WorldWideScience

Sample records for fast charged projectiles

  1. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  2. Charge dependence of one and two electron processes in collisions between hydrogen molecules and fast projectiles

    International Nuclear Information System (INIS)

    Wells, E.; Ben-Itzhak, I.; Carnes, K.D.; Krishnamurthi, V.

    1996-01-01

    The ratio of double- to single-ionization (DI/SI) as well as the ratio of ionization-excitation to single-ionization (IE/SI) in hydrogen molecules was studied by examining the effect of the projectile charge on these processes. The DI/SI and IE/SI ratios were measured using the coincidence time of flight technique at a fixed velocity (1 MeV/amu) over a range of projectile charge states (q = 1-9,14,20). Preliminary results indicate that for a highly charged F 9+ projectile the DI/SI and IE/SI ratios are 6.8% and 24.7%, respectively, a large increase from the ratios of 0.13% and 1.95%, respectively, for H + projectiles. For low charge states, the DI/SI is negligible relative to the IE/SI ratio, while for more highly charged projectiles the DI/SI ratio becomes comparable to the IE/SI ratio. This indicates that double-ionization increases much more rapidly with projectile charge than ionization-excitation

  3. The dynamics of target ionization by fast higly charged projectiles

    International Nuclear Information System (INIS)

    Moshammer, R.; Ullrich, J.; Unverzagt, M.; Olsen, R.E.; Doerner, R.; Mergel, V.; Schmidt-Boecking, H.

    1995-12-01

    We report on the first kinematically complete investigation of single target ionization by fast heavy ions, on the measurement of all low energy electrons down to zero emission velocities and on the determination of the projectile energy loss on the level of ΔE p /E p ∼10 -7 . This has been achieved by combining a high-resolution recoil-ion momentum spectrometer with a novel 4π electron analyzer. The complete momentum balance between electron, recoil-ion and projectile for single ionization of helium by 3.6 MeV/u Ni 24+ was explored. Low energy electrons are found to be ejected mainly into the forward direction with a most likely longitudinal energy of only 2 eV. The electron momentum is not balanced, as might be expected, by the projectile momentum but is nearly completely compensated by the recoil ion. Surprisingly, the momenta of the helium-atom ''fragments'', the electron and the He 1+ recoil ion, are considerably larger than the total momentum loss of the projectile: the target atom seems to dissociate in the strong, longranging projectile potential. The collision has to be considered as a real three body interaction. (orig.)

  4. Role of projectile charge state in convoy electron emission by fast protons colliding with LiF(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, I. [Departamento de Fisica de Materiales, Facultad de Quimicas UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain)]. E-mail: ialdazabal@sq.ehu.es; Gravielle, M.S. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Arnau, A. [Centro Mixto CSIC-UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain); Ponce, V.H. [Donostia International Physics Center DIPC, San Sebastian (Spain); Centro Atomico Bariloche, Bariloche (Argentina)

    2005-05-01

    Target ionization and projectile ionization differential cross sections are used to calculate the electron emission spectra by fast proton impact on ionic crystal surfaces under grazing incidence conditions. Both bare protons and neutral hydrogen species are considered. We use a planar potential approach to determine the projectile trajectory that later on allows us to calculate the charge state fractions. We show that, although the fraction of protons is significantly higher, the contribution from neutral hydrogen ionization has to be considered. The energy and angular dependence of the spectra is analyzed.

  5. Role of projectile charge state in convoy electron emission by fast protons colliding with LiF(0 0 1)

    International Nuclear Information System (INIS)

    Aldazabal, I.; Gravielle, M.S.; Miraglia, J.E.; Arnau, A.; Ponce, V.H.

    2005-01-01

    Target ionization and projectile ionization differential cross sections are used to calculate the electron emission spectra by fast proton impact on ionic crystal surfaces under grazing incidence conditions. Both bare protons and neutral hydrogen species are considered. We use a planar potential approach to determine the projectile trajectory that later on allows us to calculate the charge state fractions. We show that, although the fraction of protons is significantly higher, the contribution from neutral hydrogen ionization has to be considered. The energy and angular dependence of the spectra is analyzed

  6. Excitation and ionization of ethylene by charged projectiles

    International Nuclear Information System (INIS)

    Wang Zhiping; Wang Jing; Zhang Fengshou

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (authors)

  7. Excitation and Ionization of Ethylene by Charged Projectiles

    International Nuclear Information System (INIS)

    Zhi-Ping, Wang; Jing, Wang; Feng-Shou, Zhang

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (atomic and molecular physics)

  8. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity

    International Nuclear Information System (INIS)

    Rangama, J.

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34 + and Ar18 + ) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is preferentially

  9. Charge-exchange products of BEVALAC projectiles

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1982-11-01

    There is a substantial production of fragments of all masses lighter than the projectile, such fragments being centered in a narrow region of velocity space around the beam velocity. The exciting studies about anomalons deal with the curious enhanced reactivity of some of these secondary fragments. I direct attention here to the rather rare fragments of the same mass number as the projectile but differing in charge by one unit. We also keep track, as a frame of reference, of the products that have lost one neutron from the projectile

  10. Charged-particle spectroscopy in the microsecond range following projectile fragmentation

    CERN Document Server

    Pfützner, M; Grzywacz, R; Janas, Z; Momayezi, M; Bingham, C; Blank, B; Chartier, M; Geissel, H; Giovinazzo, J; Hellström, M; Kurcewicz, J; Lalleman, A S; Mazzocchi, C; Mukha, I; Plettner, C; Roeckl, E; Rykaczewski, K; Schmidt, K; Simon, R S; Stanoiu, M; Thomas, J C

    2002-01-01

    We present a new approach to charged-particle spectroscopy of short-lived nuclei produced by relativistic projectile fragmentation. The system based on digital DGF-4C CAMAC modules and newly developed fast-reset preamplifiers was tested at the Fragment Separator of GSI. We were able to detect low-energy (approx 1 MeV) decay signals occurring a few microseconds after a heavy-ion implantation accompanied by a release of approx 1 GeV energy. Applications for the study of one- and two-proton radioactivity are discussed.

  11. Eikonal calculation of electron-capture cross sections in collisions of H atoms with fast projectiles

    International Nuclear Information System (INIS)

    Ho, T.S.; Lieber, M.; Chan, F.T.

    1981-01-01

    We have employed the eikonal method to calculate the cross section for the capture of an electron into an arbitrary nl subshell in collisions between hydrogen atoms and fast projectiles. the projectiles were protons, C 6+ , O 8+ , and Fe 24+ . The energy ranges considered were 20--100 keV in the proton case, and 40--200 keV per nucleon in the other cases. These projectiles were selected because of their importance in fusion plasmas. For the highly charged case of Fe 24+ we found that our formulas, while exact, involved a high degree of cancellation and produced unreliable numerical results, so that a numerical integration of the penultimate formula was substituted. In the proton case agreement with recent experimental data is excellent

  12. Ionization, evaporation and fragmentation of C{sub 60} in collisions with highly charged C, O and F ions-effect of projectile charge state

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-09-15

    We study the various inelastic processes such ionization, fragmentation and evaporation of C{sub 60} molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C{sub 60}{sup r+} ions were detected for maximum r = 4. The projectile charge state (q{sub p}) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The q{sub p}-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C{sub 60}{sup 2+} (i.e. C{sub 58}{sup 2+}, C{sub 56}{sup 2+} etc) and C{sub 60}{sup 3+} (i.e. C{sub 58}{sup 3+}, C{sub 56}{sup 3+} etc) with q{sub p} has also been investigated for various projectiles.

  13. Collisions of fast multicharged ions in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H 2 and rare-gas targets have been made with fast, highly stripped projectiles in charge states as high as 59+. We have found an empirical scaling rule for electron-capture cross section in H 2 valid at energies above 275 keV/amu. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. We have found a scaling rule for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H 2 target. We have found a similar scaling rule for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions

  14. Projectile ionization in fast heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Schneider, D.; Prost, M.; Stolterfoht, N.; Nolte, G.; Du Bois, R.

    1983-01-01

    Electron emission following the ionization of projectile ions has been investigated systematically in collisions with Ne/sup q/+ and Ar/sup q/+ ions at several hundred MeV incident on different target gases. The projectile electrons are concentrated within one maximum, the electron-loss peak (ELP). The variation of the shape and intensity of the ELP with the projectile energy, its charge state, the observation angle, and the target gas has been measured. Theoretical predictions which are based on the binary-encounter approximation show, in general, good agreement with the experimental data. The contributions of the different subshells to the ELP are deduced. It is shown that electronic screening of the target nucleus plays an important role in the ionization process of the projectile ions

  15. Atom and molecule projectile and fast aggregate excitation, ionization and dissociation in thin targets in the out-of-charge equilibrium field

    International Nuclear Information System (INIS)

    Clouvas, A.

    1985-12-01

    The aim of this experimental study is to confirm the possible existence of bound states for light atomic and molecular projectiles inside solid targets, in the MeV energy range. For this purpose we have used, various experimental methods such as charge state distribution measurements, energy loss measurements, beam foil spectroscopy and electron spectroscopy. It was confirmed that bound states of light atomic and molecular projectiles can exist in a solid medium. The various cross sections (charge exchange, excitation, ionisation, dissociation) relative to these bound states have been measured [fr

  16. Correlated electron capture in the impact parameter and final projectile charge-state dependence of ECC cusp production in 0.53 MeV u-1 F8+ + Ne

    International Nuclear Information System (INIS)

    Skutlartz, A.; Hagmann, S.; Schmidt-Boecking, H.

    1988-01-01

    The impact parameter dependence of ECC cusp electron production in collisions of fast, highly charged ions with atoms is investigated by measuring the scattered projectiles in coincidence with cusp electrons emitted at 0 0 with respect to the beam axis. The absolute probabilities for ECC cusp production show a maximum at b ≅ 0.10 au, decrease strongly for smaller impact parameters and more gently toward larger impact parameters. In addition the final charge state of the scattered projectile is also determined simultaneously for each collision event. The probabilities, as a function of the projectile final charge state, are large for the case where at least one or more electrons are simultaneously captured into bound states of the projectile, but are surprisingly small for collisions in which a projectile did not capture an electron into a bound state. (author)

  17. Study of the multiple ionization in the ion-atom collisions with highly charged sulfur as well as with neutral and lowly charged fluorine projectiles

    International Nuclear Information System (INIS)

    Konrad, J.

    1986-01-01

    With the collisional systems 115 MeV S +Q (Q=+13, +15, +16) on He, Ne, Ar, and Kr as well as 4 MeV F +Q (Q=-1, 0, +1) on Ne the multiple ionization in the ion-atom collision was studied. With the collisional system 4 MeV F +Q on Ne the multiple ionization of target and projectile was studied by coincidence measurement between the recoil ions and projectiles with the charge state Q' after the collision (Q'=-1 to +3). In the pure ionization (no change of the projectile charge) the measured ionization cross sections for the single positive and negative charged projectile are equally large, those of the neutral F projectiles are lower. The comparison with the point particles protons and electrons resulted that the ionization cross sections of the F projectiles are larger and more strongly higher charged recoil ions are produced. The measured ionization cross sections of the F projectile are larger than those of the Ne target atom which is to be reduced to the lower ionization energies of the F projectile. With the highly charged S projectiles the multiple ionization with capture into the projectile was studied. By the measurement of triple coincidcences between recoil ions, projectiles, and SKX-radiation the cases with and without capture into the K shell can be discriminated. The charge distribution with is shifted against that without capture into the K shell to higher charges. This shift is to be reduced to the decay of autoionization states which arise by the capture into the K shell. (orig./HSI) [de

  18. Structures in the K-shell delta electron spectrum near threshold for ionization by fast charged particles

    International Nuclear Information System (INIS)

    Amundsen, P.A.; Aashamar, K.

    Results of calculations of the delta electron spectrum for K-shell ionization of atoms by fast charged particles for target charges in the range 6 2 <=40 are presented. Appreciable structure is found in the spectrum near the ionization threshold, in particular for fast projectiles and heavy target elements. The structure can be quite sensitive to the details of the effective atomic potentials. (Auth.)

  19. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity; Ionisation et excitation de l'atome de lithium par impact de particules chargees rapides: Identification des mecanismes de creation de deux lacunes en couche K du lithium en fonction de la charge et de la vitesse du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Rangama, J

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34{sup +} and Ar18{sup +}) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is

  20. Charge states of fast heavy ions in solids; target atomic number dependence

    International Nuclear Information System (INIS)

    Shima, Kunihiro

    1985-01-01

    Discussions were carried out on the origin of Z 2 (atomic number) dependent charge states with respect to projectile electron loss and capture process, and on relationship between the Z 2 dependence and that of mean charge states for heavy ions of 1 MeV/u energy region. Present and previously reported results were examined on the equilibrium charge distributions, 9-bar, of 120 MeV 63 Cu, 25 and 40 MeV 35 Cl, 109 MeV Si and 59 MeV F ions. It was clarified that 9-bar became generally higher for lower Z 2 depending on increasing energy, and osillatory behavior with energy-depending amplitude was seen in 9-bar vs Z 2 . Discussions were carrid out on these phenomena and related matters. Z 2 oscillations of 9-bar of fast heavy ions might be due to those of electron capture cross section into projectile K and L vacancies for high and intermediate charge states, respectively. A quantitative interpretation of the Z 2 -dependent 9-bar values is in progress based on collision process and observation of projectile x-ray. The 9-bar value dependency on Z 2 in ion passing foils and decrease of Z 2 oscillation amplitude with increasing collision energy were quite similar to the Z 2 dependence in stopping powers or in effective charge states estimated from stopping powers. But there was some discrepancies in the Z 2 oscillation of 9-bar and that of stopping powers. (Takagi, S.)

  1. Electron loss and capture from low-charge-state oxygen projectiles in methane

    International Nuclear Information System (INIS)

    Santos, A C F; Wolff, W; Sant’Anna, M M; Sigaud, G M; DuBois, R D

    2013-01-01

    Absolute cross sections for single- and double-electron loss and single- and multiple-electron capture of 15–1000 keV oxygen projectiles (q = −1, 0, 1, 2) colliding with the methane molecule are presented. The experimental data are used to examine cross-section scaling characteristics for the electron loss of various projectiles. In addition, a modified version of the free-collision model was employed for the calculation of the single- and total-electron-loss cross sections of oxygen projectiles presented in this work. The comparison of the calculated cross sections with the present experimental data shows very good agreement for projectile velocities above 1.0 au. The comparison of the present single-electron-capture cross sections with other projectiles having the same charge shows good agreement, and a common curve can be drawn through the different data sets. (paper)

  2. Experimental impact-parameter--dependent probabilities for K-shell vacancy production by fast heavy-ion projectiles

    International Nuclear Information System (INIS)

    Randall, R.R.; Bednar, J.A.; Curnutte, B.; Cocke, C.L.

    1976-01-01

    The impact-parameter dependence of the probability for production of target K x rays has been measured for oxygen projectiles on copper and for carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O-on-Cu data were taken for 1.56-, 1.88-, and 2.69-MeV/amu O beams incident upon thin Cu foils. A thin Ar-gas target was used for 1.56-MeV/amu C and F beams, permitting measurements to be made for charge-pure C +4 , C +6 , F +9 and F +5 projectiles. Ar and Cu K x rays were observed with a Si(Li) detector and scattered projectiles with a collimated surface-barrier detector. Comparison of the shapes of the measured K-vacancy--production probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O-on-Cu system. For the higher ratio of projectile-to-target nuclear charge (Z 1 /Z 2 ) characterizing the C-on-Ar and F-on-Ar systems, the SCA predictions are entirely inadequate in describing the observed impact-parameter dependence. In particular, they cannot account for large probabilities found at large impact parameters. Furthermore, the dependence of the shapes on the projectile charge state is found to become pronounced at larger Z 1 /Z 2 . Attempts to account for this behavior in terms of alternative vacancy-production processes are discussed

  3. Absolute charge-changing cross sections for fast helium ions-C sub 6 sub 0 collisions

    CERN Document Server

    Nose, K; Shiraishi, K; Keizaki, T; Itoh, A

    2003-01-01

    Absolute charge-changing cross sections for fast helium ions passing through a C sub 6 sub 0 gas target have been measured. The measurements were carried out for incident projectile energies at 1.0MeV and 1.5MeV. The measured cross sections are compared with calculated values from Bohr-Lindhard model and Bohr model. In addition, we have obtained equilibrium charge state fractions and average equilibrium charge of helium ions passing through C sub 6 sub 0 , by using the measured cross sections.

  4. Ion desorption phenomena induced by various types of multiply charged projectiles and by photons on solid surfaces

    International Nuclear Information System (INIS)

    Beyec, Y. Le.

    1991-01-01

    Ion desorption experiments are described in two regions of primary ion velocities corresponding to two distinct classes of interaction mechanism. At low speeds, atomic collisions take place, at higher speeds than the electron velocity, electronic collisions occur. Experiments with fast ions above 0.2 MeV/u are described, using 32 S and 235 U ions obtained in a cyclotron and a linear accelerator. Emission of H + ions from solid surfaces is measured and analyzed, and applied to the determination of the charge state of a fast ion in a solid. Experiments using single atomic and polyatomic, keV ions, and organic and CsI cluster ions as projectiles are also presented. Finally, laser desorption is discussed. (R.P.) 81 refs., 27 figs., 2 tabs

  5. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    International Nuclear Information System (INIS)

    Ali, S.; Nasim, M.H.; Murtaza, G.

    2003-01-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential

  6. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    Science.gov (United States)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  7. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    International Nuclear Information System (INIS)

    De Filippo, E.; Lanzano, G.; Cardella, G.; Amorini, F.; Geraci, E.; Grassi, L.; Politi, G.; La Guidara, E.; Lombardo, I.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-01-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  8. Charge state and slowing of fast ions in a plasma

    International Nuclear Information System (INIS)

    Nardi, E.; Zinamon, Z.

    1982-01-01

    The charge state of a projectile ion traveling through a plasma target under conditions relevant to ion-beam fusion is calculated. It is found that, at the projectile energies and target parameters considered, the projectile ionization is significantly higher than that of the same projectile species in a cold target. The resulting strong effects on the range and on the shape of the energy deposition profile are shown in several examples of full dynamic calculations

  9. Projectile electron loss in collisions of light charged ions with helium

    International Nuclear Information System (INIS)

    Yin Yong-Zhi; Chen Xi-Meng; Wang Yun

    2014-01-01

    We investigate the single-electron loss processes of light charged ions (Li 1+,2+ , C 2+,3+,5+ , and O 2+,3+ ) in collisions with helium. To better understand the experimental results, we propose a theoretical model to calculate the cross section of projectile electron loss. In this model, an ionization radius of the incident ion was defined under the classical over-barrier model, and we developed ''strings'' to explain the processes of projectile electron loss, which is similar with the molecular over-barrier model. Theoretical calculations are in good agreement with the experimental results for the cross section of single-electron loss and the ratio of double-to-single ionization of helium associated with one-electron loss. (atomic and molecular physics)

  10. CDW-EIS theoretical calculations of projectile deflection for single ionization in highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    2003-01-01

    We present continuum distorted wave-eikonal initial state (CDW-EIS) theoretical calculations for the projectile deflection in single ionization of helium by heavy-ion impact as a function of ionized electron energies. These calculations account for the helium passive electron shielding in the internuclear interaction improving standard CDW-EIS theory. The results are compared with recent experimental results by impact of 100 MeV/amu C 6+ and 3.6 MeV/amu Au 53+ . For highly charged projectiles there is a poor quantitative agreement between theory and experiment. However, this refined calculation does share some qualitative features with the data. In particular the variation of the effective charge of the residual He + ion from Z eff =1 to Z eff =2 when going from small to large projectile scattering angles is able to represent a shoulder observed in the double differential cross sections. Important qualitative differences are observed at the level of triple differential cross sections

  11. Universality of projectile fragmentation model

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Mallik, S.; Das Gupta, S.

    2012-01-01

    Presently projectile fragmentation reaction is an important area of research as it is used for the production of radioactive ion beams. In this work, the recently developed projectile fragmentation model with an universal temperature profile is used for studying the charge distributions of different projectile fragmentation reactions with different projectile target combinations at different incident energies. The model for projectile fragmentation consists of three stages: (i) abrasion, (ii) multifragmentation and (iii) evaporation

  12. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  13. Present analytical possibilities in prompt γ-ray spectrometry with charged projectiles

    International Nuclear Information System (INIS)

    Borderie, B.

    1980-01-01

    This review article deals with γ-rays following bombardment by charged projectiles and the use of this process as an analytical method. A general enumeration of analytical possibilities with expected sensitivities is given. The basic principles and the different possible productions are summarized. A discussion of the physical background is included. Methods for quantitative analysis are discussed. Experimental arrangements are indicated and factors affecting the accuracy of analysis are considered. A number of applications are briefly described and a comparison with X-ray emission (PIXE) is made

  14. Charge correlations in the breakup of gold projectiles in reactions at E/A=600 MeV

    International Nuclear Information System (INIS)

    Kreutz, P.

    1992-09-01

    In the present thesis the charge correlations in the breakup of gold projectiles in heavy ion collisions at an incident energy of E/A=600 MeV were studied. Thereby it has been proved that the sum of the charges from the projectile source under exclusion of the protons (Z bound ) is saliently suited for the classification of the nuclear reactions. At large values of Z bound we fins fission and spallation reactions. For smaller values of Z bound we observe events with an increasing number of medium-heavy fragments. Thereby the multifragment events appear in the Dalitz diagrams as a continuation of more symmetric becoming spallation events. In reactions with Z bound ≅ 35 the conditions for the formation of medium-heavy fragments are optimal and the multifragment events represent the dominating exit channel. A mean multiplicity of the medium-heavy fragments of ≅ 4 is reached. (orig./HSI) [de

  15. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect

    International Nuclear Information System (INIS)

    Haranger, F.

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  16. Effect of multiple plasmon excitation on single, double and multiple ionizations of C{sub 60} in collisions with fast highly charged Si ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Kumar, A; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-06-28

    We have investigated the single and multiple ionizations of the C{sub 60} molecule in collisions with fast Si{sup q+} projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  17. Charge state analysis of heavy ions after penetration of uncleaned and sputter cleaned conducting surfaces

    International Nuclear Information System (INIS)

    Jung, M.; Schosnig, M.; Kroneberger, K.; Tobisch, M.; Maier, R.; Kuzel, M.; Fiedler, C.; Hofmann, D.; Groeneveld, K.O.

    1994-01-01

    The evolution of the charge state distribution of fast ions inside a solid is of basic interest in various research fields as stopping power measurements etc. The existing models for the charge state evolution differ in the treatment of the projectile-exit-surface interaction, which has a strong influence on the final charge state distributions. We measured the charge state distributions for C + , N + , and O + (30≤E/M≤130 keV/u) impact on thin C, Cu, and Au foils, where the surface properties were modified by sputter cleaning. The mesurements show a pronounced change of the mean projectile charge state to lower values in the case of sputter cleaned surfaces. This result underlines the importance of the projectile-surface interaction for the generation of the outcoming charge state distribution. (orig.)

  18. Excitation and multiple dissociation of 12C, 14N, and 16O projectiles in peripheral collisions at 32.5 MeV/nucleon

    International Nuclear Information System (INIS)

    Pouliot, J.; Chan, Y.; DiGregorio, D.E.; Harmon, B.A.; Knop, R.; Moisan, C.; Roy, R.; Stokstad, R.G.; Laboratoire de physique nucleaire, Universite Laval, Quebec, P.Q., Canada G1K7P4)

    1991-01-01

    Cross sections for the multiple breakup of 16 O, 14 N, and 12 C projectiles scattered by an Au target were measured with an array of 34 phoswich detectors. The dissociation of the projectiles into as many as five charged particles has been observed. The yields of different exit channels correlate approximately with the threshold energy for separation of the projectile into the observed fragments. The excitation spectrum of the primary projectile-like nucleus was reconstructed from the measured positions and kinetic energies of the individual fragments. The energy sharing between projectile and target is consistent with a fast excitation mechanism in which differential increases in projectile excitation energy appear to be accompanied by comparable increases in target excitation. Calculations of the yields based on a sequence of binary decays are presented

  19. An Elastic Charging Service Fee-Based Load Guiding Strategy for Fast Charging Stations

    Directory of Open Access Journals (Sweden)

    Shu Su

    2017-05-01

    Full Text Available Compared with the traditional slow charging loads, random integration of large scale fast charging loads will exert more serious impacts on the security of power network operation. Besides, to maximize social benefits, effective scheduling strategies guiding fast charging behaviors should be formulated rather than simply increasing infrastructure construction investments on the power grid. This paper first analyzes the charging users’ various responses to an elastic charging service fee, and introduces the index of charging balance degree to a target region by considering the influence of fast charging loads on the power grid. Then, a multi-objective optimization model of the fast charging service fee is constructed, whose service fee can be further optimized by employing a fuzzy programming method. Therefore, both users’ satisfaction degree and the equilibrium of charging loads can be maintained simultaneously by reasonably guiding electric vehicles (EVs to different fast charging stations. The simulation results demonstrate the effectiveness of the proposed dynamic charging service pricing and the corresponding fast charging load guidance strategy.

  20. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect; Etude de la pulverisation du dioxyde d'uranium induite par des ions lourds multicharges de basse et tres basse energie cinetique; effet de la charge du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Haranger, F

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  1. Electronic excitations in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Burgdoerfer, J.

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs

  2. Collision induced fragmentation of fast molecular ions in solids and gases

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1979-01-01

    A brief review is given of recent high resolution measurements on fragments arising from the collision-induced dissociation of fast (MeV) molecular ions. For solid targets, strong wake effects are observed. For gaseous targets, excited electronic states of the projectile ions play an important role. Measurements of this type provide useful information on the charge states of fast ions traversing matter. The experimental techniques show promise as a unique method for determining the geometrical structures of the molecular-ion projectiles. 41 references

  3. Electron capture by highly charged low-velocity ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Dubois, R.; Justiniano, E.; Gray, T.J.; Can, C.

    1982-01-01

    This paper describes the use of a fast heavy ion beam to produce, by bombardment of gaseous targets, highly-charged low-velocity recoil ions, and the use of these secondary ions in turn as projectiles in studies of electron capture and ionization in low-energy collision systems. The interest in collisions involving low-energy highly-charged projectiles comes both from the somewhat simplifying aspects of the physics which attend the long-range capture and from applications to fusion plasmas, astrophysics and more speculative technology such as the production of X-ray lasers. The ions of interest in such applications should have both electronic excitation and center-of-mass energies in the keV range and cannot be produced by simply stripping fast heavy ion beams. Several novel types of ion source have been developed to produce low-energy highly-charged ions, of which the secondary ion recoil source discussed in this paper is one. (Auth.)

  4. Projectile-charge-state dependence of 0 degree binary-encounter electron production in 30-MeV Oq++O2 collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Richard, P.; Wong, K.L.; Hidmi, H.I.; Sanders, J.M.; Liao, C.; Grabbe, S.; Bhalla, C.P.

    1994-01-01

    Double-differential cross sections (DDCS's) for the production of binary-encounter electrons (BEE's) are reported for 30-MeV O q+ +O 2 collisions. The BEE DDCS's were measured at θ=0 degree with respect to the beam direction for projectile charge states q=4--8. The measured BEE DDCS's were found to increase with decreasing charge state in agreement with other recent BEE results employing simpler H 2 and He targets. Impulse-approximation calculations of BEE production for θ=0 degree--45 degree are also presented, in which it is assumed that target electrons undergo elastic scattering in the screened Coulomb field of the projectile ion. These calculations are shown to be in agreement with our data at θ=0 degree where only 2s and 2p target electrons are considered

  5. Fragmentation of Pb-Projectiles at SPS Energies

    CERN Multimedia

    2002-01-01

    % EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...

  6. Stopping power. Projectile and target modeled as oscillators

    International Nuclear Information System (INIS)

    Stevanovic, N.; Nikezic, D.

    2005-01-01

    In this Letter the collision of two quantum harmonic oscillators was considered. The oscillators interact through the Coulomb interaction. Stopping power of projectile was calculated assuming that both, target and projectile may be excited. It has been shown that the frequency of the projectile oscillation, ω p influences on stopping power, particularly in the region of Bragg peak. If, ω p ->0 is substitute in the expression for stopping power derived in this Letter, then it comes to the form when the projectile has been treated as point like charged particle

  7. Enabling fast charging - Infrastructure and economic considerations

    Science.gov (United States)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; Francfort, James; Michelbacher, Christopher; Carlson, Richard B.; Zhang, Jiucai; Vijayagopal, Ram; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Hardy, Keith; Shirk, Matthew; Hovsapian, Rob; Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Pesaran, Ahmad; Tanim, Tanvir R.

    2017-11-01

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehicle service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.

  8. Charge-state correlated cross sections for the production of low-velocity highly charged Ne ions by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.; Cocke, C.L.; Justiniano, E.

    1980-01-01

    We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results

  9. Experimental study on the secondary emission (atomic and molecular ions, aggregates, electrons) induced by the bombardment of surfaces by means of energetic heavy ions (∼ MeV/u). Effects of the charge state of the projectiles

    International Nuclear Information System (INIS)

    Monart, B.

    1988-05-01

    The ionic and electronic emissions, induced by the sputtering of solid targets (organic and inorganic) with 1 MeV/u projectiles. The time-of-flight spectrometry is applied to the secondary emission analysis. The projectile velocity, the angle of attack (between the beam and the target), and the projectile's incident charge state, are taken into account. It is shown that the secondary emission depends on the charge of the incident ion and on the charge state changement in the material's bulk. A model, applying the theoretical calculations concerning the charge in the material's bulk, is proposed. The existence of an interaction depth, for the incident ion and the material, which depends on the secondary ions type and on the incident ion charge, is suggested. The calculated depth is about 200 angstroms for the aggregates ejected from a CsI target, sputtered with 14 Kr 18+ . The H + yield (coming from ∼ 10 angstroms) is used as a projectile charge probe, at the material surface. The experimental method allows, for the first time, the obtention of the equilibrium charge state in the condensed matter. The same method is applied to determine the non-equilibrium charges in the bulk of thin materials. The results show that, after leaving the material, the projectile presents a post-ionization state [fr

  10. Ion desorption from solid surfaces under slow (KeV) and fast (MeV) ion sputtering. Influence of the charge state and of the incidence angle on the input channel

    International Nuclear Information System (INIS)

    Joret, H.

    1990-06-01

    Solid surfaces of organic and inorganic materials have been bombarded by fast heavy ions (several MeV). It is shown that the charge state of the projectile has a strong influence on the atomic and molecular ion desorption yield. Experimental studies proved that molecular ions can be emitted intact from deep layers underneath the surface (volume emission) with the existence of a crater emission. On the other hand light ions like H(+), H(+)-2, H(+)-3 are emitted from the surface of the solid in a time around 10 -16 second. The H(+) depends on the incident charge state g-i. When using slow ions (keV) the same dependence was observed for the first time and compared to the fast ion results. The equilibrum charge state of fast ions passing through solids was measured. The influence of the angle of incidence was investigated. Langmuir-Blodgett films of fatty acid were used. A geometrical model is developed for the 50 angstroms layer [fr

  11. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation

    Science.gov (United States)

    Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.

    2017-02-01

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.

  12. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour

    International Nuclear Information System (INIS)

    Morrissey, Patrick; Weldon, Peter; O’Mahony, Margaret

    2016-01-01

    There has been a concentrated effort by European countries to increase the share of electric vehicles (EVs) and an important factor in the rollout of the associated infrastructure is an understanding of the charging behaviours of existing EV users in terms of location of charging, the quantity of energy they require, charge duration, and their preferred mode of charging. Data were available on the usage of charging infrastructure for the entire island of Ireland since the rollout of infrastructure began. This study provides an extensive analysis of this charge event data for public charging infrastructure, including data from fast charging infrastructure, and additionally a limited quantity of household data. For the household data available, it was found that EV users prefer to carry out the majority of their charging at home in the evening during the period of highest demand on the electrical grid indicating that incentivisation may be required to shift charging away from this peak grid demand period. Car park locations were the most popular location for public charging amongst EV users, and fast chargers recorded the highest usage frequencies, indicating that public fast charging infrastructure is most likely to become commercially viable in the short- to medium-term. - Highlights: • Electric vehicle users prefer to charge at home in the evening at peak demand times. • Incentivisation will be necessary to encourage home charging at other times. • Fast charging most likely to become commercially viable in short to medium term. • Priority should be given to strategic network location of fast chargers. • Of public charge point locations, car park locations were favoured by EV users.

  13. Search for relativistic projectile fragments with charges 4/3, 5/3, 7/3, and 8/3

    International Nuclear Information System (INIS)

    Bloomer, M.A.; Friedlander, E.M.; Heckman, H.H.; Karant, Y.J.

    1984-01-01

    Recent speculation on the cause of the anomalously short reaction mean free paths of projectile fragmentation products (PF's) produced from relativistic heavy-ion (RHI) collisions with emulsion nuclei has led to the suggestion that nuclei with bound third-integral charges might be present among the PF's. The authors were thus motivated to search for such fractional charges among the 1 less than or equal to Z less than or equal to 3 PF's produced by the interactions of 1.88 GeV/nucleon 56 Fe nuclei in G-5 nuclear emulsion. Results show that all charge measurements for each PF are narrowly distributed around their integer means, and, with the possible exception of the set of measurements scattered around Z = 2.33, there is no indication that PF's of third-integral charge are produced with the same relative abundance as reported for anomalons to date, i.e., 2-6% for 3 less than or equal to Z less than or equal to 26

  14. Enabling fast charging – Infrastructure and economic considerations

    International Nuclear Information System (INIS)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; Francfort, James; Michelbacher, Christopher

    2017-01-01

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehicle service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.

  15. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  16. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  17. Enabling fast charging - Battery thermal considerations

    Science.gov (United States)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  18. A model for projectile fragmentation

    International Nuclear Information System (INIS)

    Chaudhuri, G; Mallik, S; Gupta, S Das

    2013-01-01

    A model for projectile fragmentation is developed whose origin can be traced back to the Bevalac era. The model positions itself between the phenomenological EPAX parametrization and transport models like 'Heavy Ion Phase Space Exploration' (HIPSE) model and antisymmetrised molecular dynamics (AMD) model. A very simple impact parameter dependence of input temperature is incorporated in the model which helps to analyze the more peripheral collisions. The model is applied to calculate the charge, isotopic distributions, average number of intermediate mass fragments and the average size of largest cluster at different Z bound of different projectile fragmentation reactions at different energies.

  19. The economics of fast charging infrastructure for electric vehicles

    International Nuclear Information System (INIS)

    Schroeder, Andreas; Traber, Thure

    2012-01-01

    By 2011 little is known about the economic rationale of public fast chargers for electric vehicles (EV). This paper aims at providing an insight into the business case of this technology in a case study for Germany. The estimated Return on Investment (ROI) of a public fast charging station constitutes the main contribution. Potential users and organization structures are investigated as well as different tariff types. According to the estimations, the current market outlook seems too uncertain for triggering a large-scale roll-out of fast charging infrastructure. Approximations suggest that investment is hardly profitable at low EV adoption rates, unless investment cost can be severely lowered. Besides competition with alternative charging solutions, the general EV adoption rate is detected as being a main risk factor for investment in public charging infrastructure. Highlights: ► Private investment into public fast charging infrastructure appears to be driven by other than pure project prospects at current EV penetration rates. ► High cost markups are needed to refinance investment, unless grid tariffs are exempted or constant high demand is assured. ► Investment into public fast charging remains risky and incentives can be contained by the spreading of alternative home-charging devices and alternative propulsion technologies.

  20. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  1. Electron ejection from solids induced by fast highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Schiwietz, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD; Xiao, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD

    1996-02-01

    Total electron-ejection yields and Auger-electron spectra for highly-charged ions interacting with different foil targets have been investigated in this work. New experimental and theoretical data for normal incident 5 MeV/u heavy ions on graphite and polypropylene foils are presented and discussed. These two materials have been selected as model systems representing conductors and insulator targets. Our measured projectile nuclear-charge dependence of the total electron yield from carbon foils clearly deviates from results of some transport models that predict a proportionality with respect to the electronic stopping power of the projectiles. Possible reasons for this deviation are discussed. We have also extended our measurements on cascade-induced C-KLL Auger-electron production. The corresponding results for 5 MeV/u S ions on carbon were obtained with a new method and agree fairly well with previous data. Furthermore, we have performed an experimental and theoretical investigation on the nuclear-track potential in insulators. Comparison of experimental data with theoretical results for N{sup 7+}, Ne{sup 9+}, Ar{sup 16+} and Ni{sup 23+} ions allow for an estimate of the electron/hole pair recombination time at the center of the track in polypropylene. (orig.).

  2. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  3. Variation of the binary encounter peak energy as a function of projectile atomic number

    International Nuclear Information System (INIS)

    Sanders, J.M.

