WorldWideScience

Sample records for fast charged projectiles

  1. Charge and Energy Dependences of Ionization and Transfer for Helium in Collisions with Fast Charged Projectiles

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Bin; WANG Bao-Hong; DING Bao-Wei; LIU Zhao-Yuan

    2009-01-01

    The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions Aq+ (q = 1 - 8) at impact energies of 0.64 and 1.44 MeV/u, respectively, (ii) energy dependences of transfer ionization for helium by 0.5-3 MeV/u A8,9+ ions impact. The Lenz-Jensen model of the atom is applied instead of the Bohr model of the atom, and the impact-parameter dependences are also introduced into the calculations. Satisfactory agreement is found between theoretical and experimental data.

  2. Eikonal approximation for charge transfer from a multielectron atom to fast projectiles

    Science.gov (United States)

    Ho, T. S.; Lieber, M.; Chan, F. T.; Omidvar, K.

    1981-01-01

    The eikonal approach developed previously for calculating electron-capture cross sections for bare projectiles colliding with hydrogenic targets is extended here to allow for multielectron targets. Both the impact and wave pictures are employed and their equivalence is discussed. As a first approximation, each atomic orbital is specified by the three hydrogenic quantum numbers, an effective nuclear charge Z sub t, and an energy eigenvalue in the impact picture, or ionization potential in the wave picture. The Z sub t prime appearing in the eikonal phase factor is left undetermined because of incomplete information on the many-body target. However, analytic expressions are derived for the theoretical cross sections, and numerical values are calculated for simple choices of Z sub t prime. Those results are compared with existing experimental data for C, Ne, Ar, N2, O2, and He targets.

  3. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  4. Dynamics of dust-free cavities behind fast projectiles in a dusty plasma under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caliebe, D.; Arp, O.; Piel, A. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet, Kiel (Germany)

    2011-07-15

    The penetration of a dusty plasma by fast charged projectiles is studied under microgravity conditions. The mass and charge of the projectiles are larger than those of the target particles. A projectile generates a dust-free cavity in its wake, whose shape strongly depends on the projectile velocity. The faster the projectile the more elongated becomes the cavity while its cross-section decreases. The opening time of the cavity is found independent of the projectile velocity. For supersonic projectiles, the dynamics of the cavity can be decomposed into an initial impulse and a subsequent elastic response that can be modeled by a damped harmonic oscillator.

  5. Electron loss of fast projectiles in the collisions with molecules

    CERN Document Server

    Matveev, V I; Rakhimov, Kh Yu

    2011-01-01

    The single and multiple electron loss of fast highly charged projectiles in the collisions with neutral molecules are studied within the framework of a nonperturbative approach. The cross sections for single, double, and triple electron losses are calculated for the collision system $Fe^{q+}\\to N_2$ ($q$=24, 25, 26) at the collision energies 10, 100, and 1000 MeV/u. The effects caused by the collision multiplicity and the orientation of the axis of target molecule are treated. It is shown that collision multiplicity effect leads to considerable differences for the cases of perpendicular and parallel orientations of the molecular axes with respect to the direction of the projectile motion, while for chaotic orientation such effect is negligible.

  6. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity; Ionisation et excitation de l'atome de lithium par impact de particules chargees rapides: Identification des mecanismes de creation de deux lacunes en couche K du lithium en fonction de la charge et de la vitesse du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Rangama, J

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34{sup +} and Ar18{sup +}) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is

  7. Projectile charge state dependent sputtering of solid surfaces

    CERN Document Server

    Hayderer, G

    2000-01-01

    dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...

  8. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  9. Effect of self-gravitation and dust-charge fluctuations on the shielding and energy loss of N×M projectiles in a collisional dusty plasma

    Science.gov (United States)

    Sarwar, M. Adnan; Mirza, Arshad M.

    2007-03-01

    A simple derivation of the electrostatic potential and energy loss of N×M test charge projectiles traveling through dusty plasma has been presented. The effect of dust-charge fluctuations, dust neutral collisions, and self-gravitation on the shielded potential and energy loss of charge projectiles has been investigated both analytically as well as numerically. An interference contribution of these projectiles to the shielded potential and energy loss has been observed, which depends upon their relative orientation and separation distance. A comparison has been made for correlated and uncorrelated motion of the two projectiles. The amplitude of the shielded potential is enhanced with the increase of dust Jeans frequency for separation less than the effective Debye length. The dust-charge fluctuations produce a potential well for a slow charge relaxation rate and energy is gained, not lost, by the test charge projectiles. However, a fast charge relaxation rate with a fixed value of Jeans frequency enhances the energy loss. The dust neutral collisions are also found to enhance the energy loss for the test charge velocities greater than the dust acoustic speeds. The present investigation might be useful to explain the coagulation of dust particles such as those in molecular clouds, the interstellar medium, comet tails, planetary rings, etc.

  10. Signature of fractionally charged projectile fragments in /sup 24/Mg-emulsion interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.; Roy, J.; Mukherjee, A.; Ghosh, A.

    1987-07-01

    From the measurement of charge of the projectile fragments produced in /sup 24/Mg-emulsion nuclei at 4.5 (GeV/c)/N, an indication of the existence of charges Z = 8/3 and 5/3 among the projectile fragments was obtained. The measurement was based on the lacunarity study of the linear structure of the ionizing track, and the percentage abundance of Z = 8/3 and 5/3 has found to be consistent with the relative abundance of anomalons.

  11. Fast-projectile stopping power of quantal multicomponent strongly coupled plasmas.

    Science.gov (United States)

    Ballester, D; Tkachenko, I M

    2008-08-15

    The Bethe-Larkin formula for the fast-projectile stopping power is extended to multicomponent plasmas. The results are to contribute to the correct interpretation of the experimental data, which could permit us to test existing and future models of thermodynamic, static, and dynamic characteristics of strongly coupled Coulomb systems.

  12. Wake effects of a charged projectile flying above a magnetized metal film

    Science.gov (United States)

    Jafari, M. R.

    2017-03-01

    This research deals with covering of a metal film on the semi-infinite dielectric in the presence of a weak external magnetic field. A charged projectile has been considered flying above the thin film. The surface wave frequencies of the system were derived by means of the quantum hydrodynamic theory through the appropriate boundary conditions. The energy loss of charged particle in the present system was also investigated. It is found that the external magnetic field modifies the distribution of electron gas density as well as the energy loss of flying charged particle.

  13. Electron correlations in single-electron capture into any state of fast projectiles from heliumlike atomic systems

    Science.gov (United States)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2013-11-01

    State-selective and total single-electron capture cross sections in fast collisions of a bare projectile with a heliumlike target are examined in the four-body formalism. A special emphasis is given to a proper inclusion of dynamic electron-electron correlation effects. For this purpose, the post form of the four-body boundary-corrected first Born approximation (CB1-4B) is utilized. With regard to our related previous study, where the prior version has been considered, in the present work an extensive analytical study of the post-transition amplitude for electron capture into the arbitrary final states nflfmf of the projectile is carried out. The post-transition amplitude for single charge exchange encompassing symmetric and asymmetric collisions is derived in terms of five-dimensional integrals over real variables. The dielectronic interaction V12=1/r12≡1/|r⃗1-r⃗2| explicitly appears in the perturbation potential Vf of the post-transition probability amplitude Tif+, such that the CB1-4B method can provide information about the relative significance of the dynamic interelectron correlation in the collisions under study. An illustrative computation is performed involving state-selective and total single capture cross sections for the p-He collisions at intermediate and high impact energies. The so-called post-prior discrepancy, which plagues almost all the existing distorted wave approximations, is presently shown to be practically nonexistent in the CB1-4B method. The validity of our findings is critically assessed in comparisons with the available experimental data for both state-selective and total cross sections summed over all the discrete energy levels of the hydrogenlike atom formed with the projectile. Overall, excellent performance of the CB1-4B method is recorded, thus robustly establishing this formalism as the leading first-order description of high-energy single charge exchange, which is a collision of paramount theoretical and practical

  14. Effects of projectile track charging on the H - secondary ion velocity distribution

    Science.gov (United States)

    Iza, P.; Farenzena, L. S.; da Silveira, E. F.

    2007-03-01

    The bombardment of insulating targets by MeV projectiles produces a positive track delivering secondary electrons to the solid. These electrons are eventually captured by adsorbed hydrogen-containing molecules, inducing fragmentation and initiating the H- secondary ion emission. The dynamics of this process is very sensitive to the track electric field and depends on the emission site and on the H- initial velocity. In this work, a model, based on a time-depending track potential followed by secondary electron induced desorption - SEID, is employed to describe the production and dynamics of H- secondary ion emission. It is shown that depending on how fast the track neutralization occurs, the movement of H- ions may be accelerated, decelerated or even aborted. Trajectories, angular distributions and energy distributions are predicted and compared with experimental data obtained for water ice bombarded by 1.7 MeV nitrogen ions.

  15. Projectile- and charge-state-dependent electron yields from ion penetration of solids as a probe of preequilibrium stopping power

    DEFF Research Database (Denmark)

    Rothard, H.; Schou, Jørgen; Groeneveld, K.-O.

    1992-01-01

    Kinetic electron-emission yields gamma from swift ion penetration of solids are proportional to the (electronic) stopping power gamma approximately Beta-S*, if the preequilibrium evolution of the charge and excitation states of the positively charged ions is taken into account. We show...... that the concept of the preequilibrium near-surface stopping S* can be applied successfully to describe the dependence of the ion-induced electron yields on the projectile atomic number Z(P) and on the charge states q(i) of the incoming ions. We discuss the implementation of this concept into Schou's transport...

  16. Thermal Implications for Extreme Fast Charge

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  17. Fast charging of lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Calasanzio, D. (FIAMM SpA, Montecchio Maggiore (Italy)); Maja, M. (Polytechnical Univ., Turin (Italy). Dept. of Materials Science and Chemical Engineering); Spinelli, P. (Polytechnical Univ., Turin (Italy). Dept. of Materials Science and Chemical Engineering)

    1993-10-15

    A key point in the development of storage batteries for electric vehicles (EVs) is the possibility for fast recharging. It is widely recognized that the lead/acid system represents an excellent candidate for EVs because of the low cost, durability, and expectance of improvements in the near future. The viability of the lead/acid battery for EV applications would be greatly enhanced if fast recharging could be applied to the system without shortening its life. The present paper reports the results obtained by simulating the charging behaviour with a mathematical model that is capable of predicting the behaviour of nonconventional lead/acid cells both on discharge and recharge. The effects of important parameters such as plate dimensions, acid distribution, and porosity of the active mass are taken into account. The data obtained with the simulation are compared with results got from fast-recharge testing of commercial batteries. (orig.)

  18. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see

  19. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment

  20. Charged projectile spectrometry using solid-state nuclear track detector of the PM-355 type

    Directory of Open Access Journals (Sweden)

    Malinowska Aneta

    2015-09-01

    Full Text Available To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.

  1. Research on the fast charging of VRLA

    Directory of Open Access Journals (Sweden)

    Xiao Qing

    2012-11-01

    Full Text Available VRLA can be the energy storing device of the HEV (Hybrid Electric Vehicle, photovoltaic system and so on. The most important factor that restricts the improvement of these fields is the service lifetime of the battery cannot reach the expectation. In the charging process, traditional charging method has serious polarization phenomenon. It will decrease its service life. Aimed at the purpose of reducing the polarization phenomenon, this paper proposed the changing current depolarization pulse charging method which is combining the dynamic model of the battery on the basis of analyzing the existential issues in the pulse charging method. By building the hardware circuit to achieve the function and verify their feasibility. The results indicate that, compared with pulse charging method, the new method makes battery fully charged in shorter time obviously and the temperature of batteries rise more slowly.

  2. Interactions of a Projectile Charge with Two-Dimensional Dusty Plasmas

    Institute of Scientific and Technical Information of China (English)

    JIANG Ke; HOU Lu-Jing; WANG You-Nian

    2005-01-01

    @@ The interactions of a moving charge (namely, one additional dust particle) with a two-dimensional dusty plasma in gas discharge experiment are studied by means of the linearized hydrodynamic theory for the dusty plasma.Expressions are derived for the induced potential and the stopping power of the moving charge, when the charge flights parallel to and over the dust layer. The numerical results are obtained for different discharge pressures and different distances from the moving charge to the dust layer. The results show that the moving charge excites a V-shaped disturbance of induced potential or the so-called Mach cone in the dust layer, while the charge itself loses its energy.

  3. Impact of Fast Charging on Life of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  4. The Dependence of Average Multiplicity of Produced Charged Particles on Interacting Projectile Nucleons in Nuclear Collisions

    Directory of Open Access Journals (Sweden)

    Mohammad Ayaz Ahmad

    2016-11-01

    Full Text Available In the present articles an attempt has been made for the determination of multiplicity distributions of the secondary charged particles produced in the central region of relativistic heavy ion collisions. Due to sophisticated measurement in the nuclear emulsion experiment only some particles having special criteria could be selected as central collision events with consenting accuracy.

  5. Bi-Directional Fast Charging Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  6. Self- Balanced Charge Pump with Fast Lock Circuit

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiang; ZOU Xuecheng; XIAO Dingzhong; LIU Sanqing

    2006-01-01

    A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25 μm 1P5M complementary metal-oxide semiconductor (CMOS) process with a 2.5 V supply voltage. HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error. Incorporated fast lock circuit can shorten start-up time to below 300 ns.

  7. Transfer ionization in collisions with a fast highly charged ion.

    Science.gov (United States)

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions.

  8. Comparison of Standard and Fast Charging Methods for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2014-01-01

    Full Text Available This paper describes a comparison of standard and fast charging methods used in the field of electric vehicles and also comparison of their efficiency in terms of electrical energy consumption. The comparison was performed on three-phase buck converter, which was designed for EV’s fast charging station. The results were obtained by both mathematical and simulation methods. The laboratory model of entire physical application, which will be further used for simulation results verification, is being built in these days.

  9. Model Predictive Control-Based Fast Charging for Vehicular Batteries

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-08-01

    Full Text Available Battery fast charging is one of the most significant and difficult techniques affecting the commercialization of electric vehicles (EVs. In this paper, we propose a fast charge framework based on model predictive control, with the aim of simultaneously reducing the charge duration, which represents the out-of-service time of vehicles, and the increase in temperature, which represents safety and energy efficiency during the charge process. The RC model is employed to predict the future State of Charge (SOC. A single mode lumped-parameter thermal model and a neural network trained by real experimental data are also applied to predict the future temperature in simulations and experiments respectively. A genetic algorithm is then applied to find the best charge sequence under a specified fitness function, which consists of two objectives: minimizing the charging duration and minimizing the increase in temperature. Both simulation and experiment demonstrate that the Pareto front of the proposed method dominates that of the most popular constant current constant voltage (CCCV charge method.

  10. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect; Etude de la pulverisation du dioxyde d'uranium induite par des ions lourds multicharges de basse et tres basse energie cinetique; effet de la charge du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Haranger, F

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  11. Charge exchange spectroscopy as a fast ion diagnostic on TEXTORa)

    Science.gov (United States)

    Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.; Nielsen, S. K.; Marchuk, O.

    2008-10-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the Dα spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion Dα spectrum obtained with the new diagnostic is discussed.

  12. Fast charging self-powered electric double layer capacitor

    Science.gov (United States)

    Parida, Kaushik; Bhavanasi, Venkateswarlu; Kumar, Vipin; Wang, Jiangxin; Lee, Pooi See

    2017-02-01

    Self-powered electrochemical energy storage devices, which store energy upon application of mechanical force, have emerged as a promising technology for the realization of autonomous systems for maintenance-free, independent and multifunctional operations. However, the existing state-of-the-art technology demonstrates slow self-charging due to slow Faradaic reactions and intercalation mechanism. Here, we report a fast self-charging, self-powered electrochemical energy storage device owing to the formation of an electric double layer with fast adsorption and desorption of ions at the carbon nanotube (CNT) electrode upon application of mechanical force. The device charges up to 70 mV from the open-circuit potential, storing a capacitance of 95 μFcm-2 upon application of a mechanical pressure of 70 N at a frequency of 5 Hz. More importantly, it takes less than 10 s to achieve 90% of the increment in the potential (60 mV), which is more than one order of magnitude faster than all of the previously reported self-powered energy storage devices.

  13. Fast electronic resistance switching involving hidden charge density wave states

    Science.gov (United States)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  14. Hybrid supercapacitor-battery materials for fast electrochemical charge storage.

    Science.gov (United States)

    Vlad, A; Singh, N; Rolland, J; Melinte, S; Ajayan, P M; Gohy, J-F

    2014-03-07

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles--bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents.

  15. Probabilistic modeling of nodal electric vehicle load due to fast charging stations

    DEFF Research Database (Denmark)

    Tang, Difei; Wang, Peng; Wu, Qiuwei

    2016-01-01

    station into consideration. Fuzzy logic inference system is applied to simulate the charging decision of EV drivers at fast charging station. Due to increasing EV loads in power system, the potential traffic congestion in fast charging stations is modeled and evaluated by queuing theory with spatial...

  16. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    Directory of Open Access Journals (Sweden)

    Forero Camacho Oscar Mauricio

    2016-01-01

    Full Text Available Electric Vehicles (EV technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents the development of a test platform, including three Li-ion batteries designed for EV applications, and three associated bi-directional power converters, for testing impacts on different advanced loadings of EV batteries. Different charging algorithms/profiles have been tested, including constant current and power, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages of both tests in terms of regulation of the aggregated local power, power capacity and the power exchange with the grid. The smart charging tests performed have demonstrated that even with a simple control algorithm, without any forecasting, it is possible to provide the required charging and at the same time the power system services, reducing the peak power and the energy losses in the power connection line of the power exchange with the national grid.

  17. Singly and Doubly Charged Projectile Fragments in Nucleus-Emulsion Collisions at Dubna Energy in the Framework of the Multi-Source Model

    Institute of Scientific and Technical Information of China (English)

    WANG Er-Qin; LIU Fu-Hu; Magda A.Rahim; S.Fakhraddin; SUN Jian-Xin

    2011-01-01

    @@ The multiplicity distributions of projectile fragments emitted in interactions of different nuclei with emulsion are studied by using a multi-source model.Our calculated results show that the projectile fragments can be described by the model and each source contributes an exponential distribution.As the weighted sum of the folding result of many exponential distributions,a multi-component Erlang distribution is used to describe the experimental data.The relationship between the height(or width)of the distribution and the mass of the incident projectile,as well as the dependence of projectile fragments on target groups,are investigated too.

  18. MV and LV Residential Grid Impact of Combined Slow and Fast Charging of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Niels Leemput

    2015-03-01

    Full Text Available This article investigates the combined low voltage (LV and medium voltage (MV residential grid impact for slow and fast electric vehicle (EV charging, for an increasing local penetration rate and for different residential slow charging strategies. A realistic case study for a Flemish urban distribution grid is used, for which three residential slow charging strategies are modeled: uncoordinated charging, residential off-peak charging, and EV-based peak shaving. For each slow charging strategy, the EV hosting capacity is determined, with and without the possibility of fast charging, while keeping the grid within its operating limits. The results show that the distribution grid impact is much less sensitive to the presence of fast charging compared to the slow charging strategy. EV-based peak shaving results in the lowest grid impact, allowing for the highest EV hosting capacity. Residential off-peak charging has the highest grid impact, due the load synchronization effect that occurs, resulting in the lowest EV hosting capacity. Therefore, the EV users should be incentivized to charge their EVs in a more grid-friendly manner when the local EV penetration rate becomes significant, as this increases the EV hosting capacity much more than the presence of fast charging decreases it.

  19. Probing Young-type interference effect on angular distributions of e-DDCS using fast electrons as projectile

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S; Tribedi, L C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Stia, C R; Fojon, O A; Rivarola, R D, E-mail: lokesh@tifr.res.i [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario (Argentina)

    2009-11-15

    The energy and angular distributions of electron double differential cross sections (DDCS) of H{sub 2} and He are measured for fast electron collision.The measured data are compared with recently developed theoretical calculations. The observed distributions of H{sub 2} are explained in terms of interference effect by comparing with single center He and atomic hydrogen. We show experimentally by comparing with He, that partial constructive interference exists in soft and binary collision regions of H{sub 2} spectra.

  20. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A; Gotti, C; Maino, M; Pessina, G, E-mail: claudio.gotti@mib.infn.it [INFN - Sezione di Milano-Bicocca, I-20126, Milano (Italy)

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  1. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Science.gov (United States)

    Giachero, A.; Gotti, C.; Maino, M.; Pessina, G.

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a "recipe" to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  2. Ohm's law in the fast lane: general relatiivistic charge dynamics

    Science.gov (United States)

    Meier, D.

    2004-01-01

    Fully relativistic and causal equations for the flow of charge in curved spacetime are derived. It is believed that this is the first set of equations to be published that correctly describes the flow of charge, as well as the evolution of the electromagnetic field, in highly dynamical relativistic environments on timescales much shorter than the collapse time (GM/c3).

  3. Fast and sensitive detection of an oscillating charge

    Science.gov (United States)

    Bian, X.; Milne, W. I.; Hasko, D. G.

    2015-07-01

    We investigate the high-frequency operation of a percolation field effect transistor to monitor microwave excited single trapped charge. Readout is accomplished by measuring the effect of the polarization field associated with the oscillating charge on the AC signal generated in the channel due to charge pumping. This approach is sensitive to the relative phase between the polarization field and the pumped current, which is different from the conventional approach relying on the amplitude only. Therefore, despite the very small influence of the single oscillating trapped electron, a large signal can be detected. Experimental results show large improvement in both signal-to-noise ratio and measurement bandwidth.

  4. Fast ethylamine gas sensing based on intermolecular charge-transfer complexation

    Institute of Scientific and Technical Information of China (English)

    Eun Mi Lee; Seon Young Gwon; Young A Son; Sung Hoon Kim

    2012-01-01

    We have investigated the fast ethylamine gas sensing of 2-chloro-3,5-dinitrobenzotrifluoride (CDBF) loaded poly(acrylonitrile)nanofiber based on an intermolecular charge-transfer complexation.Reversible response and recovery were achieved using alternating gas exposure.This system shows a fast ethylamine gas sensing within 0.4 s.

  5. 30-MM Tubular Projectile

    Science.gov (United States)

    1984-10-01

    Suiza tubular projectile 20 9. Inspection of Hispano Suiza sabot 21 10. Inspection of GAU-8 sabot 22 11. Firing data - 30-rn tubular projectile (Hispano... Suiza 23 copper banded) 12. Firing data - 30-m tubular projectile (GAU-8 plastic 24 banded) 13. Firing data - 30-m tubular projectile (GAU-8 copper 25...42 13. In-flight Hispano Suiza tubular projectiles 43 14. In-flight C4U-8 (plastic) tubular projectile 44 15. In-flight GCU-8 (copper) tubular

  6. Electron capture collisions involving low-energy highly-stripped projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Cocke, C.L.; Gray, T.J.; Justiniano, E.; Can, C.; Waggoner, B.; Varghese, S.L.; Mann, R. (Kansas State Univ., Manhattan (USA). Dept. of Physics)

    1983-01-01

    Recoil ions produced by fast-ion bombardment of dilute gases are in use at Kansas State University as a source of low-energy highly-charged ions to study electron capture by these projectiles on neutral targets in the 10/sup 6/-10/sup 7/ cm s/sup -1/ velocity range. A progress report on several phases of this program is summarized.

  7. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  8. Projectile Motion Details.

    Science.gov (United States)

    Schnick, Jeffrey W.

    1994-01-01

    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  9. Flywheel-Based Fast Charging Station – FFCS for Electric Vehicles and Public Transportation

    Science.gov (United States)

    Gabbar, Hossam A.; Othman, Ahmed M.

    2017-08-01

    This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”

  10. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Burton, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  11. Planning Minimum Interurban Fast Charging Infrastructure for Electric Vehicles: Methodology and Application to Spain

    Directory of Open Access Journals (Sweden)

    Antonio Colmenar-Santos

    2014-02-01

    Full Text Available The goal of the research is to assess the minimum requirement of fast charging infrastructure to allow country-wide interurban electric vehicle (EV mobility. Charging times comparable to fueling times in conventional internal combustion vehicles are nowadays feasible, given the current availability of fast charging technologies. The main contribution of this paper is the analysis of the planning method and the investment requirements for the necessary infrastructure, including the definition of the Maximum Distance between Fast Charge (MDFC and the Basic Highway Charging Infrastructure (BHCI concepts. According to the calculations, distance between stations will be region-dependent, influenced primarily by weather conditions. The study considers that the initial investment should be sufficient to promote the EV adoption, proposing an initial state-financed public infrastructure and, once the adoption rate for EVs increases, additional infrastructure will be likely developed through private investment. The Spanish network of state highways is used as a case study to demonstrate the methodology and calculate the investment required. Further, the results are discussed and quantitatively compared to other incentives and policies supporting EV technology adoption in the light-vehicle sector.

  12. Light charged particle and neutron velocity spectra in coincidence with projectile fragments in the reaction sup 4 sup 0 Ar(44 A MeV)+ sup 2 sup 7 Al

    CERN Document Server

    Lanzanò, G; Geraci, M; Pagano, A; Aiello, S; Cunsolo, A; Fonte, R; Foti, A; Sperduto, M L; Volant, C; Charvet, J L; Dayras, R; Legrain, R

    2001-01-01

    We present a three source analysis of velocity spectra of light charged particles (LCP) and neutrons emitted in the reaction sup 4 sup 0 Ar+ sup 2 sup 7 Al at 44 A MeV. The light particle (LP) velocity spectra are studied as a function of the detection angle (1.5 deg. charge of the forward detected projectile-like fragment (PLF). The temperature parameter, the velocity and the intensity of each source are extracted as a function of the PLF charge. While the temperature parameters for PLF and target-like fragments (TLF) are very similar and show a dependence on the PLF charge, the temperature parameter for the intermediate source is approximately 15 MeV, independent of the PLF charge. Comparison with temperature values extracted from double isotopic ratios, shows an agreement only between the temperature values extracted from formula involving sup 3 He, sup 4 He, d, t ratios and the PLF proton temperature parameter. The characteristics of the PLF sources are derived. Present ...

  13. Analytical assessment of the thermal behavior of nickel-metal hydride batteries during fast charging

    Science.gov (United States)

    Taheri, Peyman; Yazdanpour, Maryam; Bahrami, Majid

    2014-01-01

    A novel distributed transient thermal model is proposed to investigate the thermal behavior of nickel-metal hydride (NiMH) batteries under fast-charging processes at constant currents. Based on the method of integral transformation, a series-form solution for the temperature field inside the battery core is obtained that takes account for orthotropic heat conduction, transient heat generation, and convective heat dissipation at surfaces of the battery. The accuracy of the developed theoretical model is confirmed through comparisons with numerical and experimental data for a sample 30 ampere-hour NiMH battery. The comparisons show that even the first term of the series solution fairly predicts the temperature field with the modest numerical cost. The thermal model is also employed to define an efficiency for charging processes. Our calculations confirm that the charging efficiency decreases as the charging current increases.

  14. Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects

    Science.gov (United States)

    Kolomeisky, Eugene B.; Straley, Joseph P.

    2017-01-01

    Pristine monolayer graphene exhibits very poor screening because the density of states vanishes at the Dirac point. As a result, charge relaxation is controlled by the effects of zero-point motion (rather than by the Coulomb interaction) over a wide range of parameters. Combined with the fact that graphene possesses finite intrinsic conductivity, this leads to a regime of relaxation described by a nonlinear diffusion equation with a diffusion coefficient that diverges at zero charge density. Some consequences of this fast diffusion are self-similar superdiffusive regimes of relaxation, the development of a charge depleted region at the interface between electron- and hole-rich regions, and finite extinction times for periodic charge profiles.

  15. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  16. Teaching Projectile Motion

    Science.gov (United States)

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  17. Projectile Motion Revisited.

    Science.gov (United States)

    Lucie, Pierre

    1979-01-01

    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  18. Hybrid armature projectile

    Science.gov (United States)

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  19. Thermal Analysis of a Fast Charging Technique for a High Power Lithium-Ion Cell

    Directory of Open Access Journals (Sweden)

    Victor Manuel García Fernández

    2016-11-01

    Full Text Available The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-constant voltage (CV/fast discharge (4C in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a thermal model. Heat generation is dominated by the irreversible component associated with cell overpotential, although evidence of the reversible component is also observed, associated with the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell-specific heats and the cell materials’ thickness. The model adjustment of the experimental data during the 2 min resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.

  20. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Science.gov (United States)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  1. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  2. Impact of a Fast-track Esophagectomy Protocol on Esophageal Cancer Patient Outcomes and Hospital Charges

    DEFF Research Database (Denmark)

    Shewale, Jitesh B; Correa, Arlene M; Baker, Carla M

    2015-01-01

    OBJECTIVE: To evaluate the effects of a fast-track esophagectomy protocol (FTEP) on esophageal cancer patients' safety, length of hospital stay (LOS), and hospital charges. BACKGROUND: FTEP involved transferring patients to the telemetry unit instead of the surgical intensive care unit (SICU) after.......655; 95% confidence interval = 0.456, 0.942; P = 0.022). In addition, the median hospital charges associated with primary admission and readmission within 90 days for group B ($65,649) were lower than that for group A ($79,117; P

  3. Measurement of inelasticities for charge correlated multiple ionization of Ne by fast C/sup 6 +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Miller, P.D.

    1987-01-01

    A description of measurements of inelasticities for multiple ionization in fast-single collisions is given for the example of 10 MeV C/sup 6 +/ ions with Ne atoms. The degree of multiple ionization was determined by time-of-flight of the recoil ions, extracted by an electric field in coincidence with the projectiles. Their energy loss for a given degree of multiple ionization was measured with a position-sensitive silicon detector in the focal plane of an Elbek magnetic spectrograph with an energy resolution of about 10/sup -4/.

  4. 仿形钻削与干冰喷射复合倒空弹丸装药自动生产线%Copying Drilling and Dry Ice Blasting Composite Projectile Charge Emptied Automatic Production Line

    Institute of Scientific and Technical Information of China (English)

    罗同杰; 张保良

    2016-01-01

    In view of the shortcomings of existing process of removing shell charge in terms of disposing various explosives and treating “three wastes” (waste gas, waste water and waste residues), this paper proposes an automatic integrated plant that can removing various shell charges by means of profiling drilling and dry ice jetting. It explains the concept and the major structural components of the system, which can be automatically controlled by Siemens PLCS7-200. The plant will be flexible for disposing different types of projectiles by changing the machinery and tools. Analysis shows that the automatic plant can empty various types of projectiles filled with different kinds of explosives efficiently and environment-friendly, and the recycled explosives and shells (empty) are good in quality.%针对国内现有倒空弹丸装药工艺方法在处理所装炸药类别和治理“三废”方面存在的局限性,介绍一种适用于各类炸药从弹丸中倒出的仿形钻削与干冰喷射复合自动生产线。论述了生产线的原理及主要组成结构,通过采用西门子 PLCS7-200型控制器,实现了生产线的自动化控制;更换相应工装,满足不同弹丸的柔性化生产。分析结果表明:该自动生产线可倒空多类别炸药装填的不同弹丸,效率高、无污染;倒出回收的炸药和倒空的弹体品质好。

  5. Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

  6. A monolithic charge-to-amplitude converter (QAC) chip for fast readout of photomultiplier

    CERN Document Server

    Inaba, S; Takamatsu, K; Inaba, M; Baba, T; Sugonyaev, V P; Melebeck, T; Van Bogget, U

    2000-01-01

    A fast charge-to-amplitude converter (QAC) chip has been developed for the readout electronics of the electromagnetic calorimeter (ECAL) of the COMPASS experiment at CERN SPS. It is fabricated using a new advanced complementary bipolar process from Harris Semiconductor with intrinsic radiation hardness. The new QAC chip performs the conversion of fast current pulses generated by a photomultiplier tube (PMT) into voltage signals. The output voltage of the QAC is directly proportional to the input current signal. The circuit block diagram, main features and characteristics of the chip are described. Simulation curves as well as test results of QAC prototypes are presented. They show excellent performances for the COMPASS experiment as well as for uses in high energy and nuclear physics experiments to manage fast current signals.

  7. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...... any digital communication between the grid-tied and FESS converters. Detailed system modeling and dynamics analysis of the controller are carried out for the different operating modes of the FCS system. A lab-scale prototype was built to validate the proposal. The presented experimental results proved...... power ancillary service to the overhead power system. In that sense, when the active power is not being extracted from the grid, FESS provides the power required to sustain the continuous charging process of PEV battery. A key characteristic of the whole control system is that it is able to work without...

  8. Projectile Motion with Mathematica.

    Science.gov (United States)

    de Alwis, Tilak

    2000-01-01

    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  9. A Projectile Motion Bullseye.

    Science.gov (United States)

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  10. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  11. Motion-based, high-yielding, and fast separation of different charged organics in water.

    Science.gov (United States)

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.

  12. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  13. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  14. Charge exchange fast neutral measurement with natural diamond detectors in neon plasma on LHD

    Science.gov (United States)

    Saida, T.; Sasao, M.; Isobe, M.; Krasilnikov, A. V.

    2003-03-01

    Charge exchange (CX) fast neutral spectra produced by ion cyclotron resonance frequency hydrogen minority heating in neon and helium majority plasmas sustained by neutral beam injection were measured with perpendicular Natural Diamond Detectors during the fifth campaign in 2002 on large helical devices (LHDs). It was observed that there were differences between fast neutral spectra shapes in neon plasma and those in helium of the same discharge condition with similar plasma parameters. Dominant CX processes in neon and helium plasmas were studied for ionization components from outside of the last closed flux surface. High-energy proton spectra were obtained by taking account of each charge state distribution and responsible charge exchange cross sections. The high-energy proton tail formations in both plasmas were similar for the same heating regime. The relaxation time tendencies of the effective temperatures of a high-energy proton have also shown no differences, indicating that the acceleration and confinement of energetic ions in LHDs are similar in neon and helium plasmas.

  15. A charge-collection method for measurements of pulsed fast-neutron flux

    CERN Document Server

    Ouyang, X P; Ho, Y K; Zhang, Z B

    2002-01-01

    A charge-collection method for measuring the flux of pulsed fast neutrons in current mode has been developed, which is based on the well-known recoil-proton method combined with ion-induced secondary electron emission from solid surfaces. The detection unit consists of four elements: an n-p converter, an absorber, a collector, and a rear insulator. The assembly does not require vacuum for operation. Recoil protons from the n-p converter and the secondary electrons induced by the passing protons on the interface of the absorber and the collector contribute to the detector output signal. By properly choosing the materials and the combination of the absorber and the collector, the fraction of secondary electrons in the output signal can be determined experimentally. This detection concept allows one to design a medium type of fast-neutron detector for measurements of extremely intense pulsed neutron flux with a number of advantages over the existing systems.

