optimizing separation in the nuclear fuel cycle is the central aim of the 'Institute for Separation Chemistry' (ICSM). Enlarging this central goal to the needs for chemistry of recycling, for instance, strategic metals crucial for alternative energy, is the natural extension surfaces of needs and development of science, with a strong link for technology and implementation. This report gives an overview of the work published and submitted by ICSM since January 2009. The nine active research teams still work in the direction of the scientific open questions as defined and published by the French academy in 2007. The report is organized by scientific topics: each of the nine active research groups gathers a community of researchers and engineers from different expertises, who publish in various domains in the corresponding journals, and who participate at different international meetings. The research teams are organized as follows: 1 - Chemistry and Physical-chemistry of the Actinides; 2 - Ions at Active Interfaces; 3 - Ionic Separation from self-assembled Molecular systems; 4 - Sono-chemistry in Complex Fluids; 5 - Nano-materials for Energy and Recycling processes

  12. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  13. Rapid continuous chemical methods for studies of nuclei far from stability

    CERN Document Server

    Trautmann, N; Eriksen, D; Gaggeler, H; Greulich, N; Hickmann, U; Kaffrell, N; Skarnemark, G; Stender, E; Zendel, M

    1981-01-01

    Fast continuous separation methods accomplished by combining a gas-jet recoil-transport system with a variety of chemical systems are described. Procedures for the isolation of individual elements from fission product mixtures with the multistage solvent extraction facility SISAK are presented. Thermochromatography in connection with a gas-jet has been studied as a technique for on-line separation of volatile fission halides. Based on chemical reactions in a gas-jet system itself separation procedures for tellurium, selenium and germanium from fission products have been worked out. All the continuous chemical methods can be performed within a few seconds. The application of such procedures to the investigation of nuclides far from the line of beta -stability is illustrated by a few examples. (16 refs).

  14. Fast Convolution Module (Fast Convolution Module)

    National Research Council Canada - National Science Library

    Bierens, L

    1997-01-01

    This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...

  15. Fictional Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal; Birkedal, Lars

    2012-01-01

    , separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q...

  16. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Smith, R.D.

    1982-01-01

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  17. Separation and study of nuclides far from beta stability and search for new regimes of nuclear stability

    International Nuclear Information System (INIS)

    Skarestad, M.

    1977-01-01

    In radiochemical separations progress has been made in developing both discontinuous and continuous separation techniques. Outstanding examples of fast, discontinuous separations have been reported from the University of Mainz where chemical separations are performed on a subsecond time scale. However, when experiments have to be performed repeatedly, a continuous separation process delivering a steady source of short-lived species is more appropriate. Such separations are accomplished in the on-line operating solvent extraction system SISAK. The combination of this separation technique with a Gas Jet Recoil Transport (GJRT) system makes it possible to adapt the separation system to different irradiation facilities. The performance of SISAK has been illustrated through the study of short-lived rare-earth isotopes, using conventional gamma-ray spectroscopy. Following some initial test experiments at a 14 MeV neutron generator in Gothenburg the SISAK system was installed at a Philips PW 5320 neutron generator situated in the Dept. of Nuclear Chemistry, Univ. of Oslo in 1972. In the following two years the main effort was devoted to the development of the experimental separation technique although some physics results were obtained in this period. In 1974 the SISAK system was combined with a GJRT arrangement and installed at the Mainz TRIGA reactor. (JIW)

  18. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  19. Separation Anxiety (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Separation Anxiety KidsHealth / For Parents / Separation Anxiety What's in this ... both of you get through it. About Separation Anxiety Babies adapt pretty well to other caregivers. Parents ...

  20. Separation of Plutonium from Irradiated Fuels and Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Leonard W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, Kiel S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murray, Alice [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thompson, Major [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thorp, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yarbro, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venetz, Theodore J. [Hanford Site, Benton County, WA (United States)

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  1. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2003-01-01

    The effects of adding either 25 mM inorganic phosphate (Pi) or its structural analogue arsenate (ASi) on both the maximum Ca2+ activated tension (Po) and passive muscle visco-elasticity (P2 tension) were investigated at 10 degrees C, using segments of single, chemically skinned rat muscle fibres. Whilst the results confirmed some previous findings on the effects of Pi on Po, they also showed that the addition of 25 mM ASi led to a large (approximately 50%) but completely reversible depression of Po in both the fast and slow twitch rat muscle fibres. Moreover, the depression of Po by ASi was greater at low than at high pH values. Examined in the presence of Dextran T-500, the passive tension and sarcomere length responses to a ramp stretch were found to be qualitatively and quantitatively similar to those previously reported in intact rat muscle fibres. Thus, the tension response to a ramp stretch, in the presence and absence of either 25 mM Pi or ASi, consisted of a viscous (P1), a visco-elastic (P2) and an elastic (P3) tension. However, the addition of either 25 mM Pi or ASi led to approximately 15-18% increase in the amplitude of the visco-elastic (P2) tension but had little or no effect on the amplitudes of the other two tension components (viscous, P1 and elastic, P3 tensions). Furthermore, neither compound significantly altered the relaxation rate of the passive muscle visco-elasticity (P2 tension). These results show that Po (arising from cycling cross-bridges) and passive muscle visco-elasticity (P2 tension) are affected differently by both Pi and ASi and suggest that they may not share a common structural basis. The possibility that passive muscle visco-elasticity (P2 tension) arises from the gap-(titin) filament (as suggested previously by Mutungi and Ranatunga, 1996b J Physiol 496: 827-837) and that Pi and ASi increase its amplitude by interacting with the PEVK region of the filament are discussed.