    1994-01-01

    The energy of the binary encounter peak, in spectra of electrons emitted at 0 degrees with respect to the projectile beam direction, has been studied to investigate its dependence on the atomic number of the projectile ion. The projectiles all had the same squared velocity of 0.6 MeV/u, and all had the same charge q=7. The Z of the projectiles ranged from 8 to 35, and the target was H 2 . The Energy E BEP of the binary encounter peak and also the energy t of the cusp formed by electron loss or electron capture to the projectile continuum (ELC or ECC) were obtained from fits to the spectra. Considerable care was required in fitting the cusp in order to properly ascertain the cusp energy. The energy shift ΔE, defined as the difference between 4t and E BEP , was obtained for each projectile. It is found that the energy shift decreases as the projectile Z increases. This trend is the opposite of that seen for projectile charge where the shift increases as q increases. Such a trend is not well described by the simple elastic scattering model of binary encounter electron production

  4. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    International Nuclear Information System (INIS)

    Korostiy, S.

    2007-01-01

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of 48 Ca 6+ - 48 Ca 10+ and 26 Mg 5+ ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K α spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  5. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  6. Study of momentum distributions for projectile fragments of 22Ne and 28Si nuclei in collisions with emulsion

    International Nuclear Information System (INIS)

    Abou-Steit, S.A.H.

    2000-01-01

    The charge and mass yield curves and the momentum distributions of the projectile fragments produced in the interactions of 4.1 A GeV/c 22 Ne and 4.5 A GeV/c 28 Si with emulsion have been studied. The overall charge distributions of the projectile fragments resulting from these interactions are presented. The dependence of the mass yield distributions of the projectile fragments on the impact parameter has been tested. The momentum distributions for the considered reactions have been investigated by two methods. First, the projected momentum distributions in the plane of the microscope have been achieved by fitting the projected angular distributions to gaussian ones. It has been found that the width of the distribution changes with the charge of the projectile fragment and it decreases with the increase of the projectile fragment charge. Secondly, the transverse momentum distributions have been compared with previous studies. The momentum distribution, in the forward cone, is a typically narrow gaussian one

  7. Fast charge implications: Pack and cell analysis and comparison

    Science.gov (United States)

    Tanim, Tanvir R.; Shirk, Matthew G.; Bewley, Randy L.; Dufek, Eric J.; Liaw, Bor Yann

    2018-03-01

    This study investigates the effect of 50-kW (about 2C) direct current fast charging on a full-size battery electric vehicle's battery pack in comparison to a pack exclusively charged at 3.3 kW, which is the common alternating current Level 2 charging power level. Comparable scaled charging protocols are also independently applied to individual cells at three different temperatures, 20 °C, 30 °C, and 40 °C, to perform a comparative analysis with the packs. Dominant cell-level aging modes were identified through incremental capacity analysis and compared with full packs to gain a clear understanding of additional key factors that affect pack aging. While the cell-level study showed a minor impact on performance due to direct current fast charging, the packs showed a significantly higher rate of capacity fade under similar charging protocols. This indicates that pack-level aging cannot be directly extrapolated from cell evaluation. Delayed fast charging, completing shortly before discharge, was found to have less of an impact on battery degradation than conventional alternating current Level 2 charging.

  8. A fast charge-integrating sample-and-hold circuit for fast decision-making with calorimeter arrays

    International Nuclear Information System (INIS)

    Schuler, G.

    1982-01-01

    This paper describes a fast charge-integrating sample-and-hold circuit, particularly suited to the fast trigger electronics used with large arrays of photomultipliers in total-energy measurements of high-energy particles interactions. During a gate logic pulse, the circuit charges a capacitor with the current fed into the signal input. The output voltage is equal to the voltage developed across the capacitor, which is held until a fast clear discharges the capacitor. The main characteristics of the fast-charge-integrating sample-and-hold circuit are: i) a conversion factor of 1 V/220 pC; ii) a droop rate of 4 mV/μs for a 50 Ω load; and iii) a 1 μs fast-clear time. (orig.)

  9. Charge deep level transient spectroscopy study of 3 - 7 MeV/amu ion and fast neutron irradiation-induced changes in MOS structures

    International Nuclear Information System (INIS)

    Stano, J.; Skuratov, V.A.; Ziska, M.

    2001-01-01

    Radiation-induced changes in MOS capacitor structures irradiated with Bi (710 MeV), Kr (245 MeV), Ar (280, 155 MeV) ions and fast neutrons (E > 0.1 MeV) have been studied in view of Q-DLTS and C-V techniques. As was found, high energy ion and neutron irradiation enhance the induction of positive charge density in the oxide layer of MOS samples. The number of electrically active defects in this layer strongly decreases under dense electronic excitations. No dependence of vacancy-oxygen center concentration in silicon substrate normalized per number of displaced atoms by nuclear elastic collisions on projectile type have been observed

  10. Enabling fast charging – Battery thermal considerations

    International Nuclear Information System (INIS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler

    2017-01-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  11. Charging machine for a fast production reactor

    International Nuclear Information System (INIS)

    Artem'ev, L.N.; Kurilkin, V.V.

    1971-01-01

    Charging machine for a fast production reactor is described. The machine contains charging mechanism, mechanism for positioning fresh fuel and spent fuel assemtlies, storage drums with sockets for control rod assemtlies and collet tongs for control rods. Recharging is conducted by means of ramp channel

  12. Backward ejected electrons produced by 1-MeV/u Oq+ (q=3--8) projectile ions colliding with argon gas

    International Nuclear Information System (INIS)

    Breinig, M.; Berryman, J.W.; Segner, F.; Desai, D.D.

    1994-01-01

    The cross sections for ejecting electrons into a cone of half-angle ∼2 degree centered on the backward direction have been measured as a function of electron energy for 1-MeV/u O q+ (q=3--8) projectiles colliding with Ar. For O 3+ and O 4+ projectiles, the cross sections have also been measured in coincidence with exit charge states (q+1) and (q+2) of the projectile. A prominent feature in all spectra is a target LMM Auger peak. The cross sections for producing Ar LMM Auger electrons are nearly independent of projectile incident charge states. A projectile electron-loss peak is produced when the projectile brings loosely bound L-shell electrons into the collision. The shape of this peak is independent of the projectile exit charge state within experimental error. The measured electron-loss production cross sections at 180 degree are compared with the predictions of various on-shell approximations to the impulse approximation. Peak height and position are sensitive functions of the on-shell approximation used. The predictions of the elastic scattering model agree well with the data

  13. Ionization of one-electron oxygen and fluorine projectiles by molecular hydrogen

    International Nuclear Information System (INIS)

    Tipping, T.N.; Sanders, J.M.; Hall, J.; Shinpaugh, J.L.; Lee, D.H.; McGuire, J.H.; Richard, P.

    1988-01-01

    Cross sections for projectile ionization have been measured for hydrogenlike oxygen and fluorine ions incident on a molecular-hydrogen target over a projectile energy range of 0.5--2.5 MeV/amu. The experimental cross sections are compared to the plane-wave Born approximation (PWBA) and to the Glauber-approximation cross sections all of which were calculated for atomic hydrogen and multiplied by 2. The PWBA calculations have a projectile energy dependence similar to the measured cross sections but slightly underestimate them. The Glauber approximation also underestimates the measured projectile-ionization cross sections when the hydrogen target electrons are neglected, while it overestimates the measured cross sections when the effects of the hydrogen target electrons are included. The measured projectile-ionization cross sections for hydrogenlike ions incident on molecular hydrogen are approximately a factor of 2 smaller than previously reported projectile-ionization cross sections for hydrogenlike ions incident on helium. No cross sections are available for atomic hydrogen in this velocity and ion-charge regime

  14. Impact of Fast Charging on Life of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  15. Backward ejected electrons from collisions of 1 MeV/u Oq+ projectiles with argon gas

    International Nuclear Information System (INIS)

    Berryman, J.W.; Breinig, M.; Segner, F.; Desai, D.

    1993-01-01

    We will be presenting results from a series of experiments measuring the yields and energy distributions of electrons emitted at 1800 with respect to the 1 MeV/u O q+ [q=3-8] ion beam. We have systematically studied the yield per incident ion and the energy distribution of electrons as a function of the incident projectile charge state. The energy distributions show two prominent structures: a narrow peak due to target LMM Auger electrons and a broad hump due to projectile binary-encounter electrons. The shapes and yields of the Auger electron peaks are nearly independent of the incident charge state. The shapes and yields of the binary-encounter electron peaks are sensitive functions of the number of projectile electrons carried into the collision. A well defined binary-encounter electron peak appears only for charge states q=3, 4, and 5

  16. The role of the spectator assumption in models for projectile fragmentation

    International Nuclear Information System (INIS)

    Mc Voy, K.W.

    1984-01-01

    This review is restricted to direct-reaction models for the production of projectile fragments in nuclear collisions, at beam energies of 10 or more MeV/nucleon. Projectile fragments are normally identified as those which have near-beam velocities, and there seem to be two principal mechanisms for the production of these fast particles: 1. Direct breakup, 2. Sequential breakup. Of the two, the authors exclude from their discussion the ''sequential breakup'' process, in which the projectile is excited by the initial collision (either via inelastic scattering or transfer to unbound states) and then subsequently decays, outside the range of interaction

  17. Heavy-ion stopping powers and the low-velocity-projectile z3 effect

    International Nuclear Information System (INIS)

    Porter, L.E.

    1977-01-01

    Recent heavy-ion stopping-power measurements with elemental solid targets have been analyzed in order to ascertain the influence on effective ion charge of incorporating the low-velocity-projectile z 3 effect in Bethe-Bloch calculations. Shell corrections and the mean excitation energy of a given target were held fixed while searching for the best-fit value of a single charge-state parameter. In general, excellent fits to the stopping powers at projectile energies above 0.3 MeV/amu were achieved. Results of the present study compare very favorably with those from other extant methods of analysis

  18. L and M shell coulomb ionization by heavy charged projectiles

    International Nuclear Information System (INIS)

    Karmaker, R.

    1980-01-01

    Universal cross sections for L and M shell ionization have been extracted from the semiclassical approximation (SCA) model in the straight line path approximation of the projectile. It has been shown that it is possible to organise the calculation of the SCA in a suitable way so that it is not necessary to calculate the cross section for different targets. The agreement between the theoretical curve in the SCA model and the available experimental data for different target elements, is reasonably good. Cross sections for L and M shell ionization in the straight line path of the projectile in the SCA model for Pb, Au and U targets by the impact of protons have been calculated. The results have been compared with those calculated in the Binary Encounter Approximation (BEA) and the Plane Wave Born Approximation (PWBA) as well as with the available experimental results. The present calculations are in good agreement with the existing theoretical and the experimental results. (author)

  19. Study of projectile break-up process at intermediate energies

    International Nuclear Information System (INIS)

    Kumar, Harish; Parashari, Siddharth; Tali, Suhail A.

    2016-01-01

    The projectile break-up reactions are explained in terms of incomplete fusion or massive transfer reactions leading to the formation of composite system with less mass, charge and excitation energy, as compared to the complete fusion (CF) process. Since, the existing theoretical models are not applicable to reproduce the experimentally measured ICF, data satisfactory below 10 MeV/nucleon energies; thereby the study of the role of the entrance channel parameters in the fusion reactions is still a relevant problem in establishing the explicit inference regarding the influence of ICF on CF at 4-7 MeV/nucleon energies. Recently reported some studies have also shown that alpha Q-value is also an important parameter which affects the onset of ICF and conflict with the suggestion of Morgenstern et al. Keeping in view the recent aspects, to provide more strength to the aspect of projectile-target mass-asymmetry effect, role of non α-cluster projectile over α-cluster projectile, the present work has been carried out which will be useful to understand a clearer picture about the conflict between mass-asymmetry and projectile structure effect on break-up fusion process. As such, excitation function measurement of residues produced in 13 C + 175 Lu system has been carried out in a series of experiments of comparative study using α-cluster as well as non α-cluster projectiles with deformed heavier target nuclei at lower projectile energies ≈ 4-7 MeV/nucleon

  20. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  1. Thermal Implications for Extreme Fast Charge

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  2. Fast helium production in interactions of 3.7 A GeV 24Mg with emulsion nuclei

    International Nuclear Information System (INIS)

    Jilany, M.A.

    2004-01-01

    We have studied the properties of the relativistic helium fragments emitted from the projectile in the interactions of 24 Mg ions accelerated at an energy of 3.7 A GeV with emulsion nuclei. The total, partial nuclear cross-sections and production rates of helium fragmentation channels in relativistic nucleus-nucleus collisions and their dependence on the mass and energy of the incident projectile nucleus are investigated. The yields of multiple helium projectile fragments disrupted from the interactions of 24 Mg projectile nuclei with hydrogen H, light CNO and heavy AgBr groups of target emulsion nuclei are discussed and they indicate that the breakup mechanism of the projectile seems to be independent of the target mass. Limiting fragmentation behavior of fast-moving helium fragments is observed in both the projectile and target nuclei. The multiplicity distributions of helium projectile fragments emitted in the interactions of 24 Mg projectile nuclei with the different target nuclei of the emulsion are well described by the KNO scaling presentation. The mean multiplicities of the different charged secondary particles, normally defined shower, grey and black (left angle n s right angle, left angle n g right angle and left angle n b right angle) emitted in the interactions of 3.7 A GeV 24 Mg with the different groups of emulsion nuclei at different ranges of projectile fragments are decreasing when the number of He fragments stripped from projectile increases. These values of left angle n i right angle (i=s, g, band h particles) in the events where the emission of fast helium fragments were accompanied by heavy fragments having Z≥3 seem to be constant as the He multiplicity increases, and exhibit a behavior independent of the He multiplicity. (orig.)

  3. Electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with many-electron atomic targets

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2002-01-01

    We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets

  4. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)

    2011-10-15

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  5. Research on critical behaviour during fragmentation of the projectile in the Xe+Sn (at 50 MeV/A) reaction; Recherche d`un comportement critique dans la fragmentation du projectile dans la reaction Xe+Sn a 50 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J

    1995-03-01

    The study of moments of fragments charge distributions produced in heavy ions collisions can give us evidence of a critical behavior of nuclear matter which could explain the multifragmentation pattern. From an experimental point of view, in order to perform this capabilities of the INDRA detector has made it possible to identify all these particles and to reconstruct the initial projectile-like fragment coming from binary collisions in the reaction Xe+Sn at 50 MeV/A. We have selected events where the initial projectile-like fragments keep their entire charge in a large range of excitation energy. The study of these fragment`s characteristics show clearly a change in the deexcitation pattern. The evolution of moments of the fragment charge distributions has been reproduced within a percolation model, in this sense we can interpreter this change in the deexcitation pattern as a function of the initial projectile-like fragment`s size shows the existence of finite-size effects. However, the signature of a phase transition remains independent on the projectile-like fragment`s size. (author). 74 refs., 58 figs., 9 tabs.

  6. Electric Vehicle Fast-Charging Station Unified Modeling and Stability Analysis in the dq Frame

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2018-05-01

    Full Text Available The electric vehicle fast-charging station is an important guarantee for the popularity of electric vehicle. As the fast-charging piles are voltage source converters, stability issues will occur in the grid-connected fast-charging station. Since the dynamic input admittance of the fast-charging pile and the dynamic output impedance play an important role in the interaction system stability, the station and grid interaction system is regarded as load-side and source-side sub-systems to build the dynamic impedance model. The dynamic input admittance in matrix form is derived from the fast-charging pile current control loop considering the influence of the LC filter. Similarly, the dynamic output impedance can be obtained similarly by considering the regional power grid capacity, transformer capacity, and feed line length. On this basis, a modified forbidden region-based stability criterion is used for the fast-charging station stability analysis. The frequency-domain case studies and time-domain simulations are presented next to show the influence of factors from both the power grid side and fast-charging pile side. The simulation results validated the effectiveness of the dq frame impedance model and the stability analysis method.

  7. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A; Gotti, C; Maino, M; Pessina, G, E-mail: claudio.gotti@mib.infn.it [INFN - Sezione di Milano-Bicocca, I-20126, Milano (Italy)

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  8. Enabling fast charging – A battery technology gap assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai

    2017-11-01

    The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable / validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.

  9. Probabilistic modeling of nodal electric vehicle load due to fast charging stations

    DEFF Research Database (Denmark)

    Tang, Difei; Wang, Peng; Wu, Qiuwei

    2016-01-01

    In order to reduce greenhouse gas emission and fossil fuel dependence, Electric Vehicle (EV) has drawn increasing attention due to its zero emission and high efficiency. However, new problems such as range anxiety, long charging duration and high charging power may threaten the safe and efficient...... station into consideration. Fuzzy logic inference system is applied to simulate the charging decision of EV drivers at fast charging station. Due to increasing EV loads in power system, the potential traffic congestion in fast charging stations is modeled and evaluated by queuing theory with spatial...

  10. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    International Nuclear Information System (INIS)

    Cernusca, S.; Winter, H.P.; Aumayr, F.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials

  11. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    CERN Document Server

    Cernusca, S; Aumayr, F; Diez-Muino, R; Juaristi, J I

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  12. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  13. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model

    International Nuclear Information System (INIS)

    Chu, Zhengyu; Feng, Xuning; Lu, Languang; Li, Jianqiu; Han, Xuebing; Ouyang, Minggao

    2017-01-01

    Highlights: •A novel non-destructive fast charging algorithm of lithium-ion batteries is proposed. •A close-loop observer of lithium deposition status is constructed based on the SP2D model. •The charging current is modified online using the feedback of the lithium deposition status. •The algorithm can shorten the charging time and can be used for charging from different initial SOCs. •The post-mortem observation and degradation tests show that no lithium deposition occurs during fast charging. -- Abstract: Fast charging is critical for the application of lithium-ion batteries in electric vehicles. Conventional fast charging algorithms may shorten the cycle life of lithium-ion batteries and induce safety problems, such as internal short circuit caused by lithium deposition at the negative electrode. In this paper, a novel, non-destructive model-based fast charging algorithm is proposed. The fast charging algorithm is composed of two closed loops. The first loop includes an anode over-potential observer that can observe the status of lithium deposition online, whereas the second loop includes a feedback structure that can modify the current based on the observed status of lithium deposition. The charging algorithm enhances the charging current to maintain the observed anode over-potential near the preset threshold potential. Therefore, the fast charging algorithm can decrease the charging time while protecting the health of the battery. The fast charging algorithm is validated on a commercial large-format nickel cobalt manganese/graphite cell. The results showed that 96.8% of the battery capacity can be charged within 52 min. The post-mortem observation of the surface of the negative electrode and degradation tests revealed that the fast charging algorithm proposed here protected the battery from lithium deposition.

  14. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Science.gov (United States)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively.

  15. The 16th Werner Brandt Workshop on charged particle penetration phenomena

    International Nuclear Information System (INIS)

    1996-05-01

    This report contains viewgraphs on the following topics: impact parameter dependence of charge transfer and energy loss; nonlinear dynamical response of the electron gas: comparison of some simple theories; stopping of ultrarelativistic ions in solids (33.2-TeV 108 Pb); collective excitation in reduced dimensionality; collective states in atoms and cluster; plasmon coupling with external probes; atomic collisions with antiprotons; layer-number scaling in ultra-thin film stopping and energetics; atom-surface scattering under classical conditions; nonlinear effect of sweeping-out electrons in stopping power and electron emission in cluster impacts; electron emission from fast grazing collisions of ions with silicon surfaces; electron emission from ultra-thin carbon foils by kiV ions; Auger rates for highly charged ions in metals; Auger and plasmon assisted neutralization at surfaces; low energy ( + and F - ions transmission through condensed layers of water: enhancement and attenuation processes; charge transfer for H interacting with Al: atomic levels and linewidths; scattered projectile angular and charge state distributions for grazing collisions of multicharged ions with metal and insulator single crystal targets; the prolate hyperboloidat model in scanning probe microscopy; scanning probe microscopy of large biomolecules; microcantilever sensors; solution of the Fokker-Planck equation for electron transport using analytic spatial moments; and effective charge parametrization for z = 3-17 projectiles in composite targets

  16. Comparison of Standard and Fast Charging Methods for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2014-01-01

    Full Text Available This paper describes a comparison of standard and fast charging methods used in the field of electric vehicles and also comparison of their efficiency in terms of electrical energy consumption. The comparison was performed on three-phase buck converter, which was designed for EV’s fast charging station. The results were obtained by both mathematical and simulation methods. The laboratory model of entire physical application, which will be further used for simulation results verification, is being built in these days.

  17. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China)

    2006-10-20

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively. (author)

  18. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Burton, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  19. Contribution of charge-transfer processes to ion-induced electron emission

    International Nuclear Information System (INIS)

    Roesler, M.; Garcia de Abajo, F.J.

    1996-01-01

    Charge changing events of ions moving inside metals are shown to contribute significantly to electron emission in the intermediate velocity regime via electrons coming from projectile ionization. Inclusion of equilibrium charge state fractions, together with two-electron Auger processes and resonant-coherent electron loss from the projectile, results in reasonable agreement with previous calculations for frozen protons, though a significant part of the emission is now interpreted in terms of charge exchange. The quantal character of the surface barrier transmission is shown to play an important role. The theory compares well with experimental observations for H projectiles. copyright 1996 The American Physical Society

  20. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  1. Ion desorption induced by charged particle beams: mechanisms and mass spectroscopy

    International Nuclear Information System (INIS)

    Silveira, E.F. da; Schweikert, E.A.

    1988-01-01

    Surface analysis, through desorption, induced by fast particles, is presented and discussed. The stopping of projectils is essentially made by collisions with the target electrons. The desorbed particles are generally emmited with kinetic energy from 0.1 to 20 eV. Mass, charge, velocity and emission angle give information about the surface components, its structure as well as beam-solid interaction processes. Time-of-flight mass spectroscopy of desorbed ions, determine the mass of organic macromolecules and biomolecules. (A.C.A.S.) [pt

  2. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  3. Subcaliber discarding sabot airgun projectiles.

    Science.gov (United States)

    Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2014-03-01

    Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.

  4. Breakup conditions of projectile spectators from dynamical observables

    Energy Technology Data Exchange (ETDEWEB)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  5. Breakup conditions of projectile spectators from dynamical observables

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J.

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z ≥ 8), produced in collisions of 197 Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 ℎ/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  6. Zero-degree binary encounter electrons in fast collisions of highly charged F and O ions with H2 targets

    International Nuclear Information System (INIS)

    Lee, D.H.; Zouros, T.J.M.; Sanders, J.M.; Hidmi, H.; Richard, P.

    1993-01-01

    Doubly differential cross sections (DDCS) for binary encounter electrons (BEe) produced by 0.5-2 MeV/u highly-charged F and O ions in collisions with H 2 gas targets have been studied at 0 with respect to the ion beam direction. The measured DDCS of the broad binary encounter peak was well described by a simple impulse approximation (IA) treatment for bare ions, and was demonstrated to provide in situ detection efficiency of the electron spectrometer. The projectile energy dependence of the BEe production for nonbare (clothed) projectiles is found to follow a scaled IA prediction, in which a BEe enhancement is consistently exhibited for the collision energy range studied. (orig.)

  7. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  8. Deflection effects and charge transfer in inner-shell vacancy production

    International Nuclear Information System (INIS)

    Swafford, G.L.

    1978-01-01

    A method used in the calculation of inner shell ionization in asymmetric ion-atom collisions is extended to include projectile deflection effects and charge transfer to the projectile. Work is done in an independent electron model (Hartree-Fock) for the target, and the interaction is treated with the projectile as a time-dependent perturbation of the system. It is shown tht the time-dependent problem can be solved for the projectile moving along the classical hyperbolic trajectory that results from the nuclear repulsion. The method is very efficient due to the utilization the target-centered expansion of the system wave function. This means that all the required matrix elements can be pretabulated and are then available for use at all impact parameters. The method is first applied to the impact-parameter dependence of K-shell ionization by protons incident upon copper in the energy range 0.5 to 2 MeV. Excellent agreement with the experiments of Andersen et al., is found at the lower energy. Less satisfactory agreement is obtained in the higher energy region. Next the projectile is considered to move in a straight line path with constant velocity, and extend the method to include charge transfer between the target inner shells and the K-shell of the projectile. A critical feature of the results is the recognition of the importance of target continuum states of energy approximately equal to the kinetic energy (in the target frame) of the electron on the projectile. An approach is developed to properly include such resonance states in our pseudostate calculation. Selected numerical results are presented to illustrate the method and to demonstrate the projectile energy and nuclear charge dependence of the charge transfer cross sections

  9. Backward and forward electron emission induced by helium projectiles incident on thin carbon foils: Influence of charge changing processes

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, N. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium)]. E-mail: nipauly@ulb.ac.be; Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium); Roesler, M. [Karl-Pokern-Str. 12, D-12587 Berlin (Germany)

    2007-03-15

    The backward and forward electron emission yields {gamma} {sub B} and {gamma} {sub F} have been calculated by Monte Carlo simulations for helium (He{sup ++}, He{sup +} or He{sup 0}) ions incident on thin amorphous carbon foils with energies around the electronic stopping power maximum (0.2-2 MeV). Besides the direct excitation of target electrons by the incident projectile, we have taken into account the different charge changing processes (He{sup ++} {r_reversible} He{sup +} {r_reversible} He{sup 0}) undergone by the helium ion in the target. We discuss in particular the connection between the electron emission yield {gamma} and the electronic stopping power (dE/dx){sub e}. We compare our results with previously published experimental results.

  10. Optimal Design of DC Fast-Charging Stations for EVs in Low Voltage Grids

    DEFF Research Database (Denmark)

    Gjelaj, Marjan; Træholt, Chresten; Hashemi Toghroljerdi, Seyedmostafa

    2017-01-01

    DC Fast Charging Station (DCFCS) is essential for widespread use of Electric Vehicle (EVs). It can recharge EVs in direct current in a short period of time. In recent years, the increasing penetration of EVs and their charging systems are going through a series of changes. This paper addresses...... on the power grid through the application of electrical storage systems within the DC fast charging stations. The proposed solution decreases the charging time and the impact on the low voltage (LV) grid significantly. The charger can be used as a multifunctional grid-utility such as congestion management...

  11. A fast charge integrating and shaping circuit

    International Nuclear Information System (INIS)

    Kulka, Z.; Szoncso, F.

    1990-01-01

    The development of a low cost fast charge integrating and shaping circuit (FCISC) was motivated by the need for an interface between the photomultipliers of an existing hadronic calorimeter and recently developed new readout electronics designed to match the output of small ionization chambers for the upgraded UA1 detector at the CERN proton-antiproton collider. This paper describes the design principles of gated and ungated charge integrating and shaping circuits. An FCISC prototype using discrete components was made and its properties were determined with a computerized test setup. Finally an SMD implementation of the FCISC is presented and the performance is reported. (orig.)

  12. Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging

    Directory of Open Access Journals (Sweden)

    Joris de Hoog

    2018-03-01

    Full Text Available Fast charging is an exciting topic in the field of electric and hybrid electric vehicles (EVs/HEVs. In order to achieve faster charging times, fast-charging applications involve high-current profiles which can lead to high cell temperature increase, and in some cases thermal runaways. There has been some research on the impact caused by fast-charging profiles. This research is mostly focused on the electrical, thermal and aging aspects of the cell individually, but these factors are never treated together. In this paper, the thermal progression of the lithium-ion battery under specific fast-charging profiles is investigated and modeled. The cell is a Lithium Nickel Manganese Cobalt Oxide/graphite-based cell (NMC rated at 20 Ah, and thermal images during fast-charging have been taken at four degradation states: 100%, 90%, 85%, and 80% State-of-Health (SoH. A semi-empirical resistance aging model is developed using gathered data from extensive cycling and calendar aging tests, which is coupled to an electrothermal model. This novel combined model achieves good agreement with the measurements, with simulation results always within 2 °C of the measured values. This study presents a modeling methodology that is usable to predict the potential temperature distribution for lithium-ion batteries (LiBs during fast-charging profiles at different aging states, which would be of benefit for Battery Management Systems (BMS in future thermal strategies.

  13. Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

  14. Prevention of breakdown behind railgun projectiles

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF 6 . The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs

  15. Comparison of the target-thickness dependence of the convoy electron yield and the Rydberg electron yield measured in coincidence with exit charge states in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Gaither, C.C. III; Breinig, M.; Freyou, J.; Underwood, T.A.

    1988-01-01

    We have simultaneously measured the yield of convoy electrons and the yield of electrons in high Rydberg states of the projectile (n /approx gt/ 70), produced by 2MeV/u C projectiles passing through C foils, whose thicknesses range from 4--10 ug/cm 2 , for incident charge states q/sub i/ = 4--6 and exit charge states q/sub e/ = 4--6. We have found that these yields exhibit similar trends as a function of foil thickness, but that, nevertheless, the ratio of the number of convoy electrons detected in coincidence with ions of exit charge state q/sub e/ to the number of electrons detected in high Rydberg states of ions with the same exit charge state is a function of foil thickness. This may be due to a broadening of the convoy electron energy spectrum with increasing foil thickness. 6 refs., 3 figs

  16. Design of Fast Response Smart Electric Vehicle Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-11-25

    The response time of the smart electrical vehicle (EV) charging infrastructure is the key index of the system performance. The traffic between the smart EV charging station and the control center dominates the response time of the smart charging stations. To accelerate the response of the smart EV charging station, there is a need for a technology that collects the information locally and relays it to the control center periodically. To reduce the traffic between the smart EV charger and the control center, a Power Information Collector (PIC), capable of collecting all the meters power information in the charging station, is proposed and implemented in this paper. The response time is further reduced by pushing the power information to the control center. Thus, a fast response smart EV charging infrastructure is achieved to handle the shortage of energy in the local grid.

  17. Present status of theoretical understanding of charge changing processes at low beam energies

    OpenAIRE

    Swami, D. K.; Nandi, T.

    2017-01-01

    A model for the evaluation of charge-state distributions of fast heavy ions in solid targets is being developed since late eighties in terms of ETACHA code. Time to time it is being updated to deal with more number of electrons and non-perturbative processes. The calculation approach of the recent one, which is formulated for handling the non-perturbative processes better, is different from the earlier ones. However, the experimental results for the projectiles up to 28 electrons can be compa...

  18. Collisions of Oq+ with neutral C-60 : Charge transfer and fragmentation

    NARCIS (Netherlands)

    Schlatholter, T; Hoekstra, R; Morgenstern, R

    1998-01-01

    Fragmentation of C-60 fullerenes by collisions with multiply charged Oq+ ions (1 less than or equal to q less than or equal to 7) has been studied experimentally for Oq+ collision energies of 1.16 keV amu(-1) For high projectile charges the potential energy of the projectiles is mainly responsible

  19. EMGWS, D1 projectile tests

    International Nuclear Information System (INIS)

    Creighton, W.J.

    1991-01-01

    This paper reports on the 90 mm EMGWS D1 Projectile which is an unguided projectile that is designed for launch from an Electromagnetic gun to achieve significant armor penetration. It is being developed under the broader program called Electromagnetic Gun Weapon System (EMGWS) which is sponsored by DARPA, DNA, and the U.S. Army. The 90 mm D1 Type II 'workhorse' Projectile is used to prove out material strength, fabrication techniques, and projectile structural integrity. The type II flight projectile is designed to allow maximum stress levels of 100-ksi when launched at 100-kilogees peak acceleration. The total weight of the projectile is 2.0 kg to attain a muzzle velocity of 3.0 km/s from a 9-Megajoule EM Gun. The Type II projectile configuration employs a tungsten nosetip plus 12 segmented tungsten penetrators, a two-piece aluminum discarding sabot, an aluminum pusher plate, and a nylon obturator. The pusher plate can incorporate either a solid or plasma armature

  20. Explanation of the observed trend in the mean excitation energy of a target as determined using several projectiles

    International Nuclear Information System (INIS)

    Cabrera-Trujillo, R.; Sabin, J.R.; Oddershede, J.

    2003-01-01

    Recently, Porter observed [L.E. Porter, Int. J. Quantum Chem. 90, 684 (2002)] that the mean excitation energy and stopping cross section of a target, obtained from fitting experimental data at given projectile charge to a modified Bethe-Block theory, gives projectile dependent results. The main result of his work is that there is a trend for the inferred target mean excitation energy, to decrease as the projectile atomic number increases. However, this result is inconsistent with the usual definition of the mean excitation energy as a function of target excitation properties only. Here we present an explanation of Porter's results based on the Bethe theory extended to take projectile electronic structure explicitly into account

  1. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    DEFF Research Database (Denmark)

    Forero Camacho, Oscar Mauricio; Mihet-Popa, Lucian

    2016-01-01

    Electric Vehicles (EV) technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents......, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages...

  2. A Novel Active Online State of Charge Based Balancing Approach for Lithium-Ion Battery Packs during Fast Charging Process in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiudong Cui

    2017-11-01

    Full Text Available Abstract: Non-uniformity of Lithium-ion cells in a battery pack is inevitable and has become the bottleneck to the pack capacity, especially in the fast charging process. Therefore, a balancing approach is essentially required. This paper proposes an active online cell balancing approach in a fast charging process using the state of charge (SOC as balancing criterion. The goal of this approach is to complete pack balancing within the limited charging time. An adaptive extended Kalman filter (AEKF is applied to estimate the pack cell SOC during the charging process to obtain accurate results under modeling errors and measurement noises. To implement the proposed AEKF, only one additional current sensor is required to obtain the current of each cell required for the SOC estimation. An experimental platform is established to verify the effectiveness of the proposed approach. The results show that the proposed balancing approach with the SOC as a balancing criterion can overcome the challenges of non-uniformity and flat voltage plateau and charge more capacity into a LiFePO4 battery pack than those with the terminal voltage as a balancing criterion in the fast charging process.

  3. Projectile charge dependence of the ionisation spectra for H sup + and sup 3 He sup 2+ ions on He and Ne atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, G.; Garibotti, C.R.; Suarez, S. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)); Fainstein, P. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche)

    1990-05-14

    The spectra of electrons emitted in the collisions of H{sup +} and {sup 3}He{sup 2+} on He at 50 and 100 keV, and on Ne gas at 100 keV were studied. For fixed angle the double differential cross section is analysed as a function of the velocity variable, which has a maximum about halfway between the soft electron and the electron capture to continuum peaks. The experimental results show that the position of this maximum does not depend on the projectile charge. Calculations using the continuum-distorted-wave-eikonal-initial-state approximation are in qualitative agreement with our measurements. (author).

  4. Analysis and quality of service evaluation of a fast charging station for electric vehicles

    International Nuclear Information System (INIS)

    Zenginis, Ioannis; Vardakas, John S.; Zorba, Nizar; Verikoukis, Christos V.

    2016-01-01

    Electrification of transportation is considered as one of the most promising ways to mitigate climate change and reduce national security risks from oil and gasoline imports. Fast charging stations that provide high quality of service will facilitate the wide market penetration of electric vehicles. In this paper, the operation of a fast charging station is analyzed by employing a novel queuing model. The proposed analysis considers that the various electric vehicle models are classified by their battery size, and computes the customers' mean waiting time in the queue by taking into account the available charging spots, as well as the stochastic arrival process and the stochastic recharging needs of the various electric vehicle classes. Furthermore, a charging strategy is proposed according to which the drivers are motivated to limit their energy demands. The implementation of the proposed strategy allows the charging station to serve more customers without any increase in the queue waiting time. The high precision of the present analytical model is confirmed through simulations. Therefore, it may be utilized by existing fast charging station operators that need to provide high quality of service, or by future investors that need to design an efficient installation. - Highlights: • A fast charging station for multiple classes of electric vehicles is presented and analyzed. • A novel multiclass queuing model is presented for the mean queue waiting time derivation. • The system's arrival rate capacity is derived given a maximum tolerable waiting time limit. • A charging strategy is proposed aiming at increasing the system's arrival rate capacity. • The charging station operator's revenue is calculated based on the energy drawn by the electric vehicles.

  5. Fusion with projectiles from carbon to argon at energies between 20A MeV and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-01-01

    Fusion reactions are known to be the dominant reaction channel at low bombarding energies and can now be investigated with a large variety of projectiles at several tens of MeV per nucleon. The gross characteristics of the fusion process can be studied by measuring global quantities, such as the linear momentum transferred from projectile to target and the dissipated energy of the reaction. The strong correlation between these two quantities is demonstrated at moderate bombarding energies, with a Ne projectile on a U target. It is expected that light particle (charged or neutron) multiplicity measurements can be extended to this higher energy domain and be used to selectively filter these collisions, according to their degree of violence. A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MeV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behavior. Finally, the decay of highly excited (E* similarly ordered 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  6. Singly and Doubly Charged Projectile Fragments in Nucleus-Emulsion Collisions at Dubna Energy in the Framework of the Multi-Source Model

    International Nuclear Information System (INIS)

    Er-Qin, Wang; Fu-Hu, Liu; Jian-Xin, Sun; Rahim, Magda A.; Fakhraddin, S.

    2011-01-01

    The multiplicity distributions of projectile fragments emitted in interactions of different nuclei with emulsion are studied by using a multi-source model. Our calculated results show that the projectile fragments can be described by the model and each source contributes an exponential distribution. As the weighted sum of the folding result of many exponential distributions, a multi-component Erlang distribution is used to describe the experimental data. The relationship between the height (or width) of the distribution and the mass of the incident projectile, as well as the dependence of projectile fragments on target groups, are investigated too. (nuclear physics)

  7. Ionization of atoms by bare ion projectiles

    International Nuclear Information System (INIS)

    Tribedi, L.C.