  16. Fast Charge Battery Electric Transit Bus In-Use Fleet Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Eudy, Leslie; Kelly, Kenneth

    2016-05-06

    The focus of this interim fleet evaluation is to characterize and evaluate the operating behavior of Foothill Transit's fast charge battery electric buses (BEBs). Future research will compare the BEBs' performance to conventional vehicles. In an effort to better understand the impacts of drive cycle characteristics on advanced vehicle technologies, researchers at the National Renewable Energy Laboratory analyzed over 148,000 km of in-use operational data, including driving and charging events. This analysis provides an unbiased evaluation of advanced vehicle technologies in real-world operation demonstrating the importance of understanding the effects of road grade and heating, ventilating and air conditioning requirements when deploying electric vehicles. The results of this analysis show that the Proterra BE35 demonstrated an operating energy efficiency of 1.34 kWh/km over the data reporting period.

  17. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  18. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers....... Distributed DC-bus signaling (DBS) and method resistive virtual impedance are employed in the power coordination of grid and flywheel converters, and a centralized secondary controller generates DC voltage correction term to adjust the local voltage set point. The control system is able to realize the power...... control strategy....

  19. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.

  20. Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.; Starostin, A. N.; Trushkin, N. I.; Filippov, A. V. [State Research Center of Russian Federation, Troitsk Institute for Innovation and Thermonuclear Research (Russian Federation)

    2017-02-15

    The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculated when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.

  1. Study of Nuclear Moments and Mean Square Charge Radii by Collinear Fast-Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    The collinear fast-beam laser technique is used to measure atomic hyperfine structures and isotope shifts of unstable nuclides produced at ISOLDE. This gives access to basic nuclear ground-state and isomeric-state properties such as spins, magnetic dipole and electric quadrupole moments, and the variation of the nuclear mean square charge radius within a sequence of isotopes. \\\\ \\\\ Among the various techniques used for this purpose, the present approach is of greatest versatility, due to the direct use of the beams from the isotope separator. Their phase-space properties are exploited to achieve high sensitivity and resolution. The optical spectra of neutral atoms are made accessible by converting the ion beams into fast atomic beams. This is accomplished in the charge-exchange cell which is kept at variable potential ($\\pm$10~kV) for Doppler-tuning of the effective laser wavelength. The basic optical resolution of 10$^{-8}$ requires a 10$^{-5}$ stability of the 60~kV main acceleration voltage and low energy ...

  2. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  3. In-Use Fleet Evaluation of Fast-Charge Battery Electric Transit Buses

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Kelly, Kenneth; Eudy; Leslie

    2016-06-27

    With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2015, NREL launched an in-service evaluation of 12 battery electric buses (BEBs) compared to conventional compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. The study aims to improve understanding of the overall usage and effectiveness of fast-charge BEBs and associated charging infrastructure in transit operation. To date, NREL researchers have analyzed more than 148,000 km of in-use operational data, including driving and charging events. Foothill Transit purchased the BEBs with grant funding from the Federal Transit Administration's Transit Investments for Greenhouse Gas and Energy Reduction Program.

  4. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading of 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.

  5. Collision induced fragmentation of fast molecular ions in solids and gases. [Review, wake effects, excited states

    Energy Technology Data Exchange (ETDEWEB)

    Gemmell, D S

    1979-01-01

    A brief review is given of recent high resolution measurements on fragments arising from the collision-induced dissociation of fast (MeV) molecular ions. For solid targets, strong wake effects are observed. For gaseous targets, excited electronic states of the projectile ions play an important role. Measurements of this type provide useful information on the charge states of fast ions traversing matter. The experimental techniques show promise as a unique method for determining the geometrical structures of the molecular-ion projectiles. 41 references.

  6. Ionization and charge transfer in high-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.; Berkner, K.H.; Stearns, J.W.; Schmidt-Boecking, H.; Kelbch, S.; Ullrich, J.; Hagmann, S.; Richard, P.; Stockli, M.P.; Graham, W.G.

    1986-11-01

    Electron capture and loss by fast highly charged ions in a gas target, and ionization of the target by passage of the fast projectile beam, are fundamental processes in atomic physics. These processes, along with excitation, can be experimentally studied separately (''singles'') or together (''coincidence''). This paper is a review of recent results on singles measurements for electron capture and loss and for target ionization, for velocities which are generally high relative to the active electron, including recent ionization measurements for a nearly relativistic projectile. 11 refs., 6 figs.

  7. Study of secondary electron emission from thin carbon targets with swift charged particles: heavy ions, hydrogen ions; Etude experimentale de l`emission electronique secondaire de cibles minces de carbone sous l`impact de projectiles rapides: ions lourds, ions hydrogene (atomiques, moleculaires ou sous forme d`agregats)

    Energy Technology Data Exchange (ETDEWEB)

    Billebaud, A.

    1995-07-12

    The main subject of this work is the study of electron emission from the two surfaces of thin solid targets bombarded with swift charged particles. The slowing down of swift ions in matter is mainly due to inelastic interaction with target electrons (ionization, excitation): the energy transfer to target electrons is responsible for the secondary electron emission process. The phenomenological and theoretical descriptions of this phenomena are the subject of the first chapter. We focused on secondary electron emission induced by different kind of projectiles on thin carbon foils. In chapter two we describe hydrogen cluster induced electron emission measurement between 40 and 120 keV/proton. These projectiles, composed of several atoms, allowed us to study and highlight collective effects of the electron emission process. We extended our study of electron emission to molecular (H{sub 2}{sup +}, H{sub 3}{sup +}) and composite (H{sup -}, H{sup 0}) projectiles at higher energies (<= 2 MeV): we have designed an experimental set-up devoted to electron emission statistics measurements which allowed us to study, among others things, the role of projectile electrons in secondary electron emission. This experiment is described in the third chapter. Finally, the fourth chapter describes new measurements of electron emission induced by energetic (13 MeV/u) and highly charged argon ion provided by the medium energy beam line (SME) of GANIL (Caen), which have been analyzed in the framework of a semi-empirical model of secondary electron emission. This set of experiments brings new results on composite projectile interaction with matter, and on the consequences of high energy deposition in solids. (author).

  8. More on Projectile Motion.

    Science.gov (United States)

    Molina, M. I.

    2000-01-01

    Mathematically explains why the range of a projectile is most insensitive to aiming errors when the initial angle is close to 45 degrees, whereas other observables such as maximum height or flight time are most insensitive for near-vertical launching conditions. (WRM)

  9. The effect of mechanical relaxation on ultra-fast charge pulses in flexible epoxy resin nanocomposites

    Science.gov (United States)

    Montanari, G. C.; Xu, M.; Fabiani, D.; Dissado, L. A.

    2012-06-01

    Previously we have reported the existence of small-amplitude charge pulses in crosslinked Polyethylene (XLPE) and epoxy resin with a mobility several orders of magnitude higher than that found for the incoherent charge transport relevant to the steady state current. Here the relationship of this phenomenon to mechanical relaxation in the material is investigated by using a series of epoxy resin nanocomposites based on a resin that has its flexibility increased above that of the fully cured glassy epoxy network by the addition of a suitable flexibilizing chemical. Differential Scanning Calorimetry (DSC) measurements show that the stiffness of the nanocomposite is progressively increased as the nanoparticle concentration increases. Pulsed Electro-Acoustic (PEA) measurements reveal that both positive and negative fast charge pulses exist in the unfilled epoxy at 45 and 70°C under a field of 10 kV/mm with mobility 5×10-10 to 9×10-10 m2 V-1 s-1, amplitude between 2×10-5 and 3.6×10-5 C m-2 and repetition rates between 8 and 12 s-1. These values are reduced progressively as the nanoparticle concentration is increased from 0% in the unfilled epoxy. A β-mode mechanical relaxation is identified in the loss modulus by Dynamical Mechanical Analysis (DMA), whose activation energy moves to higher values with increasing nanoparticle concentration. It is shown that the repetition rates of both positive and negative pulses have similar values and are correlated with the β-mode activation energy; a similar correlation is found for the activation energy of the mobility of positive pulses. The correlation of the activation energy of the mobility of negative pulses and that of the β-mode is weaker although both show a progressive increase with nanoparticle concentration. The modification of the fast charge pulse properties by the mechanical stiffness of the epoxy nanocomposite is discussed in terms of the theory presented previously for their formation and transport.

  10. Experimental Research on Behavior of Composite Material Projectile Penetrating Concrete Target

    Institute of Scientific and Technical Information of China (English)

    ZHONG Weizhou; SONG Shuncheng; ZHANG Fangju; ZHANG Qingping; HUANG Xicheng; LI Sizhong; LU Yonggang

    2008-01-01

    Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336 m/s, 447 m/s and 517 m/s.The angles between the perpendicular of target surface and projectile axis are 0° and 30° .The thickness of concrete target is 200 mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete target without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile, if the density of metal is taken as 7.8 g/cm3.Comparing with metal projectile, low-density, high-strength composite material can lessen projectile weight, improve charge-weight ratio of detonator and enhance destructive powder.

  11. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    Science.gov (United States)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  12. Phase-locked loop design with fast-digital-calibration charge pump

    Science.gov (United States)

    Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji

    2016-02-01

    A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.

  13. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Eva González-Romera

    2011-09-01

    Full Text Available The expected increase in the penetration of electric vehicles (EV and plug-in hybrid electric vehicles (PHEV will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V mode, and also in vehicle-to-grid (V2G mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  14. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  15. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  16. Fragmentation of Pb-Projectiles at SPS Energies

    CERN Multimedia

    2002-01-01

    % EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...

  17. Projectile Base Flow Analysis

    Science.gov (United States)

    2007-11-02

    S) AND ADDRESS(ES) DCW Industries, Inc. 5354 Palm Drive La Canada, CA 91011 8. PERFORMING ORGANIZATION...REPORT NUMBER DCW -38-R-05 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office...Turbulence Modeling for CFD, Second Edition, DCW Industries, Inc., La Cañada, CA. Wilcox, D. C. (2001), “Projectile Base Flow Analysis,” DCW

  18. Skirted projectiles for railguns

    Science.gov (United States)

    Hawke, Ronald S.; Susoeff, Allan R.

    1994-01-01

    A single skirt projectile (20) having an insulating skirt (22) at its rear, or a dual trailing skirt projectile (30, 40, 50, 60) having an insulating skirt (32, 42, 52, 62) succeeded by an arc extinguishing skirt (34, 44, 54, 64), is accelerated by a railgun accelerator 10 having a pair of parallel conducting rails (1a, 1b) which are separated by insulating wall spacers (11). The insulating skirt (22, 32, 42, 52, 62) includes a plasma channel (38). The arc extinguishing skirt (34, 44, 54, 64) interrupts the conduction that occurs in the insulating skirt channel (38) by blocking the plasma arc (3) from conducting current from rail to rail (1a, 1b) at the rear of the projectile (30, 40, 50, 60). The arc extinguishing skirt may be comprised of two plates (36a, 36b) which form a horseshoe wherein the plates are parallel to the rails (1a, b); a chisel-shape design; cross-shaped, or it may be a cylindrical (64). The length of the insulating skirt channel is selected such that there is sufficient plasma in the channel to enable adequate current conduction between the rails (1a, 1b).

  19. S1-S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation.

    Science.gov (United States)

    Groome, James R; Winston, Vern

    2013-05-01

    The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.

  20. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  1. Measurement of Spin of Projectiles

    Directory of Open Access Journals (Sweden)

    S. R. Verma

    1989-01-01

    Full Text Available Hitherto the spin of the projectile has been measured with the help of spin loop method (for magnetised projectiles and Multishot Ballistic Synchro method (for magnetised and non-magnetised projectiles. This paper discusses the method of measurement of spinwith a single ballistic synchro picture; the advantage of this method is that it dispenses with elaborate and precise optical alignment, required for Multishot Ballistic Synchro method.

  2. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  3. INTERACTION OF FAST HYDROGEN IONIC CLUSTERS WITH MATTER

    OpenAIRE

    1988-01-01

    Fast ionic clusters Hn+ interact with matter in a specific way which is observed to deviate strongly from the interaction of atomic ions at the same velocity. We present some results obtained at Lyon about foil and gas interactions of hydrogen clusters (5 ≤ n ≤ 23) at projectile velocities close to the Bohr velocity, i.e. dynamics of the cluster fragmentation, charge state of atomic fragments and absolute dissociation cross sections in gas. We also discuss future experiments specially at high...

  4. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  5. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  6. Multiple ionization of neon induced by Li3+ and C3+ projectiles: influence of projectile screening in the ionization and electron capture channels

    Science.gov (United States)

    Ihani, J. S.; Luna, H.; Wolff, W.; Montenegro, E. C.

    2013-06-01

    Neq + (q = 1,2,3,4) ionization and charge exchange cross sections (total electron capture, single electron capture and transfer ionization) in the collisions with Li3+, with energies between 100 and 900 keV amu-1, and C3+, with energies between 250 and 500 keV amu-1 are reported. Bare Li3+ projectiles give a key benchmark to study the role of projectile screening in collisions involving dressed projectile ions, and the measurements have shown a strong screening effect for all n-fold recoil ion charge states in the ionization channel which, unexpectedly, does not appear for transfer ionization.

  7. Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein

    Directory of Open Access Journals (Sweden)

    Raiker Witter

    2015-01-01

    Full Text Available Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT. Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges of ab initio calculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation of R=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angle χ1 and small variations of χ2 of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism.

  8. DC Fast-Charging Stations for EVs Controlled by a Local Battery Storage in Low Voltage Grids

    DEFF Research Database (Denmark)

    Gjelaj, Marjan; Træholt, Chresten; Hashemi Toghroljerdi, Seyedmostafa

    2017-01-01

    Electric Vehicles (EVs) are representing a great opportunity for major car manufacturers to invest resources in new technologies in order to support sustainable transportation and the reduction of 퐂퐎ퟐ emissions, in particular in the metropolitan areas. In recent years, the increasing penetration...... is equipped with a bidirectional AC/DC converter for feeding power back to the grid, two lithium batteries and a DC/DC converter. The proposed solution decreases the charging time of EVs and facilitates the integration of fast chargers in existing low voltage (LV) grids. The charging station can also be used...

  9. Motion of a projectile in a rotating earth

    Directory of Open Access Journals (Sweden)

    B. K. Banerjee

    1957-10-01

    Full Text Available Semi-theoretical expressions for the corrections to be included in the Range Tables for rotation of the earth have been deduced and numerical values for 25 pd.., streamlined projectile fired with super charge have been calculated. The expressions are in good agreement with similar attempts by other workers.

  10. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source.

    Science.gov (United States)

    Krása, J; Velyhan, A; Margarone, D; Krouský, E; Krouský, L; Jungwirth, K; Rohlena, K; Ullschmied, J; Parys, P; Ryć, L; Wołowski, J

    2012-02-01

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

  11. Water Entry of Projectiles

    Science.gov (United States)

    Truscott, Tadd T.; Epps, Brenden P.; Belden, Jesse

    2014-01-01

    The free-surface impact of solid objects has been investigated for well over a century. This canonical problem is influenced by many physical parameters, including projectile geometry, material properties, fluid properties, and impact parameters. Through advances in high-speed imaging and visualization techniques, discoveries about the underlying physics have improved our understanding of these phenomena. Improvements to analytical and numerical models have led to critical insights into cavity formation, the depth and time of pinch-off, forces, and trajectories for myriad different impact parameters. This topic spans a wide range of regimes, from low-speed entry phenomena dominated by surface tension to high-speed ballistics, for which cavitation is important. This review surveys experimental, theoretical, and numerical studies over this broad range, utilizing canonical images where possible to enhance intuition and insight into the rich phenomena.

  12. Operation Modes of the Fast 60 kV Resonant Charging Power Supply for the LHC Inflectors

    CERN Document Server

    Barnes, M J; Carlier, E; Ducimetière, L; Jansson, U; Schröder, G; Vossenberg, Eugène B

    1997-01-01

    CERN, the European Laboratory for Particle Physics, is constructing a Large Hadron Collider (LHC) to be installed in the existing LEP tunnel of 27 km circumference. The LHC will accelerate two proton beams, injected at 450 GeV, in opposite directions and will collide them at a centre of mass energy of 14 TeV. The injection kicker systems will consist of four travelling wave type magnets and four pulse forming networks (PFN's) for each beam, discharged by thyratron switches. Resonant Charging Systems (RCS), located with the switches and PFN's in a gallery parallel to the LHC tunnel, are employed to charge the PFN's within 1 ms to 60 kV. The aim of this fast charging is to minimise the number of spontaneous firings of the thyratron.The stability and pulse to pulse reproducibility of the charging voltage must be maintained to a precision of ± 0.1%. Each resonant charging system consists of a 2.4 mF primary capacitor bank, charged to 2.5 kV, and connected via a Gate Turn-Off thyristor (GTO) and a 1:23 step-up tr...

  13. Alternative business models for establishing fast-charging stations - Part 2; Alternative forretningsmodeller for etablering av hurtigladestasjoner - Del 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This section of the report describes and evaluates potential business models for fast-charging stations. Business models are developed on the basis of market development for electric vehicles and electric vehicle usage patterns analyzed in Part 1 of the project. This report describes a series of models in both the early and maturity stage, where we have distinguished between different user segments and payment models. With the estimated trends in the car fleet and charger use, the prerequisites for profitable quick charging in the downtown area are good, while, due to high construction contribution, you must have a relatively high proportion of subscriptions and a high charge rate to obtain adequate finances in the corridor points.(auth)

  14. Protection from high-velocity projectiles

    Science.gov (United States)

    Gerasimov, A.; Pashkov, S.

    2012-08-01

    Creation of reliable system of target protection demands research of various ways of counteraction high-speed elongated projectiles. This paper considers the interaction of projectiles with plates and rods thrown towards by explosion. At contact projectiles and rods form a crosswise configuration. Deformation and destruction of projectiles reduce their penetrability and capacity to strike armor-target.

  15. FAST TRACK COMMUNICATION: Semi-classical central charge in topologically massive gravity

    Science.gov (United States)

    Compère, Geoffrey; Detournay, Stéphane

    2009-01-01

    It is shown that the warped black hole geometries discussed recently in arXiv:0807.3040 (Anninos et al 2008) admit an algebra of asymptotic symmetries isomorphic to the semi-direct product of a Virasoro algebra and an algebra of currents. The realization of this asymptotic symmetry by canonical charges allows us to find the central charge of the Virasoro algebra. The right-moving central charge c_R = -\\frac{(5\\hat{\

  16. A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets.

    Science.gov (United States)

    Mukherjee, Goutam; Patra, Niladri; Barua, Poranjyoti; Jayaram, B

    2011-04-15

    We report here a new and fast approach [Transferable Partial Atomic Charge Model (TPACM4)-upto four bonds] for deriving the partial atomic charges of small molecules for use in protein/DNA-ligand docking and scoring. We have created a look-up table of 5302 atom types to cover the chemical space of C, H, O, N, S, P, F, Cl, and Br atoms in small molecules together with their quantum mechanical RESP fit charges. The atom types defined span diverse plausible chemical environments of each atom in a molecule. The partial charge on any atom in a given molecule is then assigned by a reference to the look-up table. We tested the sensitivity of the TPACM4 partial charges in estimates of hydrogen bond dimers energies, solvation free energies and protein-ligand binding free energies. An average error ±1.11 kcal/mol and a correlation coefficient of 0.90 is obtained in the calculated protein-ligand binding free energies vis-à-vis an RMS error of ±1.02 kcal/mol and a correlation coefficient of 0.92 obtained with RESP fit charges in comparison to experiment. Similar accuracies are realized in predictions of hydrogen bond energies and solvation free energies of small molecules. For a molecule containing 50-55 atoms, the method takes on the order of milliseconds on a single processor machine to assign partial atomic charges. The TPACM4 programme has been web-enabled and made freely accessible at http://www.scfbio-iitd.res.in/software/drugdesign/charge.jsp.

  17. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    Science.gov (United States)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  18. CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN

    CERN Document Server

    INSPIRE-00293636; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Palladino, V.; Saracino, G.; Roscilli, L.; Vanzanella, A.; Corradi, G.; Tagnani, D.; Paglia, U.

    2016-03-29

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  19. Cost-Benefit Analysis of a Novel DC Fast-Charging Station with a Local Battery Storage for EVs

    DEFF Research Database (Denmark)

    Gjelaj, Marjan; Træholt, Chresten; Hashemi Toghroljerdi, Seyedmostafa

    2017-01-01

    models by increasing the size of the batteries. To satisfy EV load demand of the new EV models in urban areas the public DC Fast-Charging Station (DCFCS) is indispensable to recharge EVs rapidly. The introduction of the Battery Energy Storage within the DCFCSs is considered in this paper an alternative......The increasing penetration of Electric Vehicles (EVs) and their charging systems is representing new highpower consumption loads for the distribution system operators (DSOs). To solve the problem of the EV range in terms of driving kilometers, the car manufacturers have invested resources on new EV...... and decrease the connection fees. Finally, an economic evaluation is done to evaluate the feasibility and the cost-benefit analysis (CBA) of the DCFCSs. The proposed approach considers various technical and economic issues, such as cost of installation, connection fees and life cycle cost of the batteries...

  20. Evidences from electron momentum spectroscopy for ultra-fast charge transfers and structural reorganizations in a floppy molecule: Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, Michael S; Hajgato, Balazs; Morini, Filippo, E-mail: michael.deleuze@uhasselt.b [Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium)

    2009-11-01

    Calculations of electron momentum distributions employing advanced Dyson orbital theories and statistical thermodynamics beyond the RRHO approximation fail to quantitatively reproduce the outermost momentum profile inferred from experiments on ethanol employing high resolution Electron Momentum Spectroscopy [1]. Study of the influence of nuclear dynamics in the initial ground state and final ionized state indicates that this discrepancy between theory and experiment reflects a charge transfer occurring during an ultra-fast dissociation of the ethanol radical cation into a methyl radical and H{sub 2}C=O-H{sup +}.

  1. Safe and fast-charging Li-ion battery with long shelf life for power applications

    Science.gov (United States)

    Zaghib, K.; Dontigny, M.; Guerfi, A.; Charest, P.; Rodrigues, I.; Mauger, A.; Julien, C. M.

    We report a Li-ion battery that can be charged within few minutes, passes the safety tests, and has a very long shelf life. The active materials are nanoparticles of LiFePO 4 (LFP) and Li 4Ti 5O 12 (LTO) for the positive and negative electrodes, respectively. The LiFePO 4 particles are covered with 2 wt.% carbon to optimize the electrical conductivity, but not the Li 4Ti 5O 12 particles. The electrolyte is the usual carbonate solvent. The binder is a water-soluble elastomer. The "18650" battery prepared under such conditions delivers a capacity of 800 mAh. It retains full capacity after 20,000 cycles performed at charge rate 10C (6 min), discharge rate 5C (12 min), and retains 95% capacity after 30,000 cycles at charge rate 15C (4 mn) and discharge rate 5C both at 100% DOD and 100% SOC.

  2. MULTIPLE IONIZATION PROCESS STUDIED WITH COINCIDENCE TECHNIQUE BETWEEN SLOW RECOIL ION AND PROJECTILE ION IN 42 MeV Arq+—Ar COLLISIONS

    Institute of Scientific and Technical Information of China (English)

    T.Tonuma; T.Matsuo; 等

    1990-01-01

    Slow Ar recoil ion Production cross sections by 42 MeV Ar1+(q=4-14) projectiles were measured using a projectile ion-recoilion coincidence technique in order to provide information on mechanisms of multiple ionization of target atome through pure ionization as well as of that accompaied simultaneously with multiple electron loss or capture of projectiles.The present results suggest that inner-shell electron processes caused through electron transfer into projectiles and also electron ionization by projectiles play a key role in the production of multiply charged recoil ions.

  3. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  4. Method of signal detection from silicon photomultipliers using fully differential Charge to Time Converter and fast shaper

    Energy Technology Data Exchange (ETDEWEB)

    Baszczyk, M., E-mail: baszczyk@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Dorosz, P.; Glab, S.; Kucewicz, W. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Mik, L. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); State Higher Vocational School, Tarnow (Poland); Sapor, M. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland)

    2016-07-11

    The paper presents an implementation of fully differential readout method for Silicon Photomultipliers (SiPM). Front-end electronics consists of a fast and slow path. The former creates the trigger signal while the latter produces a pulse of width proportional to the input charge. The fast shaper generates unipolar pulse and utilizes the pole-zero cancelation circuit. The peaking time for single photoelectron is equal to 3.6 ns and the FWHM is 3.8 ns. The pulse width of the Charge to Time Converter (QTC) depends on the number of photons entering the SiPM at the moment of measurement. The QTC response is nonlinear but it allows us to work with signals in a wide dynamic range. The proposed readout method is effective in measurements of random signals where frequent events tend to pile-up. Thermal generation and afterpulses have a strong influence on the width of pulses from QTC. The proposed method enables us to distinguish those overlapping signals and get the reliable information on the number of detected photons.

  5. Sabot-Projectiles for Cannon

    Science.gov (United States)

    1943-11-01

    model designed for the 20,-^nm Hispano- Suiza cannon. Let Ms be the mass of the sabot in pounds; M . "the mass of the subcali- ber projectile in...its projectile. This model xs designed for the 20-mm Hispano- Suiza cannon, but as with all deep-cup sabots tested, does not prove successful in...the 20-mm Hispano- Suiza , for example, the f. maximum pressure is I48OOO lb/in? and for the 37-mm A.T. gun it is • ^0000 lb/in?). V i Attention

  6. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)

    2002-03-28

    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  7. Generation of fast highly charged ions in laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Boody, F P [Ion Light Technologies GmbH, Bad Abbach (Germany); Czarnecka, A [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gammino, S [INFN-Laboratori Nazionali del Sud, Catania (Italy); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Krasa, J [Institute of Physics, ASCR (Czech Republic); Laska, L [Institute of Physics, ASCR (Czech Republic); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Rohlena, K [Institute of Physics, ASCR (Czech Republic); Rosinski, M [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Ryc, L [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Torrisi, L [INFN-Laboratori Nazionali del Sud, Catania (Italy); Ullschmied, J [IPALS Research Centre ASCR, Prague (Czech Republic)

    2006-12-15

    The nonthermal and nonlinear coupling of strong laser light wave with plasma transfers a part of laser energy into hot electrons and fast ions. The efficiency of these effects depends on the characteristics of a laser pulse, target properties and irradiation geometry. The reported studies were performed with the use of a high-power and high-energy iodine PALS laser system (energy up to 1 kJ in a 0.4 ns pulse at wavelength of 1315 nm and energy up to 250 J at wavelength of 438 nm). The properties of the laser-produced ion streams were determined with the use of ion diagnostics based on the time-of-flight method. The characteristics of x-rays were measured using various semiconductor detectors. The main ion stream characteristics as well as the ion acceleration processes in plasmas of different Z numbers were studied in dependence on laser pulse parameters. The parameters of a fast ion group depend evidently on Z number of the ions. The influence of the electron density scale length on fast ion generation was investigated using a low intensity laser pre-pulses to generate preformed plasmas (pre-plasmas) with which the main laser pulse interacted. The obtained results suggest that ion acceleration processes were most effective at a specific electron density gradient scale length of pre-plasma determined by the pre-pulse parameters.

  8. Breakup Conditions of Projectile Spectators from Dynamical Observables

    CERN Document Server

    Begemann-Blaich, M L

    1998-01-01

    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found ...

  9. Isospin dependent multifragmentation of relativistic projectiles

    CERN Document Server

    Ogul, R; Atav, U; Buyukcizmeci, N; Mishustin, I N; Adrich, P; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Hellstrom, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Luhning, J; Lukasik, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Muller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Sfienti, C; Simon, H; Summerer, K; Trautmann, W; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B

    2010-01-01

    The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. For the interpretation of the data, calculations with the Statistical Multifragmentation Model for a properly chosen ensemble of excited sources were performed. The parameters of the ensemble, representing the variety of excited spectator nuclei expected in a participant-spectator scenario, are determined empirically by searching for an optimum reproduction of the measured fragment charge distributions and correlations. An overall very good agreement is obtained. The possible modification of the liquid-drop parameters of the fragment description in the hot freeze-out environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to reproduce the mean neutron-to-proton ratios /Z an...

  10. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S.

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  11. Projectile Motion Gets the Hose

    Science.gov (United States)

    Goff, John Eric; Liyanage, Chinthaka

    2011-01-01

    Students take a weekly quiz in our introductory physics course. During the week in which material focused on projectile motion, we not-so-subtly suggested what problem the students would see on the quiz. The quiz problem was an almost exact replica of a homework problem we worked through in the class preceding the quiz. The goal of the problem is…

  12. Novice Rules for Projectile Motion.

    Science.gov (United States)

    Maloney, David P.

    1988-01-01

    Investigates several aspects of undergraduate students' rules for projectile motion including general patterns; rules for questions about time, distance, solids and liquids; and changes in rules when asked to ignore air resistance. Reports approach differences by sex and high school physics experience, and that novice rules are situation…

  13. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  14. Penetration Evaluation of Explosively Formed Projectiles Through Air and Water Using Insensitive Munition: Simulative and Experimental Studies

    National Research Council Canada - National Science Library

    M. Ahmed; A. Q. Malik; S. A. Rofi; Z. X. Huang

    2016-01-01

    The process of formation, flying, penetration of explosively-formed projectiles (EFP) and the effect of water on performance of the charge for underwater applications is simulated by Ansysis Autodyn 2D-Hydro code...

  15. The System of Fast Charging Station for Electric Vehicles with Minimal Impact on the Electrical Grid

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2016-01-01

    Full Text Available The searching and utilization of new energy sources and technologies is a current trend. The effort to increase the share of electricity production from renewable energy sources is characteristic for economically developed countries. The use of accumulation of electrical energy with a large number of decentralized storage units is most preferred, as well as the focus on the production of energy at the point of its consumption. Modern cogeneration units are a good example. This paper describes the accumulation of electrical energy for equalizing the power balance of electric charging stations with high instantaneous power. The possibility of re-utilization of electrical energy from the charged vehicle in the case of lack of electricity in the power grid is solved at the same time. This paper also deals with the selection of appropriate concept of accumulation system and its cooperation with both renewable and distribution networks. Details of the main power components including the results obtained from the system implementation are also described in this paper.

  16. A Fast 3D Poisson Solver with Longitudinal Periodic and Transverse Open Boundary Conditions for Space-Charge Simulations

    CERN Document Server

    Qiang, Ji

    2016-01-01

    A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary conditions can have important applications in beam physics of particle accelerators. In this paper, we present a fast efficient method to solve the Poisson equation using a spectral finite-difference method. This method uses a computational domain that contains the charged particle beam only and has a computational complexity of $O(N_u(logN_{mode}))$, where $N_u$ is the total number of unknowns and $N_{mode}$ is the maximum number of longitudinal or azimuthal modes. This saves both the computational time and the memory usage by using an artificial boundary condition in a large extended computational domain.

  17. Plasmon excitations in C{sub 60} by fast charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. Z. [College of Physics and Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Miskovic, Z. L. [Department of Applied Mathematics and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Goodman, F. O. [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Wang, Y. N. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2013-05-14

    For an isolated C{sub 60} molecule, we study plasmon excitations that are induced by an external, fast moving electron, by using a two-dimensional, spherical, two-fluid hydrodynamic model for the dynamic response of the {sigma} and {pi} electrons in the carbon nanostructure. Second quantization of the linearized hydrodynamic model allows us to discuss how effective is multiple excitation of various plasmon modes. Mean numbers of the excited plasmon modes, differential cross sections, and the total energy loss of the incident electron are calculated by both a quantized model with zero damping and by a semi-classical model with phenomenological damping. Our calculated differential cross sections are compared with experiment.

  18. High Charge PHIN Photo Injector at CERN with Fast Phase switching within the Bunch Train for Beam Combination

    CERN Document Server

    Csatari Divall, M; Bolzon, B; Bravin, E; Chevallay, E; Dabrowski, A; Doebert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Olvegaard, M; Petrarca, M; Rabiller, A N; Egger, D; Mete, O

    2011-01-01

    The high charge PHIN photo-injector was developed within the framework of the European CARE program to provide an alternative to the drive beam thermionic gun in the CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 electron bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 subtrains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the schem...

  19. Techniques for Transition and Surface Temperature Measurements on Projectiles at Hypersonic Velocities- A Status Report

    Science.gov (United States)

    Wilder, M. C.; Bogdanoff, D. W.

    2005-01-01

    A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.

  20. Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Oh, Yoonbae; Park, Cheonho; Kim, Do Hyoung; Shin, Hojin; Kang, Yu Min; DeWaele, Mark; Lee, Jeyeon; Min, Hoon-Ki; Blaha, Charles D; Bennet, Kevin E; Kim, In Young; Lee, Kendall H; Jang, Dong Pyo

    2016-11-15

    Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.

  1. Fast triggering of high-rate charged particles with a triple-GEM detector

    CERN Document Server

    Alfonsi, M; Bonivento, W; Cardini, A; De Simone, P; Murtas, F; Pinci, D; Poli-Lener, M; Raspino, D

    2004-01-01

    A 3 year long R&D activity on triple gas electron multiplier (GEM) detectors is reported. This activity was made in the framework of the LHCb experiment in order to find the technology to instrument the central region of the first muon station (M1R1) where a high particle rate is expected. Detector geometry, gas mixture and electric field configuration have been optimized in order to achieve the performance required by the experiment. The use of a very fast, CF//4 based, gas mixture provides a time resolution of about 4.5 ns (r.m.s.) with a single chamber with gain less than 10**4. In addition, an optimized gain sharing between the three GEMs allows to keep the discharge probability per incident hadron below $10^{-12}$. The average number of firing pads per crossing particle have been found to be lower than 1.2. In a global aging test two detectors were exposed to a dose rate of 16 Gy/h. Each detector integrated about 2 C/cm**2 equivalent to more than 10 years of operation at LHCb. Good aging properties w...

  2. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lv, DP; Shao, YY; Lozano, T; Bennett, WD; Graff, GL; Polzin, B; Zhang, JG; Engelhard, MH; Saenz, NT; Henderson, WA; Bhattacharya, P; Liu, J; Xiao, J

    2014-09-11

    In recent years, the Li metal anode has regained a position of paramount research interest because of the necessity for employing Li metal in next-generation battery technologies such as Li-S and Li-O-2. Severely limiting this utilization, however, are the rapid capacity degradation and safety issues associated with rechargeable Li metal anodes. A fundamental understanding of the failure mechanism of Li metal at high charge rates has remained elusive due to the complicated interfacial chemistry that occurs between Li metal and liquid electrolytes. Here, it is demonstrated that at high current density the quick formation of a highly resistive solid electrolyte interphase (SEI) entangled with Li metal, which grows towards the bulk Li, dramatically increases up the cell impedance and this is the actual origin of the onset of cell degradation and failure. This is instead of dendritic or mossy Li growing outwards from the metal surface towards/through the separator and/or the consumption of the Li and electrolyte through side reactions. Interphase, in this context, refers to a substantive layer rather than a thin interfacial layer. Discerning the mechanisms and consequences for this interphase formation is crucial for resolving the stability and safety issues associated with Li metal anodes.