  2. Tissue free water tritium separation from foodstuffs by azeotropic distillation

    International Nuclear Information System (INIS)

    Constantin, F.; Ciubotaru, A.; Popa, D.

    1998-01-01

    In this paper the tritium separation from tissue free water in foodstuffs by azeotropic distillation is described. Tritium in tissue water is assayed by liquid scintillation counting using well-established quenched correction method. The mean value of the tritium concentration in tissue water from foodstuffs is about 6-12 Bq/l very similar to the tritium mean concentration measured in the surface waters of the area where the samples have been collected (about 12 Bq/l. Therefore, the tritium content in the water fraction of the food samples can be considered in equilibrium with the local environmental water sources. The azeotropic distillation it is an accessible separation method which does not need a sophisticated and expansive distillation apparatus. It is a fast method of separation tissue free water from foodstuffs being very important in the surveillance activity of the environmental within nuclear electric plant. It is suitable for processing a small quantity of samples and for a production type facility when a large number of samples must be processed because the solvent can be purified and reused. The azeotropic distillation has some limits being used to separate water from samples with high content of water (85-90%) and simple a simple chemical structures as: vegetables, fruits, cereal, soil, vegetation. According to the results obtained, the organic substituents of milk, wine, meat (casein, lactose, milk fat, alcohol, esters) may enhance the chemisorption of tritium on through exchange organic hydrogen as -OH, -SH, -NH, -COOH with tritium. Also, the tissue water separation by azeotropic distillation is not complete and can not guarantee the absence of the vaporization isotope effect of the HTO/H 2 O system., However, the azeotropic distillation is the preferred method of the water extraction from food samples, which makes it useful for the tritium transfer from soil to foodstuffs. (authors)

  3. Tissue free water tritium separation from foodstuffs by azeotropic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, F; Ciubotaru, A; Popa, D [Inspectorate of Public Health of Bucharest (Romania)

    1999-12-31

    In this paper the tritium separation from tissue free water in foodstuffs by azeotropic distillation is described. Tritium in tissue water is assayed by liquid scintillation counting using well-established quenched correction method. The mean value of the tritium concentration in tissue water from foodstuffs is about 6-12 Bq/l very similar to the tritium mean concentration measured in the surface waters of the area where the samples have been collected (about 12 Bq/l. Therefore, the tritium content in the water fraction of the food samples can be considered in equilibrium with the local environmental water sources. The azeotropic distillation it is an accessible separation method which does not need a sophisticated and expansive distillation apparatus. It is a fast method of separation tissue free water from foodstuffs being very important in the surveillance activity of the environmental within nuclear electric plant. It is suitable for processing a small quantity of samples and for a production type facility when a large number of samples must be processed because the solvent can be purified and reused. The azeotropic distillation has some limits being used to separate water from samples with high content of water (85-90%) and simple a simple chemical structures as: vegetables, fruits, cereal, soil, vegetation. According to the results obtained, the organic substituents of milk, wine, meat (casein, lactose, milk fat, alcohol, esters) may enhance the chemisorption of tritium on through exchange organic hydrogen as -OH, -SH, -NH, -COOH with tritium. Also, the tissue water separation by azeotropic distillation is not complete and can not guarantee the absence of the vaporization isotope effect of the HTO/H{sub 2}O system., However, the azeotropic distillation is the preferred method of the water extraction from food samples, which makes it useful for the tritium transfer from soil to foodstuffs. (authors) 2 tabs.

  4. Microcellular foams via phase separation

    International Nuclear Information System (INIS)

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm 3 and cell sizes of 30μm or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure

  5. 全膜分离技术及其在电厂化学水处理中的应用%Whole Membrane Separation Technology and Its Application in Chemical Water Treatment of Power Plant

    Institute of Scientific and Technical Information of China (English)

    马福刚

    2011-01-01

    This paper introduces the definition, types and characteristics of membrane separation technology, and application instance of whole membrane separation treatment process (UF-RO-EDI) in power plant boiler feed water treatment.%介绍了膜分离技术的定义、种类、特点以及全膜分离处理工艺(UF-RO-EDI)在电厂锅炉补给水处理中的应用实例.