    1997-01-01

    The double differential cross sections (DDCS) for low energy electron emission can provide stringent tests to the theoretical models for ionization in ion-atom collision. The two-center effects and the post collision interactions play a major role in ionization by highly charged, high Z projectiles. We close-quote ll review the recent developments in this field and describe our efforts to study the energy and angular distributions of the low energy electrons emitted in ion-atom ionization. copyright 1997 American Institute of Physics

  8. In-flight dynamics of volcanic ballistic projectiles

    Science.gov (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  9. Fired missile projectiles

    International Nuclear Information System (INIS)

    Williams, K.D.; Gieszl, R.; Keller, P.J.; Drayer, B.P.

    1989-01-01

    This paper reports ferromagnetic properties of fired missile projectiles (bullets, BBs, etc) investigated. Projectile samples were obtained from manufactures, police, and commercial sources. Deflection measurements at the portal of a 1.5-T magnetic field were performed for 47 projectiles. Sixteen bullets were examined in gelatin phantoms for rotation-translation movements as well. Ferromagnetic bullets displayed considerable deflection forces in the presence of the magnetic field and could be rotated to 80 degrees from their previous alignments when introduced perpendicular to the magnetic field in our gelatin phantom experiments. Military bullet calibers appear to pose the greatest ferromagnetic risk. Commercial sporting ammunition is generally nonferromagnetic

  10. Charge state distributions from highly charged ions channeled at a metal surface

    International Nuclear Information System (INIS)

    Folkerts, L.; Meyer, F.W.; Schippers, S.

    1994-01-01

    The vast majority of the experimental work in the field of multicharged ion-surface interactions, to date, has focused on x-ray and particularly on electron emission. These experiments include measurements of the total electron yield, the emission statistics of the electrons, and, most of all, the electron energy distributions. So far, little attention has been paid to the fate of the multicharged projectile ions after the scattering. To our knowledge, the only measurement of the charge state distribution of the scattered ions is the pioneering experiment of de Zwart et al., who measured the total yield of scattered 1+, 2+, and 3+ ions as a function of the primary charge state q (q = 1--11) for 20 key Ne, Ar, and Kr ions after reflection from a polycrystalline tungsten target. Their main finding is the sudden onset of scattered 3+ ions when inner-shell vacancies are present in the primary particles. This suggests that a certain fraction of the inner-shell vacancies survives the entire collision event, and decays via autoionization on the outgoing path. Since the projectiles scattered in the neutral charge state could not be detected in the experiment of de Zwart et al., they were not able to provide absolute charge state fractions. In our present experiment, we focus on the scattered projectiles, measuring both the final charge state and the total scattering angle with a single 2D position sensitive detector (PSD). This method gives us the number of positive, as well as neutral and negative, scattered ions, thus allowing us to extract absolute charge state fractions. Using a well-prepared single Au(110) crystal and a grazing incidence geometry, we were able to observe surface channeling along the [001] channels

  11. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  12. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  13. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  14. Inelastic scattering of quasifree electrons on O7+ projectiles

    International Nuclear Information System (INIS)

    Toth, G.; Grabbe, S.; Richard, P.; Bhalla, C.P.

    1996-01-01

    Absolute doubly differential cross sections (DDCS close-quote s) for the resonant inelastic scattering of quasifree target electrons on H-like projectiles have been measured. Electron spectra for 20.25-MeV O 7+ projectiles on an H 2 target were measured. The spectra contain a resonant contribution from the 3l3l ' doubly excited states of O 6+ , which decay predominantly to the 2l states of the O 7+ via autoionization, and a nonresonant contribution from the direct excitation of the projectiles to the O 7+ (2l) state by the quasifree target electrons. Close-coupling R-matrix calculations for the inelastic scattering of free electrons on O 7+ ions were performed. The relation between the electron-ion inelastic scattering calculation and the electron DDCS close-quote s for the ion-atom collision was established by using the inelastic scattering model (ISM). We found excellent agreement between the theoretical and measured resonant peak positions and relative peak heights. The calculated absolute double differential cross sections for the resonance processes are also in good agreement with the measured data. The implication is that collisions of highly charged ions on hydrogen can be used to obtain high-resolution, angle- resolved differential inelastic electron-scattering cross section. copyright 1996 The American Physical Society

  15. Experimental study on the influence of charge exchange on the stopping power in the interaction of chlorine with a gas and a deuterium plasma; Etude experimentale de l`influence des echanges de charges sur le pouvoir d`arret dans l`interaction d`ions chlore avec un gaz et un plasma de deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Nectoux, Marie [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1998-01-06

    This thesis is placed in the context of the physics of energy deposition of a multicharged heavy ion beam in matter at intermediate energies. The experiment gave measurements of energy loss as a function of final charge state for chlorine ions at 1.7 MeV/u in deuterium gas or plasma. In this way, we explore the influence of charge state evolution, depending on experimentally measured capture and ionization cross sections and the electron density of the target, on energy loss. The target is cylindrical and enclosed by two fast valves. The plasma is created in the gas by a discharge, which induces a magnetic perturbation of the beam (lens effect). This effect induces a divergent and misaligned outgoing beam. A simulation including charge state and velocity evolution of the projectile in flight in the magnetic field has been made in order to optimize beam analysis, to reach a precision better than 10{sup -3} in energy measurement. This study led to removal of the target to the `Split Pole`, a refocusing magnetic spectrometer. The first results obtained clearly show the dependence of energy loss on exit charge and especially on its evolution in the target. This is explained in terms of the lengths covered by the projectile in its successive charge states in the target, which depends on target electron density and the medium considered. In plasma, we observed an energy distribution with exit charge twice that observed in gas, because of a strong decrease of charge exchange. A comparison of data obtained in gas with stopping power calculated from Bethe-Bloch-Barkas theory leads to the necessity of including spatial extension of the projectile charge in the theory. (author) 81 refs., 62 figs., 5tabs.

  16. Multifragmentation induced by light relativistic projectiles and heavy ions: similarities and differences

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1998-01-01

    The experimental data on fragment multiplicities, their energy and charge distributions, the emission times are considered for the nuclear multifragmentation process induced by relativistic light projectiles (protons, helium) and heavy ions. With light projectiles, the multifragmentation is a pure 'thermal' process, well described by the statistical models. Heavy-ion-induced multifragmentation is influenced by dynamic effects related first of all to the compression of the system in the collision. But statistical models can also be applied to rendering the partition of the system if the excitation energy is less than 10 MeV/nucleon and compression is modest. For the central collision of heavy ions the statistical approach fails to describe the data

  17. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  18. Angular distributions of projectiles following electron capture from C60 by 2.5-keV Ar8+

    International Nuclear Information System (INIS)

    Walch, B.; Thumm, U.; Stoeckli, M.; Cocke, C.L.; Klawikowski, S.

    1998-01-01

    Experimental measurements of the projectile angular distributions for 2.5-keV Ar 8+ ions capturing one to five electrons from a gas-phase C 60 target are presented. The number of captured electrons was determined by demanding a coincidence between the scattered projectile and a charge-state-analyzed intact C 60 recoil ion. The results are compared to calculations based on a dynamical classical overbarrier model. Good agreement is obtained only if the influence on the projectile trajectory by the large polarizability of the C 60 target is taken into account, thereby making the collective dielectric response of the cluster target observable in a scattering experiment. copyright 1998 The American Physical Society

  19. Experimental study on the influence of charge exchange on the stopping power in the interaction of chlorine with a gas and a deuterium plasma

    International Nuclear Information System (INIS)

    Nectoux, Marie

    1998-01-01

    This thesis is placed in the context of the physics of energy deposition of a multicharged heavy ion beam in matter at intermediate energies. The experiment gave measurements of energy loss as a function of final charge state for chlorine ions at 1.7 MeV/u in deuterium gas or plasma. In this way, we explore the influence of charge state evolution, depending on experimentally measured capture and ionization cross sections and the electron density of the target, on energy loss. The target is cylindrical and enclosed by two fast valves. The plasma is created in the gas by a discharge, which induces a magnetic perturbation of the beam (lens effect). This effect induces a divergent and misaligned outgoing beam. A simulation including charge state and velocity evolution of the projectile in flight in the magnetic field has been made in order to optimize beam analysis, to reach a precision better than 10 -3 in energy measurement. This study led to removal of the target to the 'Split Pole', a refocusing magnetic spectrometer. The first results obtained clearly show the dependence of energy loss on exit charge and especially on its evolution in the target. This is explained in terms of the lengths covered by the projectile in its successive charge states in the target, which depends on target electron density and the medium considered. In plasma, we observed an energy distribution with exit charge twice that observed in gas, because of a strong decrease of charge exchange. A comparison of data obtained in gas with stopping power calculated from Bethe-Bloch-Barkas theory leads to the necessity of including spatial extension of the projectile charge in the theory. (author)

  20. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

    2004-04-01

    The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

  1. Small caliber guided projectile

    Science.gov (United States)

    Jones, James F [Albuquerque, NM; Kast, Brian A [Albuquerque, NM; Kniskern, Marc W [Albuquerque, NM; Rose, Scott E [Albuquerque, NM; Rohrer, Brandon R [Albuquerque, NM; Woods, James W [Albuquerque, NM; Greene, Ronald W [Albuquerque, NM

    2010-08-24

    A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.

  2. Planning Minimum Interurban Fast Charging Infrastructure for Electric Vehicles: Methodology and Application to Spain

    Directory of Open Access Journals (Sweden)

    Antonio Colmenar-Santos

    2014-02-01

    Full Text Available The goal of the research is to assess the minimum requirement of fast charging infrastructure to allow country-wide interurban electric vehicle (EV mobility. Charging times comparable to fueling times in conventional internal combustion vehicles are nowadays feasible, given the current availability of fast charging technologies. The main contribution of this paper is the analysis of the planning method and the investment requirements for the necessary infrastructure, including the definition of the Maximum Distance between Fast Charge (MDFC and the Basic Highway Charging Infrastructure (BHCI concepts. According to the calculations, distance between stations will be region-dependent, influenced primarily by weather conditions. The study considers that the initial investment should be sufficient to promote the EV adoption, proposing an initial state-financed public infrastructure and, once the adoption rate for EVs increases, additional infrastructure will be likely developed through private investment. The Spanish network of state highways is used as a case study to demonstrate the methodology and calculate the investment required. Further, the results are discussed and quantitatively compared to other incentives and policies supporting EV technology adoption in the light-vehicle sector.

  3. Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-03-01

    A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  4. Exchange of charges between fast ions and neutral atoms; Change de charges entre ions rapides et atomes neutres

    Energy Technology Data Exchange (ETDEWEB)

    Geller, R [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1955-07-01

    In this paper, we summarize the most significant theoretical and experimental results obtained so far on the exchange of charges between fast ions and neutral atoms. (author) [French] Dans l'expose qui suit, nous resumons les resultats theoriques et experimentaux interessants obtenus jusqu'a nos jours dans le domaine de l'echange de charges entre ions rapides et atomes neutres. (auteur)

  5. Recoil ion charge state distributions in low energy Arq+ - Ar collisions

    International Nuclear Information System (INIS)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-01-01

    We have measured the recoil ion charge state distributions in Ar q+ -- Ar (8≤q≤16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar 8-16+ , recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar 10-16+ , there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy

  6. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  7. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    International Nuclear Information System (INIS)

    Wirtz, L.

    2001-10-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the attraction due to the self-image potential. In a simulation that treats electronic and nuclear dynamics simultaneously, we show that the image attraction dominates over the repulsive force. Backscattering of very slow multiply charged projectiles high above the surface without touching it ('trampoline effect') does not take place. Instead, the projectile ion penetrates into the surface or is reflected due to close binary collision with surface ions. The case of a singly charged ion in front of an LiF surface is within the reach of ab-initio calculations. We use a multi-configuration self consistent field (MCSCF) and a multi-reference configuration interaction (MR-CI) method to calculate adiabatic potential energy curves for a system consisting of the projectile ion and an embedded cluster of surface ions. With increasing cluster size, the energy levels of the embedded cluster converge towards the band structure of the infinitely extended solid. Due to

  8. One- and two-electron processes in collisions between hydrogen molecules and slow highly charged ions

    International Nuclear Information System (INIS)

    Wells, E.; Carnes, K.D.; Tawara, H.; Ali, R.; Sidky, Emil Y.; Illescas, Clara; Ben-Itzhak, I.

    2005-01-01

    A coincidence time-of-flight technique coupled with projectile charge state analysis was used to study electron capture in collisions between slow highly charged ions and hydrogen molecules. We found single electron capture with no target excitation to be the dominant process for both C 6+ projectiles at a velocity of 0.8 atomic units and Ar 11+ projectiles at v 0.63 a.u. Double electron capture and transfer excitation, however, were found to be comparable and occur about 30% of the time relative to single capture. Most projectiles (96%) auto-ionize quickly following double capture into doubly excited states. The data are compared to classical and quantum mechanical model calculations

  9. Quasi-resonant K-K charge transfer

    International Nuclear Information System (INIS)

    Hagmann, S.; Cocke, C.L.; Richard, P.; Skutlartz, A.; Kelbch, S.; Schmidt-Boecking, H.; Schuch, R.

    1983-01-01

    The impact parameter dependence, P(b), of single and double K to K charge transfer have been deduced from the coincidences between K-Auger electrons and scattered particles for F 9+ + Ne and F 9+ + Ne collisions at 10 MeV and 4.4 MeV. The 4.4 MeV single K-K transfer probability exhibits oscillations with b. The P(b) for delta-electron emission is also reported. To obtain more details on the mechanism, K-Auger electron-Ne recoil ion coincidences are measured for both F 8+ and F 9+ projectiles. The relative amounts of recoil ions and of satellite and hypersatellite Auger transitions vary substantially with projectile charge state. 11 references, 11 figures

  10. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  11. Investigation of triply excited states of Li-like ions in fast ion-atom collisions by zero-degree Auger projectile electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Benis, E.P.; Zamkov, M.; Lin, C.D.; Lee, T.G.; Richard, P.; Gorczyca, T.W.; Morishita, T.

    2005-01-01

    The production of triply excited states of Li-like systems has recently been extended beyond the lithium atom using two different ion-atom collisional techniques: (a) Triple-electron capture into 2s2p 2 and 2p 3 states of F 6+ formed in fast collisions of bare F 9+ ions with Ar and Kr atoms and (b) 180 deg. resonant scattering of quasi-free electrons of H 2 from the 1s2s 3 S metastable state of He-like B, C, N, O and F ions via the 2s2p 2 2 D resonance. Autoionization energies, decay branching ratios and production cross sections for these states were measured using zero-degree Auger projectile electron spectroscopy and compared to theoretical calculations using hyperspherical close coupling (HSCC) and R-matrix methods

  12. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  13. Charge exchange spectroscopy as a fast ion diagnostic on TEXTOR

    International Nuclear Information System (INIS)

    Delabie, E.; Jaspers, R. J. E.; Hellermann, M. G. von; Nielsen, S. K.; Marchuk, O.

    2008-01-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the D α spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion D α spectrum obtained with the new diagnostic is discussed.

  14. Single capture and transfer ionization in collisions of Clq+ projectile ions incident on helium

    International Nuclear Information System (INIS)

    Wong, K.L.; Ben-Itzhak, I.; Cocke, C.L.; Giese, J.P.; Richard, P.

    1995-01-01

    The Kansas State University linac has been used to measure the ratio of the cross sections for the processes of transfer ionization (TI) and single capture (SC) for 2 MeV/amu Cl q+ where q=7, 9, 13, 14, and 15 projectile ions incident on a helium target. The ratio was determined using a helium gas jet target by measuring coincidences between projectile-ion and recoil-ion final charge states. The σ TI /σ SC for Cl q+ were compared to measurements of bare F 9+ and hydrogenlike F 8+ and O 7+ taken at the same velocity. The ratios deviate from a q 2 scaling which is predicted in the perturbative regime. This deviation is attributed to screening by the projectile electrons for low q=7 and 9, and to the collision being non-perturbative for high q. A possible saturation effect in the ratio was observed for q similar 14. (orig.)

  15. Measurement of charge of heavy ions in emulsion using a CCD camera

    CERN Document Server

    Kudzia, D; Dabrowska, A; Deines-Jones, P; Holynski, R; Olszewski, A; Nilsen, B S; Sen-Gupta, K; Szarska, M; Trzupek, A; Waddington, C J; Wefel, J P; Wilczynska, B; Wilczynski, H; Wolter, W; Wosiek, B; Wozniak, K

    1999-01-01

    A system has been developed for semi-automated determination of the charges of heavy ions recorded in nuclear emulsions. The profiles of various heavy ion tracks in emulsion, both accelerator beam ions and fragments of heavy projectiles, were obtained with a CCD camera mounted on a microscope. The dependence of track profiles on illumination, emulsion grain size and density, background in emulsion, and track geometry was analyzed. Charges of the fragments of heavy projectiles were estimated independently by the delta ray counting method. A calibration of both width and height of track profiles against ion charges was made with ions of known charges ranging from helium to gold nuclei. (author)

  16. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C

    2007-01-01

    Se have investigated single and double ionization of C 60 molecule in collisions with 2.33 MeV/u Si q+ (q=6-14) and 3.125 MeV/u O q+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C 60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening

  17. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.

    1989-01-01

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs

  18. Projectile Balloting Attributable to Gun Tube Curvature

    Directory of Open Access Journals (Sweden)

    Michael M. Chen

    2010-01-01

    Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.

  19. Prediction of projectile ricochet behavior after water impact.

    Science.gov (United States)

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.

  20. Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kontou, Eleftheria [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Motoaki, Yutaka [Idaho National Laboratory; Smart, John [Idaho National Laboratory; Zhou, Zhi [Argonne National Laboratory

    2018-04-03

    Today's electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation of EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations. Results suggest that the hypothetical transportation network company fleet increases daily vehicle miles traveled per EV with less overall down time, resulting in increased demand for DCFC. Sites with overhead service lines are recommended for hosting DCFC stations to minimize the need for trenching underground service lines. A negative relationship was found between cost per unit of energy and fast charging utilization, underscoring the importance of prioritizing utilization over installation costs when siting DCFC stations. Although this preliminary analysis of the impacts of new mobility paradigms on alternative fueling infrastructure requirements has produced several key results, the complexity of the problem warrants further investigation.

  1. Multigroup constants for charged particle elastic nuclear (plus interference) scattering of light isotopes

    International Nuclear Information System (INIS)

    Cullen, D.E.; Perkins, S.T.

    1977-01-01

    Multi-group averaged reaction rates and transfer matrices were calculated for charged particle induced elastic nuclear (plus interference) scattering. Results are presented using a ten group structure for all twenty-five permutations of projectile and target for the following charged particles: p, d, t, 3 He and alpha. Transfer matrices are presented in a simplified form for both incident projectile and the knock-ons; these matrices explicitly conserve energy

  2. Fragmentation and Multifragmentation of 10.6 A GeV Gold Nuclei

    CERN Document Server

    Adamovich, M I

    1999-01-01

    We present the results of a study performed on the interactions of 10.6A GeV gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac- tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec- tile fragments. The experimental data are analyzed with particular emphasis of target separation interactions in emulsions and study of criticalexponents. Multiplicity distributions of the fast-moving projectile fragments are inves- tigated. Charged fragment moments, conditional moments as well as two and three -body asymmetries of the fast moving projectile particles are determined in terms of the total charge remaining bound in the multiply charged projectile fragments. Some differences in the average yields of helium nuclei and heavier fragments are observed, which may be attributed to a target effect. However, two and three-body asymmetries and conditional moments indicate that the breakup mechanism of the projectile seems to be independent of target mass. We looked for evidenc...

  3. Outer-shell transitions in collisions between multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Bloemen, E.W.P.

    1980-01-01

    The study of collisions between multiply charged ions and atoms (molecules) is of importance in different areas of research. Usually, the most important process is capture of an electron from the target atom into the projectile ion. In most cases the electron goes to an excited state of the projectile ion. These electron capture processes are studied. The author also studied direct excitation of the target atom and of the projectile ion. (Auth.)

  4. Energy distributions of H+ fragments ejected by fast proton and electron projectiles in collision with H2O molecules

    International Nuclear Information System (INIS)

    Barros, A. L. F. de; Lecointre, J.; Luna, H.; Montenegro, E. C.; Shah, M. B.

    2009-01-01

    Experimental measurements of the kinetic energy distribution spectra of H + fragment ions released during radiolysis of water molecules in collision with 20, 50, and 100 keV proton projectiles and 35, 200, 400, and 1000 eV electron projectiles are reported using a pulsed beam and drift tube time-of-flight based velocity measuring technique. The spectra show that H + fragments carrying a substantial amount of energy are released, some having energies well in excess of 20 eV. The majority of the ions lie within the 0-5 eV energy range with the proton spectra showing an almost constant profile between 1.5 and 5 eV and, below this, increasing gradually with decreasing ejection energy up to the near zero energy value while the electron spectra, in contrast, show a broad maximum between 1 and 3 eV and a pronounced dip around 0.25 eV. Beyond 5 eV, both projectile spectra show a decreasing profile with the electron spectra decreasing far more rapidly than the proton spectra. Our measured spectra thus indicate that major differences are present in the collision dynamics between the proton and the electron projectiles interacting with gas phase water molecules.

  5. On the optimal sizing of batteries for electric vehicles and the influence of fast charge

    Science.gov (United States)

    Verbrugge, Mark W.; Wampler, Charles W.

    2018-04-01

    We provide a brief summary of advanced battery technologies and a framework (i.e., a simple model) for assessing electric-vehicle (EV) architectures and associated costs to the customer. The end result is a qualitative model that can be used to calculate the optimal EV range (which maps back to the battery size and performance), including the influence of fast charge. We are seeing two technological pathways emerging: fast-charge-capable batteries versus batteries with much higher energy densities (and specific energies) but without the capability to fast charge. How do we compare and contrast the two alternatives? This work seeks to shed light on the question. We consider costs associated with the cells, added mass due to the use of larger batteries, and charging, three factors common in such analyses. In addition, we consider a new cost input, namely, the cost of adaption, corresponding to the days a customer would need an alternative form of transportation, as the EV would not have sufficient range on those days.

  6. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  7. Giant plasmon excitation in single and double ionization of C{sub 60} by fast highly charged Si and O ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai-5 (India)

    2007-09-15

    Se have investigated single and double ionization of C{sub 60} molecule in collisions with 2.33 MeV/u Si{sup q+} (q=6-14) and 3.125 MeV/u O{sup q+} (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C{sub 60} are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  8. Correlated charge-changing ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report

  9. Correlated charge changing ion-atom collisions

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1990-02-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant FG02-87ER13778 from August 15, 1987 through February 15, 1990. The general scope of this work involves the experimental investigation of fundamental atomic interactions in collisions of highly charged projectiles with neutral targets, with a particular emphasis on two-electron interactions. Inner-shell processes involving excitation, ionization, and charge transfer are investigated using, for the most part, coincidence techniques in which projectile charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. Measurements were conducted using accelerators at the Lawrence Berkeley Laboratory (LBL), Argonne National Laboratory (ANL), Hahn-Meitner-Institut, Berlin (HMI), and Western Michigan University (WMU). The research described here has resulted in 34 published papers, 14 invited presentations at national and international meetings, and 31 contributed presentations. Brief summaries of work completed and work in progress are discussed in this paper

  10. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  11. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Tay, Andrew A.O.

    2015-01-01

    Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries

  12. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  13. A study on stimulation of DC high voltage power of LCC series parallel resonant in projectile velocity measurement system

    Science.gov (United States)

    Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan

    2017-10-01

    According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.

  14. Study of secondary electron emission from thin carbon targets with swift charged particles: heavy ions, hydrogen ions; Etude experimentale de l`emission electronique secondaire de cibles minces de carbone sous l`impact de projectiles rapides: ions lourds, ions hydrogene (atomiques, moleculaires ou sous forme d`agregats)

    Energy Technology Data Exchange (ETDEWEB)

    Billebaud, A

    1995-07-12

    The main subject of this work is the study of electron emission from the two surfaces of thin solid targets bombarded with swift charged particles. The slowing down of swift ions in matter is mainly due to inelastic interaction with target electrons (ionization, excitation): the energy transfer to target electrons is responsible for the secondary electron emission process. The phenomenological and theoretical descriptions of this phenomena are the subject of the first chapter. We focused on secondary electron emission induced by different kind of projectiles on thin carbon foils. In chapter two we describe hydrogen cluster induced electron emission measurement between 40 and 120 keV/proton. These projectiles, composed of several atoms, allowed us to study and highlight collective effects of the electron emission process. We extended our study of electron emission to molecular (H{sub 2}{sup +}, H{sub 3}{sup +}) and composite (H{sup -}, H{sup 0}) projectiles at higher energies (<= 2 MeV): we have designed an experimental set-up devoted to electron emission statistics measurements which allowed us to study, among others things, the role of projectile electrons in secondary electron emission. This experiment is described in the third chapter. Finally, the fourth chapter describes new measurements of electron emission induced by energetic (13 MeV/u) and highly charged argon ion provided by the medium energy beam line (SME) of GANIL (Caen), which have been analyzed in the framework of a semi-empirical model of secondary electron emission. This set of experiments brings new results on composite projectile interaction with matter, and on the consequences of high energy deposition in solids. (author).

  15. Some physical magnitudes of interest for nuclear reactions and their dependence on the projectile-target system

    International Nuclear Information System (INIS)

    Fernandez Niello, J.O.; Pacheco, A.J.

    1984-01-01

    The design and analysis of experiences with heavy ions requires the knwoledge of several characteristic parameters of the collision and their dependence on the reactant system. In the case of an electrostatic accelerator as the TANDAR, the bombarding energy (function of the projectile) is a direct consequence of the evolution of the charged state distribution for the projectile at the exit of the last stripper, as a function of the atomic number. The complexity resulting from this dependence originated the confection of a series of diagrams. The diagrams correpond to the different physical magnitudes of interest in the analysis of nuclear reactions as a function of the projectile-target combination for terminal tensions similar to those expected to reach at the TANDAR. In each case, the curves are refered to the following physical magnitudes: Ecm/Bc Kinetic energy in the center of the mass system and Coulomb barrier for the projectile-target system, Lgr = angular momentum corresponding to the grazing collisions. Diagrams of the average projectile energy per nucleon for the different values of the terminal tensions with one or two solid strippers are included. The use of the diagrams in some practical applications is illustrated through four examples. The diagrams may be extended, if necesary, to other physical magnitudes, at different accelerator's operating conditions. (M.E.L.) [es

  16. Two-Centre Close-Coupling method in charge transfer

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2017-09-01

    Full Text Available In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is assumed to be a three-body reaction, while the projectile is a plane wave. Additionally, the hydrogen and positronium atoms are assumed, initially, to be in their ground states. For the case of charge transfer in the scattering of positron by hydrogen atoms, the differential cross sections are plotted for the energy range of 50eV to 10keV, where the Thomas peak is clearly observable. Finally, the total scattering cross-section for the charge transfer in the collision of Positron-Hydrogen and Positronium-Hydrogen ion are plotted as a function of projectile energies and compared with other methods in the literature.

  17. Impact parameter dependence of inner-shell vacancy production in fast ion--atom collisions

    International Nuclear Information System (INIS)

    Randall, R.R.

    1975-01-01

    The impact parameter dependence of the probability for production of K x rays has been measured for oxygen projectiles on copper, chlorine projectiles on aluminum, titanium and copper, and carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O + Cu data was taken at incident energies of 1.56, 1.88 and 2.69 MeV/amu for the O bombardment of thin Cu foils. The Cl ions had incident energies of 0.6 and 0.85 MeV/amu upon thin foils of Al, Ti, and Cu. A thin Ar gas target was used for 1.58 MeV/amu C and F beams, permitting measurements to be made for charge-pure C 4+ , C 6+ , F 5+ and F 9+ projectiles. Cu, Cl and Ar K x rays were observed with a Si(Li) detector and scattered particles were counted using a masked surface-barrier detector. Comparison of the shapes of the measured probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O + Cu system. For the higher ratio of projectile to target nuclear charge (Z 1 /Z 2 ) of the Cl + Al, Ti, Cu and C, F + Ar systems, the SCA and Brinkman--Kramers (BK) model for charge transfer fail to predict the measured curves. In particular, the SCA and BK fail to account for large vacancy production probabilities at large impact parameters (larger than the Slater-screened Bohr radii of the K electrons). Further, the dependence of the shapes of the measured curves on the charge state of the incident projectile is pronounced for the cases having the larger Z 1 /Z 2 values. Alternative models are discussed in an attempt to account for the observed behavior

  18. Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: Dependence on the foil thickness and projectile atomic number

    CERN Document Server

    Sato, Y; Muramatsu, M; Murakami, T; Yamada, S; Kobayashi, C; Kageyama, Y; Miyoshi, T; Ogawa, H; Nakabushi, H; Fujimoto, T; Miyata, T; Sano, Y

    2003-01-01

    We measured the charge fraction of 6.0 MeV/n heavy ions (C, Ne, Si, Ar, Fe and Cu) with a carbon foil at the NIRS-HIMAC injector. At this energy they are stripped with a carbon foil before being injected into two synchrotron rings with a maximum energy of 800 MeV/n. In order to find the foil thickness (D sub E) at which an equilibrium charge state distribution occurs, and to study the dependence of the D sub E -values on the projectile atomic number, we measured the exit charge fractions for foil thicknesses of between 10 and 350 mu g/cm sup 2. The results showed that the D sub E -values are 21.5, 62.0, 162, 346, 121, 143 mu g/cm sup 2 for C, Ne, Si, Ar, Fe, Cu, respectively. The fraction of Ar sup 1 sup 8 sup + ions was actually improved to 33% at 320 mu g/cm sup 2 from approx 15% at 100 mu g/cm sup 2. For Fe and Cu ions, the D sub E -values were found to be only 121 and 143 mu g/cm sup 2; there is a large gap between Ar and Fe, which is related to the differences in the ratio of the binding energy of the K-...

  19. Dynamic effects of interaction of composite projectiles with targets

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, V. M. [Scientific Research Institute of Applied Mathematics and Mechanics of Tomsk State University, 36, Lenin Avenue, Tomsk, 634050 (Russian Federation)

    2016-01-15

    The process of high-speed impact of projectiles against targets of finite thickness is experimentally investigated. Medium-hard steel plates are used as targets. The objective of this research is to carry out a comparative analysis of dynamic effects of interaction of various types of projectiles with targets, such as characteristics of destruction of the target, the state of the projectile behind the target, and particularities of the after-penetration stream of fragments after the target has been pierced. The projectiles are made of composites on the basis of tungsten carbide obtained by caking and the SHS-technology. To compare effectiveness of composite projectiles steel projectiles are used. Their effectiveness was estimated in terms of the ballistic limit. High density projectiles obtained by means of the SHS-technology are shown to produce results comparable in terms of the ballistic limit with high-strength projectiles that contain tungsten received by caking.

  20. Fast numerical calculations of ion-atom collisions

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.; Becker, R.L.

    1979-01-01

    When an ion impinges on an atom, the cross sections for electronic transitions can be described in the independent electron model by functions of single electron amplitudes. A single centered expansion of the time-dependent wave function of an electron about the heavier nucleus, with charge Z/sub N/, is shown to be moderately successful in explaining the dependence of K-shell hole production on the charge, Z/sub p/, of the projectile. However, capture of electrons by the projectile is important for a complete understanding and can be incorporated, in principle, in the single-center approach by evaluation of a transition matrix element involving a final state on the projectile. This is not an easy theoretical problem even in an asymmetric (Z/sub p/ much less than Z/sub N/) collision, because long times are involved which aggravate the inadequacies of a coupled-state calculation where the continuum is replaced by a discrete set of pseudostates. Nevertheless a method was devised which allows convergence in the truncated expansion of Hilbert states. Comparisons are made to experiment. Future developments are discussed

  1. Photon emission from massive projectile impacts on solids.

    Science.gov (United States)

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  2. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue

    2014-06-01

    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  3. A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Ali

    2018-05-01

    Full Text Available The lithium-ion battery has high energy and power density, long life cycle, low toxicity, low discharge rate, more reliability, and better efficiency compared to other batteries. On the other hand, the issue of a reduction in charging time of the lithium-ion battery is still a bottleneck for the commercialization of electric vehicles (EVs. Therefore, an approach to charge lithium-ion batteries at a faster rate is needed. This paper proposes an efficient, real-time, fast-charging methodology of lithium-ion batteries. Fuzzy logic was adopted to drive the charging current trajectory. A temperature control unit was also implemented to evade the effects of fast charging on the aging mechanism. The proposed method of charging also protects the battery from overvoltage and overheating. Extensive testing and comprehensive analysis were conducted to examine the proposed charging technique. The results show that the proposed charging strategy favors a full battery recharging in 9.76% less time than the conventional constant-current–constant-voltage (CC/CV method. The strategy charges the battery at a 99.26% state of charge (SOC without significant degradation. The entire scheme was implemented in real time, using Arduino interfaced with MATLABTM Simulink. This decrease in charging time assists in the fast charging of cell phones and notebooks and in the large-scale deployment of EVs.

  4. Total fragmentation cross section of 158A GeV lead projectiles in Cu target

    International Nuclear Information System (INIS)

    Mukhtar Ahmed Rana; Shahid Manzoor

    2008-01-01

    Total fragmentation cross section for the reaction 158A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63≤Z≤83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ Z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (authors)

  5. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  6. Predicting the Accuracy of Unguided Artillery Projectiles

    Science.gov (United States)

    2016-09-01

    ability to penetrate a target. If the impact angle is small, the projectile may more likely ricochet, and any penetration will not be as deep as a...projectile experiences less drag and thus increased impact velocity and penetration . However, a blunt nose projectile has more strength at the tip and...fire 15. NUMBER OF PAGES 139 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE

  7. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...

  8. Two-electron excitation to Rydberg levels in fast I6+ on hydrogen collisions

    International Nuclear Information System (INIS)

    Liao, C.; Hagmann, S.; Zouros, T.J.M.; Montenegro, E.C.; Toth, G.; Richard, P.; Grabbe, S.; Bhalla, C.P.

    1995-01-01

    The emission of electrons in the forward direction in collisions of 0.3 MeV/u I 6+ with H 2 has been studied, and strong autoionization peaks are observed on the shoulder of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy. Using the electron projectile final charge state coincidence technique, we probe different collision mechanisms, which create continuum electrons that are slow in the projectile rest frame. We conclude that the observed autoionization lines are due to two electron excitation to projectile Rydberg levels. (orig.)

  9. Production cross sections and momentum distributions of the projectile fragments of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.

    1993-07-01

    The projectile fragmentation of a 500 MeV/u 86 Kr beam in a beryllium, copper, respectively tantalum target was studied at the projectile-fragment separator of the GSI. The new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, and 71 Co could be uniquely identified, furthermore a hint on the existence of 64 Cr, 72 Co, and 75 Ni resulted. The experimental production cross sections, which were determined for a large A and Z range, were compared with the predictions of three different models. The studies presented in the present thesis allow an extrapolation of the production cross section for the double-magic nucleus 78 Ni of only 0.6 pb. With increasing nuclear-charge number of the target material a larger production cross section for light fragments was observed. From these data it can be concluded that projectile-like fragments arise in peripheral and light fragments in central reactions. Furthermore production cross sections and parallel momentum distributions of the rubidium isotopes and the 86 Br were measured. To the experimentally observed charge-exchange products two possible processes can be assigned, namely the quasi-free nucleon-nucleon collision respectively the excitation of a Δresonance. (HSI)

  10. Breakup of the projectile at 35 MeV/nucleon

    International Nuclear Information System (INIS)

    Gonthier, P.L.; Harper, P.; Bouma, B.; Ramaker, R.; Cebra, D.A.; Koenig, Z.M.; Fox, D.; Westfall, G.D.