  3. CHANTI: a fast and efficient charged particle veto detector for the NA62 experiment at cern

    CERN Document Server

    Mirra, Marco

    This work has been performed into the frame of the NA62 experiment at CERN that aims at measuring the Branching-Ratio of the ultra-rare kaon decay K+→π+ nu nubar with 10% uncertainty - using an unseparated kaon beam of 75GeV/c - in order to test the Standard Model (SM), to look for physics beyond SM and to measure the |Vtd| element of the Cabibbo-Kobayashi-Maskawa (CKM) flavor mixing matrix. Backgrounds, which are up to 10^10 times higher than the signal, will be suppressed by an accurate measurement of the momentum of the K+ (with a silicon beam tracker named GigaTracker) and the π+ (with a straw tracker) and by a complex system of particle identification and veto detectors. A critical background can be induced by inelastic interactions of the hadron beam with the GigaTracker. Pions produced in these interactions, emitted at low angle, can reach the straw tracker and mimic a kaon decay in the fiducial region, if no other track is detected. In order to suppress this background a CHarged track ANTIcounter ...

  4. Bimodal pattern in the fragmentation of Au quasi-projectiles

    CERN Document Server

    Bruno, M; D'Agostino, M; Gramegna, F; Gulminelli, F; Vannini, G

    2006-01-01

    Signals of bimodality have been investigated in experimental data of quasi-projectile decay produced in Au+Au collisions at 35 AMeV. This same data set was already shown to present several signals characteristic of a first order, liquid-gas-like phase transition. For the present analysis, events are sorted in bins of transverse energy of light charged particles emitted by the quasi-target source. A sudden change in the fragmentation pattern is observed from the distributions of the asymmetry of the two largest fragments, and the charge of the largest fragment. This latter distribution shows a bimodal behavior. The interpretation of this signal is discussed.

  5. Modern toxic antipersonnel projectiles.

    Science.gov (United States)

    Gaillard, Yvan; Regenstreif, Philippe; Fanton, Laurent

    2014-12-01

    In the spring of 1944, Kurt von Gottberg, the SS police chief in Minsk, was shot and injured by 2 Soviet agents. Although he was only slightly injured, he died 6 hours later. The bullets were hollow and contained a crystalline white powder. They were 4-g bullets, semi-jacketed in cupronickel, containing 28 mg of aconitine. They were later known as akonitinnitratgeschosse. The Sipo (the Nazi security police) then ordered a trial with a 9-mm Parabellum cartridge containing Ditran, an anticholinergic drug with hallucinogenic properties causing intense mental confusion. In later years, QNB was used and given the NATO code BZ (3-quinuclidinyl-benzylate). It was proven that Saddam Hussein had this weapon (agent 15) manufactured and used it against the Kurds. Serbian forces used the same type of weapon in the Bosnian conflict, particularly in Srebrenica.The authors go on to list the Cold War toxic weapons developed by the KGB and the Warsaw pact countries for the discreet elimination of dissidents and proindependence leaders who had taken refuge in the West. These weapons include PSZh-13 launchers, the Troika electronic sequential pistol, and the ingenious 4-S110T captive piston system designed by the engineer Stechkin. Disguised as a cigarette case, it could fire a silent charge of potassium cyanide. This rogues gallery also includes the umbrella rigged to inject a pellet of ricin (or another phytalbumin of similar toxicity, such as abrin or crotin) that was used to assassinate the Bulgarian writer and journalist Georgi Markov on September 7, 1978, in London.During the autopsy, the discovery of a bullet burst into 4 or 5 parts has to make at once suspecting the use of a toxic substance. Toxicological analysis has to look for first and foremost aconitine, cyanide, suxamethonium, Ditran, BZ, or one of the toxic phytalbumins. The use of such complex weapons has to make suspect a powerful organization: army, secret service, terrorism. The existence of the Russian UDAR spray

  6. The Projectile inside the Loop

    OpenAIRE

    Varieschi, Gabriele U.

    2005-01-01

    In this paper we describe an alternative use of the loop-the-loop apparatus, which can be used to study an interesting case of projectile motion. We also present an effective way to perform and analyze these experiments, by using video capture software together with a digital video camera. These experiments can be integrated into classroom demonstrations for general physics courses, or become part of laboratory activities.

  7. Projectiles, pendula, and special relativity

    CERN Document Server

    Price, R H

    2005-01-01

    The kind of flat-earth gravity used in introductory physics appears in an accelerated reference system in special relativity. From this viewpoint, we work out the special relativistic description of a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface gravity. The analysis uses only the basic mathematical tools of special relativity typical of a first-year university course.

  8. Projectiles, pendula, and special relativity

    Science.gov (United States)

    Price, Richard H.

    2005-05-01

    The kind of flat-earth gravity used in introductory physics appears in an accelerated reference system in special relativity. From this viewpoint, we work out the special relativistic description of a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface gravity. The analysis uses only the basic mathematical tools of special relativity typical of a first-year university course.

  9. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  10. Initiation of Detonation in Explosives by Impact of Projectiles

    Directory of Open Access Journals (Sweden)

    H.S. Yadav

    2006-04-01

    Full Text Available This paper presents a study of initiation of detonation in explosives by the impact ofprojectiles. The shock wave produced by the impact of projectiles has been considered as thestimulus for initiation of detonation. Three types of projectiles, namely (i flyer plate, (ii flatendedrod, and (iii round-ended rod or a shaped charge jet, have been considered to impact andproduce a shock wave in the explosives. Deriving relations for the parameters of impact-generatedshock wave in the explosives and projectiles, and the sound velocity in the compressed explosives,it has been shown that the difference of kinetic energy of the flyer plate before and after theimpact, which is equal to the total energy of the shock wave in the explosives, leads to criticalenergy criterion for shock initiation of explosives. In this study, the critical criterion has beenused to derive the relations for initiation of explosives by a shaped charge jet, Vj2 D = K0 , whereV j and D denote the velocity and diameter of the jet, and K0 is a constant of the explosive.

  11. Wind-influenced projectile motion

    Science.gov (United States)

    Bernardo, Reginald Christian; Perico Esguerra, Jose; Day Vallejos, Jazmine; Jerard Canda, Jeff

    2015-03-01

    We solved the wind-influenced projectile motion problem with the same initial and final heights and obtained exact analytical expressions for the shape of the trajectory, range, maximum height, time of flight, time of ascent, and time of descent with the help of the Lambert W function. It turns out that the range and maximum horizontal displacement are not always equal. When launched at a critical angle, the projectile will return to its starting position. It turns out that a launch angle of 90° maximizes the time of flight, time of ascent, time of descent, and maximum height and that the launch angle corresponding to maximum range can be obtained by solving a transcendental equation. Finally, we expressed in a parametric equation the locus of points corresponding to maximum heights for projectiles launched from the ground with the same initial speed in all directions. We used the results to estimate how much a moderate wind can modify a golf ball’s range and suggested other possible applications.

  12. A 3-10 GHz IR-UWB CMOS Pulse Generator With 6-mW Peak Power Dissipation Using A Slow-Charge Fast-Discharge Technique

    DEFF Research Database (Denmark)

    Shen, Ming; Yin, Ying-Zheng; Jiang, Hao

    2014-01-01

    This letter proposes a UWB pulse generator topology featuring low peak power dissipation for applications with stringent instantaneous power requirements. This is accomplished by employing a new slow-charge fast-discharge approach to extend the time duration of the generator's peak current so...

  13. Projectile Balloting Attributable to Gun Tube Curvature

    Directory of Open Access Journals (Sweden)

    Michael M. Chen

    2010-01-01

    Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.

  14. Sequential injection gas guns for accelerating projectiles

    Science.gov (United States)

    Lacy, Jeffrey M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  15. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)

    2011-10-15

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  16. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    Science.gov (United States)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-11-01

    The Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ˜0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528 and 530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermo-electrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronic noise. Due to the low incident photon power (≤1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs' gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs' gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. A gain of ˜100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the edge harmonic oscillation in quiescent H-mode plasmas are presented to demonstrate UF-CHERS' capabilities.

  17. Reliability estimates for flawed mortar projectile bodies

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, J.A. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)], E-mail: jennifer.cordes@us.army.mil; Thomas, J.; Wong, R.S.; Carlucci, D. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)

    2009-12-15

    The Army routinely screens mortar projectiles for defects in safety-critical parts. In 2003, several lots of mortar projectiles had a relatively high defect rate, 0.24%. Before releasing the projectiles, the Army reevaluated the chance of a safety-critical failure. Limit state functions and Monte Carlo simulations were used to estimate reliability. Measured distributions of wall thickness, defect rate, material strength, and applied loads were used with calculated stresses to estimate the probability of failure. The results predicted less than one failure in one million firings. As of 2008, the mortar projectiles have been used without any safety-critical incident.

  18. Stopping power: Effect of the projectile deceleration

    Energy Technology Data Exchange (ETDEWEB)

    Kompaneets, Roman, E-mail: kompaneets@mpe.mpg.de; Ivlev, Alexei V.; Morfill, Gregor E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching (Germany)

    2014-11-15

    The stopping force is the force exerted on the projectile by its wake. Since the wake does not instantly adjust to the projectile velocity, the stopping force should be affected by the projectile deceleration caused by the stopping force itself. We address this effect by deriving the corresponding correction to the stopping force in the cold plasma approximation. By using the derived expression, we estimate that if the projectile is an ion passing through an electron-proton plasma, the correction is small when the stopping force is due to the plasma electrons, but can be significant when the stopping force is due to the protons.

  19. Short fasting does not protect perfused ex vivo rat liver against ischemia-reperfusion. On the importance of a minimal cell energy charge.

    Science.gov (United States)

    Papegay, Bérengère; Stadler, Michaela; Nuyens, Vincent; Kruys, Véronique; Boogaerts, Jean G; Vamecq, Joseph

    2017-03-01

    Dietary restriction or reduced food intake was supported to protect against renal and hepatic ischemic injury. In this vein, short fasting was recently shown to protect in situ rat liver against ischemia-reperfusion. Here, perfused ex vivo instead of in situ livers were exposed to ischemia-reperfusion to study the impact of disconnecting liver from extrahepatic supply in energetic substrates on the protection given by short-term fasting. Perfused ex vivo livers using short (18 h) fasted compared with fed rats were submitted to ischemia-reperfusion and studied for release of cytolysis markers in the perfusate. Energetic stores are differently available in time and cell energetic charges (ratio of adenosine triphosphate plus half of the adenosine diphosphate concentrations to the sum of adenosine triphosphate + adenosine diphosphate + adenosine monophosphate concentrations), adenosine phosphates, and glycogen, which were further measured at different time points in livers. Short fasting versus feeding failed to protect perfused ex vivo rat livers against ischemia/reperfusion, increasing the release of cytolysis markers (potassium, cytochrome c, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase) in the perfusate during reoxygenation phase. Toxicity of short fasting versus feeding was associated with lower glycogen and energetic charges in livers and lower lactate levels in the perfusate. High energetic charge, intracellular content in glycogen, and glycolytic activity may protect liver against ischemia/reperfusion injury. This work does not question how much the protective role previously demonstrated in the literature for dietary restriction and short fasting. In fact, it suggests that exceeding the energy charge threshold value of 0.3 might trigger the effectiveness of this protective role. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. keV fullerene interaction with hydrocarbon targets: Projectile penetration, damage creation and removal

    Energy Technology Data Exchange (ETDEWEB)

    Delcorte, Arnaud [PCPM Laboratory, Universite catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium)]. E-mail: delcorte@pcpm.ucl.ac.be; Garrison, Barbara J. [Chemistry Department, Pennsylvania State University, University Park, PA (United States)

    2007-02-15

    The physics of energetic fullerene projectile penetration, damage creation and sputtering in organic solids is investigated via molecular dynamics simulations. Two models are used, the first one based on a full atomistic description of the target and the second one, using a coarse-grain prescription that was recently developed and tested for a benzene molecular crystal [E. Smiley, Z. Postawa, I.A. Wojciechowski, N. Winograd, B. J. Garrison, Appl. Surf. Sci. 252 (2006) 6436]. The results explore the mechanism of energy transfer from the C{sub 60} projectile to the organic target atoms/molecules through the comparison with significantly different projectiles (Argon) and samples (Ag crystal). The effects of the projectile energy on the penetration and fast energy transfer processes (200 fs) are also delineated. The second part of the results investigates the 'long term' consequences (20-50 ps) of fullerene impacts in hydrocarbon sample surfaces. In an icosane (C{sub 20}H{sub 42}) solid, a 5 keV C{sub 60} projectile induces a crater of {approx}10 nm diameter surrounded by a {approx}4 nm wide rim and ejects {approx}70 intact molecules. More than 75% of the fragments generated by the fullerene in the surface are also sputtered away by the end of the event. The perspective considers the capabilities of fullerene projectiles for depth profile analysis of molecular samples by particle-induced desorption mass spectrometry.

  1. Inductiveless Rail Launchers for Long Projectiles

    Science.gov (United States)

    2001-04-26

    electromagnetic acceleration has remained unrealized. While long armatures could be readily designed for most projectiles, railguns cannot use them to... railgun concept is not readily applicable to tactical guns because it is hard to integrate sizable storage capacitors into the barrel. To circumvent...having substantially higher efficiency than railguns and much lower mechanical stresses in projectiles and launch tubes. Based on novel - inductiveless

  2. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  3. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  4. Efficient Calculation of Earth Penetrating Projectile Trajectories

    Science.gov (United States)

    2006-09-01

    CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES by Daniel F . Youch September 2006 Thesis Advisor: Joshua Gordis... Daniel F . Youch 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING...EFFICIENT CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES Daniel F . Youch Lieutenant Commander, United States Navy B.S., Temple

  5. Absolute cross sections for charge capture from Rydberg targets by slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    DePaola, B.D.; Huang, M.; Winecki, S.; Stoeckli, M.P.; Kanai, Y. [J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506 (United States); Lundeen, S.R.; Fehrenbach, C.W.; Arko, S.A. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

    1995-09-01

    A crossed beam experiment has been used to measure absolute charge capture cross sections in collisions of slow highly charged xenon ions with laser excited Rydberg atoms. The cross sections were measured for scaled projectile velocities {ital nv}{sub {ital p}} from 1.0 to 6.0, for projectile charges of 8, 16, 32, and 40, where {ital n} is the principal quantum number of the target electron. Experimental cross sections are compared with predictions of classical models.

  6. Plastic Guidance Fins for Long Rod Projectiles .

    Directory of Open Access Journals (Sweden)

    Mark L. Bundy

    1997-10-01

    Full Text Available Projectile tail fins on long rod kinetic energy (KE penetrators serve the same purpose as fletchings (feathers on an arrow, namely, they help align the projectile axis with its velocity vector. This reduces the projectile's yaw and hence reduces its aerodynamic drag. In addition, a low yaw angle at target impact helps to maximise the projectile's target penetration. It is typical for projectiles to exit the gun muzzle and enter free flight at some ndn-zero yaw angle. Aerodynamic forces acting on yawed tail fins create a stabilising torque about the projectile's centre of gravity (CG. This torque can be increased by making the fin material lighter. Most conventional long rod penetrators fired from high performance guns have tail fins made from aluminium. However, aluminium can undergo catastrophic oxidation (rapid burning in-bore. Coating aluminium with Al/sub 2/O/sub 3/ {hardcoat prevents ignition of the substrate, provided solid propellant grain impacts do not chip the brittle hardcoat off the surface. Plastic is lighter than aluminium and less exothermic when oxidized. Therefore, other factors aside, it is conceivable that plastic fins could increase projectile stability while incurring less thermal erosion than aluminium. However, thermal loads are not the only concern when considering plastic as an alternative tail fin material. The mechanical strength of plastic is also a critical factor. This paper discusses some of the successes and failures of plastic fins, at least relatively thin fins, for use as KE stabilisers.

  7. Geochemical identification of projectiles in impact rocks

    Science.gov (United States)

    Tagle, Roald; Hecht, Lutz

    2006-11-01

    The three major geochemical methods for impactor identification are evaluated with respect to their potential and limitations with regards to the precise detection and identification of meteoritic material in impactites. The identification of a projectile component in impactites can be achieved by determining certain isotopic and elemental ratios in contaminated impactites. The isotopic methods are based on Os and Cr isotopic ratios. Osmium isotopes are highly sensitive for the detection of minute amounts of extraterrestrial components of even isotopic method requires the relatively highest projectile contamination (several wt%) in order to detect an extraterrestrial component, but may allow the identification of three different groups of extraterrestrial materials, ordinary chondrites, an enstatite chondrites, and differentiated achondrites. A significant advantage of this method is its independence of the target lithology and post-impact alteration. The use of elemental ratios, including platinum group elements (PGE: Os, Ir, Ru, Pt, Rh, Pd), in combination with Ni and Cr represents a very powerful method for the detection and identification of projectiles in terrestrial and lunar impactites. For most projectile types, this method is almost independent of the target composition, especially if PGE ratios are considered. This holds true even in cases of terrestrial target lithologies with a high component of upper mantle material. The identification of the projectile is achieved by comparison of the "projectile elemental ratio" derived from the slope of the mixing line (target-projectile) with the elemental ratio in the different types of possible projectiles (e.g., chondrites). However, this requires a set of impactite samples of various degree of projectile contamination.

  8. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    of dedicated flywheel energy storage system (FESS) within the charging station and compensating some of the adverse effects of high power charging is explored in this paper. Although sharing some similarities with vehicle to grid (V2G) technology, the principal advantage of this strategy is the fact that many...

  9. Hypervelocity High Speed Projectile Imagery and Video

    Science.gov (United States)

    Henderson, Donald J.

    2009-01-01

    This DVD contains video showing the results of hypervelocity impact. One is showing a projectile impact on a Kevlar wrapped Aluminum bottle containing 3000 psi gaseous oxygen. One video show animations of a two stage light gas gun.

  10. Projectile Balloting Attributable to Gun Tube Curvature

    OpenAIRE

    Chen, Michael M.

    2010-01-01

    Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive...

  11. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    component densities and their relative shapes and locations in space. Currently, surrogate BS41 projectiles are manufactured for the US Army Research...single core of an Intel Xeon X5650 processor operating at 2.67 GHz. To batch process the (210) projectiles, a Matlab script was written to parallelize...understand manufacturing variability, and to obtain a subgroup of the most similar for later ballistic testing, while omitting outliers. These

  12. Breakup conditions of projectile spectators from dynamical observables

    Energy Technology Data Exchange (ETDEWEB)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  13. The 16th Werner Brandt Workshop on charged particle penetration phenomena

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report contains viewgraphs on the following topics: impact parameter dependence of charge transfer and energy loss; nonlinear dynamical response of the electron gas: comparison of some simple theories; stopping of ultrarelativistic ions in solids (33.2-TeV {sup 108}Pb); collective excitation in reduced dimensionality; collective states in atoms and cluster; plasmon coupling with external probes; atomic collisions with antiprotons; layer-number scaling in ultra-thin film stopping and energetics; atom-surface scattering under classical conditions; nonlinear effect of sweeping-out electrons in stopping power and electron emission in cluster impacts; electron emission from fast grazing collisions of ions with silicon surfaces; electron emission from ultra-thin carbon foils by kiV ions; Auger rates for highly charged ions in metals; Auger and plasmon assisted neutralization at surfaces; low energy (< 5eV) F{sup +} and F{sup -} ions transmission through condensed layers of water: enhancement and attenuation processes; charge transfer for H interacting with Al: atomic levels and linewidths; scattered projectile angular and charge state distributions for grazing collisions of multicharged ions with metal and insulator single crystal targets; the prolate hyperboloidat model in scanning probe microscopy; scanning probe microscopy of large biomolecules; microcantilever sensors; solution of the Fokker-Planck equation for electron transport using analytic spatial moments; and effective charge parametrization for z = 3-17 projectiles in composite targets.

  14. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  15. Three Dimensional CAPP Technology of Projectile Based on MBD

    Directory of Open Access Journals (Sweden)

    Hongzhi Zhao

    2013-07-01

    Full Text Available This study aims at the research goal of three-dimensional digital process design of projectile, which adopts three-dimensional computer-aided process design technology based on MBD and uses MBD to conduct parametric modeling of projectile that can reduce the input of projectile’s process information and data conversion and produce reasonable, feasible and three-dimensional projectile manufacturing process to realize paperless three-dimensional process design of projectile. The application of three-dimensional computer-assisted process design technology of projectile based on model definition can shorten the design cycle of projectile, thus improving rapid manufacturing capacity of product and reducing cost.

  16. Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail

    NARCIS (Netherlands)

    Gill, R.; Goeken, K.; Subramaniam, V.

    2013-01-01

    Fast modification of large gold nanoparticles with DNA is achieved by using DNA with a polycationic tail. The conjugated DNA is available for specific hybridization, and therefore can be used for DNA-based assays or for constructing nanoparticle superstructures based on DNA hybridization.

  17. Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail

    NARCIS (Netherlands)

    Gill, Ron; Göeken, Kristian; Subramaniam, Vinod

    2013-01-01

    Fast modification of large gold nanoparticles with DNA is achieved by using DNA with a polycationic tail. The conjugated DNA is available for specific hybridization, and therefore can be used for DNA-based assays or for constructing nanoparticle superstructures based on DNA hybridization

  18. Limitations in the Use of Unipolar Charging for Electrical Mobility Sizing Instruments: A Study of the Fast Mobility Particle Sizer

    DEFF Research Database (Denmark)

    Levin, Marcus; Gudmundsson, A.; Pagels, J. H.;

    2015-01-01

    A comparison between three different types of particle sizing instruments (fast mobility particle sizer, FMPS; electrical low pressure impactor, ELPI; and scanning mobility particle sizer, SMPS) and one condensation particle counter (CPC) was made to compare instrument response in terms of size d...

  19. Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail

    NARCIS (Netherlands)

    Gill, R.; Goeken, K.; Subramaniam, V.

    2013-01-01

    Fast modification of large gold nanoparticles with DNA is achieved by using DNA with a polycationic tail. The conjugated DNA is available for specific hybridization, and therefore can be used for DNA-based assays or for constructing nanoparticle superstructures based on DNA hybridization.

  20. Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail

    NARCIS (Netherlands)

    Gill, R.; Goeken, K.L.; Subramaniam, V.

    2013-01-01

    Fast modification of large gold nanoparticles with DNA is achieved by using DNA with a polycationic tail. The conjugated DNA is available for specific hybridization, and therefore can be used for DNA-based assays or for constructing nanoparticle superstructures based on DNA hybridization

  1. The representational dynamics of remembered projectile locations.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica

    2013-12-01

    When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles.

  2. Projectile-Borne Video Reconnaissance System

    Institute of Scientific and Technical Information of China (English)

    王海福; 张锋; 李向荣

    2004-01-01

    Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show that the initial integrated system was capable of transmitting images through tens of kilometers with the image resolution identifying effectively tactical targets such as roads, hills, caverns, trees and rivers. The projectile-borne video reconnaissance system is able to meet the needs of tactical target identification and battle dage assessment for tactical operations. The study will provide significant technological support for further independent development.

  3. Angular Momentum Population in Projectile Fragmentation

    Science.gov (United States)

    Podolyák, Zs.; Gladnishki, K. A.; Gerl, J.; Hellström, M.; Kopatch, Y.; Mandal, S.; Górska, M.; Regan, P. H.; Wollersheim, H. J.; Schmidt, K.-H.; Gsi-Isomer Collaboration

    2004-02-01

    Isomeric states in neutron-deficient nuclei around A ≈190 have been identified following the projectile fragmentation of a relativistic energy 238U beam. The deduced isomeric ratios are compared with a model based on the abrasion-ablation description. The experimental isomeric ratios are lower by a factor of ≈2 than the calculated ones assuming the `sharp cutoff' approximation. The observation of the previously reported isomeric Iπ=43/2- state in 215Ra represents the current record for the highest discrete spin state observed following a projectile fragmentation reaction.

  4. Grenade-launched imaging projectile system (GLIMPS)

    Science.gov (United States)

    Nunan, Scott C.; Coakley, Peter G.; Niederhaus, Gregory A.; Lum, Chris

    2001-09-01

    A system has been developed for delivering and attaching a sensor payload to a target using a standard 40-mm grenade launcher. The projectile incorporates an attachment mechanism, a shock mitigation system, a power source, and a video-bandwidth transmitter. Impact and launch g-loads have been limited to less than 10,000 g's, enabling sensor payloads to be assembled using Commercial Off-The-Shelf components. The GLIMPS projectile is intended to be a general-purpose delivery system for a variety of sensor payloads under the Unattended Ground Sensors program. Test results and development issues are presented.

  5. Isoscaling of projectile-like fragments

    Institute of Scientific and Technical Information of China (English)

    Zhong Chen; Chen Jin-Hui; Guo Wei; Ma Chun-Wang; Ma Guo-Liang; Su Qian-Min; Yan Ting-Zhi; Zuo Jia-Xu; Ma Yu-Gang; Fang De-Qing; Cai Xiang-Zhou; Chen Jin-Gen; Shen Wen-Qing; Tian Wen-Dong; Wang Kun; Wei Yi-Bin

    2006-01-01

    In this paper, the isotopic and isotonic distributions of projectile fragmentation products have been simulated by a modified statistical abrasion-ablation model and the isoscaling behaviour of projectile-like fragments has been discussed. The isoscaling parameters α andβ have been extracted respectively, for hot fragments before evaporation and cold fragments after evaporation. It looks that the evaporation has stronger effect on α than β. For cold fragments,a monotonic increase of α and |β| with the increase of Z and N is observed. The relation between isoscaling parameter and the change of isospin content is discussed.

  6. Numerical simulations of gun-launched kinetic energy projectiles subjected to asymmetric projectile base pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, D.A.

    1991-12-31

    Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile`s initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.

  7. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    Directory of Open Access Journals (Sweden)

    Christoph Schreyvogel

    2016-11-01

    Full Text Available In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV− and a nuclear spin (of 15N or 13C for example of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

  8. Electronic transitions in highly charged ion-atom collisions

    Science.gov (United States)

    Schmidt-Böcking, H.; Ullrich, J.; Schuch, R.; Olson, R. E.; Dörner, R.

    1989-09-01

    Three different aspects of electronic transitions in fast, highly charged ion-atom collisions are discussed. First, experimental data and n-CTMC calculations for differential multiple ionization cross sections of 1.4 {MeV}/{u} U 32+on rare gas atoms are presented. It is shown that the electronic motion has a dramatic influence on the kinematics of the emitted particles (in particular the nuclei). The possibility is discussed to measure in fast ionizing processes by a recoil ion-projectile coincidence technique the internal sum momentum of "electron clusters" in atoms. This new "technique" opens a new field of atomic structure research at high-energy heavy-ion accelerators. Second, the use of the H-like heavy ions as projectiles is discussed to measure, through observable interference structures, static and dynamic properties of transiently formed superheavy quasimolecular systems. Third, the "ancient" gas target-solid target difference in the impact-parameter dependence of K-shell ionization in nearly symmetric ion-atom collisions is presented. This severe discrepancy between gas and solid still remains an unsolved fundamental problem in the field of inner-shell ionization in the MO regime.

  9. Fast charge exchange ions in high power impulse magnetron sputtering of titanium as probes for the electrical potential

    Science.gov (United States)

    Breilmann, W.; Maszl, C.; von Keudell, A.

    2017-03-01

    High power impulse magnetron sputtering (HiPIMS) plasmas exhibit a high ionization fraction of the sputtered material and ions with high kinetic energies, which produce thin films with superior quality. These ion energy distribution functions (IEDF) contain energetic peaks, which are believed to be linked to a distinct electrical potential hump {{Δ }}{{{Φ }}}{{ionization}{{zone}}} inside rotating localized ionization zones, so called spokes, at target power densities above 1 kW cm‑2. Any direct measurement of this electrical potential structure is, however, very difficult due to the dynamic nature of the spokes and the very high local power density, which hampers the use of conventional emissive probes. Instead, we use a careful analysis of the IEDFs for singly and doubly charged titanium ions from a HiPIMS plasma at varying target power density. The energy peaks in the IEDFs measured at the substrate depend on the point of ionization and any charge exchange collisions on the path between ionization and impact at the substrate. Thereby, the IEDFs contain a convoluted information about the electrical potential structure inside the plasma. The analysis of these IEDFs reveal that higher ionization states originate at high target power densities from the central part of the plasma spoke, whereas singly charged ions originate from the perimeter of the plasma spoke. Consequently, we observe different absolute ion energies with the energy of Ti2+ being slightly higher than two times the energy of Ti+. Additional peaks are observed in the IEDFs of Ti+ originating from charge exchange reactions from Ti2+ and Ti3+ with titanium neutrals. Based on this analysis of the IEDFs, the structure of the electrical potential inside a spoke is inferred yielding {{Δ }}{{{Φ }}}{{ionization}{{zone}}} = 25 V above the plasma potential, irrespective of target power density.

  10. A fast acquisition rate system for charge exchange measurements at the plasma edge at the ASDEX Upgrade tokamak

    CERN Document Server

    Cavedon, Marco; Viezzer, Eleonora; Dux, Ralph; Geiger, Benedikt; McDermott, Rachael Marie; Meyer, Hendrik; Stroth, Ulrich

    2016-01-01

    In this work, a new type of high through-put Czerny-Turner spectrometer has been developed which allows to acquire multiple channels simultaneously with a repetition time on the order of \\SI{10}{\\us} at different wavelengths. The spectrometer has been coupled to the edge charge exchange recombination system at ASDEX Upgrade which has been recently refurbished with new lines of sight. Construction features, calibration methods, and initial measurements obtained with the new setup will be presented.

  11. High School Students' Understanding of Projectile Motion Concepts

    Science.gov (United States)

    Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin

    2009-01-01

    The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…

  12. A note on stability of motion of a projectile

    Indian Academy of Sciences (India)

    S D Naik

    2001-08-01

    A projectile is stabilised using either gyroscopic or aerodynamic stability. But subcalibre projectiles with sabot have both spin and fins. Separate stability criteria are researched generally for each type of projectile. In this paper a stability criterion which can be used for all such bodies has been developed through the Liapunov second method.

  13. From boron carbide to glass: Absorption of an elongated high-speed projectile in brittle materials

    Science.gov (United States)

    Rumyantsev, B. V.

    2016-09-01

    Penetration into boron carbide of an elongated high-speed projectile in the form of a copper jet produced by an explosion of a cumulative charge is studied. The efficiency of absorption of a copper jet in different brittle materials for evaluating their protective ability is compared. Conditions for the absence of the influence of the lateral unloading wave on the penetration zone, which provide the minimum penetration depth, are determined.

  14. Signals of bimodality in the fragmentation of Au quasi-projectiles

    CERN Document Server

    Bruno, M; Cannata, F; D'Agostino, M; Gramegna, F; Vannini, G

    2008-01-01

    Signals of bimodality have been investigated in experimental data of quasi-projectile decay produced in Au+Au collisions at 35 AMeV. This same data set was already shown to provide several signals characteristic of a first order, liquid-gas-like phase transition. Different event sortings proposed in the recent literature are analyzed. A sudden change in the fragmentation pattern is revealed by the distribution of the charge of the largest fragment, compatible with a bimodal behavior.

  15. A fast, low power and low noise charge sensitive amplifier ASIC for a UV imaging single photon detector

    Science.gov (United States)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2017-04-01

    NASA has funded, through their Strategic Astrophysics Technology (SAT) program, the development of a cross strip (XS) microchannel plate (MCP) detector with the intention to increase its technology readiness level (TRL), enabling prototyping for future NASA missions. One aspect of the development is to convert the large and high powered laboratory Parallel Cross Strip (PXS) readout electronics into application specific integrated circuits (ASICs) to decrease their mass, volume, and power consumption (all limited resources in space) and to make them more robust to the environments of rocket launch and space. The redesign also foresees to increase the overall readout event rate, and decrease the noise contribution of the readout system. This work presents the design and verification of the first stage for the new readout system, the 16 channel charge sensitive amplifier ASIC, called the CSAv3. The single channel amplifier is composed of a charge sensitive amplifier (pre-amplifier), a pole zero cancellation circuit and a shaping amplifier. An additional output stage buffer allows polarity selection of the output analog signal. The operation of the amplifier is programmable via serial bus. It provides an equivalent noise charge (ENC) of around 600 e^- and a baseline gain of 10 mV/fC. The full scale pulse shaped output signal is confined within 100 ns, without long recovery tails, enabling up to 10 MHz periodic event rates without signal pile up. This ASIC was designed and fabricated in 130 nm, TSMC CMOS 1.2 V technology. In addition, we briefly discuss the construction of the readout system and plans for the future work.

  16. An Inexpensive Mechanical Model for Projectile Motion

    Science.gov (United States)

    Kagan, David

    2011-01-01

    As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…

  17. Comment on "The envelope of projectile trajectories"

    CERN Document Server

    Butikov, E I

    2003-01-01

    Several simple alternative methods to obtain the equation of the envelope of the family of projectile trajectories corresponding to the same initial speed are suggested, including methods in which the boundary of the region occupied by the parabolic trajectories is found as an envelope of a set of circles. Two possible generalizations of the discussed problem are also suggested. (letters and comments)

  18. Teaching Projectile Motion to Eliminate Misconceptions

    Science.gov (United States)

    Prescott, Anne; Mitchelmore, Michael

    2005-01-01

    Student misconceptions of projectile motion are well documented, but their effect on the teaching and learning of the mathematics of motion under gravity has not been investigated. An experimental unit was designed that was intended to confront and eliminate misconceptions in senior secondary school students. The approach was found to be…

  19. Bulldozing Your Way Through Projectile Motion.

    Science.gov (United States)

    Lamb, William G.

    1983-01-01

    Presents two models and two demonstrations targeted at student understanding of projectile motion as the sum of two independent, perpendicular vectors. Describes materials required, construction, and procedures used. Includes a discussion of teaching points appropriate to each demonstration or model. (JM)

  20. Phenomenological model for light-projectile breakup

    Science.gov (United States)

    Kalbach, C.

    2017-01-01

    Background: Projectile breakup can make a large contribution to reactions induced by projectiles with mass numbers 2, 3, and 4, yet there is no global model for it and no clear agreement on the details of the reaction mechanism. Purpose: This project aims to develop a phenomenological model for light-projectile breakup that can guide the development of detailed theories and provide a useful tool for applied calculations. Method: An extensive database of double-differential cross sections for the breakup of deuterons, 3He ions, and α particles was assembled from the literature and analyzed in a consistent way. Results: Global systematics for the centroid energies, peak widths, and angular distributions of the breakup peaks have been extracted from the data. The dominant mechanism appears to be absorptive breakup, where the unobserved projectile fragment fuses with the target nucleus during the initial interaction. The global target-mass-number and incident-energy dependencies of the absorptive breakup cross section have also been determined, along with channel-specific normalization constants. Conclusions: Results from the model generally agree with the original data after subtraction of a reasonable underlying continuum. Absorptive breakup can account for as much as 50%-60% of the total reaction cross section.