  6. Enhanced separation of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herbst, R. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soderstrom, M. D. [Cytec Solvay Group, Tempe, AZ (United States); Jakovljevic, B. [Cytec Solvay Group, Niagara Falls, ON (Canada)

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  7. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  8. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  9. Controlling Separation in Turbomachines

    Science.gov (United States)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  10. Utilization of chemical derivatives in activation analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.

    1990-01-01

    Derivative activation analysis (DAA) is a method to enhance the sensitivity of nuclear activation analysis for the more elusive elements. It may also allow a degree of chemical speciation for the element of interest. DAA uses a preirradiation chemical reaction on the sample to initiate the formation of, or an exchange with, a chemical complex which contains a surrogate element, M. As a result, the amount of the element or the chemical species to be determined, X, is now represented by measurement of the amount of the surrogate element, M, that is made part of, or released by the complex species. The surrogate element is selected for its superior properties for nuclear activation analysis and the absence of interference reaction in its final determination by instrumental neutron activation analysis (INAA) after some preconcentration or separation chemistry. Published DAA studies have been limited to neutron activation analysis. DAA can offer the analyst some important advantages. It can determine elements, functional groups, or chemical species which cannot be determined directly by INAA, fast neutron activation analysis (FNAA), prompt gamma neutron activation analysis (PGNAA), or charged particle activation analysis (CPAA) procedures. When compared with conventional RNAA, there are fewer precautions with respect to handling of intensely radioactive samples, since the chemistry is done before the irradiation. The preirradiation chemistry may also eliminate many interferences that might occur in INAA and, through use of an appropriate surrogate element, can place the analytical gamma-ray line in an interference-free region of the gamma-ray spectrum

  11. Fasting and rheumatic diseases

    OpenAIRE

    Mohammad Hassan Jokar

    2015-01-01

    Fasting is one of the important religious practices of Muslims, in which the individuals abstain from eating and drinking from dawn to sunset. Fasting is not obligatory or even not allowed, in case it causes health problems to the fasting individual. Rheumatic diseases are a major group of chronic diseases which can bring about numerous problems while fasting. The aim of this article is to review the impact of Islamic fasting on rheumatic patients, based on the scientific evidences.

  12. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  13. Experimental study of stable isotope separation

    International Nuclear Information System (INIS)

    Mingsheng Zhou; Chuntong Ying; Yuguang Nie

    1999-01-01

    This paper presents some results of investigation into a gas centrifuge and gas centrifuge cascade. The chemical compounds of osmium - OsO 4 , tungsten - WF 6 and xenon were chosen for centrifugal separation, and the centrifugal technology for the separation of osmium, tungsten and xenon were developed. The separation factors for molar mass differences, γ 0 , were obtained for OsO 4 , Xe, WF 6 in a single gas centrifuge. The separation by gas centrifuge cascade has been done and some results of the investigation are shown. High abundance of 186 W (>90 %), 129 Xe (>65 %) and 192 Os (>99 %) was produced using the short cascade [ru

  14. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  15. Combined Sewer Overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Bonnerup, Arne; Andersen, Henrik Rasmus

    2016-01-01

    Full scale disinfection by peracetic acid (PAA) was achieved on Combined Sewer Overflow (CSO) water, which was pre-treated physically by a fast settling-filtration unit. Disinfection of untreated CSO water using PAA was compared to treatment using a particle separator (Hydro......Separator®) and additional coagulation with poly-aluminum-chloride. Disinfection for Enterococcus increased with the applied dose of PAA and additional improvement was achieved when it was preceded by chemical coagulation with 5 mg L−1 poly-aluminum-chloride. When Enterococcus was reduced by treatment in the Hydro...

  16. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  17. Separation anxiety in children

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001542.htm Separation anxiety in children To use the sharing features on this page, please enable JavaScript. Separation anxiety in children is a developmental stage in which ...

  18. Chromatographic separations of stereoisomers

    Energy Technology Data Exchange (ETDEWEB)

    Souter, R.W.

    1985-01-01

    This text covers both diastereomers and enantiomers; describes techniques for GC, HPLC, and other chromatographic methods; and tabulates results of various applications by both techniques and compound class. It provides current knowledge about separation mechanisms and interactions of asymmetric molecules, as well as experimental and commercial materials such as columns, instruments, and derivatization reagents. The contents also include stereoisomer separations by gas chromatography. Stereoisomer separations by high-performance liquid chromatography. Stereoisomer separations by other chromatographic techniques.

  19. Wide angle isotope separator

    International Nuclear Information System (INIS)

    Kantrowitz, A.