    1990-01-01

    Projectile breakup processes are probed by studying the emission of α particles in coincidence with projectile-like fragments as a function of the dissipated energy in the collisions of 35 MeV/nucleon 16 O with 58 Ni. Energy correlations between α particles and projectile-like fragments at small-angle geometries allow the separation of the sources of α emission from projectile-like and target-like fragments. We find that the slope parameters of the decay energy distributions, the average excitation energies, and the α particle multiplicities of the projectile-like fragments increase with increasing dissipation of energy. If the linear dependence, exhibited by the data, of the slope parameter with the dissipated energy is included in model calculations, the majority of the coincidence yield in the forward hemisphere can be explained. However, an excess yield of the data on the opposite side of the beam from the observed projectile-like fragment still remains. Such analysis of the data suggests that the breakup of the projectile is the dominant source of light particles at forward angles. Processes resulting in the breakup of the projectile must be better understood in order to study other processes leading to similar phenomena

  11. Commissioning results of the ReA EBIT charge breeder at the NSCL: First reacceleration of stable-isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.edu; Schwarz, S.; Kittimanapun, K.; Rodriguez, J.A.; Sumithrarachchi, C.; Barquest, B.; Berryman, E.; Cooper, K.; Fogleman, J.; Krause, S.; Kwarsick, J.; Nash, S.; Perdikakis, G.; Portillo, M.; Rencsok, R.; Skutt, D.; Steiner, M.; Tobos, L.; Wittmer, W.; Bollen, G.; and others

    2013-12-15

    Highlights: • Latest results with the electron-beam ion trap of the ReA post-accelerator at the NSCL. • First reacceleration of stable-isotope beams. • First injection of stable-isotope beams from the NSCL’s beam stopping vault. -- Abstract: ReA is a reaccelerator of rare-isotope beams at the National Superconducting Cyclotron Laboratory (NSCL). The rare isotopes are produced by fast projectile fragmentation. After production, they are separated in-flight and thermalized in a He gas “catcher” cell before being sent to ReA for reacceleration to a few MeV/u. One of its main components is an electron-beam ion trap (EBIT) employed to convert injected singly charged ions to highly charged ions prior to injection into linear-accelerator structures. The ReA EBIT features a high-current electron gun, a long trap structure, and a two-field superconducting magnet to provide both the high electron-beam current density needed for fast charge breeding and high capture probability of injected beams. This paper presents recent commissioning results. In particular, {sup 39}K{sup +} ions have been injected, charge bred to {sup 39}K{sup 16+} and extracted for reacceleration up to 60 MeV. First charge-breeding results of beams injected from a commissioning Rb ion source in the NSCL’s beam “stopping” vault are also presented.

  12. Light particles emitted with very forward quasi-projectiles and the mechanism in the fragmentation of 44 MeV/a.m.u. 40Ar

    International Nuclear Information System (INIS)

    Roussel, P.; Bacri, Ch.O.; Borrel, V.; Stephan, C.; Tassan-Got, L.; Beaumel, D.; Bernas, M.; Clapier, F.; Mirea, M.

    1998-01-01

    The mechanism of projectile fragmentation in the Fermi-energy region has been investigated for fragments emitted in the incident beam direction by detecting fast protons and neutrons evaporated by the projectile-like fragments. The proton coincidence rate is shown to increase with fragment velocity loss. This increase is also correlated to the decrease of the fragment yield, with the coincident rate doubling when the yield decreases by a factor of 10. The coincidence rate is found to be also proportional to the fragment mass loss for fragments with the beam velocity. A two-step mechanism is sketched out to interpret these results. For fragments with the beam velocity, the projectile nucleon removal is equally shared between a first fast step and the second evaporative step, while for fragments at the tenth of the maximum yield, the nucleons are removed by evaporation. Finally, the experimental observation that the most probable velocity for forward fragments is very close to that of the beam may be the result of a strong forward/backward momentum asymmetry in a Goldhaber-type analysis. (author)

  13. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  14. Total Fragmentation Cross Section of 158A GeV Lead Projectiles in Cu Target

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed

    2008-01-01

    Total fragmentation cross section for the reaction 158 A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63 ≤ Z ≤ 83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (nuclear physics)

  15. Orientation estimation algorithm applied to high-spin projectiles

    International Nuclear Information System (INIS)

    Long, D F; Lin, J; Zhang, X M; Li, J

    2014-01-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)

  16. Orientation estimation algorithm applied to high-spin projectiles

    Science.gov (United States)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  17. Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stepjan; Vasquez, Juan Carlos

    2014-01-01

    Fast charging stations (FCS) are able to recharge plug-in hybrid electric vehicles (pHEVs) in less than half an hour, thus representing an appealing concept to vehicle owners since the off-road time is similar as for refuelling at conventional public gas stations. However, since these FCS plugs...

  18. Experimental and simulation optimization analysis of the Whipple shields against shaped charge

    Science.gov (United States)

    Hussain, G.; Hameed, A.; Horsfall, I.; Barton, P.; Malik, A. Q.

    2012-06-01

    Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile energy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Simulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Experiments also support this evidence.

  19. Peripheral collisions of 2 GeV/nucleon Fe nuclei in nuclear emulsion. I. Light projectile fragments

    International Nuclear Information System (INIS)

    Friedlander, E.M.; Crawford, H.J.; Gimpel, R.W.; Greiner, D.E.; Heckman, H.H.; Lindstrom, P.J.

    1978-01-01

    Observations on 374 collisions of 1.88-GeV/nucleon Fe nuclei in Ilford G-5 nuclear track emulsion, in which at least one projectle fragment of Z > = 3 was emitted within a 6 0 cone, revealed several features of projectile breakup. The onset of copious multiple fragmentation was observed. The relatively high α-particle multiplicities allowed for the first time a study of the α multiplicity distribution; a Poisson distribution gave an excellent fit. The data showed a significant enhancement of α-particle pairs with very small relative momenta. The transverse momentum distributions, which should reflect best the thermal motion in the projectile system, are in flagrant discrepancy with theoretical predictions; the distributions show a marked target dependence. The charges of all projectile fragments up to B were determined by measurement of gap-length distributions. Events with N/sub h/ = 0 are a class apart from the rest of the events; between N/sub h/ = 1 and N/sub h/ = 9 there is surprisingly little change in most parameters. 4 figures

  20. Stability Criterion for a Finned Spinning Projectile

    OpenAIRE

    S. D. Naik

    2000-01-01

    The state-of-the-art in gun projectile technology has been used for the aerodynamic stabilisation.This approach is acceptable for guided and controlled rockets but the free-flight rockets suffer fromunacceptable dispersion. Sabot projectiles with both spin and fms developed during the last decadeneed careful analysis. In this study, the second method of Liapunov has been used to develop stability criterion for a projectile to be designed with small fins and is made to spin in the flight. This...

  1. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  2. Charge transfer of He2+ with H in a strong magnetic field

    International Nuclear Information System (INIS)

    Liu Chun-Lei; Zou Shi-Yang; He Bin; Wang Jian-Guo

    2015-01-01

    By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He 2+ +H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models. (paper)

  3. Fragment ion distribution in charge-changing collisions of 2-MeV Si ions with C60

    Science.gov (United States)

    Itoh, A.; Tsuchida, H.; Miyabe, K.; Majima, T.; Nakai, Y.

    2001-09-01

    We have measured positive fragment ions produced in collisions of 2 MeV Siq+ (q=0, 1, 2, 4) projectiles with a C60 molecular target. The measurement was performed with a time-of-flight coincidence method between fragment ions and charge-selected outgoing projectiles. For all the charge-changing collisions investigated here, the mass distribution of small fragment ions C+n (n=1-12) can be approximated fairly well by a power-law form of n-λ as a function of the cluster size n. The power λ derived from each mass distribution is found to change strongly according to different charge-changing collisions. As a remarkable experimental finding, the values of λ(loss) in electron loss collisions are almost the same for the same final charge states k irrespective of the initial charge q, exhibiting a nearly perfect linear relationship with k. We also performed calculations of the projectile ionization on the basis of the semiclassical approximation and obtained inelastic energy deposition for individual collision processes. The estimated energy deposition is found to have a simple correlation with the experimentally determined values of λ(loss).

  4. Production of pions and anomalous projectile fragments in heavy ion collisions

    International Nuclear Information System (INIS)

    Noren, B.

    1988-05-01

    Results are presented from investigations of the mean free path (mfp) of multiply charged fragments, produced by 1.8 A GeV argon nuclei. The mfp's have been studied experimentally, and no dependence of the mfp on the distance from the preceeding collision is observed. In a Monte Carlo simulation, the mfp estimators are investigated for different statistics, with or without an enhanced reaction probability. Intermediate energy heavy ion collisions have been studied using the carbon beam produced at the CERN SC-accelerator. Cross-sections for pion + and pion - have been measured over a wide range of angles and targets. Also, coincidence measurements with projectile-like fragments have been performed. The pion - /pion + ratio has been studied for C+Li, C+C, C+Pb, C+ 116 Sn and C+ 124 Sn. Inconsistencies in the target mass dependence of the pion yield disappear if a correction for reabsorption in the target nucleus is included. The projectile breakup is significantly stronger for pion producing collisions than for the average collision, thus indicating a much stronger abundance of central collisions. (With 32 refs.) (author)

  5. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.

  6. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  7. Finite element investigation of explosively formed projectiles (EFP)

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    This thesis report represents the numerical simulation of explosively formed projectiles (EFP), a type of linear self-forging fragment device. The simulation is performed using a finite element code DYNA2D. It also explicates that how the shape, velocity and kinetic energy of an explosively formed projectile is effected by various parameters. Different parameters investigated are mesh density, material, thickness, contour and types of liner. Effect of shape of casing and material model is also analyzed. The shapes of projectiles at different times after detonation are shown. The maximum velocity and kinetic energy of the projectile have been used to ascertain the effect of above mentioned parameters. (author)

  8. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  9. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  10. Projectile rapidity dependence in target fragmentation

    International Nuclear Information System (INIS)

    Haustein, P.E.; Cumming, J.B.; Hseuh, H.C.

    1979-01-01

    The thick-target, thick-catcher technique was used to determine mean kinetic properties of selected products of the fragmentation of Cu by 1 H, 4 He, and 12 C ions (180 to 28,000 MeV/amu). Momentum transfer, as inferred from F/B ratios, is ovserved to occur most efficiently for the lower velocity projectiles. Recoil properties of target fragments vary strongly with product mass, but show only a weak dependence on projectile type. The projectile's rapidity is shown to be a useful variable for quantitative intercomparison of different reactions. These results indicate that E/sub proj//A/sub proj/ is the dominant parameter which governs the mean recoil behavior of target fragments. 20 references

  11. Computed tomography of projectile injuries

    International Nuclear Information System (INIS)

    Jeffery, A.J.; Rutty, G.N.; Robinson, C.; Morgan, B.

    2008-01-01

    Computed tomography (CT) is a gold standard in clinical imaging but forensic professions have been slow to embrace radiological advances. Forensic applications of CT are now exponentially expanding, replacing other imaging methods. As post-mortem cross-sectional imaging increases, radiologists will fall under increasing pressure to interpret complex forensic cases involving both living and deceased patients. This review presents a wide variety of weapon and projectile types aiding interpretation of projectile injuries both in forensic and clinical practice

  12. A design of inverse Taylor projectiles using material simulation

    International Nuclear Information System (INIS)

    Tonks, Michael; Harstad, Eric; Maudlin, Paul; Trujillo, Carl

    2008-01-01

    The classic Taylor cylinder test, in which a right circular cylinder is projected at a rigid anvil, exploits the inertia of the projectile to access strain rates that are difficult to achieve with more traditional uniaxial testing methods. In this work we present our efforts to design inverse Taylor projectiles, in which a tapered projectile becomes a right circular cylinder after impact, from annealed copper and show that the self-correcting geometry leads to a uniform compressive strain in the radial direction. We design projectiles using finite element simulation and optimization that deform as desired in tests with minor deviations in the deformed geometry due to manufacturing error and uncertainty in the initial velocity. The inverse Taylor projectiles designed in this manner provide a simple means of validating constitutive models. This work is a step towards developing a general method of designing Taylor projectiles that provide stress–strain behavior relevant to particular engineering problems

  13. Differential electron emission in multi-charged ion atom collisions: Systematics for distant and close collisions

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toburen, L.H.; Middendorf, M.E.; Jagutzki, O.

    1992-09-01

    Absolute doubly differential cross sections for electron emission are presented for 0.5 MeV/u multi-charged ion impact on helium, neon, and argon targets. For the helium target, Bq+, Cq+ (q = 2--5) and Oq+, Fq+ (q = 3--6) projectiles were studied; for neon and argon, only Cq+ (q = 2--5) projectiles were used. Electron emission for 10 degrees ≤ Θ ≤ 60 degrees was studied. The measured cross sections were assumed to scale as the square of an effective projectile charge, Z eff , which was determined as a function of emitted electron energy and angle. For distant collisions (low emitted electron energies), we find that Z eff ∼ q for small q and Z eff eff > Z and increases as q decreases. This is true for all angles and targets investigated

  14. Inner-shell ionization of heavy atoms by slow ions. A study of electronic relativistic effects and projectile Coulomb deflection in the Semiclassical Approximation

    International Nuclear Information System (INIS)

    Amundsen, P.A.

    1978-08-01

    Several investigations have been made on K and L shell ionization of the heavy collision partner in slow asymmetric collisions based on the SCA. The use of the SCA can only be defended for slow collisions if the projectile has a charge much less than the target. Thus this approximation should first be tested for proton impact on very heavy target elements. For these elements the inner shell electrons move sufficiently fast for a relativistic description to be mandatory. These relativistic effects are in themselves of some interest, as they can be quite large. After discussion of the formulation of the SCA used throughout this work, a further introduction is given on relativistic effects in Coulomb ionisation. Two papers on electronic relativistic effects in K and L shell ionization follow. The next two papers discuss calculations with an exact Coulomb projectile path. The latter of these also touches upon the inclusion of corrections to the SCA from terms beyond first order perturbation theory. In the last paper of this thesis it is shown how the theoretical apparatus developed for the SCA- calculations can immediately be used also for making calculations of more symmetric systems with the Briggs model. Thus, at least for direct ionization in very slow collisions a unification of the SA and MO approaches has apparently been reached. (JIW)

  15. Fragmentation of small molecules induced by 46 keV/amu N+ and N2+ projectiles

    International Nuclear Information System (INIS)

    Kovacs, S.T.S.; Juhasz, Z.; Herczku, P.; Sulik, B.

    2012-01-01

    Complete text of publication follows. Collisional molecule fragmentation experiments has gain increasing attention in several research and applied fields. In order to understand the fundamental processes of molecule fragmentation one has to start with collisions of small few-atomic molecules. Moreover, fragments of small molecules such as water can cause damages of large molecules (DNA) very effectively in living tissues. In the last few years a new experimental setup was developed at Atomki. It was designed especially for molecule fragmentation experiments. Now the measurements using this system are running routinely. In 2012 the studied targets were water vapor, methane and nitrogen gases, injected into the collision area by an effusive molecular gas jet system. 650 keV N + and 1,3 MeV N 2 + ions were used as projectiles produced by the VdG-5 electrostatic accelerator. The velocity of the two types of projectiles was the same. Energy and angular distribution of the produced fragments was measured by an energy dispersive electrostatic spectrometer. For atomic ionization a symmetric, diatomic molecular projectile (e.g. N 2 + ) yields about twice more electrons compared to those of singly charged ion projectiles of the same atom (N + ) at the same velocity. In such cases the two atomic centers in the molecular ion can be considered as two individual atomic centers. For the fragmentation of molecular targets the picture is not so simple because in this case close collision of two extended systems is investigated. As figure 1 and 2 show, the measured yields for molecular projectile is not simply twice of the ones for atomic projectile. The shape of the energy spectra are different. The measured data are under evaluation. Acknowledgements. This work was supported by the Hungarian National Science Foundation OTKA (Grant: K73703) and by the TAMOP-4.2.2/B-10/1-2010-0024 project. The project is cofinanced by the European Union and the European Social Fund.

  16. Full inelastic cross section, effective stopping and ranges of fast multiply charged ions

    International Nuclear Information System (INIS)

    Alimov, R.A.; Arslanbekov, T.U.; Matveev, B.I.; Rakhmatov, A.S.

    1994-01-01

    Inelastic processes taking place in collision of fast multiply charged ions with atoms are considered on the base of mechanism of sudden momentum transfer. The simple estimations are proposed of full inelastic cross sections, effective stopping and ion ranges in gaseous medium. (author). 10 refs

  17. Femoral vessel injury by a nonlethal weapon projectile

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno Biagioni, MD

    2018-06-01

    Full Text Available Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein. Keywords: Vascular trauma, Nonlethal projectile, Penetrating trauma

  18. A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yan Bao

    2018-01-01

    Full Text Available Fast charging stations enable the high-powered rapid recharging of electric vehicles. However, these stations also face challenges due to power fluctuations, high peak loads, and low load factors, affecting the reliable and economic operation of charging stations and distribution networks. This paper introduces a battery energy storage system (BESS for charging load control, which is a more user-friendly approach and is more robust to perturbations. With the goals of peak-shaving, total electricity cost reduction, and minimization of variation in the state-of-charge (SOC range, a BESS-based bi-level optimization strategy for the charging load regulation of fast charging stations is proposed in this paper. At the first level, a day-ahead optimization strategy generates the optimal planned load curve and the deviation band to be used as a reference for ensuring multiple control objectives through linear programming, and even for avoiding control failure caused by insufficient BESS energy. Based on this day-ahead optimal plan, at a second level, real-time rolling optimization converts the control process to a multistage decision-making problem. The predictive control-based real-time rolling optimization strategy in the proposed model was used to achieve the above control objectives and maintain battery life. Finally, through a horizontal comparison of two control approaches in each case study, and a longitudinal comparison of the control robustness against different degrees of load disturbances in three cases, the results indicated that the proposed control strategy was able to significantly improve the charging load characteristics, even with large disturbances. Meanwhile, the proposed approach ensures the least amount of variation in the range of battery SOC and reduces the total electricity cost, which will be of a considerable benefit to station operators.

  19. Secondary electron emission with molecular projectiles

    International Nuclear Information System (INIS)

    Kroneberger, K.; Rothard, H.; Koschar, P.; Lorenzen, P.; Kemmler, J.; Keller, N.; Maier, R.; Groeneveld, K.O.; Clouvas, A.; Veje, E.

    1990-01-01

    The authors present results for the secondary electron emission (SEE) from thin foil targets, induced by both molecular ions and their atomic constituents as projectiles. The Sternglass theory for kinetic SEE states a proportionality between γ and the electronic stopping power, S e , which has been verified in various experiments. With comparing secondary electron (SE) yields induced by molecular projectiles to those induced by monoatomic projectiles, it is therefore possible to test models for the energy loss of molecular or cluster projectiles. Since the atomic constituents of the molecule are repelled from each other due to Coulomb explosion (superimposed by multiple scattering) while traversing the solid, it is interesting to measure the residual mutual influence on SEE and S e with increasing internuclear separation. This can only be achieved with thin foils, where (as in the present case) the SE-yields from the exit surface can be measured separately. The authors measured the SE-yields from the entrance (γ B ) and exit (γ F ) surfaces of thin C- and Al-foils (150 to 1,000 angstrom) with CO + , C + and O + (15 to 85 keV/u) and H 2 + and H + (0.3 to 1.2 MeV/u). The molecular effect defined as the ratio R(γ) between the yields induced by molecular projectiles and the sum of those induced by their atomic constituents was calculated. The energy dependence of R(γ) can be well represented by the calculated energy loss ratio of di-proton-clusters by Brandt. This supports Brandt's model for the energy loss of clusters

  20. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  1. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations

    International Nuclear Information System (INIS)

    Cunha, Álvaro; Brito, F.P.; Martins, Jorge; Rodrigues, Nuno; Monteiro, Vitor; Afonso, João L.; Ferreira, Paula

    2016-01-01

    A network of conveniently located fast charging stations is one of the possibilities to facilitate the adoption of Electric Vehicles (EVs). This paper assesses the use of fast charging stations for EVs in conjunction with VRFBs (Vanadium Redox Flow Batteries). These batteries are charged during low electricity demand periods and then supply electricity for the fast charging of EVs during day, thus implementing a power peak shaving process. Flow batteries have unique characteristics which make them especially attractive when compared with conventional batteries, such as their ability to decouple rated power from rated capacity, as well as their greater design flexibility and nearly unlimited life. Moreover, their liquid nature allows their installation inside deactivated underground gas tanks located at gas stations, enabling a smooth transition of gas stations' business model towards the emerging electric mobility paradigm. A project of a VRFB system to fast charge EVs taking advantage of existing gas stations infrastructures is presented. An energy and cost analysis of this concept is performed, which shows that, for the conditions tested, the project is technologically and economically viable, although being highly sensitive to the investment costs and to the electricity market conditions. - Highlights: • Assessment of Vanadium Redox Flow Battery use for EV fast charge in gas stations. • This novel system proposal allows power peak shaving and use of deactivated gas tanks. • Philosophy allows seamless business transition towards the Electric Mobility paradigm. • Project is technologically and economically viable, although with long payback times. • Future Cost cuts due to technology maturation will consolidate project attractiveness.

  2. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment

  3. Impact of Thin-Walled Projectiles with Concrete Targets

    Directory of Open Access Journals (Sweden)

    Rayment E. Moxley

    1995-01-01

    Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.

  4. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  5. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  6. Motion-based, high-yielding, and fast separation of different charged organics in water.

    Science.gov (United States)

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design and calibration of a fast-time resolution charge exchange analyzer

    International Nuclear Information System (INIS)

    Scime, E.; Hokin, S.

    1992-04-01

    A five channel, fast time resolution, scanning charge exchange analyzer has been developed for the Madison Symmetric Torus (MST). The analyzer consists of an iron vacuum vessel, a gas stripping cell, an electrostatic bending field, and five continuous electron multiplier detectors. The incident neutral flux and operation of the detectors in current mode limits the time resolution of the analyzer to 10 μs. The analyzer was absolutely calibrated over the energy range of interest (500--2000 eV) with an H + beam, so that the charge exchange power loss could also be measured. The analyzer can be swiveled on a shot-to-shot basis for measurements of T i (r), where 0.3 < r/a < 0.7. The mechanical design was driven by the need for a low cost, expandable ion temperature diagnostic

  8. Fast charge digitizer and digital data acquisition system for measuring time varying radiation fields

    International Nuclear Information System (INIS)

    Lee, T.R.; Schneider, R.H.; Wyatt, J.L.

    1976-01-01

    A radiation measuring instrument including a fast charge digitizer and a digital data acquisition system has been developed. The fast charge digitizer includes a charge integrator connected to a conventional ionization chamber which generates an output current in proportion to ionizing radiation exposure rate. The charge integrator has an output connected to a comparator which is switched from a high state to a low state when the output of the integrator goes above the comparator threshold. The comparator output is connected to a bistable multivibrator consisting of two non-retriggerable one shot multivibrators connected in a feedback configuration. As long as the comparator output is in the low state, the bistable multivibrator generates a train of pluses which are fed back through an analog switch and a high megohm resistance to the input of the integrator. This feedback is negative and has the effect of removing the charge from the integrating capacitor, thus causing the integrator output eventually to drop below the comparator threshold. When this occurs the comparator output returns to the high state and the bistable multivibrator ceases to generate output pulses. An output terminal is connected between the bistable multivibrator and the analog switch and feeds a train of pulses proportional to the amount of charge generated by the multivibrator output voltage and the high megohm resistance to a counter connected to a random access memory device. The output pulses are counted for a predetermined time and then stored in one of the data locations of the random access memory device. The counter is then reset and a further predetermined sample period is counted. This continues until all of the locations in the random access memory device are filled and then the data is read from the random access memory device

  9. Transient processes induced by heavy projectiles in silicon

    International Nuclear Information System (INIS)

    Lazanu, Ionel; Lazanu, Sorina

    2010-01-01

    The thermal spike model developed for the electronic stopping power regime is extended to consider both ionization and nuclear energy loss processes of the projectile as electronic and atomic heat distinct sources. The time and space dependencies of the lattice and electron temperatures near the projectile trajectory are calculated and discussed for different ions in silicon, at room and cryogenic temperatures, taking into account the peculiarities of electron-phonon interaction in both domains. The model developed contributes to the understanding of transient microscopic processes immediately after the projectile interaction in the target.

  10. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)], E-mail: Gregor.Kramberger@ijs.si; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M. [Jozef Stefan Institute, Department of Physics, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2009-10-11

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  11. Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2009-01-01

    A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.

  12. Electromagnetic launcher for heavy projectiles

    Science.gov (United States)

    Kozlov, A. V.; Kotov, A. V.; Polistchook, V. P.; Shurupov, A. V.; Shurupov, M. A.

    2017-11-01

    In this paper, we present the electromagnetic launcher with capacitive power source of 4.8 MJ. Our installation allows studying of the projectile acceleration in railgun in two regimes: with a solid armature and with a plasma piston. The experiments with plasma piston were performed in the railgun with the length of barrel of 0.7-1.0 m and its inner diameter of 17-24 mm. The velocities of lexan projectiles with weight of 5-15 g were in a range of 2.5-3.5 km/s. The physical mechanisms that limit speed of throwing in railgun are discussed.

  13. Experimental and numerical studies on penetration of shaped charge into concrete and pebble layered targets

    Directory of Open Access Journals (Sweden)

    C Wang

    2017-09-01

    Full Text Available Experiments on penetrating into concrete and pebble layered targets were performed by shaped charge with different cone angles, liner wall thicknesses, length to diameter ratios and charge diameters at different standoffs. Based on the experimental data, the influence of shaped charge’s structural parameters on crater diameter, hole diameter, crater depth and penetration depth was analyzed in detail. Meanwhile, formation and penetration processes of all shaped charges were simulated by AUTODYN software for investigating the more intrinsic mechanisms, in which the numerical models are the same as those set up in the experiments. The results obtained in this paper indicate that there are obvious differences between jetting projectile charge (JPC and explosively formed projectile (EFP in penetrating into multi-layer targets. For the same charge diameter, the values of hole diameter formed by EFP were much larger than JPC. However, for the same standoff, the penetration depth caused by JCP were larger than EFP. The interfacial effect exists in the penetration progress of JPC.

  14. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building 'acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might -in general- be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behavior of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. In view of the applications of the calculations to the impact of airplanes upon buildings which are constructed to withstand loads of this kind without serious damage and without large deformations, it is possible to simplify the calculations to some extent. That is, the investigations need not take into account in detail the behavior of the target during impact. The calculations are performed with a one-dimensional model for the projectile. The direction of impact is perpendicular to the target surface; direction of impact and projectile axis coincide. The calculations were performed for several initial velocities of the projectiles simulating a fast flying military airplane. Variations of the peak values of the load functions as compared to corresponding values for a rigid target do not exceed about 10%. The overall temporal behavior of the load curves turns out to be not very sensitive to the yielding of the target, though, in some cases displacements in time of the peak positions within a single load curve do arise

  15. Considerations about projectile and target X-rays induced during heavy ion bombardment

    Science.gov (United States)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  16. Electron loss from 0.74 and 1.4 MeV/u low-charge-state argon and xenon ions colliding with neon, nitrogen, and argon

    International Nuclear Information System (INIS)

    DuBois, R.D.; Santos, A.C.F.; Olson, R.E.

    2003-07-01

    Absolute total, single, and multiple electron loss cross sections are measured for Ar + -, Ar 2+ -, and Xe 3+ - Ne, N 2 , Ar collisions at 0.74 and 1.4 MeV/u. In addition, a many-body Classical Trajectory Monte Carlo model was used to calculate total and multiple electron loss cross sections for Ar + impact. For N 2 and Ar targets, excellent agreement between the measured and calculated cross sections is found; for the Ne target the experimental data are approximately 40% smaller than the theoretical predictions. The experimental data are also used to examine cross section scaling characteristics for electron loss from fast, low-charge-state, heavy ions. It is shown that multiple electron loss increased the mean charge states of the outgoing argon and xenon ions by two and three respectively. The cross sections decreased with increasing number of electrons lost and scaled roughly as the inverse of the sum of the ionization potentials required to sequentially remove the most weakly bound, next most weakly bound, etc., electrons. This scaling was found to be independent of projectile, incoming charge state, and target. In addition, the experimental total loss cross sections are found to be nearly constant as a function of initial projectile charge state. As a function of impact energy, the theoretical predictions yield an E -1/3 behavior between 0.5 and 30 MeV/u for the total loss cross sections. Within error bars the data are consistent with this energy dependence but are also consistent with an E -1/2 energy dependence. (orig.)

  17. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: Pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of {sup 3}He{sup +} and {sup 4}He{sup +} on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al–Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  18. Formation of Rydberg states in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schneider, D.; Kanter, E.P.; Vager, Z.; Gemmell, D.; Koch, P.; Mariani, D.; Van de Water, W.

    1983-01-01

    Previous results from beam-foil spectroscopy and from experiments using field ionization techniques have shown that a significant fraction of fast ionic projectiles traversing solid targets can be excited to high Rydberg states. We report an experimental investigation of Rydberg states formed in atomic and molecular ion beams (MeV) emerging from thin-carbon foils. Different field arrangements, including μ-wave fields, have been applied to study the effects of field ionization. The yields of electrons produced via field ionization are compared for different projectile atoms and molecules

  19. Zero degree target electron spectroscopy: Double excitation, autoionization of helium in fast e, H+, He+, and He2+ collisions

    International Nuclear Information System (INIS)

    Wang, H.; Bruch, R.; Yan, Y.

    1994-01-01

    The authors have measured zero degree high-resolution spectra and double differential cross sections (DDCS) for double - excitation-autoionization of Helium atoms. They have also measured direct ionization DDCS at zero degree observation angle. The cross sections are absolutely calibrated. Electrons from the energy 150 to 1000 eV, protons from 100 keV to 1.5 MeV, He + from 400 keV to 1.5 MeV, and He 2+ from 400 keV to 1.6 MeV were used as projectiles. The zero degree observation angle provides a unique opportunity to maximize the interaction between the emitted electron, the ionized target atom, and the charged projectile particles. The doubly excited autoionizing (2lnl') states of He have been observed as a function of the collision conditions such as impact velocity, projectile charge sign, and type of projectile, specifically for the dominating (2p 2 ) 1 D → (lsεd) and (2s2p) 1 P 0 → (lsεp) channels

  20. Local behavior of reinforced concrete slabs to aircraft engine projectile impact

    International Nuclear Information System (INIS)

    Yoo, Hyeon Kyeong; Choi, Hyun; Chung, Chul Hun; Lee, Jung Whee; Kim, Sang Yun

    2011-01-01

    Structural safety evaluation of nuclear power plant considers two distinct types of structural failure, local failure and global failure. In the local failure evaluation, considered projectiles can be divided as internal and external projectile according to the impact location, and they also can be divided as rigid and soft projectile according to the deformation level after impact. Frequently considered projectiles are aircraft engine, tornado, and turbine projectile. When the speed and weight of the projectiles are considered, the most influential projectile is aircraft engine, which is one of the soft projectiles. Sugano et al. performed impact test using an engine model projectile, which is derived from GE-J79 engine and concentrated mass-spring model idealization. Kojima and Sugano et al. demonstrated from their experiments that steel liner on the rear side of the concrete wall reduces impact induced damage and suppresses debris scattering. Chung et al. performed comparison study of various formulae suggested for local damage evaluation using previously performed numerous local impact test results. Also, they validated a methodology of numerical analysis for impact simulation using LS-DYNA. Previously suggested formulae and research results do not consider the effect of liner plate or curved shape of the containment building walls on the local damage. In this research, flat wall and curved wall are individually modeled using the same curvature of nuclear power plants, and the effects of curvature and liner plates on the local damage are analytically investigated

  1. Femoral vessel injury by a nonlethal weapon projectile.

    Science.gov (United States)

    Biagioni, Rodrigo Bruno; Miranda, Gustavo Cunha; Mota de Moraes, Leonardo; Nasser, Felipe; Burihan, Marcelo Calil; Ingrund, José Carlos

    2018-06-01

    Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein.

  2. Design and testing of high-pressure railguns and projectiles

    International Nuclear Information System (INIS)

    Peterson, D.R.; Fowler, C.M.

    1984-01-01

    The results of high-pressure tests of four railgun designs and four projectile types are presented. All tests were conducted at the Los Alamos explosive magnetic-flux compression facility in Ancho Canyon. The data suggest that the high-strength projectiles have lower resistance to acceleration than the low strength projectiles, which expand against the bore during acceleration. The railguns were powered by explosive magneticflux compression generators. Calculations to predict railgun and power supply performance were performed by Kerrisk

  3. Trajectory effects in multiply charged ion-surface interactions

    International Nuclear Information System (INIS)

    Lebius, H.; Huang, W.; Schuch, R.

    1999-01-01

    Ar ions of 4.3 keV q in were scattered at large angles (θ=75 degree sign ) from a clean oriented surface. By selecting Ar projectiles having a large ionization potential and by using a large scattering angle only ions scattered at the first atomic layer of the surface were detected. Scattered ion energy spectra show peaks of single scattering and double scattering of the Ar projectile ions from one or two surface Au atoms, and the distribution attributed to double collisions splits into two peaks when the scattering plane coincides with a crystallographic plane. Simulations with a MARLOWE code allowed for interpretation of the structure in the double collision peak by in-plane and zig-zag double collisions. Differences in the relative peak heights between the experiment and a MARLOWE simulation were partly explained by different neutralization probabilities with varying trajectories. Yield changes with increasing charge states show interesting possibilities for future experiments with highly charged ions

  4. Cambodian students’ prior knowledge of projectile motion

    Science.gov (United States)

    Piten, S.; Rakkapao, S.; Prasitpong, S.

    2017-09-01

    Students always bring intuitive ideas about physics into classes, which can impact what they learn and how successful they are. To examine what Cambodian students think about projectile motion, we have developed seven open-ended questions and applied into grade 11 students before (N=124) and after (N=131) conventional classes. Results revealed several consistent misconceptions, for instance, many students believed that the direction of a velocity vector of a projectile follows the curved path at every position. They also thought the direction of an acceleration (or a force) follows the direction of motion. Observed by a pilot sitting on the plane, the falling object, dropped from a plane moving at a constant initial horizontal speed, would travel backward and land after the point of its release. The greater angle of the launched projectile creates the greater horizontal range. The hand force imparted with the ball leads the ball goes straight to hit the target. The acceleration direction points from the higher position to lower position. The misconceptions will be used as primary resources to develop instructional instruments to promote Cambodian students’ understanding of projectile motion in the following work.

  5. Semi-empirical calculations for the ranges of fast ions in silicon

    Science.gov (United States)

    Belkova, Yu. A.; Teplova, Ya. A.

    2018-04-01

    A semi-empirical method is proposed to calculate the ion ranges in energy region E = 0.025-10 MeV/nucleon. The dependence of ion ranges on the projectile nuclear charge, mass and velocity is analysed. The calculations presented for ranges of ions with nuclear charges Z = 2-10 in silicon are compared with SRIM results and experimental data.

  6. Enabling fast charging - Vehicle considerations

    Science.gov (United States)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to increase the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharge rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and the vehicle's electrical architecture that must be resolved. This work focuses on vehicle system design and total recharge time to meet the goals of implementing improved charge rates and the impacts of these expected increases on system voltage and vehicle components.

  7. Use of the TFTR prototype charge exchange neutral analyzer for fast He3++ diagnostics during ICRF heating on PLT

    International Nuclear Information System (INIS)

    Medley, S.S.

    1981-07-01

    The Charge Exchange Neutral Analyzer (CENA) for TFTR is designed to measure singly charged ion species of atomic mass A = 1, 2, and 3 simultaneously with up to 75 energy channels per mass and an energy range of 0.5 3 charge exchange neutrals makes the analyzer of particular interest for recently proposed fast He 3 ++ diagnostics during ICRF heating on PLT

  8. Density and energy distribution of epithermal secondary electrons in a plasma with fast charged particles

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.

    1989-01-01

    The production of intermediate energy secondary electrons in plasmas through collisions with fast charged particles is investigated. The density and the distribution of the secondary electrons are obtained by calculating the generation, slow down and diffusion rates, using basic Rutherford collision cross sections. It is shown that the total density of secondaries is much smaller than the fast particle density and that the energy distribution has roughly a 1/√E dependence. The higher generation secondary populations are also obtained. (orig.)

  9. Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus

    Science.gov (United States)

    Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas

    2017-11-01

    Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.

  10. SSNTD studies of lead nuclei fission induced by relativistic p, d, He and sup 1 sup 2 C projectiles inside massive Pb and U targets

    CERN Document Server

    Perelygin, V P; Krivopustov, M I; Petrova, R I; Abdullaev, I G; Bradnova, V; Knjazeva, G P; Brandt, R; Ochs, M; Wan, J S; Vater, P

    1999-01-01

    A series of experiments was carried out with relativistic protons, deuterons, helium and carbon-12 projectiles accelerated at SYNCHOPHASOTRON LHE, Dubna which hit massive Pb and U targets. The beam profiles and intensities of both primary particles and secondary fast neutrons were measured using plastic SSNTD inside the massive cylinder blocks of Cu, Pb and U by counting of fission fragment tracks due to the induced fission of Pb nuclei. The beam diameter increases typically by 20-30% at the depth 10 and 20 cm. With increasing the energy of projectiles the number of secondary neutrons rises with the depth for protons, deuterons and helium ions. Nevertheless, for sup 1 sup 2 C ions beams with changing the energy from 18 GeV to 44 GeV we first observe the effect of significant increase both the yield of secondary fast neutrons and the half-width of the beam. The observed enhanced yield of secondary fast neutrons confirms unusual behavior of nuclear interaction cross section of 44 GeV sup 1 sup 2 C ions observed...

  11. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    International Nuclear Information System (INIS)

    Gravielle, M.S.; Schueller, A.; Winter, H.; Miraglia, J.E.

    2011-01-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  12. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Schueller, A.; Winter, H. [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2011-06-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  13. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading of 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.