  1. Fatal lawn mower related projectile injury

    DEFF Research Database (Denmark)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-01-01

    the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which...

  2. Maximizing the Range of a Projectile.

    Science.gov (United States)

    Brown, Ronald A.

    1992-01-01

    Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)

  3. Predicting the Accuracy of Unguided Artillery Projectiles

    Science.gov (United States)

    2016-09-01

    Unstable (right) Projectiles. Source: [4]..........................13 Figure 6. Direction of Lift and Gravitational Forces in a Spinning Top ...14 Figure 8. Precession of a Spinning Top . Source: [7...the gyroscopic effect, which tends to maintain the orientation of the axis of spin . This effect is commonly observed in spinning tops , which stay

  4. Speed, Acceleration, Chameleons and Cherry Pit Projectiles

    Science.gov (United States)

    Planinsic, Gorazd; Likar, Andrej

    2012-01-01

    The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…

  5. Launching a Projectile into Deep Space

    Science.gov (United States)

    Maruszewski, Richard F., Jr.

    2004-01-01

    As part of the discussion about Newton's work in a history of mathematics course, one of the presentations calculated the amount of energy necessary to send a projectile into deep space. Afterwards, the students asked for a recalculation with two changes: First the launch under study consisted of a single stage, but the students desired to…

  6. Pixel front-end with synchronous discriminator and fast charge measurement for the upgrades of HL-LHC experiments

    Science.gov (United States)

    Monteil, E.; Demaria, N.; Pacher, L.; Rivetti, A.; Da Rocha Rolo, M.; Rotondo, F.; Leng, C.

    2016-03-01

    The upgrade of the silicon pixel sensors for the HL-LHC experiments requires the development of new readout integrated circuits due to unprecedented radiation levels, very high hit rates and increased pixel granularity. The design of a very compact, low power, low threshold analog very front-end in CMOS 65 nm technology is described. It contains a synchronous comparator which uses an offset compensation technique based on storing the offset in output. The latch can be turned into a local oscillator using an asynchronous logic feedback loop to implement a fast time-over-threshold counting. This design has been submitted and the measurement results are presented.

  7. Experimental study on the influence of charge exchange on the stopping power in the interaction of chlorine with a gas and a deuterium plasma; Etude experimentale de l`influence des echanges de charges sur le pouvoir d`arret dans l`interaction d`ions chlore avec un gaz et un plasma de deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Nectoux, Marie [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1998-01-06

    This thesis is placed in the context of the physics of energy deposition of a multicharged heavy ion beam in matter at intermediate energies. The experiment gave measurements of energy loss as a function of final charge state for chlorine ions at 1.7 MeV/u in deuterium gas or plasma. In this way, we explore the influence of charge state evolution, depending on experimentally measured capture and ionization cross sections and the electron density of the target, on energy loss. The target is cylindrical and enclosed by two fast valves. The plasma is created in the gas by a discharge, which induces a magnetic perturbation of the beam (lens effect). This effect induces a divergent and misaligned outgoing beam. A simulation including charge state and velocity evolution of the projectile in flight in the magnetic field has been made in order to optimize beam analysis, to reach a precision better than 10{sup -3} in energy measurement. This study led to removal of the target to the `Split Pole`, a refocusing magnetic spectrometer. The first results obtained clearly show the dependence of energy loss on exit charge and especially on its evolution in the target. This is explained in terms of the lengths covered by the projectile in its successive charge states in the target, which depends on target electron density and the medium considered. In plasma, we observed an energy distribution with exit charge twice that observed in gas, because of a strong decrease of charge exchange. A comparison of data obtained in gas with stopping power calculated from Bethe-Bloch-Barkas theory leads to the necessity of including spatial extension of the projectile charge in the theory. (author) 81 refs., 62 figs., 5tabs.

  8. Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section

    Institute of Scientific and Technical Information of China (English)

    YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng

    2009-01-01

    The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.

  9. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    Science.gov (United States)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  10. Light charged particle emission induced by fast neutrons (25 to 65 MeV) on sup 5 sup 9 Co

    CERN Document Server

    Nica, N; Raeymackers, E; Slypen, I; Meulders, J P; Corcalciuc, V

    2002-01-01

    Double-differential cross sections (energy spectra) for the proton, deuteron, triton and alpha-particle production in fast neutron induced reactions on cobalt are reported for ten incident neutron energies between 25 and 65 MeV. Energy spectra were obtained at nine laboratory angles between 20 deg. and 160 deg. and extrapolated or interpolated to other ten angles covering uniformly the laboratory angular domain of 0 deg. to 180 deg. The experimental set-up and procedures for data reduction including corrections and normalization are presented and discussed. Based on the measured double-differential cross sections, energy-differential and total cross sections are reported as well. Experimental cross sections are compared with similar available data from neutron- and proton-induced reactions. Theoretical calculations based on semiclassical exciton model and Hauser-Feshbach statistical theory (GNASH code) and intranuclear cascade model for nucleon-induced interactions (INCL3 code) were done and compared to the e...

  11. Effects of autoionization in electron loss from helium-like highly charged ions in collisions with photons and fast atomic particles

    CERN Document Server

    Lyashchenko, K N; Voitkiv, A B

    2016-01-01

    We study theoretically single electron loss from helium-like highly charged ions involving excitation and decay of autoionizing states of the ion. Electron loss is caused by either photo absorption or the interaction with a fast atomic particle (a bare nucleus, a neutral atom, an electron). The interactions with the photon field and the fast particles are taken into account in the first order of perturbation theory. Two initial states of the ion are considered: $1s^2$ and $(1s2s)_{J=0}$. We analyze in detail how the shape of the emission pattern depends on the atomic number $Z_{I}$ of the ion discussing, in particular, the inter-relation between electron loss via photo absorption and due to the impact of atomic particles in collisions at modest relativistic and extreme relativistic energies. According to our results, in electron loss from the $1s^2$ state autoionization may substantially influence the shape of the emission spectra only up to $Z_{I} \\approx 35-40$. A much more prominent role is played by autoi...

  12. High Power Fast-charged Control Circuit KM-94-2 and Its Application%大功率快充控制电路KM-94-2的应用

    Institute of Scientific and Technical Information of China (English)

    胡大友; 李新

    2000-01-01

    This paper proposes a high power & fast-charged control circuit KM-94-2 and describes its function, constitution and theory. The fast-charged application circuit based on KM94-2 is also offered.%描述了一种大功率快速充电控制电路KM-94-2的电路功能、构成及原理,并给出了以KM-94-2为核心的快速充电应用电路。

  13. Techniques for Surface-Temperature Measurements and Transition Detection on Projectiles at Hypersonic Velocities--Status Report No. 2

    Science.gov (United States)

    Bogdanoff, D. W.; Wilder, M. C.

    2006-01-01

    The latest developments in a research effort to advance techniques for measuring surface temperatures and heat fluxes and determining transition locations on projectiles in hypersonic free flight in a ballistic range are described. Spherical and hemispherical titanium projectiles were launched at muzzle velocities of 4.6-5.8 km/sec into air and nitrogen at pressures of 95-380 Torr. Hemisphere models with diameters of 2.22 cm had maximum pitch and yaw angles of 5.5-8 degrees and 4.7-7 degrees, depending on whether they were launched using an evacuated launch tube or not. Hemisphere models with diameters of 2.86 cm had maximum pitch and yaw angles of 2.0-2.5 degrees. Three intensified-charge-coupled-device (ICCD) cameras with wavelength sensitivity ranges of 480-870 nm (as well as one infrared camera with a wavelength sensitivity range of 3 to 5 microns), were used to obtain images of the projectiles in flight. Helium plumes were used to remove the radiating gas cap around the projectiles at the locations where ICCD camera images were taken. ICCD and infrared (IR) camera images of titanium hemisphere projectiles at velocities of 4.0-4.4 km/sec are presented as well as preliminary temperature data for these projectiles. Comparisons were made of normalized temperature data for shots at approx.190 Torr in air and nitrogen and with and without the launch tube evacuated. Shots into nitrogen had temperatures 6% lower than those into air. Evacuation of the launch tube was also found to lower the projectile temperatures by approx.6%.

  14. Minimum and terminal velocities in projectile motion

    CERN Document Server

    Miranda, E N; Riba, R

    2012-01-01

    The motion of a projectile with horizontal initial velocity V0, moving under the action of the gravitational field and a drag force is studied analytically. As it is well known, the projectile reaches a terminal velocity Vterm. There is a curious result concerning the minimum speed Vmin; it turns out that the minimum velocity is lower than the terminal one if V0 > Vterm and is lower than the initial one if V0 < Vterm. These results show that the velocity is not a monotonous function. If the initial speed is not horizontal, there is an angle range where the velocity shows the same behavior mentioned previously. Out of that range, the volocity is a monotonous function. These results come out from numerical simulations.

  15. Electrical parameters of projectile stun guns.

    Science.gov (United States)

    McDaniel, Wayne C; Benwell, Andrew; Kovaleski, Scott

    2009-01-01

    Projectile stun guns have been developed as less-lethal devices that law enforcement officers can use to control potentially violent subjects, as an alternative to using firearms. These devices apply high voltage, low amperage, pulsatile electric shocks to the subject, which causes involuntary skeletal muscle contraction and renders the subject unable to further resist. In field use of these devices, the electric shock is often applied to the thorax, which raises the issue of cardiac safety of these devices. An important determinant of the cardiac safety of these devices is their electrical output. Here the outputs of three commercially available projectile stun guns were evaluated with a resistive load and in a human-sized animal model (a 72 kg pig).

  16. Excalibur Precision 155mm Projectiles (Excalibur)

    Science.gov (United States)

    2015-12-01

    Acquisition Management Information Retrieval DoD - Department of Defense DSN - Defense Switched Network EMD - Engineering and Manufacturing Development...Inc Ia-2 projectile was delivered to inventory in April 2014. In total, PM Excalibur procured and delivered 2,132 Excalibur Inc Ia-1 ( Department of...funds are included in this report as Non- Treasury RDT&E (9999). Procurement Appn BA PE Army 2034 01 0210600A Line Item Name E80103 Excalibur

  17. The Envelope of Projectile Trajectories in Midair

    CERN Document Server

    Chudinov, P

    2005-01-01

    A classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. Analytic approach is used for investigation. Simple analytical formulas are used for the constructing the envelope of the family of the point mass trajectories. The equation of envelope is applied for determination of maximum range of flight. The motion of a baseball is presented as an example.

  18. On the Stability of a Spinning Projectile

    Directory of Open Access Journals (Sweden)

    P. C. Rath

    1965-10-01

    Full Text Available Stability problem both for small and large yawing of a spinning projectile has been discussed. In the latter case criterion for stability of steady conically yawing motion has been obtained. Particularly it has been proved that with a tilting moment coefficient of the type micro(delta-betaohm/sup2/4[1-4qs(1-cosdelta] the motion of a shell in steady state is stable like an equivalent top only when q>=0.

  19. Projectile Ullage Inspection Technique: Laboratory Demonstration Apparatus.

    Science.gov (United States)

    1983-08-01

    inspection of projectiles was feasible. The mercury manometer was used because it was the only gauge readily available in the laboratory that was...pres- sure. It is suggested that the mercury manometer be replaced by a panel-mounted diaphragm or Bourdon tube gauge. The full-scale pressure range of...When the mercury manometer is used, the volume of the pressure indicator changes linearly with pres- sure (it is assumed that the manometer tube

  20. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile

    Science.gov (United States)

    Song, Weidong; Lv, Yangtao; Li, Jianqiao; Wang, Cheng; Ning, Jianguo

    2016-07-01

    For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with different projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.

  1. Intuitive Mechanics: Inferences of Vertical Projectile Motion

    Directory of Open Access Journals (Sweden)

    Milana Damjenić

    2016-07-01

    Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.

  2. Collective motion in a fluid complex plasma induced by interaction with a slow projectile under microgravity conditions

    Science.gov (United States)

    Zhukhovitskii, Dmitry; Ivlev, Alexei; Thomas, Hubertus; Fortov, Vladimir; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Naumkin, Vadim

    Subsonic motion of a large particle (projectile) moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the dust particle trajectories show that the projectile moves almost freely through the bulk of plasma crystal, while dust particles move along characteristic alpha-shaped pathways near the large particle. We develop a theory of nonviscous dust particles motion about a projectile and calculate particle trajectories. The deformation of a cavity around a subsonic projectile in the cloud of small dust particles is investigated with due regard for friction between the dust particles and atoms of neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Developed theory makes it possible to estimate the static pressure of dust particles in a cloud on the basis of experimental data. A good agreement with experiment validates our approach.

  3. The effects of the flyer plate's radius of curvature on the performance of an explosively formed projectile

    Science.gov (United States)

    Mulligan, Phillip; Baird, Jason; Hoffman, Joshua

    2012-03-01

    An explosively formed projectile (EFP) is known for its ability to penetrate vehicle armor effectively. Understanding how an EFP's physical parameters affect its performance is crucial to development of armor capable of defeating such devices. The present study uses two flyer plate radii of curvature to identify the experimental effects of the flyer plate's radius of curvature on the measured projectile velocity, depth of penetration, and projectile shape. The Gurney equation is an algebraic relationship for estimating the velocity imparted to a metal plate in contact with detonating explosives [1]. The authors of this research used a form of the Gurney equation to calculate the theoretical flyer plate velocity. Two EFP designs that have different flyer plate radii of curvature, but the same physical parameters and the same flyer-weight to charge-weight ratio should theoretically have the same velocity. Tests indicated that the flyer plate's radius of curvature does not affect the projectile's velocity and that a flat flyer plate negatively affects projectile penetration and formation.

  4. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

    2004-04-01

    The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

  5. Numerical simulations of gun-launched kinetic energy projectiles subjected to asymmetric projectile base pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, D.A.

    1991-01-01

    Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile's initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.

  6. Free-standing hybrid film of less defective graphene coated with mesoporous TiO2 for flexible lithium ion batteries with fast charging/discharging capabilities

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Zhang, Yingqi; Shan, Xuyi; Liu, Min; Li, Feng; Guo, Jinghua; Feng, Jun; Fang, Hai-Tao

    2017-03-01

    Benefiting from extremely high conductivity, graphene sheets (GS) with very low defect density are preferable to reduced graphene oxide sheets for constructing the free-standing hybrid electrodes of flexible electrochemical energy storage devices. However, due to the hydrophobic nature and deficiency of nucleation sites, how to uniformly and intimately anchor electrochemically active materials onto less defective GS is a challenge. Herein, a free-standing and mechanically flexible hybrid film with two-layer structure, mesoporous TiO2 anchored less defective GS hybrid (mTiO2-GS) upper-layer and graphene under-layer, denoted as mTiO2-GS/G, is fabricated. The hydrolysis of a Ti glycolate aqueous sol solution were applied to form mTiO2. The decoration of less defective GS with sodium lignosulfonate (SLS) surfactant is crucial for anchoring TiO2 nanoparticles (NPs). The aromatic rings of SLS favor a non-destructive functionalization of GS through the π-π stacking interaction. The sulfonic acid groups and hydroxyl groups of SLS, respectively, greatly improve the dispersity of GS in water and trigger the nucleation of TiO2 through the oxolation in the hydrolysis of Ti glycolate sol solution. The following characteristics of free-standing mTiO2-GS/G electrode benefit the fast charging/discharging capabilities: highly conductive graphene framework, ultra-small NPs (˜5.0 nm) in mTiO2 anchored, high specific surface area (202.5 m2 g-1), abundant mesopores (0.32 cm3 g-1), intimate interfacial interaction between mTiO2 and GS, robust contact between the mTiO2-GS upper-layer and an under-layer of bare graphene as the current collector. In coin half-cells, the mTiO2-GS/G electrode delivers a capacity of 130 mA h g-1 at 50 C, and 71 mA h g-1 at 100 C, and it also exhibits excellent cycle stability up to 10 000 cycles under 10 C, with a degradation rate of 0.0033% per cycle. When packed in flexible cells, the mTiO2-GS/G electrode maintains fast charging/discharging capabilities

  7. Single electron capture in fast ion-atom collisions

    Science.gov (United States)

    Milojević, Nenad

    2014-12-01

    Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  8. Oblique Impact of Projectile on Thin Aluminium Plates

    Directory of Open Access Journals (Sweden)

    W.U. Khan

    2003-04-01

    Full Text Available Experiments were performed, wherein cylindrical projectiles made of hardened steel were impacted on commercially available aluminium plates at different angles. Projectiles were of 12.8 mm diameter and plates were of 0.81 mm, 1.52mm and 1.91mm thicknesses. Based on the experimental results, an analytical model has been developed to predict the residual velocity of the projectile and the ballistic limit of the plate.

  9. Design and testing of high-pressure railguns and projectiles

    Science.gov (United States)

    Peterson, D. R.; Fowler, C. M.; Cummings, C. E.; Kerrisk, J. F.; Parker, J. V.; Marsh, S. P.; Adams, D. F.

    1984-01-01

    Attention is given to the results of high-pressure tests involving four railgun designs and four projectile types. Explosive magnetic-flux compression generators were employed to power the railguns. On the basis of the experimental data, it appears that the high-strength projectiles have lower resistance to acceleration than low-strength projectiles, which expand against the bore during acceleration. While confined in the bore, polycarbonate projectiles can be subjected to pressures as high as 1.3 GPa without shattering. In multishot railguns, it is important to prevent an accumulation of sooty material from the plasma armature in railgun seams.

  10. Dynamic analysis of a guided projectile during engraving process

    Institute of Scientific and Technical Information of China (English)

    Tao XUE; Xiao-bing ZHANG; Dong-hua CUI

    2014-01-01

    The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects:(a) the effects caused by the different band geometry;and (b) the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  11. Microcraters formed in glass by low density projectiles

    Science.gov (United States)

    Mandeville, J.-C.; Vedder, J. F.

    1971-01-01

    Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene with masses between 0.7 and 62 picograms and velocities between 2 and 14 kilometers per second. The morphology of the craters depends on the velocity and angle of incidence of the projectiles. The transitions in morphology of the craters formed by polystyrene spheres occur at higher velocities than they do for more dense projectiles. For oblique impact, the craters are elongated and shallow with the spallation threshold occuring at higher velocity. For normal incidence, the total displaced mass of the target material per unit of projectile kinetic energy increases slowly with the energy.

  12. Work on Sabot-Projectiles and Supplements, 1942-1944

    Science.gov (United States)

    1946-10-01

    Projectiles by C. L. Critchfield. NDRC Report A-233 (OSRD No. 2067), "Development of Subcaliber Projectiles for the Hispano- Suiza Gun" by C. L. Critchfield...Millar, "Development of Subcaliber Projectiles for the Hispano- Suiza Gun," NDRC Report A-233 (OSRD No. 2067). C 0 N F I D F N T I A L - 18 - however...jectiles for the Hisnano- Suiza Gun," by C. L. Critchfield snd J. -McG. Millnr. * Projectile Test Report AD-P99 Ordnance Research Center, A.P.G. Report on

  13. Electric rail gun projectile acceleration to high velocity

    Science.gov (United States)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  14. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue

    2014-06-01

    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  15. Contribution of charge-transfer processes to ion-induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Roesler, M. [Departamento de Fisica de Materiales, Facultad de Quimica, UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain); Garcia de Abajo, F.J. [Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, UPV/EHU, Apartado 649, 20080 San Sebastian (Spain)

    1996-12-01

    Charge changing events of ions moving inside metals are shown to contribute significantly to electron emission in the intermediate velocity regime via electrons coming from projectile ionization. Inclusion of equilibrium charge state fractions, together with two-electron Auger processes and resonant-coherent electron loss from the projectile, results in reasonable agreement with previous calculations for frozen protons, though a significant part of the emission is now interpreted in terms of charge exchange. The quantal character of the surface barrier transmission is shown to play an important role. The theory compares well with experimental observations for {ital H} projectiles. {copyright} {ital 1996 The American Physical Society.}

  16. On high explosive launching of projectiles for shock physics experiments.

    Science.gov (United States)

    Swift, Damian C; Forest, Charles A; Clark, David A; Buttler, William T; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure

  17. MeV ion cluster interaction with solids: explosion, charge states and secondary emissions; Interaction d`ions agregats de quelques MeV avec des cibles solides: dissociation, etats de charge et emissions secondaires

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, A.; Della Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.; Pautrat, M. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    The interaction of fast carbon cluster projectiles with solid target has been studied. It has been shown that the average ionization state of the constituents of carbon clusters coming out from thin amorphous carbon targets, is significantly lower than the exciting charge state of the single carbon atom at the same velocity. This effect increases with the size of the cluster and decreases with the target thickness. We have followed the evolution of secondary H{sup +} emission, from the exit side of the foil in the the forward direction, as a function of the target thickness and size and velocity of cluster projectile. At 2 MeV/atom, C{sub 10} and C{sub 5} cluster constituents are still close enough after 30 nm of amorphous carbon to induce H{sup +} emission as if all the constituents were concentrated in a `point-charge`. When decreasing the velocity by a factor of 1.4, because of increased multiple scattering and Coulomb explosion effects, this point-charge behaviour is not observed any more. (authors) 1 fig.

  18. Corrected Launch Speed for a Projectile Motion Laboratory

    Science.gov (United States)

    Sanders, Justin M.; Boleman, Michael W.

    2013-01-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  19. ’Fused-on’ Rotating Bands for Projectiles

    Science.gov (United States)

    1974-12-01

    casting alloys, might be preferable for the procese or as rotating band materials depending on projectile requirements. METHODS AND PROCEDURES In this in...has fractured on impact (left projectile) all parts of the band have remained attached to the steel. Problem Areas One of the problems encountered in

  20. Microcraters formed in glass by projectiles of various densities

    Science.gov (United States)

    Vedder, J. F.; Mandeville, J.-C.

    1974-01-01

    An experiment was conducted investigating the effect of projectile density on the structure and size of craters in soda lime glass and fused quartz. The projectiles were spheres of polystyrene-divinylbenzene (PS-DVB), aluminum, and iron with velocities between 0.5 and 15 km/sec and diameters between 0.4 and 5 microns. The projectile densities spanned the range expected for primary and secondary particles of micrometer size at the lunar surface, and the velocities spanned the lower range of micrometeoroid velocities and the upper range of secondary projectile velocities. There are changes in crater morphology as the impact velocity increases, and the transitions occur at lower velocities for the projectiles of higher density. The sequence of morphological features of the craters found for PS-DVB impacting soda lime glass for increasing impact velocity, described in a previous work (Mandeville and Vedder, 1971), also occurs in fused quartz and in both targets with the more dense aluminum and iron projectiles. Each transition in morphology occurs at impact velocities generating a certain pressure in the target. High density projectiles require a lower velocity than low-density projectiles to generate a given shock pressure.

  1. Stability of Liquid-Filled Projectiles with Unusual Coning Frequencies.

    Science.gov (United States)

    1986-07-01

    INTRODUCTION .................. . .. ......... ... ...... 5 11. INVISCID LIQUID MOMENTo ......... s....................... 6 III. VISCOUS MODIFICATIONS...1966. (AD 489687) 3. Murphy, C. H., " Angular Motion of a Spinn Projectile inth a Viscous Liquid Payload," Ballistic Research Laboratory, Aberdeen...stability. II. INVISCID LIQUID MOMENT We will consider a spinning projectile** performing a coning or spiraling motion. In nonrolling coordinates the angular

  2. Dynamic fracture of inorganic glasses by hard spherical and conical projectiles.

    Science.gov (United States)

    Chaudhri, M Munawar

    2015-03-28

    In this article, high-speed photographic investigations of the dynamic crack initiation and propagation in several inorganic glasses by the impact of small spherical and conical projectiles are described. These were carried out at speeds of up to approximately 2×10(6) frames s(-1). The glasses were fused silica, 'Pyrex' (a borosilicate glass), soda lime and B(2)O(3). The projectiles were 0.8-2 mm diameter spheres of steel, glass, sapphire and tungsten carbide, and their velocities were up to 340 m s(-1). In fused silica and Pyrex, spherical projectiles' impact produced Hertzian cone cracks travelling at terminal crack velocities, whereas in soda-lime glass fast splinter cracks were generated. No crack bifurcation was observed, which has been explained by the nature of the stress intensity factor of the particle-impact-generated cracks, which leads to a stable crack growth. Crack bifurcation was, however, observed in thermally tempered glass; this bifurcation has been explained by the tensile residual stress and the associated unstable crack growth. A new explanation has been proposed for the decrease of the included angle of the Hertzian cone cracks with increasing impact velocity. B(2)O(3) glass showed dynamic compaction and plasticity owing to impact with steel spheres. Other observations, such as total contact time, crack lengths and response to oblique impacts, have also been explained.

  3. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    Science.gov (United States)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  4. Locating the source of projectile fluid droplets

    CERN Document Server

    Varney, Christopher R

    2011-01-01

    The ballistically ill-posed projectile problem of finding source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. Due to missing velocity information, however, finding the height of origin from impact position and angle of individual drops is not possible. Turning to aggregate statistics of the spatter and basic equations of projectile motion familiar to physics students, we introduce a reciprocal correlation plot that is effective when the polar angle of launch is concentrated in a narrow range. The horizontal plot coordinate is twice the reciprocal of impact distance, and the vertical coordinate depends on the orientation of the spattered surface; for a level surface this is the tangent of impact angle. In all cases one infers source height as the slope of data points in the reciprocal correlation plot. Such plo...

  5. Penetration of projectiles into granular targets

    Science.gov (United States)

    Ruiz-Suárez, J. C.

    2013-06-01

    Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.

  6. Locating the source of projectile fluid droplets

    Science.gov (United States)

    Varney, Christopher R.; Gittes, Fred

    2011-08-01

    The ill-posed projectile problem of finding the source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime-scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. However, the lack of velocity information makes finding the height of the origin from the impact position and angle of individual drops not possible. From aggregate statistics of the spatter and basic equations of projectile motion, we introduce a reciprocal correlation plot that is effective when the polar launch angle is concentrated in a narrow range. The vertical coordinate depends on the orientation of the spattered surface and equals the tangent of the impact angle for a level surface. When the horizontal plot coordinate is twice the reciprocal of the impact distance, we can infer the source height as the slope of the data points in the reciprocal correlation plot. If the distribution of launch angles is not narrow, failure of the method is evident in the lack of linear correlation. We perform a number of experimental trials, as well as numerical calculations and show that the height estimate is relatively insensitive to aerodynamic drag. Besides its possible relevance for crime investigation, reciprocal-plot analysis of spatter may find application to volcanism and other topics and is most immediately applicable for undergraduate science and engineering students in the context of crime-scene analysis.

  7. Impact effects of explosively formed projectiles on normal strength concrete

    Science.gov (United States)

    Bookout, Laurin; Baird, Jason

    2012-03-01

    This paper will address the experimental results of the impact of 101.6 mm (4 in) explosively formed projectiles on normal strength concrete targets. Five projectiles were recovered using a soft recovery system to determine the average mass and nose shape of the projectiles. Velocity data for each test was measured with a high speed camera. The average projectile nose shape and mass plus the striking velocity, and the penetration depths from ten tests were compared to existing penetration equations to see if one or more of the equations is applicable for this type of projectile impact. The coarse aggregate gradation used in the concrete mix has Hugoniot data available. The Hugoniot data allows comparison of any observed spalling with the theoretical predictions.

  8. Use of the Regenerative Braking of Suburban Trains for Fast DC Charging of Electric Cars; Utilizacion del frenado regenerativo de trenes suburbanos para la recarga rapida de automoviles electricos en corriente continua

    Energy Technology Data Exchange (ETDEWEB)

    Lafoz, M.; Concha, P.; Navarro, G.; Blanco, M.; Rodriguez, C.

    2014-04-01

    This article discusses the problem of the electric vehicles fast charge from the perspective of the need for a high voltage power supply in areas where it is hard to access power transmission infrastructures, and how this problem can be solved with a system based on the supply of power from suburban train lines, together with energy storage systems and where everything is governed by optimized control strategies to maximize the energy use as much as possible. (Author)

  9. Key Techniques of Terminal Correction Mortar Projectiles

    Institute of Scientific and Technical Information of China (English)

    XU Jin-xiang

    2007-01-01

    The operational principle, the impulse force and terminal guidance laws of terminal correction mortar projectiles(TCMP) are researched in this paper, by using the TCMP simulation program, key techniques such as the miss distance influenced by the acting point of impulse force, the impulse force value, the correction threshold, and the number of impulse rockets are researched in this paper.And the dual pulse control scheme is also studied.Simulation results indicate that the best acting point is near the center of gravity, sufficient correction resources are needed, the miss distance is insentive to the correction threshold, increasing the number of impulse rockets properly is beneficial to increase the hit precision, the velocity pursuit guidance law has less miss distance, the change of the attack angle is milder and the transient time becomes less in the dual impulse control scheme.These conclusions are important for choosing parameters and impulse correction schemes designed for TCMP.

  10. Influence of projectile breakup on complete fusion

    Indian Academy of Sciences (India)

    A Mukherjee; M K Pradhan

    2010-07-01

    Complete fusion excitation functions for 11,10B+159Tb and 6,7Li+159Tb have been reported at energies around the respective Coulomb barriers. The measurements show significant suppression of complete fusion cross-sections at energies above the barrier for 10B+159Tb and 6,7Li+159Tb reactions, when compared to those for 11B+159Tb. The comparison shows that the extent of suppression of complete fusion cross-sections is correlated with the -separation energies of the projectiles. Also, the measured incomplete fusion cross-sections show that the -particle emanating channel is the favoured incomplete fusion process. Inclusive measurement of the -particles produced in 6Li+159Tb reaction has been carried out. Preliminary CDCC calculations carried out to estimate the - yield following 6Li breaking up into + fail to explain the measured -yield. Transfer processes seem to be important contributors.

  11. Experimental and numerical study on fragmentation of steel projectiles

    Directory of Open Access Journals (Sweden)

    Hopperstad O.S.

    2012-08-01

    Full Text Available A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.

  12. Optimization of BEV Charging Strategy

    Science.gov (United States)

    Ji, Wei

    This paper presents different approaches to optimize fast charging and workplace charging strategy of battery electric vehicle (BEV) drivers. For the fast charging analysis, a rule-based model was built to simulate BEV charging behavior. Monte Carlo analysis was performed to explore to the potential range of congestion at fast charging stations which could be more than four hours at the most crowded stations. Genetic algorithm was performed to explore the theoretical minimum waiting time at fast charging stations, and it can decrease the waiting time at the most crowded stations to be shorter than one hour. A deterministic approach was proposed as a feasible suggestion that people should consider to take fast charging when the state of charge is approaching 40 miles. This suggestion is hoped to help to minimize potential congestion at fast charging stations. For the workplace charging analysis, scenario analysis was performed to simulate temporal distribution of charging demand under different workplace charging strategies. It was found that if BEV drivers charge as much as possible and as late as possible at workplace, it could increase the utility of solar-generated electricity while relieve grid stress of extra intensive electricity demand at night caused by charging electric vehicles at home.

  13. NUMERICAL SIMULATION FOR FORMED PROJECTILE OF DEPLETED URANIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    宋顺成; 高平; 才鸿年

    2003-01-01

    The numerical simulation for forming projectile of depleted uranium alloy with the SPH ( Smooth Particle Hydrodynamic ) algorithm was presented. In the computations the artificial pressures of detonation were used, i. e. , the spatial distribution and time distribution were given artificially. To describe the deformed behaviors of the depleted uranium alloy under high pressure and high strain rate, the Johnson-Cook model of materials was introduced. From the numerical simulation the formed projectile velocity,projectile geometry and the minimum of the height of detonation are obtained.

  14. Uniform Projectile Motion: Dynamics, Symmetries and Conservation Laws

    Science.gov (United States)

    Swaczyna, Martin; Volný, Petr

    2014-04-01

    A geometric nonholonomic theory is applied to the problem of uniform projectile motion, i.e. motion of a projectile with constant instantaneous speed. The problem is investigated from the kinematic and dynamic point of view. Corresponding kinematic parameters of classical and uniform projectile motion are compared, nonholonomic Hamilton equations are derived and their solvability is discussed. Symmetries and conservation laws of the considered system are studied, the nonholonomic formulation of a conservation law of generalized energy is found as one of the corresponding Noetherian first integrals of this nonholonomic system.

  15. The projectile-wall interface in rail launchers

    Science.gov (United States)

    Thio, Y. C.; Huerta, M. A.; Boynton, G. C.; Tidman, D. A.; Wang, S. Y.; Winsor, N. K.

    1993-01-01

    At sufficiently high velocity, an energetic gaseous interface is formed between the projectile and the gun wall. We analyze the flow in this interface in the regime of moderately high velocity. The effect of this gaseous interface is to push the gun wall radially outward and shrink the projectile radially inward. Our studies show that significant plasma blow-by can be expected in most experimental railguns in which organic polymers are used as insulators. Since plasma leakage may result in the reduction of propulsion pressure and possibly induce the separation of the primary, the results point to the importance of having sufficiently stiff barrels and structurally stiff but 'ballistically compliant' projectile designs.

  16. Total cross sections for electron capture and transfer ionization by highly stripped, slow Ne, Ar, Kr, and Xe projectiles on helium

    Energy Technology Data Exchange (ETDEWEB)

    Justiniano, E.; Cocke, C.L.; Gray, T.J.; Dubois, R.; Can, C.; Waggoner, W.; Schuch, R.; Schmidt-Boecking, H.; Ingwersen, H.

    1984-03-01

    Experimental cross sections are reported for electron capture and transfer ionization for Ne, Ar, Kr, and Xe projectiles on He for charge states (q) between 2 and 13 and for projectile energies between (250 and 1000 eV)q. The double-electron capture is found to be typically an order of magnitude weaker than single-electron capture, and to be dominated in most cases by the transfer ionization channel. While gross features of the cross sections can be qualitatively understood, quantitative agreement with available theoretical model calculations is poor.

  17. Static Gas-Charging Plug

    Science.gov (United States)

    Indoe, William

    2012-01-01

    A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.

  18. A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight

    Science.gov (United States)

    2014-07-01

    motions of the projectile about the trajectory due to the angular motion of the projectile . For a stable projectile , these motions are typically small...A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight by Paul Weinacht ARL-TR-6998 July 2014...Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight Paul Weinacht Weapons and Materials Research Directorate, ARL

  19. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  20. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  1. Impact of Thin-Walled Projectiles with Concrete Targets

    Directory of Open Access Journals (Sweden)

    Rayment E. Moxley

    1995-01-01

    Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.

  2. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  3. Light projectile scattering off the Color Glass Condensate

    CERN Document Server

    Fukushima, Kenji

    2007-01-01

    We systematically compute the expectation value of Wilson lines in the McLerran-Venugopalan model, which provides useful formulae for evaluation of the scattering aimplitude in the collision of a light projectile and a heavy target.