    1976-01-01

    A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection

  20. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    A two-stage steam-water separating device is introduced, where the second stage is made as a cyclone separator. The water separated here is collected in the first stage of the inner tube and is returned to the steam raising unit. (TK) [de

  1. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  2. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  3. HCUP Fast Stats

    Data.gov (United States)

    U.S. Department of Health & Human Services — HCUP Fast Stats provides easy access to the latest HCUP-based statistics for health information topics. HCUP Fast Stats uses visual statistical displays in...

  4. Fast food (image)

    Science.gov (United States)

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...

  5. Fast food tips (image)

    Science.gov (United States)

    ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ...

  6. Chemical Peels

    Science.gov (United States)

    ... care Kids’ zone Video library Find a dermatologist Chemical peels Overview Chemical peels: Overview Also called chemexfoliation , derma peeling Do ... Overview Chemical peels: FAQs Chemical peels: Preparation FAQs Chemical peels: FAQs To help you decide whether this ...

  7. Used nuclear fuel separations process simulation and testing

    International Nuclear Information System (INIS)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-01-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  8. Used nuclear fuel separations process simulation and testing

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D. [Argonne National Laboratory: 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  9. Use of chemically treated carbon dioxide. ; Separation, recovery and fixation of carbon dioxide from large scale origination. Nisanka tanso no kagaku teki shori riyo; Nisanka tanso no daikibo hasseigen kara no bunri kaishu to koteika

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M. (National Research Inst. for Pollution and Resources, Tsukuba (Japan))

    1991-02-15

    Tehcnology for separation, recovery and fixation of CO {sub 2} was stated. In an absorption method used as a separating recovery method, CO {sub 2} in the waste gas is absorbed into a solution such as amine, heated and recovered. In an adsorption method, the CO {sub 2} is adsorbed by adsorbent such as zeolite, and recovered either by reduction of pressure or by heating. In a distillation method, the CO {sub 2} is distilled under low temperature and high pressure. In a membrane separation method, the difference of the membrane transmisison speed is used. In a fixation technology, the CO {sub 2} disposed into the ocean is liquefied by compression and forced into the deep sea through pipings. The liquid CO {sub 2} has greater density than water under 200 to 300 atmospheric pressure and clathrate is produced over the interface between the sea water and the liquid CO {sub 2} but the influence on the environment should be evaluated. As a means of recycling, synthesis of methanol or hydrocarbon with hydrogen contacting can be considered, and if such synthesis is used, fossil fuel can be reduced. As the source of the hydrogen, a method for combining the electrolysis of water and energy such as the sun and hydraulic power which do not generate CO {sub 2}. 16 refs., 3 figs.

  10. Safety shutdown separators

    Science.gov (United States)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  11. Physiology of Ramadan fasting

    OpenAIRE

    Shokoufeh Bonakdaran

    2016-01-01

    Considering the emphasis of Islam on the importance of fasting, Muslims attempt to fast from dawn until sunset during the holy month of Ramadan. Fasting is associated with several benefits for normal and healthy individuals. However, it could pose high risks to the health of diabetic patients due to certain physiological changes. This study aimed to compare the physiological changes associated with fasting in healthy individuals and diabetic patients during Ramadan. Furthermore, we reviewed t...

  12. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  13. 33rd Actinide Separations Conference

    International Nuclear Information System (INIS)

    McDonald, L.M.; Wilk, P.A.

    2009-01-01

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  14. Isotope separation by ion waves

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  15. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  16. Molecular separation method and apparatus

    International Nuclear Information System (INIS)

    Villa-Aleman, E.

    1996-01-01

    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs

  17. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  18. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  19. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  20. The fast reactor

    International Nuclear Information System (INIS)

    1980-02-01

    The subject is discussed as follows: brief description of fast reactors; advantage in conserving uranium resources; experience, in UK and elsewhere, in fast reactor design, construction and operation; safety; production of plutonium, security aspects; consideration of future UK fast reactor programme. (U.K.)

  1. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery...

  2. Laser isotope separation studies in JAERI

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1986-01-01

    For uranium enrichment, Japan Atomic Energy Research Institute (JAERI) has been studying atomic vapor laser isotope separation since 1976, in addition to such separation methods as gas diffusion, chemical exchange and gas-dynamic techniques. Studies carried out to date in JAERI is briefly summarized in the first part of the report. Then, some major separation techniques which have been studied in JAERI are outlined, and typical results obtained are presented. A large part is devoted to the multiple-photon photoionization technique, which is commonly known as the atomic laser isotope separation method for uranium enrichment. It has such advantages as 1) very high spectral selectivity for the relevant isotope and 2) highly improved photoionizing effect by means of two- and three-step resonance photoionization processes. Here, the atomic laser isotope separation method is discussed in detail with respect to the evaporation process, energy levels, photoionization, selectivity, photoionization schemes, ion recovery, separation in macroscopic amounts, and separation of trace amounts of isotopes. Typical observed and claculated results related to these subjects are shown. In addition, the report briefly describes some other separation processes including laser induced chemical reaction, multiple photo-dissociation, multiple-photo excitation and UV dissociation, laser induced thermal diffusion, and laser centrifugation. (Nogami, K.)