  14. Analysis on the resistive force in penetration of a rigid projectile

    Directory of Open Access Journals (Sweden)

    Xiao-wei Chen

    2014-09-01

    Full Text Available According to the dimensionless formulae of DOP (depth of penetration of a rigid projectile into different targets, the resistive force which a target exerts on the projectile during the penetration of rigid projectile is theoretically analyzed. In particular, the threshold Vc of impact velocity applicable for the assumption of constant resistive force is formulated through impulse analysis. The various values of Vc corresponding to different pairs of projectile-target are calculated, and the consistency of the relative test data and numerical results is observed.

  15. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  16. Charge equilibrium processes of energetic incident ions and their range

    International Nuclear Information System (INIS)

    Kawagoshi, Hiroshi; Karashima, Shosuke; Watanabe, Tsutomu.

    1984-01-01

    The charge state of energetic ions passing through a certain matter is varied by charge-exchange processes. A rate equation for charge fraction is given by using electron loss and capture cross sections in collision with a target atom under idealized condition. We solved the rate equation of the charge-exchange process of a single electron in a form of linear coupled differential equation. Our calcuiation for the range of ion were carried out for He, Ne and Ar ions passing through an atomic hydrogen gas target. We discuss the charge states of the projectile in relation to a local charge balance consituting a state of charge equilibrium in the target. (author)

  17. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers...

  18. Charge-pickup of 238U at relativistic energies

    International Nuclear Information System (INIS)

    Rubehn, T.; Bassini, R.; Blaich, T.; Imme, G.; Iori, I.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Moehlenkamp, T.; Moretto, L.G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Schuettauf, A.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Woerner, A.; Zude, E.; Zwieglinski, B.

    1995-10-01

    Cross sections for the charge-pickup of 238 U projectiles were measured at E/A=600 and 1000 MeV for seven different targets (Be, C, Al, Cu, In, Au and U). Events with two fission fragments with a sum charge of 93 in the exit channel were selected. Due to the significant excitation energy, the dominant part of produced Np nuclei fission instead of decaying to the ground state by evaporation. The observed cross sections can be well reproduced by intranuclear-cascade-plus-evaporation calculations and, therefore, confirm recent results that no exotic processes are needed to explain charge-pickup processes. (orig.)

  19. Development of odd-Z-projectile reactions for transactinide element synthesis

    International Nuclear Information System (INIS)

    Folden III, Charles Marvin

    2004-01-01

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay

  20. Corrected Launch Speed for a Projectile Motion Laboratory

    Science.gov (United States)

    Sanders, Justin M.; Boleman, Michael W.

    2013-01-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  1. On the Inertia Term of Projectile's Penetration Resistance

    Directory of Open Access Journals (Sweden)

    Yu Shan

    2013-01-01

    Full Text Available The effect of the target inertia term of rigid kinetic energy projectiles (KEP’s penetration resistance is investigated using nonlinear dynamic code LS-DYNA and four constitutive models. It is found that the damage number of target can be used to measure the influence of the inertia term. The smaller the damage number is, the less influence the inertia term has. The less dependent the resistance has on projectile velocity, the more accurate it is to treat the resistance as a constant. For the ogive-nose projectile with CRH of 3, when the target is aluminum, steel, or other metals, the threshold velocity for the constant resistance is at least 1258 m/s; when the target is concrete, rock, or other brittle materials, if the velocity of the projectile is greater than 400 m/s or so, the damage number would be very large, and the penetration resistance would clearly depend on the projectile’s velocity. The higher the elastic wave velocity is, the more penetration process is affected by the impact face.

  2. Energy, target, projectile and multiplicity dependences of intermittency behaviour in high energy O(Si,S) induced interactions

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Chernyavski, M.M.; Gerassimov, S.G.; Kharlamov, S.P.; Larionova, V.G.; Maslennikova, N.V.; Orlova, G.I.; Peresadko, N.G.; Salmanova, N.A.; Tretyakova, M.I.; Ameeva, Z.U.; Andreeva, N.P.; Anzon, Z.V.; Bubnov, V.I.; Chasnikov, I.Y.; Eligbaeva, G.Z.; Eremenko, G.Z.; Gaitinov, A.S.; Kalyachkina, G.S.; Kanygina, E.K.; Skakhova, C.I.; Bhalla, K.B.; Kumar, V.; Lal, P.; Lokanathan, S.; Mookerjee, S.; Raniwala, R.; Raniwala, S.; Burnett, T.H.; Grote, J.; Koss, T.; Lord, J.; Skelding, D.; Strausz, S.C.; Wilkes, R.J.; Cai, X.; Huang, H.; Liu, L.S.; Qian, W.Y.; Wang, H.Q.; Zhou, D.C.; Zhou, J.C.; Chernova, L.P.; Gadzhieva, S.I.; Gulamov, K.G.; Kadyrov, F.G.; Lukicheva, N.S.; Navotny, V.S.; Svechnikova, L.N.; Friedlander, E.M.; Heckman, H.H.; Lindstrom, P.J.; Garpman, S.; Jakobsson, B.; Otterlund, I.; Persson, S.; Soederstroem, K.; Stenlund, E.; Judek, B.; Nasyrov, S.H.; Petrov, N.V.; Xu, G.F.; Zheng, P.Y.

    1991-01-01

    Fluctuations of charged particles in high energy oxygen, silicon and sulphur induced interactions are investigated with the method of scaled factorial moments. It is found that for decreasing bin size down to δη∝0.1 the EMU01 data exhibits intermittent behaviour. The intermittency indexes are found to decrease with increasing incident energy and multiplicity and to increase with increasing target mass. It seems also to increase as the projectile mass increases. (orig.)

  3. Fatal lawn mower related projectile injury.

    Science.gov (United States)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-06-01

    Fatal lawn mower related injuries are a relatively rare occurrence. In a forensic setting, the primary aim is to reconstruct the injury mechanism and establish the cause of death. A relatively rare, but characteristic type of injury is a so-called projectile or missile injury. This occurs when the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury mechanism has not previously been reported as a cause of death. This case illustrates the importance of postmortem radiological imaging and interdisciplinary cooperation when establishing manner and cause of death in unusual cases.

  4. Study of the peripheral projectile-like fragments from the reaction 129Xe on 27Al, natCu, 139La and 165Ho, at E/A = 50 MeV

    International Nuclear Information System (INIS)

    Garcia-Solis, E.J.; Russ, D.E.; Madani, H.

    1996-01-01

    There are several reaction mechanisms identified for peripheral heavy-ion collisions. For low bombarding energies (E/A ∼ 10 MeV) the predominant reaction channel is the deep-inelastic reaction mechanism. In this process, the projectile and target form a rotating binary system, interchanging nucleons and angular momentum until they separate. At higher bombarding energies (E/A ∼ 50 to 100 MeV) incomplete fusion is thought to be the prevailing reaction channel. In this type of interaction part of the projectile merges with the target during the collision. Finally, for energies greater than 100 MeV/A, the main reaction channel is characterized by the formation of a highly-excited separate fragment (fireball) produced during the overlap between the projectile and the target. The data set studied was from an experiment designed to characterize the projectile-like products of the 27 Al, nat Cu, 139 La, and 165 Ho reactions at E/A = 50 MeV, which was performed at the Michigan State University Super Cyclotron Laboratory (MSU-NSCL). The Maryland Forward Array (MFA), was used to measure projectile-like fragments in coincidence with target-like fragments and light-charge particles in the MSU 4π detector

  5. Study of Nuclear Moments and Mean Square Charge Radii by Collinear Fast-Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    The collinear fast-beam laser technique is used to measure atomic hyperfine structures and isotope shifts of unstable nuclides produced at ISOLDE. This gives access to basic nuclear ground-state and isomeric-state properties such as spins, magnetic dipole and electric quadrupole moments, and the variation of the nuclear mean square charge radius within a sequence of isotopes. \\\\ \\\\ Among the various techniques used for this purpose, the present approach is of greatest versatility, due to the direct use of the beams from the isotope separator. Their phase-space properties are exploited to achieve high sensitivity and resolution. The optical spectra of neutral atoms are made accessible by converting the ion beams into fast atomic beams. This is accomplished in the charge-exchange cell which is kept at variable potential ($\\pm$10~kV) for Doppler-tuning of the effective laser wavelength. The basic optical resolution of 10$^{-8}$ requires a 10$^{-5}$ stability of the 60~kV main acceleration voltage and low energy ...

  6. Interaction of slow, highly charged ions with the surface of ionic crystals

    International Nuclear Information System (INIS)

    Heller, Rene

    2009-01-01

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v≤5 x 10 5 m/s) highly charged (q≤40) ions on the ionic crystal surfaces of CaF 2 and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E grenz pot (E kin ) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF 2 (111) surfaces could be verified for lowest kinetic energies (E kin ≤150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by complementary investigations of the secondary

  7. Physics of projectile fragments

    International Nuclear Information System (INIS)

    Minamisono, Tadanori

    1982-01-01

    This is a study report on the polarization phenomena of the projectile fragments produced by heavy ion reactions, and the beta decay of fragments. The experimental project by using heavy ions with the energy from 50 MeV/amu to 250 MeV/amu was designed. Construction of an angle-dispersion spectrograph for projectile fragments was proposed. This is a two-stage spectrograph. The first stage is a QQDQQ type separator, and the second stage is QDQD type. Estimation shows that Co-66 may be separated from the nuclei with mass of 65 and 67. The orientation of fragments can be measured by detecting beta-ray. The apparatus consists of a uniform field magnet, an energy absorber, a stopper, a RF coil and a beta-ray hodoscope. This system can be used for not only this purpose but also for the measurement of hyperfine structure. (Kato, T.)

  8. Interaction of fast Hn+ with the last layers of carbon foils

    International Nuclear Information System (INIS)

    Farizon, M.; Faria, N.V.C. de; Mazuy-Farizon, B.; Gaillard, M.J.

    1993-03-01

    A Monte Carlo program describing the penetration of H n + hydrogen clusters in thin foils has been used to build a model of charge exchange for protons resulting from the breakup of these clusters. The total neutral fractions observed at emergence with cluster projectiles H n + , n < 23 in the energy range 40-120 keV/u, as well as the number of 2p excited states are well reproduced by these calculations taking into account geometrical structures of the projectiles and vicinity effects. (author) 8 refs.; 2 figs

  9. Correlations between projectile and target breakup: a comparative study of nucleus-nucleus collisions at 75, 175 and 2000A MeV

    International Nuclear Information System (INIS)

    Bjarle, C.; Herrstroem, N.Y.; Kullberg, R.; Oskarsson, A.; Otterlund, I.

    1982-01-01

    Nucleus-nucleus collision in three different energy intervals: 50-100, 150-200 and 1900-2100A MeV have been studied in nuclear emulsion. The reactions were 16 O + average emulsion target (H, C, N, O, Ag, Br). In each event, all emitted charged particles were recorded, projectile fragments with Z>=2 identifed and the number of charged particles from the target nucleus was determined. The results are discussed in terms of the geometrical aspects of Heavy Ion collisions and direct comparisons are made with the Coldhaber fragmentation model

  10. Projectile-power-compressed magnetic-field pulse generator

    International Nuclear Information System (INIS)

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-01-01

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure

  11. Hierarchically Macroporous Graphitic Nanowebs Exhibiting Ultra-fast and Stable Charge Storage Performance

    Science.gov (United States)

    Yun, Young Soo

    2018-02-01

    The macro/microstructures of carbon-based electrode materials for supercapacitor applications play a key role in their electrochemical performance. In this study, hierarchically macroporous graphitic nanowebs (HM-GNWs) were prepared from bacterial cellulose by high-temperature heating at 2400 °C. The HM-GNWs were composed of well-developed graphitic nanobuilding blocks with a high aspect ratio, which was entangled as a nanoweb structure. The morphological and microstructural characteristics of the HM-GNWs resulted in remarkable charge storage performance. In particular, the HM-GNWs exhibited very fast charge storage behaviors at scan rates ranging from 5 to 100 V s-1, in which area capacitances ranging from 8.9 to 3.8 mF cm-2 were achieved. In addition, 97% capacitance retention was observed after long-term cycling for more than 1,000,000 cycles.

  12. Methods of quasi-projectile and quasi-target reconstruction in binary collisions

    International Nuclear Information System (INIS)

    Genouin-Duhamel, E.; Steckmeyer, J.C.; Vient, E.; Bocage, F.; Bougault, R.; Brou, R.; Colin, J; Cussol, D.; Durand, D.; Gulminelli, F.; Lecolley, J.F.; Lefort, T.; Le Neindre, N.; Lopez, O.; Louvel, M.; Nguyen, A.D.; Peter, J.; Tamain, B.

    1997-01-01

    In very dissipative collisions one or more nuclei of hot nuclear matter are formed. According to the stored energy these decay in times varying from several tens of fm/c to several tens of thousands of fm/c. Thus, we have to trace down in time and reconstruct the original nuclei starting from a mixture of decay products of these nuclei and all the particles dynamically emitted in the very first moments of the collision. In this paper different methods of reconstruction of hot nuclei formed after collision at Fermi energies are presented and compared. All the methods have in commune the same theoretical hypotheses and experimental limitations. The first method uses the largest detected fragment which is supposed to preserve the memory of the initial velocity of the quasi-projectile (QP). All the intermediate mass fragments (IMF) situated in the forward hemisphere are considered as statistically emitted by the QP. The initial velocity of the source is determined by summation of the fragment momenta, event by event. Once the decay products assigned to the QP its total charge can be calculated and its mass is obtained from the projectile A/Z ratio. Finally, the QP excitation energy is calculated from calorimetric data. In the second method ('Nautilus') the velocity space is separated by cutting the center-of-mass velocity perpendicular to the main axis of the momentum ellipsoid. We take into consideration all the IMFs situated in the forward part of the ellipsoid to determine the velocity of the rapid source. The charge is constructed by summing the largest detected fragment and doubling the charge of the particles emitted in the forward hemisphere of the rapid source. The mass and excitation energy of QP per nucleon are determined as above. The third method called of 'estoc' is a purely computational one. It is based on the hypothesis that the IMFs coming from a given source are all in the same region of the momentum space. A comparison of the three methods is

  13. Mass and charge distributions in Fe-induced reactions

    International Nuclear Information System (INIS)

    Madani, H.; Mignerey, A.C.; Marchetti, A.A.; Weston-Dawkes, A.P.; Kehoe, W.L.; Obenshain, F.

    1995-01-01

    The charge and mass of the projectile-like fragments produced in the 12-MeV/nucleon 56 Fe + 165 Ho reaction were measured at a laboratory scattering angle of 16 degrees. The mass and charge distributions of the projectile-like fragments were generated as a function of total kinetic energy loss (TKEL), and characterized by their neutron and proton centroids and variances, and correlation factors. A weak drift of the system towards mass asymmetry, opposite to the direction which minimizes the potential energy of the composite system, was observed. The increase in the variances with energy loss is consistent with a nucleon exchange mechanism as a means for energy dissipation. Predictions of two nucleon exchange models, Randrup's and, Tassan-Got's models, are compared to the experimental results of the 672-MeV 56 Fe + 165 Ho reaction and to other Fe-induced reactions. The proton and neutron centroids were found to be generally better reproduced by Tassan-Got's model than by Randrup's model. The variances and correlation factor are well reproduced for asymmetric systems by both models

  14. Explanation of the surface peak in charge integrated LEIS spectra

    CERN Document Server

    Draxler, M; Taglauer, E; Schmid, K; Gruber, R; Ermolov, S N; Bauer, P

    2003-01-01

    Low energy ion scattering is very surface sensitive if scattered ions are analyzed. By time-of-flight (TOF) techniques, also neutral and charge integrated spectra (ions plus neutrals) can be obtained, which yield information about deeper layers. In the literature, the observation of a more or less pronounced surface peak was reported for charge integrated spectra, the intensity of the surface peak being higher at low energies and for heavy projectiles. Aiming at a more profound physical understanding of this surface peak, we performed TOF-experiments and computer simulations for He projectiles and a copper target. Experiments were done in the range 1-9 keV for a scattering angle of 129 deg. . The simulation was performed using the MARLOWE code for the given experimental parameters and a polycrystalline target. At low energies, a pronounced surface peak was observed, which fades away at higher energies. This peak is quantitatively reproduced by the simulation, and corresponds to scattering from approx 2 atomic...

  15. X-ray spectroscopy: An experimental technique to measure charge state distribution during ion–solid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan

    2016-01-08

    Charge state distributions of {sup 56}Fe and {sup 58}Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.65–2.69 MeV/u using a novel method involving the X-ray spectroscopy technique. Interestingly the charge state distribution in the bulk shows Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the X-ray measurement technique is appropriate to determine the mean charge state during the ion–solid interaction or in the bulk. Interestingly, empirical formalism predicts much lower mean charge states of the projectile ions compared to X-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for the present energy regime. - Highlights: • New method is proposed to determine charge state distribution using X-ray technique. • Charge state distribution parameters are calculated and compared with various theoretical predictions. • X-ray technique is found to be appropriate to segregate the charge state distribution in the bulk from the target surface. • ETACHA predictions are found satisfactory in the energy range of ≥1.65 MeV/u.

  16. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  17. Hidrodinamički model podvodnog projektila / Hidrodinamical model of an underwater projectile

    Directory of Open Access Journals (Sweden)

    Miroslav Radosavljević

    2008-07-01

    Full Text Available Radi dobijanja kvalitetnog matematičkog modela podvodnog projektila u radu su definisane ulazne i izlazne veličine, brzine i ubrzanje projektila. Uz zadate uslove mogućeg kretanja projektila definisan je model podvodnog projektila sa šest jednačina. / The paper analyzes an underwater projectile. The input and output values, the projectile speed and acceleration are defined for a quality definition of the projectile mathematical model. With the conditions of the projectile potential movement previously set out, the torpedo model is defined by six equations.

  18. High-velocity Penetration of Concrete Targets with Three Types of Projectiles: Experiments and Analysis

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Abstract This study conducted high-velocity penetration experiments using conventional ogive-nose, double-ogive-nose, and grooved-tapered projectiles of approximately 2.5 kg and initial velocities between 1000 and 1360 m/s to penetrate or perforate concrete targets with unconfined compressive strengths of nominally 40MPa. The penetration performance data of these three types of projectiles with two different types of materials (i.e., AerMet100 and DT300 were obtained. The crater depth model considering both the projectile mass and the initial velocity was proposed based on the test results and a theoretical analysis. The penetration ability and the trajectory stability of these three projectile types were compared and analyzed accordingly. The results showed that, under these experimental conditions, the effects of these two different kinds of projectile materials on the penetration depth and mass erosion rate of projectile were not obvious. The existing models could not reflect the crater depths for projectiles of greater weights or higher velocities, whereas the new model established in this study was reliable. The double-ogive-nose has a certain effect of drag reduction. Thus, the double-ogive-nose projectile has a higher penetration ability than the conventional ogive-nose projectile. Meanwhile, the grooved-tapered projectile has a better trajectory stability, because the convex parts of tapered shank generated the restoring moment to stabilize the trajectory.

  19. A Flexible Online Apparatus for Projectile Launch Experiments

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Paiva

    2013-01-01

    Full Text Available In order to provide a more flexible learning environment in physics, the developed projectile launch apparatus enables students to determine the acceleration of gravity and the dependence of a set of parameters in the projectile movement. This apparatus is remotely operated and accessed via web, by first scheduling an access time slot. This machine has a number of configuration parameters that support different learning scenarios with different complexities.

  20. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  1. Irradiation effects induced by multiply charged heavy ions on astrophysical materials such as crystals and ices

    International Nuclear Information System (INIS)

    Langlinay, Thomas

    2014-01-01

    The solar system and the interstellar medium are permanently exposed to radiations such as solar wind and cosmic rays. The interaction between energetic particles and astrophysical materials (ices, silicates and carbon-based materials) plays an important role in several astrophysical phenomena. Laboratory experiments correlated to observational data may allow a better understanding of these phenomena. The aim of this thesis was to study the effect of slow and fast heavy ions on lithium fluoride and on astrophysical materials such as ices and silicates. We focused on the sputtering phenomenon. The present study was performed with a time of flight imaging technique (XY-TOF-SIMS) at the CIMAP-GANIL laboratory. The major fraction of secondary ions is found to be emitted in the form of clusters. Several parameters affect sputtering: the stopping power regime, the thickness of the target, the incident angle and, for low highly charged ions, the projectile charge. Our laboratory simulations exhibit the possibility that sputtered particles contribute to the formation of Mercury's and Jupiter's moons exosphere. (author)

  2. Penetration Evaluation of Explosively Formed Projectiles Through Air and Water Using Insensitive Munition: Simulative and Experimental Studies

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2016-02-01

    Full Text Available The process of formation, flying, penetration of explosively-formed projectiles (EFP and the effect of water on performance of the charge for underwater applications is simulated by Ansysis Autodyn 2D-Hydro code. The main objective of an explosively formed projectile designed for underwater applications is to disintegrate the target at longer standoff distances. In this paper we have simulated the explosively formed projectile from OFHC-Copper liner for 1200 conical angle. The Affect of water on the penetration of EFP is determined by simulations from Ansysis Autodyn 2-D Hydrocode and by varying depth of water from 1CD-5CD. The depth of penetration against steel target is measured experimentally. Flash X-Ray Radiography (FXR is used to capture EFP jet formation and its penetration against target is measured by depth of penetration experiments. Simulation results are compared with experimental results. The difference in simulated and experimental results for depth of penetration is about 7 mm, which lies within favorable range of error. The jet formation captured from FXR is quite clear and jet velocity determined from Flash X-ray radiography is the same as the ones obtained by using other high explosives. Therefore, it is indicated that Insensitive Munition (8701 can be utilized instead of Polymer Bonded Explosives (PBX for air and underwater environments with great reliability and without any hazard.

  3. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    Science.gov (United States)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  4. Study of incomplete fusion sensitivity to projectile structure from forward recoil range distribution measurement

    International Nuclear Information System (INIS)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.

    2017-01-01

    Recently, the projectile structure is found to affect the incomplete fusion (ICF) process by using α- and non-α-cluster structured projectiles which is explored in terms of projectile α-Q-value and is still limited only for a very few systems. Keeping in view the recent aspects especially the projectile structure effect on ICF, the present work is carried out in the series of experiment by using α- and non-α-cluster structured projectiles. Presently, the FRRDs of evaporation residues (ERs) produced in 13 C + 175 Lu system have been measured at ≈ 88 MeV energy. In this work, an attempt has been made to have a better knowledge of projectile α-Q-value effect on ICF

  5. Initiation of Gaseous Detonation by Conical Projectiles

    Science.gov (United States)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  6. Effect of thermal contact resistances on fast charging of large format lithium ion batteries

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Somasundaram, Karthik; Tay, Andrew A.O.

    2014-01-01

    Highlights: • The effect of thermal contact resistance on thermal performance of large format lithium ion batteries. • The effect of temperature gradient on electrochemical performance of large format batteries during fast charging. • The thermal performance of lithium ion battery utilizing pulse charging protocol. • Suggestions on battery geometry design optimization to improve thermal performance. - Abstract: A two dimensional electrochemical thermal model is developed on the cross-plane of a laminate stack plate pouch lithium ion battery to study the thermal performance of large format batteries. The effect of thermal contact resistance is taken into consideration, and is found to greatly increase the maximum temperature and temperature gradient of the battery. The resulting large temperature gradient would induce in-cell non-uniformity of charging-discharging current and state of health. Simply increasing the cooling intensity is inadequate to reduce the maximum temperature and narrow down the temperature difference due to the poor cross-plane thermal conductivity. Pulse charging protocol does not help to mitigate the temperature difference on the bias of same total charging time, because of larger time-averaged heat generation rate than constant current charging. Suggestions on battery geometry optimizations for both prismatic/pouch battery and cylindrical battery are proposed to reduce the maximum temperature and mitigate the temperature gradient within the lithium ion battery

  7. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  8. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  9. Double ionization of H2 caused by two sequential projectile-electron collisions

    International Nuclear Information System (INIS)

    Edwards, A.K.; Wood, R.M.; Ezell, R.L.

    1985-01-01

    The impact-parameter calculations of Hansteen et al. [J. Phys. B 17, 3545 (1984)] for K-shell ionization are used to predict the cross sections for the double ionization of H 2 and He by H + and D + projectiles as a function of projectile velocity. The calculated values in the case of the H 2 target are typically a factor of 12 lower than the measured values, but the calculations and measurements show similar velocity dependencies. The results indicate that for projectile energies less than 1 MeV/amu, the double-ionization process of H 2 occurs mainly by two independent interactions between the electrons and projectile. For the He target, the calculated and measured values for the double-ionization cross section are much closer in magnitude, but the calculations predict a more rapid falloff with projectile velocity than is observed

  10. Fusion and direct reactions for strongly and weakly bound projectiles

    International Nuclear Information System (INIS)

    Hugi, M.; Lang, J.; Mueller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzalkowski, A.; Willim, G.

    1981-01-01

    The interaction of 6 Li, 9 Be and 12 C projectiles with a 28 Si target was investigated by measuring the angular distributions of the elasitcally scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was perfomred in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel describing the fusion reaction vary smoothly with the atomic number. In the system 9 B + 28 Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systeme the direct part amounts to 15% ( 12 C) and 30% ( 6 Li) only. (orig.)

  11. Charged projectile spectrometry using solid-state nuclear track detector of the PM-355 type

    Directory of Open Access Journals (Sweden)

    Malinowska Aneta

    2015-09-01

    Full Text Available To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.

  12. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  13. Mechanisms of Li-projectile breakup-up

    International Nuclear Information System (INIS)

    Rebel, H.; Srivastava, D.K.

    1990-08-01

    Various experimental and theoretical features observed in recent studies of break-up of 6 Li and 7 Li projectiles in the field of atomic nuclei are discussed, in particular for the transitional energy regime of 10-30 MeV/amu. The discussion is organized as three independent lectures presented at the International School on Nuclear Physics, Kiev (UkSSR), 28 May - 8 June, 1990. After a survey on the main experimental facts and on the basic reaction mechanisms, current theoretical approaches are illustrated by an application to the analysis of elastic break-up of 156 MeV 6 Li projectiles. Finally Coulomb break-up is discussed as a novel tool of laboratory nuclear astrophysics. (orig.) [de

  14. Enabling fast charging – Vehicle considerations

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharging rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and vehicle’s electrical architecture that must be resolved. This work focuses on battery system thermal design and total recharge time to meet the goals of implementing higher charge rates and the impacts of the expected increase in system voltage on the components of the vehicle.

  15. A Simple General Solution for Maximal Horizontal Range of Projectile Motion

    OpenAIRE

    Busic, Boris

    2005-01-01

    A convenient change of variables in the problem of maximizing the horizontal range of the projectile motion, with an arbitrary initial vertical position of the projectile, provides a simple, straightforward solution.

  16. Multiple dissociation of 16O, 14N, and 12C at 32.5 MeV/nucleon

    International Nuclear Information System (INIS)

    Stokstad, R.G.; Chan, Y.D.; Dacal, A.

    1988-09-01

    An array of 34 fast/slow plastic scintillators has been used to identify fragments from the breakup of 16 O, 14 N, and 12 C projectiles at 32.5 MeV/nucleon, scattered by a Au target. The dissociation of 16 O into as many as five charged particles has been observed. The yields of the different channels correlate approximately with the threshold energy for separation of the projectile into the observed fragments. The excitation spectrum of the primary projectile fragment was deduced from the measured positions and kinetic energies of the individual fragments. These spectra show that, although most of the decomposition proceeds through excitation energies within /approximately/20 MeV of the lower particle-decay thresholds, excitation energies extending up to /approximately/80 MeV can be produced in the primary stage of the reaction. This represents a significant acquisition of energy by the projectile. Calculations of the yields based on a sequence of binary decays have been presented. Reactions in which one or two units of charge are acquired by the projectile were also observed. 25 refs., 10 figs

  17. On ballistic parameters of less lethal projectiles influencing the severity of thoracic blunt impacts.

    Science.gov (United States)

    Pavier, Julien; Langlet, André; Eches, Nicolas; Jacquet, Jean-François

    2015-01-01

    The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile-chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100-160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile-chest interaction and terminal effect. A simplified finite element model of projectile-structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.

  18. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact.

    Science.gov (United States)

    Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo

    2018-03-09

    This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  19. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact

    Directory of Open Access Journals (Sweden)

    Sangkyu Lee

    2018-03-01

    Full Text Available This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  20. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)

    2015-09-15

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  1. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    International Nuclear Information System (INIS)

    Eggert, Sebastian; Kubik-Huch, Rahel A.; Peters, Alexander; Klarhoefer, Markus; Bolliger, Stephan A.; Thali, Michael J.; Anderson, Suzanne; Froehlich, Johannes M.

    2015-01-01

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  2. An experimental study on the deformation and fracture modes of steel projectiles during impact

    International Nuclear Information System (INIS)

    Rakvåg, K.G.; Børvik, T.; Westermann, I.; Hopperstad, O.S.

    2013-01-01

    Highlights: • The fracture process is ductile for the unhardened projectiles. • A combined ductile–brittle fracture process is obtained for the HRC 40 projectiles. • The fragmentation of HRC 52 projectiles has cleavage as the main mechanism. • The fracture modes were confirmed in a metallurgical study. • The hardened materials have a stochastic variation of the mechanical properties. - Abstract: Previous investigations of the penetration and perforation of high-strength steel plates struck by hardened steel projectiles have shown that under certain test conditions the projectile may fracture or even fragment upon impact. Simulations without an accurate failure description for the projectile material will then predict perforation of the target instead of fragmentation of the projectile, and thus underestimate the ballistic limit velocity of the target plate. This paper presents an experimental investigation of the various deformation and fracture modes that may occur in steel projectiles during impact. This is studied by conducting Taylor bar impact tests using 20 mm diameter, 80 mm long, tool steel projectiles with three different hardness values (HRC 19, 40 and 52). A gas gun was used to fire the projectiles into a rigid wall at impact velocities ranging from 100 to 350 m/s, and the deformation and fracture processes were captured by a high-speed video camera. From the tests, several different deformation and fracture modes were registered for each hardness value. To investigate the influence of material on the deformation and fracture modes, several series of tensile tests on smooth axisymmetric specimens were carried out to characterise the mechanical properties of the three materials. To gain a deeper understanding of the various processes causing fracture and fragmentation during impact, a metallurgical investigation was conducted. The fracture surfaces of the failed projectiles of different hardness were investigated, and the microstructure was

  3. Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application

    Energy Technology Data Exchange (ETDEWEB)

    Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen; Chu, Peter; Gadh, Rajit; Pota, Hemanshu R.

    2014-07-31

    This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for the cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.

  4. Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

    Directory of Open Access Journals (Sweden)

    B. Zygelman

    2002-03-01

    Full Text Available A survey of theoretical studies of charge transfer involving collisions of multiply-charged ions with atomic neutrals (H and He is presented. The calculations utilized the quantum-mechanical molecular-orbital close-coupling (MOCC approach where the requisite potential curves and coupling matrix elements have been obtained with the spin-coupled valence bond (SCVB method. Comparison is made among various collision partners, for equicharged systems, where it is illustrated that even for total charge transfer cross sections, scaling-laws do not exist for low-energy collisions (i.e. < 1 keV/amu. While various empirical scaling-laws are well known in the intermediateand high-energy regimes, the multi-electron configurations of the projectile ions results in a rich and varied low-energy dependence, requiring an explicit calculation for each collision-partner pair. Future charge transfer problems to be addressed with the combined SCVB-MOCC approach are briefly discussed.

  5. Fast charged-coupled device spectrometry using zoom-wavelength optics

    International Nuclear Information System (INIS)

    Carolan, P.G.; Conway, N.J.; Bunting, C.A.; Leahy, P.; OConnell, R.; Huxford, R.; Negus, C.R.; Wilcock, P.D.

    1997-01-01

    Fast charge-coupled device (CCD) detector arrays placed at the output of visible spectrometers are used for multichord Doppler shift analyses on the COMPASS-D and START tokamaks. Unequal magnification in the horizontal and vertical axes allows for optimal matching of throughput and spectral resolution at the CCD detector. This involves cylindrical lenses in an anamorphic mounting. Optical acuity is preserved over a very wide range of wavelengths (220 nm→700 nm) by separate repositioning of all the optical elements which is accomplished by the use of zoom mechanisms. This facilitates rapid changes of wavelength allowing edge and core observations depending on the location of the emitting impurity ions. Changes to the ion temperature and velocity are recorded using 20 chords simultaneously with typical accuracies of Δv i -1 and ΔT i /T i <10% with a time resolution of <1 ms. copyright 1997 American Institute of Physics

  6. Study of fast operating readout electronics and charge interpolation technique for micro cathode strip chambers (MCSC)

    CERN Document Server

    Kashchuk, A; Sagidova, Nailia

    1998-01-01

    Study of the factors limiting the spatial resolution of the MCSC caused by nonlinearity of the cathode-charge interpolation technique has been carried out using a special test arrangement that imitates the charge distribution on the cathode strips as a real MCSC and allows high precision comparison of the coordinates determined by the charge interpolation technique with the known values. We considered a MCSC with a 0.6 mm gap between the anode and the cathode strip planes and with the strip pitch of 0.9 mm. Various charge interpolation algorithms have been tested. It was demonstrated that the systematics errors in the coordinate measurements as low as 5 microns can be achieved, after applying some simple corrections, even with rather coarse sampling, when the coordinates is determined only by 2 or 3 adjacent strips. These results have been obtained with the readout electronics specially designed for fast operation of the MCSCs with the signal peaking time of 20 ns. The equivalent noise charge ss 1600e (r.m.s....

  7. Charge exchange of He atoms and ions during grazing collisions with a Ag(1 1 1)-surface

    CERN Document Server

    Wethekam, S; Winter, H

    2003-01-01

    He atoms and He sup + ions are scattered with keV energies under a grazing angle of incidence from an atomically flat and clean Ag(1 1 1) surface. We have measured charge fractions of specularly reflected beams and studied the threshold behaviour for ionization of projectiles in terms of kinematically induced Auger ionization. From comparison of data for neutral and ionized projectiles we could show that precise studies on the kinematic onset of ionization can be performed with neutral projectiles. Small but defined fractions of ions survive the scattering event with the surface which affects the evaluation of data close to the threshold owing to a background of the signals for ions.

  8. Features of projectile motion in the special theory of relativity

    International Nuclear Information System (INIS)

    Shahin, Ghassan Y

    2006-01-01

    A relativistic projectile motion in a vacuum is examined by means of elementary consequences of special relativity. Exact analytical expressions were found for the kinematics variables using basic mathematical tools. The trajectory equation was established and the area under the trajectory traversed by the relativistic projectile was determined. It was found that, unlike non-relativistic projectile motion, the launching angles that maximize both the horizontal range as well as the area under the trajectory are functions of the initial speed. It is anticipated that this paper will be consistent with the intuition of students and serve as a resource for further problems usually encountered in the special theory of relativity

  9. Fast Poisson Solvers for Self-Consistent Beam-Beam and Space-Charge Field Computation in Multiparticle Tracking Simulations

    CERN Document Server

    Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department

    2015-01-01

    We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.

  10. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    Mack, E.M.

    1987-01-01

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+ ) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 50 0 . Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H 2 ) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C 6+ , the H-like and He-like ions of C, N and O, He-like Ne 8+ and Ne-like Ar 8+ . Excited metastable projectiles used are C 5+ (2s), He-like projectiles A q+ (1s2s 3 S) and Ar 8+ (...2p 5 3s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  11. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    Science.gov (United States)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  12. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  13. Interactions of $^{16}$O Projectile and its Fragments in Nuclear Emulsion at about 60 and 200 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the multiplicity ``$ n _{s} $'' and pseudo-rapidity ``$\\eta$'' of the shower particles ($\\beta$~$\\geq$~0.7) produced in different types of collisions (peripheral, semi-central and central), of $^{16}$O and $^{32}$S in nuclear emulsions. The multiplicities and angular distributions of both the grey ``$ n _{g} $'' (mainly due to knock- on and recoil protons), and black ``$ n _{b} $'' (slow evaporated target fragments) particles, and the inter-correlation between them are studied. \\\\ \\\\ The yield, charge and angular distributions of produced relativistic projectile fragments P.F.S., for $ Z _{P} . _{F} . $ $\\geq$~2 are measured and their interactions in emulsions are investigated. \\\\ \\\\ The study of the mean free paths for the projectile fragments with Z $\\geq$ 3 produced from 200~A~GeV $^{16}$ 0 interactions were performed, which show the absence of the anomalous phenomena. \\\\ \\\\ The possible production of zero-spin light neutral scaler bosons and pseudoscaler bosons from...

  14. Angular distributions of light projectile fragments in deep inelastic Pb+Em interactions at 160 A GeV

    CERN Document Server

    Adamovich, M I; Alexandrov, Yu A; Andreeva, N P; Badyal, S K; Basova, E E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Yu; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; El-Chenawi, K F; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S I A; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Sen-Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Lepekhin, F G; Levitskaya, O V; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Röper, M D; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Seliverstov, D M; Simonov, B B; Sethi, R; Singh, B; Skelding, D; Söderström, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, V; Vokal, S; Vrláková, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-01-01

    The nuclear emulsion was exposed at CERN by the lead projectile at 160 A GeV. The angles between any pair of fragments with Z=2-4 have been measured in the emulsion plane for the events which did not contain heavy fragments. The constant characterizing the normal angle ( phi ) distribution of the fragment momentum projection onto the emulsion plane with respect to initial projectile momentum p/sub 0/ is found to be sigma /sub phi /=(0.37+or-0.02) mrad. Corresponding value sigma /sub 0/=(121+or-6) MeV/c of nucleon momentum distribution in the lead nucleus coincides with that expected from Fermi momentum distribution for this nucleus. The peak in the pair-angle distribution of double-charged fragments, /sup 8/Be to 2 alpha , is presented for the region of small angles (<0.1 mrad). The fraction of alpha -particles coming from the decay of the ground state /sup 8/Be is found to be (13+or-2)601130f their whole number. (14 refs).