  4. Charge distribution studies in the fast-neutron-induced fission of sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U, sup 2 sup 4 sup 0 Pu and sup 2 sup 4 sup 4 Cm

    CERN Document Server

    Naik, H; Iyer, R H

    2003-01-01

    Charge distribution studies for heavy-mass fission products were carried out in the fast-neutron-induced fission of sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U, sup 2 sup 4 sup 0 Pu and sup 2 sup 4 sup 4 Cm using radiochemical and gamma-ray spectrometric techniques. The width parameter(sigma sub Z /sigma sub A), the most probable charge/mass (Z sub P /A sub P), the charge polarization (DELTA Z) and the slope of charge polarization [ delta(DELTA Z)/delta A sup '] as a function of the fragment mass (A sup ') were deduced. The average charge dispersion parameter (left angle sigma sub Z right angle) and proton odd-even effect (delta sub p) were also obtained for these fissioning systems. The left angle sigma sub Z right angle and delta sub p values in the fissioning systems sup 2 sup 4 sup 1 Pu sup * and sup 2 sup 4 sup 5 Cm sup * were determined for the first time. The delta(DELTA Z)/delta A sup ' value is also determined for the first time in the fissioning systems sup 2 sup 3 sup 9 U sup * , sup 2 sup 4 sup 1 Pu...

  5. Visualization Techniques Applied to 155-mm Projectile Analysis

    Science.gov (United States)

    2014-11-01

    demonstrated via these numerical calculations. The ability to understand the physics that impact the flight dynamics of the projectile through...properties Projectile Physical Properties Value Diameter, d (m) 0.155 Length, L (mm) 0.9814 Mass, m (kg) 44.197 Center of gravity, Xcg 0.5976 Axial...characteristics-based inflow/outflow boundary condition, which is based on solving a Riemann problem at the boundary. 2.3 Numerics Rolling/spinning is the

  6. Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles

    Science.gov (United States)

    2011-01-12

    Gill, J., “Experimental Investigation of Super- and Hypersonic Jet Interaction on Missile Configurations,” Journal of Spacecraft and Rockets, Vol. 35...Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles Daniel Corriveau∗ Canadian Department of National Defence , Quebec City, Quebec...course correction process for a 30-mm fin-stabilized air- defense projectile and a standard 105-mm spin-stabilized artillery shell are presented

  7. Numerical Prediction of Pitch Damping Stability Derivatives for Finned Projectiles

    Science.gov (United States)

    2013-11-01

    spinner rocket, but not to a finned projectile. This study presents the first combined application of these methods for finned projectiles in which...and the U.S. Air Force Research Laboratory (AFRL) Aeroballistic Research Facility (ARF) (29) at Eglin Air Force Base in Florida. 2. Theoretical...numerical convergence, the results of which are presented in section4.2.2. 2.2 Steady Lunar Coning Method Murphy (24), Schiff (15, 16), Tobak and Schiff

  8. Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE Consortium Studies.

    Science.gov (United States)

    Hruby, Adela; Ngwa, Julius S; Renström, Frida; Wojczynski, Mary K; Ganna, Andrea; Hallmans, Göran; Houston, Denise K; Jacques, Paul F; Kanoni, Stavroula; Lehtimäki, Terho; Lemaitre, Rozenn N; Manichaikul, Ani; North, Kari E; Ntalla, Ioanna; Sonestedt, Emily; Tanaka, Toshiko; van Rooij, Frank J A; Bandinelli, Stefania; Djoussé, Luc; Grigoriou, Efi; Johansson, Ingegerd; Lohman, Kurt K; Pankow, James S; Raitakari, Olli T; Riserus, Ulf; Yannakoulia, Mary; Zillikens, M Carola; Hassanali, Neelam; Liu, Yongmei; Mozaffarian, Dariush; Papoutsakis, Constantina; Syvänen, Ann-Christine; Uitterlinden, André G; Viikari, Jorma; Groves, Christopher J; Hofman, Albert; Lind, Lars; McCarthy, Mark I; Mikkilä, Vera; Mukamal, Kenneth; Franco, Oscar H; Borecki, Ingrid B; Cupples, L Adrienne; Dedoussis, George V; Ferrucci, Luigi; Hu, Frank B; Ingelsson, Erik; Kähönen, Mika; Kao, W H Linda; Kritchevsky, Stephen B; Orho-Melander, Marju; Prokopenko, Inga; Rotter, Jerome I; Siscovick, David S; Witteman, Jacqueline C M; Franks, Paul W; Meigs, James B; McKeown, Nicola M; Nettleton, Jennifer A

    2013-03-01

    Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [β = -0.009 mmol/L (95% CI: -0.013, -0.005), P magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted.

  9. Multiple target ionization in collisions between highly charged ions and Ar

    NARCIS (Netherlands)

    deNijs, G; Hoekstra, R; Morgenstern, R

    1996-01-01

    We have performed measurements on charge-state distributions of target ions produced in collisions of C6+, N6+, O6+, Ne6+, Ar6+ and Kr6+ on Ar. Charge states of Ar target ions higher than the initial projectile charge state are observed for C6+, N6+ and O6+. This intriguing observation seems to

  10. Rate capability of a cryogenic stopping cell for uranium projectile fragments produced at 1000 MeV/u

    Science.gov (United States)

    Reiter, M. P.; Rink, A.-K.; Dickel, T.; Haettner, E.; Heiße, F.; Plaß, W. R.; Purushothaman, S.; Amjad, F.; Ayet San Andrés, S.; Bergmann, J.; Blum, D.; Dendooven, P.; Diwisch, M.; Ebert, J.; Geissel, H.; Greiner, F.; Hornung, C.; Jesch, C.; Kalantar-Nayestanaki, N.; Knöbel, R.; Lang, J.; Lippert, W.; Miskun, I.; Moore, I. D.; Nociforo, C.; Petrick, M.; Pietri, S.; Pfützner, M.; Pohjalainen, I.; Prochazka, A.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Weick, H.; Winfield, J. S.; Xu, X.

    2016-06-01

    At the Low-Energy Branch (LEB) of the Super-FRS at FAIR, projectile and fission fragments will be produced at relativistic energies, separated in-flight, energy-bunched, slowed down and thermalized in a cryogenic stopping cell (CSC) filled with ultra-pure He gas. The fragments are extracted from the stopping cell using a combination of DC and RF electric fields and gas flow. A prototype CSC for the LEB has been developed and successfully commissioned at the FRS Ion Catcher at GSI. Ionization of He buffer gas atoms during the stopping of energetic ions creates a region of high space charge in the stopping cell. The space charge decreases the extraction efficiency of stopping cells since the high amount of charge distorts the applied DC electric drag fields. Thus the understanding of space charge effects is of great importance to make full use of the high yields at future RIB facilities such as the Super-FRS at FAIR. For this purpose a detailed study of space charge effects in the CSC was performed using experiments and simulations. The dependence of the extraction efficiency, the extraction time and the temporal ion extraction profile on the intensity of the impinging beam and the electric field strength was studied for two different 238 U projectile fragments produced at 1000 MeV/u and separated with the FRS. Good agreement between experiments and simulations was found.

  11. N/Z Dependence of Projectile Fragmentation

    CERN Document Server

    Trautmann, W; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Botvina, A S; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Hellström, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Lühning, J; Lukasik, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Sfienti, C; Simon, H; Sümmerer, K; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B

    2007-01-01

    The N/Z dependence of projectile fragmentation at relativistic energies has been studied in a recent experiment at the GSI laboratory with the ALADiN forward spectrometer coupled to the LAND neutron detector. Besides a primary beam of 124Sn, also secondary beams of 124La and 107Sn delivered by the FRS fragment separator have been used in order to extend the range of isotopic compositions of the produced spectator sources. With the achieved mass resolution of \\Delta A/A \\approx 1.5%, lighter isotopes with atomic numbers Z \\le 10 are individually resolved. The presently ongoing analyses of the measured isotope yields focus on isoscaling and its relation to the properties of hot fragments at freeze-out and on the derivation of chemical freeze-out temperatures which are found to be independent of the isotopic composition of the studied systems. The latter result is at variance with the predictions for limiting temperatures as obtained with finite-temperature Hartree-Fock calculations.

  12. Optimising LISA orbits: The projectile solution

    CERN Document Server

    Dhurandhar, S V; Vinet, J-Y

    2008-01-01

    LISA is a joint space mission of the NASA and the ESA for detecting low frequency gravitational waves (GW) in the band $10^{-5} - 0.1$ Hz. The proposed mission will use coherent laser beams which will be exchanged between three identical spacecraft forming a giant (almost) equilateral triangle of side $5 \\times 10^6$ kilometres. The plane of the triangle will make an angle of $\\sim 60^{\\circ}$ with the plane of the ecliptic. The spacecraft constituting LISA will be freely floating in the ambient gravitational field of the Sun and other celestial bodies. To achieve the requisite sensitivity, the spacecraft formation should remain stable, one requirement being, the distances between spacecraft should remain as constant as possible - that is the flexing of the arms should be minimal. In this paper we present a solution - the projectile solution - which constrains the flexing of the arms to below 5.5 metres/sec in a three year mission period. This solution is obtained in the field of the Sun and Earth only, which...

  13. Impact Behaviour of Soft Body Projectiles

    Science.gov (United States)

    Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana

    2017-04-01

    Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.

  14. Non-dipole effects in angular distributions of secondary electrons in fast particle-atom scattering

    CERN Document Server

    Amusia, M Ya; Liverts, E Z

    2010-01-01

    We demonstrate that the angular distribution of electrons knocked out from an atom by a fast charge particle is determined not only by dipole but also by quadrupole transitions, the contribution of which can be considerably enhanced as compared to the case of photoionization. To obtain these matrix elements one has to study the angular distribution of electrons emitted by the atom in its collision with a fast charged particle. The distribution has to be measured relative to the momentum q transferred from the projectile to the target atom. The situation is similar, but not identical to the photoionization studies, where the matrix elements of continuous spectrum atomic quadrupole transitions can be determined by measuring the so-called non-dipole angular anisotropy parameters of photoelectrons. However, they are strongly suppressed as compared to the dipole matrix elements by small ratio of atomic size to the photon wavelength. This suppression is controlled in fast electron-atom collisions, where it can be m...

  15. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  16. A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

    OpenAIRE

    NianSong Zhang; Dong; Wang; Bei Peng; Yong He

    2015-01-01

    A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

  17. An improved charge pump with suppressed charge sharing effect

    Directory of Open Access Journals (Sweden)

    Na Bai

    2013-09-01

    Full Text Available A differential charge pump with reduced charge sharing effect is presented. The current-steering topology is adopted for fast switching. A replica charge pump is added to provide a current path for the complementary branch of the master charge pump in the current switching. Through the replica charge pump, the voltage at the complementary node of the master charge pump keeps stable during switching, and the dynamic charge sharing effect is avoided. Apply the charge pump to a 4.8 GHz band integer-N PLL, the measured reference spur is -49.7dBc with a 4-MHz reference frequency.

  18. Projectile spectator proton production in 84Kr- emulsion interactions at 1.7 A GeV%Projectile spectator proton production in 84Kr- emulsion interactions at 1.7 A GeV

    Institute of Scientific and Technical Information of China (English)

    BAI Cai-Yan; ZHANG Dong-Hai

    2011-01-01

    The multiplicity distribution of projectile protons and multiplicity correlations between black particles, grey particles, shower particles, compound particles, heavily ionized track particles, projectile helium fragments and projectile spectator protons

  19. Research on critical behaviour during fragmentation of the projectile in the Xe+Sn (at 50 MeV/A) reaction; Recherche d`un comportement critique dans la fragmentation du projectile dans la reaction Xe+Sn a 50 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.

    1995-03-01

    The study of moments of fragments charge distributions produced in heavy ions collisions can give us evidence of a critical behavior of nuclear matter which could explain the multifragmentation pattern. From an experimental point of view, in order to perform this capabilities of the INDRA detector has made it possible to identify all these particles and to reconstruct the initial projectile-like fragment coming from binary collisions in the reaction Xe+Sn at 50 MeV/A. We have selected events where the initial projectile-like fragments keep their entire charge in a large range of excitation energy. The study of these fragment`s characteristics show clearly a change in the deexcitation pattern. The evolution of moments of the fragment charge distributions has been reproduced within a percolation model, in this sense we can interpreter this change in the deexcitation pattern as a function of the initial projectile-like fragment`s size shows the existence of finite-size effects. However, the signature of a phase transition remains independent on the projectile-like fragment`s size. (author). 74 refs., 58 figs., 9 tabs.

  20. Elastic recovery in targets impacted by low-velocity projectiles*%信息动态

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    By taking into account the whole plastic deformation and elastic deformation recovery of targets during the penetration of the rigid, sharp-nose projectiles, the ANSYS/LS-DYNA code was used to calculate the rebound velocities of the projectiles and targets in the cases that the projectiles at the same velocities penetrated into the targets with different widths and thicknesses. Influences of the sizes of the targets and the impact velocities of the projectiles on the elastic recovery of the targets and the rebound of the projectiles were analyzed. The researched results are helpful for the engineering and experimental designs of the projectiles with low velocities penetrating into the targets.

  1. Set Down Study of Projectile in Flight Through Imaging

    Directory of Open Access Journals (Sweden)

    Suman Kumar Choudhury

    2014-11-01

    Full Text Available Deformation study of projectile immediately after firing is essential for its successful impact. A projectile that undergoes more than the tolerated amount of deformation in the barrel may not produce the requisite results. The study of projectile deformation before its impact requires it to be imaged in flight and perform some computation on the acquired image. Often the deformation tolerance is of the order of tens of micrometer and the acquired image cannot produce image with such accuracy because of photographic limitations. Therefore, it demands sub-pixel manipulation of the captured projectile image. In this work the diameter of a projectile is estimated from its image which became blur because of slow shutter speed. First the blurred image is restored and then various interpolation methods are used for sub-pixel measurement. Two adaptive geometrical texture based interpolation schemes are also proposed in this research. The proposed methods produce very good results as compared to the existing methods.Science Journal, Vol. 64, No. 6, November 2014, pp.530-535, DOI:http://dx.doi.org/10.14429/dsj.64.8114

  2. Experimental investigation of penetration performance of shaped charge into concrete targets

    Institute of Scientific and Technical Information of China (English)

    Cheng Wang; Tianbao Ma; Jianguo Ning

    2008-01-01

    In order to develop a tandem warhead that can effectively destroy concrete targets, this paper explores the penetration performance of shaped charges with different cone angles and liner materials into concrete targets by means of experiments. The penetration process and the destruction mechanism of concrete targets by shaped charges and kinetic energy projectiles are analyzed and compared. Experimental results suggest that both kinetic energetic projectile and shaped charge are capable of destroying concrete targets, but the magnitudes of damage are different. Compared with a kinetic energy projectile, a shaped charge has more significant effect of penetration into the target, and causes very large spalling area. Hence, a shaped charge is quite suitable for first-stage charge of tandem warhead. It is also found that, with the increase of shaped charge liner cone angle, the depth of penetration decreases gradually while the hole diameter becomes larger. Penetration depth with copper liner is larger than of aluminum liner but hole diameter is relatively smaller, and the shaped charge with steel liner is between the above two cases. The shaped charge with a cone angle of 100° can form a jet projectile charge (JPC). With JPC, a hole with optimum depth and diameter on concrete targets can be formed, which guarantees that the second-stage warhead smoothly penetrates into the hole and explodes at the optimum depth to achieve the desired level of destruction in concrete targets.

  3. Experimental investigation of penetration performance of shaped charge into concrete targets

    Science.gov (United States)

    Wang, Cheng; Ma, Tianbao; Ning, Jianguo

    2008-06-01

    In order to develop a tandem warhead that can effectively destroy concrete targets, this paper explores the penetration performance of shaped charges with different cone angles and liner materials into concrete targets by means of experiments. The penetration process and the destruction mechanism of concrete targets by shaped charges and kinetic energy projectiles are analyzed and compared. Experimental results suggest that both kinetic energetic projectile and shaped charge are capable of destroying concrete targets, but the magnitudes of damage are different. Compared with a kinetic energy projectile, a shaped charge has more significant effect of penetration into the target, and causes very large spalling area. Hence, a shaped charge is quite suitable for first-stage charge of tandem warhead. It is also found that, with the increase of shaped charge liner cone angle, the depth of penetration decreases gradually while the hole diameter becomes larger. Penetration depth with copper liner is larger than of aluminum liner but hole diameter is relatively smaller, and the shaped charge with steel liner is between the above two cases. The shaped charge with a cone angle of 100° can form a jet projectile charge (JPC). With JPC, a hole with optimum depth and diameter on concrete targets can be formed, which guarantees that the second-stage warhead smoothly penetrates into the hole and explodes at the optimum depth to achieve the desired level of destruction in concrete targets.

  4. Effects of the projectile electronic structure on Bethe-Bloch stopping parameters for Ag

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, D., E-mail: djamelmoussa@gmail.co [USTHB, Faculte de Physique, B.P. 32, 16111 Bab-Ezzouar, Algiers (Algeria); Damache, S. [Division de Physique, CRNA, 02 Bd. Frantz Fanon, B.P. 399 Alger-gare, Algiers (Algeria); Ouichaoui, S., E-mail: souichaoui@gmail.co [USTHB, Faculte de Physique, B.P. 32, 16111 Bab-Ezzouar, Algiers (Algeria)

    2010-06-15

    Energy losses of protons and alpha particles in silver have been accurately measured under the same experimental conditions over the velocity range E{sub lab}=(0.192-2.595) MeV/amu using the transmission method. Deduced S(E) stopping powers are compared to most accurate ones from the literature, to values generated by the SRIM-2008 computer code and to ICRU-49 compilation. They were analyzed in the framework of modified Bethe-Bloch theory for extracting Ag target mean excitation and ionization potential, I, and Barkas effect parameter, b. Values of (466{+-}5) eV and 1.20{+-}0.01 for these two parameters were inferred from the proton S(E) data while the alpha particle data yielded values of (438{+-}4) eV and 1.38{+-}0.01, respectively. The (I, b) stopping parameters thus exhibit opposite variations as the projectile charge increases, similarly as we have found previously for nickel . This can be ascribed only to an effect of the projectile electronic structure at low velocities. The obtained results are discussed in comparison to previous ones reported in the literature.

  5. Chandra observations of comet 2P/Encke 2003 : First detection of a collisionally thin, fast solar wind charge exchange system

    NARCIS (Netherlands)

    Lisse, CM; Christian, DJ; Dennerl, K; Wolk, SJ; Bodewits, D; Hoekstra, R; Combi, MR; Makinen, T; Dryer, M; Fry, CD; Weaver, H

    2005-01-01

    We report the results of 15 hr of Chandra observations of comet 2P/Encke 2003 on November 24. X-ray emission from comet Encke was resolved on scales of 500-40,000 km, with unusual morphology due to the presence of a low-density, collisionally thin (to charge exchange) coma. A light curve with peak-t

  6. Surface nanostructures by single highly charged ions.

    Science.gov (United States)

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  7. Study of Trajectory of Spin-Stabilised Artillery Projectiles

    Directory of Open Access Journals (Sweden)

    M. Krishnamurthy

    1991-10-01

    Full Text Available Equations of motion for conventional spin-stabilised artillery projectile have been derived using a pseudo-stability axes system in addition to body-fixed and space-fixed axes systems. The aerodynamic forces and moments have been represented by their respective coefficients and the effects of Mach number and Reynolds number have been suitably accounted. The magnus terms which are significant at high rates of spin are estimated using a simple model. The set of equations have been partly linearised and solved numerically for a typical projectile using NAG system routines. Various trajectory parameters are computed and compared with the range-table data for the projectile. A parametric study had been carried out varying the aerodynamic coefficients to understand the sensitivity of the results obtained.

  8. Using Tracker as a Pedagogical Tool for Understanding Projectile Motion

    CERN Document Server

    Wee, Loo Kang; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong

    2012-01-01

    This paper reports the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When computer model building learning processes is supported and driven by video analysis data, this free Open Source Physics (OSP) tool can provide opportunities for students to engage in active inquiry-based learning. We discuss the pedagogical use of Tracker to address some common misconceptions of projectile motion by allowing students to test their hypothesis by juxtaposing their mental models against the analysis of real life videos. Initial research findings suggest that allowing learners to relate abstract physics concepts to real life through coupling computer modeling with traditional video analysis could be an innovative and effective way to learn projectile motion.

  9. Breakup reaction models for two- and three-cluster projectiles

    CERN Document Server

    Baye, D

    2010-01-01

    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroed...

  10. In situ characterization of projectile penetration into sand targets

    Science.gov (United States)

    Borg, John P.; Sable, Peter; Sandusky, Harold; Felts, Joshua

    2017-01-01

    This work presents the results from dynamic penetration experiments in which long rod projectiles were launched into Ottawa sand at velocities ranging from 90 m/s to 350 m/s. A unique aspect of these experiments was that the sand targets were visually accessible, which allowed for the penetration event recorded using high-speed digital photography. The images were processed using two different correlation methods. In addition, stress measurements of the transmitted waveforms were simultaneously collected from a piezoelectric load cell that was buried in the sand at various locations relative to the shot line. The results indicate that impact results in two waves: one similar to a detached bow shock and one near the projectile that forms force chains. Grains are damaged and broken by the force chains which allows the projectile to penetrate the target.

  11. Oblique perforation of thick metallic plates by rigid projectiles

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Chen; Qingming Li; Saucheong Fan

    2006-01-01

    Oblique perforation of thick metallic plates by rigid Drojectiles with various nose shapes is studied in this paper.Two perforation mechanisms,i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose,are considered in the proposed analytical model.It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers,i.e., the impact function,the geometry function of projectile,the non-dimensional thickness of target and the impact obliquity.Explicit formulae are obtained to predict the ballistic limit.residual velocity and directional change for the oblique perforation of thick metallic plates.The proposed model is able to predict the critical condition for the occurrence of ricochet.The proposed model is validated by comparing the predictions with other existing models and independent experimental data.

  12. The traumatic potential of a projectile shot from a sling.

    Science.gov (United States)

    Borovsky, Igor; Lankovsky, Zvi; Kalichman, Leonid; Belkin, Victor

    2017-03-01

    Herein, we analyze the energy parameters of stones of various weights and shapes shot from a sling and based on this data evaluate its traumatic potential. Four police officers proficient in the use of a sling participated in the trials. The following projectile types, shot using an overhead technique at a target 100m away were: round steel balls of different sizes and weights (24mm, 57g; 32mm, 135g; 38mm, 227g); different shaped stones weighing 100-150g and 150-200g and a golf ball (47g). Our data indicated that projectiles shot from unconventional weapons such as a sling, have serious traumatic potential for unprotected individuals and can cause blunt trauma of moderate to critical severity such as fractures of the trunk, limb, and facial skull bone, depending on the weight and shape of the projectile and the distance from the source of danger. Asymmetrically shaped projectiles weighing more than 100g were the most dangerous. Projectiles weighing more than 100g can cause bone fractures of the trunk and limbs at distances of up to 60m from the target and may cause serious head injuries to an unprotected person (Abbreviated Injury Scale 4-5) at distances up to 200m from the target. Due to the traumatic potential of projectiles shot from a sling, the police must wear full riot gear and keep at a distance of at least 60m from the source of danger in order to avoid serious injury. Furthermore, given the potential for serious head injuries, wearing a helmet with a visor is mandatory at distances up to 200m from the source of danger.

  13. A Simple General Solution for Maximal Horizontal Range of Projectile Motion

    CERN Document Server

    Busic, B

    2005-01-01

    A convenient change of variables in the problem of maximizing the horizontal range of the projectile motion, with an arbitrary initial vertical position of the projectile, provides a simple, straightforward solution.

  14. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    Science.gov (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  15. PERFORATION OF PLASTIC SPHERICAL SHELLS UNDER IMPACT BY CYLINDRICAL PROJECTILES

    Institute of Scientific and Technical Information of China (English)

    NING Jian-guo; SONG Wei-dong

    2006-01-01

    The objective is to study the perforation of a plastic spherical shell impacted by a cylindrical projectile. First, the deformation modes of the shell were given by introducing an isometric transformation. Then, the perforation mechanism of the shell was analyzed and an analytical model was advanced. Based on Hamilton principle, the governing equation was obtained and solved using Runge-Kuta method. Finally, some important theoretical predictions were given to describe the perforation mechanism of the shell. The results will play an important role in understanding the perforation mechanism of spherical shells impacted by a projectile.

  16. Dispersion Analysis of the XM881APFSDS Projectile

    Directory of Open Access Journals (Sweden)

    Thomas F. Erline

    2001-01-01

    Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.

  17. Perturbation of Initial Stability of an FSAPDS Projectile

    Directory of Open Access Journals (Sweden)

    R. S. Acharya

    2006-11-01

    Full Text Available For a spinning projectile, the initial stability condition is 2 = 1+ (4 K3 / K22 > 0. In the presentstudy, this condition has been modified for the malalignments arising due to pressure gradientand damping moment for an FSAPDS projectile. The equations of motion are established for thefirst phase of motion. A mathematical model for the first phase of motion has been developed.The effect of perturbation on the trajectory and stability of motion are discussed. It is provedthat if 3 K(a parameter appearing due to perturbation(-K22 2 /4 , the initial stability ofmotion will breakdown.

  18. Penetration Evaluation of Explosively Formed Projectiles Through Air and Water Using Insensitive Munition: Simulative and Experimental Studies

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2016-02-01

    Full Text Available The process of formation, flying, penetration of explosively-formed projectiles (EFP and the effect of water on performance of the charge for underwater applications is simulated by Ansysis Autodyn 2D-Hydro code. The main objective of an explosively formed projectile designed for underwater applications is to disintegrate the target at longer standoff distances. In this paper we have simulated the explosively formed projectile from OFHC-Copper liner for 1200 conical angle. The Affect of water on the penetration of EFP is determined by simulations from Ansysis Autodyn 2-D Hydrocode and by varying depth of water from 1CD-5CD. The depth of penetration against steel target is measured experimentally. Flash X-Ray Radiography (FXR is used to capture EFP jet formation and its penetration against target is measured by depth of penetration experiments. Simulation results are compared with experimental results. The difference in simulated and experimental results for depth of penetration is about 7 mm, which lies within favorable range of error. The jet formation captured from FXR is quite clear and jet velocity determined from Flash X-ray radiography is the same as the ones obtained by using other high explosives. Therefore, it is indicated that Insensitive Munition (8701 can be utilized instead of Polymer Bonded Explosives (PBX for air and underwater environments with great reliability and without any hazard.

  19. Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots

    Directory of Open Access Journals (Sweden)

    I. Khanonkin

    2017-03-01

    Full Text Available The charge carrier dynamics of improved InP-based InAs/AlGaInAs quantum dot (QD semiconductor optical amplifiers are examined employing the multi-wavelength ultrafast pump-probe measurement technique. The transient transmission response of the continuous wave probe shows interesting dynamical processes during the initial 2-3 ps after the pump pulse, when carriers originating from two photon absorption contribute the least to the recovery. The effects of optical excitations and electrical bias levels on the recovery dynamics of the gain in energetically different QDs are quantified and discussed. The experimental observations are validated qualitatively using a comprehensive finite-difference time-domain model by recording the time evolution of the charge carriers in the QDs ensemble following the pulse.

  20. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    Directory of Open Access Journals (Sweden)

    Enrique Quiroga-González

    2013-10-01

    Full Text Available Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001% over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity as well as the rates of charge flow per nominal area of anode are the highest for the present anode. With regard to applications, the specific parameters per area are more important than the specific gravimetric parameters like the gravimetric capacity, which is good for comparing the capacity between materials but not enough for comparing between anodes.

  1. Photochemistry with fast sample renewal using cluster beams: formation of rare-gas halides in charge-transfer reactions in NF 3-doped rare-gas clusters

    Science.gov (United States)

    Moussavizadeh, L.; von Haeften, K.; Museur, L.; Kanaev, A. V.; Castex, M. C.; von Pietrowski, R.; Möller, T.

    1999-05-01

    Charge transfer reactions in free clusters are observed in a photoluminescence study on doped rare-gas clusters (Rg clusters, Rg=Ar, Kr and Xe). Following photoexcitation into the first absorption bands of Rg clusters, fluorescence from free RgF* excimers ejected from the clusters and from Rg 2F* excimers localized in the interior of the clusters is observed. The results show that the reaction dynamics in clusters differs considerably from that in the gas and solid phase.

  2. FAST TRACK COMMUNICATION: Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques

    Science.gov (United States)

    Voggu, Rakesh; Das, Barun; Sekhar Rout, Chandra; Rao, C. N. R.

    2008-11-01

    The effects of the interaction of few-layer graphene with electron donor and acceptor molecules have been investigated by employing Raman spectroscopy, and the results compared with those from electrochemical doping. The G-band softens progressively with increasing concentration of tetrathiafulvalene (TTF) which is an electron donor, while the band stiffens with increasing concentration of tetracyanoethylene (TCNE) which is an electron acceptor. Interaction with both TTF and TCNE broadens the G-band. Hole and electron doping by electrochemical means, however, stiffen and sharpen the G-band. The 2D-band position is also affected by interaction with TTF and TCNE. More importantly, the intensity of the 2D-band decreases markedly with the concentration of either. The ratio of intensities of the 2D-band and G-band decreases with an increase in TTF or TCNE concentration, and provides a means for carrier titration in the charge transfer system. Unlike the intensity of the 2D-band, that of the D-band increases on interaction with TTF or TCNE. All of these effects occur due to molecular charge transfer, also evidenced by the occurrence of charge transfer bands in the electronic absorption spectra. The electrical resistivity of graphene varies in opposite directions on interaction with TTF and TCNE, the resistivity depending on the concentration of either compound.

  3. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E

    2006-01-01

    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  4. Predicting the fragmentation onset velocity for different metallic projectiles using numerical simulations

    NARCIS (Netherlands)

    Livingstone, I.H.G.; Verolme, K.; Hayhurst, C.J.

    2001-01-01

    For cubes and spheres under high velocity impact there exists for each system of projectile and target, a threshold velocity that is just sufficient to shatter the projectile. This velocity, usually above 2km/s for metallic projectiles, is known as the fragmentation onset velocity. To determine the

  5. BOOM: A Computer-Aided Engineering Tool for Exterior Ballistics of Smart Projectiles

    Science.gov (United States)

    2011-06-01

    run on PC, Unix, or Mac systems. 15. SUBJECT TERMS projectiles, trajectory , aeroballistics, flight mechanics, smart projectiles 16. SECURITY...system model are provided. The procedure for running BOOM is also outlined, with input data files described in the appendices. Example trajectories ...in equation 9, the aerodynamic forces on the projectile are split into standard steady (SA) and Magnus (MA) terms as follows

  6. Nuclear Fragmentation Induced by Relativistic Projectiles Studied in the 4$\\pi$ Configuration of Plastic Track Detectors

    CERN Multimedia

    2002-01-01

    % EMU19 \\\\ \\\\ The collisions of heavy ions at relativistic energies have been studied to explore a number of questions related with hot and dense nuclear matter in order to extend our knowledge of nuclear equation-of-state. There are other aspects of these interactions which are studied to expound the process of projectile and/or target disintegrations. The disintegrations in question could be simply binary fissions or more complex processes leading to spallation or complete fragmentation. These important aspects of nuclear reactions are prone to investigations with nuclear track detectors. \\\\ \\\\One of the comparatively new track detector materials, CR-39, is sensitive enough to record particles of Z~$\\geq$~6 with almost 100\\% efficiency up to highly relativistic energies. The wide angle acceptance and exclusive measurements possible with plastic track detectors offer an opportunity to use them in a variety of situations in which high energy charged fragments are produced. The off-line nature of measuring tra...

  7. 3D Numerical Simulation of Projectile Penetration into Concrete Target

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Basing on the explicit instantaneous dynamics software MSC-Dytran and the general coupling arithmetic, the process of the projectile penetration into concrete target was simulated with the point-line-surface-body modeling method. Simulation results are in agreement with experimental results. The simulated data could provide design reference for the defense engineering construction and penetrator design.

  8. Apparatus for Teaching Physics: A Versatile Projectile Motion Board.

    Science.gov (United States)

    Prigo, Robert B.; Korda, Anthony

    1984-01-01

    Describes the design and use of a projectile motion apparatus to illustrate a variety of projective motion results typically discussed in an introductory course. They include independence of horizontal (constant speed) and vertical (constant acceleration) motions, parabolic path shape, and other types of motion. (JN)

  9. The Long Decay Model of One-Dimensional Projectile Motion

    Science.gov (United States)

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  10. Using Tracker as a Pedagogical Tool for Understanding Projectile Motion

    Science.gov (United States)

    Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong

    2012-01-01

    This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…

  11. Projectile Motion in the "Language" of Orbital Motion

    Science.gov (United States)

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  12. High performance projectile seal development for non perfect railgun bores

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T.R.; Vine, F.E. Le; Riedy, P.E.; Panlasigui, A. [Maxwell Labs., Inc., San Diego, CA (United States); Hawke, R.S.; Susoeff, A.R. [Lawrence Livermore National Lab., CA (United States)

    1997-01-01

    The sealing of high pressure gas behind an accelerating projectile has been developed over centuries of use in conventional guns and cannons. The principal concern was propulsion efficiency and trajectory accuracy and repeatability. The development of guns for use as high pressure equation-of-state (EOS) research tools, increased the importance of better seals to prevent gas leakage from interfering with the experimental targets. The development of plasma driven railguns has further increased the need for higher quality seals to prevent gas and plasma blow-by. This paper summarizes more than a decade of effort to meet these increased requirements. In small bore railguns, the first improvement was prompted by the need to contain the propulsive plasma behind the projectile to avoid the initiation of current conducting paths in front of the projectile. The second major requirements arose from the development of a railgun to serve as an EOS tool where it was necessary to maintain an evacuated region in front of the projectile throughout the acceleration process. More recently, the techniques developed for the small bore guns have been applied to large bore railguns and electro-thermal chemical guns in order to maximize their propulsion efficiency. Furthermore, large bore railguns are often less rigid and less straight than conventional homogeneous material guns. Hence, techniques to maintain seals in non perfect, non homogeneous material launchers have been developed and are included in this paper.

  13. Projectile remnants in central peaks of lunar impact craters

    Science.gov (United States)

    Yue, Z.; Johnson, B. C.; Minton, D. A.; Melosh, H. J.; di, K.; Hu, W.; Liu, Y.

    2013-06-01

    The projectiles responsible for the formation of large impact craters are often assumed to melt or vaporize during the impact, so that only geochemical traces or small fragments remain in the final crater. In high-speed oblique impacts, some projectile material may survive, but this material is scattered far down-range from the impact site. Unusual minerals, such as magnesium-rich spinel and olivine, observed in the central peaks of many lunar craters are therefore attributed to the excavation of layers below the lunar surface. Yet these minerals are abundant in many asteroids, meteorites and chondrules. Here we use a numerical model to simulate the formation of impact craters and to trace the fate of the projectile material. We find that for vertical impact velocities below about 12kms-1, the projectile may both survive the impact and be swept back into the central peak of the final crater as it collapses, although it would be fragmented and strongly deformed. We conclude that some unusual minerals observed in the central peaks of many lunar impact craters could be exogenic in origin and may not be indigenous to the Moon.