  3. Method for separation and enrichment of isotopes

    International Nuclear Information System (INIS)

    Kakihana, H.; Miyamatsu, T.

    1977-01-01

    Boron or uranium isotopes can be chemically separated and enriched with high speed and with high separating efficiency by using weakly basic anion exchange fibers having a diameter of not more than 100 μ, an aspect ratio of at least 5 and an exchange capacity of at least 2 meq/g-dry fiber, which are packed in a column at a specific volume of 2.0 to 20.0 ml/g-dry fiber

  4. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  5. Ramadan, faste og graviditet

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  6. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  7. Method for separating gaseous mixtures of matter

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.

    1979-01-01

    Molecules to be separated from a mixture of matter of a chemical component are excited in a manner known per se by narrow-band light sources, and a chemical reaction partner for reacting with these molecules is admixed while supplied with energy by electromagnetic radiation or heating, and as additionally required for making chemical reactions possible. A method is described for separating gaseous mixtures of matter by exciting the molecules to be separated with laser radiation and causing the excited species to react chemically with a reaction partner. It may be necessary to supply additional energy to the reaction partner to make the chemical reaction possible. The method is applicable to the separation of hydrogen isotopes by the bromination of normal methanol in a mixture normal methanol and deuterated methanol; of uranium isotope by the reactions of UF 6 with SF 4 , SiCl 4 , HCl, or SO 2 ; and of boron isotopes by the reaction of BH 3 with NH 3

  8. Separation of alcohols from organic liquid mixtures by pervaporation

    NARCIS (Netherlands)

    Park, Hyun-Chae

    1993-01-01

    In the chemical industry, distillation is generally the preferred technique to separate a liquid mixture. However some liquid mixtures such as azeotropic mixtures, close-boiling hydrocarbons, and various isomers are difficult to separate by simple distillation. For the separation of these mixtures

  9. Rare earth separations by selective borate crystallization

    Science.gov (United States)

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-03-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  10. Spontaneous and Fast Growth of Large‐Area Graphene Nanofilms Facilitated by Oil/Water Interfaces

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Wu, Tongshun

    2012-01-01

    An efficient wet-chemical method based on soft interfacial self-assembly is developed for spontaneous, fast growth of large-area graphene nanofilms on various substrates. The graphene nanofilms produced show tunable optical properties and a highly reversible optoelectronic response. Complementary...... to chemical vapor deposition, this method could offer a fast, simple, and low-cost chemical strategy to produce graphene nanofilms....

  11. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  12. Sustainable development of gree solvent separation process

    OpenAIRE

    Lisickov, Kiril; Fidancevska, Emilija; Grujic, Radoslav; Srebrenkoska, Vineta; Kuvendziev, Stefan

    2011-01-01

    Solvents defi ne a major part of the environmental performance of processes in the chemical industry and impact on cost, safety and health issues. The idea of green solvents expresses the goal to minimize the environmental impact resulting from the use of solvents in chemical production. In spite of conventional separation methods, precise process green technologies are based on the application of modern processes and process equipment as well as control and management...

  13. Exogenous vs. Endogenous Separation

    OpenAIRE

    Ramey, Garey

    2008-01-01

    This paper assesses how various approaches to modelling the separation margin a¤ect the ability of the Mortensen-Pissarides job matching model to explain key facts about the aggregate labor market. Allowing for realistic time variation in the separation rate, whether exogenous or endogenous, greatly in- creases the unemployment variability generated by the model. Speci…cations with exogenous separation rates, whether constant or time-varying, fail to pro- duce realistic volatility and prod...

  14. Method for separating isotopes

    International Nuclear Information System (INIS)

    Schlenker, R.F.

    1978-01-01

    A vortex tube for separating isotopes is described. A gas mixture containing the isotopic molecules enters the vortex tube under pressure and is separated into a hot discharge flow stream and a cold discharge flow stream. The hot discharge is enriched in lighter isotopic molecules whereas the cold discharge flow stream is enriched in the heavier isotopic molecules. The vortex tube can be used in a single stage or multistage isotope separation apparatus

  15. Magnetic separation for environmental remediation

    International Nuclear Information System (INIS)

    Schake, A.R.; Avens, L.R.; Hill, D.D.; Padilla, D.D.; Prenger, F.C.; Romero, D.A.; Worl, L.A.; Tolt, T.L.