  15. Optimisation of design parameters for modular range enhanced projectile

    OpenAIRE

    Jelic, Z

    2016-01-01

    There is an underpinning requirement for artillery systems to achieve longer range, better precision, and an adequate lethal effect. The main objective of this research is to investigate various methods of range increase and propose optimal solution for range extension of existing artillery systems. The proposed solution is novel, modular projectile design. Several methodologies for projectile range increment (such as improved aerodynamics and ballistic profile) were combined to achieve the "...

  16. Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Capurro, O.A., E-mail: capurro@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others

    2016-01-15

    Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.

  17. Fluctuations in the size of the largest projectile fragment produced in 1 GeV/nucleon Au + C collisions

    International Nuclear Information System (INIS)

    Warren, P.; Elliott, J.B.; Gilkes, M.L.; Hauger, A.; Hirsch, A.S.

    1993-01-01

    Large fluctuations in quantities such as density are characteristic of critical phenomena in the neighborhood of the critical point. Using the EOS apparatus at the Bevalac, we have performed an exclusive experiment in which the size of the largest projectile fragment produced in 1 GeV/nucleon Au+C collisions is studied as a function of the charged multiplicity of the event. A peak in the fluctuations is expected at the critical multiplicity. The data are compared to a percolation model and a statistical multifragmentation model

  18. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F J [Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain); Pitarke, J M [Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain)

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  19. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Pitarke, J.M.

    1994-01-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  20. Systematics of new isotopic production cross sections from neon projectiles

    International Nuclear Information System (INIS)

    Chen, C.X.; Guzik, T.G.; McMahon, M.; Wefel, J.P.; Flores, I.; Lindstrom, P.J.; Tull, C.E.; Mitchell, J.W.; Cronqvist, M.; Crawford, H.J.

    1996-02-01

    New isotopic production cross sections from 22 Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.)

  1. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  2. Determination of extra trajectory parameters of projectile layout motion

    Science.gov (United States)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.

    2017-11-01

    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  3. Correlated charge changing ion-atom collisions: Progress report for the period August 15, 1984-February 14, 1987

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1987-02-01

    Correlations between x-ray emission and charge-changing interactions have been measured for high charged ions (16 ≤ Z ≤ 23) in the energy range of 0.1 to 10 MeV/u incident on gas targets under single collision conditions. These experiments combined with theoretical studies have established the existence of resonant transfer and excitation (RTE) and indicated a close relationship between RTE and dielectronic recombination. Detailed investigations of RTE include: (1) the projectile Z dependence; (2) the projectile charge-state dependence; (3) the effect of the target electron momentum distribution; and (4) observations of RTE involving L-shell excitation. These measurements are in reasonable agreement with theoretical calculations. Evidence for non-resonant transfer and excitation has been obtained from studies of 15 to 200 MeV S 13+ + He collisions. Single-electron capture and loss were measured for 2.5 to 200 MeV S 13+ + He thereby providing a comparison with theory over a very wide energy range. For single capture in Ca/sup 16,17,18,19 + + H 2 a significant contribution due to RTE was observed for energies where RTE is important. Cross sections for double-electron capture for S 13+ + He and Ne and Ar 15+ + Ne were found to be 1 to 2 orders of magnitude smaller than the corresponding single-capture cross sections. Target ionization associated with projectile charge exchange has been measured for 0.5 to 1.5 MeV/u O/sup 5,6,7,8 + + He and H 2 . 26 refs., 13 figs

  4. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  5. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  6. Simple heuristic derivation of some charge-transfer probabilities at asymptotically high incident velocities

    International Nuclear Information System (INIS)

    Spruch, L.; Shakeshaft, R.

    1984-01-01

    For asymptotically high incident velocities we provide simple, heuristic, almost classical, derivations of the cross section for forward charge transfer, and of the ratio of the cross section for capture to the elastic-scattering cross section for the projectile scattered through an angle close to π/3

  7. Systematics of new isotopic production cross sections from neon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C X; Guzik, T G; McMahon, M; Wefel, J P [Louisiana State Univ., Baton Rouge, LA (United States); Flores, I; Lindstrom, P J; Tull, C E [Lawrence Berkeley Lab., CA (United States); Mitchell, J W [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Cronqvist, M; Crawford, H J [California Univ., Berkeley, CA (United States). Space Sciences Lab.; and others

    1996-02-01

    New isotopic production cross sections from {sup 22}Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.). 9 refs.

  8. Alternative business models for establishing fast-charging stations - Part 2; Alternative forretningsmodeller for etablering av hurtigladestasjoner - Del 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This section of the report describes and evaluates potential business models for fast-charging stations. Business models are developed on the basis of market development for electric vehicles and electric vehicle usage patterns analyzed in Part 1 of the project. This report describes a series of models in both the early and maturity stage, where we have distinguished between different user segments and payment models. With the estimated trends in the car fleet and charger use, the prerequisites for profitable quick charging in the downtown area are good, while, due to high construction contribution, you must have a relatively high proportion of subscriptions and a high charge rate to obtain adequate finances in the corridor points.(auth)

  9. Penetration of charged particles through ordered isotropic matter

    International Nuclear Information System (INIS)

    Sigmund, P.

    1977-01-01

    A brief summary of some new results on fluctuation phenomena in particle penetration is presented. The results include collision statistics, positive and negative correlations and a framework for the treatment of cumulative effects in particle penetration. Incorporation of projectile and target states in the description and energy-loss straggling are discussed. Small-angle multiple scattering is considered and a comment made on ionic charge states. (B.R.H.)

  10. CHARGE SPECTRUM OF HEAVY AND SUPERHEAVY COMPONENTS OF GALACTIC COSMIC RAYS: RESULTS OF THE OLIMPIYA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Victor; Kalinina, Galina; Pavlova, Tatyana, E-mail: aval37@mail.ru, E-mail: gakalin@mail.ru, E-mail: pavlova4tat@mail.ru [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., Moscow 119991 (Russian Federation); and others

    2016-10-01

    The aim of the OLIMPIYA experiment is to search for and identify traces of heavy and superheavy nuclei of galactic cosmic rays (GCR) in olivine crystals from stony–iron meteorites serving as nuclear track detectors. The method is based on layer-by-layer grinding and etching of particle tracks in these crystals. Unlike the techniques of other authors, this annealing-free method uses two parameters: the etching rate along the track ( V {sub etch}) and the total track length ( L ), to identify charge Z of a projectile. A series of irradiations with different swift heavy ions at the accelerator facilities of GSI (Darmstadt) and IMP (Lanzhou) were performed in order to determine and calibrate the dependence of projectile charge on V {sub etch} and L . To date, one of the most essential results of the experiment is the obtained charge spectrum of GCR nuclei within the range of Z > 40, based on about 11.6 thousand processed tracks. As the result of data processing, 384 nuclei with charges Z ≥ 75 have been identified, including 10 nuclei identified as actinides (90 < Z < 103). Three tracks were identified to be produced by nuclei with charges 113 < Z < 129. Such nuclei may be part of the Island of Stability of transfermium elements.

  11. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  12. The resonance Bremsstrahlung of a fast charged particle in a medium

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1998-01-01

    The Bremsstrahlung of the fast charged particle in the medium with dielectric permittivity ε at velocities υ ≥ c/n (n 2 =Reε) is considered. The Bremsstrahlung has singularity at β = 1/ncosθ (β = υ/c, θ is an angle of the Bremsstrahlung). This Bremsstrahlung is interpreted as resonance Bremsstrahlung with the width characterized by Imε=ε 2 , and the less ε 2 is, the higher the peak of this resonance rises. The angular distribution of the Bremsstrahlung is determined by cos θ=1/nβ and this angle coincides with the angle of the Cherenkov radiation. At β=1/n this resonance Bremsstrahlung goes in the forward direction and depends on frequency ω (ε=ε (ω))

  13. Angle resolved electron spectroscopy of spontaneous ionization processes occurring in doubly charged ion-surface collisions at grazing incidence

    International Nuclear Information System (INIS)

    Wouters, P.A.A.F.; Emmichoven, P.A.Z. van; Niehaus, A.

    1989-01-01

    The experimental setup used to measure electron spectra at well defined detection angles for grazing incidence doubly charged ion-surface collisions at keV-energies is described. Electron spectra are reported for the rare gas ions colliding with a Cu(110)-surface. The spectra are analyzed in terms of various spontaneous ionization processes using a newly developed model. It is found that double capture followed by atomic auto-ionization on the incoming trajectory and Auger-capture processes in which the first and second hole in the doubly charged projectiles are successively filled are the main processes contributing to the electron spectra. From a comparison of model calculations with measured spectra it is concluded that the metal electrons cannot adapt adiabatically to the sudden changes of the charge state of the projectile in front of the surface. A parameter characterizing the partly diabatic behavior is determined. The variation of spectra upon adsorption of a monolayer of oxygen on the surface is reported and discussed. (author)

  14. Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile

    International Nuclear Information System (INIS)

    Shelke, Ashish V.; Gera, B.; Maheshwari, N.K.; Singh, R.K.

    2018-01-01

    After the events of 9/11, the impact of fast flying commercial aircraft is considered as major hazard threatening the Nuclear Power Plant's (NPP) safety. The study of fuel spillage phenomenon and fireball formation is important to understand fire hazards due to burning of dispersed aviation fuel. The detailed analysis of fuel dispersion is very difficult to deliberate because both, large NPP structures and the large size of commercial aircrafts. Sandia National Laboratories, USA conducted impact tests using cylindrical projectiles filled with water to measure the associated parameters. Due to combustion properties and volatile nature of hydrocarbon fuels, the obtained parameters from impact studies using water are incomplete in fire analysis of flammable droplet clouds. A mathematical model is developed for prediction of droplet sizes and distribution associated with the impact of a liquid-containing projectile. The model can predict the transient behavior of droplet cloud. It is validated with experimental data available in literature. In the present study, the analysis has been performed using water and kerosene. The data obtained can be utilized as boundary and initial condition for CFD analysis. This information is useful for fire hazard analysis of aircraft impacts on NPP structures.

  15. Charged state distributions of swift heavy ions behind various solid targets (36 ≤ Zp ≤ 92, 18 MeV/u ≤ E ≤ 44 MeV/u)

    International Nuclear Information System (INIS)

    Leon, A.; Melki, S.; Lisfi, D.; Grandin, J.P.; Jardin, P.; Suraud, M.G.; Cassimi, A.

    1998-01-01

    Noting the lack of and the increasing need for information concerning heavy ion stripping in the intermediate velocity regime, the authors have studied a large number of ion-target systems experimentally. They present experimental charge state distributions obtained at the GANIL accelerator for several projectiles (36 ≤ Z p ≤ 92) with energies ranging from 18 MeV/u to 44 MeV/u, emerging from various target foils (4 ≤ Z t ≤ 79) of natural isotopic composition. The target thicknesses (from 1 microg/cm 2 up to several mg/cm 2 ) are chosen to cover the pre- and post-charge-state equilibrium regimes. Charge state fractions, mean charge state, charge distribution width, and emerging ion energy are tabulated for each of the 107 projectile-target element-target thickness combinations. They also present an improvement of the semi-empirical formulae proposed by Baron et al. to predict the mean charge states and the distribution widths at equilibrium. These formulae are compared with the available experimental data

  16. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building [QUOTE]acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might-in general-be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behaviour of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. The calculations are performed with a one-dimensional model for the projectile. The presented model calculations seem to verify that the motion of the target does not have much influence on the impact force for projectiles similar to the model projectile, provided the displacement of the yielding target is small in comparison with the path covered by the free-flying projectile during a time which is equivalent to the total time of impact. (Auth.)

  17. Triple-differential cross sections for target ionization with simultaneous projectile detachment in 200-keV H-+He collisions

    International Nuclear Information System (INIS)

    Ferger, T.; Najjari, B.; Moshammer, R.; Ullrich, J.; Schulz, M.; Fischer, D.

    2007-01-01

    We have performed a kinematically complete experiment for target ionization with simultaneous projectile detachment (TIPD) in 200-keV H - +He collisions. From the data we extracted triple-differential cross sections (TDCSs) for each electron separately. These TDCSs closely resemble corresponding data for single ionization by charged-particle impact. Surprisingly, the contributions from higher-order processes to TIPD, proceeding through two independent interactions of each electron with the core of the respective other collision partner, are found to be somewhat larger than the first-order process proceeding through the electron-electron interaction

  18. Multiple dissociation of /sup 16/O, /sup 14/N, and /sup 12/C at 32. 5 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Stokstad, R.G.; Chan, Y.D.; Dacal, A.; DiGregorio, D.E.; Harmon, B.A.; Knop, R.; Ortiz, M.E.; Plagnol, E.; Pouliot, J.; Moisan, C.

    1988-09-01

    An array of 34 fast/slow plastic scintillators has been used to identify fragments from the breakup of /sup 16/O, /sup 14/N, and /sup 12/C projectiles at 32.5 MeV/nucleon, scattered by a Au target. The dissociation of /sup 16/O into as many as five charged particles has been observed. The yields of the different channels correlate approximately with the threshold energy for separation of the projectile into the observed fragments. The excitation spectrum of the primary projectile fragment was deduced from the measured positions and kinetic energies of the individual fragments. These spectra show that, although most of the decomposition proceeds through excitation energies within /approximately/20 MeV of the lower particle-decay thresholds, excitation energies extending up to /approximately/80 MeV can be produced in the primary stage of the reaction. This represents a significant acquisition of energy by the projectile. Calculations of the yields based on a sequence of binary decays have been presented. Reactions in which one or two units of charge are acquired by the projectile were also observed. 25 refs., 10 figs.

  19. Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, J; Brune, D

    1973-07-01

    The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators

  20. Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

    International Nuclear Information System (INIS)

    Lorenzen, J.; Brune, D.

    1973-01-01

    The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators

  1. Charge-state dependence of binary-encounter-electron cross sections and peak energies

    International Nuclear Information System (INIS)

    Hidmi, H.I.; Richard, P.; Sanders, J.M.; Schoene, H.; Giese, J.P.; Lee, D.H.; Zouros, T.J.M.; Varghese, S.L.

    1993-01-01

    The charge-state dependence of the binary-encounter-electron (BEE) double-differential cross section (DDCS) at 0 degree with respect to the beam direction resulting from collisions of 1 MeV/amu H + , C q+ , N q+ , O q+ , F q+ , Si q+ , and Cl q+ , and 0.5 MeV/amu Cu q+ with H 2 is reported. The data show an enhancement in the BEE DDCS as the charge state of the projectile is decreased, in agreement with the data reported by Richard et al. [J. Phys. B 23, L213 (1990)]. The DDCS enhancement ratios observed for the three-electron isoelectronic sequence C 3+ :C 6+ , N 4+ :N 7+ , O 5+ :O 8+ , and F 6+ :F 9+ are about 1.35, whereas a DDCS enhancement of 3.5 was observed for Cu 4+ . The BEE enhancement with increasing electrons on the projectile has been shown by several authors to be due to the non-Coulomb static potential of the projectile and additionally to the e-e exchange interaction. An impulse-approximation (IA) model fits the shape of the BEE DDCS and predicts a Z p 2 dependence for the bare-ion cross sections. The IA also predicts a binary peak energy that is independent of q and Z p and below the classical value of 4t, where t is the energy of electrons traveling with the projectile velocity. We observed a BEE energy shift ΔE (ΔE=4t-E peak , where E peak is the measured energy at the peak of the binary encounter electrons) that is approximately independent of q for the low-Z p ions, whereas the measured ΔE values for Si, Cl, and Cu were found to be q dependent

  2. Projectile Aerodynamic Jump Due to Lateral Impulsives

    National Research Council Canada - National Science Library

    Cooper, Gene

    2003-01-01

    .... The formulation shows for sufficiently long-range target interception; lateral impulse trajectory response for a guided projectile is independent of when the impulse is activated during the yaw cycle...

  3. Method of signal detection from silicon photomultipliers using fully differential Charge to Time Converter and fast shaper

    International Nuclear Information System (INIS)

    Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2016-01-01

    The paper presents an implementation of fully differential readout method for Silicon Photomultipliers (SiPM). Front-end electronics consists of a fast and slow path. The former creates the trigger signal while the latter produces a pulse of width proportional to the input charge. The fast shaper generates unipolar pulse and utilizes the pole-zero cancelation circuit. The peaking time for single photoelectron is equal to 3.6 ns and the FWHM is 3.8 ns. The pulse width of the Charge to Time Converter (QTC) depends on the number of photons entering the SiPM at the moment of measurement. The QTC response is nonlinear but it allows us to work with signals in a wide dynamic range. The proposed readout method is effective in measurements of random signals where frequent events tend to pile-up. Thermal generation and afterpulses have a strong influence on the width of pulses from QTC. The proposed method enables us to distinguish those overlapping signals and get the reliable information on the number of detected photons.

  4. Method of signal detection from silicon photomultipliers using fully differential Charge to Time Converter and fast shaper

    Energy Technology Data Exchange (ETDEWEB)

    Baszczyk, M., E-mail: baszczyk@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Dorosz, P.; Glab, S.; Kucewicz, W. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Mik, L. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); State Higher Vocational School, Tarnow (Poland); Sapor, M. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland)

    2016-07-11

    The paper presents an implementation of fully differential readout method for Silicon Photomultipliers (SiPM). Front-end electronics consists of a fast and slow path. The former creates the trigger signal while the latter produces a pulse of width proportional to the input charge. The fast shaper generates unipolar pulse and utilizes the pole-zero cancelation circuit. The peaking time for single photoelectron is equal to 3.6 ns and the FWHM is 3.8 ns. The pulse width of the Charge to Time Converter (QTC) depends on the number of photons entering the SiPM at the moment of measurement. The QTC response is nonlinear but it allows us to work with signals in a wide dynamic range. The proposed readout method is effective in measurements of random signals where frequent events tend to pile-up. Thermal generation and afterpulses have a strong influence on the width of pulses from QTC. The proposed method enables us to distinguish those overlapping signals and get the reliable information on the number of detected photons.

  5. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Science.gov (United States)

    Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal

    2013-01-01

    Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  6. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Directory of Open Access Journals (Sweden)

    Yonatan Sahle

    Full Text Available Projectile weapons (i.e. those delivered from a distance enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  7. Influence Analysis of Shell Material and Charge on Shrapnel Lethal Power

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available To compare the shrapnel lethal power with different shell material and charge, LS-DYNA was used to numerically simulate four kinds of shrapnel lethal power. The shell material was 58SiMn, 50SiMnVB or 40Cr, whereas the charge was RL-F. And the shell material was 58SiMn, whereas the charge was TNT. The shell rupture process and lethal power test were analyzed. The results show that, the lethal power of RL-F charge increase by 25%, 45%, 14% compared with the TNT charge, whereas the shell material was 58SiMn, 50SiMnVB, 40Cr. And then the guarantee range and lethal power can be improved by using the high explosive and changing shell material, whereas the projectile shape coefficient is invariable.

  8. A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

    Directory of Open Access Journals (Sweden)

    NianSong Zhang

    2015-01-01

    Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

  9. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  10. Antiscreening mode of projectile-electron loss

    International Nuclear Information System (INIS)

    Montanari, C.C.; Miraglia, J.E.; Arista, N.R.

    2003-01-01

    The inelastic contribution of target electrons to different electronic processes in the projectile is obtained by employing the local-density approximation as usually applied in the dielectric formalism. Projectile-electron-loss cross sections due to the electron-electron interaction are calculated and compared with those obtained by using atomic antiscreening theories. We also calculate ionization cross sections and stopping power for bare ions impinging on different gases. The good agreement with the experimental data and the simplicity of the local-density approximation make it an efficient method for describing inelastic processes of gaseous target electrons. It is expected to be useful for targets with large atomic number. In this case, the number of possible final states to be considered by the traditional atomic methods makes it a tough task to be tackled. On the contrary, the more electrons the target has, the better the local plasma approximation is expected to be

  11. Charge-exchange reactions on 36 S

    International Nuclear Information System (INIS)

    Fifield, L.K.; Catford, W.N.; Orr, N.A.; Ophel, T.R.; Etchegoyen, A.; Etchegoyen, M.C.

    1992-11-01

    A series of charge-exchange reactions on 36 S targets have been investigated at beam energies ∼7 MeV/A. Pronounced selectivities to different final states in 36 P are observed which depend on the projectile employed. An interpretation of the data in terms of one- and two-step pictures of the reaction mechanism is presented. At least two, and probably all, of the reactions have a significant 1-step contribution to the reaction mechanism at these energies. 22 refs., 5 tabs., 5 figs

  12. Evaluating the risk of eye injuries: intraocular pressure during high speed projectile impacts.

    Science.gov (United States)

    Duma, Stefan M; Bisplinghoff, Jill A; Senge, Danielle M; McNally, Craig; Alphonse, Vanessa D

    2012-01-01

    To evaluate the risk of eye injuries by determining intraocular pressure during high speed projectile impacts. A pneumatic cannon was used to impact eyes with a variety of projectiles at multiple velocities. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve. A total of 36 tests were performed on 12 porcine eyes with a range of velocities between 6.2 m/s and 66.5 m/s. Projectiles selected for the test series included a 6.35  mm diameter metal ball, a 9.25  mm diameter aluminum rod, and an 11.16  mm diameter aluminum rod. Experiments were designed with velocities in the range of projectile consumer products such as toy guns. A range of intraocular pressures ranged between 2017 mmHg to 26,426 mmHg (39 psi-511 psi). Four of the 36 impacts resulted in globe rupture. Intraocular pressures dramatically above normal physiological pressure were observed for high speed projectile impacts. These pressure data provide critical insight to chronic ocular injuries and long-term complications such as glaucoma and cataracts.

  13. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Park, C.; Bowen, S.W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen

  14. Detection of two electrons in low-lying continuum states of a single projectile ion resulting from the collision of a 10.7-MeV Ag4+ ion with an Ar gas atom

    International Nuclear Information System (INIS)

    Richards, J.D.; Breinig, M.; Gaither, C.C.; Berryman, J.W.; Hasson, B.F.

    1993-01-01

    Two electrons, excited just above the double-ionization threshold of an Ag q+ (q=5,6) core in a single collision of a 0.1-MeV/u Ag 4+ projectile ion with an Ar atom, are detected. The electron detector consists of electrically isolated anode segments located behind a microchannel-plate electron multiplier. A large electrostatic 30 degree parallel-plate analyzer is used to deflect the two free electrons, which move with approximately the projectile velocity, into the detector. The cross sections for producing final states consisting of a positively charged ionic core and two electrons just above the threshold for double ionization in ion-atom collisions have been measured. The cross sections for producing states with one electron moving with a kinetic energy less than 0.13 eV in the projectile frame and the other moving with somewhat higher kinetic energy are presented

  15. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    Science.gov (United States)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  16. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  17. Light charged clusters emitted in 32 MeV/nucleon Xe,124136+Sn,112124 reactions: Chemical equilibrium and production of 3He and 6He

    Science.gov (United States)

    Bougault, R.; Bonnet, E.; Borderie, B.; Chbihi, A.; Dell'Aquila, D.; Fable, Q.; Francalanza, L.; Frankland, J. D.; Galichet, E.; Gruyer, D.; Guinet, D.; Henri, M.; La Commara, M.; Le Neindre, N.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Pârlog, M.; Roy, R.; Saint-Onge, P.; Verde, G.; Vient, E.; Vigilante, M.; Indra Collaboration

    2018-02-01

    Background: The isovector part of the nuclear equation of state remains partly unknown and is the subject of many studies. The degree of equilibration between the two main collision partners in heavy ion reactions may be used to study the equation of state since it is connected to isospin (N /Z ) transport properties of nuclear matter. Purpose: We aim to test chemical equilibrium attainment by measuring isotopic characteristics of emitted elements as a function of impact parameter. Method: We study four Xe,124136+Sn,112124 reactions at 32 MeV/nucleon. The data were acquired with the INDRA detector at the GANIL (Caen, France) facility. Combined (projectile+target) systems are identical for two studied reactions, therefore it is possible to study the path towards chemical equilibrium from different neutron to proton ratio (N /Z ) entrance channels. The study is limited to identified isotopes detected in the forward part of the center of mass in order to focus on the evolution of projectile-like fragment isotopic content and the benefit of excellent detection performances of the forward part of the apparatus. Results: Light charged particle productions, multiplicities, and abundance ratios dependence against impact parameter are studied. It is measured to almost identical mean characteristics for the two 124Xe+124Sn and 136Xe+112Sn systems for central collisions. Comparing all four studied systems it is shown that mean values evolve from projectile N /Z to projectile+target N /Z dependence. Those identical mean characteristics concern all light charged particles except 3He whose mean behavior is strongly different. Conclusions: Our inclusive analysis (no event selection) shows that N /Z equilibration between the projectile-like and the target-like is realized to a high degree for central collisions. The light charged particle production mean value difference between 124Xe+124Sn and 136Xe+112Sn systems for central collisions is of the order of a few %. This slight

  18. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  19. Electron emission following collisions between multi-charged ions and D2 molecules

    International Nuclear Information System (INIS)

    Laurent, G.

    2004-05-01

    Dissociative ionisation mechanisms induced in collisions involving a highly charged ion (S 15+ , 13.6 MeV/u) and a molecular deuterium target, have been studied through momentum vector correlations of both the D + fragments and the electrons produced. An experimental apparatus has been developed in order to detect in coincidence all the charged particles produced during the collision. The measurement of their momentum vectors, which allows one to determine both their kinetic energy and direction of emission with respect to the projectile one, combines Time of Flight, Position Sensitive Detection, and multi-coincidence techniques. The correlation of the fragment and electron kinetic energies enables not only to determine branching ratios between the dissociative ionisation pathways, but also to separate unambiguously kinetic energy distributions of fragments associated to each process. Finally, the angular distributions of ejected electrons, as a function of the orientation of the molecular axis with respect to the projectile direction, are deduced from the spatial correlation. Measurements are compared to theoretical angular distributions obtained using the CDW-EIS (Continuum Distorted Wave-Eikonal Initial State) method. (author)

  20. Improvements to a model of projectile fragmentation

    International Nuclear Information System (INIS)

    Mallik, S.; Chaudhuri, G.; Das Gupta, S.

    2011-01-01

    In a recent paper [Phys. Rev. C 83, 044612 (2011)] we proposed a model for calculating cross sections of various reaction products which arise from disintegration of projectile-like fragments resulting from heavy-ion collisions at intermediate or higher energy. The model has three parts: (1) abrasion, (2) disintegration of the hot abraded projectile-like fragment (PLF) into nucleons and primary composites using a model of equilibrium statistical mechanics, and (3) possible evaporation of hot primary composites. It was assumed that the PLF resulting from abrasion has one temperature T. Data suggested that, while just one value of T seemed adequate for most cross-section calculations, a single value failed when dealing with very peripheral collisions. We have now introduced a variable T=T(b) where b is the impact parameter of the collision. We argue that there are data which not only show that T must be a function of b but, in addition, also point to an approximate value of T for a given b. We propose a very simple formula: T(b)=D 0 +D 1 [A s (b)/A 0 ] where A s (b) is the mass of the abraded PLF and A 0 is the mass of the projectile; D 0 and D 1 are constants. Using this model we compute cross sections for several collisions and compare with data.

  1. Dispersion Analysis of the XM881APFSDS Projectile

    Directory of Open Access Journals (Sweden)

    Thomas F. Erline

    2001-01-01

    Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.

  2. Maximizing the Range of a Projectile.

    Science.gov (United States)

    Brown, Ronald A.

    1992-01-01

    Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)

  3. Fatal lawn mower related projectile injury

    DEFF Research Database (Denmark)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-01-01

    was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury...

  4. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    Science.gov (United States)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  5. Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein

    Directory of Open Access Journals (Sweden)

    Raiker Witter

    2015-01-01

    Full Text Available Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT. Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges of ab initio calculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation of R=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angle χ1 and small variations of χ2 of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism.

  6. Effect of Nonsmooth Nose Surface of the Projectile on Penetration Using DEM Simulation

    Directory of Open Access Journals (Sweden)

    Jing Han

    2017-01-01

    Full Text Available The nonsmooth body surface of the reptile in nature plays an important role in reduction of resistance and friction when it lives in a soil environment. To consider whether it was feasible for improving the performance of penetrating projectile we investigated the influence of the convex as one of nonsmooth surfaces for the nose of projectile. A numerical simulation study of the projectile against the concrete target was developed based on the discrete element method (DEM. The results show that the convex nose surface of the projectile is beneficial for reducing the penetration resistance greatly, which is also validated by the experiments. Compared to the traditional smooth nose structure, the main reason of difference is due to the local contact normal pressure, which increases dramatically due to the abrupt change of curvature caused by the convex at the same condition. Accordingly, the broken particles of the concrete target obtain more kinetic energy and their average radial flow velocities will drastically increase simultaneously, which is in favor of decreasing the interface friction and the compaction density of concrete target around the nose of projectile.

  7. Liouville master equation for multielectron dynamics: Neutralization of highly charged ions near a LiF surface

    International Nuclear Information System (INIS)

    Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdoerfer, Joachim

    2003-01-01

    We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface ('trampoline effect'). For Ne 10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions

  8. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer

    Science.gov (United States)

    Shen, Yalong; Yu, Dejian; Wang, Xiong; Huo, Chengxue; Wu, Ye; Zhu, Zhengfeng; Zeng, Haibo

    2018-02-01

    Inorganic halide perovskites exhibited promising potentials for high-performance wide-band photodetectors (PDs) due to their high light absorption coefficients, long carrier diffusion length and wide light absorption ranges. Here, we report two-dimensional (2D) CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible PDs, whose performances can be greatly boosted by the charge transfer through the energy-aligned interface. The 2D CsPbBr3 nanosheets with high crystallinity were fabricated via a simple solution-process at room temperature, and then assembled into flexible heterojunctions films with polymerphenyl-C61-butyric acid methyl ester (PCBM). Significantly, the efficient and fast charge transfer at the heterojunctions interface was evidenced by the obvious photoluminescence quenching and variation of recombination dynamics. Subsequently, such heterojunctions PD exhibited an enhanced responsivity of 10.85 A W-1 and an ultrahigh detectivity of 3.06 × 1013 Jones. In addition, the PD shows a broad linear dynamic range of 73 dB, a fast response speed with rise time of 44 μs and decay time of 390 μs, respectively. Moreover, the PD lying on polyethylene terephthalate substrates exhibited an outstanding mechanical flexibility and a robust electrical stability. These results could provide a new avenue for integration of 2D perovskites and organic functional materials and for high-performance flexible PDs.

  9. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  10. Reply to projectile- and target-charge dependent effects in ionizing collisions of H sup + and He sup 2+ with He, Ne and Ar atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, G.; Suarez, S.; Fainstein, P.; Garibotti, C.; Meckbach, W.; Focke, P. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche)

    1990-12-28

    The consistency of our previous results, for He ionization by H{sup +} and He{sub 3}{sup 2+} impact, with recent theoretical calculations is briefly commented upon. The results do not support the hypothesis of an independent saddle-point mechanism at the projectile energies studied. (author).

  11. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    Directory of Open Access Journals (Sweden)

    Ahmed Elsaadany

    2014-01-01

    Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  12. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    Science.gov (United States)

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  13. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.

    2012-08-01

    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  14. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand

    Science.gov (United States)

    2007-12-03

    Supercavitating projectiles can be used for underwater mine neutralization, beach and surf zone mine clearance, littoral ASW, and neutralizing combat...swimmer systems. The water entry phase of flight is interesting and challenging due to projectile transitioning from flight in air to supercavitating ...is formed. Neaves and Edwards [1] simulated this case using a supercavitation code developed at NSWC-PC. The results presented are in good agreement

  15. Light charged particle production induced by fast neutrons (En=25-65 MeV) on 209Bi

    International Nuclear Information System (INIS)

    Raeymackers, Erwin; Slypen, Isabelle; Benck, Sylvie; Meulders, Jean-Pierre; Nica, Ninel; Corcalciuc, Valentin

    2002-01-01

    This paper presents the experimental set-up and data reduction procedures regarding the measurement of double-differential cross sections for light charged particle production in fast neutron induced reactions (n, px), (n, dx), (n, tx) and (n, αx) on bismuth in the incident neutron energy range 25-65 MeV and at laboratory angles from 20deg to 160deg. preliminary double-differential and energy-differential cross sections for hydrogen isotopes are presented. (author)

  16. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  17. Some interesting features of charged particles produced in high-energy hadron-emulsion collisions

    International Nuclear Information System (INIS)

    Khushnood, H.; Ansari, A.R.

    1990-01-01

    The emission characteristics of secondary charged particles produced in 400 GeV proton-emulsion interactions were compared with those obtained at other energies. The results revealed that the angular distribution of grey particles does not depend on the nature and energy of the projectile. The dependence of the average multiplicity of the grey, black, shower, and heavily ionizing tracks on the mass of the target nucleus (A) and the nature and energy of the projectiles are also examined. The ratio of the valance quarks in pions (π - ) and protons (p) was found to be almost equal to the ratio of the grey particles produced in π - -A and p-A collisions at the same energy. The values of the normalized moments of the multiplicity distributions of charged shower particles in different N h intervals were found to nearly the same. However, this value increased with increasing values of the moment index, K. Finally, the values of the normalized and central moments were almost equal for both p-p and p-A interactions

  18. Electron transfer and multi-ionization in slow collisions of C60 with highly charged ions

    International Nuclear Information System (INIS)

    Wei, B.; Ma, X.; Zhu, X.L.; Liu, H.P.; Wang, Z.L.; Sha, S.; Feng, W.T.; Cao, S.P.; Qian, D.B.; Li, B.; Chen, L.F.

    2005-01-01

    In the collisions of 20qkeV Ar q+ with C 60 , the relative cross-section for the production of higher charge of C 60 r+ increases with the initial charge state of the projectiles increasing. By comparing the TOF spectra produced by 56keV and 160keV Ar 8+ ion impact, respectively, we found that the intensity of the fragments C (60-2n) r+ via evaporation at higher energy was much less

  19. Simulation of the flow past a long-range artillery projectile

    OpenAIRE

    Kaurinkoski, Petri

    2000-01-01

    In this work, an eddy breakup model for chemical reactions is implemented to an existing multi-block Navier-Stokes solver, which is then used to solve the flow past a supersonic long-range base-bleed projectile. The new scheme is validated by simulating an axisymmetric bluff-body stabilized flame, which has been measured in a wind tunnel and simulated numerically by other work groups. Comparison of the numerical results for the projectile shows the importance of the chemistry modelling fo...

  20. A study of charge-pickup interactions by (158A GeV) Pb nuclei

    International Nuclear Information System (INIS)

    Sher, G.; Shahzad, M.I.

    2012-01-01

    Study of the relativistic heavy-ion collision is important to focus on probing phase transitions between hadrons and quark-gluon phases in the extreme conditions of temperature and density of nuclear matter formed in the collisions. These states of nuclear matter are expected to be created in relativistic nuclear collisions with large overlap of interacting nuclei, the Lorentz-boosted Coulomb potential Vc proportional to alpha gamma Z/b of a partner with charge Z is very strong, where b is impact parameter and is the fine structure constant. Either one or both nuclei may be disintegrated by the electromagnetic forces in ultra-peripheral collisions at b = R1 + R2, where R1 and R2 are the nuclear radii. This distinct feature of electromagnetic dissociation makes it possible to study the behavior of nuclear matter under electromagnetic fields. The nuclear charge-pickup ( delta Z = +1) by Pb projectiles at energy 158A GeV interacting with targets Bi, Pb, Cu and Al was investigated using CR39 nuclear track detectors. The target-detector stacks were exposed at CERN SPS beam facility. The projectile and fragments charge states have been identified using the etch-cone lengths for charge-pickup at Z = 83 of residual nuclei. Our measured charge-pickup cross sections (delta Z = +1) are shown. It was observed that for the heavy targets the increase in the cross section is anticipated by substantial contribution of electromagnetic dissociation process of production by virtual photons which is almost negligible at 10.6A GeV. In the light target region, our measured cross sections and charge-pickup cross sections reported at energy 10.6A GeV show dominant nuclear contribution and very small contribution of electromagnetic dissociation term. A strong dependence of charge-pickup cross sections on the target mass number was observed particularly in the heavy targets. (orig./A.B.)

  1. Cross sections for the production of 11C in C targets by 3.65 AGeV projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Tolstov, K.D.; Yanovskij, V.V.