  14. Projectile General Motion in a Vacuum and a Spreadsheet Simulation

    Science.gov (United States)

    Benacka, Jan

    2015-01-01

    This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…

  15. Shedding Phenomenon of Ventilated Partial Cavitation around an Underwater Projectile

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Wei; HUANG Chen-Guang; DU Te-Zhuan; WU Xian-Qian; FANG Xin; LIANG Nai-Gang; WEI Yan-Peng

    2012-01-01

    A new shedding phenomenon of ventilated partial cavitations is observed around an axisymmetric projectile in a horizontal launching experiment. The experiment system is established based on SHPB launching and high speed photography. A numerical simulation is carried out based on the homogeneous mixture approach, and its predicted evolutions of cavities are compared with the experimental results. The cavity breaks off by the interaction between the gas injection and the re-entry jet at the middle location of the projectile, which is obviously different from natural cavitation. The mechanism of cavity breaking and shedding is investigated, and the influences of important factors are also discussed.%A new shedding phenomenon of ventilated partial cavitations is observed around an axisymmetric projectile in a horizontal launching experiment.The experiment system is established based on SHPB launching and high speed photography.A numerical simulation is carried out based on the homogeneous mixture approach,and its predicted evolutions of cavities are compared with the experimental results.The cavity breaks off by the interaction between the gas injection and the re-entry jet at the middle location of the projectile,which is obviously different from natural cavitation.The mechanism of cavity breaking and shedding is investigated,and the influences of important factors are also discussed.

  16. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    Science.gov (United States)

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  17. Using Tracker as a Pedagogical Tool for Understanding Projectile Motion

    Science.gov (United States)

    Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong

    2012-01-01

    This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…

  18. Flight Performance of a Man Portable Guided Projectile Concept

    Science.gov (United States)

    2014-02-01

    investigating the mechatronics , control, and performance of the maneuver technology (27). 4 3. Aerodynamic Characterization The projectile geometry is...efforts focus on understanding the effects of the transient wing exposure to the airstream on the flight behavior. Additionally, mechatronic design and

  19. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  20. Particle-based Full-band Approach for Fast Simulation of Charge Transport in Si, GaAs, and InP

    Directory of Open Access Journals (Sweden)

    Marco Saraniti

    2002-01-01

    Full Text Available We discuss the application of the fullband cellular automaton (CA method for the simulation of charge transport in several semiconductors. Basing the selection of the state after scattering on simple look-up tables, the approach is physically equivalent to the full band Monte Carlo (MC approach but is much faster. Furthermore, the structure of the pre-tabulated transition probabilities naturally allows for an extension of the model to fully anisotropic scattering without additional computational burden. Simulation results of transport of electrons and holes in several materials are discussed, with particular emphasis on the transient response of photo-generated carriers in InP and GaAs. Finally, a discussion on parallel algorithms is presented, for the implementation of the code on workstation clusters.

  1. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Multimedia

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  2. Lithium Ion Coupled Electron-Transfer Rates in Superconcentrated Electrolytes: Exploring the Bottlenecks for Fast Charge-Transfer Rates with LiMn2O4 Cathode Materials.

    Science.gov (United States)

    Nikitina, Victoria A; Zakharkin, Maxim V; Vassiliev, Sergey Yu; Yashina, Lada V; Antipov, Evgeny V; Stevenson, Keith J

    2017-09-19

    The charge-transfer kinetics of lithium ion intercalation into LixMn2O4 cathode materials was examined in dilute and concentrated aqueous and carbonate LiTFSI solutions using electrochemical methods. Distinctive trends in ion intercalation rates were observed between water-based and ethylene carbonate/diethyl carbonate solutions. The influence of the solution concentration on the rate of lithium ion transfer in aqueous media can be tentatively attributed to the process associated with Mn dissolution, whereas in carbonate solutions the rate is influenced by the formation of a concentration-dependent solid electrolyte interface (SEI). Some indications of SEI layer formation at electrode surfaces in carbonate solutions after cycling are detected by X-ray photoelectron spectroscopy. The general consequences related to the application of superconcentrated electrolytes for use in advanced energy storage cathodes are outlined and discussed.

  3. Optimization of Spot Power Price in Coordinated Fast Charging Model of Electric Vehicles%智能电网中电动汽车快速有序充电实时电价优化方法

    Institute of Scientific and Technical Information of China (English)

    唐小波; 赵彩虹; 吴薛红; 张娟

    2013-01-01

    针对智能电网中电动汽车的有序充电调度问题,提出了用电价杠杆调节电动汽车快充负荷的实时电价机制,引入了愿望度模型,以电网负荷峰谷差最小为目标函数,充电站愿望度和用户愿望度为约束条件,建立了优化数学模型,并通过遗传算法对该优化模型进行求解。最后基于某地区2020年的预测数据进行算例仿真,结果表明,提出的实时电力定价机制可以有效降低峰谷差,保障充电站利益,满足用户充电需求,达到电网、充电站和用户的共赢。%Aiming at the order charging scheduling problem of the electric vehicles in the intelligent grids,a spot power pricing mechanism as a lever of regulating electricity is proposed to dispatch electric vehicle fast charging load. Considering the peak load shifting effect of grid, the benefit of charging station and the desire of customer, the mathematics model of optimization is founded. And a genetic algorithm is used to solve this problem of the model of opti-mization. Finally,a simulation based on an area's predicted data of year 2020 is made to show that the proposed method can lower the peak-valley difference,promise charging station benefit and meet customers'desires,as well as achieve a win-win result of the grid,the charging stations and the users.

  4. 电动汽车铅酸电池脉冲快速充电系统设计%Design of the Pulse-type Fast Speed Charging System of Lead-Acid Battery for Electric Car

    Institute of Scientific and Technical Information of China (English)

    段朝伟; 张雷; 刘刚

    2013-01-01

    为了缩短电动汽车铅酸电池的充电时间,提高能量接受率,基于带放电电流脉宽调制技术,设计了汽车电池脉冲快速充电系统.该系统采用嵌入式控制和上位机监控相结合的方式,软硬设计合理,性能可靠.试验数据分析表明,该系统有效缓解了电池的极化现象,缩短了汽车铅酸电池的充电时间,提高了电池能量接受率.系统具有广泛的应用前景.%In order to shorten the charging time of the lead-acid battery for electric car,and improve the energy acceptance rate,based on current pulse width modulation technology with discharging,the pulse type fast speed charging system of the battery for electric car has been designed.By adopting embedded control and combining with host computer monitoring,the system is designed reasonably in hardware and software and offers reliable performance.The analysis of test data indicates that this system effectively alleviates the polarization phenomenon of battery,shortens the charging time of the lead-acid battery,and enhances the energy acceptance rate.The system possesses broad applicable prospects.

  5. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Schueller, A.; Winter, H. [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2011-06-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  6. Developmental changes in children's understanding of horizontal projectile motion.

    Science.gov (United States)

    Mou, Yi; Zhu, Liqi; Chen, Zhe

    2015-08-01

    This study investigated 5- to 13-year-old children's performance in solving horizontal projectile motion problems, in which they predicted the trajectory of a carried object released from a carrier in three different contexts. The results revealed that 5- and 8-year-olds' trajectory predictions were easily distracted by salient contextual features (e.g. the relative spatial locations between objects), whereas a proportion of 11- and 13-year-olds' performance suggested the engagement of the impetus concept in trajectory prediction. The impetus concept is a typical misconception of inertial motion that assumes that motion is caused by force. Children's performance across ages suggested that their naïve knowledge of projectile motion was neither well-developed and coherent nor completely fragmented. Instead, this study presented the dynamic process in which children with age gradually overcame the influences of contextual features and consistently used the impetus concept across motion problems.

  7. Developmental changes of misconception and misperception of projectiles.

    Science.gov (United States)

    Kim, In-Kyeong

    2012-12-01

    This study investigated the developmental changes of perceptual and cognitive commonsense physical knowledge. Children 4 to 9 years old (N = 156; 79 boys, 77 girls) participated. Each child was asked to predict the landing positions of balls that rolled down and fell off a virtual ramp and to choose the most natural-looking motion from different projectile motions depicted. The landing position of the most natural-looking projectile was compared with the predicted landing position and also compared with the actual landing position. The results showed children predicted the ball's landing position closer to the ramp than the actual position. Children also chose the depiction in which the ball fell closer to the ramp than the accurate position, although the error in the prediction task was larger than in the perception task and decreased with age. The results indicated the developmental convergence of explicit reasoning and implicit perception, which suggest a single knowledge system with representational re-description.

  8. Two dimensional fractional projectile motion in a resisting medium

    Science.gov (United States)

    Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  9. Strategies to protect ram accelerator projectiles from in-tube gasdynamic heating

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, D.W. [Eloret, Sunnyvale, CA (United States)

    2000-11-01

    A serious problem in advancing ram accelerator technology is the very high in-tube heat transfer rate to the projectile. Herein, we examine a number of strategies for protecting the projectile from gasdynamic heating. Radiation cooling of the projectile and flying the projectile through alternating regions of fuel-oxidizer-diluent drive gas and pure hydrogen are found to be totally unworkable. The ablative cooling technique has serious problems with a substantial retreat of the projectile surface. A transpiration cooling technique using liquid ammonia is calculated to provide adequate protection of the projectile for ram accelerator missions from 3 to 7 or 8 km/sec. Techniques for flying the projectile in pure hydrogen are also examined. One may have a vortex arrangement with a pure hydrogen core surrounded by a fuel-oxidizer-diluent mixture. The projectile may also fly in pure hydrogen while the driving energy is supplied by a deflagrating or detonating solid coating on the tube wall or by electrical energy input. The techniques for flying the projectile in pure hydrogen are judged to be extremely complex and expensive to implement. The transpiration technique appears to be the most viable way to protect projectiles flying in the 4 - 7 km/sec range. (orig.)

  10. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.

    Science.gov (United States)

    Xiao, Bo; Li, Yan-Chun; Yu, Xue-Fang; Cheng, Jian-Bo

    2016-12-28

    Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g(-1), which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.

  11. Multiplicative Quaternion Extended Kalman Filtering for Nonspinning Guided Projectiles

    Science.gov (United States)

    2013-07-01

    micro- electromechanical system ( MEMS ) gyroscopes have been able to measure the spin-rates of fin- stabilized projectiles such as mortars, which...model, the statistics of the gyroscope and accelerometer noise are measureable, and can be easily incorporated into an extended Kalman filtering...tradeoff between affordability, durability, and performance. Automotive-grade MEMS components have been used in the harsh gun-launch environment for

  12. Aerodynamic loads on a ball-obturated tubular projectile

    OpenAIRE

    Bry, William Arthur

    1982-01-01

    Approved for public release, distribution unlimited A tubular projectile is one with a hole bored along its longitudinal axis. The hole presents a problem in getting the round expelled from a gun. Some means of sealing the hole until the round clears the muzzle is required. A ball -obturator offers one practical means of accomplishing this without any accompanying FOD hazard. The ball-obturator, analogous to a common ballvalve, remains closed under the force of the expand...

  13. Measuring the Effects of Lift and Drag on Projectile Motion

    Science.gov (United States)

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  14. Guiding Supersonic Projectiles Using Optically Generated Air Density Channels

    Science.gov (United States)

    2015-03-24

    ideal case, when ( ) (0)T T  , the collapse point of the laser spot goes off to infinity as the pulse power approaches the critical power, i.e. 0.6...laser pulse . We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. We find that current femtosecond lasers...systems with multi-millijoules laser pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles

  15. Projectile - Mass asymmetry systematics for low energy incomplete fusion

    Directory of Open Access Journals (Sweden)

    Singh Pushpendra P.

    2015-01-01

    Full Text Available In the present work, low energy incomplete fusion (ICF in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 % has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027 in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern’s mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern’s systematics.

  16. Numerical simulation of multiphase cavitating flows around an underwater projectile

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied.The calculations are executed based on a suite of CFD code.The hyd...

  17. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    Science.gov (United States)

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  18. Structural Analysis of a Cannon-Caliber Electromagnetic Projectile

    Science.gov (United States)

    1993-09-01

    Plasma Armature Railgun." IEEE Transactions on Magnetics, vol. 25, no. 1, pp. 256-261, January 1989. Mongeau, P. P. " Inductively Commutated Coilguns ...of the Army position, unless so designated by other authorized documents. The use of trade names or manufacturers’ names in this report does not...electromagnetic (EM) projectile design is evaluated by adopting finite element procedures similar to those employed in the analysis of kinetic energy

  19. Magnus Force of Common Projectile Bodies with Turbulent Layers

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun

    2005-01-01

    Calculating formulae of Magnus force on common projectile bodies (cone-shaped and parabola-shaped) with turbulent layers were built based on Magnus theory. The effects of temperature exponential were considered, and curve-fitting approaches were adopted in the research that could give more exact result data. Both flow layer constants and shape constants are presented in Magnus force formulae, which are useful to evaluate Magnus force in different states.

  20. A projectile for a rectangular barreled rail gun

    OpenAIRE

    Juanche, Francisco M.

    1999-01-01

    The Physics Department at the Naval Postgraduate School is developing a concept to overcome the problems that keep present rail guns from being practical weapons. The rails must be replaced often if the rail gun operation is to be continuous. Replacing the rails in present rail gun configurations is time consuming. The Physics Department's design concept uses a rectangular barrel as part of the solution to the problem of replacing the rails. The projectile will require flat surfaces to mainta...

  1. FAST Construction Progress

    Science.gov (United States)

    Nan, R. D.; Zhang, H. Y.; Zhang, Y.; Yang, L.; Cai, W. J.; Liu, N.; Xie, J. T.; Zhang, S. X.

    2016-11-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. A unique karst depression in Guizhou province has been selected as the site to build an active reflector radio telescope with a diameter of 500 m and three outstanding aspects, which enables FAST to have a large sky coverage and the ability of observing astronomical targets with a high precision. Chinese Academy of Sciences and Guizhou province are in charge of FAST construction. The first light of the telescope was expected on September 25, 2016.

  2. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.

    Science.gov (United States)

    Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F

    2011-09-21

    An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies.

  3. Single differential projectile ionization cross sections d σ/dEe for 50 AMeV U28+ in the ESR storage ring

    Science.gov (United States)

    Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Stoehlker, Thomas; Litvinov, Yuri; Appa-Sparc Collaboration

    2013-05-01

    The very high intensity beams of relativistic high Z ions with incident collision energies up to 2.7AGeV requested for experiments using the SIS100 synchrotron of FAIR require that 1.3 1011 ions at 2.6Hz be injected from SIS12/18 into SIS100. The needed luminosity of the beam can only be achieved for such high Z ions when - considering the space charge limit (~A/q2) - a low charge state q of the ion to be accelerated keeps the particle density at the highest feasible level. For a thorough understanding of beam loss it is imperative that the mechanisms active in projectile ionization be understood quantitatively to provide benchmarks for advancedab initio theories beyond first order. We have embarked on an experimental investigation of single differential projectile ionization cross sections d σ/dEe (SDCS) for single and multiple ionization of U28+in the ESR storage ring by measuring the electron loss to continuum (ELC) cusp at 00 with respect to the beam axis employing our imaging forward electron spectrometer. This was motivated by the high relative fraction of multiple ionization estimated to exceed 40%. We report first results for absolute projectile ionization SDCS for U28+. We find a remarkably high asymmetry for the ELC cusp. This is at strong variance with the line shape expected for validity of first order theories.

  4. Chunk projectile launch using the Sandia Hypervelocity Launcher Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.

    1994-07-01

    An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.

  5. Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies

    Science.gov (United States)

    McDermott, K. H.; Price, M. C.; Cole, M.; Burchell, M. J.

    2016-04-01

    During hypervelocity impact (>a few km s-1) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s-1. The projectile was recovered intact at speeds up to 1.50 km s-1, with no ductile deformation, but some surface pitting was observed. At 2.39 km s-1, the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s-1 increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's "Deep Impact" mission where a spacecraft impacted a comet.

  6. Induced Charge Capacitive Deionization

    CERN Document Server

    Rubin, S; Biesheuvel, P M; Bercovici, M

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  7. Strain Measurement for Hollow Projectiles During Its Penetration of Concrete Targets

    Institute of Scientific and Technical Information of China (English)

    王琳; 王富耻; 王鲁; 李树奎

    2004-01-01

    Gives a new technique to measure the dynic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.

  8. Projectile spectator proton production in 84Kr-emulsion interactions at 1.7 A GeV

    Institute of Scientific and Technical Information of China (English)

    BAI Cai-Yan; ZHANG Dong-Hai

    2011-01-01

    The multiplicity distribution of projectile protons and multiplicity correlations between black particles, grey particles, shower particles, compound particles, heavily ionized track particles, projectile helium fragments and projectile spectator protons in Kr-emulsion collisions at 1.7 A GeV are investigated. It is found that the projectile spectator proton multiplicity distribution becomes broader with increasing target mass. The average multiplicity of shower particles and compound particles strongly depends on the number of projectile spectator protons, but the average multiplicity of black particles, grey particles and heavily ionized track particles weakly depends on the number of projectile spectator protons. The average multiplicity of projectile helium fragments increases linearly with increasing numbers of projectile spectator protons. Finally, the multiplicity distribution of projectile spectator protons obeys a KNO type of scaling law.

  9. Two source emission behaviour of alpha fragments of projectile having energy around 1 GeV per nucleon

    CERN Document Server

    Singh, V; Pathak, Ramji

    2010-01-01

    The emission of projectile fragments alpha has been studied in ^{84}Kr interactions with nuclei of the nuclear emulsion detector composition at relativistic energy below 2 GeV per nucleon. The angular distribution of projectile fragments alpha in terms of transverse momentum could not be explained by a straight and clean-cut collision geometry hypothesis of Participant - Spectator (PS) Model. Therefore, it is assumed that projectile fragments alpha were produced from two separate sources that belong to the projectile spectator region differing drastically in their temperatures. It has been clearly observed that the emission of projectile fragments alpha are from two different sources. The contribution of projectile fragments alpha from contact layer or hot source is a few percent of the total emission of projectile fragments alphas. Most of the projectile fragments alphas are emitted from the cold source. It has been noticed that the temperature of hot and cold regions are dependent on the projectile mass num...

  10. Study of high-speed interaction processes between fluoropolymer projectiles and aluminum-based targets

    Institute of Scientific and Technical Information of China (English)

    Evgeny A. KHMELNIKOV; Alexey V. STYROV; Konstantin V. SMAGIN; Natalia S. KRAVCHENKO; Valery L. RUDENKO; Vladimir I. FALALEEV; Sergey S. SOKOLOV; Artem V. SVIDINSKY; Natalia F. SVIDINSKAYA

    2015-01-01

    The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are pre-sented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.

  11. Chemical modification of projectile residues and target material in a MEMIN cratering experiment

    Science.gov (United States)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas

    2013-01-01

    In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.

  12. Dynamics of drag and force distributions for projectile impact in a granular medium

    CERN Document Server

    Ciamarra, M P; Lee, A T; Goldman, D I; Swinney, H L; Ciamarra, Massimo Pica; Lara, Antonio H.; Lee, Andrew T.; Goldman, Daniel I.; Swinney, Harry L.

    2003-01-01

    Our experiments and molecular dynamics simulations on a projectile penetrating a two-dimensional granular medium reveal that the mean deceleration of the projectile is constant and proportional to the impact velocity. Thus, the time taken for a projectile to decelerate to a stop is independent of its impact velocity. The simulations show that the probability distribution function of forces on grains is time-independent during a projectile's penetration of the medium. At all times the force distribution function decreases exponentially for large forces.

  13. Energy loss and charge state dependency of swift Nq+ ions scattered off a Pt(110)(1 x 2) surface

    NARCIS (Netherlands)

    Robin, A; Hatke, N; Jensen, J; Plachke, D; Carstanjen, HD; Heiland, W

    2003-01-01

    We present new surface scattering results combining measurements of energy loss and charge state distributions of 0.7-1.4 MeV Nq+ (q = 1, 2) ions. The energy range is still below the bulk stopping power maximum and charge exchange occurs. The projectiles scatter from a Pt(110)(1 x 2) single crystal

  14. Fracture of the humerus caused by a slingshot projectile

    Directory of Open Access Journals (Sweden)

    Dar Tahir Ahmed

    2012-02-01

    Full Text Available 【Abstract】Unconventional and 憂on-lethal?weapons are being used in crowd control regularly nowadays. The use of these arms is not risk-free. The paramilitary forces in 2010 used the old fashioned slingshots for crowd control in Kashmir. A young male suffered from a fracture of the distal humerus due to a marble from a slingshot. He was managed by debridement and plaster splintage. Use of apparently innocuous weapons for crowd control is not without risk, as the projectiles fired from them can achieve high velocities and cause significant damage. Kew words: Humeral fractures; Conducted energy weapon injuries; Firearms

  15. Analysis of vertical projectile penetration in granular soils

    Science.gov (United States)

    Boguslavskii, Yu; Drabkin, S.; Salman, A.

    1996-03-01

    A model of vertical dynamic penetration of projectiles in granular soils was developed based on known experiments and the theory of dimensions. The depth of penetration is derived as a function of initial velocity and material properties. Velocity and acceleration are obtained as functions of time and depth of penetration. Under certain conditions two acceleration peaks are observed, an initial one due to dynamic and a second one due to static characteristics of penetration. Static properties of soils are derived using dynamic measurements. Numerical examples are provided. Theoretical and experimental results coincide reasonably well.

  16. Comment on ‘Wind-influenced projectile motion’

    Science.gov (United States)

    Winther Andersen, Poul

    2015-11-01

    We comment on the article ‘Wind-influenced projectile motion’ by Bernardo et al (2015 Eur. J. Phys. 36 025016) where they examine the trajectory of a particle that is subjected to gravity and a linear air resistance plus the influence from the wind. They find by using the Lambert W function that the particle's trajectory for a special angle, the critical angle {θ }{{C}}, between the initial velocity and the horizontal is part of a straight line. In this comment we will show that this result can be proved without using the Lambert W function which is not that well known to beginning students of physics.

  17. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    OpenAIRE

    Mark Bundy

    2001-01-01

    It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift ...

  18. Fracture of the humerus caused by a slingshot projectile

    Institute of Scientific and Technical Information of China (English)

    Tahir Ahmed Dar; Riyaz Ahmed Dar; Mubashir Rashid; Shabir Ahmed Dhar

    2011-01-01

    Unconventional and 'non-lethal' weapons are being used in crowd control regularly nowadays. The use of these arms is not risk-free. The paramilitary forces in 2010 used the old fashioned slingshots for crowd control in Kashmir. A young male suffered from a fracture of the distal humerus due to a marble from a slingshot. He was managed by debridement and plaster splintage. Use of apparently innocuous weapons for crowd control is not without risk, as the projectiles fired from them can achieve high velocities and cause significant damage.

  19. Development of Subcaliber Projectiles for the Hispano-Suiza Gun

    Science.gov (United States)

    1943-11-01

    SUBOALIBER PRO JECTILES FOR THE HISPANO- SUIZA GUN 𔃺TECMEPUC-lT, TJ 0 ABERDEEN P 𔃺i7 CiiTDM. ST~lU-TL A T, 1?7,, by CTa * UG r C. L. Critchfield I P I, 2...FOR THE HISPANO- SUIZA GUN by C. L. Critchfield and J. McG. Millar TECiN•IcAr LITPP.py ABERDE " , :PT’- , Approved on November 12, 1943 for submission...Hispano- Suiza gun ....... 6 2. 20-ram sabot-projectiles of Series B and C ......... ... 12 3. Type C2 at h ft from the muzzle . .......... . 13 h. The 20

  20. Response of composite laminates on impact of high velocity projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, K.; Balakrishna Bhat, T. [Defence Metallurgical Research Lab., Hyderabad (India)

    1998-05-01

    Past work on damage of composites subjected to low velocity and hypervelocity impact has been briefly reviewed and some new results on the glass fibre reinforced plastic composite laminates impacted with high velocity projectiles are presented. The effect of thickness of the laminates and the angle of attack on the energy absorption by the composite laminates and the area of damage caused by impact are described. A correlation is made between the energy absorption and the area of damage. Also described is a new method called infiltration radiography useful for assessing the damage in laminated composites upon ballistic impact. (orig.) 28 refs.

  1. Secondary lead poisoning a projectile housed in the human body

    Directory of Open Access Journals (Sweden)

    Juan Bernardo Gerstner Garcés

    2012-09-01

    Full Text Available 72 1024x768 Normal 0 21 false false false ES X-NONE X-NONE With the increase of violence and use of firearms in Colombia, we may see more cases of lead poisoning in our environment, and must be prepared to diagnose and treat them. Subtle signs and symptoms as unexplained anemia, gastro-intestinal discomfort and abdominal cramps, and severe as changes in behavior and neurological status, nephropathy, and unexplained death, may be associated with a history of gunshot wounds and projectiles in the human body, and must offer the patient knowledge and management strategies of pathology.

  2. Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene

    Science.gov (United States)

    Bonner, David

    2010-05-01

    Connecting physics concepts with real-world events allows students to establish a strong conceptual foundation. When such events are particularly interesting to students, it can greatly impact their engagement and enthusiasm in an activity. Activities that involve studying real-world events of high interest can provide students a long-lasting understanding and positive memorable experiences, both of which heighten the learning experiences of those students. One such activity, described in depth in this paper, utilizes a murder mystery and crime scene investigation as an application of basic projectile motion.

  3. Impossible Neanderthals? Making string, throwing projectiles and catching small game during Marine Isotope Stage 4 (Abri du Maras, France)

    Science.gov (United States)

    Hardy, Bruce L.; Moncel, Marie-Hélène; Daujeard, Camille; Fernandes, Paul; Béarez, Philippe; Desclaux, Emmanuel; Chacon Navarro, Maria Gema; Puaud, Simon; Gallotti, Rosalia

    2013-12-01

    Neanderthal behavior is often described in one of two contradictory ways: 1) Neanderthals were behaviorally inflexible and specialized in large game hunting or 2) Neanderthals exhibited a wide range of behaviors and exploited a wide range of resources including plants and small, fast game. Using stone tool residue analysis with supporting information from zooarchaeology, we provide evidence that at the Abri du Maras, Ardèche, France, Neanderthals were behaviorally flexible at the beginning of MIS 4. Here, Neanderthals exploited a wide range of resources including large mammals, fish, ducks, raptors, rabbits, mushrooms, plants, and wood. Twisted fibers on stone tools provide evidence of making string or cordage. Using a variety of lines of evidence, we show the presence of stone projectile tips, possibly used in complex projectile technology. This evidence shows a level of behavioral variability that is often denied to Neanderthals. Furthermore, it sheds light on perishable materials and resources that are not often recovered which should be considered more fully in reconstructions of Neanderthal behavior.

  4. Interactions of $^{16}$O Projectile and its Fragments in Nuclear Emulsion at about 60 and 200 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the multiplicity ``$ n _{s} $'' and pseudo-rapidity ``$\\eta$'' of the shower particles ($\\beta$~$\\geq$~0.7) produced in different types of collisions (peripheral, semi-central and central), of $^{16}$O and $^{32}$S in nuclear emulsions. The multiplicities and angular distributions of both the grey ``$ n _{g} $'' (mainly due to knock- on and recoil protons), and black ``$ n _{b} $'' (slow evaporated target fragments) particles, and the inter-correlation between them are studied. \\\\ \\\\ The yield, charge and angular distributions of produced relativistic projectile fragments P.F.S., for $ Z _{P} . _{F} . $ $\\geq$~2 are measured and their interactions in emulsions are investigated. \\\\ \\\\ The study of the mean free paths for the projectile fragments with Z $\\geq$ 3 produced from 200~A~GeV $^{16}$ 0 interactions were performed, which show the absence of the anomalous phenomena. \\\\ \\\\ The possible production of zero-spin light neutral scaler bosons and pseudoscaler bosons from...

  5. Properties of cold ions produced by synchrotron radiation and by charged particle impact

    Science.gov (United States)

    Levin, J. C.; Biedermann, C.; Cederquist, H.; O, C.-S.; Short, R. T.; Sellin, I. A.

    1989-04-01

    Argon recoil ions produced by beams of 0.8 MeV/u Cl 5+ have been detected by time-of-flight (TOF) techniques in coincidence with the loss of from one to five projectile electrons. Recoil-ion energies have been determined to be more than an order of magnitude higher than those of highly charged ions produced by unmonochromatized synchrotron radiation. Charge-state distributions, however, show similarities, suggesting that loss of projectile electrons corresponds, in some cases, to inner-shell target ionization producing vacancy cascades. In an essential improvement to the usual multinomial description of ionization in the independent-electron-ejection model, we find the inclusion of Auger vacancy cascades significantly alters the description of the recoil ion spectra corresponding to the projectile-electron loss. These conclusions are consistent with impact parameters inferred from determination of mean recoil energy.

  6. Recoil ion charge state distributions in low energy Ar{sup q+} {minus} Ar collisions

    Energy Technology Data Exchange (ETDEWEB)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-12-31

    We have measured the recoil ion charge state distributions in Ar{sup q+} -- Ar (8{le}q{le}16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar{sup 8-16+}, recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar{sup 10-16+}, there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy.

  7. Research on the technology of projectile synchronized photography based on motion compensation for rotating mirror%基于转镜运动补偿的弹丸同步摄影技术研究

    Institute of Scientific and Technical Information of China (English)

    蔡荣立; 陈瑞; 卢岩涛

    2012-01-01

    弹丸的空间飞行姿态是武器性能的一项重要指标.为了使数字摄影相机实现对高速运动弹丸运行轨迹的成像,设计了一种基于转镜运动补偿的弹丸同步摄影装置.在高速数字相机前设置一面反射转镜,当弹丸进入跟踪视场时,利用转镜的旋转补偿弹丸的空间运动,使得由转镜反射到相机像面的弹丸图像偏移在许可范围内,实现同步摄影过程.实验证明该方法能够满足常规弹丸同步摄影的需求.%The flight attitude of projectile in space is a very important performance evaluation indicator of weapons in target range test. In order to obtain images of fast-moving projectiles with a digtial camera, a projectile synchronous camera system is designed based on rotary mirror moving compensation. A reflection rotary mirror is set in front of a high speed digtal camera, and when the projectile passes the field, the camera image obtained from the reflection rotary mirror is appropriated by using rotary mirror to compensate the projectile moving in space controlled by a servo system, and the synchronized photographic process is finally achieved. With this method as the theoretical basis to establish mirror equation of motion, the tracking data discretization mathematical model is obtained through the analysis of the imaging error. The method provides theoretical basis for the system of projectile synchronized photography based on motion compensation for rotating mirror.

  8. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: Pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of {sup 3}He{sup +} and {sup 4}He{sup +} on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al–Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  9. New projectiles: multicharged metal clusters and biopolymers; De nouveaux projectiles, les agregats metalliques et les biopolymeres multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.

    1991-12-31

    Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface({approx}100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV.

  10. Comment on "The motion of an arbitrarily rotating spherical projectile and its application to ball games"

    DEFF Research Database (Denmark)

    Jensen, Jens Højgaard

    2014-01-01

    are independent of the Reynolds number and proportional to the square of the projectile's velocity. In this paper, by dimensional analysis, the latter assumption is shown to be incorrect for forces dependent on the angular velocity of the projectile, e.g. the lift force....

  11. Semi-theoretical analyses of the concrete plate perforated by a rigid projectile

    Institute of Scientific and Technical Information of China (English)

    Hao Wu; Qin Fang; Ya-Dong Zhang; Zi-Ming Gong

    2012-01-01

    Based on the three-stage perforation model,a semi-theoretical analysis is conducted for the ballistic performances of a rigid kinetic projectile impacting on concrete plates.By introducing the projectile resistance coefficients,dimensionless formulae are proposed for depth of penetration (DOP),perforation limit thickness,ballistic limit velocity,residual velocity and perforation ratio,with the projectile nosed geometries and projectile-target interfacial friction taken into account.Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets,a new expression is obtained for target strength parameter.By comparisons between the results of the proposed formulae and existing empirical formulae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets,the validations of the proposed formulae are verified.It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters.The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(πS).The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity.The variation range of the perforation ratio is 1-3.5 for concrete targets.

  12. An Analytic Approach to Projectile Motion in a Linear Resisting Medium

    Science.gov (United States)

    Stewart, Sean M.

    2006-01-01

    The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…

  13. Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory

    Science.gov (United States)

    Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.

    2009-01-01

    Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…

  14. Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets

    Science.gov (United States)

    Benacka, Jan

    2010-01-01

    This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…

  15. Spreadsheet Application Showing the Proper Elevation Angle, Points of Shot and Impact of a Projectile

    Science.gov (United States)

    Benacka, Jan

    2015-01-01

    This paper provides the formula for the elevation angle at which a projectile has to be fired in a vacuum from a general position to hit a target at a given distance. A spreadsheet application that models the trajectory is presented, and the problem of finding the points of shot and impact of a projectile moving in a vacuum if three points of the…

  16. Primer Output and Initial Projectile Motion for 5.56- and 7.62-mm Ammunition

    Science.gov (United States)

    2015-09-01

    ARL-TR-7479 ● SEP 2015 US Army Research Laboratory Primer Output and Initial Projectile Motion for 5.56- and 7.62-mm Ammunition...Output and Initial Projectile Motion for 5.56- and 7.62-mm Ammunition by John J Ritter and Richard A Beyer Weapons and Materials Research...

  17. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    Energy Technology Data Exchange (ETDEWEB)

    Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  18. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  19. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  20. Real-time estimation of projectile roll angle using magnetometers: in-lab experimental validation

    Science.gov (United States)

    Changey, S.; Pecheur, E.; Wey, P.; Sommer, E.

    2013-12-01

    The knowledge of the roll angle of a projectile is decisive to apply guidance and control law. For example, the goal of ISL's project GSP (Guided Supersonic Projectile) is to change the flight path of an airdefence projectile in order to correct the aim error due to the target manoeuvres. The originality of the concept is based on pyrotechnical actuators and onboard sensors which control the angular motion of the projectile. First of all, the control of the actuators requires the precise control of the roll angle of the projectile. To estimate the roll angle of the projectile, two magnetometers are embedded in the projectile to measure the projection of the Earth magnetic field along radial axes of the projectiles. Then, an extended Kalman filter (EKF) is used to compute the roll angle estimation. As the rolling frequency of the GSP is about 22 Hz, it was easy to test the navigation algorithm in laboratory. In a previous paper [1], the In-Lab demonstration of this concept showed that the roll angle estimation was possible with an accuracy of about 1◦ . In this paper, the demonstration is extended to high-speed roll rate, up to 1000 Hz. Thus, two magnetometers, a DSP (Digital Signal Processor) and a LED (Light Eminent Diode), are rotated using a pneumatic motor; the DSP runs an EKF and a guidance algorithm to compute the trigger times of the LED. By using a high-speed camera, the accuracy of the method can be observed and improved.