    1994-01-01

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO 2 , U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS

  16. Evaluation and standardisation of fast analytical techniques for destructive radwaste control

    International Nuclear Information System (INIS)

    De Simone, A.; Troiani, F.

    2001-01-01

    The document describes the work programme carried out by the Laboratorio Nazionale per la 'Caratterizzazione dei Refit Radioattivi', in the frame of the European research project Destructive Radwaste Control. The main tasks of the research work were the evaluation of fast sample pre-treatment procedures and the development of chromatographic methods coupled to fast nuclide detection by Liquid Scintillation Counting. In order to test the High Performance Ion Chromatograph (HPIC) coupled to the Liquid Scintillation Counter (LSC) on high salt content solutions, synthetic cement solutions have been prepared and spiked with several β-emitters hard to be measured with non-destructive analyses, along with other radionuclides important for the determination of the radiological inventory in radwastes. As the validation tests for the new analytical methods involved the manipulation of radioactive solutions, a remote area for HPIC-LSC apparatus has been designed and performed, in order to operate in safe conditions. According to the research programme, fast analytical methods for the chemical separation and radionuclide detection of the radioactive elements of interest, have been developed and qualified. From the results of the work, some protocols of analysis have been defined: they contain all information about operative conditions for HPIC-LSC apparatus, field of applicability, chemical and radioactive detection limits [it

  17. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, M

    1970-03-27

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art.

  18. Entrainment separator performance

    International Nuclear Information System (INIS)

    First, M.W.; Leith, D.

    1976-01-01

    Clean and dust-loaded ACS entrainment separators mounted upstream of HEPA filters were exposed to a combination of fine water mist and steam at about 70 0 C from one to four hours. In every trial, the ACS entrainment separator prevented measurable deterioration of performance in the following HEPA filter. Droplet size-efficiency evaluation of the ACS entrainment separators showed that, within the accuracy of the measurements, they meet all service requirements and are fully equal to the best separator units available for service on pressurized water reactors

  19. Centrifugal gas separator

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo.

    1970-01-01

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art. (K.J. Owens)

  20. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  1. Characterization of Hydrotreated Fast Pyrolysis Liquids

    NARCIS (Netherlands)

    Oasmaa, A.; Kuoppala, E.; Ardiyanti, A.; Venderbosch, R. H.; Heeres, H. J.

    This paper focuses on analytical methods to determine the composition of hydrotreated fast pyrolysis liquids. With this information, it is possible to gain insights in the chemical transformations taking place during catalytic hydrotreatment (hydrogenation and/or hydrodeoxygenation, H DO) of

  2. The high-spin {sup 178m2}Hf isomer: production, chemical and isotopic separations, gamma spectrometry and internal conversion electrons spectrometry; L`isomere de haut spin {sup 178m2}Hf: production, separations chimiques et isotopiques, spectrometrie gamma et spectrometrie d`electrons de conversion interne

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J B

    1993-10-13

    The high-spin isometric state of the nucleus 178Hf is a challenge for new and exotic nuclear physics studies. With its long half-life of 31 years, the production of a reasonable micro-weight quantity, with an isometric to ground state ratio as high as 5 per cent, is now regularly performed by intensive irradiations of ytterbium targets with helium ions of 36 MeV. Using sur-enriched, at 99,998 per cent, ytterbium 176 that we have prepared at the PARIS mass separator, the isomer purity has been improved. Targets of such material but also of enriched stable isotopes of hafnium have been prepared by electro-spraying of methanolic and acetic solutions. By inelastic diffusion of protons and deuton on these targets, the energy of the first state of the rotation band built on the isomer has been measured. Isotopic separations of the isomer have been performed, with a yield greater than 20 per cent, by the use of isotopically pure hafnium 176 as carrier. The separated beam of the mass 178 allowed to record the complete hyperfine spectrum of the isomer and to measure, for the first time, the magnetic dipole moment and the electric quadrupole moment. Isomer targets, implanted in various materials like copper, iron and hafnium monocrystal, provide the opportunity to accurately measure gamma and internal conversion decay of this nuclei and so to precise the multipolarity mixing of all transitions from K=16{sup +} to K=8{sup -}. (author). 49 refs., 47 figs., 11 tabs.

  3. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  4. New radiochemistry techniques monograph: open-quotes Ultrafast chemical separationsclose quotes

    International Nuclear Information System (INIS)

    Ypsilanti, M.I.; Meyer, R.A.; Rengan, K.