    1989-01-01

    The absolute cross sections for the production of 11 C in C targets by 3.65 AGeV protons, deuterons, 4 He- and 12 C-ions were measured. Annihialtion radiation from 11 C was counted using a large volume NaI(Tl) and BaF 2 detectors. The flux measurement technique based on registration of charged particles by means of a thin nuclear emulsion layer rotating in a beam as well as fission chamber was used. The results are compared with earlier measurements of the cross sections in carbon targets using high-energy projectiles and Glauber theoretical prediction, as well. 10 refs.; 3 figs.; 1 tab

  2. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  3. Projectile fragmentation processes in 35-MeV/amu (α,xy) reactions

    International Nuclear Information System (INIS)

    Koontz, R.W.; Chang, C.C.; Holmgren, H.D.; Wu, J.R.

    1979-01-01

    Coincidence measurements with 35-MeV/amu α particles show that at least three projectile-fragmentation processes occur. The dominant process is ''absorptive'' breakup, where one component of the projectile interacts strongly with the target resulting in the emission of evaporation or nonstatistical particles while the other component behaves as a spectator. The other fragmentation processes which are observed account for only a few percent of the breakup cross section

  4. Charge exchange probes of nuclear structure and interactions with emphasis on (p,n)

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1980-01-01

    New results from (p,n) studies at IUCF show that it is possible to observe Gamow-Teller (GT) strength and extract GT matrix elements from (p,n) measurements. The charge exchange reactions ( 6 Li, 6 He) and (π + ,π 0 ) involve different projectile quantum numbers, and the relationships of these reactions to (p,n) is discussed

  5. Study of the light particles emitted in coincidence with quasi-projectiles in the Ar+Au reaction at 35 MeV per nucleon

    International Nuclear Information System (INIS)

    Oubahadou, Ahmed

    1986-01-01

    The detection of numerous light particles forwardly emitted in nuclear reactions with heavy ions intermediate energies has originated the building of a scintillator multidetector (96 detectors) called the 'hodoscope' in G.A.N.I.L. (the largest national accelerator of heavy ions). The main problem of these multidetectors is the extraction of data. We have therefore established a simple technique to extract the charge and speed values from the amount of detected light and from the times of flight. The multidetector combined with a telescope has allowed us to carry out semi-exclusive measurements of the reaction products in Ar+Au system at 35 MeV per nucleon. This work is limited to detection through a telescope of the light fragments (quasi-projectiles); the analysis of energy spectra at different angles shows that the fragments seem to be emitted from two sources: one with a speed close to that of the projectile, the other with a half of that speed. For the study of coincidences we have grouped together the light particles of hodoscope into 4 classes according to their charge numbers and we have considered two special domains (the central part and the outer part). For the telescope we group too the incidents according to their charge (4 classes) and their speed ('rapid' or 'relaxed'). The multiplicity in each case is calculated and eventually allocated according to the speed measured in the telescope. The spectra are analysed in the framework of evaporation by moved Boltzmann hot sources. The origin of 'relaxed' fragments is studied in the context of different theoretical models. (author) [fr

  6. Experimental study of the penetrating of plates by projectile at low initial speeds

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Smakotin, Ig L.; Glazyrin, V. P.; Orlov, Yu N.

    2017-11-01

    The research of the penetration process of lightweight plates by a projectile in the range of initial velocities up to 325 m/s was attempted. The projectile was a shell bullet and the barriers were of ice, MDF-panels and plexiglas barriers. The response of barriers to impact loading is studied. High-speed shooting of each experiment is obtained, including photos of the front and rear sides of the barriers. An attempt was made to reproduce the scenario of the destruction of barriers. The results of experiments can be interpreted only as qualitative tests. Projectile was not destroyed.

  7. Ballistics considerations for small-caliber, low-density projectiles

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

    1993-01-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at ∼ 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases

  8. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  9. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies

    Science.gov (United States)

    Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.

    2017-10-01

    O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.

  10. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    Directory of Open Access Journals (Sweden)

    Mark Costello

    2001-01-01

    Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.

  11. A Novel Supercapacitor/Lithium-Ion Hybrid Energy System with a Fuzzy Logic-Controlled Fast Charging and Intelligent Energy Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Khan

    2018-05-01

    Full Text Available The electric powered wheelchair (EPW is an essential assistive tool for people with serious injuries or disability. This manuscript describes the validation of applied research for reducing the charging time of an electric wheelchair using a hybrid electric system (HES composed of a supercapacitor (SC bank and a lithium-ion battery with a fuzzy logic controller (FLC-based fast charging system for Li-ion batteries and a fuzzy logic-based intelligent energy management system (FLIEMS for controlling the power flow within the HES. The fast charging FLC was designed to drive the voltage difference (Vd among the different cells of a multi-cell battery and the cell voltage (Vc of an individual cell. These parameters (voltage difference and cell voltage were used as input voltages to reduce the charge time and activate a bypass equalization (BPE scheme. BPE was introduced in this paper so that the battery operates within the safe voltage range. For SC/Li-ion HES, the FLIEMS presented in this paper controls the bi-directional power flow to smooth the power extracted from Li-ion batteries. Moreover, a dual active bridge isolated bidirectional DC converter (DAB-IBDC was used for power conversion. The DAB-IBDC presented in this paper has the characteristics of galvanic isolation, and high power conversion efficiency compared to the conventional converter circuits due to the reduced reverse power flow and current stresses.

  12. Interaction of slow, highly charged ions with the surface of ionic crystals; Wechselwirkung langsamer hochgeladener Ionen mit der Oberflaeche von Ionenkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Rene

    2009-08-15

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v{<=}5 x 10{sup 5} m/s) highly charged (q{<=}40) ions on the ionic crystal surfaces of CaF{sub 2} and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E{sup grenz}{sub pot}(E{sub kin}) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF{sub 2}(111) surfaces could be verified for lowest kinetic energies (E{sub kin}{<=}150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by

  13. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    OpenAIRE

    Mark Costello

    2001-01-01

    This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and...

  14. Fast time resolution charge-exchange measurements during the fishbone instability in the poloidal divertor experiment

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Kaita, R.; Goldston, R.J.

    1984-01-01

    Measurements of fast ion losses due to the fishbone instability during high β/sub T/q neutral beam heated discharges in the Poloidal Divertor Experiment have been made using two new vertical-viewing charge-exchange analyzers. The measurements show that the instability has an n=1 toroidal mode number, and that it ejects beam ions in a toroidally rotating beacon directed outward along a major radius. Observations of ejected ions with energies up to twice the beam injection energy at R approx. = R 0 + a indicate the presence of a non-μ-conserving acceleration mechanism

  15. The economic feasibility of renewable powered fast charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Benger, Ralf; Heyne, Raoul; Wenzl, Heinz; Beck, Hans-Peter

    2011-07-01

    Electric vehicles will make an important contribution for a sustainable energy supply in the public transport sector. Although it is not sure at the moment which role the different vehicle concepts and charging options will play, it is possible to act on following assumptions: There will be purely electrically operated vehicles (EV), which will need a charging infrastructure in the public domain. Even if the number of these vehicles in comparison with hybrid electric vehicles (HEV) or range extended electric vehicles (REV) will be low, in the long run an amount of some million vehicles can be reached (1 0 % of the vehicles in Germany corresponds to round about 4 million vehicles). Charging stations in parking areas, shopping malls, at home or at work do not require high charging power because the time available for charging is relative long. In contrast charging stations beside these in normal parking areas should have the ability to charge the car batteries in a very short time, e.g. 80% of the energy content in 15 minutes or less. Therefore every charging process requires 100-200 kW electric power. Such charging stations are necessary both in rural and in urban regions.

  16. Microadaptive Flow Control Applied to a Spinning Projectile

    National Research Council Canada - National Science Library

    McMichael, J; Lovas, A; Plostins, P; Sahu, J; Brown, G; Glezer, A

    2005-01-01

    ... technology developed, the flight control technology required to enable the MAFC on spinning projectiles, the design of the flight test and validation hardware, and the results of the open-loop flight test...

  17. Electromagnetic interference analysis of magnetic resistance sensors inside a projectile under complex electromagnetic environments

    International Nuclear Information System (INIS)

    Guo, Qingwei; Gao, Min; Lu, Zhicai; Yang, Peijie

    2013-01-01

    Accurate measurement of angular motion has long been recognized as a daunting task. In recent years the measurement of projectiles utilizing magnetic resistance sensors has become a hot research field. Electromagnetic interference on attitude measurement cannot be ignored in complex electromagnetic environments such as battlefield conditions. In this paper, the influence and function pattern of electromagnetic interference on the measuring performance are theoretically analyzed, and the shielding effectiveness (SE) simulation of projectile is conducted via software Computer Simulation Technology (CST). Considering the specific tests, the intensity of the influence is judged. The simulation indicates that the battlefield's complex electromagnetic environment influences the environment inside the projectile, especially its electronic components and capability. The research results can provide important theoretical support on the errors compensation and precision improvement of the projectile attitude measurement with Magnetic Resistance sensor.

  18. A multiple sampling time projection ionization chamber for nuclear fragment tracking and charge measurement

    International Nuclear Information System (INIS)

    Bauer, G.; Bieser, F.; Brady, F.P.; Chance, J.C.; Christie, W.F.; Gilkes, M.; Lindenstruth, V.; Lynen, U.; Mueller, W.F.J.; Romero, J.L.; Sann, H.; Tull, C.E.; Warren, P.

    1997-01-01

    A detector has been developed for the tracking and charge measurement of the projectile fragment nuclei produced in relativistic nuclear collisions. This device, MUSIC II, is a second generation Multiple Sampling Ionization Chamber (MUSIC), and employs the principles of ionization and time projection chambers. It provides unique charge determination for charges Z≥6, and excellent track position measurement. MUSIC II has been used most recently with the EOS (equation of state) TPC and other EOS collaboration detectors. Earlier it was used with other systems in experiments at the Heavy Ion Superconducting Spectrometer (HISS) facility at Lawrence Berkeley Laboratory and the ALADIN spectrometer at GSI. (orig.)

  19. Charged particle production in proton-, deuteron-, oxygen- and sulphur-nucleus collisions at 200 GeV per nucleon

    CERN Document Server

    Alber, T.; Bachler, J.; Bartke, J.; Bialkowska, H.; Bloomer, M.A.; Bock, R.; Braithwaite, W.J.; Brinkmann, D.; Brockmann, R.; Buncic, P.; Chan, P.; Cramer, J.G.; Cramer, P.B.; Derado, I.; Eckardt, V.; Eschke, J.; Favuzzi, C.; Ferenc, D.; Fleischmann, B.; Foka, P.; Freund, P.; Fuchs, M.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hoffmann, M.; Jacobs, P.; Kabana, S.; Kadija, K.; Keidel, R.; Kowalski, M.; Kuhmichel, A.; Lee, J.Y.; Ljubicic, A, Jr.; Margetis, S.; Mitchell, J.T.; Morse, R.; Nappi, E.; Odyniec, G.; Paic, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Posa, F.; Poskanzer, Arthur M.; Puhlhofer, F.; Rauch, W.; Renfordt, R.; Retyk, W.; Rohrich, D.; Roland, G.; Rothard, H.; Runge, K.; Sandoval, A.; Schmitz, N.; Schmoetten, E.; Sendelbach, R.; Seyboth, P.; Seyerlein, J.; Skrzypczak, E.; Spinelli, P.; Stock, R.; Strobele, H.; Teitelbaum, L.; Tonse, S.; Trainor, T.A.; Vasileiadis, G.; Vassiliou, M.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wosiek, B.; Zhu, X.

    1998-01-01

    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse mom...

  20. Study on Impact of Electric Vehicles Charging Models on Power Load

    Science.gov (United States)

    Cheng, Chen; Hui-mei, Yuan

    2017-05-01

    With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.

  1. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    Science.gov (United States)

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  2. The Locus of the apices of projectile trajectories under constant drag

    OpenAIRE

    Hernández-Saldaña, H.

    2017-01-01

    We present an analytical solution for the projectile coplanar motion under constant drag parametrised by the velocity angle. We found the locus formed by the apices of the projectile trajectories. The range and time of flight are obtained numerically and we find that the optimal launching angle is smaller than in the free drag case. This is a good example of problems with constant dissipation of energy that includes curvature, and it is proper for intermediate courses of mechanics.

  3. Multiplicity of secondary electrons emitted by carbon thin targets by impact of H0, H2+ and H3+ projectiles at MeV energies

    International Nuclear Information System (INIS)

    Vidovic, Zvonimir

    1997-01-01

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H 0 , H 2 + and H 3 + projectiles in the 0.25 - 2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. Phenomenological and theoretical descriptions as well as a summary of the main theoretical models are the subjects of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of the thin carbon foils crossed by an energetic projectile is described in the chapter two. In this chapter there are also presented the method and the algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H 0 atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H 2 + and H 3 + polyatomic ions. The results are interpreted in terms of collective effects in the interactions of the ions with solids. The role of the proximity of the protons, molecular ions fragments, upon the amplitude of these collected effects is evidenced from the study of the statistics of forward emission. The experiments allowed us to shed light on various aspects of atom and polyatomic ion interactions with solid surfaces. (author)

  4. Emission of projectile helium fragments in 14N interactions at 2.1 GeV/nucleon

    International Nuclear Information System (INIS)

    Bhanja, R.; Devi, N.A.L.; Joseph, R.R.; Ojha, I.D.; Shyam, M.; Tuli, S.K.

    1983-01-01

    An analysis of projectile helium fragments has been performed from the point of view of testing the factorization and limiting fragmentation hypothesis. An event-by-event examination of 923 interactions of 14 N in emulsion at 2.1 GeV per nucleon has been made for target identification. Events with projectile fragments have been divided into various reaction channels according to the multiplicity of He nuclei. The multiplicity distribution, angular structure and other properties of the projectile He fragments have been investigated to see the dependence on different targets and target excitation. The properties of He fragments emitted from the projectile have been found to remain independent of target in peripheral collision processes. The target and projectile breakup properties have been analysed in terms of the collision geometry. Gaussian distributions have been fitted to the projected angular distribution data for He fragments at various intervals of impact parameter and in different reaction channels. The properties of emitted He nuclei exhibit characteristic features of factorization and limiting fragmentation. (orig.)

  5. Inclusive projectile fragmentation in the spectator model

    International Nuclear Information System (INIS)

    Hussein, M.S.; McVoy, K.W.

    1985-01-01

    Crazing-angle single spectra for projectile fragments from nuclear collisions exhibit a broad peak centered near the beam velocity, suggesting that these observed fragments play only a 'spectator' role in the reaction. Using only this spectator assumption (but not DWBA), it is found that a 'prior form' formulation of the reaction leads, via closure, to a -type estimate of the inclusive spectator spectrum, thus relating it to the reaction cross section for the 'participant' with the target. It is shown explicitly that this expression includes an improved multi-channel version of the Udagawa-Tamura formula for the 'breakup-fusion' or incomplete fusion cross section, and identifies it as the fluctuation part of the participant-target reaction cross section. A Glauber-type estimate of the distorted wave functions which enter clearly shows how the width of the peak in the spectator spectrum arises from the 'Fermi motion' within the projectile, as in the simple Serber model, but is modified by the 'overlap geometry' of the collision. (Author) [pt

  6. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  7. Exact stopping cross section of the quantum harmonic oscillator for a penetrating point charge of arbitrary strength

    International Nuclear Information System (INIS)

    Mikkelsen, H.H.; Flyvbjerg, H.

    1991-05-01

    The time-dependent Schroedinger equation for a Coulomb collision between a heavy point charge and a harmonically bound electron is solved exactly numerically. The energy transferred to the electron is studied as a function of impact parameter and projectile charge. Special attention is given to the Barkas effect, and the transition from light ion to heavy ion stopping. All results are compared with classical and recent approximate results, whose precision and ranges of validity are discussed. (orig.)

  8. Experimental investigation of magnetoplasma acceleration of dielectric projectiles in a rail gun

    International Nuclear Information System (INIS)

    Kondratenko, M.M.; Lebedev, E.F.; Ostashev, V.E.; Safonov, V.I.; Fortov, V.E.; Ul'yanov, A.V.

    1988-01-01

    The authors present results of experimental investigations of the process of a nondestructive electrodynamic acceleration of dielectric projectiles in a magnetoplasma accelerator of rail gun type upon discharge of the electrical energy of the capacitor bank. They describe the phenomenon of decay of the plasma driving piston. They describe the causes of this phenomenon and the practical steps to avoid it. In a specific facility regimes have been achieved with electrodynamic acceleration of projectiles without plasma piston decay at working currents of up to 0.7 MA. In acceleration of projectiles of mass ∼ 1 g a speed of 6 km/sec has been attained and reproduced. The facility constructed can be used efficiently in experiments to investigate the thermophysical properties of substances using dynamic methods as a means of creating intense kinetic energy pulses

  9. Enhanced electron capture by fast heavy di-clusters exciting solids

    International Nuclear Information System (INIS)

    Cooney, P.J.; Faibis, A.; Kanter, E.P.; Koenig, W.; Maor, D.; Zabransky, B.J.

    1985-01-01

    The authors have studied the dependence of the charge-state-distributions of heavy-ion fragments resulting from the foil-induced dissociation of 4.2-MeV N 2 + ions on the thickness of the carbon target foil. The results were compared to those distributions measured for impact of 2.1-MeV N + projectiles. Whereas the charge-state distributions for atomic ion impact are already equilibrated in the thinnest targets used (2 μg/cm 2 ), those measured for molecular ion impact are strongly dependent on the target thickness, even for the thickest targets (100 + g/cm 2 ). The distributions for molecular-ion impact show a marked shift towards lower charge states, evidencing an enhanced electron capture probability over the case of monatomic ion impact. A quantitative model was developed to explain this phenomenon

  10. Experimental study on the penetration effect of ceramics composite projectile on ceramic / A3 steel compound targets

    Directory of Open Access Journals (Sweden)

    Di-qi Hu

    2017-08-01

    Full Text Available In order to improve the penetration of projectiles into ceramic composite armors, the nose of 30 mm standard projectile was replaced by a toughened ceramic nose, and the performance of ceramic-nose projectiles penetrating into ceramic/A3 steel composite targets has been experimentally researched. According to impact dynamics theory,, the performances of 30 mm ceramic-nose projectile and 30 mm standard projectile penetrating into the ceramic/A3 steel composite targets were analyzed and compared using DOP method, especially focusing on the effects made by different nose structures and materials. The aperture and depth of perforation of projectile into the armor plates as well as the residual mass of bullet core under the same conditions were comparatively analyzed. A numerical simulation was built and computed by ANSYS/LS-DYNA. Based on the simulated results, the penetration performance was further analyzed in terms of the residual mass of bullet core. The results show that the ceramic nose has a great effect on the protection of bullet core.

  11. First spatial isotopic separation of relativistic uranium projectile fragments

    International Nuclear Information System (INIS)

    Magel, A.; Voss, B.; Armbruster, P.; Aumann, T.; Clerc, H.G.; Czajkowski, S.; Folger, H.; Grewe, A.; Hanelt, E.; Heinz, A.; Irnich, H.; Jong, M. de; Junghans, A.; Nickel, F.; Pfuetzner, M.; Roehl, C.; Scheidenberger, C.; Schmidt, K.H.; Schwab, W.; Steinhaeuser, S.; Suemmerer, K.; Trinder, W.; Wollnik, H.

    1994-07-01

    Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z=92. This achievement has opened a new area in heavy-ion research and applications. (orig.)

  12. Effect of the nuclear charge of a fast structural ion on its internal effective stopping in collisions with atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gusarevich, E. S., E-mail: gusarevich@gmail.com [Lomonosov Nothern (Arctic) Federal University (Russian Federation)

    2017-02-15

    The energy losses of fast structural ions in collisions with atoms have been considered in the eikonal approximation. The structural ions are ions consisting of a nucleus and a certain number of electrons bound to it. The effect of nuclear charge Z of the ion on its effective deceleration κ{sup (p)} (energy losses associated with excitation of only intrinsic ion shells) has been analyzed. It is shown that the allowance for the interaction of an atom with the ion nucleus for Z{sub a}Z/v > 1, where Z{sub a} is the charge of the atomic nucleus and v is the velocity of collisions in atomic units, considerably affects the value of κ{sup (p)}, which generally necessitates taking into account nonperturbatively the effect of both charges Z{sub a} and Z on κ{sup (p)}.

  13. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Guo, Yanling, E-mail: guoyanling@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Chen, Ximeng, E-mail: chenxm@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China)

    2016-11-30

    Highlights: • We first observe that negative-ion fractions present no variation with the doping concentration, which is very different from the results of low energy Li neutralization from doped Si samples. • Our work shows that the affinity levels and collision time significantly counteract the band gap effect on negative ion formation. The work will improve our understanding on electron transfer on semiconductor surfaces associated with doping. • In addition, we build a complete theoretical framework to quantitatively calculate the negative-ion fractions. • Our work is related to charge transfer on semiconductor surfaces, which will be of interest to a broad audience due to the wide necessity of the knowledge of charge exchange on semiconductor surfaces in different fields. - Abstract: Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5–22.5 keV C{sup −} and F{sup −} ions scattering on H{sub 2}O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  14. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers

    Science.gov (United States)

    Hruschka, R.; Klatt, D.

    2018-03-01

    The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.

  15. Locus of the apices of projectile trajectories under constant drag

    Science.gov (United States)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  16. Studies of projectile-like fragments in the 16O + 238U reaction at 20 MeV/u

    International Nuclear Information System (INIS)

    Dyer, P.; Awes, T.C.; Gelbke, C.K.; Back, B.B.; Mignerey, A.C.; Wolf, K.L.; Breuer, H.; Viola, V.E.; Meyer, W.G.

    1979-01-01

    Projectile residues were studied in coincidence with angle-correlated fission fragments resulting from reactions of 20-MeV/u 16 O ions on 238 U. Distributions of the missing parallel momentum are shown for different projectile residues, and the dependence of the average parallel recoil momentum on the average parallel momentum of the projectile residue is plotted. 2 figures

  17. Nuclear attenuation of fast hadrons produced in charged-current ν and anti ν interactions in neon

    International Nuclear Information System (INIS)

    Burkot, W.; Coghen, T.; Czyzewski, J.

    1996-01-01

    The production of hadrons in charged-current (anti)neutrino interactions is studied with the bubble chamber BEBC exposed to the CERN (anti)neutrino wide-band beam. Fast-hadron production in a neon target is found to be attenuated as compared to that in a hydrogen target. This feature is discussed within theoretical models based on the idea of a hadron formation length. The experimental results favour the 'constituent' over the 'yo-yo' length concept, and suggest a quark cross section in the order of 3 mb. (orig.)

  18. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    OpenAIRE

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course corr...

  19. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    Science.gov (United States)

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. © 2015 American Academy of Forensic Sciences.

  20. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  1. Ionization of highly charged iodine ions near the Bohr velocity

    International Nuclear Information System (INIS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV I q+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ 1,3,4 and Lβ 2,15 to Lα 1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons

  2. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    Science.gov (United States)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  3. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  4. Backscattering of projectile-bound electrons from solid surfaces

    International Nuclear Information System (INIS)

    Tobisch, M.; Schosnig, M.; Kroneberger, K.; Kuzel, M.; Maier, R.; Jung, M.; Fiedler, C.; Rothard, H.; Clouvas, A.; Suarez, S.; Groeneveld, K.O.

    1994-01-01

    The contribution of projectile ionization (PI) to secondary electron emission is studied by collision of H 2 + and H 3 + ions (400 keV/u and 700 keV/u) with carbon, copper and gold targets (600 A). The measured doubly differential intensity distribution shows a peak of lost projectile electrons near - v p . We describe the subtraction of the contribution of target ionization (TI), and compare the remaining electron intensities with a BEA calculation. For solids we observe a strong energy shift of the electron loss peak, which is compared with the influence of electron transport and binding energy. Furthermore, the low energy tail of the electron loss peak indicates the simultaneous occurrence of PI and TI. Finally we discuss the influence of surface conditions and the dependence of the observation angles on the measured electron intensities. (orig.)

  5. Speed, Acceleration, Chameleons and Cherry Pit Projectiles

    Science.gov (United States)

    Planinsic, Gorazd; Likar, Andrej

    2012-01-01

    The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…

  6. Quantitative functional analysis of Late Glacial projectile points from northern Europe

    DEFF Research Database (Denmark)

    Dev, Satya; Riede, Felix

    2012-01-01

    This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...

  7. Physics with fast molecular-ion beams

    International Nuclear Information System (INIS)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented

  8. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix

    2017-03-01

    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  9. Supercavitating Projectile Tracking System and Method

    Science.gov (United States)

    2009-12-30

    Distribution is unlimited 20100104106 Attorney Docket No. 96681 SUPERCAVITATING PROJECTILE TRACKING SYSTEM AND METHOD STATEMENT OF GOVERNMENT...underwater track or path 14 of a supercavitating vehicle under surface 16 of a body of water. In this embodiment, passive acoustic or pressure...transducers 12 are utilized to measure a pressure field produced by a moving supercavitating vehicle. The present invention provides a low-cost, reusable

  10. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  11. Excitation of the Δ resonance in heavy ion charge exchange reactions

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1987-06-01

    Results on the Δ excitation by heavy ion charge exchange are presented. 900 MeV per nucleon 12 C, 16 0, 20 Ne and 1100 MeV per nucleon 12 C have been used. The Δ excitation strength depends on the projectile - ejectile nature and on the incident energy. The role of the target mass is also discussed. The peak for the Δ in nuclei is energy shifted from the free Δ peak

  12. Unusual behavior of projectile fragments formed in the bombardment of copper with relativistic Ar ions

    International Nuclear Information System (INIS)

    Dersch, G.; Beckmann, R.; Feige, G.

    1985-01-01

    The interaction properties of projectile fragments from the fragmentation of 0.9 GeV/nucleon and 1.8 GeV/nucleon 40 Ar with Cu have been studied using radioactivation techniques. In this experiment, two identical copper blocks, 1 cm thick and 8 cm in diameter, are irradiated by relativistic projectiles in different configurations. In configuration 0, the blocks are touching while in configuration 10 or 20, the blocks are separated by 10 or 20 cm of air, respectively. It is assumed that when the relativistic projectiles interact with the first block of each pair, projectile fragments are created which interact with other nuclei in the first and second blocks. What is measured is the ratio of some target fragment activity, such as 24 Na or 28 Mg, produced in the second block relative to the first block, R

  13. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact

    Science.gov (United States)

    Karamış, M. B.

    2018-01-01

    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770-800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  14. Life cycle assessment of five batteries for electric vehicles under different charging regimes

    Energy Technology Data Exchange (ETDEWEB)

    Rantik, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Transportation and Logistics

    1999-12-01

    Life Cycle Assessment (LCA) methodology is used in this study to assess the environmental impact of five candidate batteries for electric vehicles under different conditions of charging. The entire lifetime of a passenger electric vehicle is considered as the basis for all batteries. Five different battery systems are considered. The four of them are electrically recharged - Lead-Acid, Nickel-Cadmium, Nickel-Metal hydride and Sodium-Nickel chloride whereas one system comprises batteries that are recharged mechanically (Zinc-Air). One specific battery from these five systems is selected. The results are representative of these particular batteries and not of the battery systems to which they belong. The study includes three scenarios, the basic scenario and two fast charging scenarios. The difference between the scenarios is in the phase of the battery's use and involves the charging regimes. Consequently, the other stages of the battery's life are identical in all three scenarios. The basic scenario implies normal overnight charging is used during the entire lifetime of an electric vehicle. In the first fast charging scenario, fast charging is combined with normal charging. The second fast charging scenario involves the exclusive use of fast charging. In both fast charging scenarios the user's behaviour is considered. In this study, it is believed that it is the violation of fast charging rules, set by the battery manufacturer rather than the fast charging technique, that will be critical for the cycle life of the battery. Due to low energy efficiency of the batteries and losses in the charging procedure, the use of energy for operating the electric vehicle seems to be a major contributor to the total environmental impact of the system. Significant resource constraints may prevent mass production of certain batteries or lead to increased prices of others. Use of fast charging increases the number of batteries used during the lifetime of the electric

  15. Projectile like fragment production in Ar induced reactions around the Fermi energy

    International Nuclear Information System (INIS)

    Borrel, V.; Gatty, B.; Jacquet, D.; Galin, J.

    1986-01-01

    The production of projectile like fragments (PLF) has been studied in Ar induced reactions on various targets. It shows very clearly, that besides the predominance of fragmentation for most of the products, the transfer process is still a very strong component for products nearby the projectile. The influence of the target neutron excess on the PLF production is investigated as well as the evolution with incident energy of the characteristics of the different competing processes

  16. Fast-ion Dα measurements of the fast-ion distribution (invited)

    International Nuclear Information System (INIS)

    Heidbrink, W. W.

    2010-01-01

    The fast-ion Dα (FIDA) diagnostic is an application of charge-exchange recombination spectroscopy. Fast ions that neutralize in an injected neutral beam emit Balmer-α light with a large Doppler shift. The spectral shift is exploited to distinguish the FIDA emission from other bright sources of Dα light. Background subtraction is the main technical challenge. A spectroscopic diagnostic typically achieves temporal, energy, and transverse spatial resolution of ∼1 ms, ∼10 keV, and ∼2 cm, respectively. Installations that use narrow-band filters achieve high spatial and temporal resolution at the expense of spectral information. For high temporal resolution, the bandpass-filtered light goes directly to a photomultiplier, allowing detection of ∼50 kHz oscillations in FIDA signal. For two-dimensional spatial profiles, the bandpass-filtered light goes to a charge-coupled device camera; detailed images of fast-ion redistribution at instabilities are obtained. Qualitative and quantitative models relate the measured FIDA signals to the fast-ion distribution function. The first quantitative comparisons between theory and experiment found excellent agreement in beam-heated magnetohydrodynamics (MHD)-quiescent plasmas. FIDA diagnostics are now in operation at magnetic-fusion facilities worldwide. They are used to study fast-ion acceleration by ion cyclotron heating, to detect fast-ion transport by MHD modes and microturbulence, and to study fast-ion driven instabilities.

  17. Correlated charge changing ion-atom collisions: Progress report for the period March 15, 1988--March 14, 1989

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1989-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant FG02-87ER13778 from March 15, 1988 through atomic interactions in collisions of highly charged projectiles with neutral targets. Processes involving excitation, ionization, and charge transfer are investigated using coincidence techniques to isolate and identify specific interaction mechanisms. New measurements were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, and Western Michigan University. The principal new results are summarized

  18. Experimental charge fractions of hydrogen scattered from insulators at 50-340 keV

    CERN Document Server

    Ross, Graham G

    2002-01-01

    Ion bombardment of insulators induces accumulation of electric charges at and under the insulator surfaces. This paper deals with the effect of the accumulated electric charges on the charge fractions of scattered hydrogen. We have measured and compiled charge fractions of hydrogen, in the energy range (for the scattered particles) from 50 to 340 keV, scattered from polystyrene, polymethylmethacrylate, polycarbonate, polyethylene and silicon. In order to establish the effect of the charge accumulation, some samples have been cut from a thick (1 mm) sheet, while some others have been spin coated (approx 250 nm) onto silicon wafers. Experimental measurements have been fitted with the equation f(0)=Aexp(-V sup 2 /V sub i V sub 0), where f(0) is the neutral fraction, V the velocity, V sub i the 'Bohr velocity' for the electron of projectiles, A and V sub 0 the fitting parameters. Comparisons using the least-square fitting procedure have shown that the accumulation of electric charges on the thick polymer samples ...

  19. Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, Simo, E-mail: simo.hostikka@aalto.fi [Aalto University, Espoo (Finland); Silde, Ari; Sikanen, Topi; Vepsä, Ari; Paajanen, Antti [VTT Technical Research Centre of Finland Ltd, Espoo (Finland); Honkanen, Markus [Pixact Oy, Tampere (Finland)

    2015-12-15

    Highlights: • Detailed characterisation of sprays resulting from the impacts of water-filled metal projectiles on a hard wall. • Experimental measurements of spray speed, direction and droplet size. • Detailed analysis of overall spray evolution. • The spray characterisation information can be used in CFD analyses of aircraft impact fires. - Abstract: Modelling and analysing fires following aircraft impacts requires information about the behaviour of liquid fuel. In this study, we investigated sprays resulting from the impacts of water-filled metal projectiles on a hard wall. The weights of the projectiles were in the range of 38–110 kg, with 8.6–68 kg water, and the impact speeds varied between 96 and 169 m/s. The overall spray behaviour was observed with high-speed video cameras. Ultra-high-speed cameras were used in backlight configuration for measuring the droplet size and velocity distributions. The results indicate that the liquid leaves the impact position as a thin sheet of spray in a direction perpendicular to the projectile velocity. The initial spray speeds were 1.5–2.5 times the impact speed, and the Sauter mean diameters were in the 147–344 μm range. This data can be used as boundary conditions in CFD fire analyses, considering the two-phase fuel flow. The overall spray observations, including the spray deceleration rate, can be used for validating the model.

  20. Enhanced RAMAC performance in subdetonative propulsion mode with semi-combustible projectile

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, J.F.; Giraud, M. [French-German Res. Inst., Saint-Louis (France)

    2000-11-01

    Investigations are carried out at ISL to determine the experimental conditions required to accelerate a projectile in the mass range from 1.5 to 2 kg up to a muzzle velocity of 3 km/s while keeping the maximum acceleration below 40,000 g. Therefore, two smooth-bore ram-accelerators denoted RAMAC 30-II and RAMAC 90, in caliber 30 and 90 mm respectively, are being operated in the thermally choked propulsion mode. Different material configurations for the projectile afterbody have been investigated, while keeping an aluminum nose cone. Besides afterbodies made of aluminum or magnesium alloy only, a third configuration is presented relying on a short magnesium part fitted to the base of an aluminum afterbody. This configuration denoted as ''semi-combustible'' is designed so that magnesium particles are steadily injected and burnt-out within the combustion zone at the base, therefore providing an additional heat release and consequently a significantly greater forward thrust. Experimental results achieved in both 30 and 90 mm along a 300-caliber-long ram-section and using up to three different gaseous mixtures are presented. To date, for a given semi-combustible projectile and an injection velocity into the ram-section of 1380 m/s, a maximum muzzle velocity of 2380 m/s has been achieved in RAMAC 30-II and 2180 m/s in RAMAC 90, the initial projectile mass being 69 g and 1608 g respectively. (orig.)

  1. Fast reconstruction of trajectories of charged muons recorded by the MUCH detector in the CBM experiment

    International Nuclear Information System (INIS)

    Ablyazimov, T.O.; Ivanov, V.V.

    2017-01-01

    The CBM experiment is currently being developed in GSI (Darmstadt, Germany) at the FAIR accelerator complex by an international collaboration including JINR. One of the main goals of the experiment is a research of charmonium production process in nucleus-nucleus collisions at high energies. The registration of such decays as J/ψ → μ"+μ"− is planned to be carried out in real time. The current paper presents an algorithm suitable for fast reconstruction of trajectories of charged muons from J/ψ decays recorded by the MUCH detector. [ru

  2. Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing

    International Nuclear Information System (INIS)

    Liu, Jian

    2012-01-01

    This paper estimates the charging demand of an early electric vehicle (EV) market in Beijing and proposes an assignment model to distribute charging infrastructure. It finds that each type of charging infrastructure has its limitation, and integration is needed to offer a reliable charging service. It also reveals that the service radius of fast charging stations directly influences the final distribution pattern and an infrastructure deployment strategy with short service radius for fast charging stations has relatively fewer disturbances on the power grid. Additionally, although the adoption of electric vehicles will cause an additional electrical load on the Beijing's power grid, this additional load can be accommodated by the current grid's capacity via the charging time management and the battery swap strategy. - Highlight: ► Charging posts, fast charging stations, and battery swap stations should be integrated. ► Charging posts at home parking places will take a major role in a charging network. ► A service radius of 2 km is proposed for fast charging stations deployment. ► The additional charging load from EVs can be accommodated by charging time management.

  3. Study of Relativistic Nucleus-nucleus Coll.Induced by 16O Projectiles

    CERN Multimedia

    2002-01-01

    A double experiment in which two detector systems (Streamer Chamber, Plastic Ball Calorimeter), running concurrently via a beam split (West Area H3, X5), search for quark matter formation in violent collisions of |1|6O or |2|0Ne with target nuclei between |4|0Ca and |2|0|6Pb. The acceleration of |1|6O will be facilitated by a high charge state injector, consisting of an ECR source and an RFQ pre-accelerator, installed by GSI and LBL at the PS Linac 1. Experimental equipment will be a streamer chamber installed in the Vertex Magnet of experiment WA75 together with beam hodoscopes and a downstream trigger calorimeter selecting violent events by the absence of energy flow to the projectile fragmentation region. Observed particles will be p, @p, K|0, @L and @L. In addition there will be the Plastic Ball, 800-fold @DE-E particle identifier system, covering the target fragmentation and backward fireball regions. Together with a multisegmented large solid angle (@+~9|0 of beam) energy calorimeter and a trigger calor...