  1. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  2. Impact perforation of polymer–metal laminates: Projectile nose shape sensitivity

    National Research Council Canada - National Science Library

    Mohagheghian, I; McShane, G.J; Stronge, W.J

    2016-01-01

    ... into the influence of a polymer coating on the resistance to projectile perforation of a target plate remain relatively limited. It has been shown by Mohagheghian et al., in press that a polymer layer can significantly enhance the impact perforation resistance of a thin metallic plate struck by a blunt-nosed projectile. When placed on the impacted (proximal) fa...

  3. Fiber-interferometric detection of gun-launched projectiles

    Science.gov (United States)

    Goodwin, Peter M.; Marshall, Bruce R.; Gustavsen, Richard L.; Lang, John M.; Pacheco, Adam H.; Loomis, Eric N.; Dattelbaum, Dana M.

    2017-01-01

    We are developing a new diagnostic useful for the non-invasive detection of projectile passage in the launch tube of a gas gun. The sensing element consists of one or more turns of single-mode optical fiber that is epoxy-bonded around the external circumference of the launch tube. The hoop strain induced in the launch tube by the passage of the projectile causes a momentary expansion of the fiber loop. This transient change in path length is detected with high sensitivity using a fiber optic-based interferometer developed by the NSTec Special Technologies Laboratory. We have fielded this new diagnostic, along with fiber optic Bragg grating (FBG) strain gauges we previously used for this purpose, on a variety of gas guns used for shock compression studies at Los Alamos and Sandia National Laboratories. We anticipate that, when coupled with a broad-range analog demodulator circuit, the fiber optic interferometer will have improved dynamic range over that of the FBG strain gauge approach. Moreover, in contrast to the FBG strain gauge which is somewhat temperature sensitive, the interferometric approach requires no alignment immediately prior to the experiment and is therefore easier to implement. Both approaches provide early, pre-event signals useful for triggering high-latency diagnostics.

  4. Study on Overall Concept Planning of Terminal Correction Mortar Projectiles

    Institute of Scientific and Technical Information of China (English)

    XU Jin-xiang

    2008-01-01

    The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably.

  5. Target and Projectile: Material Effects on Crater Excavation and Growth

    Science.gov (United States)

    Anderson, J. L. B.; Burleson, T.; Cintala, Mark J.

    2010-01-01

    Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand.

  6. A new calibration algorithms of spinning projectile aerodynamic parameters

    Institute of Scientific and Technical Information of China (English)

    CONG Ming-yu; ZHANG Wei; WANG Li-ping

    2005-01-01

    This paperdemonstrates that the application of calibration algorithms of aerodynamic parameters for the trajectory of spinning projectile is successful. First, from the point of view of the trajectory simulation, a general summary of well-known trajectory models is given. A five degrees of freedom (5 DOF) model is developed that can match the projectile motion essentially in the vertex region, and the results obtained by 5 DOF model are in close agreement with those of a more sophisticated 6 DOF model for elevation angles above 45 degrees. Secondly, the calibration algorithms have been developed and are summarized. The methods of calibrating the flight trajectory models are compared, and these methods are shown to be effective in the representative cases. In addition, the method of Mach number calibration (MNC) is presented; some possible areas in MNC for further investigation are indicated together with benefits to be gained. The utilization of MNC schemes not only allow a worthwhile reduction of calibration rounds firing in range and accuracy (R&A) trial and production of firing tables (PFT) test, but also make PFT and fire control data (FCD) more cost effective.

  7. Evidence for a large radius of the 11Be projectile

    Science.gov (United States)

    So, W. Y.; Choi, K. S.; Cheoun, Myung-Ki; Kim, K. S.

    2016-05-01

    We investigate ratios of the elastic scattering cross section to Rutherford cross section, PE, and angular distributions of breakup cross section by using an optical model which exploits various long-range dynamic polarization potentials as well as short-range nuclear bare potentials for the 11Be projectile. From these simultaneous analyses, we extract a large radius of a halo projectile from the experimental data for PE and the angular distribution of the breakup cross section of the 11Be + 64Zn and 11 + 120Sn systems. It results from the fact that a large radius for the long-range nuclear potential is more reasonable for properly explaining these data simultaneously. The extracted reduced interaction radius turns out to be r0=3.18 ˜3.61 fm for 11Be nucleus, which is larger than the conventional value of r0=1.1 ˜1.5 fm used in the standard radius form R =r0A1 /3 . Furthermore, the larger radius as well as the normalization constant N is shown to be important for understanding Coulomb dipole strength distribution.

  8. A projectile-oriented, design study for a cannon-caliber electromagnetic launcher

    Science.gov (United States)

    Zielinski, Alexander E.

    1993-01-01

    In the design of an efficient gun system the terminal performance must be considered in conjunction with the required input energy. Power conversion for EM acceleration can involve an arduous assessment of numerous, complex components. Results for integrating a finned-rod with a solid armature are here presented. An evaluation is conducted for a rod-projectile launched from a 23 mm, round-bore augmented railgun. We evaluate the projectile design by considering launch, flight, and terminal effects. Four capacitor-based pulsed power supply systems are considered for the launcher. The host vehicle weight limit and largest number of projectiles stowed provide guidance in selecting the optimum configuration. System weight is estimated. Simple scaling for power components is provided to further appraise launcher feasibility. Projectile effectiveness is evaluated at the target using a weapons simulation code and a similar-caliber, conventionally launched projectile.

  9. Design and performance of Sandia`s contactless coilgun for 50 mm projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.J.; Cnare, E.C.; Cowan, M.; Duggin, B.W.; Lipinski, R.J.; Marder, B.M. [Sandia National Labs., Albuquerque, NM (United States); Douglas, G.M. [Rockwell Power Systems Co., Albuquerque, NM (United States); Shimp, K.J. [EG and G, Inc., Albuquerque, NM (United States)

    1991-12-31

    A multi-stage, contactless coilgun is being designed to demonstrate the applicability of this technology to accelerate nominal 50 mm (2 inch) diameter projectiles to velocities of 3 km/s. Forty stages of this design (Phase 1 coilgun) will provide a testbed for coil designs and system components while accelerating 200 to 400 gram projectiles to 1 km/s. We have successfully qualified the Phase 1 gun by operating 40 stages at half energy (10 kJ stored/stage) accelerating 340 gram, room-temperature, aluminum-armature projectiles to 406 m/s. We expect to accelerate 200 gram projectiles cooled to {minus}196{degrees}C to three times this velocity when operating at full energy. This paper describes the design and performance of the Phase 1 coilgun and includes discussion of coil development, projectile design, capacitor banks, firing system, and integration. 10 refs.

  10. Design and performance of Sandia's contactless coilgun for 50 mm projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.J.; Cnare, E.C.; Cowan, M.; Duggin, B.W.; Lipinski, R.J.; Marder, B.M. (Sandia National Labs., Albuquerque, NM (United States)); Douglas, G.M. (Rockwell Power Systems Co., Albuquerque, NM (United States)); Shimp, K.J. (EG and G, Inc., Albuquerque, NM (United States))

    1991-01-01

    A multi-stage, contactless coilgun is being designed to demonstrate the applicability of this technology to accelerate nominal 50 mm (2 inch) diameter projectiles to velocities of 3 km/s. Forty stages of this design (Phase 1 coilgun) will provide a testbed for coil designs and system components while accelerating 200 to 400 gram projectiles to 1 km/s. We have successfully qualified the Phase 1 gun by operating 40 stages at half energy (10 kJ stored/stage) accelerating 340 gram, room-temperature, aluminum-armature projectiles to 406 m/s. We expect to accelerate 200 gram projectiles cooled to {minus}196{degrees}C to three times this velocity when operating at full energy. This paper describes the design and performance of the Phase 1 coilgun and includes discussion of coil development, projectile design, capacitor banks, firing system, and integration. 10 refs.

  11. Mathematical Model to Simulate the Trajectory Elements ofan Artillery Projectile Proof Shot

    Directory of Open Access Journals (Sweden)

    K.K. Chand

    2007-01-01

    Full Text Available In external ballistics of a conventional spin-stabilised artillery projectile, there are a numberof trajectory models developed for computing trajectory elements having varying degrees ofcomplexity. The present study attempts to propose a single mathematical model, viz., simplifiedpoint-mass/simple particle trajectory model to simulate the trajectory elements of a typical spin-stabilised flat-head artillery projectile proof shot. Due to difficulties in the projectile shape andsize, and the complicated nature of air resistance, an accurate mathematical prediction of thetrajectory is difficult. To simplify the computations, the governing equations of motion of theprojectile have been simplified and assumed that the projectile is a particle and the only forcesacting on the projectile are drag and gravity. With this model, trajectory elements have beengenerated and compared with experimental results obtained in the field test. The measuringinstrument used in this case is a Doppler radar.

  12. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Science.gov (United States)

    Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal

    2013-01-01

    Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  13. Design and performance of Sandia's contactless coilgun for 50 mm projectiles

    Science.gov (United States)

    Kaye, Ronald J.; Cnare, Eugene C.; Cowan, M.; Duggin, Billy W.; Lipinski, Ronald J.; Marder, Barry M.; Douglas, Gary M.; Shimp, Kenneth J.

    1991-10-01

    A multi-stage, contactless coilgun is being designed to demonstrate the applicability of this technology to accelerate nominal 50 mm (2 inch) diameter projectiles to velocities of 3 km/s. Forty stages of this design (Phase 1 coilgun) will provide a testbed for coil designs and system components while accelerating 200 to 400 gram projectiles to 1 km/s. We have successfully qualified the Phase 1 gun by operating 40 stages at half energy (10 kJ stored/stage) accelerating 340 gram, room-temperature, aluminum-armature projectiles to 406 m/s. We expect to accelerate 200 gram projectiles cooled to -196 C to three times this velocity when operating at full energy. This paper describes the design and performance of the Phase 1 coilgun and includes discussion of coil development, projectile design, capacitor banks, firing system, and integration.

  14. Fast Faraday Cup With High Bandwidth

    Science.gov (United States)

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  15. Finite Element Modeling of Transient Temperatures in a Small-Caliber Projectile

    Directory of Open Access Journals (Sweden)

    M. B. Thomas

    2010-01-01

    Full Text Available Problem statement: Future generations of intelligent munitions will use Microelectromechanical Systems (MEMS for guidance, fuzing logic and assessment of the battlefield environment. The temperatures fund in a gun system, however, are sufficient to damage some materials used in the fabrication of MEMS. The motivation of this study is to model the dynamic temperature distribution in a typical small-caliber projectile. Approach: An axisymmetric finite-element model of a projectile is developed to simulate temperatures through internal ballistics (the projectile is in the gun barrel and external ballistics (the projectile travels in a free trajectory towards the target. Accuracy of the simulation is confirmed through comparison to analytical models and to payloads attached to experimental projectiles. In the simulation, the exact values for some boundary conditions are unknown and/or unknowable. A sensitivity analysis determines the effect of these uncertain parameters. Results: The simulation shows that friction at the projectile-gun barrel interface is primarily responsible for elevated temperatures in a gun system. Other factors have much smaller effects. The short duration of the internal ballistics prevents the frictional heat from diffusing into the bulk of the projectile. As a result, the projectile has a shallow, high-temperature zone at its bearing surface as it leaves the gun barrel. During external ballistics, this heat will diffuse through the projectile, but most of the projectile experiences temperatures of 56°C or lower. Simulation shows that the polymer package around a MEMS device will further attenuate heat flow, limiting temperatures in the device to less than 30°C. Conclusion: The finite element model demonstrates that a MEMS device may be engineered to survive temperatures expected in the ballistic environment.

  16. A Method for Guiding a Salvo of guided Projectiles to a Target, a System and a Computer Program Product

    NARCIS (Netherlands)

    Ruizenaar, M.G.A.

    2011-01-01

    The invention relates to a method of guiding a salvo of guided projectiles to a target. The method comprises the steps of generating a beam defining a common reference coordinate system, determining the position of each projectile relative to the beam, and providing to each projectile: position

  17. Study of Relativistic Nucleus-nucleus Coll.Induced by 16O Projectiles

    CERN Document Server

    2002-01-01

    A double experiment in which two detector systems (Streamer Chamber, Plastic Ball Calorimeter), running concurrently via a beam split (West Area H3, X5), search for quark matter formation in violent collisions of |1|6O or |2|0Ne with target nuclei between |4|0Ca and |2|0|6Pb. The acceleration of |1|6O will be facilitated by a high charge state injector, consisting of an ECR source and an RFQ pre-accelerator, installed by GSI and LBL at the PS Linac 1. Experimental equipment will be a streamer chamber installed in the Vertex Magnet of experiment WA75 together with beam hodoscopes and a downstream trigger calorimeter selecting violent events by the absence of energy flow to the projectile fragmentation region. Observed particles will be p, @p, K|0, @L and @L. In addition there will be the Plastic Ball, 800-fold @DE-E particle identifier system, covering the target fragmentation and backward fireball regions. Together with a multisegmented large solid angle (@+~9|0 of beam) energy calorimeter and a trigger calor...

  18. JIMWLK evolution: From color charges to rapidity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, E. [Institut de Physique Théorique de Saclay, F-91191 Gif-sur-Yvette (France); Triantafyllopoulos, D.N. [ECT* and Fondazione Bruno Kessler, Strada delle Tabarelle 286, I-38123 Villazzano (Italy)

    2014-12-15

    We study multi-particle production with rapidity correlations in high-energy p+A collisions. In the context of the Color Glass Condensate, the evolution for such correlations is governed by a generalization of the JIMWLK equation which evolves the strong nuclear fields both in the amplitude and in the complex conjugate one. We give the equivalent Langevin formulation, whose main ingredient is the color charge density linked to a projectile parton (a Wilson line)

  19. JIMWLK evolution: From color charges to rapidity correlations

    Science.gov (United States)

    Iancu, E.; Triantafyllopoulos, D. N.

    2014-12-01

    We study multi-particle production with rapidity correlations in high-energy p+A collisions. In the context of the Color Glass Condensate, the evolution for such correlations is governed by a generalization of the JIMWLK equation which evolves the strong nuclear fields both in the amplitude and in the complex conjugate one. We give the equivalent Langevin formulation, whose main ingredient is the color charge density linked to a projectile parton (a Wilson line).

  20. JIMWLK evolution: from color charges to rapidity correlations

    CERN Document Server

    Iancu, E

    2014-01-01

    We study multi-particle production with rapidity correlations in high-energy p+A collisions. In the context of the Color Glass Condensate, the evolution for such correlations is governed by a generalization of the JIMWLK equation which evolves the strong nuclear fields both in the amplitude and in the complex conjugate one. We give the equivalent Langevin formulation, whose main ingredient is the color charge density linked to a projectile parton (a Wilson line).

  1. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    CERN Document Server

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  2. Projectile-breakup-induced fission-fragment angular distributions in the 6Li+232Th reaction

    Science.gov (United States)

    Pal, A.; Santra, S.; Chattopadhyay, D.; Kundu, A.; Ramachandran, K.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Sawant, Y.; Sarkar, D.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-08-01

    Background: Experimental anisotropy in fission-fragment (FF) angular distribution in reactions involving weakly bound stable projectiles with actinide targets are enhanced compared to statistical saddle-point model (SSPM) predictions. Contributions from breakup- or transfer-induced fission to total fission are cited as possible reasons for such enhancement. Purpose: To identify the breakup- or transfer-induced fission channels in 6Li+232Th reaction and to investigate their effects on FF angular anisotropy. Methods: The FF angular distributions have been measured exclusively at three beam energies (28, 32, and 36 MeV) around the Coulomb barrier in coincidence with projectile breakup fragments like α , d , and p using Si strip detectors. The angular anisotropy obtained for different exclusive breakup- or transfer-induced fission channels are compared with that for total fission. SSPM and pre-equilibrium fission models have been employed to obtain theoretical FF angular anisotropy. Results: Angular anisotropy of the fission fragments produced by different transfer- or breakup-induced fission reactions have been obtained separately in the rest frame of respective recoiling nuclei. Some of these anisotropies were found to be stronger than those of the inclusive fission. Overall angular distributions of transfer or breakup fission, integrated over all possible recoil angles with weight factor proportional to differential cross section of the complementary breakup fragment emitted in coincidence in all possible directions, were obtained. It was observed that the overall FF angular anisotropy for each of these fission channels is less than or equal to the anisotropy of total fission at all the measured energies. Assuming isotropic out-of-plane correlations between the fission fragments and light-charged particles, the overall breakup- or transfer-induced fission fragment angular distributions do not explain the observed enhancement in FF anisotropy of total fission. Pre

  3. Projectile Two-dimensional Coordinate Measurement Method Based on Optical Fiber Coding Fire and its Coordinate Distribution Probability

    Science.gov (United States)

    Li, Hanshan; Lei, Zhiyong

    2013-01-01

    To improve projectile coordinate measurement precision in fire measurement system, this paper introduces the optical fiber coding fire measurement method and principle, sets up their measurement model, and analyzes coordinate errors by using the differential method. To study the projectile coordinate position distribution, using the mathematical statistics hypothesis method to analyze their distributing law, firing dispersion and probability of projectile shooting the object center were put under study. The results show that exponential distribution testing is relatively reasonable to ensure projectile position distribution on the given significance level. Through experimentation and calculation, the optical fiber coding fire measurement method is scientific and feasible, which can gain accurate projectile coordinate position.

  4. Expert Systems Aimed at General Design of Projectiles

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhi-hua; HOU Ni-na; HU Yu-hui

    2007-01-01

    Expert systems aimed at the general design of projectiles can implement a series of intelligent designs, such as the design of HE shell, the scheme expounded and proved, the emulation analysis and calculation, etc. Aiming at the product design feature, the expert system adopts the object-oriented knowledge representation and all kinds of inference control engines to describe and reason the relevant knowledge regarding the product through the microcomputer. It embodies the foundation of emulation analysis and simulated manufacturing of the shell. It makes use of the method that knowledge expression is combined with condition of inference to carry out the overall design and emulation and reference.The paper gives the ways through which the functions can be achieved, gives the modularization of reference and the design methods of systematization, puts forward the method of knowledge expression and working interface, and supplies a platform for similar products of the shell category that can be quickly designed.

  5. Adolescents' cognition of projectile motion: a pilot study.

    Science.gov (United States)

    Zhao, Jun-Yan; Yu, Guoliang

    2009-04-01

    Previous work on the development of intuitive knowledge about projectile motion has shown a dissociation between action knowledge expressed on an action task and conceptual knowledge expressed on a judgment task for young children. The research investigated the generality of dissociation for adolescents. On the action task, participants were asked to swing Ball A of a bifilar pendulum to some height then release it to collide with Ball B, which was projected to hit a target. On the judgment task, participants indicated orally the desired swing angle at which Ball A should be released so that Ball B would strike a target. Unlike previous findings with adults, the adolescents showed conceptual difficulties on the judgment task and well-developed action knowledge on the action task, which suggests dissociation between the two knowledge systems is also present among adolescents. The result further supports the hypothesis that the two knowledge systems follow different developmental trajectories and at different speeds.

  6. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  7. Mandibular fracture wounded by a projectile of a firearm

    Directory of Open Access Journals (Sweden)

    Juan Carlos Quintana Díaz

    2015-08-01

    Full Text Available A case of a male Yemenite 20 year-old-patient from Ibb city that was attended by a team of interdisciplinary Cuban professors at the Hospital of Al Waheda belonging to Thamar University, who received a maxillofacial wounded by a projectile of a firearm, which caused him great destruction of the tissues of the jawbone region is presented. A reduction and fixing of the fracture was performed with excellent esthetical and functional results. In this work, it is set out how the life of this patient was saved and the maxillofacial wound was reconstructed, thanks to the arduous work of the Cuban professors that gave the patient back to the society alive, with an excellent esthetical and functional rehabilitation, demonstrating one more time the humanitarian work of the Cuban medicine in other countries. 

  8. Polymer Recovery from Auto Shredder Residue by Projectile Separation Method

    Directory of Open Access Journals (Sweden)

    Dong Yang Wu

    2012-04-01

    Full Text Available The number of vehicles on the road has been increasing at an enormous rate over the last decade. By 2015, the number of vehicles that reach the end of their life will be close to a million per year in Australia. Most metallic parts of the vehicle can be recycled but the plastic components and components of other materials are normally shredded and disposed in landfills. As more vehicles are using composite materials, the percentage of materials sent to landfill is alarming. This paper reviews existing polymer recycling techniques for End-of-Life Vehicles (ELVs and proposes a more efficient electrostatic based projectile separation method. The test rig is at the preliminary stage of development and initial outcomes are promising.

  9. Effect of neutron skin thickness on projectile fragmentation

    CERN Document Server

    Dai, Z T; Ma, Y G; Cao, X G; Zhang, G Q; Shen, W Q

    2015-01-01

    The fragment production in collisions of $^{48,50}$Ca+$^{12}$C at 50 MeV/nucleon are simulated via the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model followed by the {GEMINI code}. {By changing the diffuseness parameter of neutron density distribution to obtain different neutron skin size, the effects of neutron skin thickness (${\\delta}_{np}$) on projectile-like fragments (PLF) are investigated. The sensitivity of isoscaling behavior to neutron skin size is studied, from which it is found that the isoscaling parameter $\\alpha$ has a linear dependence on ${\\delta}_{np}$. A linear dependence between ${\\delta}_{np}$ and the mean $N/Z$ [N(Z) is neutron(proton) number] of PLF is obtained as well.} The results show that thicker neutron skin will lead to smaller {isoscaling parameter} $\\alpha$ and N/Z. Therefore, it may be probable to extract information of neutron skin thickness from {isoscaling parameter} $\\alpha$ and N/Z.

  10. Reaction of Projectiles with Targets during Hypervelocity Impact

    Science.gov (United States)

    Russell, Rod; Bless, Stephan; Persad, Chadee; Manthiram, Karthish

    2009-06-01

    Hollow tungsten projectiles were filled with bismuth oxide or copper and shot into aluminum blocks at 2200 m/s. The blocks were cut open, and the contents and morphology of the penetration channels were examined. In the case of copper fill, the channel was found to be filled with a black foam containing closed-cell bubbles. X-ray diffraction revealed the presence of CuAl2, indicating reaction with the aluminum target. In the case of bismuth oxide, there was little foam, but the penetration channel walls had many craters, which contained nodules of bismuth metal, again indicating reaction with the target. There were variations in crater diameter apparently corresponding to the onset and termination of the reactions. The exothermic nature of the reactions produced cracks in the target blocks.

  11. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics

    Science.gov (United States)

    Kohanoff, Jorge

    2017-01-01

    Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules. PMID:28267804

  12. Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Capurro, O.A., E-mail: capurro@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others

    2016-01-15

    Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.

  13. Non-invasive timing of gas gun projectiles with light detection and ranging

    Science.gov (United States)

    Goodwin, P. M.; Bartram, B. D.; Gibson, L. L.; Wu, M.; Dattelbaum, D. M.

    2014-05-01

    We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.

  14. Study of the projectile impact on aluminum targets divided by water

    Science.gov (United States)

    Saburi, Tei; Kubota, Shiro; Ogata, Yuji; Wada, Yuji; Nakanishi, Toshikazu

    2007-06-01

    The impact behavior of a projectile into aluminum alloy targets divided by water was experimentally observed using high-speed video camera, and a numerical simulation was conducted using LS-DYNA. The target size was 5mm in thick, 200mm in height and width. Two target plates were positioned parallel at a distance of 120-180mm, and the space between targets was filled up with water. A SNCM steel projectile was 10mm in height, and 10mm in diameter. The projectile was accelerated by a compact accelerator using an explosive, and impacted on the first target. Impact experiments without water in the gap space were also conducted. In case without water, the projectile penetrated both two targets. On the other hand, in case that water fills up in the gap, The projectile did not penetrate the second target plate, and the both target plates were entirely and largely deformed compared with the case that water is absent. Numerical simulation of the projectile impact was conducted using a finite element code of LS-DYNA. ALE(Arbitrary Lagrangian Eulerian) method was adopted to simulate fluid-structure interaction problem. The deformation behavior of targets was confirmed by the simulation, and the importance of water effect on the deformation of the targets and the de-acceleration of the projectile velocity was shown.

  15. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments

    Science.gov (United States)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas; Wirth, Richard; Berndt, Jasper

    2014-05-01

    The possibility of fractionation processes between projectile and target matter is critical with regard to the classification of the impactor type from geochemical analysis of impactites from natural craters. Here we present results of five hypervelocity MEMIN impact experiments (Poelchau et al., 2013) using the Cr-V-Co-Mo-W-rich steel D290-1 as projectile and two different silica-rich lithologies (Seeberger sandstone and Taunus quartzite) as target materials. Our study is focused on geochemical target-projectile interaction occurring in highly shocked and projectile-rich ejecta fragments. In all of the investigated impact experiments, whether sandstone or quartzite targets, the ejecta fragments show (i) shock-metamorphic features e.g., planar-deformation features (PDF) and the formation of silica glasses, (ii) partially melting of projectile and target, and (iii) significant mechanical and chemical mixing of the target rock with projectile material. The silica-rich target melts are strongly enriched in the "projectile tracer elements" Cr, V, and Fe, but have just minor enrichments of Co, W, and Mo. Inter-element ratios of these tracer elements within the contaminated target melts differ strongly from the original ratios in the steel. The fractionation results from differences in the reactivity of the respective elements with oxygen during interaction of the metal melt with silicate melt. Our results indicate that the principles of projectile-target interaction and associated fractionation do not depend on impact energies (at least for the selected experimental conditions) and water-saturation of the target. Partitioning of projectile tracer elements into the silicate target melt is much more enhanced in experiments with a non-porous quartzite target compared with the porous sandstone target. This is mainly the result of higher impact pressures, consequently higher temperatures and longer reaction times at high temperatures in the experiments with quartzite as

  16. Resonant Enhancement of Ground State H2+ Formation in Low Energy Charge Transfer between Protons and H2

    Science.gov (United States)

    Andrianarijaona, V. M.; King, J. G.; Martin, M. F.; de Ruette, N.; Urbain, X.

    2013-05-01

    We investigated the charge transfer (CT) from an H2 or D2 target to various fast atomic/molecular ions for a wide span of collision energies in the laboratory frame (eV to keV). Vibrationally resolved cross sections have been obtained on a relative scale, by dissociative charge transfer of the product H2+ ions with potassium atoms, and 3-D imaging of the fragments. An absolute value of the total CT cross section has been inferred from the measured ratio of the CT yield for protons and H2+, combined with the recommended H2+ + H2 cross section (ORNL). Our results on the (H2, H+) system benchmark state-to-state calculations at 10eV and above (Phys. Rev. A 75 032703, 2007 and J. Phys. B 42, 105207 2009). In particular, they confirm the vibrational excitation mechanism responsible for the resonance at 50eV, characterized by a dominant population of the ground vibrational state of H2++. The spectra for the isotopic system (D2, H+) will be also presented along with the results of CT performed with H2++ and D2+ projectiles. Research supported by the Fund for Scientific Research - FNRS through IISN Grant No. 4.4504.10, and the National Science Foundation through Grant No. PHY-106887.

  17. The Paradigm of Projectile Motion and its Consequences for Special Relativity. Making Sense of Physics

    CERN Document Server

    Klevgard, Paul A

    2015-01-01

    The classical (Newtonian) concept of projectile motion underwent a series of seemingly minor changes and adjustments between the discovery of the quantum (Planck, 1900) and the early codification of quantum theory (Dirac, 1928). The goal of physicists in this period was to keep change to a minimum and preserve as much as possible of the traditional projectile paradigm (TPP). These adjustments were successful in masking an all-out projectile paradigm crisis, but they have left us with a conceptual muddle. This has been especially deleterious for special relativity and our understanding of space contraction and time dilation.

  18. Projectile motion in real-life situation: Kinematics of basketball shooting

    Science.gov (United States)

    Changjan, A.; Mueanploy, W.

    2015-06-01

    Basketball shooting is a basic practice for players. The path of the ball from the players to the hoop is projectile motion. For undergraduate introductory physics courses student must be taught about projectile motion. Basketball shooting can be used as a case study for learning projectile motion from real-life situation. In this research, we discuss the relationship between optimal angle, minimum initial velocity and the height of the ball before the player shoots the ball for basketball shooting problem analytically. We found that the value of optimal angle and minimum initial velocity decreases with increasing the height of the ball before the player shoots the ball.

  19. A Micro-Doppler Modulation of Spin Projectile on CW Radar

    Directory of Open Access Journals (Sweden)

    Liu Zhi-Xue

    2017-01-01

    Full Text Available To obtain the spin speed of projectile effectively, a micro-Doppler modulation model of rotating projectile measured by continuous-wave radar (CW radar is introduced. High spin speed of projectile brings micro-Doppler modulation on echoes of CW radar, and there are many micro-Doppler modulation harmonic waves in the zero intermediate frequency (ZIF echoes. The frequency interval of the adjacent harmonic waves is several times of rotational frequency, but the integral multiple is unknown. The simulation results prove correctness of the proposed mathematic model.

  20. X-ray spectra induced in highly charged 40Arq+ interacting with Au surface

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By use of optical spectrum technology, the spectra of X-ray induced by highly charged 40Arq+ ions interacting with Au surface have been studied. The results show that the argon Kα X-ray were emitted from the hollow atoms formed below the surface. There is a process of multi-electron exciting in neutralization of the Ar16+ion, with electronic configuration 1s2 in its ground state below the solid surface. The yield of the projectile Kα X-ray is related to its initial electronic configuration, and the yield of the target X-ray is related to the projectile kinetic energy.

  1. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  2. Guided transmission of Ne7+ ions through nanocapillaries in insulating polymers: Scaling laws for projectile energies up to 50 keV

    Science.gov (United States)

    Stolterfoht, N.; Hellhammer, R.; Juhász, Z.; Sulik, B.; Bayer, V.; Trautmann, C.; Bodewits, E.; de Nijs, A. J.; Dang, H. M.; Hoekstra, R.

    2009-04-01

    The guiding of multiply charged Ne7+ ions through nanocapillaries in highly insulating polymers was investigated. Highly parallel capillaries with a density of ≲107cm-2 and diameters of ≲100nm were utilized. The widths of the angular profiles were measured for Ne7+ ions transmitted through the capillaries. Moreover, the fractions of transmitted ions were measured as a function of the capillary tilt angle. The results were used to evaluate the characteristic guiding angle, which is a measure of the guiding power specifying the ability of a material to guide ions. Results for the polyethylene terephthalate (PET) and polycarbonate (PC) samples were compared to verify the role of the material of the capillary wall. Relatively high projectile energies of up to 50 keV were used to extend the validity of previous scaling laws based on the projectile charge-to-energy ratio. The profile widths and the guiding angles for both polymers are found to compare well with the scaling laws showing that PET and PC have nearly equal guiding properties.

  3. AN EXPERIMENTAL TECHNIQUE TO MEASURE PROJECTILE DECELERATION HISTORY DURING NORMAL PENETRATION

    Institute of Scientific and Technical Information of China (English)

    INTO PLAIN; Liu Xiaohu; Liu Ji; Wang Cheng

    2000-01-01

    The present paper presents a new experimental method to measure the deceleration time his tory of projectiles penetrating into concrete in full-size test. The experiment can be carried out by using an onboard accelerometer to measure the projectile deceleration history and the data are transmitted to a ground recording system. With this experimental method, a series of tests on hemisphere-nose steel projectiles pene trating normally into plain concrete at the velocity region 150 - 400 m/s have been executed and the deceler ation histories obtained. The high frequency portion in the deceleration data has been investigated and proved to be the structure response of projectile. The characteristics of deceleration history have also been analyzed and discussed.

  4. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  5. A Web-Based Video Digitizing System for the Study of Projectile Motion.

    Science.gov (United States)

    Chow, John W.; Carlton, Les G.; Ekkekakis, Panteleimon; Hay, James G.

    2000-01-01

    Discusses advantages of a video-based, digitized image system for the study and analysis of projectile motion in the physics laboratory. Describes the implementation of a web-based digitized video system. (WRM)

  6. 'The Monkey and the Hunter' and Other Projectile Motion Experiments with Logo.

    Science.gov (United States)

    Kolodiy, George Oleh

    1988-01-01

    Presents the LOGO computer language as a source to experience and investigate scientific laws. Discusses aspects and uses of LOGO. Lists two LOGO programs, one to simulate a gravitational field and the other projectile motion. (MVL)

  7. A New Simple Model for the Mushrooming Deformation of Projectile Impacting on A Deformable Target

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoqing; Yang Guitong

    2004-01-01

    Based on Taylor's model and Hawkyard's model, a new simple model for the mushrooming deformation of projectile impacting on a deformable target is installed considering the penetration of the projectile to the deformable target. In the model, the following time-dependent variables are involved in: the extent and the particle velocity in the rigid zone; the extent, the cross-section area and the particle velocity in plastic zone; the velocity and depth of the penetrating of projectile to the target. Solving the set of equations, analytic solution is given. The profiles of deformed projectile and shape parameters for different initial impact velocities are shown. The duration time of deformation increases with increasing the impact velocity. The analytical results by using this model are coincident with experimental result.

  8. Target-projectile interaction during impact melting at Kamil Crater, Egypt

    Science.gov (United States)

    Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi

    2016-05-01

    In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (<0.1 wt% of projectile contamination). The dark glass is a silicate melt with variable contents of Al2O3 (0.84-18.7 wt%), FeOT (1.83-61.5 wt%), and NiO (<0.01-10.2 wt%). The dark glass typically includes fragments (from few μm to several mm in size) of shocked sandstone, diaplectic glass, lechatelierite, and Ni-Fe metal blebs. The metal blebs are enriched in Ni compared to the Gebel Kamil meteorite. The dark glass is thus a mixture of target and projectile melts (11-12 wt% of projectile contamination). Based on recently proposed models for target-projectile interaction and for impact glass formation, we suggest a scenario for the glass formation at Kamil. During the transition from the contact and compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as

  9. When Charged Black Holes Merge

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  10. X-ray Emission Induced by Interaction of Highly Charged Ions with Solid Surface

    Institute of Scientific and Technical Information of China (English)

    ZhaoYongtao; XiaoGuoqing; ZhangXiaoan; YangZhihu; ChenXimeng; ZhangYanping

    2003-01-01

    The X-rays with energy from 1 keV to 60 keV in the interaction of highly charged ions (HCI) with a variety of solid surfaces were investigated at the research platform for atomic physics with the electron cyclone resonance (ECR) ion resource at IMP. We altered the projectile kinetic energy from 150 keV to about 400 keV. The X-ray excited by the projectile with the surface is shown in Fig.l, and a threshold of the projectile kinetic energy for this excitation is observed. Combining the colliding theory of classic electrodynamics with the concept of quantized orbits, we crudely give this threshold energy Tm as follows,

  11. Contribution to the modeling, design, and experimental study of an augmentel railgun and its projectile

    OpenAIRE

    2011-01-01

    This thesis was supervised by Professor Jean-Marie Kauffmann of the University of Franche-Comté. The co-director at the Royal Military Academy was Dr. Johan Gallant and the experiments at Franch-German Research Institute ISL were directed by Dr. Markus Schneider. A conventional electromagnetic railgun is composed of two conducting rails connected by a projectile. The magnetic field generated by the current in the rails interacts in the projectile resulting in an electromagnetic force accelera...

  12. [A sign of the rotational impact of the gunshot projectile on the flat bone].

    Science.gov (United States)

    Leonov, S V

    2014-01-01

    The objective of the present work was to study the mechanisms of formation of the gunshot fracture of the flat bones with special reference to the translational and rotational motion of the projectile. A total of 120 real and experimental injuries of this type were available for the investigation with the use of simulation by the finite-elemental analysis. A set of morphological features has been identified that make it possible to determine the direction of rotation of the gunshot projectile.

  13. Comment on "The motion of an arbitrarily rotating spherical projectile and its application to ball games"

    OpenAIRE

    Jensen, Jens Højgaard

    2014-01-01

    In a recent paper (Robinson G and Robinson I 2013 Phys. Scr. 88 018101) the authors developed the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary wind, assuming that both the drag force and the lift force are independent of the Reynolds number and proportional to the square of the projectile's velocity. In this paper, by dimensional analysis, the latter assumption is shown to be incorrect for forces depe...

  14. Numeric Computation of the Radar Cross Section of In flight Projectiles

    Science.gov (United States)

    2016-11-01

    the motion of a spinning ballistic projectile in the mobile i-j-k frame and that of a spinning top in the fixed x-y-z ground frame. The pitch and yaw...right). When no spin , pitch, and yaw motions are accounted for, these pictures describe the radar-projectile relative orientation in the AFDTD radar... top of one another. ....................................................................41 Fig. 19 Dynamic RCS vs. time curves obtained for the

  15. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a ...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street

  16. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    Science.gov (United States)

    Park, C.; Bowen, S. W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.

  17. NUMERICAL SIMULATION OF THREE DIMENSIONAL INTERACTING TURBULENCE FLOW FIELD OVER PROJECTILE WITH LATERAL JETS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to study complicated interacting flow field over projectile with lateral jets. External interacting turbulence flow over projectile with lateral jets was numerically simulated firstly in supersonic speed and zero attack angle. The three dimensional Reynolds-averaged NavierStokes equations and implicit finite volume TVD scheme grid of single zone including projectile base was produced by algebraic arithmetic. Body-fitted grid was generated for the lateral nozzle exit successfully so that the nozzle exit can be simulated more accurately. The high Reynolds number two-equation κ-ε turbulence models were used.The main features of the complex flow are captured. The two kinds of flow field over projectile with and without lateral jets are compared from shock structure, pressure of body and base, etc. It shows that lateral jets not only can provide push force, but also change aerodynamics characteristic of projectile significantly. The results are very important for the study of projectile with lateral rocket boosters.``

  18. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)

    2015-09-15

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  19. Experimental investigation on underwater trajectory deviation of high-speed projectile with different nose shape

    Science.gov (United States)

    Zhang, Wei; Qi, Yafei; Huang, Wei; Gao, Yubo

    2017-01-01

    The investigation on free-surface impact of projectiles has last for more than one hundred years due to its noticeable significance on improving defensive weapon technology. Laboratory-scaled water entry experiments for trajectory stability had been performed with four kinds of projectiles at a speed range of 20˜200 m/s. The nose shapes of the cylindrical projectiles were designed into flat, ogive, hemi-sphere and cone to make comparisons on the trajectory deviation when they were launched into water at a certain angle of 0˜20°. Two high-speed cameras positioned orthogonal to each other and normal to the water tank were employed to capture the entire process of projectiles' penetration. From the experimental results, the consecutive images in two planes were presented to display the general process of the trajectory deviation. Compared with the effect of impact velocities and nose shape on trajectory deviation, it merited conclude that flat projectiles had a better trajectory stability, while ogival projectiles experienced the largest attitude change. The characteristics of pressure waves were also investigated.

  20. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  1. Study of Hypervelocity Projectile Impact on Thick Metal Plates

    Directory of Open Access Journals (Sweden)

    Shawoon K. Roy

    2016-01-01

    Full Text Available Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This study proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. The results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  2. Sand Behavior Induced by High-Speed Penetration of Projectile. Phenomenological studies of the response of granular and geological media to high-speed (Mach 1-5) projectiles

    Science.gov (United States)

    2011-02-07

    are summarized as follows: Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato starch . Circumferential...Distribution Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato starch as shown in Fig.11. It was found that...The major results are summarized as follows: 1. Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato

  3. The role of electron capture and energy exchange of positively charged particles passing through matter

    CERN Document Server

    Ulmer, W

    2011-01-01

    The conventional treatment of the Bethe-Bloch equation for protons accounts for electron capture at the end of the projectile track by the small Barkas correction. This is only a possible way for protons, whereas for light and heavier charged nuclei the exchange of energy and charge along the track has to be accounted for by regarding the projectile charge q as a function of the residual energy. This leads to a significant modification of the Bethe-Bloch equation, otherwise the range in a medium is incorrectly determined. The LET in the Bragg peak domain and distal end is significantly influenced by the electron capture. A rather significant result is that in the domain of the Bragg peak the superiority of carbon ions is reduced compared to protons.

  4. Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 charge consortium studies

    Science.gov (United States)

    Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) assoc...

  5. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  6. Measuring the Velocity and Orientation of Mortar Shaped Projectiles by Using the Automated Computer Vision Analysis Method

    Science.gov (United States)

    2014-06-01

    position cameras and the mortars follow a ballistic path, the motion of the projectile should follow a straight line in the undistorted field of view...angle of attack estimates that ranged from 0.72 to 12.03 deg. Spin-stabilized projectiles exhibit epicyclic motion behavior at high frequencies...UNCLASSIFIED AD-E403 531 Technical Report ARMET-TR-13042 MEASURING THE VELOCITY AND ORIENTATION OF MORTAR SHAPED PROJECTILES

  7. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    public benefits indirectly. The original intent of this project was to measure absolute cross sections for electron loss from fast, low-charge-state, heavy ions for a wide range of charge states, impact energies, and projectiles in order to provide sufficient information for extrapolation to other energies or collision systems. Ideally, data for singly charged ions in the several to tens of MeV/u energy range was sought. Because of the limited number of facilities available that are capable of accelerating heavy ions to high velocities, several collaborations were established. Accelerator access for measurements plus specific accelerator limitations with respect to energies and charge states that could be accessed were the primary limiting factors in achieving these goals. However, as outlined below, we were able to obtain data for a broad range of parameters. These data, coupled with data taken from the literature, enabled us to provide guidance with respect to design parameters needed for various high energy density projects.

  8. High resolution charge spectroscopy of heavy ions with FNTD technology

    Science.gov (United States)

    Bartz, J. A.; Kodaira, S.; Kurano, M.; Yasuda, N.; Akselrod, M. S.

    2014-09-01

    This paper is focused on the improvement of the heavy charge particle charge resolution of Fluorescent Nuclear Track Detector (FNTD) technology. Fluorescent intensity of individual heavy charge particle tracks is used to construct the spectrum. Sources of spectroscopic line broadening were investigated and several fluorescent intensity correction procedures were introduced to improve the charge resolution down to δZ = 0.25 c.u. and enable FNTD technology to distinguish between all projectile fragments of 290 MeV carbon ions. The benefits of using FNTD technology for fragmentation study include large dynamic range and wide angular acceptance. While we describe these developments in the context of fragmentation studies, the same techniques are readily extended to FNTD LET spectroscopy in general.

  9. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  10. Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).

    Science.gov (United States)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe

  11. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix

    2017-03-01

    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  12. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  13. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    Directory of Open Access Journals (Sweden)

    Ahmed Elsaadany

    2014-01-01

    Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  14. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    Science.gov (United States)

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  15. Experimental investigation on ballistic stability of high-speed projectile in sand

    Science.gov (United States)

    Zhang, Wei; Huang, Xianglin; Qi, Yafei; Li, Dacheng; Tao, Jialiang; Huang, Wei

    2017-01-01

    The investigation on ballistic stability of high-speed projectile in granular materials is important to study the EPW (earth-penetrating weapon). Laboratory-scaled sand entry experiments for the trajectory in the sand have been performed at a range of velocities from 30 m/s to 150 m/s. In addition, pressure sensor was embedded in the sand to record the sand stress which reflects the penetration performance of projectile during the impact. The slender projectiles were designed into flat nose shape with three kinds of L/D (length-diameter ratio) to make comparisons on the trajectory when those projectiles were launched at normal and oblique impact angles (0˜25deg) along a view window. A high-speed camera beside window was employed to capture the entire process of projectiles' penetration. Basing on the comparison of different tests, theoretical analysis is carried out on the relationship between ballistic stability and associated conditions. By utilizing DIC technique, the vector field of sand velocity was acquired, and the spreading direction of the impacting energy was observed. It can be concluded that the sand stress is the function of penetrating velocity, L/D and the shot angle. It increases with the growing of penetrating velocity and L/D, decreases with the shot angle. To a certain extent, the biggest initial velocity leads to the highest stress.

  16. A Six Degree of Freedom Trajectory Analysis of Spin-Stabilized Projectiles

    Science.gov (United States)

    Gkritzapis, Dimitrios N.; Panagiotopoulos, Elias E.; Margaris, Dionissios P.; Papanikas, Dimitrios G.

    2007-12-01

    A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high and low spin-stabilized projectiles via atmospheric flight to final impact point. The projectile is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The projectile maneuvering motion depends on the most significant force and moment variations in addition to gravity and Magnus Effect. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy's book. The aforementioned variable flight model is compared with a trajectory atmospheric motion based on appropriate constant mean values of the aerodynamic projectile coefficients. Static stability, also called gyroscopic stability, is examined as a necessary condition for stable flight motion in order to locate the initial spinning projectile rotation. Static stability examination takes into account the overturning moment variations with Mach number flight motion. The developed method gives satisfactory results compared with published data of verified experiments and computational codes on atmospheric dynamics model analysis.

  17. Numerical Investigation of Bending-Body Projectile Aerodynamics for Maneuver Control

    Science.gov (United States)

    Youn, Eric; Silton, Sidra

    2015-11-01

    Precision munitions are an active area of research for the U.S. Army. Canard-control actuators have historically been the primary mechanism used to maneuver fin-stabilized, gun-launched munitions. Canards are small, fin-like control surfaces mounted at the forward section of the munition to provide the pitching moment necessary to rotate the body in the freestream flow. The additional lift force due to the rotated body and the canards then alters the flight path toward the intended target. As velocity and maneuverability requirements continue to increase, investigation of other maneuver mechanisms becomes necessary. One option for a projectile with a large length-to-diameter ratio (L/D) is a bending-body design, which imparts a curvature to the projectile body along its axis. This investigation uses full Navier-Stokes computational fluid dynamics simulations to evaluate the effectiveness of an 8-degree bent nose tip on an 8-degree bent forward section of an L/D =10 projectile. The aerodynamic control effectiveness of the bending-body concept is compared to that of a standard L/D =10 straight-body projectile as well as that of the same projectile with traditional canards. All simulations were performed at supersonic velocities between Mach 2-4.

  18. Hydrocode Simulation with Modified Johnson-Cook Model and Experimental Analysis of Explosively Formed Projectiles

    Science.gov (United States)

    Hussain, G.; Hameed, A.; Hetherington, J. G.; Barton, P. C.; Malik, A. Q.

    2013-04-01

    The formation of mild steel (MS) and copper (Cu) explosively formed projectiles (EFPs) was simulated in AUTODYN using both the Johnson-Cook (JC) and modified Johnson-Cook (JCM) constitutive models. The JC model was modified by increasing the hardening constant by 10%. The previously established semi-empirical equations for diameter, length, velocity, and depth of penetration were used to verify the design of the EFP. The length-to-diameter (L/D) ratio of the warhead used in the simulation varied between 1 projectile distortion or breakup for large standoff applications, the design of the EFP warhead was modified to obtain a lower L/D ratio. Simulations from the JC model underestimated the EFP diameter, resulting in an unrealistically elongated projectile. This shortcoming was resolved by employing the JCM model, giving good agreement with the experimental results. The projectile velocity and hole characteristics in 10-mm-thick aluminum target plates were studied for both models. The semi-empirical equations and the JC model overestimated the projectile velocity, whereas the JCM model underestimated the velocity slightly when compared to the experimental results. The depths of penetration calculated by the semi-empirical equations in the aluminum (Al) target plate were 55 and 52 mm for Cu and MS EFPs, respectively.

  19. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.

    2012-08-01

    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  20. Electron Capture in Collisions of Slow Highly Charged Ions with an Atom and a Molecule: Processes and Fragmentation Dynamics

    Directory of Open Access Journals (Sweden)

    Xavier Husson

    2002-03-01

    Full Text Available Abstract : Processes involved in slow collisions between highly charged ions (HCI and neutral targets are presented. First, the mechanisms responsible for double electron capture are discussed. We show that, while the electron-nucleus interaction is expected to be dominant at projectile velocities of about 0.5 a.u., the electron-electron interaction plays a decisive role during the collision and gains importance when the projectile velocity decreases. This interaction has also to be invoked in the capture of core electrons by HCI. Finally, the molecular fragmentation of H2 following the impact of HCI is studied.

  1. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  2. A study of the perforation of stiffened plates by rigid projectiles

    Institute of Scientific and Technical Information of China (English)

    Jianguo Ning; Weidong Song; Jing Wang

    2005-01-01

    In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.

  3. Projectile motion of a once rotating object: physical quantities at the point of return

    Science.gov (United States)

    Arabasi, Sameer

    2016-09-01

    Vertical circular motion is a widely used example to explain non-uniform circular motion in most undergraduate general physics textbooks. However, most of these textbooks do not elaborate on the case when this motion turns into projectile motion under certain conditions. In this paper, we describe thoroughly when a mass attached to a cord, moving in a vertical circular motion, turns into a projectile and its location and velocity when it rejoins the circular orbit. This paper provides an intuitive understanding, supported by basic kinematic equations, to give an interesting elegant connection between circular motion and projectile motion—something lacking in most physics textbooks—and will be very useful to present to an undergraduate class to deepen their understanding of both models of motion.

  4. On the non-equilibrium dynamics of cavitation around the underwater projectile in variable motion

    Science.gov (United States)

    Chen, Y.; Lu, C. J.; Li, J.; Chen, X.; Gong, Z. X.

    2015-12-01

    In this work, the dynamic behavior of the non-equilibrium cavitation occurring around the underwater projectiles navigating with variable speed was numerically and theoretically investigated. The cavity collapse induced by the decelerating motion of the projectiles can be classified into two types: periodic oscillation and damped oscillation. In each type the evolution of the total mass of vapor in cavity are found to have strict correlation with the pressure oscillation in far field. By defining the equivalent radius of cavity, we introduce the specific kinetic energy of collapse and demonstrate that its change-rate is in good agreement with the pressure disturbance. We numerically investigated the influence of angle of attack on the collapse effect. The result shows that when the projectile decelerates, an asymmetric-focusing effect of the pressure induced by collapse occurs on its pressure side. We analytically explained such asymmetric-focusing effect.

  5. Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile

    Directory of Open Access Journals (Sweden)

    Ahmed F. M. Kridi

    2009-01-01

    Full Text Available The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles have been determined. Computed surface pressures have been compared with experimental data and are found to be in good agreement. The pitching moment coefficient, determined from the computed flow fields, shows the critical aerodynamic behavior observed in free flights.

  6. Probable projectile-target combinations for the synthesis of super heavy nucleus $^{286}$112

    CERN Document Server

    Santhosh, K P

    2014-01-01

    The fusion cross sections for the reactions of all the projectile-target combinations found in the cold valleys of $^{286}$112 have been studied using scattering potential as the sum of Coulomb and proximity potential, so as to predict the most probable projectile-target combinations in heavy ion fusion reactions for the synthesis of super heavy nucleus $^{286}$112. While considering the nature of potential pockets and half lives of the colliding nuclei, the systems $^{82}$Ge + $^{204}$Hg, $^{80}$Ge + $^{206}$Hg and $^{78}$Zn + $^{208}$Pb found in the deep cold valley region and the systems $^{48}$Ca+$^{238}$U, $^{38}$S+$^{248}$Cm and $^{44}$Ar+$^{242}$Pu in the cold valleys are predicted to be the better optimal projectile-target combinations for the synthesis of super heavy nucleus $^{286}$112.

  7. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    Science.gov (United States)

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations.

  8. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    Energy Technology Data Exchange (ETDEWEB)

    Foster, M [Los Alamos National Laboratory; Colgan, J [Los Alamos National Laboratory; Wong, T G [SANTA CLARA U; Madison, D H [MISSOURI U

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  9. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    Directory of Open Access Journals (Sweden)

    Mark Costello

    2001-01-01

    Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.

  10. Probable Projectile-Target Combinations for the Synthesis of Super Heavy Nucleus 286112

    Directory of Open Access Journals (Sweden)

    K. P. Santhosh

    2014-02-01

    Full Text Available The fusion cross sections for the reactions of all the projectile-target combinations found in the cold valleys of 286112 have been studied using scattering potential as the sum of Coulomb and proximity potential, so as to predict the most probable projectile-target combinations in heavy ion fusion reactions for the synthesis of super heavy nucleus 286112. While considering the nature of potential pockets and half lives of the colliding nuclei, the systems 82Ge + 204Hg, 80Ge + 206Hg and 78Zn + 208Pb found in the deep cold valley region and the systems 48Ca+238U, 38S+248Cm and 44Ar+242Pu in the cold valleys are predicted to be the better optimal projectile-target combinations for the synthesis of super heavy nucleus 286112.

  11. Ground target localization algorithm for semi-active laser terminal correction projectile

    Directory of Open Access Journals (Sweden)

    Xing-long Li

    2016-06-01

    Full Text Available A target localization algorithm, which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position, is proposed to obtain the accurate position of ground target in real time in the trajectory correction process of semi-active laser terminal correction projectile. A target localization model is established according to projectile position, attitude and line-of-sight angle. The effects of measurement errors of projectile position, attitude and line-of-sight angle on localization accuracy at different quadrant elevation angles are analyzed through Monte-Carlo simulation. The simulation results show that the measurement error of line-of-sight angle has the largest influence on the localization accuracy. The localization accuracy decreases with the increase in quadrant elevation angle. However, the maximum localization accuracy is less than 7 m. The proposed algorithm meets the accuracy and real-time requirements of target localization.

  12. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    Science.gov (United States)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  13. ANALYTICAL MODEL OF CERAMIC/METAL ARMOR IMPACTED BY DEFORMABLE PROJECTILE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new analytical model was established to describe the complex behavior of ceramic/metal armor under impact of deformable projectile by assuming some hypotheses.Three aspects were taken into account: the mushrooming deformation of the projectile,the fragment of ceramic tile and the formation and change of ceramic conoid and the deformation of the metal backup plate. Solving the set of equations, all the variables were obtained for the different impact velocities: the extent and particle velocity in rigid zone; the extent, cross-section area and particle velocity in plastic zone; the velocity and depth of penetration of projectile to the target; the reduction in volume and compressive strength of the fractured ceramic conoid; the displacement and movement velocity of the effective zone of backup plate. Agreement observed among analytical result, numerical simulation and experimental result confirms the validity of the model, suggesting the model developed can be a useful tool for ceramic/metal armor design.

  14. Study on measurement method for projectile location based on light screen

    Science.gov (United States)

    Han, Feng; Liu, QunHua; Sun, GuoBin

    2008-09-01

    In weapon-ammunition system, firing accuracy of projectile is major characteristic parameter weighing fire effect and capability of weapon-ammunition system for target. At present, firing accuracy of projectile is obtained by measuring the two-dimensional coordinates of projectile for target. In order to measure the parameters of two-dimensional coordinates of projectile for target, a new type of measurement system is proposed. The measurement system is composed of four high sensitivity light screens (known as target) with special geometrical frame. Light source of the screens is formed by special infrared LED array. The PIN infrared photodiodes array is used as the sensors. The longest effective distance between light source and sensors is 4m. It is impossible to achieve using traditional methods. Four light screens and high-precision timers are combined in order to acquire the value of time when the projectile flies across the position of four light screens. The real-time data acquirement and processing and display of two-dimensional coordinates and the projectile velocity can be realized. The principle of measurement system and the design of high sensitivity light screen are introduced emphatically. The measurement system was verified by using five kinds of small caliber pellets. As compared with the paper target sheet, the measurement system designed can meet the demand of check-up test of gun, bullet and ammunition. The firing testing in the target field has proved that the measurement system has the advantages of simple construction, easy operation and high precision and high sensitivity.

  15. Systematic study of probable projectile-target combinations for the synthesis of the superheavy nucleus 302120

    Science.gov (United States)

    Santhosh, K. P.; Safoora, V.

    2016-08-01

    Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.

  16. Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles

    Science.gov (United States)

    Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.

    1995-01-01

    The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.

  17. Double differential distribution of electron emission in the ionization of water molecules by fast bare oxygen ions

    Science.gov (United States)

    Bhattacharjee, Shamik; Biswas, Shubhadeep; Bagdia, Chandan; Roychowdhury, Madhusree; Nandi, Saikat; Misra, Deepankar; Monti, J. M.; Tachino, C. A.; Rivarola, R. D.; Champion, C.; Tribedi, Lokesh C.

    2016-03-01

    The doubly differential distributions of low-energy electron emission in the ionization of water molecules under the impact of fast bare oxygen ions with energy of 48 MeV are measured. The measured data are compared with two quantum-mechanical models, i.e. the post and prior versions of the continuum distorted wave-eikonal initial state (CDW-EIS) approximation, and the first-order Born approximation with initial and final wavefunctions verifying correct boundary conditions (CB1). An overall excellent qualitative agreement is found between the data and the CDW-EIS models whereas the CB1 model showed substantial deviation. However, the detailed angular distributions display some discrepancies with both CDW-EIS models. The single differential and total cross-sections exhibit good agreement with the CDW-EIS models. The present detailed data set could also be used as an input for modeling highly charged ion induced radiation damage in living tissues, whose most abundant component is water. Similar measurements are also carried out for a projectile energy of 60 MeV. However, since the double differential cross-section data show similar results the details are not provided here, except for the total ionization cross-sections results.

  18. Physics Learning Achievement Study: Projectile, Using Mathematica Program of Faculty of Science and Technology Phetchabun Rajabhat University Students

    Science.gov (United States)

    Hutem, Artit; Kerdmee, Supoj

    2013-01-01

    The propose of this study is to study Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who study the projectile motion experiment set. The samples are…

  19. Experimental Study and Numerical Simulation of Hypervelocity Projectile Impact on Double-Wall Structure

    Institute of Scientific and Technical Information of China (English)

    陈沿海; 张庆明; 黄风雷

    2004-01-01

    Tests of hypervelocity projectile impact on double-wall structure were performed with the front wall ranging from 0.5 mm to 2.0 mm thick and different impact velocities. Smooth particle hydrodynamics (SPH) code in LS-DYNA was employed for the simulation of hypervelocity impact on the double-wall structure. By using elementary shock wave theory, the experimental results above are analyzed. The analysis can provide an explanation for the penetration mechanism of hypervelocity projectile impact on double-wall structure about the effect of front wall thickness and impact velocity.

  20. On the geometrical place formed by the maximum heights of projectile motion with air resistance

    CERN Document Server

    Hernández-Saldaña, H

    2010-01-01

    We present an analysis on the geometrical place formed by the set of maxima of the orbits of a projectile launched in a media with linear drag. Such a place is written in term of the Lambert W function in polar coordinates, confirming the special role played by this function in the problem. In order to characterize it, a study of the curvature is presented in two parameterizations, in terms of the launching angle and in the polar one. The angles of maximum curvature are compared with other important angles in the projectile problem.

  1. Estimating 3D positions and velocities of projectiles from monocular views.

    Science.gov (United States)

    Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P

    2009-05-01

    In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.

  2. Distorted wave theories for dressed-ion-atom collisions with GSZ projectile potentials

    Energy Technology Data Exchange (ETDEWEB)

    Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D, E-mail: monti@ifir-conicet.gov.ar [Comision Nacional de EnergIa Atomica, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina)

    2011-10-14

    The continuum distorted wave and the continuum distorted wave-eikonal initial state approximations for electron emission in ion-atom collisions are generalized to the case of dressed projectiles. The interaction between the dressed projectile and the active electron is represented by the analytic Green-Sellin-Zachor (GSZ) potential. Doubly differential cross sections as a function of the emitted electron energy and angle are computed. The region of the binary encounter peak is analysed in detail. Interference structures appear in agreement with the experimental data and are interpreted as arising from the coherent interference between short- and long-range scattering amplitudes.

  3. Double excitation of Ar{sup 16+} projectiles in the intermediate velocity regime

    Energy Technology Data Exchange (ETDEWEB)

    Adoui, L.; Chetioui, A.; Despiney, I.; L`hoir, A.; Rozet, J.P.; Schmaus, D.; Touati, A.; Vernhet, D.; Wohrer, K. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Cassimi, A.; Grandin, J.P.; Ramillon, J.M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Stephan, C. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1993-12-31

    The double excitation of Ar{sup 16+} projectiles is observed at GANIL with Ar{sup 16+} projectiles of 13.6 MeV/u (v=23 a.u.) by looking at the radiative decay of the double excited states, thus avoiding the interference effect. Moreover, double excitation together with single excitation in very similar systems (Ar{sup 16+} {yields} He, N{sub 2}, Ne, Ar, Kr, Xe) have been studied, thus allowing to a real test of the two-electron mechanism. 1 fig., 4 refs.

  4. Experimental and Analytical Study on the Penetration of Corundum-Rubble Concrete Subjected to Projectile Impact

    Directory of Open Access Journals (Sweden)

    Y. L. Xue

    2017-01-01

    Full Text Available A new type of composite concrete which can be called corundum-rubble concrete (CRC was presented to improve the resistance of protective structure to the projectile impact. Comparative experiments were conducted between CRC and reinforced concrete, and a modified Taylor model was proposed to predict the penetration depth of CRC targets. Experimental results show that CRC is much higher than reinforced concrete in both strength and hardness and shows excellent resistance to the 0.125 m-diameter projectile impact. Theoretical analyses demonstrated that the modified Taylor model’s predicted results were in good agreement with the measured values.

  5. Acceleration Measurement of Projectile High Velocity Penetrating Concrete Target and Acceleration Signal Analysis

    Institute of Scientific and Technical Information of China (English)

    Peng XU; Jing ZU; Jing-biao FAN

    2010-01-01

    A kind of novel on-boand memory acceleratian measure equipment, self-developed, had been employed in recent field test to obtain the acceleration of projectile penetrating many kinds of concrete target. At the same time, the aluminum foam with different density and pore-diameters had been utilized to protect cirruit modules. Fur-thermore, with the theoretical analysis, computer simulation and field test, the high frequency's impact on the tested acceleration of the projectile had been discussed; At last, the analysis on output signal tested the validity of test data.

  6. Quantitative functional analysis of Late Glacial projectile points from northern Europe

    DEFF Research Database (Denmark)

    Dev, Satya; Riede, Felix

    2012-01-01

    This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...

  7. The african origin of complex projectile technology: an analysis using tip cross-sectional area and perimeter.

    Science.gov (United States)

    Sisk, Matthew L; Shea, John J

    2011-01-01

    Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed.

  8. The African Origin of Complex Projectile Technology: An Analysis Using Tip Cross-Sectional Area and Perimeter

    Directory of Open Access Journals (Sweden)

    Matthew L. Sisk

    2011-01-01

    Full Text Available Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed.

  9. Systematic study on probable projectile-target combinations for the synthesis of the $^{302}$120 superheavy nucleus

    CERN Document Server

    Santhosh, K P

    2016-01-01

    Probable projectile-target combinations for the synthesis of superheavy element $^{302}$120 have been studied taking Coulomb and proximity potential as the interaction barrier. The probabilities of compound nucleus formation, PCN for the projectile-target combinations found in the cold reaction valley of $^{302}$120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion and evaporation residue cross sections for the reactions of all the probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of SHE $^{302}$120 in heavy ion fusion reactions. The calculated fusion and evaporation cross section for the more asymmetric (hotter) projectile-target combination is found to be higher than the less asymmetric (colder) combination. It can be seen from the nature of quasi-fission barrier height, mass asymmetry, probability of compound nucleus formation, survival probability and excitation energy, the system...

  10. On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.

    Science.gov (United States)

    Striganov, S I

    2005-01-01

    The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.

  11. On the Theory and Simulation of Multiple Coulomb Scattering of Heavy Charged Particles

    CERN Document Server

    Striganov, S I

    2004-01-01

    The Moliere theory of multiple Coulomb scattering is modified to take into account difference between scattering off atomic nuclei and electron. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential cross section and has wider range of applicability than a Gaussian approximation. A well-known method to simulate multiple Coulomb scattering is based on the different treatment of soft and hard collisions. An angular deflection in a large number of soft collisions is sampled using the proposed distribution function, a small number of hard collisions are simulated directly. A boundary between hard and soft collisions is defined providing a precise sampling of scattering angle (1% level) and small number of hard collisions. A corresponding simulation module takes into account projectile and nucleus charge distributions and exact kinematics of a projectile-electron interaction.

  12. Development of odd-Z-projectile reactions for transactinide element synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Folden, III, Charles Marvin [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile

  13. Novel E-Field Sensor for Projectile Detection

    Science.gov (United States)

    2012-10-22

    Science and Research Inc., San Diego, CA (2001). [11] S. J. Vinci , D. M. Hull, Electrostatic charge measurements and characterization of in-flight...UNCLASSIFIED 8 UNCLASSIFIED [12] P. A. M. Sandborn, S. Vinci , D. Hull, Bullet detection and localization using electric field sensors: Distortion of...to 3 kHz, Tech. rep., IEEE PES (Oct. 7 2011). [15] D. M. Hull, S. J. Vinci , Y. Zhang, ARL Electric-field Cage Modeling, Design and Calibration, in

  14. Electrooptical Detection of Charged Particles

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R; Lazarus, D M; Magurno, B; Nikas, D; Ozben, C; Srinivasan-Rao, T; Tsang, Thomas

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds promise for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  15. Fast Diagnosis of Transient Plasma by Langmuir Probe

    Institute of Scientific and Technical Information of China (English)

    TANG En-ling; ZHANG Qing-ming; OUYANG Ji-ting

    2007-01-01

    A method for the fast measurement of electron temperature and density with temporal resolution in transient plasma has been implemented by Langmuir probe. The diagnostic system consists of a single Langmuir probe driven by a high frequency sinusoidal voltage. The current and voltage spectrum on the probe were detected synchronously by an oscilloscope with sampling rate being at least 5 times higher than the frequency of sweep voltage. The system has been used to diagnose the transient plasma generated by hypervelocity-impact of LY12 aluminum projectile into LY12 aluminum target.

  16. Resonant charge transfer at dielectric surfaces

    CERN Document Server

    Marbach, Johannes; Fehske, Holger

    2012-01-01

    We report on the theoretical description of secondary electron emission due to resonant charge transfer occurring during the collision of metastable nitrogen molecules with dielectric surfaces. The emission is described as a two step process consisting of electron capture to form an intermediate shape resonance and subsequent electron emission by decay of this ion, either due to its natural life time or its interaction with the surface. The electron capture is modeled using the Keldysh Green's function technique and the negative ion decay is described by a combination of the Keldysh technique and a rate equation approach. We find the resonant capture of electrons to be very efficient and the natural decay to be clearly dominating over the surface-induced decay. Secondary electron emission coefficients are calculated for aluminum oxide, magnesium oxide, silicon oxide, and diamond at several kinetic energies of the projectile. With the exception of magnesium oxide the coefficients turn out to be of the order of...

  17. Partial cross section of projectile fragmentation in {sup 197}Au+{sup 27}Al interactions at 1.015 GeV/n

    Energy Technology Data Exchange (ETDEWEB)

    Battacharyya, D.P.; Saha, S.; Basu, B. [Indian Association for the Cultivation of Science, Calcutta (India)] [and others

    1996-02-01

    The large fragmentation of {sup 197}Au projectiles at BEVALAC energy 1.015 GeV/n in Al target has been studied using a stack consisting of CR-39 (DOP) plastic track detectors. The partial cross-sections for the production of large fragments of charge Z{sub F} = 75 to Z{sub F} = 78 in collisions of {sup 197}Au beam of nuclei at 0.930 GeV/n in {sup 27}Al target has been estimated from the cone length distribution. The authors data found comparable to the expected results from the latest semi empirical model of Tsao et al. and that from the abrasion-ablation model of Townsend et al. The present data is in approximate agreement with the active and passive experimental data of Binns et al., and Gerbier et al. in Al target, respectively.

  18. NA49 event display of the reconstructed tracks emanating from the "little bang" created in a central collision of Lead projectile with a Lead nucleus

    CERN Multimedia

    1996-01-01

    When a 33 TeV Lead nucleous projectile hits head on a Lead target it creates for a brief instant of time a system of quarks and gluons that more than 100'000 times hotter than the sun. As this fireball expands it reconstitutes normal matter creating thousands of particles (pions, kaons, protons, ....). The NA49 Time Projection Chambers extending over 13 m can record a large majority of the produced charged particles. The result of a complex analysis is shown here in a event display of the reconstructed tracks. The blue lines represent the boundaries of the detectors in a perspective view from the far end of the experiment towards the interaction point, where all the tracks originate.

  19. Peripheral collisions of highly charged ions with metal clusters

    Institute of Scientific and Technical Information of China (English)

    Zhang Cheng-Jun; Hu Bi-Tao; Luo Xian-Wen

    2012-01-01

    Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs)Ar17+ and the large copper clusters under large impact parameters have been studied in this paper.We present the dominant mechanism of the electron transfer between SHCls and a large metal cluster by computational simulation.The evolution of the occupation of projectile ions,KLχ satellite lines,X-ray yields,Auger electron spectrum and scattering angles are provided.

  20. Modelling surface restructuring by slow highly charged ions

    Science.gov (United States)

    Wachter, G.; Tőkési, K.; Betz, G.; Lemell, C.; Burgdörfer, J.

    2013-12-01

    We theoretically investigate surface modifications on alkaline earth halides due to highly charged ion impact, focusing on recent experimental evidence for both etch pit and nano-hillock formation on CaF2 (A.S. El-Said et al., Phys. Rev. Lett. 109, (2012) 117602 [1]). We discuss mechanisms for converting the projectile potential and kinetic energies into thermal energy capable of changing the surface structure. A proof-of-principle classical molecular dynamics simulation suggests the existence of two thresholds which we associate with etch pit and nano-hillock formation in qualitative agreement with experiment.