    1992-01-01

    Study of decay characteristics of short-lived nuclides has fascinated nuclear chemists ever since the discovery of radioactivity. In the last two decades nuclides with half-lives in the range of several seconds to several tens of seconds have been explored. In addition to manual procedures, several automatic batch (autobatch) as well as continuous separation procedures have been developed for the study of these nuclides. The first part of the radiochemical techniques monograph entitled open-quotes Ultrafast Chemical Separationsclose quotes reviews the techniques used in fast separations. A collection of known fast procedures, arranged according to the name of the element, is presented in the second part. A total of 316 procedures for 75 elements are included

  5. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  6. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  7. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  8. Separation of ionic solutes

    International Nuclear Information System (INIS)

    1986-01-01

    The conference proceedings contain 44 papers of which 19 were incorporated in INIS. The subject of these is the use of solvent extraction or emulsion membrane extraction for separation of fission products, rare earth compounds and actinide compunds; the sorption of radionuclides; and the use of adsorbents and chelating agents in separation processes. (J.P.)

  9. Separation anxiety disorder

    NARCIS (Netherlands)

    Nauta, M.H.; Emmelkamp, P.M.G.; Sturmey, P.; Hersen, M.

    2012-01-01

    Separation anxiety disorder (SAD) is the only anxiety disorder that is specific to childhood; however, SAD has hardly ever been addressed as a separate disorder in clinical trials investigating treatment outcome. So far, only parent training has been developed specifically for SAD. This particular

  10. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1975-01-01

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether

  11. Fast and simultaneous determination of Pb2+ and Cu2+ in water samples using a solid paraffin-based carbon paste electrode chemically modified with 2-aminothiazole-silica-gel

    OpenAIRE

    Silva, Daiane H; Costa, Dayane A; Takeuchi, Regina M; Santos, André L

    2011-01-01

    A solid paraffin-based carbon paste electrode modified with 2-aminothiazole functionalized silica-gel was used for simultaneous quantification of Pb2+ and Cu2+ in water samples by anodic stripping voltammetry. The present method uses short preconcentration time (180 s), which allowed reliable and simultaneous quantification of Pb2+ and Cu2+ in a very fast way. Detection limits of 7.3 and 90 nmol L-1 were obtained for Pb2+ and Cu2+, respectively. These values are below their maximum concentrat...

  12. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  13. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  14. Fast reactors worldwide

    International Nuclear Information System (INIS)

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  15. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  16. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  17. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  18. Affinity separation based on hydrogen bonding

    NARCIS (Netherlands)

    Gruijters, B.W.T.

    2007-01-01

    The purification - work up and separation from other compounds - of chemical reactions is a crucial step in the synthesis of organic molecules. Therefore, organic chemists have developed a variety of work up and purification techniques throughout the last centuries, and novel methods are being

  19. Nanometer-spaced electrodes with calibrated separation

    NARCIS (Netherlands)

    Kervennic, Y.V.; Van der Zant, H.S.J.; Morpurgo, A.F.; Gurevich, L.; Kouwenhoven, L.P.

    2002-01-01

    We have fabricated pairs of platinum electrodes with separation between 20 and 3.5 nm. Our technique combines electron beam lithography and chemical electrodeposition. We show that the measurement of the conductance between the two electrodes through the electrolyte provides an accurate and

  20. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  1. Improvements in or relating to separation processes

    International Nuclear Information System (INIS)

    Smyth, M.J.; Cumberland, R.F.

    1981-01-01

    This relates to a process for separating a substance from a liquid. Toxic materials (such as mercury, cadmium, lead and other heavy metals) or valuable materials (such as copper) can be removed by this method, also radioactive effluents to remove radioactive substances prior to storage or discharge. The liquid is treated with a chemical reagent to form a colloidal solution containing colloidal particles of radioactive substance and these are then separated from the liquid by use of a semi-permeable membrane or centrifuge. Examples given are for the separation of radiostrontium and/or radiocesium from an aqueous solution containing magnesium nitrate ions, or from an aqueous solution containing non-radioactive sodium ions. The advantage over other methods is that only a comparatively small amount of chemical reagent is required to produce the colloidal solution rather than a precipitate. The quantity of sludge produced is also much reduced. (U.K.)

  2. Partially separable t matrix

    International Nuclear Information System (INIS)

    Sasakawa, T.; Okuno, H.; Ishikawa, S.; Sawada, T.

    1982-01-01

    The off-shell t matrix is expressed as a sum of one nonseparable and one separable terms so that it is useful for applications to more-than-two body problems. All poles are involved in this one separable term. Both the nonseparable and the separable terms of the kernel G 0 t are regular at the origin. The nonseparable term of this kernel vanishes at large distances, while the separable term behaves asymptotically as the spherical Hankel function. These properties make our expression free from defects inherent in the Jost or the K-matrix expressions, and many applications are anticipated. As the application, a compact expression of the many-level formula is presented. Also the application is suggested to the breakup threebody problem based on the Faddeev equation. It is demonstrated that the breakup amplitude is expressed in a simple and physically interesting form and we can calculate it in coordinate space

  3. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  4. CHROMATOGRAPHIC SEPARATION AND SPECTRO ...