  4. The 14th Werner Brandt workshop on charged particle penetration phenomena

    International Nuclear Information System (INIS)

    1992-11-01

    This report discusses the following topics: Phase effect in the energy loss of H projectiles in Zn targets: Experimental evidence and theoretical explanation; Molecular orbital theory for the stopping power of atoms in condensed matter: The case of He on metals; Non-linear screening at finite projectile velocities; Effect of image charge and charge exchange on the trajectory in grazing ion-surface collisions ''skipping motion'' and acceleration of multi-charged ions; Threshold ionization processes; The surface barrier for a simple metal: A first principles comparison between density functional theory and self-energy calculations; Multiphonon interactions in atom-surface scattering; Calculations of radiation-induced DNA damage; Radiation damage to DNA; Monte Carlo calculations of electron transport in high electric fields; Knock-on electrons produced in collisions of 6.4 TeV sulfur ions with fixed targets; Collective surface excitations in metals and thin films; Electron emission during multicharged ion-metal surface interaction; Intramolecular secondary collision contributions to cusp shapes and yields; Self energy approach to the energy loss in STEM; Atomic force microscopy of DNA strands absorbed on Mica; Photon scanning tunneling spectroscopy; Luminescence and electron emission from ion bombardment of solid Argon;Evaluation of soft X-ray yield of Al from 27.557 MeV neutral particles; Interpretation of EELS near edge fine structure at the 50 MeV Level; Organic ion imaging using Sims; Energy gap effect in stopping power; Stopping power data analysis; Calculations of electron ionization cross sections for K, L, and M shells; and Fractofusion mechanism (theory of cold fusion)

  5. Projectile metallic foreign bodies in the orbit: a retrospective study of epidemiologic factors, management, and outcomes.

    Science.gov (United States)

    Finkelstein, M; Legmann, A; Rubin, P A

    1997-01-01

    Intraorbital projectile metallic foreign bodies are associated with significant ocular and orbital injuries. The authors sought to evaluate epidemiologic factors, the incidence of associated ocular and orbital injury, and the nature and necessity of surgical intervention in these cases. Charts of all patients with projectile intraorbital metallic foreign bodies seen at our institution (27) over the preceding 7 years were evaluated with respect to age, sex, type of injury, associated ocular and orbital injuries, location of the projectile (anterior, epibulbar, or posterior), postinjury visual acuity, and surgical intervention. The majority of patients were male, between the ages of 11 and 30, and had BB pellet injuries. Thirteen projectiles were lodged anteriorly, 4 were in an epibulbar position, and the remaining 10 were posterior to the equator. Twelve of 13 anterior, and 4 of 4 epibulbar foreign bodies were removed surgically, whereas only 2 of 10 posterior foreign bodies required surgery. No case of surgical intervention resulted in a decrease of visual acuity. Associated ocular injuries were both more common and severe in patients with posteriorly located foreign bodies. Final visual acuity was better at presentation and at discharge in patients with anteriorly located foreign bodies. Intraorbital projectile metallic foreign bodies can be a source of significant ocular morbidity. Management of these cases is dependent on the location of the projectile. Ancillary radiographic studies can be helpful. Surgery to remove the projectile should be considered in each case, but foreign bodies that are not readily accessible often may be left safely in place. Closer regulation of the pellet gun industry, with an emphasis on education and protective eyewear use, would be helpful in reducing these injuries.

  6. Commissioning the A1900 projectile fragment separator

    CERN Document Server

    Morrissey, D J; Steiner, M; Stolz, A; Wiedenhöver, I

    2003-01-01

    An important part of the recent upgrade of the NSCL facility is the replacement of the A1200 fragment separator with a new high acceptance device called the A1900. The design of the A1900 device represents a third generation projectile fragment separator (relative to the early work at LBL) as it is situated immediately after the primary accelerator, has a very large acceptance, a bending power significantly larger than that of the cyclotron and is constructed from large superconducting magnets (quadrupoles with 20 and 40 cm diameter warm bores). The A1900 can accept over 90% of a large range of projectile fragmentation products produced at the NSCL, leading to large gains in the intensity of the secondary beams. The results of initial tests of the system with a restricted momentum acceptance (+-0.5%) indicate that the A1900 is performing up to specifications. Further large gains in the intensities of primary beams, typically two or three orders of magnitude, will be possible as the many facets of high current...

  7. Interaction of low-energy highly charged ions with matter

    International Nuclear Information System (INIS)

    Ginzel, Rainer

    2010-01-01

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  8. Multifragmentation of gold nuclei interacting with photoemulsion nuclei at an energy of 10.7 GeV per projectile nucleon

    International Nuclear Information System (INIS)

    Gulamov, K.G.; Navotny, V.Sh.; Uzhinskii, V.V.

    1999-01-01

    Experimental data on the distributions of fragments with respect to the bound charge (Z bound , Z b3 ) and with respect to the multiplicities and on their correlations are presented. These data are compared with analogous data at 600 MeV per projectile nucleon that were obtained at the ALADIN facility. It has been shown that the processes of gold-nucleus multifragmentation at intermediate and high energies have some common features. At the same time, the multiplicity of medium-mass fragments becomes somewhat less at high energies. Data presented in this study are analyzed within the framework combining the statistical model of nuclear multifragmentation with the Regge model of the breakup of nuclei. This combined model has been shown to reproduce qualitatively the experimental results under discussion. The most pronounced discrepancies have been observed for the yields of doubly charged fragments. The transverse momenta of fragments have been analyzed as functions of the bound charge Z bound . It has been demonstrated that the model underestimates considerably the transverse momenta of fragments. This is interpreted as evidence for a strong radial flow of spectator fragments

  9. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  10. Four- and six-charge transfer reactions induced by 52Cr, 56Fe, 63Cu in rare-earths

    International Nuclear Information System (INIS)

    Mouchaty, G.

    1977-01-01

    The cross sections for transfer reactions in which 4 and 6 charges are gained by Sm and Nd targets have been measured, the projectiles being 52 Cr and 56 Fe at 343 and 377 MeV. These energies correspond to 1.5B, B being the interaction barrier. The results obtained indicate that the cross section increases when the number of charges transferred and the mass of the projectile are increased. The angular distributions and recoil ranges at each angle of 151 Dy produced through 52 Cr+ 148 Sm, 52 Cr+ 144 Nd, 56 Fe+ 144 Nd, 63 Cu+ 144 Nd reactions were determined for incident energies equivalent to 1.5B. After transformation into the c.m. system, the angular distributions exhibit a maximum close to 155 0 and a tail at small angles. The position of the maximum is independent of the incident ion and of the number of transferred charges. The analysis of the energy distributions indicate that the observed reactions can be explained by a two-step process: a transfer of nucleons followed by an evaporation step. The number of nucleons transferred in the 1st step and the associated excitation energies are higher for the events corresponding to the tail than for those corresponding to the maximum [fr

  11. Numerical Study on the Projectile Impact Resistance of Multi-Layer Sandwich Panels with Cellular Cores

    Directory of Open Access Journals (Sweden)

    Liming Chen

    Full Text Available Abstract The projectile impact resistance of sandwich panels with cellular cores with different layer numbers has been numerically investigated by perpendicular impact of rigid blunt projectile in ABAQUS/Explicit. These panels with corrugation, hexagonal honeycomb and pyramidal truss cores are impacted at velocities between 50 m/s and 202 m/s while the relative density ranges from 0.001 to 0.15 The effects of core configuration and layer number on projectile impact resistance of sandwich panels with cellular cores are studied. At low impact velocity, sandwich panels with cellular cores outperform the corresponding solid ones and non-montonicity between relative density and projectile resistance of sandwich panels is found and analyzed. Multiplying layer can reduce the maximum central deflection of back face sheet of the above three sandwich panels except pyramidal truss ones in high relative density. Hexagonal honeycomb sandwich panel is beneficial to increasing layer numbers in lowering the contact force and prolonging the interaction time. At high impact velocity, though corrugation and honeycomb sandwich panels are inferior to the equal-weighted solid panels, pyramidal truss ones with high relative density outperform the corresponding solid panels. Multiplying layer is not the desirable way to improve high-velocity projectile resistance.

  12. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  13. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  14. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    Energy Technology Data Exchange (ETDEWEB)

    Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  15. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    Science.gov (United States)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  16. Electromagnetic dissociation of target nuclei by $^{16}$O and $^{32}$S projectiles

    CERN Multimedia

    2002-01-01

    We have measured the inclusive cross sections for electromagnetic dissociation (ED) of $^{197}$Au targets by 60 and 200 GeV/nucleon $^{16}$O and $^{32}$S projectiles. This is an extension of similar measurements carried out earlier at 2 GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual $\\gamma$ ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200 GeV/nucleon $^{16}$O projectiles on $^{197}$Au of approximately 0.45~barns. The result i...

  17. Numerical study on the matching law between charge caliber and delay time of the rod-shaped explosively formed projectile

    Science.gov (United States)

    Shen, H. M.; Li, W. B.; Wang, X. M.; Li, W. B.

    2017-09-01

    To study the application of multi-point initiation technology on shaped charge warhead, numerically simulated the influence of initiating delay time of different charge caliber on detonation wave and performance forming of penetrator. The study found that as charge caliber increased, the allowable initiating delay time also increased. For the commonly used small and medium-charge caliber shaped charge warhead, the charge caliber(Dk ) and the delay time (σ) presented a linear relationship σ = -12.79+1.25Dk . As charge caliber continue increasing, the initiating allowable delay time started to increase exponentially. The study reveals the matching law between charge caliber, initiating delay time and performance forming of penetrator, and it offers guidance for the design of multi-point initiation network for shaped charge.

  18. Study of the effect of hard projectiles impacting reinforced concrete walls

    International Nuclear Information System (INIS)

    Berriaud, C.; Sokolovsky, A.

    1977-01-01

    Among the risks examined in the framework of nuclear safety in France, quite unlikely events are examined as constituting a safety cover. This type of event includes the possible impact of aircrafts, or rotor splinters. Research on the limit strength of a wall under the impact of a hard projectile presently gives incentive results. First, a good agreement appears between works performed in parallel directions by EDF and CEA. Secondly, the special field of aerial projectiles is much better known as it was with previous formulations. Third, such research highly contributes to the knowledge of the mechanical strength of reinforced concrete structures [fr

  19. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  20. Mass and charge distributions in chlorine-induced nuclear reactions

    International Nuclear Information System (INIS)

    Marchetti, A.A.

    1991-01-01

    Projectile-like fragments were detected and characterized in terms of A, Z, and energy for the reactions 37 Cl on 40 Ca and 209 Bi at E/A = 7.3 MeV, and 35 Cl, on 209 Bi at E/A = 15 MeV, at angles close to the grazing angle. Mass and charge distributions were generated in the N-Z plane as a function of energy loss, and have been parameterized in terms of their centroids, variances, and coefficients of correlation. Due to experimental problems, the mass resolution corresponding to the 31 Cl on 209 Bi reaction was very poor. This prompted the study and application of a deconvolution technique for peak enhancement. The drifts of the charge and mass centroids for the system 37 Cl on 40 Ca are consistent with a process of mass and charge equilibration mediated by nucleon exchange between the two partners, followed by evaporation. The asymmetric systems show a strong drift towards larger asymmetry, with the production of neutron-rich nuclei. It was concluded that this is indicative of a net transfer of protons from the light to the heavy partner, and a net flow of neutrons in the opposite direction. The variances for all systems increase with energy loss, as it would be expected from a nucleon exchange mechanism; however, the variances for the reaction 37 Cl on 40 Ca are higher than those expected from that mechanism. The coefficients of correlation indicate that the transfer of nucleons between projectile and target is correlated. The results were compared to the predictions of two current models based on a stochastic nucleon exchange mechanism. In general, the comparisons between experimental and predicted variances support this mechanism; however, the need for more realistic driving forces in the model calculations is indicated by the disagreement between predicted and experimental centroids

  1. Will Your Battery Survive a World With Fast Chargers?

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  2. Penetration Experiments with 6061-T6511 Aluminum Targets and Spherical-Nose Steel Projectiles at Striking Velocities Between 0.5 and 3.0 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Forrestal, M.J.; Piekutowski, A.J.

    1999-02-04

    We conducted depth of penetration experiments with 7.11-mm-diameter, 74.7-mm-long, spherical-nose, 4340 steel projectiles launched into 250-mm-diameter, 6061-T6511 aluminum targets. To show the effect of projectile strength, we used projectiles that had average Rockwell harnesses of R{sub c} = 36.6, 39.5, and 46.2. A powder gun and two-stage, light-gas guns launched the 0.023 kg projectiles at striking velocities between 0.5 and 3.0 km/s. Post-test radiographs of the targets showed three response regions as striking velocities increased: (1) the projectiles remained visibly undeformed, (2) the projectiles permanently deformed without erosion, and (3) the projectiles eroded and lost mass. To show the effect of projectile strength, we compared depth-of-penetration data as a function of striking velocity for spherical-nose rods with three Rockwell harnesses at striking velocities ranging from 0.5 to 3.0 km/s. To show the effect of nose shape, we compared penetration data for the spherical-nose projectiles with previously published data for ogive-nose projectiles.

  3. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  4. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Hofstetter, S.; Hofmann, C.; Soff, G.

    1991-10-01

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  5. Effect of a Bore Evacuator on Projectile In-Bore Dynamics

    National Research Council Canada - National Science Library

    Carlucci, Donald

    2004-01-01

    Projectile base pressure measurements were taken in a 155-mm M284 gun tube using an Armament Research, Development and Engineering Center-designed instrumentation package incorporated into a modified...

  6. Stopping power of charged particles from 10 eV/amu to 10 GeV/amu

    International Nuclear Information System (INIS)

    Nakane, Yoshihiro; Tanaka, Shun-ichi; Furihata, Shiori; Iwai, Satoshi.

    1993-08-01

    Electric collision, nuclear collision and total stopping powers in 10 kinds of elements: H 2 , He, Be, C, Al, Fe, Cu, W, Pb and U, and 4 kinds of materials: water, phantom, LiF-TLD and SSNTD (solid state neutron track detector) have been calculated for 10 kinds of charged particles from 10 eV/amu to 10 GeV/amu with STOPPING, SPAR, and RSTAN/RSHEV codes, in which the charged particles are important projectiles for evaluating the dose and detector responses of radiations, and for accelerator shielding calculations. Calculated data are presented in Table and Figure. (author)

  7. Evolution of Surface Temperature of a 13 Amp Hour Nano Lithium-Titanate Battery Cell under Fast Charging

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    Lithium-ion batteries have already gained acceptability for Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) applications because of several reasons such as high theoretical capacity, their cycle-life, and high specific energy density. The intention of this experimental research...... is to study the surface temperature evolution of a 13 Ah Nano Lithium-Titanate battery cell for the usage of rechargeable energy storage system under fast charging conditions. The nominal voltage of the cell is 2.26V and the nominal capacity is 13.4 Ah. In this research, contact thermocouples were employed...

  8. Correlated charge changing ion-atom collisions. Progress report, March 15, 1985-March 14, 1986

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1986-04-01

    X-ray emission associated with projectile charge-changing events in ion-atom collisions has been used to isolate and investigate excitation, ionization, and charge transfer, as well as combinations of these processes. New measurements were made of K-shell and L-shell resonant transfer and excitation (RTE) for 210 to 300 MeV 20 Ca/sup 10,11+/ + H 2 collisions and 230 to 610 MeV 41 Nb 31+ + H 2 collisions, respectively. Nonresonant transfer and excitation (NTE) was studied for 40 to 160 MeV S 13+ + Ne. Single-electron capture and loss measurements, requiring accel-decel techniques, were made for 2.5 to 200 MeV S 13+ on He. In the case of Ca/sup 16,17,18,19 + / + H 2 collisions the single capture cross cross sections exhibit a nonmonotonic energy dependence which we attribute to RTE. Double-electron capture in single collisions was investigated for S 13+ + He and Ne and Ar 15+ + Ne and the cross sections were found to be 10 to 100 times smaller than the single-capture cross sections. Measured two-electron loss cross sections for Ca/sup q + / ions incident on H 2 vary with charge state and depend strongly on whether L- or K-shell electrons are removed. Measurements of simultaneous projectile excitation and electron loss for several collision systems indicate that K-vacancy production occurs primarily through excitation rather than loss of the 1s electron. 13 refs

  9. Modeling Fragment Simulating Projectile Penetration into Steel Plates Using Finite Elements and Meshfree Particles

    Directory of Open Access Journals (Sweden)

    James O’Daniel

    2011-01-01

    Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.

  10. Dynamics of the single and double ionization of helium in fast proton collisions

    International Nuclear Information System (INIS)

    Doerner, R.; Schmidt-Boecking, H.

    1991-08-01

    A new experimental approach, designed to measure differential ionisation and electron capture cross sections for relativistic heavy ion beams, has been developed and was used to investigate dynamic mechanisms of Helium single and double ionisation in collisions with fast protons. Detailed insight into the dynamics of the ionisation process has been obtained. The experimental results prove, that the many-body momentum exchange between all particles involved, the projectile and target nucleus as well as the emitted electrons, has to be incorporated in order to correctly describe the ionisation collision dynamics. For the proton on Helium collision system the transverse momenta of projectile and recoil-ion were found to be of comparable magnitude only for very close collisions and large scattering angles above 1 mrad, which contribute less than 3% to the total ionisation cross section. (orig./HSI) [de

  11. Recent work with fast molecular-ion beams at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Cooney, P.J.; Gemmell, D.S.; Groeneveld, K.O.; Kanter, E.P.; Pietsch, W.J.; Vager, Z.; Zabransky, B.J.

    1979-01-01

    Research in these areas during 1979 is summarized: (a) studies of molecular-ion dissociation in gaseous targets, (b) developing an understanding of the origins of central peaks and of the two phenomena of the transmission of fast molecular ions through thin foil targets and of the production of neutral fragments from collision-induced dissociation of fast molecular projectiles, (c) studies exploring the extent to which high-resolution measurements on dissociation fragments can be used to determine the stereochemical structures of the molecular ions in the incident beam, (d) extensive modifications to the beam-line and apparatus at the 4-MV Dynamitron so as to permit a wide variety of coincidence measurements on fragments from collision-induced molecular-ion dissociation

  12. Influence of capture to excited states of multiply charged ion beams colliding with small molecules

    International Nuclear Information System (INIS)

    Montenegro, P; Monti, J M; Fojón, O A; Hanssen, J; Rivarola, R D

    2015-01-01

    Electron capture by multiply charged ions impacting on small molecules is theoretically investigated. Particular attention is paid to the case of biological targets. The interest is focused on the importance of the transition to excited final states which can play a dominant role on the total capture cross sections. Projectiles at intermediate and high collision energies are considered. Comparison with existing experimental data is shown. (paper)

  13. Electromagnetic compression gun for hypervelocity projectile acceleration

    International Nuclear Information System (INIS)

    Woo, J.T.

    1987-01-01

    The rapid acceleration of projectiles to very high velocities has applications in many areas. The general requirements for an effective system is simplicity, reliability, compactness and good efficiency. The authors developed a concept by using electromagnetic forces to compressionally heat a plasma to high temperature and pressure to serve as the propellant for the acceleration of projectiles. The concept shares the simplicity of the light gas gun, but because of the high temperature of the propellant, is capable of significantly higher performance. Unlike the electrothermal gun approach to raise the propellant temperature by resistive heating, the electromagnetic concept is more efficient at higher temperatures. Operationally, the concept resembles a railgun in requiring a large pulsed current to drive the system. However, the current flow in this case is entirely external to the gun barrel and is axisymmetric. Therefore, many of the problems associated with railgun operations are avoided. Furthermore, because the current channel is external, there is also greater flexibility in the choice of load impedance to match to the power supply. The concept can also be generalized to a multi-stage regenerative system driven by a pulse forming network to resemble a coaxial accelerator

  14. Classical molecular dynamics simulation of weakly-bound projectile heavy-ion reactions

    Directory of Open Access Journals (Sweden)

    Morker Mitul R.

    2015-01-01

    Full Text Available A 3-body classical molecular dynamics approach for heavy-ion reactions involving weakly bound projectiles is developed. In this approach a weakly bound projectile is constructed as a two-body cluster of the constituent tightly bound nuclei in a configuration corresponding to the observed breakup energy. This 3-body system with their individual nucleon configuration in their ground state is dynamically evolved for given initial conditions using the three-stage classical molecular dynamics approach (3S-CMD. Various levels of rigidbody constraints on the projectile constituents and the target are considered at appropriate stages. This 3-dimensional approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but internal excitations and breakup probabilities at distances close to the barrier also. Dynamical simulations of 6Li+209Bi show all the possible reaction mechanism like complete fusion, incomplete fusion, scattering and breakup scattering. Complete fusion cross sections of 6Li+209Bi and 7Li+209Bi reactions are calculated in this approach with systematic relaxations of the rigid-body constraints on one or more constituent nuclei.

  15. Morphology and chemistry of projectile residue in small experimental impact craters

    Science.gov (United States)

    Horz, F.; Fechtig, H.; Janicke, J.; Schneider, E.

    1983-01-01

    Small-scale impact craters (5-7 mm in diameter) were produced with a light gas gun in high purity Au and Cu targets using soda lime glass (SL) and man-made basalt glass (BG) as projectiles. Maximum impact velocity was 6.4 km/s resulting in peak pressures of approximately 120-150 GPa. Copious amounts of projectile melts are preserved as thin glass liners draping the entire crater cavity; some of this liner may be lost by spallation, however. SEM investigations reveal complex surface textures including multistage flow phenomena and distinct temporal deposition sequences of small droplets. Inasmuch as some of the melts were generated at peak pressures greater than 120 GPa, these glasses represent the most severely shocked silicates recovered from laboratory experiments to date. Major element analyses reveal partial loss of alkalis; Na2O loss of 10-15 percent is observed, while K2O loss may be as high as 30-50 percent. Although the observed volatile loss in these projectile melts is significant, it still remains uncertain whether target melts produced on planetary surfaces are severely fractionated by selective volatilization processes.

  16. Particle Production in Hadron - Nuclear Matter in the Energy Range Between 50-GeV - 150-GeV

    CERN Document Server

    Braune, Kersten

    1980-01-01

    In an experiment at the CERN SPS the particle production in hadron-nucleus collisions in an energy range between 50 and 150 GeV was studied. The detector detects charged particles and separates them into two groups: fast particles, mainly produced pions, and slow particles, mainly recoil protons from the nucleus, whereby the boundary lies at a velocity v/c = 0.7. Multiplicity and angular respectively pseudo-rapidity distributions were measured. From the data analysis resulted that the slow particles are a measure for the number of collisions of the projectile in the nucleus. The properties of the fast particle were studied in dependence on . Thereby it was shown that at a description of the measured results using the variable the dependence on the projectile and on the mass number A of the target are extensively eliminated.

  17. Pulse shape discrimination based on fast signals from silicon photomultipliers

    Science.gov (United States)

    Yu, Junhao; Wei, Zhiyong; Fang, Meihua; Zhang, Zixia; Cheng, Can; Wang, Yi; Su, Huiwen; Ran, Youquan; Zhu, Qingwei; Zhang, He; Duan, Kai; Chen, Ming; Liu, Meng

    2018-06-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) enable a breakthrough in discrimination between neutrons and gammas. Plastic scintillator detectors coupled with silicon photomultipliers (SiPMs) offer many advantages, such as lower power consumption, smaller volume, and especially insensitivity to magnetic fields, compared with conventional photomultiplier tubes (PMTs). A SensL SiPM has two outputs: a standard output and a fast output. It is known that the charge injected into the fast output electrode is typically approximately 2% of the total charge generated during the avalanche, whereas the charge injected into the standard output electrode is nearly 98% of the total. Fast signals from SiPMs exhibit better performance in terms of timing and time-correlated measurements compared with standard signals. The pulse duration of a standard signal is on the order of hundreds of nanoseconds, whereas the pulse duration of the main monopole waveform of a fast signal is a few tens of nanoseconds. Fast signals are traditionally thought to be suitable for photon counting at very high speeds but unsuitable for PSD due to the partial charge collection. Meanwhile, the standard outputs of SiPMs coupled with discriminating scintillators have yielded nice PSD performances, but there have been no reports on PSD using fast signals. Our analysis shows that fast signals can also provide discrimination if the rate of charge injection into the fast output electrode is fixed for each event, even though only a portion of the charge is collected. In this work, we achieved successful PSD using fast signals; meanwhile, using a coincidence timing window of less 3 nanoseconds between the readouts from both ends of the detector reduced the influence of the high SiPM dark current. We experimentally achieved good timing performance and PSD capability simultaneously.

  18. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A.J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W.P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  19. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm 2 and 0.4 pC/ps/mm 2 , respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within ±10%.

  20. Migration spontanee de projectile intracranien: presentation clinique ...

    African Journals Online (AJOL)

    Les traumatismes crâniens par arme à feu sont graves. Les manifestations cliniques sont variables et peuvent présenter quelques particularités. Les auteurs rapportent un cas de migration spontané de projectile intracérébral survenue après un traumatisme crânien par arme à feu au cours d'une partie de chasse. Elle a été ...

  1. Fast broad-band photon detector based on quantum well devices and charge-integrating electronics for non-invasive FEL monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M., E-mail: matias.antonelli@elettra.eu; Cautero, G.; Sergo, R.; Castellaro, C.; Menk, R. H. [Elettra – Sincrotrone Trieste S.C.p.A., Trieste (Italy); Ganbold, T. [School in Nanotechnology, University of Trieste, Trieste (Italy); IOM CNR, Laboratorio TASC, Trieste (Italy); Biasiol, G. [IOM CNR, Laboratorio TASC, Trieste (Italy)

    2016-07-27

    The recent evolution of free-electron lasers has not been matched by the development of adequate beam-monitoring instrumentation. However, for both experimental and diagnostics purposes, it is crucial to keep such photon beams under control, avoiding at the same time the absorption of the beam and the possible destruction of the detector. These requirements can be fulfilled by utilizing fast and non-invasive photon detectors operated in situ, upstream from the experimental station. From this perspective, sensors based on Quantum Well (QW) devices can be the key to detecting ultra-short light pulses. In fact, owing to their high electron mobility, InGaAs/InAlAs QW devices operated at room temperature exhibit sub-nanosecond response times. Their direct, low-energy band gap renders them capable of detecting photons ranging from visible to X-ray. Furthermore, the 2D electron gas forming inside the QW is responsible for a charge amplification mechanism, which increases the charge collection efficiency of these devices. In order to acquire the signals produced by these QW sensors, a novel readout electronics has been developed. It is based on a high-speed charge integrator, which allows short, low-intensity current pulses to be read within a 50-ns window. The integrated signal is acquired through an ADC and the entire process can be performed at a 10-MHz repetition rate. This work provides a detailed description of the development of the QW detectors and the acquisition electronics, as well as reporting the main experimental results, which show how these tools are well suited for the realization of fast, broad-band beam monitors.

  2. Projectile Motion in the "Language" of Orbital Motion

    Science.gov (United States)

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  3. Fragment ion and electron emission from C sub 6 sub 0 by fast heavy ion impact

    CERN Document Server

    Mizuno, T; Itoh, A; Tsuchida, H; Nakai, Y

    2003-01-01

    Correlation between electron emission and fragmentation of C sub 6 sub 0 was studied using 847keV Si sup + ions. Mass distribution of fragment ions, number distribution of secondary electrons, and final charge distribution of outgoing projectiles were successfully measured by means of a triple coincidence time-of-flight method. Strong correlation was observed for electron emission and fragmentation.

  4. Ionization of heavy targets by impact of relativistic projectiles

    International Nuclear Information System (INIS)

    Deco, G.R.; Fainstein, P.D.; Comision Nacional de Energia Atomica, San Carlos de Bariloche; Rivarola, R.D.

    1988-01-01

    Electron ejection from atomic targets by impact of bare heavy projectiles at relativistic collision energies is studied theoretically. First-order Born calculations are presented by using initial Darwin and final Sommerfeld-Maue wavefunctions. Comparisons with other calculations and experimental data are given. (orig.)

  5. Calculation of projectile velocity in an electromagnetic mass driver

    International Nuclear Information System (INIS)

    Ikuta, K.

    1986-08-01

    The formula for the velocity increase of a projectile accelerated by the single z-pinch between the cylindrical electrodes is established. This formula enables one to consider the necessary stages in the cylindrical electrode array of the accelerator for a required velocity. (author)

  6. High speed photography of the plasma flow and the projectiles in the T.U.M. hypervelocity accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.; Kuczera, H.; Schroeder, B.

    1979-01-01

    The hypervelocity accelerator at the Technische Universitaet Muenchen, FRG, accelerates small projectiles (0.1 to 1.0 mm diameter) to velocities around 20 km/s. The photographic equipment consists of two Cordin single-frame image converter cameras and one TRW image converter camera with streak units and multiple-frame units. They are used for plasma flow diagnostics and the measurement of the position and the velocity of the projectiles. The single-frame cameras are triggered with a Laser light bar and the photographic measurement of the projectile velocity will be compared with Doppler-Radar. (author)

  7. Evidences from electron momentum spectroscopy for ultra-fast charge transfers and structural reorganizations in a floppy molecule: Ethanol

    International Nuclear Information System (INIS)

    Deleuze, Michael S; Hajgato, Balazs; Morini, Filippo

    2009-01-01

    Calculations of electron momentum distributions employing advanced Dyson orbital theories and statistical thermodynamics beyond the RRHO approximation fail to quantitatively reproduce the outermost momentum profile inferred from experiments on ethanol employing high resolution Electron Momentum Spectroscopy [1]. Study of the influence of nuclear dynamics in the initial ground state and final ionized state indicates that this discrepancy between theory and experiment reflects a charge transfer occurring during an ultra-fast dissociation of the ethanol radical cation into a methyl radical and H 2 C=O-H + .

  8. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  9. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  10. Charge correlations as a probe of nuclear disassembly

    International Nuclear Information System (INIS)

    Kreutz, P.; Pochodzalla, J.; Schuettauf, A.; Tucholski, A.; Bouissou, P.; Leray, S.; Seidel, W.; Begemann-Blaich, M.; Hubele, J.; Kunde, G.J.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Mueller, W.F.J.; Ogilvie, C.A.; Sann, H.; Trautmann, W.

    1992-03-01

    We have studied multi-fragment decays of Au projectiles after collision with C, Al, Cu and Pb targets at a bombarding energy of 600 MeV/nucleon. We examine the correlations between the charges emitted in these reactions. These correlations are given as a function of the total charge in bound fragments, Z bound , at forward angles, which is a measure of the violence of the collision and can be related to the impact parameter. The charge distributions have been fit by a power law and the extracted τ parameter exhibits a minimum as a function of Z bound . We observe a strong reduction in the maximum charge, Z max , of the event with decreasing Z bound . For those events where Z max is less than half Z bound , the relative sizes of the two largest charges within the event cover the full spectrum of possibilities. The charge-Dalitz plots indicate that the multi-fragmentation events are not an extension of symmetric fission reactions. The event-by-event charge moments are examined to measure the size of the charge fluctuations. All of the charge correlations are independent of the target when plotted as a function of Z bound . The results are compared to both nuclear statistical and percolation calculations. The model predictions differ from each other, establishing that the observables are sensitive to how the available phase space is populated. The sequential nuclear model predicts too asymmetric a decay, while the simultaneous model predicts too symmetrical a break-up. The percolation model, which was adjusted to reproduce the mean multiplicity of fragments and the size of Z max , correctly predicts the charge fluctuations. (orig.)

  11. Observation of enhanced zero-degree binary encounter electron production with decreasing charge-state q in 30 MeV Oq+ + O2 collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Wong, K.L.; Hidmi, H.I.

    1993-01-01

    We have measured binary encounter electron production in collisions of 30 MeV O q+ projectiles (q=4-8) and O 2 targets. Measured double differential BEe cross-sections are found to increase with decreasing charge-state q, in agreement with similar previously reported zero-degree investigations for H 2 and He targets. However, measurements for the same system but at 25 degrees shows the opposite trend, that BEe cross sections decrease slightly with decreasing charge state

  12. Fast Faraday Cup With High Bandwidth

    Science.gov (United States)

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  13. Sputtering of octatetraene by 15 keV C{sub 60} projectiles: Comparison of reactive interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kanski, Michal; Maciazek, Dawid; Golunski, Mikolaj; Postawa, Zbigniew, E-mail: zbigniew.postawa@uj.edu.pl

    2017-02-15

    Highlights: • Probing the effect of interatomic potentials on sputtering of an octatetraene sample. • Problems with charge calculations are observed during cluster impact for ReaxFF. • COMB3 leads to a very low sputtering yield due to abrupt energy dissipation. • AIREBO is computationally the most efficient, while ReaxFF is more accurate. - Abstract: Molecular dynamics computer simulations have been used to probe the effect of the AIREBO, ReaxFF and COMB3 interatomic potentials on sputtering of an organic sample composed of octatetraene molecules. The system is bombarded by a 15 keV C{sub 60} projectile at normal incidence. The effect of the applied force fields on the total time of simulation, the calculated sputtering yield and the angular distribution of sputtered particles is investigated and discussed. It has been found that caution should be taken when simulating particles ejection from nonhomogeneous systems that undergo significant fragmentation described by the ReaxFF. In this case, the charge state of many particles is improper due to an inadequacy of a procedure used for calculating partial charges on atoms in molecules for conditions present during sputtering. A two-step simulation procedure is proposed to minimize the effect of this deficiency. There is also a possible problem with the COMB3 potential, at least at conditions present during cluster impact, as its results are very different from AIREBO or ReaxFF.

  14. Na(3p left-arrow 3s) excitation by impact of slow multiply charged ions

    International Nuclear Information System (INIS)

    Horvath, G.; Schweinzer, J.; Winter, H.; Aumayr, F.

    1996-01-01

    We present a systematic experimental and theoretical study of Na(3p left-arrow 3s) excitation by slow (v NaI with projectile ion charge state q is investigated. Due to the dominance of the competing electron capture channels at low collision energies E, the excitation cross sections deviate significantly from a commonly applied σ/q=f(E/q) cross-section scaling relation. copyright 1996 The American Physical Society

  15. Bringing solid fuel ramjet projectiles closer to application - An overview of the TNO/RWMS technology demonstration programme

    NARCIS (Netherlands)

    Veraar, R.G.; Giusti, G.

    2005-01-01

    TNO executed a technology demonstration programme in co-operation with RWMS on the application of solid fuel ramjet propulsion technology to medium calibre air defence projectiles. From 2000 to 2004 a complete and integrated structural and aero-thermodynamic projectile design was conceived

  16. Fusion, reaction and break-up cross sections of weakly bound projectiles on 64Zn

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Padron, I.; Rodriguez, M.D.; Marti, G.V.; Anjos, R.M.; Lubian, J.; Veiga, R.; Liguori Neto, R.; Crema, E.; Added, N.; Chamon, L.C.; Fernandez Niello, J.O.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Abriola, D.; Arazi, A.; Ramirez, M.; Hussein, M.S.

    2004-01-01

    We present new measurements and a general discussion of the behavior of the fusion, break-up and reaction cross sections of different projectiles on the same target 64 Zn, at near and above barrier energies. The projectiles are the tightly bound 16 O, the stable weakly bound 6 Li, 7 Li and 9 Be and the radioactive very weakly bound 6 He nuclei. We also compare the results with the ones for heavier targets

  17. CFD Simulations of a Finned Projectile with Microflaps for Flow Control

    Directory of Open Access Journals (Sweden)

    Jubaraj Sahu

    2017-01-01

    Full Text Available This research describes a computational study undertaken to determine the effect of a flow control mechanism and its associated aerodynamics for a finned projectile. The flow control system consists of small microflaps located between the rear fins of the projectile. These small microflaps alter the flow field in the aft finned region of the projectile, create asymmetric pressure distributions, and thus produce aerodynamic control forces and moments. A number of different geometric parameters, microflap locations, and the number of microflaps were varied in an attempt to maximize the control authority generated by the flaps. Steady-state Navier-Stokes computations were performed to obtain the control aerodynamic forces and moments associated with the microflaps. These results were used to optimize the control authority at a supersonic speed, M=2.5. Computed results showed not only the microflaps to be effective at this speed, but also configurations with 6 and 8 microflaps were found to generate 25%–50% more control force than a baseline 4-flap configuration. These results led to a new optimized 8-flap configuration that was further investigated for a range of Mach numbers from M=0.8 to 5.0 and was found to be a viable configuration effective in providing control at all of these speeds.

  18. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 1. Magnetic-gradient and electrostatic accelerators

    International Nuclear Information System (INIS)

    Brittingham, J.N.

    1979-01-01

    The feasibility of using magnetic-gradient and electrostatic accelerators to launch a 0.1-g projectile to hypervelocities (150 km/s or more) is studied. Such hypervelocity projectiles could be used to ignite deuterium-tritium fuel pellets in a fusion reactor. For the magnetic-gradient accelerator, several types of projectile were studied: shielded and unshielded copper, ferromagnetic, and superconducting. The calculations revealed the superconducting projectile to be the best of those materials. It would require a 3.2-km-long magnetic-gradient accelerator and achieve a 92% efficiency. This accelerator-projectile combination would be the one most likely to launch a 0.1-g projectile to 150 km/s or more. Its components would cost $58.9 million. The electrostatic accelerator was found to be impractical because of its excessive length of 23 km

  19. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  20. Modelling of an advanced charging system for electric vehicles

    Science.gov (United States)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the