    African Journals Online (AJOL)

    Four different fractions having colours yellow, grey, orange and ... Two different dyes vis a vis: methylene blue and malachite green dyes have been separated .... hydrogen carbonate of alkaline and alkaline earth metals in the samples.

  5. Separations Science Data Base: an abstractor's manual

    International Nuclear Information System (INIS)

    Roddy, J.W.; McDowell, W.J.; Michelson, D.C.

    1981-07-01

    The Separations Science Data Base, designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. The procedure for entering records into the data base is given. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separations process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; date of publication; organization performing and/or sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractor's initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the article was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed on the input form. Definitions are provided for the 39 information terms

  6. Separation of organic azeotropic mixtures by pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.

  7. Fast multichannel analyser

    Energy Technology Data Exchange (ETDEWEB)

    Berry, A; Przybylski, M M; Sumner, I [Science Research Council, Daresbury (UK). Daresbury Lab.

    1982-10-01

    A fast multichannel analyser (MCA) capable of sampling at a rate of 10/sup 7/ s/sup -1/ has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format.

  8. A fast multichannel analyser

    International Nuclear Information System (INIS)

    Berry, A.; Przybylski, M.M.; Sumner, I.

    1982-01-01

    A fast multichannel analyser (MCA) capable of sampling at a rate of 10 7 s -1 has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format. (orig.)

  9. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  10. UWIS isotope separator

    Energy Technology Data Exchange (ETDEWEB)

    Wojtasiewicz, A. [Warsaw Univ., Inst. of Experimental Physics, Nuclear Physics Div., Warsaw (Poland)

    1997-12-31

    Since 1995 the University of Warsaw Isotope Separator group has participated in the ISOL/IGISOL project at the Heavy Ion Cyclotron. This project consists in installation of an isotope separator (on line with cyclotron heavy ion beam) with a hot plasma ion source (ISOL system) and/or with an ion guide source (IGISOL system). In the report the short description of the present status of the project is presented. 2 figs, 10 refs.

  11. Separating oil from water

    Energy Technology Data Exchange (ETDEWEB)

    Webb, C

    1991-04-11

    The technology available to deal with oil spills has assumed many new faces in recent years. Methods of dealing with small-scale pollution in the process industries and vast oil slicks such as that in the Gulf have developed in parallel. The progress being made in finding new means of separating oil from water is reported and the relative merits of bioremediation, hydrocylones, horizontal separators and gas flotation are discussed. (author).

  12. Procedure and device for separating isotopes of high mass

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1977-01-01

    The invention refers to isotope separation and to selectively photon-induced energy transfer from an isotope molecule containing the isotope to be separated as well as to a chemical reaction with a reactive agent in order to produce a chemical compound containing atoms of the desired isotope. For example, in the most preferable form of the invention, gaseous UF 6 is contained in a mixture of U 235 F 6 and U 238 F 6 molecules in a reaction chamber. A chemically reactive substance, which for U 235 separation may be gaseous HCl according to the invention, is also introduced into the reaction chamber. (HK) [de

  13. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  14. Islamic Fasting and Diabetes

    Directory of Open Access Journals (Sweden)

    Fereidoun Azizi

    2013-07-01

    Full Text Available The aim of this article is to review health-related aspects of Ramadan fasting in normal individuals and diabetics. During fasting days of Ramadan, glucose homeostasis is maintained by meal taken bepore dawn and by liver glycogen stores. Changes in serum lipids are variable and defend on the quality and quantity of food consumption and changes in weight. Compliant, well controlled type 2 diabetics may observe Ramadan fasting; but fasting is not recommended for type 1, non complaint, poorly controlled and pregnant diabetics. Although Ramadan fasting is safe for all healthy individuals and well controlled diabetics, those with uncontrolled diabetics and diabetics with complications should consult physicians and follow scientific recommendations.

  15. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  16. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  17. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  18. Application of ion exchange to isotope separation. 2. Isotope separation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Makoto; Fujii, Yasuhiko; Aida, Masao; Nomura, Masao; Aoyama, Taku

    1985-10-01

    Research work on the uranium isotope separation by ion exchange chromatography done by the ahthors was reviewed and summarized in the present paper. Specifically described are the determination of separation coefficients of uranium isotopes in various chemical systems involving uranium ions and complexes. The chemical systems are classifield into three main categories; (1) uranyl, U (VI), complex formation system, (2) uranous, U (IV), complex formation system and (3) U (IV) - U (VI) redox system. The redox system showed the largest separation coefficient of approx. 7 x 10/sup -4/, while the uranyl and uranous complex systems showed the separation coefficients of -- 2 x 10/sup -4/ and approx. 6 x 10/sup -5/, respectively.

  19. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  20. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti