WorldWideScience

Sample records for fast analytical methods

  1. Revisit of analytical methods for the process and plant control analyses during reprocessing of fast reactor fuels

    International Nuclear Information System (INIS)

    Subba Rao, R.V.

    2016-01-01

    CORAL (COmpact facility for Reprocessing of Advanced fuels in Lead cell) is an experimental facility for demonstrating the reprocessing of irradiated fast reactor fuels discharged from the Fast Breeder Test Reactor (FBTR). The objective of the reprocessing plant is to achieve nuclear grade plutonium and uranium oxides with minimum process waste volumes. The process flow sheet for the reprocessing of spent Fast Reactor Fuel consists of Transport of spent fuel, Chopping, Dissolution, Feed conditioning, Solvent Extraction cycle, Partitioning Cycle and Re-conversion of Plutonium nitrate and uranium nitrate to respective oxides. The efficiency and performance of the plant to achieve desired objective depends on the analyses of various species in the different steps adopted during reprocessing of fuels. The analytical requirements in the plant can be broadly classified as 1. Process control Analyses (Analyses which effect the performance of the plant- PCA); 2. Plant control Analyses (Analyses which indicates efficiency of the plant-PLCA); 3. Nuclear Material Accounting samples (Analyses which has bearing on nuclear material accounting in the plant - NUMAC) and Quality control Analyses (Quality of the input bulk chemicals as well as products - QCA). The analytical methods selected are based on the duration of analyses, precision and accuracies required for each type analytical requirement classified earlier. The process and plant control analyses requires lower precision and accuracies as compared to NUMAC analyses, which requires very high precision accuracy. The time taken for analyses should be as lower as possible for process and plant control analyses as compared to NUMAC analyses. The analytical methods required for determining U and Pu in process and plant samples from FRFR will be different as compared to samples from TRFR (Thermal Reactor Fuel Reprocessing) due to higher Pu to U ratio in FRFR as compared TRFR and they should be such that they can be easily

  2. The use of the spectral method within the fast adaptive composite grid method

    Energy Technology Data Exchange (ETDEWEB)

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  3. Fast analytical scatter estimation using graphics processing units.

    Science.gov (United States)

    Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris

    2015-01-01

    To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.

  4. Evaluation and standardisation of fast analytical techniques for destructive radwaste control

    International Nuclear Information System (INIS)

    De Simone, A.; Troiani, F.

    2001-01-01

    The document describes the work programme carried out by the Laboratorio Nazionale per la 'Caratterizzazione dei Refit Radioattivi', in the frame of the European research project Destructive Radwaste Control. The main tasks of the research work were the evaluation of fast sample pre-treatment procedures and the development of chromatographic methods coupled to fast nuclide detection by Liquid Scintillation Counting. In order to test the High Performance Ion Chromatograph (HPIC) coupled to the Liquid Scintillation Counter (LSC) on high salt content solutions, synthetic cement solutions have been prepared and spiked with several β-emitters hard to be measured with non-destructive analyses, along with other radionuclides important for the determination of the radiological inventory in radwastes. As the validation tests for the new analytical methods involved the manipulation of radioactive solutions, a remote area for HPIC-LSC apparatus has been designed and performed, in order to operate in safe conditions. According to the research programme, fast analytical methods for the chemical separation and radionuclide detection of the radioactive elements of interest, have been developed and qualified. From the results of the work, some protocols of analysis have been defined: they contain all information about operative conditions for HPIC-LSC apparatus, field of applicability, chemical and radioactive detection limits [it

  5. Characterization of Catalytic Fast Pyrolysis Oils: The Importance of Solvent Selection for Analytical Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, Jack R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ware, Anne E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-25

    Two catalytic fast pyrolysis (CFP) oils (bottom/heavy fraction) were analyzed in various solvents that are used in common analytical methods (nuclear magnetic resonance - NMR, gas chromatography - GC, gel permeation chromatography - GPC, thermogravimetric analysis - TGA) for oil characterization and speciation. A more accurate analysis of the CFP oils can be obtained by identification and exploitation of solvent miscibility characteristics. Acetone and tetrahydrofuran can be used to completely solubilize CFP oils for analysis by GC and tetrahydrofuran can be used for traditional organic GPC analysis of the oils. DMSO-d6 can be used to solubilize CFP oils for analysis by 13C NMR. The fractionation of oils into solvents that did not completely solubilize the whole oils showed that miscibility can be related to the oil properties. This allows for solvent selection based on physico-chemical properties of the oils. However, based on semi-quantitative comparisons of the GC chromatograms, the organic solvent fractionation schemes did not speciate the oils based on specific analyte type. On the other hand, chlorinated solvents did fractionate the oils based on analyte size to a certain degree. Unfortunately, like raw pyrolysis oil, the matrix of the CFP oils is complicated and is not amenable to simple liquid-liquid extraction (LLE) or solvent fractionation to separate the oils based on the chemical and/or physical properties of individual components. For reliable analyses, for each analytical method used, it is critical that the bio-oil sample is both completely soluble and also not likely to react with the chosen solvent. The adoption of the standardized solvent selection protocols presented here will allow for greater reproducibility of analysis across different users and facilities.

  6. Linear circuit transfer functions an introduction to fast analytical techniques

    CERN Document Server

    Basso, Christophe P

    2016-01-01

    Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...

  7. Nodal method for fast reactor analysis

    International Nuclear Information System (INIS)

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  8. SPANDOM - source projection analytic nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Kim, Tae Hyeong; Cho, Nam Zin

    1994-01-01

    We describe a new discrete ordinates nodal method for the two-dimensional transport equation. We solve the discrete ordinates equation analytically after the source term is projected and represented in polynomials. The method is applied to two fast reactor benchmark problems and compared with the TWOHEX code. The results indicate that the present method accurately predicts not only multiplication factor but also flux distribution

  9. Investigation on analytical method for the transfer behavior of corrosion product (CP) in the fast breeder reactors

    International Nuclear Information System (INIS)

    Matsuo, Youichirou; Sasaki, Shinji

    2013-05-01

    Radioactive corrosion products (CPs) are main cause of personal radiation exposure during maintenance work without fuel failure in FBR plants. The most important CP species are 54 Mn and 60 Co. The deposited radioactive CPs cause radiation fields near the piping and components, and the CPs contribute to the radiation exposure of the plant-worker. In this review, firstly, the collected knowledge about CP transfer behavior in the fast reactor are reviewed and analyzed. Secondly, the existing analytical methods to evaluate CP transfer behavior are investigated, issues of which and their solutions are extracted and discussed. Finally, examples of the calculated results by the improved analytical method are described. The provided conclusions are as follows; (1) Collected knowledge on CP transfer behavior. CP generation is mainly due to the dissolution of CP from hot reactor core constitution materials to hot sodium. On the core materials, particle-formed structure was confirmed. The evidence of CP precipitation in the low temperature part of the primary cooling system and the lower part of reactor core was provided. Similarly, the evidence of CP particle deposition in the same domain was also provided. (2) Extracted issues on analytical methods of CP transfer and proposed solutions. In the past, radioactivity caused by CP deposition on the piping and the core materials surface is confirmed. Subsequently, analytical models were developed based on the distribution of the CPs in the reactor coolant systems and the out-pile sodium loop test. The local high radiation dosage (such as elbow part) was observed by the radiation measurement. However, this behavior cannot be evaluated by the existing model, and it is considered necessary to take into account the transfer of CP particle. (3) The recent trend of the CP behavioral analysis method. Novel CP particle generation, transfer and deposition models were developed based on existing knowledge on CP behavior. The developed

  10. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)

    2015-08-15

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.

  11. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    International Nuclear Information System (INIS)

    th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Samin, Adib; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Lahti, Erik; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Zhang, Jinsuo

    2015-01-01

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes

  12. Analytical N beam position monitor method

    Directory of Open Access Journals (Sweden)

    A. Wegscheider

    2017-11-01

    Full Text Available Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β^{*}-leveling on luminosity will require many operational optics. A fast measurement of the β-function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs. A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  13. Analytical N beam position monitor method

    Science.gov (United States)

    Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.

    2017-11-01

    Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  14. A fast semi-analytical model for the slotted structure of induction motors

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A.

    A fast, semi-analytical model for induction motors (IMs) is presented. In comparison to traditional analytical models for IMs, such as lumped parameter, magnetic equivalent circuit and anisotropic layer models, the presented model calculates a continuous distribution of the magnetic flux density in

  15. Fast analytical model of MZI micro-opto-mechanical pressure sensor

    Science.gov (United States)

    Rochus, V.; Jansen, R.; Goyvaerts, J.; Neutens, P.; O’Callaghan, J.; Rottenberg, X.

    2018-06-01

    This paper presents a fast analytical procedure in order to design a micro-opto-mechanical pressure sensor (MOMPS) taking into account the mechanical nonlinearity and the optical losses. A realistic model of the photonic MZI is proposed, strongly coupled to a nonlinear mechanical model of the membrane. Based on the membrane dimensions, the residual stress, the position of the waveguide, the optical wavelength and the phase variation due to the opto-mechanical coupling, we derive an analytical model which allows us to predict the response of the total system. The effect of the nonlinearity and the losses on the total performance are carefully studied and measurements on fabricated devices are used to validate the model. Finally, a design procedure is proposed in order to realize fast design of this new type of pressure sensor.

  16. Examination of fast reactor fuels, FBR analytical quality assurance standards and methods, and analytical methods development: irradiation tests. Progress report, April 1--June 30, 1976, and FY 1976

    International Nuclear Information System (INIS)

    Baker, R.D.

    1976-08-01

    Characterization of unirradiated and irradiated LMFBR fuels by analytical chemistry methods will continue, and additional methods will be modified and mechanized for hot cell application. Macro- and microexaminations will be made on fuel and cladding using the shielded electron microprobe, emission spectrograph, radiochemistry, gamma scanner, mass spectrometers, and other analytical facilities. New capabilities will be developed in gamma scanning, analyses to assess spatial distributions of fuel and fission products, mass spectrometric measurements of burnup and fission gas constituents and other chemical analyses. Microstructural analyses of unirradiated and irradiated materials will continue using optical and electron microscopy and autoradiographic and x-ray techniques. Analytical quality assurance standards tasks are designed to assure the quality of the chemical characterizations necessary to evaluate reactor components relative to specifications. Tasks include: (1) the preparation and distribution of calibration materials and quality control samples for use in quality assurance surveillance programs, (2) the development of and the guidance in the use of quality assurance programs for sampling and analysis, (3) the development of improved methods of analysis, and (4) the preparation of continuously updated analytical method manuals. Reliable analytical methods development for the measurement of burnup, oxygen-to-metal (O/M) ratio, and various gases in irradiated fuels is described

  17. Fast and Simple Analytical Method for Direct Determination of Total Chlorine Content in Polyglycerol by ICP-MS.

    Science.gov (United States)

    Jakóbik-Kolon, Agata; Milewski, Andrzej; Dydo, Piotr; Witczak, Magdalena; Bok-Badura, Joanna

    2018-02-23

    The fast and simple method for total chlorine determination in polyglycerols using low resolution inductively coupled plasma mass spectrometry (ICP-MS) without the need for additional equipment and time-consuming sample decomposition was evaluated. Linear calibration curve for 35 Cl isotope in the concentration range 20-800 µg/L was observed. Limits of detection and quantification equaled to 15 µg/L and 44 µg/L, respectively. This corresponds to possibility of detection 3 µg/g and determination 9 µg/g of chlorine in polyglycerol using studied conditions (0.5% matrix-polyglycerol samples diluted or dissolved with water to an overall concentration of 0.5%). Matrix effects as well as the effect of chlorine origin have been evaluated. The presence of 0.5% (m/m) of matrix species similar to polyglycerol (polyethylene glycol-PEG) did not influence the chlorine determination for PEGs with average molecular weights (MW) up to 2000 Da. Good precision and accuracy of the chlorine content determination was achieved regardless on its origin (inorganic/organic). High analyte recovery level and low relative standard deviation values were observed for real polyglycerol samples spiked with chloride. Additionally, the Combustion Ion Chromatography System was used as a reference method. The results confirmed high accuracy and precision of the tested method.

  18. On the extension of the analytic nodal diffusion solver ANDES to sodium fast reactors

    International Nuclear Information System (INIS)

    Ochoa, R.; Herrero, J.J.; Garcia-Herranz, N.

    2011-01-01

    Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermal-hydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. Here some of the limitations encountered when attempting to apply the Analytical Coarse Mesh Finite Difference (ACMFD) method - implemented inside ANDES - to fast reactor calculations are discussed and the sensitivity of the method to the energy-group structure is studied. In order to reinforce some of the conclusions obtained two calculations are presented. The first one involves a 3D mini-core model in 33 groups, where the ANDES solver presents several issues. And secondly, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry in 4 energy groups is used to verify the good convergence of the code in a few-energy-group structure. (author)

  19. Fast UPLC/PDA determination of squalene in Sicilian P.D.O. pistachio from Bronte: Optimization of oil extraction method and analytical characterization.

    Science.gov (United States)

    Salvo, Andrea; La Torre, Giovanna Loredana; Di Stefano, Vita; Capocchiano, Valentina; Mangano, Valentina; Saija, Emanuele; Pellizzeri, Vito; Casale, Katia Erminia; Dugo, Giacomo

    2017-04-15

    A fast reversed-phase UPLC method was developed for squalene determination in Sicilian pistachio samples that entry in the European register of the products with P.D.O. In the present study the SPE procedure was optimized for the squalene extraction prior to the UPLC/PDA analysis. The precision of the full analytical procedure was satisfactory and the mean recoveries were 92.8±0.3% and 96.6±0.1% for 25 and 50mgL -1 level of addition, respectively. Selected chromatographic conditions allowed a very fast squalene determination; in fact it was well separated in ∼0.54min with good resolution. Squalene was detected in all the pistachio samples analyzed and the levels ranged from 55.45-226.34mgkg -1 . Comparing our results with those of other studies it emerges that squalene contents in P.D.O. Sicilian pistachio samples, generally, were higher than those measured for other samples of different geographic origins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fast method for geometric calibration of detectors and matching testing between two detectors

    International Nuclear Information System (INIS)

    Pechenova, O.Yu.

    2002-01-01

    A fast method of geometric calibration of detectors has been proposed. The main idea of this method is to determine offsets by fitting the real data distribution by analytic functions which describe the motion of one detector relative to the other one. This method can be applicable to offsets determination for one detector relative to the other detector or for one part of the detector relative to its other part. The detectors should be placed perpendicular to the beam axis. The form of analytic functions depends on the geometry of the experiment and direction of the coordinate axes. The analytic functions have been obtained using the rotation matrices. This method can be applied to the matching testing between two detectors

  1. New, small, fast acting blood glucose meters--an analytical laboratory evaluation.

    Science.gov (United States)

    Weitgasser, Raimund; Hofmann, Manuela; Gappmayer, Brigitta; Garstenauer, Christa

    2007-09-22

    Patients and medical personnel are eager to use blood glucose meters that are easy to handle and fast acting. We questioned whether accuracy and precision of these new, small and light weight devices would meet analytical laboratory standards and tested four meters with the above mentioned conditions. Approximately 300 capillary blood samples were collected and tested using two devices of each brand and two different types of glucose test strips. Blood from the same samples was used for comparison. Results were evaluated using maximum deviation of 5% and 10% from the comparative method, the error grid analysis, the overall deviation of the devices, the linear regression analysis as well as the CVs for measurement in series. Of all 1196 measurements a deviation of less than 5% resp. 10% from the reference method was found for the FreeStyle (FS) meter in 69.5% and 96%, the Glucocard X Meter (GX) in 44% and 75%, the One Touch Ultra (OT) in 29% and 60%, the Wellion True Track (WT) in 28.5% and 58%. The error grid analysis gave 99.7% for FS, 99% for GX, 98% for OT and 97% for WT in zone A. The remainder of the values lay within zone B. Linear regression analysis resembled these results. CVs for measurement in series showed higher deviations for OT and WT compared to FS and GX. The four new, small and fast acting glucose meters fulfil clinically relevant analytical laboratory requirements making them appropriate for use by medical personnel. However, with regard to the tight and restrictive limits of the ADA recommendations, the devices are still in need of improvement. This should be taken into account when the devices are used by primarily inexperienced persons and is relevant for further industrial development of such devices.

  2. Analytical dynamic modeling of fast trilayer polypyrrole bending actuators

    International Nuclear Information System (INIS)

    Amiri Moghadam, Amir Ali; Moavenian, Majid; Tahani, Masoud; Torabi, Keivan

    2011-01-01

    Analytical modeling of conjugated polymer actuators with complicated electro-chemo-mechanical dynamics is an interesting area for research, due to the wide range of applications including biomimetic robots and biomedical devices. Although there have been extensive reports on modeling the electrochemical dynamics of polypyrrole (PPy) bending actuators, mechanical dynamics modeling of the actuators remains unexplored. PPy actuators can operate with low voltage while producing large displacement in comparison to robotic joints, they do not have friction or backlash, but they suffer from some disadvantages such as creep and hysteresis. In this paper, a complete analytical dynamic model for fast trilayer polypyrrole bending actuators has been proposed and named the analytical multi-domain dynamic actuator (AMDDA) model. First an electrical admittance model of the actuator will be obtained based on a distributed RC line; subsequently a proper mechanical dynamic model will be derived, based on Hamilton's principle. The purposed modeling approach will be validated based on recently published experimental results

  3. Approximate Analytic Solutions for the Two-Phase Stefan Problem Using the Adomian Decomposition Method

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Qin

    2014-01-01

    Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.

  4. Analytical maximum-likelihood method to detect patterns in real networks

    International Nuclear Information System (INIS)

    Squartini, Tiziano; Garlaschelli, Diego

    2011-01-01

    In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, the generation of them is still problematic. Existing approaches are either computationally demanding and beyond analytic control or analytically accessible but highly approximate. Here, we propose a solution to this long-standing problem by introducing a fast method that allows one to obtain expectation values and standard deviations of any topological property analytically, for any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the expectation value of any property analytically across the entire graph ensemble is as short as that required to compute the same property using the adjacency matrix of the single original network. Our method reveals that the null behavior of various correlation properties is different from what was believed previously, and is highly sensitive to the particular network considered. Moreover, our approach shows that important structural properties (such as the modularity used in community detection problems) are currently based on incorrect expressions, and provides the exact quantities that should replace them.

  5. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Kenny S K; Lee, Louis K Y [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chan, Anthony T C [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR (China)

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis, which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.

  6. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  7. An Analytical Method for the Abel Inversion of Asymmetrical Gaussian Profiles

    International Nuclear Information System (INIS)

    Xu Guosheng; Wan Baonian

    2007-01-01

    An analytical algorithm for fast calculation of the Abel inversion for density profile measurement in tokamak is developed. Based upon the assumptions that the particle source is negligibly small in the plasma core region, density profiles can be approximated by an asymmetrical Gaussian distribution controlled only by one parameter V 0 /D and V 0 /D is constant along the radial direction, the analytical algorithm is presented and examined against a testing profile. The validity is confirmed by benchmark with the standard Abel inversion method and the theoretical profile. The scope of application as well as the error analysis is also discussed in detail

  8. Evaluation and standardisation of fast analytical techniques for destructive radwaste control

    Energy Technology Data Exchange (ETDEWEB)

    De Simone, A.; Troiani, F. [ENEA, Unita' Rifiuti Radioattivi e Disattivazione Impianti, Centro Ricerche Saluggia, Vercelli (Italy)

    2001-07-01

    The document describes the work programme carried out by the Laboratorio Nazionale per la 'Caratterizzazione dei Rifiuti Radioattivi', in the frame of the European research project Destructive Radwaste Control. The main tasks of the research work were the evaluation of fast sample pre-treatment procedures and the development of chromatographic methods coupled to fast nuclide detection by Liquid Scintillation Counting. In order to test the High Performance Ion Chromatograph (HPIC) coupled to the Liquid Scintillation Counter (LSC) on high salt content solutions, synthetic cement solutions have been prepared and spiked with several {beta}-emitters hard to be measured with non-destructive analyses, along with other radionuclides important for the determination of the radiological inventory in radwastes. As the validation tests for the new analytical methods involved the manipulation of radioactive solutions, a remote area for HPIC-LSC apparatus has been designed and performed, in order to operate in safe conditions. According to the research programme, fast analytical methods for the chemical separation and radionuclide detection of the radioactive elements of interest, have been developed and qualified. From the results of the work, some protocols of analysis have been defined: they contain all information about operative conditions for HPIC-LSC apparatus, field of applicability, chemical and radioactive detection limits. [Italian] Questo documento riporta il lavoro realizzato dal Laboratorio Nazionale per la Caratterizzazione dei Rifiuti Radioattivi, nell'ambito del progetto di ricerca Europeo sulle tecniche di misura distruttive per rifiuti radioattivi. Il lavoro era finalizzato sia alla valutazione di nuove procedure veloci per la preparazione dei campioni da analizzare sia allo sviluppo di metodi Cromatografici accoppiati alla rivelazione di radionuclidi mediante Conteggio a Scintillazione Liquida. La sperimentazione della Cromatografia Ionica ad

  9. About peculiarities of application of the method of fast expansions in the solution of the Navier-Stokes equations

    Directory of Open Access Journals (Sweden)

    A. D. Chernyshov

    2017-01-01

    Full Text Available The brief presentation of the method of fast expansions is given to solve nonlinear differential equations. Application  rules of the operator of fast expansions are specified for solving differential equations. According to the method of fast expansions, an unknown function can be represented as the sum of the boundary function and Fourier series sines and cosines for one variable. The special construction of the boundary functions leads to reasonably fast convergence of the Fourier series, so that for engineering calculations, it is sufficient to consider only the first three members. The method is applicable both to linear and nonlinear integro-differential systems. By means of applying the method of fast expansions to nonlinear Navier-Stokes equations the problem is reduced to a closed system of ordinary differential equations, which solution doesn't represent special difficulties. We can reapply the method of fast expansions to the resulting system of differential equations and reduce the original problem to a system of algebraic equations. If the problem is n-dimensional, then after n-fold application of the method of fast expansions the problem will be reduced to a closed algebraic system. Finally, we obtain an analytic-form solution of complicated boundary value problem in partial derivatives. The flow of an incompressible viscous fluid of Navier–Stokes is considered in a curvilinear pipe. The problem is reduced to solving a closed system of ordinary differential equations with boundary conditions by the method of fast expansions. The article considers peculiarities of finding the coefficients of boundary functions and Fourier coefficients for the zero-order and first-order operators of fast expansions. Obtaining the analytic-form solution is of great interest, because it allows to analyze and to investigate the influence of various factors on the properties of the viscous fluid in specific cases.

  10. 7 CFR 94.303 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.303 Section 94.303 Agriculture... POULTRY AND EGG PRODUCTS Processed Poultry Products § 94.303 Analytical methods. The analytical methods... latest edition of the Official Methods of Analysis of AOAC INTERNATIONAL, Suite 500, 481 North Frederick...

  11. 7 CFR 98.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 98.4 Section 98.4 Agriculture....4 Analytical methods. (a) The majority of analytical methods used by the USDA laboratories to perform analyses of meat, meat food products and MRE's are listed as follows: (1) Official Methods of...

  12. Solution of the isotopic depletion equation using decomposition method and analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: fprata@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)

  13. Solution of the isotopic depletion equation using decomposition method and analytical solution

    International Nuclear Information System (INIS)

    Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S.

    2011-01-01

    In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)

  14. 7 CFR 93.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 93.4 Section 93.4 Agriculture... PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain Citrus Products § 93.4 Analytical methods. (a) The majority of analytical methods for citrus products are found in the Official Methods of Analysis of AOAC...

  15. Fast Atom Bombardment Spectrometry - a novel analytical method for biologically interesting, non-volatile substances

    International Nuclear Information System (INIS)

    Schmid, E.

    1987-03-01

    Today important chemical substances like proteins can be produced easily and in large amounts. The primary structure of proteins can be analysed automatically, however the procedure can take some months of time. A novel method, fast atom bombardment mass spectrometry (FAB-MS) in combination with enzymatic degradation not only decreases the analysis time, but gives also additional information about the primary structure. Especially for the verification of protein structures - which is important for recombinant proteins - FAB-MS is a very useful method. 40 refs., 56 figs. (P.W.)

  16. Fast and Sensitive Method for Determination of Domoic Acid in Mussel Tissue

    Directory of Open Access Journals (Sweden)

    Elena Barbaro

    2016-01-01

    Full Text Available Domoic acid (DA, a neurotoxic amino acid produced by diatoms, is the main cause of amnesic shellfish poisoning (ASP. In this work, we propose a very simple and fast analytical method to determine DA in mussel tissue. The method consists of two consecutive extractions and requires no purification steps, due to a reduction of the extraction of the interfering species and the application of very sensitive and selective HILIC-MS/MS method. The procedural method was validated through the estimation of trueness, extract yield, precision, detection, and quantification limits of analytical method. The sample preparation was also evaluated through qualitative and quantitative evaluations of the matrix effect. These evaluations were conducted both on the DA-free matrix spiked with known DA concentration and on the reference certified material (RCM. We developed a very selective LC-MS/MS method with a very low value of method detection limit (9 ng g−1 without cleanup steps.

  17. 7 CFR 94.103 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The analytical methods used by the Science and Technology Division laboratories to perform voluntary analyses for egg...

  18. Application of nuclear analytical methods to heavy metal pollution studies of estuaries

    International Nuclear Information System (INIS)

    Anders, B.; Junge, W.; Knoth, J.; Michaelis, W.; Pepelnik, R.; Schwenke, H.

    1984-01-01

    Important objectives of heavy metal pollution studies of estuaries are the understanding of the transport phenomena in these complex ecosystems and the discovery of the pollution history and the geochemical background. Such studies require high precision and accuracy of the analytical methods. Moreover, pronounced spatial heterogeneities and temporal variabilities that are typical for estuaries necessitate the analysis of a great number of samples if relevant results are to be obtained. Both requirements can economically be fulfilled by a proper combination of analytical methods. Applications of energy-dispersive X-ray fluorescence analysis with total reflection of the exciting beam at the sample support and of neutron activation analysis with both thermal and fast neutrons are reported in the light of pollution studies performed in the Lower Elbe River. (orig.)

  19. 7 CFR 94.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.4 Section 94.4 Agriculture... POULTRY AND EGG PRODUCTS Mandatory Analyses of Egg Products § 94.4 Analytical methods. The majority of analytical methods used by the USDA laboratories to perform mandatory analyses for egg products are listed as...

  20. Fasting conditions: Influence of water intake on clinical chemistry analytes.

    Science.gov (United States)

    Benozzi, Silvia F; Unger, Gisela; Campion, Amparo; Pennacchiotti, Graciela L

    2018-02-15

    Currently available recommendations regarding fasting requirements before phlebotomy do not specify any maximum water intake volume permitted during the fasting period. The aim was to study the effects of 300 mL water intake 1 h before phlebotomy on specific analytes. Blood was collected from 20 women (median age (min-max): 24 (22 - 50) years) in basal state (T 0 ) and 1 h after 300 mL water intake (T 1 ). Glucose, total proteins (TP), urea, creatinine, cystatin C, total bilirubin (BT), total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides (Tg), uric acid (UA), high-sensitivity C-reactive protein, gamma-glutamyl transferase (GGT), aspartate-aminotransferase (AST), alanine-aminotransferase and lactate-dehydrogenase (LD) were studied. Results were analyzed using Wilcoxon test. Mean difference (%) was calculated for each analyte and was further compared with reference change value (RCV). Only mean differences (%) higher than RCV were considered clinically significant. Significant differences (median T 0 vs median T 1 , P) were observed for TP (73 vs 74 g/L, 0.001); urea (4.08 vs 4.16 mmol/L, 0.010); BT (12 vs 13 µmol/L, 0.021); total cholesterol (4.9 vs 4.9 mmol/L, 0.042); Tg (1.05 vs 1.06 mmol/L, 0.002); UA (260 vs 270 µmol/L, 0.006); GGT (12 vs 12 U/L, 0.046); AST (22 vs 24 U/L, 0.001); and LD (364 vs 386 U/L, 0.001). Although the differences observed were statistically significant, they were not indicative of clinically significant changes. A water intake of 300 mL 1 h prior to phlebotomy does not interfere with the analytes studied in the present work.

  1. Comparison of nuclear analytical methods with competitive methods

    International Nuclear Information System (INIS)

    1987-10-01

    The use of nuclear analytical techniques, especially neutron activation analysis, already have a 50 year old history. Today several sensitive and accurate, non-nuclear trace element analytical techniques are available and new methods are continuously developed. The IAEA is supporting the development of nuclear analytical laboratories in its Member States. In order to be able to advise the developing countries which methods to use in different applications, it is important to know the present status and development trends of nuclear analytical methods, what are their benefits, drawbacks and recommended fields of application, compared with other, non-nuclear techniques. In order to get an answer to these questions the IAEA convened this Advisory Group Meeting. This volume is the outcome of the presentations and discussions of the meeting. A separate abstract was prepared for each of the 21 papers. Refs, figs, tabs

  2. Application of the invariant embedding method to analytically solvable transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Wahlberg, Malin

    2005-05-01

    The applicability and performance of the invariant embedding method for calculating various transport quantities is investigated in this thesis. The invariant embedding method is a technique to calculate the reflected or transmitted fluxes in homogeneous half-spaces and slabs, without the need for solving for the flux inside the medium. In return, the embedding equations become non-linear, and in practical cases they need to be solved by numerical methods. There are, however, fast and effective iterative methods available for this purpose. The objective of this thesis is to investigate the performance of these iterative methods in model problems, in which also an exact analytical solution can be obtained. Some of these analytical solutions are also new, hence their derivation constitutes a part of the thesis work. The cases investigated in the thesis all concern the calculation of reflected fluxes from half-spaces. The first problem treated was the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production (i.e. like binary fission), when bombarded by o flux of monoenergetic particles of the same type. Both constant cross sections and energy dependent cross sections with a power law dependence were used in the calculations. The second class of problems concerned the calculation of the path length distribution of reflected particles from a medium without multiplication. It is an interesting new observation that the distribution of the path length travelled in the medium before reflection can be calculated with invariant embedding methods, which actually do not solve the flux distribution in the medium. We have tested the accuracy and the convergence properties of the embedding method also for this case. Finally, very recently a theory of connecting the infinite and half-space medium solutions by embedding-like integral equations was developed and reported in the literature

  3. Application of the invariant embedding method to analytically solvable transport problems

    International Nuclear Information System (INIS)

    Wahlberg, Malin

    2005-05-01

    The applicability and performance of the invariant embedding method for calculating various transport quantities is investigated in this thesis. The invariant embedding method is a technique to calculate the reflected or transmitted fluxes in homogeneous half-spaces and slabs, without the need for solving for the flux inside the medium. In return, the embedding equations become non-linear, and in practical cases they need to be solved by numerical methods. There are, however, fast and effective iterative methods available for this purpose. The objective of this thesis is to investigate the performance of these iterative methods in model problems, in which also an exact analytical solution can be obtained. Some of these analytical solutions are also new, hence their derivation constitutes a part of the thesis work. The cases investigated in the thesis all concern the calculation of reflected fluxes from half-spaces. The first problem treated was the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production (i.e. like binary fission), when bombarded by o flux of monoenergetic particles of the same type. Both constant cross sections and energy dependent cross sections with a power law dependence were used in the calculations. The second class of problems concerned the calculation of the path length distribution of reflected particles from a medium without multiplication. It is an interesting new observation that the distribution of the path length travelled in the medium before reflection can be calculated with invariant embedding methods, which actually do not solve the flux distribution in the medium. We have tested the accuracy and the convergence properties of the embedding method also for this case. Finally, very recently a theory of connecting the infinite and half-space medium solutions by embedding-like integral equations was developed and reported in the literature

  4. Soft x-ray continuum radiation transmitted through metallic filters: An analytical approach to fast electron temperature measurements

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.; Hill, K.; Bitter, M.; Tritz, K.; Kramer, T.; Stutman, D.; Finkenthal, M.

    2010-01-01

    A new set of analytic formulas describes the transmission of soft x-ray continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler et al., Rev. Sci. Instrum. 70, 599 (1999)]. The new analytic formulas can improve the interpretation of the experimental results and thus contribute in obtaining fast temperature measurements in between intermittent Thomson scattering data.

  5. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  6. Life cycle management of analytical methods.

    Science.gov (United States)

    Parr, Maria Kristina; Schmidt, Alexander H

    2018-01-05

    In modern process management, the life cycle concept gains more and more importance. It focusses on the total costs of the process from invest to operation and finally retirement. Also for analytical procedures an increasing interest for this concept exists in the recent years. The life cycle of an analytical method consists of design, development, validation (including instrumental qualification, continuous method performance verification and method transfer) and finally retirement of the method. It appears, that also regulatory bodies have increased their awareness on life cycle management for analytical methods. Thus, the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), as well as the United States Pharmacopeial Forum discuss the enrollment of new guidelines that include life cycle management of analytical methods. The US Pharmacopeia (USP) Validation and Verification expert panel already proposed a new General Chapter 〈1220〉 "The Analytical Procedure Lifecycle" for integration into USP. Furthermore, also in the non-regulated environment a growing interest on life cycle management is seen. Quality-by-design based method development results in increased method robustness. Thereby a decreased effort is needed for method performance verification, and post-approval changes as well as minimized risk of method related out-of-specification results. This strongly contributes to reduced costs of the method during its life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  8. Fast and Analytical EAP Approximation from a 4th-Order Tensor.

    Science.gov (United States)

    Ghosh, Aurobrata; Deriche, Rachid

    2012-01-01

    Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  9. 40 CFR 141.704 - Analytical methods.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Analytical methods. 141.704 Section... Monitoring Requirements § 141.704 Analytical methods. (a) Cryptosporidium. Systems must analyze for Cryptosporidium using Method 1623: Cryptosporidium and Giardia in Water by Filtration/IMS/FA, 2005, United States...

  10. 40 CFR 141.89 - Analytical methods.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Analytical methods. 141.89 Section 141...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.89 Analytical methods. (a... shall be conducted with the methods in § 141.23(k)(1). (1) Analyses for alkalinity, calcium...

  11. Nuclear analytical methods in the life sciences

    NARCIS (Netherlands)

    de Goeij, J.J.M.

    1994-01-01

    A survey is given of various nuclear analytical methods. The type of analytical information obtainable and advantageous features for application in the life sciences are briefly indicated. These features are: physically different basis of the analytical method, isotopic rather than elemental

  12. Application of nuclear analytical methods to heavy metal pollution studies of estuaries

    International Nuclear Information System (INIS)

    Anders, B.; Junge, W.; Knoth, J.; Michaelis, W.; Pepelnik, R.; Schwenke, H.

    1984-01-01

    Important objectives of heavy metal pollution studies of estuaries are the understanding of the transport phenomena in these complex ecosystems and the discovery of the pollution history and the geochemical background. Such studies require high precision and accuracy of the analytical methods. Moreover, pronounced spatial heterogeneities and temporal variabilities that are typical for estuaries necessitate the analysis of a great number of samples if relevant results are to be obtained. Both requirements can economically be fulfilled by a proper combination of analytical methods. Applications of energy-dispersive X-ray fluorescence analysis with total reflection of the exciting beam at the sample support and of neutron activation analysis with both thermal and fast neutrons are reported in the light of pollution studies performed in the Lower Elbe River. Profiles are presented for the total heavy metal content determined from particulate matter and sediment. They include V, Mn, Fe, Ni, Cu, Zn, As, Pb, and Cd. 16 references 10 figures, 1 table

  13. Nuclear analytical methods: Past, present and future

    International Nuclear Information System (INIS)

    Becker, D.A.

    1996-01-01

    The development of nuclear analytical methods as an analytical tool began in 1936 with the publication of the first paper on neutron activation analysis (NAA). This year, 1996, marks the 60th anniversary of that event. This paper attempts to look back at the nuclear analytical methods of the past, to look around and to see where the technology is right now, and finally, to look ahead to try and see where nuclear methods as an analytical technique (or as a group of analytical techniques) will be going in the future. The general areas which the author focuses on are: neutron activation analysis; prompt gamma neutron activation analysis (PGNAA); photon activation analysis (PAA); charged-particle activation analysis (CPAA)

  14. Analytical method for heavy metal determination in algae and turtle eggs from Guanahacabibes Protected Sea Park

    Directory of Open Access Journals (Sweden)

    Abel I. Balbín Tamayo

    2014-12-01

    Full Text Available A standard digestion method coupled to electrochemical detection for the monitoring of heavy metals in biological samples has been used for the simultaneous analysis of the target analytes. Square wave anodic stripping voltammetry (SWASV coupled to disposable screen-printed electrodes (SPEs was employed as a fast and sensitive electroanalytical method for the detection of heavy metals. The aim of our study was to determine Cd, Pb and Cu by SWASV in brown algae (Sargasum natan and green turtle eggs (Chelonia mydas using screen-printed electrodes. The method proved useful for the simultaneous analysis of these metals by comparison between two different procedures for preparing the samples. Two different approaches in digestion protocols were assessed. The study was focused on Guanahacabibes brown algae and green turtle eggs because the metal concentrations recorded in this area may be used for intraspecific comparison within the Guanahacabibes Protected Sea Park area, a body of water for which information is still very scarce. The best results were obtained by digesting biological samples with the EPA 3050B method. This treatment allowed the fast and quantitative extraction from brown algae and green turtle eggs of the target analytes, with high sensitivity and avoiding organic residues, eventually affecting electrochemical measurements.

  15. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  16. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  17. Reactor Section standard analytical methods. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Sowden, D.

    1954-07-01

    the Standard Analytical Methods manual was prepared for the purpose of consolidating and standardizing all current analytical methods and procedures used in the Reactor Section for routine chemical analyses. All procedures are established in accordance with accepted practice and the general analytical methods specified by the Engineering Department. These procedures are specifically adapted to the requirements of the water treatment process and related operations. The methods included in this manual are organized alphabetically within the following five sections which correspond to the various phases of the analytical control program in which these analyses are to be used: water analyses, essential material analyses, cotton plug analyses boiler water analyses, and miscellaneous control analyses.

  18. Fast and Analytical EAP Approximation from a 4th-Order Tensor

    Directory of Open Access Journals (Sweden)

    Aurobrata Ghosh

    2012-01-01

    Full Text Available Generalized diffusion tensor imaging (GDTI was developed to model complex apparent diffusivity coefficient (ADC using higher-order tensors (HOTs and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP. Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF, since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  19. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  20. Waste minimization in analytical methods

    International Nuclear Information System (INIS)

    Green, D.W.; Smith, L.L.; Crain, J.S.; Boparai, A.S.; Kiely, J.T.; Yaeger, J.S. Schilling, J.B.

    1995-01-01

    The US Department of Energy (DOE) will require a large number of waste characterizations over a multi-year period to accomplish the Department's goals in environmental restoration and waste management. Estimates vary, but two million analyses annually are expected. The waste generated by the analytical procedures used for characterizations is a significant source of new DOE waste. Success in reducing the volume of secondary waste and the costs of handling this waste would significantly decrease the overall cost of this DOE program. Selection of appropriate analytical methods depends on the intended use of the resultant data. It is not always necessary to use a high-powered analytical method, typically at higher cost, to obtain data needed to make decisions about waste management. Indeed, for samples taken from some heterogeneous systems, the meaning of high accuracy becomes clouded if the data generated are intended to measure a property of this system. Among the factors to be considered in selecting the analytical method are the lower limit of detection, accuracy, turnaround time, cost, reproducibility (precision), interferences, and simplicity. Occasionally, there must be tradeoffs among these factors to achieve the multiple goals of a characterization program. The purpose of the work described here is to add waste minimization to the list of characteristics to be considered. In this paper the authors present results of modifying analytical methods for waste characterization to reduce both the cost of analysis and volume of secondary wastes. Although tradeoffs may be required to minimize waste while still generating data of acceptable quality for the decision-making process, they have data demonstrating that wastes can be reduced in some cases without sacrificing accuracy or precision

  1. Fast 2D hybrid fluid-analytical simulation of inductive/capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lieberman, M A; Graves, D B

    2011-01-01

    A fast two-dimensional (2D) hybrid fluid-analytical transform coupled plasma reactor model was developed using the finite elements simulation tool COMSOL. Both inductive and capacitive coupling of the source coils to the plasma are included in the model, as well as a capacitive bias option for the wafer electrode. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model. The vacuum sheath of variable thickness is modeled with a fixed-width sheath of variable dielectric constant. The sheath heating is treated as an incoming heat flux at the plasma-sheath boundary, and a dissipative term is added to the sheath dielectric constant. A gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The simulation results, over a range of input powers, are in good agreement with a chlorine reactor experimental study.

  2. Utilization of OR method toward realization of better fast breeder reactor cycle

    International Nuclear Information System (INIS)

    Shiotani, Hiroki

    2008-01-01

    Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)

  3. Shielding computations for solution transfer lines from Analytical Lab to process cells of Demonstration Fast Reactor Plant (DFRP)

    International Nuclear Information System (INIS)

    Baskar, S.; Jose, M.T.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    The diluted virgin solutions (both aqueous and organic) and aqueous analytical waste generated from experimental analysis of process solutions, pertaining to Fast Breeder Test Reactor (FBTR) and Prototype Fast Breeder Reactor (PFBR), in glove boxes of active analytical Laboratory (AAL) are pumped back to the process cells through a pipe in pipe arrangement. There are 6 transfer lines (Length 15-32 m), 2 for each type of transfer. The transfer lines passes through the area inside the AAL and also the operating area. Hence it is required to compute the necessary radial shielding requirement around the lines to limit the dose rates in both the areas to the permissible values as per the regulatory requirement

  4. Development, validation, and application of a fast and simple GC-MS method for determination of some therapeutic drugs relevant in emergency toxicology.

    Science.gov (United States)

    Meyer, Markus R; Welter, Jessica; Weber, Armin A; Maurer, Hans H

    2011-10-01

    To date, immunoassays are commercially available for quantification of valproic acid, salicylic acid, paracetamol, phenobarbital, phenytoin, and primidone. As they are no longer available, a fast, simple, and cost-effective quantitative gas chromatography-mass spectrometry (GC-MS) method was developed and fully validated for these drugs. After simple and fast liquid-liquid extraction, the samples were analyzed by GC-MS using the selected ion monitoring mode. The method was validated including the parameters selectivity, calibration model, precision, accuracy, and extraction efficiency. The above-mentioned analytes were separated within 8.5 minutes and sensitively detected. No interfering peaks were observed in blank samples from 8 different sources. The linearity ranges were 20-200 mg/L for valproic acid, 100-1200 mg/L for salicylic acid, 10-200 mg/L for paracetamol, 10-200 mg/L for phenobarbital, 4-20 mg/L for primidone, and 2.5-30 mg/L for phenytoin. Generally accepted criteria for accuracy and precision were fulfilled for all analytes using 6-point calibration. Even 1-point calibration was applicable for all analytes. The assay was successfully applied to analysis of real plasma samples and proficiency testing material. The assay described allowed fast and reliable determination of analytes relevant in the diagnosis of poisonings. Furthermore, time- and cost-saving 1-point calibration was shown to be suitable for daily routine work, especially in emergency cases.

  5. HTGR analytical methods and design verification

    International Nuclear Information System (INIS)

    Neylan, A.J.; Northup, T.E.

    1982-05-01

    Analytical methods for the high-temperature gas-cooled reactor (HTGR) include development, update, verification, documentation, and maintenance of all computer codes for HTGR design and analysis. This paper presents selected nuclear, structural mechanics, seismic, and systems analytical methods related to the HTGR core. This paper also reviews design verification tests in the reactor core, reactor internals, steam generator, and thermal barrier

  6. Fast and "green" method for the analytical monitoring of haloketones in treated water.

    Science.gov (United States)

    Serrano, María; Silva, Manuel; Gallego, Mercedes

    2014-09-05

    Several groups of organic compounds have emerged as being particularly relevant as environmental pollutants, including disinfection by-products (DBPs). Haloketones (HKs), which belong to the unregulated volatile fraction of DBPs, have become a priority because of their occurrence in drinking water at concentrations below 1μg/L. The absence of a comprehensive method for HKs has led to the development of the first method for determining fourteen of these species. In an effort to miniaturise, this study develops a micro liquid-liquid extraction (MLLE) method adapted from EPA Method 551.1. In this method practically, the whole extract (50μL) was injected into a programmed temperature vaporiser-gas chromatography-mass spectrometer in order to improve sensitivity. The method was validated by comparing it to EPA Method 551.1 and showed relevant advantages such as: lower sample pH (1.5), higher aqueous/organic volume ratio (60), lower solvent consumption (200μL) and fast and cost-saving operation. The MLLE method achieved detection limits ranging from 6 to 60ng/L (except for 1,1,3-tribromo-3-chloroacetone, 120ng/L) with satisfactory precision (RSD, ∼6%) and high recoveries (95-99%). An evaluation was carried out of the influence of various dechlorinating agents as well as of the sample pH on the stability of the fourteen HKs in treated water. To ensure the HKs integrity for at least 1 week during storage at 4°C, the samples were acidified at pH ∼1.5, which coincides with the sample pH required for MLLE. The green method was applied to the speciation of fourteen HKs in tap and swimming pool waters, where one and seven chlorinated species, respectively, were found. The concentration of 1.1-dichloroacetone in swimming pool water increased ∼25 times in relation to tap water. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. New analytical methods for quality control of St. John's wort

    International Nuclear Information System (INIS)

    Huck-Pezzei, V.

    2013-01-01

    In the present work, a novel analytical platform is introduced, which enables both anal-ysis and quality control of St. John´s wort extracts and tissue. The synergistic combina-tion of separation techniques (including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC)) with mass spectrometry (MS) and vibra-tional spectroscopy is demonstrated to get deeper insights into the ingredients composi-tion. TLC was successfully employed to identify some unknown ingredients being pre-sent in samples with Chinese provenience. The here described novel HPLC method allowed to differentiate clearly between European and Chinese samples on one hand, on the other hand this method could successfully be employed for the semi-preparative isolation of the unknown ingredient. Matrix-free laser desorption ionization time of flight mass spectrometry (mf-LDI-TOF/MS) using a special designed titanium oxide layer was employed to identify the structure of the substance. The analytical knowledge generated so far was used to establish an infrared spectroscopic model allowing both quantitative analysis of ingredients as well as differentiating between European and Chinese provenience. Finally, infrared imaging spectroscopy was conducted to get knowledge about the high resolved distribution of ingredients. The analytical platform established can be used for fast and non-destructive quantitation and quality control to identify adulteration being of interest according to the Deutsche Arzneimittel Codex (DAC) even for the phytopharmaceutical industry. (author) [de

  8. Method for effective usage of Google Analytics tools

    Directory of Open Access Journals (Sweden)

    Ирина Николаевна Егорова

    2016-01-01

    Full Text Available Modern Google Analytics tools have been investigated against effective attraction channels for users and bottlenecks detection. Conducted investigation allowed to suggest modern method for effective usage of Google Analytics tools. The method is based on main traffic indicators analysis, as well as deep analysis of goals and their consecutive tweaking. Method allows to increase website conversion and might be useful for SEO and Web analytics specialists

  9. An analytical method for computing atomic contact areas in biomolecules.

    Science.gov (United States)

    Mach, Paul; Koehl, Patrice

    2013-01-15

    We propose a new analytical method for detecting and computing contacts between atoms in biomolecules. It is based on the alpha shape theory and proceeds in three steps. First, we compute the weighted Delaunay triangulation of the union of spheres representing the molecule. In the second step, the Delaunay complex is filtered to derive the dual complex. Finally, contacts between spheres are collected. In this approach, two atoms i and j are defined to be in contact if their centers are connected by an edge in the dual complex. The contact areas between atom i and its neighbors are computed based on the caps formed by these neighbors on the surface of i; the total area of all these caps is partitioned according to their spherical Laguerre Voronoi diagram on the surface of i. This method is analytical and its implementation in a new program BallContact is fast and robust. We have used BallContact to study contacts in a database of 1551 high resolution protein structures. We show that with this new definition of atomic contacts, we generate realistic representations of the environments of atoms and residues within a protein. In particular, we establish the importance of nonpolar contact areas that complement the information represented by the accessible surface areas. This new method bears similarity to the tessellation methods used to quantify atomic volumes and contacts, with the advantage that it does not require the presence of explicit solvent molecules if the surface of the protein is to be considered. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  10. Application of system reliability analytical method, GO-FLOW

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi; Kobayashi, Michiyuki

    1999-01-01

    The Ship Research Institute proceed a developmental study on GO-FLOW method with various advancing functionalities for the system reliability analysis method occupying main parts of PSA (Probabilistic Safety Assessment). Here was attempted to intend to upgrade functionality of the GO-FLOW method, to develop an analytical function integrated with dynamic behavior analytical function, physical behavior and probable subject transfer, and to prepare a main accident sequence picking-out function. In 1997 fiscal year, in dynamic event-tree analytical system, an analytical function was developed by adding dependency between headings. In simulation analytical function of the accident sequence, main accident sequence of MRX for improved ship propulsion reactor became possible to be covered perfectly. And, input data for analysis was prepared with a function capable easily to set by an analysis operator. (G.K.)

  11. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    than the analytic function. The second variation of the AFEN method we developed is the AFEN/PEN hybrid method. This method is designed especially for the multigroup reactor analysis. This hybrid method solves the diffusion equations for the fast energy groups by the PEN method, and those for the thermal energy groups by the AFEN method. This method is based on the observation that the fast group neutron flux distributions are generally so smooth that they can be approximated by a high-order polynomial and that, on the other hand, the thermal fluxes require the analytic function expansion for the representation of their strong gradients near the interface between assemblies having different neutronic properties. The results of benchmark problems on which this method was tested indicate that performance of the hybrid method is much better than that of the PEN method and is nearly the same to that of the AFEN method. In order for the AFEN method and its variations to be used in analyzing the neutron behavior in an actual reactor core, we also developed a new burnup correction model to reduce the errors in nodal flux distributions induced by the intranodal burnup gradients. It is essential for the nodal methods to maintain their accuracy in fuel depletion analysis. The burnup correction model developed in this study homogenizes equivalently the node with the burnup-induced cross section variations into the homogeneous node with the equivalent parameters such as the flux-volume-weighted constant cross sections and the discontinuity factors. The results of a benchmark problem show that this model eliminates almost all the errors in the nodal unknowns which are induced by the intranodal burnup gradients

  12. Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals.

    Science.gov (United States)

    Weaver, Abigail A; Reiser, Hannah; Barstis, Toni; Benvenuti, Michael; Ghosh, Debarati; Hunckler, Michael; Joy, Brittney; Koenig, Leah; Raddell, Kellie; Lieberman, Marya

    2013-07-02

    Reports of low-quality pharmaceuticals have been on the rise in the past decade, with the greatest prevalence of substandard medicines in developing countries, where lapses in manufacturing quality control or breaches in the supply chain allow substandard medicines to reach the marketplace. Here, we describe inexpensive test cards for fast field screening of pharmaceutical dosage forms containing beta lactam antibiotics or combinations of the four first-line antituberculosis (TB) drugs. The devices detect the active pharmaceutical ingredients (APIs) ampicillin, amoxicillin, rifampicin, isoniazid, ethambutol, and pyrazinamide and also screen for substitute pharmaceuticals, such as acetaminophen and chloroquine that may be found in counterfeit pharmaceuticals. The tests can detect binders and fillers such as chalk, talc, and starch not revealed by traditional chromatographic methods. These paper devices contain 12 lanes, separated by hydrophobic barriers, with different reagents deposited in the lanes. The user rubs some of the solid pharmaceutical across the lanes and dips the edge of the paper into water. As water climbs up the lanes by capillary action, it triggers a library of different chemical tests and a timer to indicate when the tests are completed. The reactions in each lane generate colors to form a "color bar code" which can be analyzed visually by comparison with standard outcomes. Although quantification of the APIs is poor compared with conventional analytical methods, the sensitivity and selectivity for the analytes is high enough to pick out suspicious formulations containing no API or a substitute API as well as formulations containing APIs that have been "cut" with inactive ingredients.

  13. Innovating analytical spectroscopies for the improvement of liquid sodium cooled fast neutron reactors safety

    International Nuclear Information System (INIS)

    Maury, C.

    2012-01-01

    In the context of the project of sodium fast reactor ASTRID, CEA is currently developing new analytical techniques to monitor the chemical purity of liquid sodium. Indeed, incidental situations occurring in the reactor, such as fuel clad failures, leakages in the steam generator or in the coolant pumps, and accelerated corrosion, might release several elements in the sodium. Analytical techniques based on laser ablation and emission spectroscopy are well suited for this application. They do not require any sample preparation, and can perform direct on-line analysis. Amongst them, Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation coupled to Laser-Induced Fluorescence (LA-LIF) have been selected for this study. The objective of this work was to characterize the sensitivity of those two techniques for the detection of impurities in liquid sodium. Their limits of detection were calculated for model analytes using calibration lines. Then results were theoretically extrapolated to other analytes of interest. This study shows the feasibility of the detection of steel corrosion products in liquid sodium. However, the LIBS technique is more robust and easier to implement, and would therefore be more suited to nuclear conditions. (author) [fr

  14. Determination of mycotoxins in foods: current state of analytical methods and limitations.

    Science.gov (United States)

    Köppen, Robert; Koch, Matthias; Siegel, David; Merkel, Stefan; Maul, Ronald; Nehls, Irene

    2010-05-01

    Mycotoxins are natural contaminants produced by a range of fungal species. Their common occurrence in food and feed poses a threat to the health of humans and animals. This threat is caused either by the direct contamination of agricultural commodities or by a "carry-over" of mycotoxins and their metabolites into animal tissues, milk, and eggs after feeding of contaminated hay or corn. As a consequence of their diverse chemical structures and varying physical properties, mycotoxins exhibit a wide range of biological effects. Individual mycotoxins can be genotoxic, mutagenic, carcinogenic, teratogenic, and oestrogenic. To protect consumer health and to reduce economic losses, surveillance and control of mycotoxins in food and feed has become a major objective for producers, regulatory authorities and researchers worldwide. However, the variety of chemical structures makes it impossible to use one single technique for mycotoxin analysis. Hence, a vast number of analytical methods has been developed and validated. The heterogeneity of food matrices combined with the demand for a fast, simultaneous and accurate determination of multiple mycotoxins creates enormous challenges for routine analysis. The most crucial issues will be discussed in this review. These are (1) the collection of representative samples, (2) the performance of classical and emerging analytical methods based on chromatographic or immunochemical techniques, (3) the validation of official methods for enforcement, and (4) the limitations and future prospects of the current methods.

  15. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  16. Workshop on Analytical Methods in Statistics

    CERN Document Server

    Jurečková, Jana; Maciak, Matúš; Pešta, Michal

    2017-01-01

    This volume collects authoritative contributions on analytical methods and mathematical statistics. The methods presented include resampling techniques; the minimization of divergence; estimation theory and regression, eventually under shape or other constraints or long memory; and iterative approximations when the optimal solution is difficult to achieve. It also investigates probability distributions with respect to their stability, heavy-tailness, Fisher information and other aspects, both asymptotically and non-asymptotically. The book not only presents the latest mathematical and statistical methods and their extensions, but also offers solutions to real-world problems including option pricing. The selected, peer-reviewed contributions were originally presented at the workshop on Analytical Methods in Statistics, AMISTAT 2015, held in Prague, Czech Republic, November 10-13, 2015.

  17. 40 CFR 141.25 - Analytical methods for radioactivity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Analytical methods for radioactivity... § 141.25 Analytical methods for radioactivity. (a) Analysis for the following contaminants shall be conducted to determine compliance with § 141.66 (radioactivity) in accordance with the methods in the...

  18. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    Science.gov (United States)

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  19. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting

    Directory of Open Access Journals (Sweden)

    Gunetti Monica

    2012-05-01

    Full Text Available Abstract Background The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests’ accuracy, precision, repeatability, linearity and range. Methods As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. Results All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells and under five percent (viable cells. The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Conclusions Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a

  20. Analytical methods used at model facility

    International Nuclear Information System (INIS)

    Wing, N.S.

    1984-01-01

    A description of analytical methods used at the model LEU Fuel Fabrication Facility is presented. The methods include gravimetric uranium analysis, isotopic analysis, fluorimetric analysis, and emission spectroscopy

  1. Analytical methods for heat transfer and fluid flow problems

    CERN Document Server

    Weigand, Bernhard

    2015-01-01

    This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out exam...

  2. Prioritizing pesticide compounds for analytical methods development

    Science.gov (United States)

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1

  3. A Fast Calculation Method for Analyzing the Effect of Wind Generation on ATC

    Directory of Open Access Journals (Sweden)

    M.A Armin

    2015-12-01

    Full Text Available Wind energy penetration in power system has been increased very fast and large amount of capitals invested for wind farms all around the world. Meanwhile, in power systems with wind turbine generators (WTGs, the value of Available transfer capability (ATC is influenced by the probabilistic nature of the wind power. The Mont Carlo Simulation (MCS is the most common method to model the uncertainty of WTG. However, the MCS method suffers from low convergence rate. To overcome this shortcoming, the proposed technique in this paper uses a new formulation for solving ATC problem analytically. This lowers the computational burden of the ATC computation and hence results in increased convergence rate of the MCS. Using this fast technique to evaluate the ATC, wind generation and load correlation is required to get into modeling. A numerical method is presented to consider load and wind correlation. The proposed method is tested on the modified IEEE 118 bus to analyze the impacts of the WTGs on the ATC. The obtained results show that wind generation capacity and its correlation with system load has significant impacts on the network transfer capability. In other words, ATC probability distribution is sensitive to the wind generation capacity.

  4. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting.

    Science.gov (United States)

    Gunetti, Monica; Castiglia, Sara; Rustichelli, Deborah; Mareschi, Katia; Sanavio, Fiorella; Muraro, Michela; Signorino, Elena; Castello, Laura; Ferrero, Ivana; Fagioli, Franca

    2012-05-31

    The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests' accuracy, precision, repeatability, linearity and range. As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells) and under five percent (viable cells). The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a Cell Factory. In a good manufacturing practice setting the disposable

  5. Analytical detection methods for irradiated foods

    International Nuclear Information System (INIS)

    1991-03-01

    The present publication is a review of scientific literature on the analytical identification of foods treated with ionizing radiation and the quantitative determination of absorbed dose of radiation. Because of the extremely low level of chemical changes resulting from irradiation or because of the lack of specificity to irradiation of any chemical changes, a few methods of quantitative determination of absorbed dose have shown promise until now. On the other hand, the present review has identified several possible methods, which could be used, following further research and testing, for the identification of irradiated foods. An IAEA Co-ordinated Research Programme on Analytical Detection Methods for Irradiation Treatment of Food ('ADMIT'), established in 1990, is currently investigating many of the methods cited in the present document. Refs and tab

  6. An analytical method for the calculation of static characteristics of linear step motors for control rod drives in nuclear reactors

    International Nuclear Information System (INIS)

    Khan, S.H.; Ivanov, A.A.

    1995-01-01

    An analytical method for calculating static characteristics of linear dc step motors (LSM) is described. These multiphase passive-armature motors are now being developed for control rod drives (CRD) in large nuclear reactors. The static characteristics of such LSM is defined by the variation of electromagnetic force with armature displacement and it determines motor performance in its standing and dynamic modes of operation. The proposed analytical technique for calculating this characteristic is based on the permeance analysis method applied to phase magnetic circuits of LSM. Reluctances of various parts of phase magnetic circuit is calculated analytically by assuming probable flux paths and by taking into account complex nature of magnetic field distribution in it. For given armature positions stator and armature iron saturations are taken into account by an efficient iterative algorithm which gives fast convergence. The method is validated by comparing theoretical results with experimental ones which shows satisfactory agreement for small stator currents and weak iron saturation

  7. SU-C-204-01: A Fast Analytical Approach for Prompt Gamma and PET Predictions in a TPS for Proton Range Verification

    International Nuclear Information System (INIS)

    Kroniger, K; Herzog, M; Landry, G; Dedes, G; Parodi, K; Traneus, E

    2015-01-01

    Purpose: We describe and demonstrate a fast analytical tool for prompt-gamma emission prediction based on filter functions applied on the depth dose profile. We present the implementation in a treatment planning system (TPS) of the same algorithm for positron emitter distributions. Methods: The prediction of the desired observable is based on the convolution of filter functions with the depth dose profile. For both prompt-gammas and positron emitters, the results of Monte Carlo simulations (MC) are compared with those of the analytical tool. For prompt-gamma emission from inelastic proton-induced reactions, homogeneous and inhomogeneous phantoms alongside with patient data are used as irradiation targets of mono-energetic proton pencil beams. The accuracy of the tool is assessed in terms of the shape of the analytically calculated depth profiles and their absolute yields, compared to MC. For the positron emitters, the method is implemented in a research RayStation TPS and compared to MC predictions. Digital phantoms and patient data are used and positron emitter spatial density distributions are analyzed. Results: Calculated prompt-gamma profiles agree with MC within 3 % in terms of absolute yield and reproduce the correct shape. Based on an arbitrary reference material and by means of 6 filter functions (one per chemical element), profiles in any other material composed of those elements can be predicted. The TPS implemented algorithm is accurate enough to enable, via the analytically calculated positron emitters profiles, detection of range differences between the TPS and MC with errors of the order of 1–2 mm. Conclusion: The proposed analytical method predicts prompt-gamma and positron emitter profiles which generally agree with the distributions obtained by a full MC. The implementation of the tool in a TPS shows that reliable profiles can be obtained directly from the dose calculated by the TPS, without the need of full MC simulation

  8. Analytical Hierarchy Process (Ahp) Approach on Consumer Preference in Franchise Fast Food Restaurant Selection in Manado City (Study at: Mcdonald's, Kfc, and A&w)

    OpenAIRE

    Wibowo, Svetlania Wulan; Tielung, Maria

    2016-01-01

    Franchise fast food restaurant has become one of the preferred restaurants in Manado City. There have been many outlets franchise fast food restaurant which opened its business in Manado City. The purpose of this research is to analyze the most preferred franchise fast food restaurant by consumer and to analyze the criteria that influence consumer in selecting franchise fast food restaurant. Researcher used Analytical Hierarchy Process (AHP) to compare each franchise fast food restaurant as t...

  9. Manual of selected physico-chemical analytical methods. IV

    International Nuclear Information System (INIS)

    Beran, M.; Klosova, E.; Krtil, J.; Sus, F.; Kuvik, V.; Vrbova, L.; Hamplova, M.; Lengyel, J.; Kelnar, L.; Zakouril, K.

    1990-11-01

    The Central Testing Laboratory of the Nuclear Research Institute at Rez has for a decade been participating in the development of analytical procedures and has been providing analyses of samples of different types and origin. The analytical procedures developed have been published in special journals and a number of them in the Manuals of analytical methods, in three parts. The 4th part of the Manual contains selected physico-chemical methods developed or modified by the Laboratory in the years 1986-1990 within the project ''Development of physico-chemical analytical methods''. In most cases, techniques are involved for non-nuclear applications. Some can find wider applications, especially in analyses of environmental samples. Others have been developed for specific cases of sample analyses or require special instrumentation (mass spectrometer), which partly restricts their applicability by other institutions. (author)

  10. FastChem: An ultra-fast equilibrium chemistry

    Science.gov (United States)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  11. Analytical methods in untargeted metabolomics: state of the art in 2015

    Directory of Open Access Journals (Sweden)

    Arnald eAlonso

    2015-03-01

    Full Text Available Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile –the metabolome- has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance (NMR and mass spectrometry (MS are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high throughput biotechnologies is also reviewed.

  12. Mineral elements in dental composites by atomic and nuclear analytical methods. I. Fast analysis by XRY

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Constantinescu, B.; Preoteasa, Elena

    2000-01-01

    Composite materials replaced silver amalgam in many applications for restorative dentistry. Among biomaterials their production develops at a high rate, due especially to the progress of materials forming their mineral filling. However they bring at the interface with enamel and dentine elements foreign to the organism, of whom not all are specified by manufacturers; also, some of these elements' biological action has not been studied. Due to its ability to analyze the elemental composition at the biomaterial's surface, as well as the concentration changes that may occur in the mouth or in model systems, X-ray fluorescence (XRF) is a method suited to approach such problems. Here we examined the potential of XRF for fast analysis of some dental composite materials. Flat disk-shaped samples have been prepared by polymerization and the measurements have been performed with a spectrometric chain containing a 241 Am source, a Si(Li) detector and a multichannel analyzer. The radioisotope-excited XRF detected the following Z > 20 elements in the studied composite materials: Ba in Charisma (Kulzer) and Pekafill (Bayer); Zr, Ba, Yb [and traces of In] in Tetric Ceram (Vivadent); Zr, Hf in Valux Plus and Sr, Ba and traces of Cu in F2000 compomer (both from 3M Dental). Among older materials, Evicrol (Spofa) and Alphaplast (DGM) showed Ca and Fe, while Concise (3M Dental) contained only undetectable (Z < 20) elements. XRF proved valuable especially for analysis of major and minor inorganic elements in the dental composite materials. The method could be used also in fast expertise of these biomaterials (e.g. in customs and commercial applications). (authors)

  13. Fast 2D Fluid-Analytical Simulation of IEDs and Plasma Uniformity in Multi-frequency CCPs

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-10-01

    A fast 2D axisymmetric fluid-analytical model using the finite elements tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency argon capacitively coupled plasmas (CCPs). A bulk fluid plasma model which solves the time-dependent plasma fluid equations is coupled with an analytical sheath model which solves for the sheath parameters. The fluid-analytical results are used as input to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the wafer electrode. Each fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 minutes. The 2D multi-frequency fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel plate discharge, showing good agreement. Fluid-analytical simulations of a 2/60/162 MHz argon CCP with a typical asymmetric reactor geometry were also conducted. The low 2 MHz frequency controlled the sheath width and voltage while the higher frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. Adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge enhanced the plasma uniformity. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193, and in part by gifts from Lam Research Corporation and Micron Corporation.

  14. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  15. A fast semi-analytical model for the slotted structure of induction motors with 36/28 stator/rotor slot combination

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A.

    2014-01-01

    A fast, semi-analyticalmodel for inductionmotors (IMs) with 36/28 stator/rotor slot combination is presented. In comparison to traditional analytical models for IMs, such as lumped parameter, magnetic equivalent circuit and anisotropic layer models, the presented model calculates a continuous

  16. Analytical methods under emergency conditions

    International Nuclear Information System (INIS)

    Sedlet, J.

    1983-01-01

    This lecture discusses methods for the radiochemical determination of internal contamination of the body under emergency conditions, here defined as a situation in which results on internal radioactive contamination are needed quickly. The purpose of speed is to determine the necessity for medical treatment to increase the natural elimination rate. Analytical methods discussed include whole-body counting, organ counting, wound monitoring, and excreta analysis. 12 references

  17. A Multi-Projector Calibration Method for Virtual Reality Simulators with Analytically Defined Screens

    Directory of Open Access Journals (Sweden)

    Cristina Portalés

    2017-06-01

    Full Text Available The geometric calibration of projectors is a demanding task, particularly for the industry of virtual reality simulators. Different methods have been developed during the last decades to retrieve the intrinsic and extrinsic parameters of projectors, most of them being based on planar homographies and some requiring an extended calibration process. The aim of our research work is to design a fast and user-friendly method to provide multi-projector calibration on analytically defined screens, where a sample is shown for a virtual reality Formula 1 simulator that has a cylindrical screen. The proposed method results from the combination of surveying, photogrammetry and image processing approaches, and has been designed by considering the spatial restrictions of virtual reality simulators. The method has been validated from a mathematical point of view, and the complete system—which is currently installed in a shopping mall in Spain—has been tested by different users.

  18. Characterization of Hydrotreated Fast Pyrolysis Liquids

    NARCIS (Netherlands)

    Oasmaa, A.; Kuoppala, E.; Ardiyanti, A.; Venderbosch, R. H.; Heeres, H. J.

    This paper focuses on analytical methods to determine the composition of hydrotreated fast pyrolysis liquids. With this information, it is possible to gain insights in the chemical transformations taking place during catalytic hydrotreatment (hydrogenation and/or hydrodeoxygenation, H DO) of

  19. Statistically qualified neuro-analytic failure detection method and system

    Science.gov (United States)

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    2002-03-02

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  20. An improved fast neutron radiography quantitative measurement method

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2004-01-01

    The validity of a fast neutron radiography quantification method, the Σ-scaling method, which was originally proposed for thermal neutron radiography was examined with Monte Carlo calculations and experiments conducted at the YAYOI fast neutron source reactor. Water and copper were selected as comparative samples for a thermal neutron radiography case and a dense object, respectively. Although different characteristics on effective macroscopic cross-sections were implied by the simulation, the Σ-scaled experimental results with the fission neutron spectrum cross-sections were well fitted to the measurements for both the water and copper samples. This indicates that the Σ-scaling method could be successfully adopted for quantitative measurements in fast neutron radiography

  1. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.

    Science.gov (United States)

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí

    2009-04-24

    A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pK(a), obtaining a mean deviation of 0.05 pH units compared to the literature values.

  2. An Analytical Approach for Fast Recovery of the LSI Properties in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Hamed Jabbari Asl

    2016-01-01

    Full Text Available Linearity and shift invariance (LSI characteristics of magnetic particle imaging (MPI are important properties for quantitative medical diagnosis applications. The MPI image equations have been theoretically shown to exhibit LSI; however, in practice, the necessary filtering action removes the first harmonic information, which destroys the LSI characteristics. This lost information can be constant in the x-space reconstruction method. Available recovery algorithms, which are based on signal matching of multiple partial field of views (pFOVs, require much processing time and a priori information at the start of imaging. In this paper, a fast analytical recovery algorithm is proposed to restore the LSI properties of the x-space MPI images, representable as an image of discrete concentrations of magnetic material. The method utilizes the one-dimensional (1D x-space imaging kernel and properties of the image and lost image equations. The approach does not require overlapping of pFOVs, and its complexity depends only on a small-sized system of linear equations; therefore, it can reduce the processing time. Moreover, the algorithm only needs a priori information which can be obtained at one imaging process. Considering different particle distributions, several simulations are conducted, and results of 1D and 2D imaging demonstrate the effectiveness of the proposed approach.

  3. Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: A critical review.

    Science.gov (United States)

    Salgueiro-González, N; Castiglioni, S; Zuccato, E; Turnes-Carou, I; López-Mahía, P; Muniategui-Lorenzo, S

    2018-09-18

    The problem of endocrine disrupting compounds (EDCs) in the environment has become a worldwide concern in recent decades. Besides their toxicological effects at low concentrations and their widespread use in industrial and household applications, these pollutants pose a risk for non-target organisms and also for public safety. Analytical methods to determine these compounds at trace levels in different matrices are urgently needed. This review critically discusses trends in analytical methods for well-known EDCs like alkylphenols and bisphenol A in solid environmental matrices, including sediment and aquatic biological samples (from 2006 to 2018). Information about extraction, clean-up and determination is covered in detail, including analytical quality parameters (QA/QC). Conventional and novel analytical techniques are compared, with their advantages and drawbacks. Ultrasound assisted extraction followed by solid phase extraction clean-up is the most widely used procedure for sediment and aquatic biological samples, although softer extraction conditions have been employed for the latter. The use of liquid chromatography followed by tandem mass spectrometry has greatly increased in the last five years. The majority of these methods have been employed for the analysis of river sediments and bivalve molluscs because of their usefulness in aquatic ecosystem (bio)monitoring programs. Green, simple, fast analytical methods are now needed to determine these compounds in complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    Science.gov (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    This paper is a continuation of our previous research focusing on development of micro-TLC methodology under temperature-controlled conditions. The main goal of present paper is to demonstrate separation and detection capability of micro-TLC technique involving simple analytical protocols without multi-steps sample pre-purification. One of the advantages of planar chromatography over its column counterpart is that each TLC run can be performed using non-previously used stationary phase. Therefore, it is possible to fractionate or separate complex samples characterized by heavy biological matrix loading. In present studies components of interest, mainly steroids, were isolated from biological samples like fish bile using single pre-treatment steps involving direct organic liquid extraction and/or deproteinization by freeze-drying method. Low-molecular mass compounds with polarity ranging from estetrol to progesterone derived from the environmental samples (lake water, untreated and treated sewage waters) were concentrated using optimized solid-phase extraction (SPE). Specific bands patterns for samples derived from surface water of the Middle Pomerania in northern part of Poland can be easily observed on obtained micro-TLC chromatograms. This approach can be useful as simple and non-expensive complementary method for fast control and screening of treated sewage water discharged by the municipal wastewater treatment plants. Moreover, our experimental results show the potential of micro-TLC as an efficient tool for retention measurements of a wide range of steroids under reversed-phase (RP) chromatographic conditions. These data can be used for further optimalization of SPE or HPLC systems working under RP conditions. Furthermore, we also demonstrated that micro-TLC based analytical approach can be applied as an effective method for the internal standard (IS) substance search. Generally, described methodology can be applied for fast fractionation or screening of the

  5. SPET reconstruction with a non-uniform attenuation coefficient using an analytical regularizing iterative method

    International Nuclear Information System (INIS)

    Soussaline, F.; LeCoq, C.; Raynaud, C.; Kellershohn, C.

    1982-09-01

    The aim of this study is to evaluate the potential of the RIM technique when used in brain studies. The analytical Regulatorizing Iterative Method (RIM) is designed to provide fast and accurate reconstruction of tomographic images when non-uniform attenuation is to be accounted for. As indicated by phantom studies, this method improves the contrast and the signal-to-noise ratio as compared to those obtained with FBP (Filtered Back Projection) technique. Preliminary results obtained in brain studies using AMPI-123 (isopropil-amphetamine I-123) are very encouraging in terms of quantitative regional cellular activity. However, the clinical usefulness of this mathematically accurate reconstruction procedure is going to be demonstrated in our Institution, in comparing quantitative data in heart or liver studies where control values can be obtained

  6. NUMERICAL AND ANALYTIC METHODS OF ESTIMATION BRIDGES’ CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    Y. Y. Luchko

    2010-03-01

    Full Text Available In this article the numerical and analytical methods of calculation of the stressed-and-strained state of bridge constructions are considered. The task on increasing of reliability and accuracy of the numerical method and its solution by means of calculations in two bases are formulated. The analytical solution of the differential equation of deformation of a ferro-concrete plate under the action of local loads is also obtained.

  7. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wá ng, Yì ; Yu, Bo; Sun, Shuyu

    2012-01-01

    , the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering

  8. Propulsion and launching analysis of variable-mass rockets by analytical methods

    OpenAIRE

    D.D. Ganji; M. Gorji; M. Hatami; A. Hasanpour; N. Khademzadeh

    2013-01-01

    In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM), homotopy perturbation method (HPM) and least square method (LSM) were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a paramet...

  9. Nuclear analytical methods for platinum group elements

    International Nuclear Information System (INIS)

    2005-04-01

    Platinum group elements (PGE) are of special interest for analytical research due to their economic importance like chemical peculiarities as catalysts, medical applications as anticancer drugs, and possible environmental detrimental impact as exhaust from automobile catalyzers. Natural levels of PGE are so low in concentration that most of the current analytical techniques approach their limit of detection capacity. In addition, Ru, Rh, Pd, Re, Os, Ir, and Pt analyses still constitute a challenge in accuracy and precision of quantification in natural matrices. Nuclear analytical techniques, such as neutron activation analysis, X ray fluorescence, or proton-induced X ray emission (PIXE), which are generally considered as reference methods for many analytical problems, are useful as well. However, due to methodological restrictions, they can, in most cases, only be applied after pre-concentration and under special irradiation conditions. This report was prepared following a coordinated research project and a consultants meeting addressing the subject from different viewpoints. The experts involved suggested to discuss the issue according to the (1) application, hence, the concentration levels encountered, and (2) method applied for analysis. Each of the different fields of application needs special consideration for sample preparation, PGE pre-concentration, and determination. Additionally, each analytical method requires special attention regarding the sensitivity and sample type. Quality assurance/quality control aspects are considered towards the end of the report. It is intended to provide the reader of this publication with state-of-the-art information on the various aspects of PGE analysis and to advise which technique might be most suitable for a particular analytical problem related to platinum group elements. In particular, many case studies described in detail from the authors' laboratory experience might help to decide which way to go. As in many cases

  10. Rigid inclusions-Comparison between analytical and numerical methods

    International Nuclear Information System (INIS)

    Gomez Perez, R.; Melentijevic, S.

    2014-01-01

    This paper compares different analytical methods for analysis of rigid inclusions with finite element modeling. First of all, the load transfer in the distribution layer is analyzed for its different thicknesses and different inclusion grids to define the range between results obtained by analytical and numerical methods. The interaction between the soft soil and the inclusion in the estimation of settlements is studied as well. Considering different stiffness of the soft soil, settlements obtained analytical and numerically are compared. The influence of the soft soil modulus of elasticity on the neutral point depth was also performed by finite elements. This depth has a great importance for the definition of the total length of rigid inclusion. (Author)

  11. Calculating the effective delayed neutron fraction in the Molten Salt Fast Reactor: Analytical, deterministic and Monte Carlo approaches

    International Nuclear Information System (INIS)

    Aufiero, Manuele; Brovchenko, Mariya; Cammi, Antonio; Clifford, Ivor; Geoffroy, Olivier; Heuer, Daniel; Laureau, Axel; Losa, Mario; Luzzi, Lelio; Merle-Lucotte, Elsa; Ricotti, Marco E.; Rouch, Hervé

    2014-01-01

    Highlights: • Calculation of effective delayed neutron fraction in circulating-fuel reactors. • Extension of the Monte Carlo SERPENT-2 code for delayed neutron precursor tracking. • Forward and adjoint multi-group diffusion eigenvalue problems in OpenFOAM. • Analytical approach for β eff calculation in simple geometries and flow conditions. • Good agreement among the three proposed approaches in the MSFR test-case. - Abstract: This paper deals with the calculation of the effective delayed neutron fraction (β eff ) in circulating-fuel nuclear reactors. The Molten Salt Fast Reactor is adopted as test case for the comparison of the analytical, deterministic and Monte Carlo methods presented. The Monte Carlo code SERPENT-2 has been extended to allow for delayed neutron precursors drift, according to the fuel velocity field. The forward and adjoint eigenvalue multi-group diffusion problems are implemented and solved adopting the multi-physics tool-kit OpenFOAM, by taking into account the convective and turbulent diffusive terms in the precursors balance. These two approaches show good agreement in the whole range of the MSFR operating conditions. An analytical formula for the circulating-to-static conditions β eff correction factor is also derived under simple hypotheses, which explicitly takes into account the spatial dependence of the neutron importance. Its accuracy is assessed against Monte Carlo and deterministic results. The effects of in-core recirculation vortex and turbulent diffusion are finally analysed and discussed

  12. Nodewise analytical calculation of the transfer function

    International Nuclear Information System (INIS)

    Makai, Mihaly

    1994-01-01

    The space dependence of neutron noise has so far been mostly investigated in homogeneous core models. Application of core diagnostic methods to locate a malfunction requires however that the transfer function be calculated for real, inhomogeneous cores. A code suitable for such purpose must be able to handle complex arithmetic and delta-function source. Further requirements are analytical dependence in one spatial variable and fast execution. The present work describes the TIDE program written to fulfil the above requirements. The core is subdivided into homogeneous, square assemblies. An analytical solution is given, which is a generalisation of the inhomogeneous response matrix method. (author)

  13. Jet substructure with analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [University of Manchester, Consortium for Fundamental Physics, School of Physics and Astronomy, Manchester (United Kingdom); Fregoso, Alessandro; Powling, Alexander [University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); Marzani, Simone [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2013-11-15

    We consider the mass distribution of QCD jets after the application of jet-substructure methods, specifically the mass-drop tagger, pruning, trimming and their variants. In contrast to most current studies employing Monte Carlo methods, we carry out analytical calculations at the next-to-leading order level, which are sufficient to extract the dominant logarithmic behaviour for each technique, and compare our findings to exact fixed-order results. Our results should ultimately lead to a better understanding of these jet-substructure methods which in turn will influence the development of future substructure tools for LHC phenomenology. (orig.)

  14. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)

    Science.gov (United States)

    Chang, R.; Li, S.; Lubarda, M. V.; Livshitz, B.; Lomakin, V.

    2011-04-01

    A fast micromagnetic simulator (FastMag) for general problems is presented. FastMag solves the Landau-Lifshitz-Gilbert equation and can handle multiscale problems with a high computational efficiency. The simulator derives its high performance from efficient methods for evaluating the effective field and from implementations on massively parallel graphics processing unit (GPU) architectures. FastMag discretizes the computational domain into tetrahedral elements and therefore is highly flexible for general problems. The magnetostatic field is computed via the superposition principle for both volume and surface parts of the computational domain. This is accomplished by implementing efficient quadrature rules and analytical integration for overlapping elements in which the integral kernel is singular. Thus, discretized superposition integrals are computed using a nonuniform grid interpolation method, which evaluates the field from N sources at N collocated observers in O(N) operations. This approach allows handling objects of arbitrary shape, allows easily calculating of the field outside the magnetized domains, does not require solving a linear system of equations, and requires little memory. FastMag is implemented on GPUs with ?> GPU-central processing unit speed-ups of 2 orders of magnitude. Simulations are shown of a large array of magnetic dots and a recording head fully discretized down to the exchange length, with over a hundred million tetrahedral elements on an inexpensive desktop computer.

  15. A fast collocation method for a variable-coefficient nonlocal diffusion model

    Science.gov (United States)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  16. Fast analytical method for the addition of random variables

    International Nuclear Information System (INIS)

    Senna, V.; Milidiu, R.L.; Fleming, P.V.; Salles, M.R.; Oliveria, L.F.S.

    1983-01-01

    Using the minimal cut sets representation of a fault tree, a new approach to the method of moments is proposed in order to estimate confidence bounds to the top event probability. The method utilizes two or three moments either to fit a distribution (the normal and lognormal families) or to evaluate bounds from standard inequalities (e.g. Markov, Tchebycheff, etc.) Examples indicate that the results obtained by the log-normal family are in good agreement with those obtained by Monte Carlo simulation

  17. Systems and Methods for Composable Analytics

    Science.gov (United States)

    2014-04-29

    simplistic module that performs a mathematical operation on two numbers. The most important method is the Execute() method. This will get called when it is...addition, an input control is also specified in the example below. In this example, the mathematical operator can only be chosen from a preconfigured...approaches. Some of the industries that could benefit from Composable Analytics include pharmaceuticals, health care, insurance, actuaries , and

  18. 7 CFR 93.13 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... No. 1, USDA, Agricultural Marketing Service, Science and Technology, 3521 South Agriculture Building... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 93.13 Section 93.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards...

  19. Secondary waste minimization in analytical methods

    International Nuclear Information System (INIS)

    Green, D.W.; Smith, L.L.; Crain, J.S.; Boparai, A.S.; Kiely, J.T.; Yaeger, J.S.; Schilling, J.B.

    1995-01-01

    The characterization phase of site remediation is an important and costly part of the process. Because toxic solvents and other hazardous materials are used in common analytical methods, characterization is also a source of new waste, including mixed waste. Alternative analytical methods can reduce the volume or form of hazardous waste produced either in the sample preparation step or in the measurement step. The authors are examining alternative methods in the areas of inorganic, radiological, and organic analysis. For determining inorganic constituents, alternative methods were studied for sample introduction into inductively coupled plasma spectrometers. Figures of merit for the alternative methods, as well as their associated waste volumes, were compared with the conventional approaches. In the radiological area, the authors are comparing conventional methods for gross α/β measurements of soil samples to an alternative method that uses high-pressure microwave dissolution. For determination of organic constituents, microwave-assisted extraction was studied for RCRA regulated semivolatile organics in a variety of solid matrices, including spiked samples in blank soil; polynuclear aromatic hydrocarbons in soils, sludges, and sediments; and semivolatile organics in soil. Extraction efficiencies were determined under varying conditions of time, temperature, microwave power, moisture content, and extraction solvent. Solvent usage was cut from the 300 mL used in conventional extraction methods to about 30 mL. Extraction results varied from one matrix to another. In most cases, the microwave-assisted extraction technique was as efficient as the more common Soxhlet or sonication extraction techniques

  20. Analytical methods for study of transmission line lightning protection

    International Nuclear Information System (INIS)

    Pettersson, Per.

    1993-04-01

    Transmission line lightning performance is studied by analytical methods. The elements of shielding failure flashovers and back-flashovers are analysed as functions of incidence, response and insulation. Closed-form approximate expressions are sought to enhance understanding of the phenomena. Probabilistic and wave propagation aspects are particularly studied. The electrogeometric model of lightning attraction to structures is used in combination with the log-normal probability distribution of lightning to ground currents. The log-normality is found to be retained for the currents collected by mast-type as well as line-type structures, but with a change of scale. For both types, exceedingly simple formulas for the number of hits are derived. Simple closed-form expressions for the line outage rates from back- flashovers and shielding failure flashovers are derived in a uniform way as functions of the critical currents. The expressions involve the standardized normal distribution function. System response is analysed by use of Laplace transforms in combination with text-book transmission-line theory. Inversion into time domain is accomplished by an approximate asymptotic method producing closed-form results. The back-flashover problem is analysed in particular. Approximate, image type expressions are derived for shunt admittance of wires above, on and under ground for analyses of fast transients. The derivation parallels that for series impedance, now well-known. 3 refs, 5 figs

  1. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vudakin, Z.

    1999-01-01

    Analytical method for solving radioactive transformations is presented in this paper. High accuracy series expansion of the depletion function and nonsingular Bateman coefficients are used to overcome numerical difficulties when applying well-known Bateman solution of a simple radioactive decay. Generality and simplicity of the method are found to be useful in evaluating nuclide chains with one hundred or more nuclides in the chain. Method enables evaluation of complete chain, without elimination of short-lives nuclides. It is efficient and accurate

  2. Fast sequential Monte Carlo methods for counting and optimization

    CERN Document Server

    Rubinstein, Reuven Y; Vaisman, Radislav

    2013-01-01

    A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the

  3. A fast method for optimal reactive power flow solution

    Energy Technology Data Exchange (ETDEWEB)

    Sadasivam, G; Khan, M A [Anna Univ., Madras (IN). Coll. of Engineering

    1990-01-01

    A fast successive linear programming (SLP) method for minimizing transmission losses and improving the voltage profile is proposed. The method uses the same compactly stored, factorized constant matrices in all the LP steps, both for power flow solution and for constructing the LP model. The inherent oscillatory convergence of SLP methods is overcome by proper selection of initial step sizes and their gradual reduction. Detailed studies on three systems, including a 109-bus system, reveal the fast and reliable convergence property of the method. (author).

  4. A New Method to Study Analytic Inequalities

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Zhang

    2010-01-01

    Full Text Available We present a new method to study analytic inequalities involving n variables. Regarding its applications, we proved some well-known inequalities and improved Carleman's inequality.

  5. A "three-in-one" sample preparation method for simultaneous determination of B-group water-soluble vitamins in infant formula using VitaFast(®) kits.

    Science.gov (United States)

    Zhang, Heng; Lan, Fang; Shi, Yupeng; Wan, Zhi-Gang; Yue, Zhen-Feng; Fan, Fang; Lin, Yan-Kui; Tang, Mu-Jin; Lv, Jing-Zhang; Xiao, Tan; Yi, Changqing

    2014-06-15

    VitaFast(®) test kits designed for the microbiological assay in microtiter plate format can be applied to quantitative determination of B-group water-soluble vitamins such as vitamin B12, folic acid and biotin, et al. Compared to traditional microbiological methods, VitaFast(®) kits significantly reduce sample processing time and provide greater reliability, higher productivity and better accuracy. Recently, simultaneous determination of vitamin B12, folic acid and biotin in one sample is urgently required when evaluating the quality of infant formulae in our practical work. However, the present sample preparation protocols which are developed for individual test systems, are incompatible with simultaneous determination of several analytes. To solve this problem, a novel "three-in-one" sample preparation method is herein developed for simultaneous determination of B-group water-soluble vitamins using VitaFast(®) kits. The performance of this novel "three-in-one" sample preparation method was systematically evaluated through comparing with individual sample preparation protocols. The experimental results of the assays which employed "three-in-one" sample preparation method were in good agreement with those obtained from conventional VitaFast(®) extraction methods, indicating that the proposed "three-in-one" sample preparation method is applicable to the present three VitaFast(®) vitamin test systems, thus offering a promising alternative for the three independent sample preparation methods. The proposed new sample preparation method will significantly improve the efficiency of infant formulae inspection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Introducing GAMER: A Fast and Accurate Method for Ray-tracing Galaxies Using Procedural Noise

    Science.gov (United States)

    Groeneboom, N. E.; Dahle, H.

    2014-03-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  7. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    International Nuclear Information System (INIS)

    Groeneboom, N. E.; Dahle, H.

    2014-01-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  8. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    Energy Technology Data Exchange (ETDEWEB)

    Groeneboom, N. E.; Dahle, H., E-mail: nicolaag@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2014-03-10

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  9. Decision analytic methods in RODOS

    International Nuclear Information System (INIS)

    Borzenko, V.; French, S.

    1996-01-01

    In the event of a nuclear accident, RODOS seeks to provide decision support at all levels ranging from the largely descriptive to providing a detailed evaluation of the benefits and disadvantages of various countermeasure strategies and ranking them according to the societal preferences as perceived by the decision makers. To achieve this, it must draw upon several decision analytic methods and bring them together in a coherent manner so that the guidance offered to decision makers is consistent from one stage of an accident to the next. The methods used draw upon multi-attribute value and utility theories

  10. Analytical and Numerical Studies of the Complex Interaction of a Fast Ion Beam Pulse with a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma

  11. Quantifying the measurement uncertainty of results from environmental analytical methods.

    Science.gov (United States)

    Moser, J; Wegscheider, W; Sperka-Gottlieb, C

    2001-07-01

    The Eurachem-CITAC Guide Quantifying Uncertainty in Analytical Measurement was put into practice in a public laboratory devoted to environmental analytical measurements. In doing so due regard was given to the provisions of ISO 17025 and an attempt was made to base the entire estimation of measurement uncertainty on available data from the literature or from previously performed validation studies. Most environmental analytical procedures laid down in national or international standards are the result of cooperative efforts and put into effect as part of a compromise between all parties involved, public and private, that also encompasses environmental standards and statutory limits. Central to many procedures is the focus on the measurement of environmental effects rather than on individual chemical species. In this situation it is particularly important to understand the measurement process well enough to produce a realistic uncertainty statement. Environmental analytical methods will be examined as far as necessary, but reference will also be made to analytical methods in general and to physical measurement methods where appropriate. This paper describes ways and means of quantifying uncertainty for frequently practised methods of environmental analysis. It will be shown that operationally defined measurands are no obstacle to the estimation process as described in the Eurachem/CITAC Guide if it is accepted that the dominating component of uncertainty comes from the actual practice of the method as a reproducibility standard deviation.

  12. Semi-analytical model for hollow-core anti-resonant fibers

    Directory of Open Access Journals (Sweden)

    Wei eDing

    2015-03-01

    Full Text Available We detailedly describe a recently-developed semi-analytical method to quantitatively calculate light transmission properties of hollow-core anti-resonant fibers (HC-ARFs. Formation of equiphase interface at fiber’s outermost boundary and outward light emission ruled by Helmholtz equation in fiber’s transverse plane constitute the basis of this method. Our semi-analytical calculation results agree well with those of precise simulations and clarify the light leakage dependences on azimuthal angle, geometrical shape and polarization. Using this method, we show investigations on HC-ARFs having various core shapes (e.g. polygon, hypocycloid with single- and multi-layered core-surrounds. The polarization properties of ARFs are also studied. Our semi-analytical method provides clear physical insights into the light guidance in ARF and can play as a fast and useful design aid for better ARFs.

  13. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja; van de Beld, Bert; Bridgwater, Anthony V.; Marklund, Magnus

    2017-04-06

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.

  14. Development of a fast liquid chromatography-tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters.

    Science.gov (United States)

    Di Carro, Marina; Scapolla, Carlo; Liscio, Camilla; Magi, Emanuele

    2010-09-01

    A fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) method was developed to study five endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in water. Different columns were tested; the chromatographic separation of the analytes was optimized on a Pinnacle DB biphenylic column with a water-acetonitrile gradient elution, which allowed the separation of the selected endocrine-disrupting compounds (EDCs) in less than 6 min. Quantitative analysis was performed in selected reaction monitoring (SRM) mode; two transitions were chosen for each compound, using the most abundant for quantitation. Calibration curves using bisphenol A-d (16) as internal standard were drawn, showing good correlation coefficients (0.9993-0.9998). All figures of merit of the method were satisfactory; limits of detection were in the low pg range for all analytes. The method was then applied to the determination of the analytes in real water samples: to this aim, polar organic chemical integrative samplers (POCIS) were deployed in the influent and in the effluent of a drinking water treatment plant in Liguria (Italy). The EDC level was rather low in the influent and negligible in the outlet, reflecting the expected function of the treatment plant.

  15. Teaching Analytical Method Transfer through Developing and Validating Then Transferring Dissolution Testing Methods for Pharmaceuticals

    Science.gov (United States)

    Kimaru, Irene; Koether, Marina; Chichester, Kimberly; Eaton, Lafayette

    2017-01-01

    Analytical method transfer (AMT) and dissolution testing are important topics required in industry that should be taught in analytical chemistry courses. Undergraduate students in senior level analytical chemistry laboratory courses at Kennesaw State University (KSU) and St. John Fisher College (SJFC) participated in development, validation, and…

  16. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method.

    Science.gov (United States)

    Jaccoulet, E; Schweitzer-Chaput, A; Toussaint, B; Prognon, P; Caudron, E

    2018-09-01

    Compounding of monoclonal antibody (mAbs) constantly increases in hospital. Quality control (QC) of the compounded mAbs based on quantification and identification is required to prevent potential errors and fast method is needed to manage outpatient chemotherapy administration. A simple and ultra-fast (less than 30 s) method using flow injection analysis associated to least square matching method issued from the analyzer software was performed and evaluated for the routine hospital QC of three compounded mAbs: bevacizumab, infliximab and rituximab. The method was evaluated through qualitative and quantitative parameters. Preliminary analysis of the UV absorption and second derivative spectra of the mAbs allowed us to adapt analytical conditions according to the therapeutic range of the mAbs. In terms of quantitative QC, linearity, accuracy and precision were assessed as specified in ICH guidelines. Very satisfactory recovery was achieved and the RSD (%) of the intermediate precision were less than 1.1%. Qualitative analytical parameters were also evaluated in terms of specificity, sensitivity and global precision through a matrix of confusion. Results showed to be concentration and mAbs dependant and excellent (100%) specificity and sensitivity were reached within specific concentration range. Finally, routine application on "real life" samples (n = 209) from different batch of the three mAbs complied with the specifications of the quality control i.e. excellent identification (100%) and ± 15% of targeting concentration belonging to the calibration range. The successful use of the combination of second derivative spectroscopy and partial least square matching method demonstrated the interest of FIA for the ultra-fast QC of mAbs after compounding using matching method. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Recent developments in analytical detection methods for radiation processed foods

    International Nuclear Information System (INIS)

    Wu Jilan

    1993-01-01

    A short summary of the programmes of 'ADMIT' (FAO/IAEA) and the developments in analytical detection methods for radiation processed foods has been given. It is suggested that for promoting the commercialization of radiation processed foods and controlling its quality, one must pay more attention to the study of analytical detection methods of irradiated food

  18. Environmental applications of the centrifugal fast analyzer

    International Nuclear Information System (INIS)

    Goldstein, G.; Strain, J.E.; Bowling, J.L.

    1975-12-01

    The centrifugal fast analyzer (GeMSAEC Fast Analyzer) was applied to the analysis of pollutants in air and water. Since data acquisition and processing are computer controlled, considerable effort went into devising appropriate software. A modified version of the standard FOCAL interpreter was developed which includes special machine language functions for data timing, acquisition, and storage, and also permits chaining together of programs stored on a disk. Programs were written and experimental procedures developed to implement spectrophotometric, turbidimetric, kinetic (including initial-rate, fixed-time, and variable-time techniques), and chemiluminescence methods of analysis. Analytical methods were developed for the following elements and compounds: SO 2 , O 3 , Ca, Cr, Cu, Fe, Mg, Se(IV), Zn, Cl - , I - , NO 2 - , PO 4 -3 , S -2 , and SO 4 -2 . In many cases, standard methods could be adapted to the centrifugal analyzer, in others new methods were employed. In general, analyses performed with the centrifugal fast analyzer were faster, more precise, and more accurate than with conventional instrumentation

  19. Analytical method comparisons for the accurate determination of PCBs in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Numata, M.; Yarita, T.; Aoyagi, Y.; Yamazaki, M.; Takatsu, A. [National Metrology Institute of Japan, Tsukuba (Japan)

    2004-09-15

    National Metrology Institute of Japan in National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has been developing several matrix reference materials, for example, sediments, water and biological tissues, for the determinations of heavy metals and organometallic compounds. The matrix compositions of those certified reference materials (CRMs) are similar to compositions of actual samples, and those are useful for validating analytical procedures. ''Primary methods of measurements'' are essential to obtain accurate and SI-traceable certified values in the reference materials, because the methods have the highest quality of measurement. However, inappropriate analytical operations, such as incomplete extraction of analytes or crosscontamination during analytical procedures, will cause error of analytical results, even if one of the primary methods, isotope-dilution, is utilized. To avoid possible procedural bias for the certification of reference materials, we employ more than two analytical methods which have been optimized beforehand. Because the accurate determination of trace POPs in the environment is important to evaluate their risk, reliable CRMs are required by environmental chemists. Therefore, we have also been preparing matrix CRMs for the determination of POPs. To establish accurate analytical procedures for the certification of POPs, extraction is one of the critical steps as described above. In general, conventional extraction techniques for the determination of POPs, such as Soxhlet extraction (SOX) and saponification (SAP), have been characterized well, and introduced as official methods for environmental analysis. On the other hand, emerging techniques, such as microwave-assisted extraction (MAE), pressurized fluid extraction (PFE) and supercritical fluid extraction (SFE), give higher recovery yields of analytes with relatively short extraction time and small amount of solvent, by reasons of the high

  20. Description of JNC's analytical method and its performance for FBR cores

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2000-01-01

    The description of JNC's analytical method and its performance for FBR cores includes: an outline of JNC's Analytical System Compared with ERANOS; a standard data base for FBR Nuclear Design in JNC; JUPITER Critical Experiment; details of Analytical Method and Its Effects on JUPITER; performance of JNC Analytical System (effective multiplication factor k eff , control rod worth, and sodium void reactivity); design accuracy of a 600 MWe-class FBR Core. JNC developed a consistent analytical system for FBR core evaluation, based on JENDL library, f-table method, and three dimensional diffusion/transport theory, which includes comprehensive sensitivity tools to improve the prediction accuracy of core parameters. JNC system was verified by analysis of JUPITER critical experiment, and other facilities. Its performance can be judged quite satisfactory for FBR-core design work, though there is room for further improvement, such as more detailed treatment of cross-section resonance regions

  1. A New Efficient Analytical Method for Picolinate Ion Measurements in Complex Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Parazols, M.; Dodi, A. [CEA Cadarache, Lab Anal Radiochim and Chim, DEN, F-13108 St Paul Les Durance (France)

    2010-07-01

    This study focuses on the development of a new simple but sensitive, fast and quantitative liquid chromatography method for picolinate ion measurement in high ionic strength aqueous solutions. It involves cation separation over a chromatographic CS16 column using methane sulfonic acid as a mobile phase and detection by UV absorbance (254 nm). The CS16 column is a high-capacity stationary phase exhibiting both cation exchange and RP properties. It allows interaction with picolinate ions which are in their zwitterionic form at the pH of the mobile phase (1.3-1.7). Analysis is performed in 30 min with a detection limit of about 0.05 {mu}M and a quantification limit of about 0.15 {mu}M. Moreover, this analytical technique has been tested efficiently on complex aqueous samples from an effluent treatment facility. (authors)

  2. Elemental analysis of fertilizer by fast neutron activation

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.

    1977-01-01

    A simple and accurate technique has been developed to analyse commercial fertilizers for phosphorus, potassium, chlorine, magnesium and silicon. The method is based on fast-neutron activation using a neutron flux of 2x10 11 neutrons/second. The optimum analytical conditions are tabulated. After irradiation, the sample is measured on a conventional counting system including a Ge(Li) detector (10% efficiency and 2 keV resolution for 60 Co) and a multichannel analyser. Monitor foils radioactivity are measured separately at the same time with a 2''x2''NaI detector coupled with a single channel analyser and a scaler. Fast neutron activation has proved to be a fast, simple, reliable and low cost analytical technique for the determination of phosphorus, silicon, potassium, magnesium and chlorine in fertilizers. Not less than five phosphorus determinations are possible in one hour, while two potassium, magnesium and chlorine determinations are made at the same time. (T.G.)

  3. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wáng, Yì

    2012-03-14

    A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extension of the analytic nodal method to four energy groups

    International Nuclear Information System (INIS)

    Parsons, D.K.; Nigg, D.W.

    1985-01-01

    The Analytic Nodal Method is one of several recently-developed coarse mesh numerical methods for efficiently and accurately solving the multidimensional static and transient neutron diffusion equations. This summary describes a mathematically rigorous extension of the Analytic Nodal Method to the frequently more physically realistic four-group case. A few general theoretical considerations are discussed, followed by some calculated results for a typical steady-state two-dimensional PWR quarter core application. 8 refs

  5. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2009-01-01

    equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid

  6. Application of an analytical method for solution of thermal hydraulic conservation equations

    Energy Technology Data Exchange (ETDEWEB)

    Fakory, M.R. [Simulation, Systems & Services Technologies Company (S3 Technologies), Columbia, MD (United States)

    1995-09-01

    An analytical method has been developed and applied for solution of two-phase flow conservation equations. The test results for application of the model for simulation of BWR transients are presented and compared with the results obtained from application of the explicit method for integration of conservation equations. The test results show that with application of the analytical method for integration of conservation equations, the Courant limitation associated with explicit Euler method of integration was eliminated. The results obtained from application of the analytical method (with large time steps) agreed well with the results obtained from application of explicit method of integration (with time steps smaller than the size imposed by Courant limitation). The results demonstrate that application of the analytical approach significantly improves the numerical stability and computational efficiency.

  7. Development and Validation of Analytical Method for Losartan ...

    African Journals Online (AJOL)

    Development and Validation of Analytical Method for Losartan-Copper Complex Using UV-Vis Spectrophotometry. ... Tropical Journal of Pharmaceutical Research ... Purpose: To develop a new spectrophotometric method for the analysis of losartan potassium in pharmaceutical formulations by making its complex with ...

  8. Fast Implicit Methods For Elliptic Moving Interface Problems

    Science.gov (United States)

    2015-12-11

    surfaces [30], and has recently been employed in the geometric nonuniform fast Fourier transform [12] and in the finite element method [31]. We employ...analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms ...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform . Second, bilinear quadratures ---which

  9. FastBit: an efficient indexing technology for accelerating data-intensive science

    International Nuclear Information System (INIS)

    Wu Kesheng

    2005-01-01

    FastBit is a software tool for searching large read-only datasets. It organizes user data in a column-oriented structure which is efficient for on-line analytical processing (OLAP), and utilizes compressed bitmap indices to further speed up query processing. Analyses have proven the compressed bitmap index used in FastBit to be theoretically optimal for onedimensional queries. Compared with other optimal indexing methods, bitmap indices are superior because they can be efficiently combined to answer multi-dimensional queries whereas other optimal methods can not. In this paper, we first describe the searching capability of FastBit, then briefly highlight two applications that make extensive use of FastBit, namely Grid Collector and DEX

  10. FastBit: An Efficient Indexing Technology For AcceleratingData-Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng

    2005-06-27

    FastBit is a software tool for searching large read-only data sets. It organizes user data in a column-oriented structure which is efficient for on-line analytical processing (OLAP), and utilizes compressed bitmap indices to further speed up query processing. Analyses have proven the compressed bitmap index used in FastBit to be theoretically optimal for one-dimensional queries. Compared with other optimal indexing methods, bitmap indices are superior because they can be efficiently combined to answer multi-dimensional queries whereas other optimal methods cannot. In this paper, we first describe the searching capability of FastBit, then briefly highlight two applications that make extensive use of FastBit, namely Grid Collector and DEX.

  11. FastBit: an efficient indexing technology for accelerating data-intensive science

    Science.gov (United States)

    Wu, Kesheng

    2005-01-01

    FastBit is a software tool for searching large read-only datasets. It organizes user data in a column-oriented structure which is efficient for on-line analytical processing (OLAP), and utilizes compressed bitmap indices to further speed up query processing. Analyses have proven the compressed bitmap index used in FastBit to be theoretically optimal for onedimensional queries. Compared with other optimal indexing methods, bitmap indices are superior because they can be efficiently combined to answer multi-dimensional queries whereas other optimal methods can not. In this paper, we first describe the searching capability of FastBit, then briefly highlight two applications that make extensive use of FastBit, namely Grid Collector and DEX.

  12. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  13. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yunqiao [ORNL; Meng, Xianzhi [University of Tennessee, Knoxville (UTK); Yoo, Chang Geun; Li, Mi; Ragauskas, Arthur J [ORNL

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection of analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.

  14. Hanford environmental analytical methods: Methods as of March 1990

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    This paper from the analytical laboratories at Hanford describes the method used to measure pH of single-shell tank core samples. Sludge or solid samples are mixed with deionized water. The pH electrode used combines both a sensor and reference electrode in one unit. The meter amplifies the input signal from the electrode and displays the pH visually

  15. Analytical methods for determination of mycotoxins: a review.

    Science.gov (United States)

    Turner, Nicholas W; Subrahmanyam, Sreenath; Piletsky, Sergey A

    2009-01-26

    Mycotoxins are small (MW approximately 700), toxic chemical products formed as secondary metabolites by a few fungal species that readily colonise crops and contaminate them with toxins in the field or after harvest. Ochratoxins and Aflatoxins are mycotoxins of major significance and hence there has been significant research on broad range of analytical and detection techniques that could be useful and practical. Due to the variety of structures of these toxins, it is impossible to use one standard technique for analysis and/or detection. Practical requirements for high-sensitivity analysis and the need for a specialist laboratory setting create challenges for routine analysis. Several existing analytical techniques, which offer flexible and broad-based methods of analysis and in some cases detection, have been discussed in this manuscript. There are a number of methods used, of which many are lab-based, but to our knowledge there seems to be no single technique that stands out above the rest, although analytical liquid chromatography, commonly linked with mass spectroscopy is likely to be popular. This review manuscript discusses (a) sample pre-treatment methods such as liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE), (b) separation methods such as (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis (CE) and (c) others such as ELISA. Further currents trends, advantages and disadvantages and future prospects of these methods have been discussed.

  16. Fast sweeping method for the factored eikonal equation

    Science.gov (United States)

    Fomel, Sergey; Luo, Songting; Zhao, Hongkai

    2009-09-01

    We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.

  17. Big data analytics methods and applications

    CERN Document Server

    Rao, BLS; Rao, SB

    2016-01-01

    This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

  18. An Investigation to Manufacturing Analytical Services Composition using the Analytical Target Cascading Method.

    Science.gov (United States)

    Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas

    2017-01-01

    As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.

  19. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  20. An analytic data analysis method for oscillatory slug tests.

    Science.gov (United States)

    Chen, Chia-Shyun

    2006-01-01

    An analytical data analysis method is developed for slug tests in partially penetrating wells in confined or unconfined aquifers of high hydraulic conductivity. As adapted from the van der Kamp method, the determination of the hydraulic conductivity is based on the occurrence times and the displacements of the extreme points measured from the oscillatory data and their theoretical counterparts available in the literature. This method is applied to two sets of slug test response data presented by Butler et al.: one set shows slow damping with seven discernable extremities, and the other shows rapid damping with three extreme points. The estimates of the hydraulic conductivity obtained by the analytic method are in good agreement with those determined by an available curve-matching technique.

  1. A SIMPLE ANALYTICAL METHOD TO DETERMINE SOLAR ENERGETIC PARTICLES' MEAN FREE PATH

    International Nuclear Information System (INIS)

    He, H.-Q.; Qin, G.

    2011-01-01

    To obtain the mean free path of solar energetic particles (SEPs) for a solar event, one usually has to fit time profiles of both flux and anisotropy from spacecraft observations to numerical simulations of SEPs' transport processes. This method can be called a simulation method. But a reasonably good fitting needs a lot of simulations, which demand a large amount of calculation resources. Sometimes, it is necessary to find an easy way to obtain the mean free path of SEPs quickly, for example, in space weather practice. Recently, Shalchi et al. provided an approximate analytical formula of SEPs' anisotropy time profile as a function of particles' mean free path for impulsive events. In this paper, we determine SEPs' mean free path by fitting the anisotropy time profiles from Shalchi et al.'s analytical formula to spacecraft observations. This new method can be called an analytical method. In addition, we obtain SEPs' mean free path with the traditional simulation methods. Finally, we compare the mean free path obtained with the simulation method to that of the analytical method to show that the analytical method, with some minor modifications, can give us a good, quick approximation of SEPs' mean free path for impulsive events.

  2. Fast and precise method of contingency ranking in modern power system

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2011-01-01

    Contingency Analysis is one of the most important aspect of Power System Security Analysis. This paper presents a fast and precise method of contingency ranking for effective power system security analysis. The method proposed in this research work takes due consideration of both apparent power o...... is based on realistic approach taking practical situations into account. Besides taking real situations into consideration the proposed method is fast enough to be considered for on-line security analysis.......Contingency Analysis is one of the most important aspect of Power System Security Analysis. This paper presents a fast and precise method of contingency ranking for effective power system security analysis. The method proposed in this research work takes due consideration of both apparent power...

  3. Critical node treatment in the analytic function expansion method for Pin Power Reconstruction

    International Nuclear Information System (INIS)

    Gao, Z.; Xu, Y.; Downar, T.

    2013-01-01

    Pin Power Reconstruction (PPR) was implemented in PARCS using the eight term analytic function expansion method (AFEN). This method has been demonstrated to be both accurate and efficient. However, similar to all the methods involving analytic functions, such as the analytic node method (ANM) and AFEN for nodal solution, the use of AFEN for PPR also has potential numerical issue with critical nodes. The conventional analytic functions are trigonometric or hyperbolic sine or cosine functions with an angular frequency proportional to buckling. For a critic al node the buckling is zero and the sine functions becomes zero, and the cosine function become unity. In this case, the eight terms of the analytic functions are no longer distinguishable from ea ch other which makes their corresponding coefficients can no longer be determined uniquely. The mode flux distribution of critical node can be linear while the conventional analytic functions can only express a uniform distribution. If there is critical or near critical node in a plane, the reconstructed pin power distribution is often be shown negative or very large values using the conventional method. In this paper, we propose a new method to avoid the numerical problem wit h critical nodes which uses modified trigonometric or hyperbolic sine functions which are the ratio of trigonometric or hyperbolic sine and its angular frequency. If there are no critical or near critical nodes present, the new pin power reconstruction method with modified analytic functions are equivalent to the conventional analytic functions. The new method is demonstrated using the L336C5 benchmark problem. (authors)

  4. Critical node treatment in the analytic function expansion method for Pin Power Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Z. [Rice University, MS 318, 6100 Main Street, Houston, TX 77005 (United States); Xu, Y. [Argonne National Laboratory, 9700 South Case Ave., Argonne, IL 60439 (United States); Downar, T. [Department of Nuclear Engineering, University of Michigan, 2355 Bonisteel blvd., Ann Arbor, MI 48109 (United States)

    2013-07-01

    Pin Power Reconstruction (PPR) was implemented in PARCS using the eight term analytic function expansion method (AFEN). This method has been demonstrated to be both accurate and efficient. However, similar to all the methods involving analytic functions, such as the analytic node method (ANM) and AFEN for nodal solution, the use of AFEN for PPR also has potential numerical issue with critical nodes. The conventional analytic functions are trigonometric or hyperbolic sine or cosine functions with an angular frequency proportional to buckling. For a critic al node the buckling is zero and the sine functions becomes zero, and the cosine function become unity. In this case, the eight terms of the analytic functions are no longer distinguishable from ea ch other which makes their corresponding coefficients can no longer be determined uniquely. The mode flux distribution of critical node can be linear while the conventional analytic functions can only express a uniform distribution. If there is critical or near critical node in a plane, the reconstructed pin power distribution is often be shown negative or very large values using the conventional method. In this paper, we propose a new method to avoid the numerical problem wit h critical nodes which uses modified trigonometric or hyperbolic sine functions which are the ratio of trigonometric or hyperbolic sine and its angular frequency. If there are no critical or near critical nodes present, the new pin power reconstruction method with modified analytic functions are equivalent to the conventional analytic functions. The new method is demonstrated using the L336C5 benchmark problem. (authors)

  5. Some questions of using coding theory and analytical calculation methods on computers

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1987-01-01

    Main results of investigations devoted to the application of theory and practice of correcting codes are presented. These results are used to create very fast units for the selection of events registered in multichannel detectors of nuclear particles. Using this theory and analytical computing calculations, practically new combination devices, for example, parallel encoders, have been developed. Questions concerning the creation of a new algorithm for the calculation of digital functions by computers and problems of devising universal, dynamically reprogrammable logic modules are discussed

  6. Fast Detection Method in Cooperative Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhengyi Li

    2010-01-01

    Full Text Available Cognitive Radio (CR technology improves the utilization of spectrum highly via opportunistic spectrum sharing, which requests fast detection as the spectrum utilization is dynamic. Taking into consideration the characteristic of wireless channels, we propose a fast detection scheme for a cooperative cognitive radio network, which consists of multiple CRs and a central control office. Specifically, each CR makes individual detection decision using the sequential probability ratio test combined with Neyman Pearson detection with respect to a specific observation window length. The proposed method upper bounds the detection delay. In addition, a weighted K out of N fusion rule is also proposed for the central control office to reach fast global decision based on the information collected from CRs, with more weights assigned for CRs with good channel conditions. Simulation results show that the proposed scheme can achieve fast detection while maintaining the detection accuracy.

  7. Preliminary experiment of fast neutron imaging with direct-film method

    International Nuclear Information System (INIS)

    Pei Yuyang; Tang Guoyou; Guo Zhiyu; Zhang Guohui

    2005-01-01

    A preliminary experiment is conducted with direct-film method under the condition that fast neutron is generated by the reaction of 9 Be(d, n) on the Beijing University 4.5 MV Van de Graaff, whose energy is lower than 7 MeV. Basic characteristics of direct-film neutron radiography system are investigated with the help of samples in different materials, different thickness and holes of different diameter. The fast neutron converter, which is vital for fast neutron imaging, is produced with the materials made in China. The result indicates that fast neutron converter can meet the requirement of fast neutron imaging; further research of fast neutron imaging can be conducted on the accelerator and neutron-generator in China. (authors)

  8. Fast analysis of spectral data using neural networks

    International Nuclear Information System (INIS)

    Roach, C.M.

    1992-01-01

    Fast analysis techniques are highly desirable in experiments where measurements are recorded at high rates. In fusion experiments the processing required to obtain plasma parameters is usually orders of magnitude slower than the data acquisition. Spectroscopic diagnostics suffer greatly from this problem. The extraction of plasma parameters from a measured spectrum typically corresponds to a nonlinear mapping between distinct multi-dimensional spaces. Where no analytic expression for the mapping exists, conventional analysis methods (e.g. least squares) are usually iterative and therefore slow. With this concern in mind a fast spectral analysis method involving neural networks has been investigated. (author) 6 refs., 3 figs

  9. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman; Yokota, Rio; Ahmadia, Aron

    2012-01-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach

  10. Studies on analytical method and nondestructive measuring method on the sensitization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Onimura, Kichiro; Arioka, Koji; Horai, Manabu; Noguchi, Shigeru.

    1982-03-01

    Austenitic stainless steels are widely used as structural materials for the machine and equipment of various kinds of plants, such as thermal power, nuclear power, and chemical plants. The machines and equipment using this kind of material, however, have the possibility of suffering corrosion damage while in service, and these damages are considered to be largely due to the sensitization of the material in sometimes. So, it is necessary to develop an analytical method for grasping the sensitization of the material more in detail and a quantitative nondestructive measuring method which is applicable to various kinds of structures in order to prevent the corrosion damage. From the above viewpoint, studies have been made on the analytical method based on the theory of diffusion of chromium in austenitic stainless steels and on Electro-Potentiokinetics Reactivation Method (EPR Method) as a nondestructive measuring method, using 304 and 316 austenitic stainless steels having different carbon contents in base metals. This paper introduces the results of EPR test on the sensitization of austenitic stainless steels and the correlation between analytical and experimental results. (author)

  11. Nuclear and nuclear related analytical methods applied in environmental research

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Gheboianu, Anca; Bancuta, Iulian; Cimpoca, G. V; Stihi, Claudia; Radulescu, Cristiana; Oros Calin; Frontasyeva, Marina; Petre, Marian; Dulama, Ioana; Vlaicu, G.

    2010-01-01

    Nuclear Analytical Methods can be used for research activities on environmental studies like water quality assessment, pesticide residues, global climatic change (transboundary), pollution and remediation. Heavy metal pollution is a problem associated with areas of intensive industrial activity. In this work the moss bio monitoring technique was employed to study the atmospheric deposition in Dambovita County Romania. Also, there were used complementary nuclear and atomic analytical methods: Neutron Activation Analysis (NAA), Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). These high sensitivity analysis methods were used to determine the chemical composition of some samples of mosses placed in different areas with different pollution industrial sources. The concentrations of Cr, Fe, Mn, Ni and Zn were determined. The concentration of Fe from the same samples was determined using all these methods and we obtained a very good agreement, in statistical limits, which demonstrate the capability of these analytical methods to be applied on a large spectrum of environmental samples with the same results. (authors)

  12. A Fast Optimization Method for General Binary Code Learning.

    Science.gov (United States)

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  13. Analytical resource assessment method for continuous (unconventional) oil and gas accumulations - The "ACCESS" Method

    Science.gov (United States)

    Crovelli, Robert A.; revised by Charpentier, Ronald R.

    2012-01-01

    The U.S. Geological Survey (USGS) periodically assesses petroleum resources of areas within the United States and the world. The purpose of this report is to explain the development of an analytic probabilistic method and spreadsheet software system called Analytic Cell-Based Continuous Energy Spreadsheet System (ACCESS). The ACCESS method is based upon mathematical equations derived from probability theory. The ACCESS spreadsheet can be used to calculate estimates of the undeveloped oil, gas, and NGL (natural gas liquids) resources in a continuous-type assessment unit. An assessment unit is a mappable volume of rock in a total petroleum system. In this report, the geologic assessment model is defined first, the analytic probabilistic method is described second, and the spreadsheet ACCESS is described third. In this revised version of Open-File Report 00-044 , the text has been updated to reflect modifications that were made to the ACCESS program. Two versions of the program are added as appendixes.

  14. Propulsion and launching analysis of variable-mass rockets by analytical methods

    Directory of Open Access Journals (Sweden)

    D.D. Ganji

    2013-09-01

    Full Text Available In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM, homotopy perturbation method (HPM and least square method (LSM were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a parametric study is performed here which includes the effect of exhaust velocity (Ce, burn rate (BR of fuel and diameter of cylindrical rocket (d on the motion of a sample rocket, and contours for showing the sensitivity of these parameters are plotted. The main results indicate that the rocket velocity and altitude are increased with increasing the Ce and BR and decreased with increasing the rocket diameter and drag coefficient.

  15. Biodiesel Analytical Methods: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  16. A Generalized Pivotal Quantity Approach to Analytical Method Validation Based on Total Error.

    Science.gov (United States)

    Yang, Harry; Zhang, Jianchun

    2015-01-01

    The primary purpose of method validation is to demonstrate that the method is fit for its intended use. Traditionally, an analytical method is deemed valid if its performance characteristics such as accuracy and precision are shown to meet prespecified acceptance criteria. However, these acceptance criteria are not directly related to the method's intended purpose, which is usually a gurantee that a high percentage of the test results of future samples will be close to their true values. Alternate "fit for purpose" acceptance criteria based on the concept of total error have been increasingly used. Such criteria allow for assessing method validity, taking into account the relationship between accuracy and precision. Although several statistical test methods have been proposed in literature to test the "fit for purpose" hypothesis, the majority of the methods are not designed to protect the risk of accepting unsuitable methods, thus having the potential to cause uncontrolled consumer's risk. In this paper, we propose a test method based on generalized pivotal quantity inference. Through simulation studies, the performance of the method is compared to five existing approaches. The results show that both the new method and the method based on β-content tolerance interval with a confidence level of 90%, hereafter referred to as the β-content (0.9) method, control Type I error and thus consumer's risk, while the other existing methods do not. It is further demonstrated that the generalized pivotal quantity method is less conservative than the β-content (0.9) method when the analytical methods are biased, whereas it is more conservative when the analytical methods are unbiased. Therefore, selection of either the generalized pivotal quantity or β-content (0.9) method for an analytical method validation depends on the accuracy of the analytical method. It is also shown that the generalized pivotal quantity method has better asymptotic properties than all of the current

  17. A Fast and Robust Method for Measuring Optical Channel Gain

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob; Villemoes, L.F.

    2000-01-01

    We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions......We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions...

  18. Investigation of clustering in sets of analytical data

    Energy Technology Data Exchange (ETDEWEB)

    Kajfosz, J [Institute of Nuclear Physics, Cracow (Poland)

    1993-04-01

    Foundation of the statistical method of cluster analysis are briefly presented and its usefulness for the examination and evaluation of analytical data obtained from series of samples investigated by PIXE, PIGE or other methods is discussed. A simple program for fast examination of dissimilarities between samples within an investigated series is described. Useful information on clustering for several hundreds of samples can be obtained with minimal time and storage requirements. (author). 5 refs, 10 figs.

  19. Investigation of clustering in sets of analytical data

    International Nuclear Information System (INIS)

    Kajfosz, J.

    1993-04-01

    Foundation of the statistical method of cluster analysis are briefly presented and its usefulness for the examination and evaluation of analytical data obtained from series of samples investigated by PIXE, PIGE or other methods is discussed. A simple program for fast examination of dissimilarities between samples within an investigated series is described. Useful information on clustering for several hundreds of samples can be obtained with minimal time and storage requirements. (author). 5 refs, 10 figs

  20. A Fast LMMSE Channel Estimation Method for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Zhou Wen

    2009-01-01

    Full Text Available A fast linear minimum mean square error (LMMSE channel estimation method has been proposed for Orthogonal Frequency Division Multiplexing (OFDM systems. In comparison with the conventional LMMSE channel estimation, the proposed channel estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large dimension matrix by using the fast Fourier transform (FFT operation. Therefore, the computational complexity can be reduced significantly. The normalized mean square errors (NMSEs of the proposed method and the conventional LMMSE estimation have been derived. Numerical results show that the NMSE of the proposed method is very close to that of the conventional LMMSE method, which is also verified by computer simulation. In addition, computer simulation shows that the performance of the proposed method is almost the same with that of the conventional LMMSE method in terms of bit error rate (BER.

  1. Investigation of base isolation for fast breeder reactor building

    International Nuclear Information System (INIS)

    Morishita, M.; Kobatake, M.; Ohta, K.; Okada, Y.

    1989-01-01

    Achievement of great rationalization for seismic-resistant design of equipment system is necessary and indispensable from the viewpoints of economical and structural validity for a fast breeder reactor to be made practical. The method of reducing seismic loads on the building and equipment by application of base isolation may be an effective method, but in application to nuclear facilities, it will become necessary to examine the feasibility to actual design considering the severe seismic design requirements in Japan. With these considerations as the background, the authors carried out analytical studies from various viewpoints such as restoring force characteristics of base isolation device, influence of input earthquake motion, soil-structure interaction in base- isolated structure, etc. in case of providing base isolation system for a fast breeder reactor building. Based on these analytical studies, vibration tests on a base-isolated structure using a triaxial shaking table and simulation analyses of the tests were performed attempting to verify the effectiveness of the base isolation system and appropriateness of the analysis method. Results are presented

  2. Approximate analytical methods for solving ordinary differential equations

    CERN Document Server

    Radhika, TSL; Rani, T Raja

    2015-01-01

    Approximate Analytical Methods for Solving Ordinary Differential Equations (ODEs) is the first book to present all of the available approximate methods for solving ODEs, eliminating the need to wade through multiple books and articles. It covers both well-established techniques and recently developed procedures, including the classical series solution method, diverse perturbation methods, pioneering asymptotic methods, and the latest homotopy methods.The book is suitable not only for mathematicians and engineers but also for biologists, physicists, and economists. It gives a complete descripti

  3. Analytical method of waste allocation in waste management systems: Concept, method and case study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Francis C., E-mail: francis.b.c@videotron.ca

    2017-01-15

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  4. Analytical method of waste allocation in waste management systems: Concept, method and case study

    International Nuclear Information System (INIS)

    Bergeron, Francis C.

    2017-01-01

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  5. Fast and simultaneous monitoring of organic pollutants in a drinking water treatment plant by a multi-analyte biosensor followed by LC-MS validation.

    Science.gov (United States)

    Rodriguez-Mozaz, Sara; de Alda, Maria J López; Barceló, Damià

    2006-04-15

    This work describes the application of an optical biosensor (RIver ANALyser, RIANA) to the simultaneous analysis of three relevant environmental organic pollutants, namely, the pesticides atrazine and isoproturon and the estrogen estrone, in real water samples. This biosensor is based on an indirect inhibition immunoassay which takes place at a chemically modified optical transducer chip. The spatially resolved modification of the transducer surface allows the simultaneous determination of selected target analytes by means of "total internal reflection fluorescence" (TIRF). The performance of the immunosensor method developed was evaluated against a well accepted traditional method based on solid-phase extraction followed by liquid chromatography-mass spectrometry (LC-MS). The chromatographic method was superior in terms of linearity, sensitivity and accuracy, and the biosensor method in terms of repeatability, speed, cost and automation. The application of both methods in parallel to determine the occurrence and removal of atrazine, isoproturon and estrone throughout the treatment process (sand filtration, ozonation, activated carbon filtration and chlorination) in a waterworks showed an overestimation of results in the case of the biosensor, which was partially attributed to matrix and cross-reactivity effects, in spite of the addition of ovalbumin to the sample to minimize matrix interferences. Based on the comparative performance of both techniques, the biosensor emerges as a suitable tool for fast, simple and automated screening of water pollutants without sample pretreatment. To the author's knowledge, this is the first description of the application of the biosensor RIANA in the multi-analyte configuration to the regular monitoring of pollutants in a waterworks.

  6. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  7. Transport methods: general. 1. The Analytical Monte Carlo Method for Radiation Transport Calculations

    International Nuclear Information System (INIS)

    Martin, William R.; Brown, Forrest B.

    2001-01-01

    We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)

  8. Methods to determine fast-ion distribution functions from multi-diagnostic measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko

    -ion diagnostic views, it is possible to infer the distribution function using a tomography approach. Several inversion methods for solving this tomography problem in velocity space are implemented and compared. It is found that the best quality it obtained when using inversion methods which penalise steep......Understanding the behaviour of fast ions in a fusion plasma is very important, since the fusion-born alpha particles are expected to be the main source of heating in a fusion power plant. Preferably, the entire fast-ion velocity-space distribution function would be measured. However, no fast...

  9. Analytical method for optimization of maintenance policy based on available system failure data

    International Nuclear Information System (INIS)

    Coria, V.H.; Maximov, S.; Rivas-Dávalos, F.; Melchor, C.L.; Guardado, J.L.

    2015-01-01

    An analytical optimization method for preventive maintenance (PM) policy with minimal repair at failure, periodic maintenance, and replacement is proposed for systems with historical failure time data influenced by a current PM policy. The method includes a new imperfect PM model based on Weibull distribution and incorporates the current maintenance interval T 0 and the optimal maintenance interval T to be found. The Weibull parameters are analytically estimated using maximum likelihood estimation. Based on this model, the optimal number of PM and the optimal maintenance interval for minimizing the expected cost over an infinite time horizon are also analytically determined. A number of examples are presented involving different failure time data and current maintenance intervals to analyze how the proposed analytical optimization method for periodic PM policy performances in response to changes in the distribution of the failure data and the current maintenance interval. - Highlights: • An analytical optimization method for preventive maintenance (PM) policy is proposed. • A new imperfect PM model is developed. • The Weibull parameters are analytically estimated using maximum likelihood. • The optimal maintenance interval and number of PM are also analytically determined. • The model is validated by several numerical examples

  10. New Analytical Method for the Determination of Metronidazole in ...

    African Journals Online (AJOL)

    New Analytical Method for the Determination of Metronidazole in Human Plasma: Application to Bioequivalence Study. ... Methods: Metronidazole was extracted from human plasma through one step of ... http://dx.doi.org/10.4314/tjpr.v11i5.14.

  11. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  12. Development and validation of analytical methods for dietary supplements

    International Nuclear Information System (INIS)

    Sullivan, Darryl; Crowley, Richard

    2006-01-01

    The expanding use of innovative botanical ingredients in dietary supplements and foods has resulted in a flurry of research aimed at the development and validation of analytical methods for accurate measurement of active ingredients. The pressing need for these methods is being met through an expansive collaborative initiative involving industry, government, and analytical organizations. This effort has resulted in the validation of several important assays as well as important advances in the method engineering procedures which have improved the efficiency of the process. The initiative has also allowed researchers to hurdle many of the barricades that have hindered accurate analysis such as the lack of reference standards and comparative data. As the availability for nutraceutical products continues to increase these methods will provide consumers and regulators with the scientific information needed to assure safety and dependable labeling

  13. Business Analytics in Practice and in Education: A Competency-Based Perspective

    Science.gov (United States)

    Mamonov, Stanislav; Misra, Ram; Jain, Rashmi

    2015-01-01

    Business analytics is a fast-growing area in practice. The rapid growth of business analytics in practice in the recent years is mirrored by a corresponding fast evolution of new educational programs. While more than 130 graduate and undergraduate degree programs in business analytics have been launched in the past 5 years, no commonly accepted…

  14. Performance of analytical methods for tomographic gamma scanning

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Mercer, D.J.

    1997-01-01

    The use of gamma-ray computerized tomography for nondestructive assay of radioactive materials has led to the development of specialized analytical methods. Over the past few years, Los Alamos has developed and implemented a computer code, called ARC-TGS, for the analysis of data obtained by tomographic gamma scanning (TGS). ARC-TGS reduces TGS transmission and emission tomographic data, providing the user with images of the sample contents, the activity or mass of selected radionuclides, and an estimate of the uncertainty in the measured quantities. The results provided by ARC-TGS can be corrected for self-attenuation when the isotope of interest emits more than one gamma-ray. In addition, ARC-TGS provides information needed to estimate TGS quantification limits and to estimate the scan time needed to screen for small amounts of radioactivity. In this report, an overview of the analytical methods used by ARC-TGS is presented along with an assessment of the performance of these methods for TGS

  15. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    Energy Technology Data Exchange (ETDEWEB)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Department of Computer Science (United States); Department of Mathematics (United States)

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  16. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    International Nuclear Information System (INIS)

    Detrixhe, Miles; Gibou, Frédéric

    2016-01-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  17. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  18. A fast resonance interference treatment scheme with subgroup method

    International Nuclear Information System (INIS)

    Cao, L.; He, Q.; Wu, H.; Zu, T.; Shen, W.

    2015-01-01

    A fast Resonance Interference Factor (RIF) scheme is proposed to treat the resonance interference effects between different resonance nuclides. This scheme utilizes the conventional subgroup method to evaluate the self-shielded cross sections of the dominant resonance nuclide in the heterogeneous system and the hyper-fine energy group method to represent the resonance interference effects in a simplified homogeneous model. In this paper, the newly implemented scheme is compared to the background iteration scheme, the Resonance Nuclide Group (RNG) scheme and the conventional RIF scheme. The numerical results show that the errors of the effective self-shielded cross sections are significantly reduced by the fast RIF scheme compared with the background iteration scheme and the RNG scheme. Besides, the fast RIF scheme consumes less computation time than the conventional RIF schemes. The speed-up ratio is ~4.5 for MOX pin cell problems. (author)

  19. Analytic continuation of quantum Monte Carlo data. Stochastic sampling method

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, Khaldoon; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2016-07-01

    We apply Bayesian inference to the analytic continuation of quantum Monte Carlo (QMC) data from the imaginary axis to the real axis. Demanding a proper functional Bayesian formulation of any analytic continuation method leads naturally to the stochastic sampling method (StochS) as the Bayesian method with the simplest prior, while it excludes the maximum entropy method and Tikhonov regularization. We present a new efficient algorithm for performing StochS that reduces computational times by orders of magnitude in comparison to earlier StochS methods. We apply the new algorithm to a wide variety of typical test cases: spectral functions and susceptibilities from DMFT and lattice QMC calculations. Results show that StochS performs well and is able to resolve sharp features in the spectrum.

  20. Development of probabilistic fast reactor fuel design method

    International Nuclear Information System (INIS)

    Ozawa, Takayuki

    1997-01-01

    Under the current method of evaluating fuel robustness in FBR fuel rod design, a variety of uncertain quantities including fuel production tolerance and power density are estimated conservatively. In the future, in order to proceed with improvements in the FBR core's performance and optimize the fuel's specifications, a rationalization of fuel design tolerance is required. Among the measures aimed at realizing this rationalization, the introduction of a probabilistic fast reactor fuel design method is currently under consideration. I have developed a probabilistic fast reactor fuel design code named BORNFREE, in order to make use of this method in FBR fuel design. At the same time, I have carried out a trial calculation of the cladding stress using this code and made a study and an evaluation of the possibility of employing tolerance rationalization in fuel rod design. In this paper, I provide an outline description of BORNFREE and report the results of the above study and evaluation. After performing cladding stress trial calculations using the probabilistic method, I was able to confirm that this method promises more rational design evaluation results than the conventional deterministic method. (author)

  1. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    Science.gov (United States)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  2. Novel applications of fast neutron interrogation methods

    International Nuclear Information System (INIS)

    Gozani, Tsahi

    1994-01-01

    The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA - Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below. ((orig.))

  3. Analytical and experimental study of two delay-coupled excitable units.

    Science.gov (United States)

    Weicker, Lionel; Erneux, Thomas; Keuninckx, Lars; Danckaert, Jan

    2014-01-01

    We investigate the onset of time-periodic oscillations for a system of two identical delay-coupled excitable (nonoscillatory) units. We first analyze these solutions by using asymptotic methods. The oscillations are described as relaxation oscillations exhibiting successive slow and fast changes. The analysis highlights the determinant role of the delay during the fast transition layers. We then study experimentally a system of two coupled electronic circuits that is modeled mathematically by the same delay differential equations. We obtain quantitative agreements between analytical and experimental bifurcation diagrams.

  4. Five-point Element Scheme of Finite Analytic Method for Unsteady Groundwater Flow

    Institute of Scientific and Technical Information of China (English)

    Xiang Bo; Mi Xiao; Ji Changming; Luo Qingsong

    2007-01-01

    In order to improve the finite analytic method's adaptability for irregular unit, by using coordinates rotation technique this paper establishes a five-point element scheme of finite analytic method. It not only solves unsteady groundwater flow equation but also gives the boundary condition. This method can be used to calculate the three typical questions of groundwater. By compared with predecessor's computed result, the result of this method is more satisfactory.

  5. Directory of Analytical Methods, Department 1820

    International Nuclear Information System (INIS)

    Whan, R.E.

    1986-01-01

    The Materials Characterization Department performs chemical, physical, and thermophysical analyses in support of programs throughout the Laboratories. The department has a wide variety of techniques and instruments staffed by experienced personnel available for these analyses, and we strive to maintain near state-of-the-art technology by continued updates. We have prepared this Directory of Analytical Methods in order to acquaint you with our capabilities and to help you identify personnel who can assist with your analytical needs. The descriptions of the various capabilities are requester-oriented and have been limited in length and detail. Emphasis has been placed on applications and limitations with notations of estimated analysis time and alternative or related techniques. A short, simplified discussion of underlying principles is also presented along with references if more detail is desired. The contents of this document have been organized in the order: bulky analysis, microanalysis, surface analysis, optical and thermal property measurements

  6. Methods of analytical check for highly pure tungsten

    International Nuclear Information System (INIS)

    Miklin, D.G.; Karpov, Yu.A.; Orlova, V.A.

    1993-01-01

    The review is devoted to the methods of high-purity tungsten analysis. Current trends in the development of this branch of analytical chemistry are considered. Application of both instrument mass-spectrometry analysis and optico-spectral, activation methods and mass-spectrometry ones with inductively-bound plasma in combination with preliminary isolation of the basis and impurity concentration is expected to be the most actual

  7. Comparison of Standard and Fast Charging Methods for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2014-01-01

    Full Text Available This paper describes a comparison of standard and fast charging methods used in the field of electric vehicles and also comparison of their efficiency in terms of electrical energy consumption. The comparison was performed on three-phase buck converter, which was designed for EV’s fast charging station. The results were obtained by both mathematical and simulation methods. The laboratory model of entire physical application, which will be further used for simulation results verification, is being built in these days.

  8. Pyrrolizidine alkaloids in honey: comparison of analytical methods

    NARCIS (Netherlands)

    Kempf, M.; Wittig, M.; Reinhard, A.; Ohe, von der K.; Blacquière, T.; Raezke, K.P.; Michel, R.; Schreier, P.; Beuerle, T.

    2011-01-01

    Pyrrolizidine alkaloids (PAs) are a structurally diverse group of toxicologically relevant secondary plant metabolites. Currently, two analytical methods are used to determine PA content in honey. To achieve reasonably high sensitivity and selectivity, mass spectrometry detection is demanded. One

  9. Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-12-01

    A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.

  10. Long-Term Prediction of Satellite Orbit Using Analytical Method

    Directory of Open Access Journals (Sweden)

    Jae-Cheol Yoon

    1997-12-01

    Full Text Available A long-term prediction algorithm of geostationary orbit was developed using the analytical method. The perturbation force models include geopotential upto fifth order and degree and luni-solar gravitation, and solar radiation pressure. All of the perturbation effects were analyzed by secular variations, short-period variations, and long-period variations for equinoctial elements such as the semi-major axis, eccentricity vector, inclination vector, and mean longitude of the satellite. Result of the analytical orbit propagator was compared with that of the cowell orbit propagator for the KOREASAT. The comparison indicated that the analytical solution could predict the semi-major axis with an accuarcy of better than ~35meters over a period of 3 month.

  11. A contribution to the method of fast reactor thermal output calculation

    International Nuclear Information System (INIS)

    Harant, M.

    1978-01-01

    The method of stating the heat sources is discussed as being one of the factors influencing the accuracy of the thermal output calculation of fast reactors. The distribution of heat sources in the core and in other inner parts of the fast reactor is described using the least square fit method. Relations are derived of outputs of both individual components of fuel elements and of whole inner parts of the reactor. A comparison is made of various methods used for obtaining source integrals. The optimum integration method was found. (author)

  12. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    Science.gov (United States)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  13. A task parallel implementation of fast multipole methods

    KAUST Repository

    Taura, Kenjiro; Nakashima, Jun; Yokota, Rio; Maruyama, Naoya

    2012-01-01

    This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM

  14. Fast Swinnex Filtration (FSF): A fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Utrilla, Jose; Naviaux, Robert K.

    2015-01-01

    , we develop a fast-filtration method using pressuredriven Swinnex filters. We show that the method is fast enough to provide an accurate snapshot of intracellular metabolism, reduces matrix interference from the media to improve the number of compounds that can be detected, and is applicable...... to anaerobic and aerobic liquid cultures grown in a variety of culturing systems. Furthermore, we apply the fast filtration method to investigate differences in the absolute intracellular metabolite levels of anaerobic cultures grown in minimal and complex media....

  15. An analytical-numerical comprehensive method for optimizing the fringing magnetic field

    International Nuclear Information System (INIS)

    Xiao Meiqin; Mao Naifeng

    1991-01-01

    The criterion of optimizing the fringing magnetic field is discussed, and an analytical-numerical comprehensive method for realizing the optimization is introduced. The method mentioned above consists of two parts, the analytical part calculates the field of the shims, which corrects the fringing magnetic field by using uniform magnetizing method; the numerical part fulfils the whole calculation of the field distribution by solving the equation of magnetic vector potential A within the region covered by arbitrary triangular meshes with the aid of finite difference method and successive over relaxation method. On the basis of the method, the optimization of the fringing magnetic field for a large-scale electromagnetic isotope separator is finished

  16. FORECASTING PILE SETTLEMENT ON CLAYSTONE USING NUMERICAL AND ANALYTICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ponomarev Andrey Budimirovich

    2016-06-01

    Full Text Available In the article the problem of designing pile foundations on claystones is reviewed. The purpose of this paper is comparative analysis of the analytical and numerical methods for forecasting the settlement of piles on claystones. The following tasks were solved during the study: 1 The existing researches of pile settlement are analyzed; 2 The characteristics of experimental studies and the parameters for numerical modeling are presented, methods of field research of single piles’ operation are described; 3 Calculation of single pile settlement is performed using numerical methods in the software package Plaxis 2D and analytical method according to the requirements SP 24.13330.2011; 4 Experimental data is compared with the results of analytical and numerical calculations; 5 Basing on these results recommendations for forecasting pile settlement on claystone are presented. Much attention is paid to the calculation of pile settlement considering the impacted areas in ground space beside pile and the comparison with the results of field experiments. Basing on the obtained results, for the prediction of settlement of single pile on claystone the authors recommend using the analytical method considered in SP 24.13330.2011 with account for the impacted areas in ground space beside driven pile. In the case of forecasting the settlement of single pile on claystone by numerical methods in Plaxis 2D the authors recommend using the Hardening Soil model considering the impacted areas in ground space beside the driven pile. The analyses of the results and calculations are presented for examination and verification; therefore it is necessary to continue the research work of deep foundation at another experimental sites to improve the reliability of the calculation of pile foundation settlement. The work is of great interest for geotechnical engineers engaged in research, design and construction of pile foundations.

  17. Modern methods in analytical acoustics lecture notes

    CERN Document Server

    Crighton, D G; Williams, J E Ffowcs; Heckl, M; Leppington, F G

    1992-01-01

    Modern Methods in Analytical Acoustics considers topics fundamental to the understanding of noise, vibration and fluid mechanisms. The series of lectures on which this material is based began by some twenty five years ago and has been developed and expanded ever since. Acknowledged experts in the field have given this course many times in Europe and the USA. Although the scope of the course has widened considerably, the primary aim of teaching analytical techniques of acoustics alongside specific areas of wave motion and unsteady fluid mechanisms remains. The distinguished authors of this volume are drawn from Departments of Acoustics, Engineering of Applied Mathematics in Berlin, Cambridge and London. Their intention is to reach a wider audience of all those concerned with acoustic analysis than has been able to attend the course.

  18. OPTIMAL METHOD FOR PREPARATION OF SILICATE ROCK SAMPLES FOR ANALYTICAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Maja Vrkljan

    2004-12-01

    Full Text Available The purpose of this study was to determine an optimal dissolution method for silicate rock samples for further analytical purposes. Analytical FAAS method of determining cobalt, chromium, copper, nickel, lead and zinc content in gabbro sample and geochemical standard AGV-1 has been applied for verification. Dissolution in mixtures of various inorganic acids has been tested, as well as Na2CO3 fusion technique. The results obtained by different methods have been compared and dissolution in the mixture of HNO3 + HF has been recommended as optimal.

  19. A graph algebra for scalable visual analytics.

    Science.gov (United States)

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  20. Analytic Methods Used in Quality Control in a Compounding Pharmacy.

    Science.gov (United States)

    Allen, Loyd V

    2017-01-01

    Analytical testing will no doubt become a more important part of pharmaceutical compounding as the public and regulatory agencies demand increasing documentation of the quality of compounded preparations. Compounding pharmacists must decide what types of testing and what amount of testing to include in their quality-control programs, and whether testing should be done in-house or outsourced. Like pharmaceutical compounding, analytical testing should be performed only by those who are appropriately trained and qualified. This article discusses the analytical methods that are used in quality control in a compounding pharmacy. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  1. EPA's analytical methods for water: The next generation

    International Nuclear Information System (INIS)

    Hites, R.A.; Budde, W.L.

    1991-01-01

    By the late 1970s, it had become clear to EPA that organic compounds were polluting many of the nation's waters. By 1977, as a result of a lawsuit by several environmentally concerned plaintiffs, EPA had focused on a list of 114 'priority' organic pollutants. Its long-term goal was the regulation of specific compounds that were found to pose significant environmental problems, a daunting task. Tens of thousands of samples needed to be measured by hundreds of different laboratories. Clearly, there were concerns about the comparability of data among laboratories. The result was a series of laboratory-based analytical 'methods.' These EPA methods are detailed, step-by-step directions (recipes) that describe everything the analyst needs to know to complete a satisfactory analysis. During the 1970s the first set of methods was developed; this was the '600 series' for the analysis of organic compounds in wastewater. In 1979 and the 1980s, a set of '500 series' methods, focusing on drinking water, was developed. By now, many of the 500 and 600 series methods are in widespread use, and it is clear that there are considerably overlaps among the methods in terms of both procedures and analytes. Indiana University was asked by EPA to consider the question, 'Is it possible to revise or eliminate some of the 500 and 600 series methods and effect a savings of time and money?' This and related questions were studied and recommendations were developed

  2. Application of capability indices and control charts in the analytical method control strategy.

    Science.gov (United States)

    Oliva, Alexis; Llabres Martinez, Matías

    2017-08-01

    In this study, we assessed the usefulness of control charts in combination with the process capability indices, C pm and C pk , in the control strategy of an analytical method. The traditional X-chart and moving range chart were used to monitor the analytical method over a 2-year period. The results confirmed that the analytical method is in-control and stable. Different criteria were used to establish the specifications limits (i.e. analyst requirements) for fixed method performance (i.e. method requirements). If the specification limits and control limits are equal in breadth, the method can be considered "capable" (C pm  = 1), but it does not satisfy the minimum method capability requirements proposed by Pearn and Shu (2003). Similar results were obtained using the C pk index. The method capability was also assessed as a function of method performance for fixed analyst requirements. The results indicate that the method does not meet the requirements of the analytical target approach. A real-example data of a SEC with light-scattering detection method was used as a model whereas previously published data were used to illustrate the applicability of the proposed approach. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    Science.gov (United States)

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1988-01-01

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises (1) a whole blood sample disc, (2) a serum sample disc, (3) a sample preparation rotor, and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc in capillary tubes filled by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analytical rotor for analysis by conventional methods.

  4. Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method

    Science.gov (United States)

    Hajipour, Mojtaba; Jajarmi, Amin

    2018-02-01

    Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.

  5. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    International Nuclear Information System (INIS)

    Malin, Wahlberg; Imre, Pazsit

    2005-01-01

    The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)

  6. Contribution to analytical solution of neutron slowing down problem in homogeneous and heterogeneous media

    International Nuclear Information System (INIS)

    Stefanovic, D.B.

    1970-12-01

    The objective of this work is to describe the new analytical solution of the neutron slowing down equation for infinite monoatomic media with arbitrary energy dependence of cross section. The solution is obtained by introducing Green slowing down functions instead of starting from slowing down equations directly. The previously used methods for calculation of fission neutron spectra in the reactor cell were numerical. The proposed analytical method was used for calculating the space-energy distribution of fast neutrons and number of neutron reactions in a thermal reactor cell. The role of analytical method in solving the neutron slowing down in reactor physics is to enable understating of the slowing down process and neutron transport. The obtained results could be used as standards for testing the accuracy od approximative and practical methods

  7. Analytical chromatography. Methods, instrumentation and applications

    International Nuclear Information System (INIS)

    Yashin, Ya I; Yashin, A Ya

    2006-01-01

    The state-of-the-art and the prospects in the development of main methods of analytical chromatography, viz., gas, high performance liquid and ion chromatographic techniques, are characterised. Achievements of the past 10-15 years in the theory and general methodology of chromatography and also in the development of new sorbents, columns and chromatographic instruments are outlined. The use of chromatography in the environmental control, biology, medicine, pharmaceutics, and also for monitoring the quality of foodstuffs and products of chemical, petrochemical and gas industries, etc. is considered.

  8. The Emergence of the Analytical Method

    DEFF Research Database (Denmark)

    Plum, Maja

    2012-01-01

    accountability, visibility and documentation. It is argued that pedagogy is generated as a sequential and unit-specified way of working on the production of ‘the learning child’, forming a time- and material-optimising approach. Hereby, the nursery teacher, as a daily scientific researcher, comes to serve...... the nation by an ongoing observational intervention, producing the learning foundation for the entrepreneurial citizen, and thus the nation as a knowledge society in a globalised world. This is what this article terms the emergence of the analytical method....

  9. Parallel Fast Multipole Boundary Element Method for crustal dynamics

    International Nuclear Information System (INIS)

    Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar

    2010-01-01

    Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.

  10. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  11. A highly scalable massively parallel fast marching method for the Eikonal equation

    Science.gov (United States)

    Yang, Jianming; Stern, Frederick

    2017-03-01

    The fast marching method is a widely used numerical method for solving the Eikonal equation arising from a variety of scientific and engineering fields. It is long deemed inherently sequential and an efficient parallel algorithm applicable to large-scale practical applications is not available in the literature. In this study, we present a highly scalable massively parallel implementation of the fast marching method using a domain decomposition approach. Central to this algorithm is a novel restarted narrow band approach that coordinates the frequency of communications and the amount of computations extra to a sequential run for achieving an unprecedented parallel performance. Within each restart, the narrow band fast marching method is executed; simple synchronous local exchanges and global reductions are adopted for communicating updated data in the overlapping regions between neighboring subdomains and getting the latest front status, respectively. The independence of front characteristics is exploited through special data structures and augmented status tags to extract the masked parallelism within the fast marching method. The efficiency, flexibility, and applicability of the parallel algorithm are demonstrated through several examples. These problems are extensively tested on six grids with up to 1 billion points using different numbers of processes ranging from 1 to 65536. Remarkable parallel speedups are achieved using tens of thousands of processes. Detailed pseudo-codes for both the sequential and parallel algorithms are provided to illustrate the simplicity of the parallel implementation and its similarity to the sequential narrow band fast marching algorithm.

  12. Fast Multilevel Panel Method for Wind Turbine Rotor Flow Simulations

    NARCIS (Netherlands)

    van Garrel, Arne; Venner, Cornelis H.; Hoeijmakers, Hendrik Willem Marie

    2017-01-01

    A fast multilevel integral transform method has been developed that enables the rapid analysis of unsteady inviscid flows around wind turbines rotors. A low order panel method is used and the new multi-level multi-integration cluster (MLMIC) method reduces the computational complexity for

  13. Thermal-hydraulic methods in fast reactor safety

    International Nuclear Information System (INIS)

    Weber, D.P.; Briggs, L.L.

    1985-01-01

    Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided

  14. A first course in ordinary differential equations analytical and numerical methods

    CERN Document Server

    Hermann, Martin

    2014-01-01

    This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed t...

  15. A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups.

    Science.gov (United States)

    de Andrade, Jucimara Kulek; de Andrade, Camila Kulek; Komatsu, Emy; Perreault, Hélène; Torres, Yohandra Reyes; da Rosa, Marcos Roberto; Felsner, Maria Lurdes

    2017-08-01

    Corn syrups, important ingredients used in food and beverage industries, often contain high levels of 5-hydroxymethyl-2-furfural (HMF), a toxic contaminant. In this work, an in house validation of a difference spectrophotometric method for HMF analysis in corn syrups was developed using sophisticated statistical tools by the first time. The methodology showed excellent analytical performance with good selectivity, linearity (R 2 =99.9%, r>0.99), accuracy and low limits (LOD=0.10mgL -1 and LOQ=0.34mgL -1 ). An excellent precision was confirmed by repeatability (RSD (%)=0.30) and intermediate precision (RSD (%)=0.36) estimates and by Horrat value (0.07). A detailed study of method precision using a nested design demonstrated that variation sources such as instruments, operators and time did not interfere in the variability of results within laboratory and consequently in its intermediate precision. The developed method is environmentally friendly, fast, cheap and easy to implement resulting in an attractive alternative for corn syrups quality control in industries and official laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Real time simulation method for fast breeder reactors dynamics

    International Nuclear Information System (INIS)

    Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.

    1985-01-01

    The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)

  17. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    Science.gov (United States)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  18. Fast methods for long-range interactions in complex systems. Lecture notes

    Energy Technology Data Exchange (ETDEWEB)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)

    2011-10-13

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  19. Fast methods for long-range interactions in complex systems. Lecture notes

    International Nuclear Information System (INIS)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas

    2011-01-01

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  20. Use of scientometrics to assess nuclear and other analytical methods

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1986-01-01

    Scientometrics involves the use of quantitative methods to investigate science viewed as an information process. Scientometric studies can be useful in ascertaining which methods have been most employed for various analytical determinations as well as for predicting which methods will continue to be used in the immediate future and which appear to be losing favor with the analytical community. Published papers in the technical literature are the primary source materials for scientometric studies; statistical methods and computer techniques are the tools. Recent studies have included growth and trends in prompt nuclear analysis impact of research published in a technical journal, and institutional and national representation, speakers and topics at several IAEA conferences, at modern trends in activation analysis conferences, and at other non-nuclear oriented conferences. Attempts have also been made to predict future growth of various topics and techniques. 13 refs., 4 figs., 17 tabs

  1. Use of scientometrics to assess nuclear and other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S.

    1986-01-01

    Scientometrics involves the use of quantitative methods to investigate science viewed as an information process. Scientometric studies can be useful in ascertaining which methods have been most employed for various analytical determinations as well as for predicting which methods will continue to be used in the immediate future and which appear to be losing favor with the analytical community. Published papers in the technical literature are the primary source materials for scientometric studies; statistical methods and computer techniques are the tools. Recent studies have included growth and trends in prompt nuclear analysis impact of research published in a technical journal, and institutional and national representation, speakers and topics at several IAEA conferences, at modern trends in activation analysis conferences, and at other non-nuclear oriented conferences. Attempts have also been made to predict future growth of various topics and techniques. 13 refs., 4 figs., 17 tabs.

  2. Prediction of polymer flooding performance using an analytical method

    International Nuclear Information System (INIS)

    Tan Czek Hoong; Mariyamni Awang; Foo Kok Wai

    2001-01-01

    The study investigated the applicability of an analytical method developed by El-Khatib in polymer flooding. Results from a simulator UTCHEM and experiments were compared with the El-Khatib prediction method. In general, by assuming a constant viscosity polymer injection, the method gave much higher recovery values than the simulation runs and the experiments. A modification of the method gave better correlation, albeit only oil production. Investigation is continuing on modifying the method so that a better overall fit can be obtained for polymer flooding. (Author)

  3. Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method

    OpenAIRE

    Hadi Farhadian; Homayoon Katibeh

    2015-01-01

    In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these t...

  4. Fast method and ultra fast screening for determination of 90Sr in milk and dairy products

    International Nuclear Information System (INIS)

    Kabai, E.; Hornung, L.; Savkin, B.T.; Poppitz-Spuhler, A.; Hiersche, L.

    2011-01-01

    In emergency situation or in case of defence against nuclear hazards, the rapid analysis of radioisotopes in food products is essential. Radiostrontium is one of the most interesting isotopes in case of emergency. The determination of radiostrontium in milk and dairy products plays an important role especially for infants. The procedures described here were tested for fast determination of 90 Sr. The typical chemical recovery of the proposed fast procedure for determination of strontium from milk and dairy products was 90% and the time needed for analysis was one working day. The achieved detection limit for milk is 0.8 Bq/l. An ultra fast screening method allows the determination of radiostrontium with quantitative recovery within 1 hour. The minimum detectable activity in this case is 230 Bq/l.

  5. New method of fast simulation for a hadron calorimeter response

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.; Sutiak, J.; Tokar, S.; Zenis, T.

    2003-01-01

    In this work we present the new method of a fast Monte-Carlo simulation of a hadron calorimeter response. It is based on the three-dimensional parameterization of the hadronic shower obtained from the ATLAS TILECAL test beam data and GEANT simulations. A new approach of including the longitudinal fluctuations of hadronic shower is described. The obtained results of the fast simulation are in good agreement with the TILECAL experimental data

  6. Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.A.; Grant, K.E.

    1994-09-01

    The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work

  7. Influence function method for fast estimation of BWR core performance

    International Nuclear Information System (INIS)

    Rahnema, F.; Martin, C.L.; Parkos, G.R.; Williams, R.D.

    1993-01-01

    The model, which is based on the influence function method, provides rapid estimate of important quantities such as margins to fuel operating limits, the effective multiplication factor, nodal power and void and bundle flow distributions as well as the traversing in-core probe (TIP) and local power range monitor (LPRM) readings. The fast model has been incorporated into GE's three-dimensional core monitoring system (3D Monicore). In addition to its predicative capability, the model adapts to LPRM readings in the monitoring mode. Comparisons have shown that the agreement between the results of the fast method and those of the standard 3D Monicore is within a few percent. (orig.)

  8. Application of synthesis methods to two-dimensional fast reactor transient study

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Hirakawa, Naohiro

    1978-01-01

    Space time synthesis and time synthesis codes were developed and applied to the space-dependent kinetics benchmark problem of a two-dimensional fast reactor model, and it was found both methods are accurate and economical for the fast reactor kinetics study. Comparison between the space time synthesis and the time synthesis was made. Also, in space time synthesis, the influence of the number of trial functions on the error and on the computing time and the effect of degeneration of expansion coefficients are investigated. The matrix factorization method is applied to the inversion of the matrix equation derived from the synthesis equation, and it is indicated that by the use of this scheme space-dependent kinetics problem of a fast reactor can be solved efficiently by space time synthesis. (auth.)

  9. Tank 48H Waste Composition and Results of Investigation of Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Walker , D.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-02

    This report serves two purposes. First, it documents the analytical results of Tank 48H samples taken between April and August 1996. Second, it describes investigations of the precision of the sampling and analytical methods used on the Tank 48H samples.

  10. Literature Review on Processing and Analytical Methods for ...

    Science.gov (United States)

    Report The purpose of this report was to survey the open literature to determine the current state of the science regarding the processing and analytical methods currently available for recovery of F. tularensis from water and soil matrices, and to determine what gaps remain in the collective knowledge concerning F. tularensis identification from environmental samples.

  11. An analytical method of estimating Value-at-Risk on the Belgrade Stock Exchange

    Directory of Open Access Journals (Sweden)

    Obadović Milica D.

    2009-01-01

    Full Text Available This paper presents market risk evaluation for a portfolio consisting of shares that are continuously traded on the Belgrade Stock Exchange, by applying the Value-at-Risk model - the analytical method. It describes the manner of analytical method application and compares the results obtained by implementing this method at different confidence levels. Method verification was carried out on the basis of the failure rate that demonstrated the confidence level for which this method was acceptable in view of the given conditions.

  12. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  13. Continuous Analytical Performances Monitoring at the On-Site Laboratory through Proficiency, Inter-Laboratory Testing and Inter-Comparison Analytical Methods

    International Nuclear Information System (INIS)

    Duhamel, G.; Decaillon, J.-G.; Dashdondog, S.; Kim, C.-K.; Toervenyi, A.; Hara, S.; Kato, S.; Kawaguchi, T.; Matsuzawa, K.

    2015-01-01

    Since 2008, as one measure to strengthen its quality management system, the On-Site Laboratory for nuclear safeguards at the Rokkasho Reprocessing Plant, has increased its participation in domestic and international proficiency and inter-laboratory testing for the purpose of determining analytical method accuracy, precision and robustness but also to support method development and improvement. This paper provides a description of the testing and its scheduling. It presents the way the testing was optimized to cover most of the analytical methods at the OSL. The paper presents the methodology used for the evaluation of the obtained results based on Analysis of variance (ANOVA). Results are discussed with respect to random, systematic and long term systematic error. (author)

  14. Reducing microwave absorption with fast frequency modulation.

    Science.gov (United States)

    Qin, Juehang; Hubler, A

    2017-05-01

    We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.

  15. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  16. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    Science.gov (United States)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit

  17. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  18. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  19. Review and evaluation of spark source mass spectrometry as an analytical method

    International Nuclear Information System (INIS)

    Beske, H.E.

    1981-01-01

    The analytical features and most important fields of application of spark source mass spectrometry are described with respect to the trace analysis of high-purity materials and the multielement analysis of technical alloys, geochemical and cosmochemical, biological and radioactive materials, as well as in environmental analysis. Comparisons are made to other analytical methods. The distribution of the method as well as opportunities for contract analysis are indicated and developmental tendencies discussed. (orig.) [de

  20. An interactive website for analytical method comparison and bias estimation.

    Science.gov (United States)

    Bahar, Burak; Tuncel, Ayse F; Holmes, Earle W; Holmes, Daniel T

    2017-12-01

    Regulatory standards mandate laboratories to perform studies to ensure accuracy and reliability of their test results. Method comparison and bias estimation are important components of these studies. We developed an interactive website for evaluating the relative performance of two analytical methods using R programming language tools. The website can be accessed at https://bahar.shinyapps.io/method_compare/. The site has an easy-to-use interface that allows both copy-pasting and manual entry of data. It also allows selection of a regression model and creation of regression and difference plots. Available regression models include Ordinary Least Squares, Weighted-Ordinary Least Squares, Deming, Weighted-Deming, Passing-Bablok and Passing-Bablok for large datasets. The server processes the data and generates downloadable reports in PDF or HTML format. Our website provides clinical laboratories a practical way to assess the relative performance of two analytical methods. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. An analytic method for S-expansion involving resonance and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ipinza, M.C.; Penafiel, D.M. [Departamento de Fisica, Universidad de Concepcion (Chile); DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy); Lingua, F. [DISAT, Politecnico di Torino (Italy); Ravera, L. [DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy)

    2016-11-15

    In this paper we describe an analytic method able to give the multiplication table(s) of the set(s) involved in an S-expansion process (with either resonance or 0{sub S}-resonant-reduction) for reaching a target Lie (super)algebra from a starting one, after having properly chosen the partitions over subspaces of the considered (super)algebras. This analytic method gives us a simple set of expressions to find the subset decomposition of the set(s) involved in the process. Then, we use the information coming from both the initial (super)algebra and the target one for reaching the multiplication table(s) of the mentioned set(s). Finally, we check associativity with an auxiliary computational algorithm, in order to understand whether the obtained set(s) can describe semigroup(s) or just abelian set(s) connecting two (super)algebras. We also give some interesting examples of application, which check and corroborate our analytic procedure and also generalize some result already presented in the literature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Analytical method used for intermediate products in continuous distillation of furfural

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.L.; Jia, M.; Wang, L.J.; Deng, Y.X.

    1981-01-01

    During distillation of furfural, analysis of main components in the crude furfural condensate and intermediate products is very important. Since furfural and methylfurfural are homologous and both furfural and acetone contain a carbonyl group, components in the sample must be separated before analysis. An improved analytical method has been studied, the accuracy and precision of which would meet the requirement of industrial standards. The analytical procedure was provided as follows: to determine the furfural content with gravimetric method of barbituric acid; to determine the methanol content with dichromate method after precipitating furfural and acetone, and distilling the liquid for analysis; and to determine the methylfurfural content with bromide-bromate method, which can be used only in the sample containing higher content of methylfurfural. For the sample in low content, the gas-liquid chromatographic method can be used. 7 references.

  3. Method of sections in analytical calculations of pneumatic tires

    Science.gov (United States)

    Tarasov, V. N.; Boyarkina, I. V.

    2018-01-01

    Analytical calculations in the pneumatic tire theory are more preferable in comparison with experimental methods. The method of section of a pneumatic tire shell allows to obtain equations of intensities of internal forces in carcass elements and bead rings. Analytical dependencies of intensity of distributed forces have been obtained in tire equator points, on side walls (poles) and pneumatic tire bead rings. Along with planes in the capacity of secant surfaces cylindrical surfaces are used for the first time together with secant planes. The tire capacity equation has been obtained using the method of section, by means of which a contact body is cut off from the tire carcass along the contact perimeter by the surface which is normal to the bearing surface. It has been established that the Laplace equation for the solution of tasks of this class of pneumatic tires contains two unknown values that requires the generation of additional equations. The developed computational schemes of pneumatic tire sections and new equations allow to accelerate the pneumatic tire structure improvement process during engineering.

  4. Scalable fast multipole methods for vortex element methods

    KAUST Repository

    Hu, Qi

    2012-11-01

    We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.

  5. -Omic and Electronic Health Records Big Data Analytics for Precision Medicine

    Science.gov (United States)

    Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D.; Venugopalan, Janani; Hoffman, Ryan; Wang, May D.

    2017-01-01

    Objective Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of health care. Methods In this article, we present -omic and EHR data characteristics, associated challenges, and data analytics including data pre-processing, mining, and modeling. Results To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Conclusion Big data analytics is able to address –omic and EHR data challenges for paradigm shift towards precision medicine. Significance Big data analytics makes sense of –omic and EHR data to improve healthcare outcome. It has long lasting societal impact. PMID:27740470

  6. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sulfide analytical methods and applicability. 425.03 Section 425.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY General Provisions...

  7. Elasto-plastic strain analysis by a semi-analytical method

    Indian Academy of Sciences (India)

    deformation problems following a semi-analytical method, incorporating the com- ..... The set of equations in (8) are non-linear in nature, which is solved by direct ...... Here, [K] and [M] are stiffness matrix and mass matrix which are of the form ...

  8. Analytical models for low-power rectenna design

    NARCIS (Netherlands)

    Akkermans, J.A.G.; Beurden, van M.C.; Doodeman, G.J.N.; Visser, H.J.

    2005-01-01

    The design of a low-cost rectenna for low-power applications is presented. The rectenna is designed with the use of analytical models and closed-form analytical expressions. This allows for a fast design of the rectenna system. To acquire a small-area rectenna, a layered design is proposed.

  9. The analytic regularization ζ function method and the cut-off method in Casimir effect

    International Nuclear Information System (INIS)

    Svaiter, N.F.; Svaiter, B.F.

    1990-01-01

    The zero point energy associated to a hermitian massless scalar field in the presence of perfectly reflecting plates in a three dimensional flat space-time is discussed. A new technique to unify two different methods - the ζ function and a variant of the cut-off method - used to obtain the so called Casimir energy is presented, and the proof of the analytic equivalence between both methods is given. (author)

  10. Development of CAD implementing the algorithm of boundary elements’ numerical analytical method

    Directory of Open Access Journals (Sweden)

    Yulia V. Korniyenko

    2015-03-01

    Full Text Available Up to recent days the algorithms for numerical-analytical boundary elements method had been implemented with programs written in MATLAB environment language. Each program had a local character, i.e. used to solve a particular problem: calculation of beam, frame, arch, etc. Constructing matrices in these programs was carried out “manually” therefore being time-consuming. The research was purposed onto a reasoned choice of programming language for new CAD development, allows to implement algorithm of numerical analytical boundary elements method and to create visualization tools for initial objects and calculation results. Research conducted shows that among wide variety of programming languages the most efficient one for CAD development, employing the numerical analytical boundary elements method algorithm, is the Java language. This language provides tools not only for development of calculating CAD part, but also to build the graphic interface for geometrical models construction and calculated results interpretation.

  11. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2013-01-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  12. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: ppessoa@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@imp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  13. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  14. An Augmented Fast Marching Method for Computing Skeletons and Centerlines

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2002-01-01

    We present a simple and robust method for computing skeletons for arbitrary planar objects and centerlines for 3D objects. We augment the Fast Marching Method (FMM) widely used in level set applications by computing the paramterized boundary location every pixel came from during the boundary

  15. Frontier in nanoscale flows fractional calculus and analytical methods

    CERN Document Server

    Lewis, Roland; Liu, Hong-yan

    2014-01-01

    This ebook covers the basic properties of nanoscale flows, and various analytical and numerical methods for nanoscale flows and environmental flows. This ebook is a good reference not only for audience of the journal, but also for various communities in mathematics, nanotechnology and environmental science.

  16. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman

    2012-06-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.

  17. Methods and tools to detect thermal noise in fast reactors

    International Nuclear Information System (INIS)

    Motta, M.; Giovannini, R.

    1985-07-01

    The Specialists' Meeting on ''Methods and Tools to Detect Thermal Noise in Fast Reactors'' was held in Bologna on 8-10 October 1984. The meeting was hosted by the ENEA and was sponsored by the IAEA on the recommendation of the International Working Group on Fast Reactors. 17 participants attended the meeting from France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, Joint Research Centre of CEC and from IAEA. The meeting was presided over by Prof. Mario Motta of Italy. The purpose of the meeting was to review and discuss methods and tools for temperature noise detection and related analysis as a potential means for detecting local blockages in fuel and blanket subassemblies and other faults in LMFBR. The meeting was divided into four technical sessions as follows: 1. National review presentations on application purposes and research activities for thermal noise detection. (5 papers); 2. Detection instruments and electronic equipment for temperature measurements in fast reactors. (5 papers); 3. Physical models. (2 papers); 4. Signal processing techniques. (3 papers). A separate abstract was prepared for each of these papers

  18. Analytical method for determining colour intensities based on Cherenkov radiation colour quenching

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Gomez, C; Lopez-Gonzalez, J deD; Ferro-Garcia, M A [Univ. of Granada, Granada (Spain). Faculty of Sciences, Dept. of Inorganic Chemistry. Radiochemistry Section; Consejo Superior de Investigaciones Cientificas, Granada (Spain). Dept. of Chemical Research Coordinated Centre)

    1983-01-01

    A study was made for determining color intensities using as luminous non-monochromatic source produced by the Cherenkov emission in the walls of a glass capillary which acts as luminous source itself inside the colored solution to be evaluated. The reproducibility of this method has been compared with the spectrophotometric assay; the relative errors of both analytical methods have been calculated for different concentrations of congo red solution in the range of minimal error, according to Ringbom's criterion. The sensitivity of this analytical method has been studied for the two ..beta..-emitters employed: /sup 90/Sr//sup 90/Y and /sup 204/Tl.

  19. Doublet method for very fast autocoding

    Directory of Open Access Journals (Sweden)

    Berman Jules J

    2004-09-01

    Full Text Available Abstract Background Autocoding (or automatic concept indexing occurs when a software program extracts terms contained within text and maps them to a standard list of concepts contained in a nomenclature. The purpose of autocoding is to provide a way of organizing large documents by the concepts represented in the text. Because textual data accumulates rapidly in biomedical institutions, the computational methods used to autocode text must be very fast. The purpose of this paper is to describe the doublet method, a new algorithm for very fast autocoding. Methods An autocoder was written that transforms plain-text into intercalated word doublets (e.g. "The ciliary body produces aqueous humor" becomes "The ciliary, ciliary body, body produces, produces aqueous, aqueous humor". Each doublet is checked against an index of doublets extracted from a standard nomenclature. Matching doublets are assigned a numeric code specific for each doublet found in the nomenclature. Text doublets that do not match the index of doublets extracted from the nomenclature are not part of valid nomenclature terms. Runs of matching doublets from text are concatenated and matched against nomenclature terms (also represented as runs of doublets. Results The doublet autocoder was compared for speed and performance against a previously published phrase autocoder. Both autocoders are Perl scripts, and both autocoders used an identical text (a 170+ Megabyte collection of abstracts collected through a PubMed search and the same nomenclature (neocl.xml, containing over 102,271 unique names of neoplasms. In side-by-side comparison on the same computer, the doublet method autocoder was 8.4 times faster than the phrase autocoder (211 seconds versus 1,776 seconds. The doublet method codes 0.8 Megabytes of text per second on a desktop computer with a 1.6 GHz processor. In addition, the doublet autocoder successfully matched terms that were missed by the phrase autocoder, while the

  20. Origin Determination and Differentiation of Gelatin Species of Bovine, Porcine, and Piscine through Analytical Methods

    Directory of Open Access Journals (Sweden)

    Hatice Saadiye Eryılmaz

    2017-06-01

    Full Text Available Gelatin origin determination has been a crucial issue with respect to religion and health concerns. It is necessary to analyze the origin of gelatin with reliable methods to ensure not only consumer choices but also safety and legal requirements such as labeling. There are many analytical methods developed for detection and/or quantification of gelatin from different sources including bovine, porcine and piscine. These analytical methods can be divided into physicochemical, chromatographic, immunochemical, spectroscopic and molecular methods. Moreover, computational methods have been used in some cases consecutively to ensure sensitivity of the analytical methods. Every method has different advantages and limitations due to their own principles, applied food matrix and process conditions of material. The present review intends to give insight into novel analytical methods and perspectives that have been developed to differentiate porcine, bovine and piscine gelatins and to establish their authenticity. Almost every method can be succeeded in origin determination; however, it is a matter of sensitivity in that some researches fail to ensure sufficient differentiation.

  1. Bio-analytical method development and validation of Rasagiline by high performance liquid chromatography tandem mass spectrometry detection and its application to pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Konda

    2012-10-01

    Full Text Available The most suitable bio-analytical method based on liquid–liquid extraction has been developed and validated for quantification of Rasagiline in human plasma. Rasagiline-13C3 mesylate was used as an internal standard for Rasagiline. Zorbax Eclipse Plus C18 (2.1 mm×50 mm, 3.5 μm column provided chromatographic separation of analyte followed by detection with mass spectrometry. The method involved simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode using an API-4000 system. The total run time was 3.0 min. The proposed method has been validated with the linear range of 5–12000 pg/mL for Rasagiline. The intra-run and inter-run precision values were within 1.3%–2.9% and 1.6%–2.2% respectively for Rasagiline. The overall recovery for Rasagiline and Rasagiline-13C3 mesylate analog was 96.9% and 96.7% respectively. This validated method was successfully applied to the bioequivalence and pharmacokinetic study of human volunteers under fasting condition. Keywords: High performance liquid chromatography, Mass spectrometry, Rasagiline, Liquid–liquid extraction

  2. Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores

  3. Feature extraction from mammographic images using fast marching methods

    International Nuclear Information System (INIS)

    Bottigli, U.; Golosio, B.

    2002-01-01

    Features extraction from medical images represents a fundamental step for shape recognition and diagnostic support. The present work faces the problem of the detection of large features, such as massive lesions and organ contours, from mammographic images. The regions of interest are often characterized by an average grayness intensity that is different from the surrounding. In most cases, however, the desired features cannot be extracted by simple gray level thresholding, because of image noise and non-uniform density of the surrounding tissue. In this work, edge detection is achieved through the fast marching method (Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999), which is based on the theory of interface evolution. Starting from a seed point in the shape of interest, a front is generated which evolves according to an appropriate speed function. Such function is expressed in terms of geometric properties of the evolving interface and of image properties, and should become zero when the front reaches the desired boundary. Some examples of application of such method to mammographic images from the CALMA database (Nucl. Instr. and Meth. A 460 (2001) 107) are presented here and discussed

  4. A Computer Library for Ray Tracing in Analytical Media

    International Nuclear Information System (INIS)

    Miqueles, Eduardo; Coimbra, Tiago A; Figueiredo, J J S de

    2013-01-01

    Ray tracing technique is an important tool not only for forward but also for inverse problems in Geophysics, which most of the seismic processing steps depends on. However, implementing ray tracing codes can be very time consuming. This article presents a computer library to trace rays in 2.5D media composed by stack of layers. The velocity profile inside each layer is such that the eikonal equation can be analitically solved. Therefore, the ray tracing within such profile is made fast and accurately. The great advantage of an analytical ray tracing library is the numerical precision of the quantities computed and the fast execution of the implemented codes. Although ray tracing programs already exist for a long time, for example the seis package by Cervený, with a numerical approach to compute the ray. Regardless of the fact that numerical methods can solve more general problems, the analytical ones could be part of a more sofisticated simulation process, where the ray tracing time is completely relevant. We demonstrate the feasibility of our codes using numerical examples.

  5. Modelling of packet traffic with matrix analytic methods

    DEFF Research Database (Denmark)

    Andersen, Allan T.

    1995-01-01

    BISDN network. The heuristic formula did not seem to yield substantially better results than already available approximations. Finally, some results for the finite capacity BMAP/G/1 queue have been obtained. The steady state probability vector of the embedded chain is found by a direct method where...... process. A heuristic formula for the tail behaviour of a single server queue fed by a superposition of renewal processes has been evaluated. The evaluation was performed by applying Matrix Analytic methods. The heuristic formula has applications in the Call Admission Control (CAC) procedure of the future...

  6. Analytical methods manual for the Mineral Resource Surveys Program, U.S. Geological Survey

    Science.gov (United States)

    Arbogast, Belinda F.

    1996-01-01

    The analytical methods validated by the Mineral Resource Surveys Program, Geologic Division, is the subject of this manual. This edition replaces the methods portion of Open-File Report 90-668 published in 1990. Newer methods may be used which have been approved by the quality assurance (QA) project and are on file with the QA coordinator.This manual is intended primarily for use by laboratory scientists; this manual can also assist laboratory users to evaluate the data they receive. The analytical methods are written in a step by step approach so that they may be used as a training tool and provide detailed documentation of the procedures for quality assurance. A "Catalog of Services" is available for customer (submitter) use with brief listings of:the element(s)/species determined,method of determination,reference to cite,contact person,summary of the technique,and analyte concentration range.For a copy please contact the Branch office at (303) 236-1800 or fax (303) 236-3200.

  7. Analytical calculation of the torque exerted between two perpendicularly magnetized magnets

    Science.gov (United States)

    Allag, H.; Yonnet, J.-P.; Latreche, M. E. H.

    2011-04-01

    Analytical expressions of the torque on cuboidal permanent magnets are given. The only hypothesis is that the magnetizations are rigid, uniform, and perpendicularly oriented. The analytical calculation is made by replacing magnetizations by distributions of magnetic charges on the magnet poles. The torque expressions are obtained using the Lorentz force method. The results are valid for any relative magnet position, and the torque can be obtained with respect to any reference point. Although these expressions seem rather complicated, they enable an extremely fast and accurate torque calculation on a permanent magnet in the presence of a magnetic field of another permanent magnet.

  8. An analytical nodal method for time-dependent one-dimensional discrete ordinates problems

    International Nuclear Information System (INIS)

    Barros, R.C. de

    1992-01-01

    In recent years, relatively little work has been done in developing time-dependent discrete ordinates (S N ) computer codes. Therefore, the topic of time integration methods certainly deserves further attention. In this paper, we describe a new coarse-mesh method for time-dependent monoenergetic S N transport problesm in slab geometry. This numerical method preserves the analytic solution of the transverse-integrated S N nodal equations by constants, so we call our method the analytical constant nodal (ACN) method. For time-independent S N problems in finite slab geometry and for time-dependent infinite-medium S N problems, the ACN method generates numerical solutions that are completely free of truncation errors. Bsed on this positive feature, we expect the ACN method to be more accurate than conventional numerical methods for S N transport calculations on coarse space-time grids

  9. Improved meta-analytic methods show no effect of chromium supplements on fasting glucose.

    Science.gov (United States)

    Bailey, Christopher H

    2014-01-01

    The trace mineral chromium has been extensively researched over the years in its role in glucose metabolism. Dietary supplement companies have attempted to make claims that chromium may be able to treat or prevent diabetes. Previous meta-analyses/systematic reviews have indicated that chromium supplementation results in a significant lowering of fasting glucose in diabetics but not in nondiabetics. A meta-analysis was conducted using an alternative measure of effect size, d(ppc2) in order to account for changes in the control group as well as the chromium group. The literature search included MEDLINE, the Cochrane Controlled Trials Register, and previously published article reviews, systematic reviews, and meta-analyses. Included studies were randomized, placebo-controlled trials in the English language with subjects that were nonpregnant adults, both with and without diabetes. Sixteen studies with 809 participants (440 diabetics and 369 nondiabetics) were included in the analysis. Screening for publication bias indicated symmetry of the data. Tests of heterogeneity indicated the use of a fixed-effect model (I² = 0 %). The analysis indicated that there was no significant effect of chromium supplementation in diabetics or nondiabetics, with a weighted average effect size of 0.02 (SE = 0.07), p = 0.787, CI 95 % = -0.12 to 0.16. Chromium supplementation appears to provide no benefits to populations where chromium deficiency is unlikely.

  10. Survey of Technetium Analytical Production Methods Supporting Hanford Nuclear Materials Processing

    International Nuclear Information System (INIS)

    TROYER, G.L.

    1999-01-01

    This document provides a historical survey of analytical methods used for measuring 99 Tc in nuclear fuel reprocessing materials and wastes at Hanford. Method challenges including special sludge matrices tested are discussed. Special problems and recommendations are presented

  11. Analytical Quality by Design in pharmaceutical quality assurance: Development of a capillary electrophoresis method for the analysis of zolmitriptan and its impurities.

    Science.gov (United States)

    Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Del Bubba, Massimo; Pinzauti, Sergio; Furlanetto, Sandra

    2015-11-01

    A fast and selective CE method for the determination of zolmitriptan (ZOL) and its five potential impurities has been developed applying the analytical Quality by Design principles. Voltage, temperature, buffer concentration, and pH were investigated as critical process parameters that can influence the critical quality attributes, represented by critical resolution values between peak pairs, analysis time, and peak efficiency of ZOL-dimer. A symmetric screening matrix was employed for investigating the knowledge space, and a Box-Behnken design was used to evaluate the main, interaction, and quadratic effects of the critical process parameters on the critical quality attributes. Contour plots were drawn highlighting important interactions between buffer concentration and pH, and the gained information was merged into the sweet spot plots. Design space (DS) was established by the combined use of response surface methodology and Monte Carlo simulations, introducing a probability concept and thus allowing the quality of the analytical performances to be assured in a defined domain. The working conditions (with the interval defining the DS) were as follows: BGE, 138 mM (115-150 mM) phosphate buffer pH 2.74 (2.54-2.94); temperature, 25°C (24-25°C); voltage, 30 kV. A control strategy was planned based on method robustness and system suitability criteria. The main advantages of applying the Quality by Design concept consisted of a great increase of knowledge of the analytical system, obtained throughout multivariate techniques, and of the achievement of analytical assurance of quality, derived by probability-based definition of DS. The developed method was finally validated and applied to the analysis of ZOL tablets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast Reliability Assessing Method for Distribution Network with Distributed Renewable Energy Generation

    Science.gov (United States)

    Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming

    2018-01-01

    This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.

  13. Analytical Evaluation of Beam Deformation Problem Using Approximate Methods

    DEFF Research Database (Denmark)

    Barari, Amin; Kimiaeifar, A.; Domairry, G.

    2010-01-01

    The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified......, and this process produces noise in the obtained answers. This paper deals with the solution of second order of differential equation governing beam deformation using four analytical approximate methods, namely the Perturbation, Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM) and Variational...... Iteration Method (VIM). The comparisons of the results reveal that these methods are very effective, convenient and quite accurate for systems of non-linear differential equation....

  14. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    DEFF Research Database (Denmark)

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...

  15. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    International Nuclear Information System (INIS)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García; Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D.; Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz

    2015-01-01

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs

  16. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García [Instituto de Astronomía Teórica y Experimental, CONICET-UNC, Laprida 854, X5000BGR, Córdoba (Argentina); Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D. [Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz, E-mail: andresnicolas@oac.uncor.edu [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-10

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.

  17. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    Science.gov (United States)

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Improved Multilevel Fast Multipole Method for Higher-Order discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion b...

  19. Analytic processor model for fast design-space exploration

    NARCIS (Netherlands)

    Jongerius, R.; Mariani, G.; Anghel, A.; Dittmann, G.; Vermij, E.; Corporaal, H.

    2015-01-01

    In this paper, we propose an analytic model that takes as inputs a) a parametric microarchitecture-independent characterization of the target workload, and b) a hardware configuration of the core and the memory hierarchy, and returns as output an estimation of processor-core performance. To validate

  20. Analytical method for the identification and assay of 12 phthalates in cosmetic products: application of the ISO 12787 international standard "Cosmetics-Analytical methods-Validation criteria for analytical results using chromatographic techniques".

    Science.gov (United States)

    Gimeno, Pascal; Maggio, Annie-Françoise; Bousquet, Claudine; Quoirez, Audrey; Civade, Corinne; Bonnet, Pierre-Antoine

    2012-08-31

    Esters of phthalic acid, more commonly named phthalates, may be present in cosmetic products as ingredients or contaminants. Their presence as contaminant can be due to the manufacturing process, to raw materials used or to the migration of phthalates from packaging when plastic (polyvinyl chloride--PVC) is used. 8 phthalates (DBP, DEHP, BBP, DMEP, DnPP, DiPP, DPP, and DiBP), classified H360 or H361, are forbidden in cosmetics according to the European regulation on cosmetics 1223/2009. A GC/MS method was developed for the assay of 12 phthalates in cosmetics, including the 8 phthalates regulated. Analyses are carried out on a GC/MS system with electron impact ionization mode (EI). The separation of phthalates is obtained on a cross-linked 5%-phenyl/95%-dimethylpolysiloxane capillary column 30 m × 0.25 mm (i.d.) × 0.25 mm film thickness using a temperature gradient. Phthalate quantification is performed by external calibration using an internal standard. Validation elements obtained on standard solutions, highlight a satisfactory system conformity (resolution>1.5), a common quantification limit at 0.25 ng injected, an acceptable linearity between 0.5 μg mL⁻¹ and 5.0 μg mL⁻¹ as well as a precision and an accuracy in agreement with in-house specifications. Cosmetic samples ready for analytical injection are analyzed after a dilution in ethanol whereas more complex cosmetic matrices, like milks and creams, are assayed after a liquid/liquid extraction using ter-butyl methyl ether (TBME). Depending on the type of cosmetics analyzed, the common limits of quantification for the 12 phthalates were set at 0.5 or 2.5 μg g⁻¹. All samples were assayed using the analytical approach described in the ISO 12787 international standard "Cosmetics-Analytical methods-Validation criteria for analytical results using chromatographic techniques". This analytical protocol is particularly adapted when it is not possible to make reconstituted sample matrices. Copyright © 2012

  1. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Pade approximations via the analytical inversion method

    International Nuclear Information System (INIS)

    Aboanber, A E; Nahla, A A

    2002-01-01

    A method based on the Pade approximations is applied to the solution of the point kinetics equations with a time varying reactivity. The technique consists of treating explicitly the roots of the inhour formula. A significant improvement has been observed by treating explicitly the most dominant roots of the inhour equation, which usually would make the Pade approximation inaccurate. Also the analytical inversion method which permits a fast inversion of polynomials of the point kinetics matrix is applied to the Pade approximations. Results are presented for several cases of Pade approximations using various options of the method with different types of reactivity. The formalism is applicable equally well to non-linear problems, where the reactivity depends on the neutron density through temperature feedback. It was evident that the presented method is particularly good for cases in which the reactivity can be represented by a series of steps and performed quite well for more general cases

  2. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.

    2014-01-01

    corresponding to the piston movement, which has been shown to facilitate superior part load efficiency combined with high bandwidth compared to traditional displacement machines. However, DD machines need fast switching on-off valves with low pressure loss for efficient operation, especially in fast rotating......Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... method for DD seat valves are presented, taking into account the significant aspects related to obtaining efficient DD valves with basis in a given DD machine specifications. The seat area is minimized and the stroke length is minimized to obtain fast switching times while considering the pressure loss...

  3. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    Science.gov (United States)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen

    2016-01-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  4. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    Science.gov (United States)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.

    2016-12-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  5. Online Analytical Processing (OLAP: A Fast and Effective Data Mining Tool for Gene Expression Databases

    Directory of Open Access Journals (Sweden)

    Alkharouf Nadim W.

    2005-01-01

    Full Text Available Gene expression databases contain a wealth of information, but current data mining tools are limited in their speed and effectiveness in extracting meaningful biological knowledge from them. Online analytical processing (OLAP can be used as a supplement to cluster analysis for fast and effective data mining of gene expression databases. We used Analysis Services 2000, a product that ships with SQLServer2000, to construct an OLAP cube that was used to mine a time series experiment designed to identify genes associated with resistance of soybean to the soybean cyst nematode, a devastating pest of soybean. The data for these experiments is stored in the soybean genomics and microarray database (SGMD. A number of candidate resistance genes and pathways were found. Compared to traditional cluster analysis of gene expression data, OLAP was more effective and faster in finding biologically meaningful information. OLAP is available from a number of vendors and can work with any relational database management system through OLE DB.

  6. Online analytical processing (OLAP): a fast and effective data mining tool for gene expression databases.

    Science.gov (United States)

    Alkharouf, Nadim W; Jamison, D Curtis; Matthews, Benjamin F

    2005-06-30

    Gene expression databases contain a wealth of information, but current data mining tools are limited in their speed and effectiveness in extracting meaningful biological knowledge from them. Online analytical processing (OLAP) can be used as a supplement to cluster analysis for fast and effective data mining of gene expression databases. We used Analysis Services 2000, a product that ships with SQLServer2000, to construct an OLAP cube that was used to mine a time series experiment designed to identify genes associated with resistance of soybean to the soybean cyst nematode, a devastating pest of soybean. The data for these experiments is stored in the soybean genomics and microarray database (SGMD). A number of candidate resistance genes and pathways were found. Compared to traditional cluster analysis of gene expression data, OLAP was more effective and faster in finding biologically meaningful information. OLAP is available from a number of vendors and can work with any relational database management system through OLE DB.

  7. Analytical difficulties facing today's regulatory laboratories: issues in method validation.

    Science.gov (United States)

    MacNeil, James D

    2012-08-01

    The challenges facing analytical laboratories today are not unlike those faced in the past, although both the degree of complexity and the rate of change have increased. Challenges such as development and maintenance of expertise, maintenance and up-dating of equipment, and the introduction of new test methods have always been familiar themes for analytical laboratories, but international guidelines for laboratories involved in the import and export testing of food require management of such changes in a context which includes quality assurance, accreditation, and method validation considerations. Decisions as to when a change in a method requires re-validation of the method or on the design of a validation scheme for a complex multi-residue method require a well-considered strategy, based on a current knowledge of international guidance documents and regulatory requirements, as well the laboratory's quality system requirements. Validation demonstrates that a method is 'fit for purpose', so the requirement for validation should be assessed in terms of the intended use of a method and, in the case of change or modification of a method, whether that change or modification may affect a previously validated performance characteristic. In general, method validation involves method scope, calibration-related parameters, method precision, and recovery. Any method change which may affect method scope or any performance parameters will require re-validation. Some typical situations involving change in methods are discussed and a decision process proposed for selection of appropriate validation measures. © 2012 John Wiley & Sons, Ltd.

  8. Case study: IBM Watson Analytics cloud platform as Analytics-as-a-Service system for heart failure early detection

    OpenAIRE

    Guidi, Gabriele; Miniati, Roberto; Mazzola, Matteo; Iadanza, Ernesto

    2016-01-01

    In the recent years the progress in technology and the increasing availability of fast connections have produced a migration of functionalities in Information Technologies services, from static servers to distributed technologies. This article describes the main tools available on the market to perform Analytics as a Service (AaaS) using a cloud platform. It is also described a use case of IBM Watson Analytics, a cloud system for data analytics, applied to the following research scope: detect...

  9. Development of analytical methods for the determination of trace elements in sediment with Neutron ActivAtion method (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Nam, Sang Ho; Kim, Jae Jin; Chung, Yong Sam; Kim, Sun Ha

    2005-01-01

    The analytical methods for the determination of major elements (Al, Ca, K, Fe, Mg) in sediment have been investigated with ICP-MS. The analytical results of major elements with Cool ICP-MS were much better than those with normal ICP-MS. The analytical results were compared with those of NAA. NAA were a little superior to ICP-MS for the determination of major elements in sediment, and NAA is a non-destructive analytical method. The analytical methods for the determination of minor elements (Cr, Ce, U, Co, Pb, As, Se) in sediment have been also studied with ICP-MS. The analytical results by standard calibration with ICP-MS were not accurate due to matrix interferences. Thus, internal standard method was applied, then the analytical results for minor element with ICP-MS were greatly improved. The analytical results obtained by ICP-MS were compared with those obtained by NAA. It showed that the two analytical methods have great capabilities for the determination of minor elements in sediments

  10. Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport

    International Nuclear Information System (INIS)

    McKinley, M S; Brooks III, E D; Daffin, F

    2004-01-01

    Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations

  11. PROMILLE database as a part of JNC reactor physics analytical system for BFS-2 fast critical facility experiments analysis

    International Nuclear Information System (INIS)

    Bednyakov, Sergey

    2000-12-01

    The PROMILLE database for experimental data from the BFS-2 fast critical facility (Institute of Physics and Power Engineering (IPPE), Russia) has been developed and embedded into the JNC reactor physics analytical system to provide a strict documentation format, a common data source for different analytical tools and a unique export interface with different reactor codes. PROMILLE should be considered not only as a database but also as a bank of interfaces because of its dynamic role in the analytical process. The database currently accepts data from the simulation materials (pellets, tubes and bars) as well as full cores descriptions. A core description involves all different unit cells forming loading elements, all types of the loading elements forming a layout and the layout itself. In fact it is a description of criticality experiments. Export interfaces for the CITATION-FBR code and the SLAROM and CASUP codes have been developed. The PROMILLE software was developed with MS Visual Basic 6.0 and the data is kept in the data tables generated with the MS Access database management system. Data for eight BFS-2 assembly configurations have been incorporated. They include BFS-58-1i1 uranium-free plutonium assembly with inert material included in its fuel matrix and also seven BFS-62 modifications simulating different stages of investigation of MOX fuel based BN-600 core. (author)

  12. Analytical throughput-estimating methods for the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Keyes, R.W.; Phipps, R.D.

    1983-01-01

    The Hot Fuel Examination Facility (HFEF) supports the operation and experimental programs of the major Liquid Metal Fast Breeder Reactor (LMFBR) test facilities; specifically, the Fast Flux Test Facility (FFTF), the Experimental Breeder Reactor II (EBR-II), and the Transient Reactor Test (TREAT) Facility. Successful management of HFEF and of LMFBR safety and fuels and materials programs, therefore, requires reliable information regarding HFEF's capability to handle expected or proposed program work loads. This paper describes the 10-step method that has been developed to consider all variables which significantly affect the HFEF examination throughput and quickly provide the necessary planning information

  13. THE QuEChERS ANALYTICAL METHOD COMBINED WITH LOW ...

    African Journals Online (AJOL)

    The method has also been applied to different cereal samples and satisfactory average recoveries ... Analysis of multiclass pesticide residues in foods is a challenging task because of the ... compounds set by regulatory bodies. ..... analytes were used to evaluate the influences of the selected factors on performance of the.

  14. On the implementation of fast marching methods for 3D lattices

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    2001-01-01

    This technical report discusses Sethian's Fast Marching Method and its higher accuracy variant. Both methods may be used to compute the arrival times at the points of a discrete lattice of a front which is monotonously expanding. Applications of the method include arrival time computation and the...

  15. MULTIPLE CRITERA METHODS WITH FOCUS ON ANALYTIC HIERARCHY PROCESS AND GROUP DECISION MAKING

    Directory of Open Access Journals (Sweden)

    Lidija Zadnik-Stirn

    2010-12-01

    Full Text Available Managing natural resources is a group multiple criteria decision making problem. In this paper the analytic hierarchy process is the chosen method for handling the natural resource problems. The one decision maker problem is discussed and, three methods: the eigenvector method, data envelopment analysis method, and logarithmic least squares method are presented for the derivation of the priority vector. Further, the group analytic hierarchy process is discussed and six methods for the aggregation of individual judgments or priorities: weighted arithmetic mean method, weighted geometric mean method, and four methods based on data envelopment analysis are compared. The case study on land use in Slovenia is applied. The conclusions review consistency, sensitivity analyses, and some future directions of research.

  16. Analytical methods of heat transfer compared with numerical methods as related to nuclear waste repositories

    International Nuclear Information System (INIS)

    Estrada-Gasca, C.A.

    1986-01-01

    Analytical methods were applied to the prediction of the far-field thermal impact of a nuclear waste repository. Specifically, the transformation of coordinates and the Kirchhoff transformation were used to solve one-dimensional nonlinear heat conduction problems. Calculations for the HLW and TRU nuclear waste with initial areal thermal loadings of 12 kW/acre and 0.7 kW/acre, respectively, are carried out for various models. Also, finite difference and finite element methods are applied. The last method is used to solve two-dimensional linear and nonlinear heat conduction problems. Results of the analysis are temperature distributions and temperature histories. Explicit analytical expressions of the maximum temperature rise as a function of the system parameters are presented. The theoretical approaches predict maximum temperature increases in the overburden with an error of 10%. When the finite solid one-dimensional NWR thermal problem is solved with generic salt and HLW thermal load as parameters, the maximum temperature rises predicted by the finite difference and finite element methods had maximum errors of 2.6 and 6.7%, respectively. In all the other cases the finite difference method also gave a smaller error than the finite element method

  17. Developing automated analytical methods for scientific environments using LabVIEW.

    Science.gov (United States)

    Wagner, Christoph; Armenta, Sergio; Lendl, Bernhard

    2010-01-15

    The development of new analytical techniques often requires the building of specially designed devices, each requiring its own dedicated control software. Especially in the research and development phase, LabVIEW has proven to be one highly useful tool for developing this software. Yet, it is still common practice to develop individual solutions for different instruments. In contrast to this, we present here a single LabVIEW-based program that can be directly applied to various analytical tasks without having to change the program code. Driven by a set of simple script commands, it can control a whole range of instruments, from valves and pumps to full-scale spectrometers. Fluid sample (pre-)treatment and separation procedures can thus be flexibly coupled to a wide range of analytical detection methods. Here, the capabilities of the program have been demonstrated by using it for the control of both a sequential injection analysis - capillary electrophoresis (SIA-CE) system with UV detection, and an analytical setup for studying the inhibition of enzymatic reactions using a SIA system with FTIR detection.

  18. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.

    2009-04-23

    Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO 2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO 2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical-analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems. © 2009 Springer Science+Business Media B.V.

  19. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  20. Infrared video based gas leak detection method using modified FAST features

    Science.gov (United States)

    Wang, Min; Hong, Hanyu; Huang, Likun

    2018-03-01

    In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.

  1. Fast sweeping methods for hyperbolic systems of conservation laws at steady state II

    Science.gov (United States)

    Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard

    2015-04-01

    The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.

  2. Determination of 237Np in environmental and nuclear samples: A review of the analytical method

    International Nuclear Information System (INIS)

    Thakur, P.; Mulholland, G.P.

    2012-01-01

    A number of analytical methods has been developed and used for the determination of neptunium in environmental and nuclear fuel samples using alpha, ICP–MS spectrometry, and other analytical techniques. This review summarizes and discusses development of the radiochemical procedures for separation of neptunium (Np), since the beginning of the nuclear industry, followed by a more detailed discussion on recent trends in the separation of neptunium. This article also highlights the progress in analytical methods and issues associated with the determination of neptunium in environmental samples. - Highlights: ► Determination of Np in environmental and nuclear samples is reviewed. ► Various analytical methods used for the determination of Np are listed. ► Progress and issues associated with the determination of Np are discussed.

  3. Advances in the Analytical Methods for Determining the Antioxidant ...

    African Journals Online (AJOL)

    Advances in the Analytical Methods for Determining the Antioxidant Properties of Honey: A Review. M Moniruzzaman, MI Khalil, SA Sulaiman, SH Gan. Abstract. Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical ...

  4. Analytical method and result of radiation exposure for depressurization accident of HTTR

    International Nuclear Information System (INIS)

    Sawa, K.; Shiozawa, S.; Mikami, H.

    1990-01-01

    The Japan Atomic Energy Research Institute (JAERI) is now proceeding with the construction design of the High Temperature Engineering Test Reactor (HTTR). Since the HTTR has some characteristics different from LWRs, analytical method of radiation exposure in accidents provided for LWRs can not be applied directly. This paper describes the analytical method of radiation exposure developed by JAERI for the depressurization accident, which is the severest accident in respect to radiation exposure among the design basis accidents of the HTTR. The result is also described in this paper

  5. Simplified Analytical Methods to Analyze Lock Gates Submitted to Ship Collisions and Earthquakes

    Directory of Open Access Journals (Sweden)

    Buldgen Loic

    2015-09-01

    Full Text Available This paper presents two simplified analytical methods to analyze lock gates submitted to two different accidental loads. The case of an impact involving a vessel is first investigated. In this situation, the resistance of the struck gate is evaluated by assuming a local and a global deforming mode. The super-element method is used in the first case, while an equivalent beam model is simultaneously introduced to capture the overall bending motion of the structure. The second accidental load considered in this paper is the seismic action, for which an analytical method is presented to evaluate the total hydrodynamic pressure applied on a lock gate during an earthquake, due account being taken of the fluid-structure interaction. For each of these two actions, numerical validations are presented and the analytical results are compared to finite-element solutions.

  6. Investigation by perturbative and analytical method of electronic properties of square quantum well under electric field

    Directory of Open Access Journals (Sweden)

    Mustafa Kemal BAHAR

    2010-06-01

    Full Text Available In this study, the effects of applied electric field on the isolated square quantum well was investigated by analytic and perturbative method. The energy eigen values and wave functions in quantum well were found by perturbative method. Later, the electric field effects were investigated by analytic method, the results of perturbative and analytic method were compared. As well as both of results fit with each other, it was observed that externally applied electric field changed importantly electronic properties of the system.

  7. Microgenetic Learning Analytics Methods: Workshop Report

    Science.gov (United States)

    Aghababyan, Ani; Martin, Taylor; Janisiewicz, Philip; Close, Kevin

    2016-01-01

    Learning analytics is an emerging discipline and, as such, benefits from new tools and methodological approaches. This work reviews and summarizes our workshop on microgenetic data analysis techniques using R, held at the second annual Learning Analytics Summer Institute in Cambridge, Massachusetts, on 30 June 2014. Specifically, this paper…

  8. Fast and robust method for the determination of microstructure and composition in butadiene, styrene-butadiene, and isoprene rubber by near-infrared spectroscopy.

    Science.gov (United States)

    Vilmin, Franck; Dussap, Claude; Coste, Nathalie

    2006-06-01

    In the tire industry, synthetic styrene-butadiene rubber (SBR), butadiene rubber (BR), and isoprene rubber (IR) elastomers are essential for conferring to the product its properties of grip and rolling resistance. Their physical properties depend on their chemical composition, i. e., their microstructure and styrene content, which must be accurately controlled. This paper describes a fast, robust, and highly reproducible near-infrared analytical method for the quantitative determination of the microstructure and styrene content. The quantitative models are calculated with the help of pure spectral profiles estimated from a partial least squares (PLS) regression, using (13)C nuclear magnetic resonance (NMR) as the reference method. This versatile approach allows the models to be applied over a large range of compositions, from a single BR to an SBR-IR blend. The resulting quantitative predictions are independent of the sample path length. As a consequence, the sample preparation is solvent free and simplified with a very fast (five minutes) hot filming step of a bulk polymer piece. No precise thickness control is required. Thus, the operator effect becomes negligible and the method is easily transferable. The root mean square error of prediction, depending on the rubber composition, is between 0.7% and 1.3%. The reproducibility standard error is less than 0.2% in every case.

  9. Comparative analysis of methods for real-time analytical control of chemotherapies preparations.

    Science.gov (United States)

    Bazin, Christophe; Cassard, Bruno; Caudron, Eric; Prognon, Patrice; Havard, Laurent

    2015-10-15

    Control of chemotherapies preparations are now an obligation in France, though analytical control is compulsory. Several methods are available and none of them is presumed as ideal. We wanted to compare them so as to determine which one could be the best choice. We compared non analytical (visual and video-assisted, gravimetric) and analytical (HPLC/FIA, UV/FT-IR, UV/Raman, Raman) methods thanks to our experience and a SWOT analysis. The results of the analysis show great differences between the techniques, but as expected none us them is without defects. However they can probably be used in synergy. Overall for the pharmacist willing to get involved, the implementation of the control for chemotherapies preparations must be widely anticipated, with the listing of every parameter, and remains according to us an analyst's job. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Application of Multi-Analyte Methods for Pesticide Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Lantos, J.; Virtics, I. [Plant Protection & Soil Conservation Service of Szabolcs-Szatmár-Bereg County, Nyíregyháza (Hungary)

    2009-07-15

    The application of multi-analyte methods for pesticide formulations by GC analysis is discussed. HPLC was used to determine active ingredients. HPLC elution sequences were related to individual n-octanol/water partition coefficients. Real laboratory data are presented and evaluated with regard to validation requirements. The retention time data of pesticides on different HPLC columns under gradient and isocratic conditions are compared to illustrate the applicability of the methodologies. (author)

  11. Analytic methods for field induced tunneling in quantum wells

    Indian Academy of Sciences (India)

    Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles ... Electric field induced tunneling is studied in three different types of quantum wells by solving time-independent effective mass ... Current Issue : Vol.

  12. A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS

    NARCIS (Netherlands)

    Lou, X.; Waal, de B.F.M.; Milroy, L.G.; Dongen, van J.L.J.

    2015-01-01

    In matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin-layer sample preparation method that significantly reduces the analyte

  13. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  14. Inversion methods for fast-ion velocity-space tomography in fusion plasmas

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Stagner, L.; Salewski, Mirko

    2016-01-01

    Velocity-space tomography has been used to infer 2D fast-ion velocity distribution functions. Here we compare the performance of five different tomographic inversion methods: truncated singular value decomposition, maximum entropy, minimum Fisher information and zeroth and first-order Tikhonov...... regularization. The inversion methods are applied to fast-ion Dα measurements taken just before and just after a sawtooth crash in the ASDEX Upgrade tokamak as well as to synthetic measurements from different test distributions. We find that the methods regularizing by penalizing steep gradients or maximizing...... entropy perform best. We assess the uncertainty of the calculated inversions taking into account photon noise, uncertainties in the forward model as well as uncertainties introduced by the regularization which allows us to distinguish regions of high and low confidence in the tomographies. In high...

  15. Analytical methods in rotor dynamics

    CERN Document Server

    Dimarogonas, Andrew D; Chondros, Thomas G

    2013-01-01

    The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments. No topics related to the well-known classical problems are included, rather the book deals exclusively with modern high-power turbomachinery.

  16. Determination of temperature distributions in fast reactor core coolants

    International Nuclear Information System (INIS)

    Tillman, M.

    1975-04-01

    An analytical method of determination of a temperature distribution in the coolant medium in a fuel assembly of a liquid-metal-fast-breeder-reactor (LMFBR) is presented. The temperature field obtained is applied for a constant velocity (slug flow) fluid flowing, parallel to the fuel pins of a square and hexagonal array assembly. The coolant subchannels contain irregular boundaries. The geometry of the channel due to the rod adjacent to the wall (edge rod) differs from the geometry of the other channels. The governing energy equation is solved analytically, assuming series solutions for the Poisson and diffusion equations, and the total solution is superposed by the two. The boundary conditions are specified by symmetry considerations, assembly wall insulation and a continuity of the temperature field and heat fluxes. The initial condition is arbitrary. The method satisfies the boundary conditions on the irregular boundaries and the initial condition by a least squares technique. Computed results are presented for various geometrical forms, with ratio of rod pitch-to-diameter typical for LMFBR cores. These results are applicable for various fast-reactors, and thus the influence of the transient solution (which solves the diffusion equation) on the total depends on the core parameters. (author)

  17. Improvement of spatial discretization error on the semi-analytic nodal method using the scattered source subtraction method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro

    2006-01-01

    In this paper, the scattered source subtraction (SSS) method is newly proposed to improve the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. In the SSS method, the scattered source is subtracted from both side of the diffusion or the transport equation to make spatial variation of the source term to be small. The same neutron balance equation is still used in the SSS method. Since the SSS method just modifies coefficients of node coupling equations (those used in evaluation for the response of partial currents), its implementation is easy. Validity of the present method is verified through test calculations that are carried out in PWR multi-assemblies configurations. The calculation results show that the SSS method can significantly improve the spatial discretization error. Since the SSS method does not have any negative impact on execution time, convergence behavior and memory requirement, it will be useful to reduce the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. (author)

  18. The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method

    International Nuclear Information System (INIS)

    Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang

    2011-01-01

    Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)

  19. Influence of Neutron Spectra Unfolding Method on Fast Neutron Dose Determination

    International Nuclear Information System (INIS)

    Marinkovic, P.

    1991-01-01

    Full text: Accuracy of knowing the fast neutron spectra has great influence on equivalent dose determination. In usual fast neutron spectrum measurements with scintillation detectors based on proton recoil, the main difficulty is confidence of unfolding method. In former ones variance of obtained result is usually great and negative values are possible too, which does means that we don't now exactly is obtained neutron spectrum real one. The new unfolding method based on Shanon's information theory, which gives non-negative spectrum and relative low variance, is obtained and appropriate numerical code for application in fast neutron spectrometry based on proton recoil is realized. In this method principle of maximum entropy and maximum likelihood are used together. Unknown group density distribution functions, which are considered as desired normalized mean neutron group flux, are constl u cted using only constrain of knowing mean value. Obtained distributions are consistent to available information (counts in NCA from proton recoil), while being maximally noncommittal with respect to all other unknown circumstances. For maximum likelihood principle, distribution functions around mean value of counts in the channels of MCA are taken to be Gauss function shape. Optimal non-negative solution is searched by means of Lagrange parameter method. Nonlinear system of equations, is solved using gradient and Newton iterative algorithm. Error covariance matrix is obtained too. (author)

  20. Heat Conduction Analysis Using Semi Analytical Finite Element Method

    International Nuclear Information System (INIS)

    Wargadipura, A. H. S.

    1997-01-01

    Heat conduction problems are very often found in science and engineering fields. It is of accrual importance to determine quantitative descriptions of this important physical phenomena. This paper discusses the development and application of a numerical formulation and computation that can be used to analyze heat conduction problems. The mathematical equation which governs the physical behaviour of heat conduction is in the form of second order partial differential equations. The numerical resolution used in this paper is performed using the finite element method and Fourier series, which is known as semi-analytical finite element methods. The numerical solution results in simultaneous algebraic equations which is solved using the Gauss elimination methodology. The computer implementation is carried out using FORTRAN language. In the final part of the paper, a heat conduction problem in a rectangular plate domain with isothermal boundary conditions in its edge is solved to show the application of the computer program developed and also a comparison with analytical solution is discussed to assess the accuracy of the numerical solution obtained

  1. Multiplier ideal sheaves and analytic methods in algebraic geometry

    International Nuclear Information System (INIS)

    Demailly, J.-P.

    2001-01-01

    Our main purpose here is to describe a few analytic tools which are useful to study questions such as linear series and vanishing theorems for algebraic vector bundles. One of the early successes of analytic methods in this context is Kodaira's use of the Bochner technique in relation with the theory of harmonic forms, during the decade 1950-60.The idea is to represent cohomology classes by harmonic forms and to prove vanishing theorems by means of suitable a priori curvature estimates. We pursue the study of L2 estimates, in relation with the Nullstellenstatz and with the extension problem. We show how subadditivity can be used to derive an approximation theorem for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost) plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted by the relevant multiplier ideal sheaves. These notes are essentially written with the idea of serving as an analytic tool- box for algebraic geometers. Although efficient algebraic techniques exist, our feeling is that the analytic techniques are very flexible and offer a large variety of guidelines for more algebraic questions (including applications to number theory which are not discussed here). We made a special effort to use as little prerequisites and to be as self-contained as possible; hence the rather long preliminary sections dealing with basic facts of complex differential geometry

  2. Multiplier ideal sheaves and analytic methods in algebraic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Demailly, J -P [Universite de Grenoble I, Institut Fourier, Saint-Martin d' Heres (France)

    2001-12-15

    Our main purpose here is to describe a few analytic tools which are useful to study questions such as linear series and vanishing theorems for algebraic vector bundles. One of the early successes of analytic methods in this context is Kodaira's use of the Bochner technique in relation with the theory of harmonic forms, during the decade 1950-60.The idea is to represent cohomology classes by harmonic forms and to prove vanishing theorems by means of suitable a priori curvature estimates. We pursue the study of L2 estimates, in relation with the Nullstellenstatz and with the extension problem. We show how subadditivity can be used to derive an approximation theorem for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost) plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted by the relevant multiplier ideal sheaves. These notes are essentially written with the idea of serving as an analytic tool- box for algebraic geometers. Although efficient algebraic techniques exist, our feeling is that the analytic techniques are very flexible and offer a large variety of guidelines for more algebraic questions (including applications to number theory which are not discussed here). We made a special effort to use as little prerequisites and to be as self-contained as possible; hence the rather long preliminary sections dealing with basic facts of complex differential geometry.

  3. Fast BIA-amperometric determination of isoniazid in tablets.

    Science.gov (United States)

    Quintino, Maria S M; Angnes, Lúcio

    2006-09-26

    This paper proposes a new, fast and precise method to analyze isoniazid based on the electrochemical oxidation of the analyte at a glassy carbon electrode in 0.1M NaOH. The quantification was performed utilizing amperometry associated with batch injection analysis (BIA) technique. Fast sequential analysis (60 determinations h(-1)) in an unusually wide linear dynamic range (from 2.5 x 10(-8) to 1.0 x 10(-3)M), with high sensitivity and low limits of detection (4.1 x 10(-9)M) and quantification (1.4 x 10(-8)M), was achieved. Such characteristics allied to a good repeatability of the current responses (relative standard deviation of 0.79% for 30 measurements), were explored for the specific determination of isoniazid in isoniazid-rifampin tablet.

  4. Status of photonuclear method of analysis among other nuclear analytical methods and main fields of its application

    International Nuclear Information System (INIS)

    Burmistenko, Yu.N.

    1986-01-01

    Technical, organizational and economical aspects as applied to the field of application of photonuclear methods of analysis of substance composition are considered. As for the technical aspect, the most important factors are nuclear-physical characteristics of the elements under determination and the elements composing the sample matrix. As for the organizational aspect, the governing factor in a number of cases is the availability of an irradiation device in the close vicinity of the analytical laboratory. Studying the technical and organizational aspects while choosing the proper method one can obtain the main source data to perform feasibility studies of a nuclear analytical complex with this or that activation source. Therefore, the economical aspect is governing for the choice of the method

  5. Overview of fast algorithm in 3D dynamic holographic display

    Science.gov (United States)

    Liu, Juan; Jia, Jia; Pan, Yijie; Wang, Yongtian

    2013-08-01

    3D dynamic holographic display is one of the most attractive techniques for achieving real 3D vision with full depth cue without any extra devices. However, huge 3D information and data should be preceded and be computed in real time for generating the hologram in 3D dynamic holographic display, and it is a challenge even for the most advanced computer. Many fast algorithms are proposed for speeding the calculation and reducing the memory usage, such as:look-up table (LUT), compressed look-up table (C-LUT), split look-up table (S-LUT), and novel look-up table (N-LUT) based on the point-based method, and full analytical polygon-based methods, one-step polygon-based method based on the polygon-based method. In this presentation, we overview various fast algorithms based on the point-based method and the polygon-based method, and focus on the fast algorithm with low memory usage, the C-LUT, and one-step polygon-based method by the 2D Fourier analysis of the 3D affine transformation. The numerical simulations and the optical experiments are presented, and several other algorithms are compared. The results show that the C-LUT algorithm and the one-step polygon-based method are efficient methods for saving calculation time. It is believed that those methods could be used in the real-time 3D holographic display in future.

  6. A Table Lookup Method for Exact Analytical Solutions of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Ji Juan-Juan

    2017-01-01

    Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.

  7. An analytically based numerical method for computing view factors in real urban environments

    Science.gov (United States)

    Lee, Doo-Il; Woo, Ju-Wan; Lee, Sang-Hyun

    2018-01-01

    A view factor is an important morphological parameter used in parameterizing in-canyon radiative energy exchange process as well as in characterizing local climate over urban environments. For realistic representation of the in-canyon radiative processes, a complete set of view factors at the horizontal and vertical surfaces of urban facets is required. Various analytical and numerical methods have been suggested to determine the view factors for urban environments, but most of the methods provide only sky-view factor at the ground level of a specific location or assume simplified morphology of complex urban environments. In this study, a numerical method that can determine the sky-view factors ( ψ ga and ψ wa ) and wall-view factors ( ψ gw and ψ ww ) at the horizontal and vertical surfaces is presented for application to real urban morphology, which are derived from an analytical formulation of the view factor between two blackbody surfaces of arbitrary geometry. The established numerical method is validated against the analytical sky-view factor estimation for ideal street canyon geometries, showing a consolidate confidence in accuracy with errors of less than 0.2 %. Using a three-dimensional building database, the numerical method is also demonstrated to be applicable in determining the sky-view factors at the horizontal (roofs and roads) and vertical (walls) surfaces in real urban environments. The results suggest that the analytically based numerical method can be used for the radiative process parameterization of urban numerical models as well as for the characterization of local urban climate.

  8. Numerical methods: Analytical benchmarking in transport theory

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1988-01-01

    Numerical methods applied to reactor technology have reached a high degree of maturity. Certainly one- and two-dimensional neutron transport calculations have become routine, with several programs available on personal computer and the most widely used programs adapted to workstation and minicomputer computational environments. With the introduction of massive parallelism and as experience with multitasking increases, even more improvement in the development of transport algorithms can be expected. Benchmarking an algorithm is usually not a very pleasant experience for the code developer. Proper algorithmic verification by benchmarking involves the following considerations: (1) conservation of particles, (2) confirmation of intuitive physical behavior, and (3) reproduction of analytical benchmark results. By using today's computational advantages, new basic numerical methods have been developed that allow a wider class of benchmark problems to be considered

  9. Analytical quality by design: a tool for regulatory flexibility and robust analytics.

    Science.gov (United States)

    Peraman, Ramalingam; Bhadraya, Kalva; Padmanabha Reddy, Yiragamreddy

    2015-01-01

    Very recently, Food and Drug Administration (FDA) has approved a few new drug applications (NDA) with regulatory flexibility for quality by design (QbD) based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design). It allows the analytical method for movement within method operable design region (MODR). Unlike current methods, analytical method developed using analytical quality by design (AQbD) approach reduces the number of out-of-trend (OOT) results and out-of-specification (OOS) results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD) in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10). Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT).

  10. Simplified Analytical Method for Optimized Initial Shape Analysis of Self-Anchored Suspension Bridges and Its Verification

    Directory of Open Access Journals (Sweden)

    Myung-Rag Jung

    2015-01-01

    Full Text Available A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.

  11. Characteristics and possibilities of computer program for fast assessment of primary frequency control of electric power interconnections

    Directory of Open Access Journals (Sweden)

    Ivanović Milan

    2011-01-01

    Full Text Available This paper presents the possibilities and practical features of a computer program for fast assessment of the effects of primary frequency regulation of electric power interconnections. It is based on two methods. The first one is the analytical method, which applies analytical expressions for the non-zero initial conditions, with a range of benefits provided by the analytical form, allowing consideration of possible structural changes in the power system during the analysis process. The second is a simulation method, with recurrent application of suitable drafted, fully decoupled difference equations. Capabilities and features of this computer program have been identified in case of isolated power system of Serbia, and then for the case of a widespread appreciation of its surrounding.

  12. A fast liquid chromatography-tandem mass spectrometry method for determining benzodiazepines and analogues in urine. Validation and application to real cases of forensic interest.

    Science.gov (United States)

    Salomone, Alberto; Gerace, Enrico; Brizio, Paola; Gennaro, M Carla; Vincenti, Marco

    2011-11-01

    A fast liquid chromatographic/tandem mass spectrometric method was developed for the simultaneous determination in human urine of seventeen benzodiazepines, four relevant metabolites together plus zolpidem and zopiclone. The sample preparation, optimized to take into account the matrix effect, was based on enzymatic hydrolysis and liquid-liquid extraction. The separation of the twenty-three analytes was achieved in less than eight minutes. The whole methodology was fully validated according to UNI EN ISO/IEC 17025:2005 rules and 2006 SOFT/AAFS guidelines. Selectivity, linearity range, identification (LOD) and quantitation (LOQ) limits, precision, accuracy and recovery were evaluated. For all the species the signal/concentration linearity was satisfactory in the 50-1000 ng/mL concentration range. The limits of detection ranged from 0.5 to 30 ng/mL and LOQs from 1.7 to 100.0 ng/mL. Precisions were in the ranges 5.0-11.8%, 1.5-11.0% and 1.1-4.4% for low (100 ng/mL), medium (300 ng/mL) and high (1000 ng/mL) concentration, respectively. The accuracy, expressed as bias% was within ± 25 % for all the analytes. The recovery values, evaluated at 300 ng/mL concentration, ranged from 56.2% to 98.8%. The present method for the determination of several benzodiazepines, zolpidem and zopiclone in human urine proved to be simple, fast, specific and sensitive. The quantification by LC-MS/MS was successfully applied to 329 forensic cases among driving re-licensing, car accidents and alleged sexual violence cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    International Nuclear Information System (INIS)

    Takamoto, S; Izumi, S; Nakata, T; Sakai, S; Oinuma, S; Nakatani, Y

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development. (paper)

  14. Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids.

    Science.gov (United States)

    Fleischer, Heidi; Thurow, Kerstin

    2013-03-01

    A rapid determination of the enantiomeric excess of proteinogenic amino acids is of great importance in various fields of chemical and biologic research and industries. Owing to their different biologic effects, enantiomers are interesting research subjects in drug development for the design of new and more efficient pharmaceuticals. Usually, the enantiomeric composition of amino acids is determined by conventional analytical methods such as liquid or gas chromatography or capillary electrophoresis. These analytical techniques do not fulfill the requirements of high-throughput screening due to their relative long analysis times. The method presented allows a fast analysis of chiral amino acids without previous time consuming chromatographic separation. The analytical measurements base on parallel kinetic resolution with pseudoenantiomeric mass tagged auxiliaries and were carried out by mass spectrometry with electrospray ionization. All 19 chiral proteinogenic amino acids were tested and Pro, Ser, Trp, His, and Glu were selected as model substrates for verification measurements. The enantiomeric excesses of amino acids with non-polar and aliphatic side chains as well as Trp and Phe (aromatic side chains) were determined with maximum deviations of the expected value less than or equal to 10ee%. Ser, Cys, His, Glu, and Asp were determined with deviations lower or equal to 14ee% and the enantiomeric excess of Tyr were calculated with 17ee% deviation. The total screening process is fully automated from the sample pretreatment to the data processing. The method presented enables fast measurement times about 1.38 min per sample and is applicable in the scope of high-throughput screenings.

  15. A Semi-Analytical Extraction Method for Interface and Bulk Density of States in Metal Oxide Thin-Film Transistors.

    Science.gov (United States)

    Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Ning, Honglong; Peng, Junbiao

    2018-03-11

    A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance-voltage characteristics and current-voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson's equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously.

  16. A Semi-Analytical Extraction Method for Interface and Bulk Density of States in Metal Oxide Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Weifeng Chen

    2018-03-01

    Full Text Available A semi-analytical extraction method of interface and bulk density of states (DOS is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs. In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco. As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS simultaneously.

  17. [Progress in sample preparation and analytical methods for trace polar small molecules in complex samples].

    Science.gov (United States)

    Zhang, Qianchun; Luo, Xialin; Li, Gongke; Xiao, Xiaohua

    2015-09-01

    Small polar molecules such as nucleosides, amines, amino acids are important analytes in biological, food, environmental, and other fields. It is necessary to develop efficient sample preparation and sensitive analytical methods for rapid analysis of these polar small molecules in complex matrices. Some typical materials in sample preparation, including silica, polymer, carbon, boric acid and so on, are introduced in this paper. Meanwhile, the applications and developments of analytical methods of polar small molecules, such as reversed-phase liquid chromatography, hydrophilic interaction chromatography, etc., are also reviewed.

  18. A GPU code for analytic continuation through a sampling method

    Directory of Open Access Journals (Sweden)

    Johan Nordström

    2016-01-01

    Full Text Available We here present a code for performing analytic continuation of fermionic Green’s functions and self-energies as well as bosonic susceptibilities on a graphics processing unit (GPU. The code is based on the sampling method introduced by Mishchenko et al. (2000, and is written for the widely used CUDA platform from NVidia. Detailed scaling tests are presented, for two different GPUs, in order to highlight the advantages of this code with respect to standard CPU computations. Finally, as an example of possible applications, we provide the analytic continuation of model Gaussian functions, as well as more realistic test cases from many-body physics.

  19. Application of an analytical method for the field calculation in superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.

    1983-01-01

    Superconducting magnets are taking on ever-growing importance due to their increasing prospects of utilization in electrical machines, nuclear fusion, MHD conversion and high-energy physics. These magnets are generally composed of cylindrical or saddle coils, while a ferromagnetic shield is generally situated outside them. This paper uses an analytical method for calculating the magnetic field at every point in a superconducting magnet composed of cylindrical or saddle coils. The method takes into account the real lengths and finite thickness of the coils as well as their radial and axial ferromagnetic shields, if present. The values and distribution of the flux density for some superconducting magnets of high dimensions and high magnetic field, composed of cylindrical or saddle coils, are also given. The results obtained with analytical method are compared with those obtained using numerical methods

  20. Neutron spectrum determination by activation method in fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)

  1. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY)

  2. Application of model-based and knowledge-based measuring methods as analytical redundancy

    International Nuclear Information System (INIS)

    Hampel, R.; Kaestner, W.; Chaker, N.; Vandreier, B.

    1997-01-01

    The safe operation of nuclear power plants requires the application of modern and intelligent methods of signal processing for the normal operation as well as for the management of accident conditions. Such modern and intelligent methods are model-based and knowledge-based ones being founded on analytical knowledge (mathematical models) as well as experiences (fuzzy information). In addition to the existing hardware redundancies analytical redundancies will be established with the help of these modern methods. These analytical redundancies support the operating staff during the decision-making. The design of a hybrid model-based and knowledge-based measuring method will be demonstrated by the example of a fuzzy-supported observer. Within the fuzzy-supported observer a classical linear observer is connected with a fuzzy-supported adaptation of the model matrices of the observer model. This application is realized for the estimation of the non-measurable variables as steam content and mixture level within pressure vessels with water-steam mixture during accidental depressurizations. For this example the existing non-linearities will be classified and the verification of the model will be explained. The advantages of the hybrid method in comparison to the classical model-based measuring methods will be demonstrated by the results of estimation. The consideration of the parameters which have an important influence on the non-linearities requires the inclusion of high-dimensional structures of fuzzy logic within the model-based measuring methods. Therefore methods will be presented which allow the conversion of these high-dimensional structures to two-dimensional structures of fuzzy logic. As an efficient solution of this problem a method based on cascaded fuzzy controllers will be presented. (author). 2 refs, 12 figs, 5 tabs

  3. A functional-analytic method for the study of difference equations

    Directory of Open Access Journals (Sweden)

    Siafarikas Panayiotis D

    2004-01-01

    Full Text Available We will give the generalization of a recently developed functional-analytic method for studying linear and nonlinear, ordinary and partial, difference equations in the and spaces, p∈ℕ, . The method will be illustrated by use of two examples concerning a nonlinear ordinary difference equation known as the Putnam equation, and a linear partial difference equation of three variables describing the discrete Newton law of cooling in three dimensions.

  4. Analytical purpose electron backscattering system

    International Nuclear Information System (INIS)

    Desdin, L.; Padron, I.; Laria, J.

    1996-01-01

    In this work an analytical purposes electron backscattering system improved at the Center of Applied Studies for Nuclear Development is described. This system can be applied for fast, exact and nondestructive testing of binary and AL/Cu, AL/Ni in alloys and for other applications

  5. An analytical method for calculating stresses and strains of ATF cladding based on thick walled theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Hak Sung [Hanyang University, Seoul (Korea, Republic of); Kim, Hyo Chan; Yang, Yong Sik; In, Wang kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, an analytical method based on thick walled theory has been studied to calculate stress and strain of ATF cladding. In order to prescribe boundary conditions of the analytical method, two algorithms were employed which are called subroutine 'Cladf' and 'Couple' of FRACAS, respectively. To evaluate the developed method, equivalent model using finite element method was established and stress components of the method were compared with those of equivalent FE model. One of promising ATF concepts is the coated cladding, which take advantages such as high melting point, a high neutron economy, and low tritium permeation rate. To evaluate the mechanical behavior and performance of the coated cladding, we need to develop the specified model to simulate the ATF behaviors in the reactor. In particular, the model for simulation of stress and strain for the coated cladding should be developed because the previous model, which is 'FRACAS', is for one body model. The FRACAS module employs the analytical method based on thin walled theory. According to thin-walled theory, radial stress is defined as zero but this assumption is not suitable for ATF cladding because value of the radial stress is not negligible in the case of ATF cladding. Recently, a structural model for multi-layered ceramic cylinders based on thick-walled theory was developed. Also, FE-based numerical simulation such as BISON has been developed to evaluate fuel performance. An analytical method that calculates stress components of ATF cladding was developed in this study. Thick-walled theory was used to derive equations for calculating stress and strain. To solve for these equations, boundary and loading conditions were obtained by subroutine 'Cladf' and 'Couple' and applied to the analytical method. To evaluate the developed method, equivalent FE model was established and its results were compared to those of analytical model. Based on the

  6. Enhanced method of fast re-routing with load balancing in software-defined networks

    Science.gov (United States)

    Lemeshko, Oleksandr; Yeremenko, Oleksandra

    2017-11-01

    A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.

  7. Fast plunges into Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hadar, Shahar [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Porfyriadis, Achilleas P.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2015-07-15

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.

  8. The Association between Socio-Demographic Charactristics and Fast Food Consumption withinHigh School Students in Isfahan, Iran

    OpenAIRE

    Parastoo Yarmohammadi; Gholam Reza Sharifirad; Leila Azadbakht; Parisa Yarmohammadi; Zohreh Rahaei; Vali Bahrevar; Zahra Khajeh

    2015-01-01

    Abstract Introduction: Fast food consumption has greatly increased with in adolescents in recent years, which is linked with weight gain, poor dietary indexes and insulin resistance. Hence, the purpose of this study was to examine the association between demographic characteristics and fast food consumption with in high school students. Materials & Methods: In this descriptive-analytic study, a sample of 521 high school students  aged 15-18 years were examined in Isfahan city, who wer...

  9. Two-dimensional semi-analytic nodal method for multigroup pin power reconstruction

    International Nuclear Information System (INIS)

    Seung Gyou, Baek; Han Gyu, Joo; Un Chul, Lee

    2007-01-01

    A pin power reconstruction method applicable to multigroup problems involving square fuel assemblies is presented. The method is based on a two-dimensional semi-analytic nodal solution which consists of eight exponential terms and 13 polynomial terms. The 13 polynomial terms represent the particular solution obtained under the condition of a 2-dimensional 13 term source expansion. In order to achieve better approximation of the source distribution, the least square fitting method is employed. The 8 exponential terms represent a part of the analytically obtained homogeneous solution and the 8 coefficients are determined by imposing constraints on the 4 surface average currents and 4 corner point fluxes. The surface average currents determined from a transverse-integrated nodal solution are used directly whereas the corner point fluxes are determined during the course of the reconstruction by employing an iterative scheme that would realize the corner point balance condition. The outgoing current based corner point flux determination scheme is newly introduced. The accuracy of the proposed method is demonstrated with the L336C5 benchmark problem. (authors)

  10. Using the SAND-II and MLM methods to reconstruct fast neutron spectra

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.

    1981-01-01

    The reconstruction of fast neutron spectra from measured reaction rates may be reduced to the solution of Fredholm's integral equation of the first kind. This problem falls in the category of incorrectly formulated problems, and so additional information is required concerning the unknown function i.e. concerning the differential energy dependence of the neutron, flux density sup(phi)(E). There are various methods for seeking a solution to the problem as formulated above. One of the best-known methods used in the USSR is the maximum likelihood method (MLM) (or directional difference method (DDM)), whereas SAND-II is commonly used abroad. The purpose of this paper is to compare the MLM and SAND-II methods, taking as an example the processing of measurement data which were obtained in the B-2 beam line at the BR-10 reactor in order to determine the composition of shielding for a fast reactor

  11. Analytical Method Development for the Determination of Α-Endosulfan and Bifenthrin Pesticide Residues in Tea

    Directory of Open Access Journals (Sweden)

    Dyah Styarini

    2014-03-01

    Full Text Available The development of analytical method for the determination of α-endosulfan and bifenthrin residues in tea has been done. The complex matrices and also the pigment were the challenge in doing quantification of the pesticide residues in tea matrices. In order to get appropriate analysis method for the determination of pesticide residues in tea, the modification was done in the analytical method for the determination of organochlorine multiresidue in non fat matrices: seasoning and spicy that is published by Directorate General of Food Crops, Directorate of Food Plant Protection. The modification was done particularly in clean-up step to remove the interferences from the extract of tea matrices such as the pigment that usually interfere the measurement with Gas Chromatography (GC. The result showed that the MDL value for both analytes were 0.5 ng/g that were much lower than MRLs. The percent recovery obtained from the method was 78.58 and 90.19% for α-endosulfan and bifenthrin, respectively. The precision of the analysis method for both analytes were good since the % RSD values were below than the Horwitz’s value that was 19.18% at spiking level concentration of 300 ng/g.

  12. Analytical Methods for Mycotoxin Detection in Southeast Asian Nations (ASEAN).

    Science.gov (United States)

    Lim, Chee Wei; Chung, Gerald; Chan, Sheot Harn

    2017-10-03

    Aflatoxins B 1 (AFB 1 ) and B₂ (AFB₂) and G 1 and G₂ remain the top mycotoxins routinely analyzed and monitored by Association of Southeast Asian Nations (ASEAN) national laboratories primarily for food safety regulation in the major food commodities, nuts and spices. LC tandem fluorescence detection (LC–fluorescence) represents a current mainstream analytical method, with a progressive migration to a primary method by LC tandem MS (MS/MS) for the next half decade. Annual proficiency testing (PT) is conducted by ASEAN Food Reference Laboratories (AFRLs) for mycotoxin testing as part of capability building in national laboratories, with the scope of PT materials spanning from naturally mycotoxin-contaminated spices and nuts in the early 2010s to the recent contamination of corn flour in 2017 for total aflatoxin assay development. The merits of the mainstream LC–fluorescence method are witnessed by a significant improvement ( P < 0.05) in PT z -score passing rates (≤2) from 11.8 to 79.2% for AFB 1 , 23.5 to 83.3% for AFB₂, and 23.5 to 79.2% for total aflatoxins in the last 5 years. This paper discusses the journey of ASEAN national laboratories in analytical testing through AFRLs, and the progressive collective adoption of a multimycotoxin LC-MS/MS method aided by an isotopic dilution assay as a future primary method for safer food commodities.

  13. A new diffusion nodal method based on analytic basis function expansion

    International Nuclear Information System (INIS)

    Noh, J.M.; Cho, N.Z.

    1993-01-01

    The transverse integration procedure commonly used in most advanced nodal methods results in some limitations. The first is that the transverse leakage term that appears in the transverse integration procedure must be appropriately approximated. In most advanced nodal methods, this term is expanded in a quadratic polynomial. The second arises when reconstructing the pinwise flux distribution within a node. The available one-dimensional flux shapes from nodal calculation in each spatial direction cannot be used directly in the flux reconstruction. Finally, the transverse leakage defined for a hexagonal node becomes so complicated as not to be easily handled and contains nonphysical singular terms. In this paper, a new nodal method called the analytic function expansion nodal (AFEN) method is described for both the rectangular geometry and the hexagonal geometry in order to overcome these limitations. This method does not solve the transverse-integrated one-dimensional diffusion equations but instead solves directly the original multidimensional diffusion equation within a node. This is a accomplished by expanding the solution (or the intranodal homogeneous flux distribution) in terms of nonseparable analytic basis functions satisfying the diffusion equation at any point in the node

  14. Neutron spectrum determination by activation method in fast neutron fields at the RB reactors

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs

  15. Recent applications of nuclear analytical methods to the certification of elemental content in NIST standard reference materials

    International Nuclear Information System (INIS)

    Greenberg, R.R.; Zeisler, R.; Mackey, E.A.

    2006-01-01

    Well-characterized, certified reference materials (CRMs) play an essential role in assuring the quality of analytical measurements. NIST has been producing CRMs, currently called NIST Standard Reference Materials (SRMs), to validate analytical measurements for nearly one hundred years. The predominant mode of certifying inorganic constituents in complex-matrix SRMs is through the use of two critically evaluated, independent analytical techniques at NIST. These techniques should have no significant sources of error in common. The use of nuclear analytical methods in combination with one of the chemically based analytical method at NIST eliminates the possibility of any significant, common error source. The inherent characteristics of the various forms of nuclear analytical methods make them extremely valuable for SRM certification. Instrumental NAA is nondestructive, which eliminates the possibility of any dissolution problems, and often provides homogeneity information. Radiochemical NAA typically provides nearly blank-free determinations of some highly important, but difficult elements at very low levels. Prompt-gamma NAA complements INAA, and provides independent determinations of some key elements. In addition, all significant uncertainty components can be evaluated for these techniques, and we believe these methods can meet all the requirements of a primary method of measurement as defined by ISO and the CCQM. NIST has certified several SRMs using INAA and RNAA as primary methods. In addition, NIST has compared measurements by INAA and PGAA with other primary methods as part of the CCQM intercomparisons of national metrology institutes. Some significant SRMs recently certified for inorganic constituents with contributions from the nuclear analytical methods include: Toxic Substances in Urine (SRM 2670a), Lake Superior Fish Tissue (SRM 1946), Air Particulate on Filter Media (SRM 2783), Inorganics in Marine Sediment (SRM 2702), Sediment for Solid Sampling (Small

  16. En introduktion til CARM: The Conversation Analytic Role-Play Method

    DEFF Research Database (Denmark)

    Lange, Simon Bierring

    2014-01-01

    Dette working paper er en introduktion til og kort diskussion af workshopmetoden Conversation Analytic Role-Play Method (CARM), som er en metode udviklet til at afholde workshops på baggrund af resultater fra interaktionsanalyser. Artiklen er den første introduktion til CARM-metoden på dansk, og...

  17. Optimization of offshore wind turbine support structures using analytical gradient-based method

    OpenAIRE

    Chew, Kok Hon; Tai, Kang; Ng, E.Y.K.; Muskulus, Michael

    2015-01-01

    Design optimization of the offshore wind turbine support structure is an expensive task; due to the highly-constrained, non-convex and non-linear nature of the design problem. This report presents an analytical gradient-based method to solve this problem in an efficient and effective way. The design sensitivities of the objective and constraint functions are evaluated analytically while the optimization of the structure is performed, subject to sizing, eigenfrequency, extreme load an...

  18. A program-compiling method of nuclear data on-line fast analysis

    International Nuclear Information System (INIS)

    Li Shangbai

    1990-01-01

    This paper discusses how to perform assembly float point operation by using some subroutine of applesoft system, and a program compiling method of nuclear data fast analysis in apple microcomputer is introduced

  19. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  20. Analytical method for the isotopic characterization of soils

    International Nuclear Information System (INIS)

    Sibello Hernandez, Rita; Cozzella, Maria Letizia; Mariani, Mario

    2014-01-01

    The aim of this work was to develop an analytical method in order to determine the isotopic composition of different elements in soil samples and to determine the existence of contamination. The method used in the digestion of the samples was the EPA 3050B, and some metal concentration were determined including uranium and thorium. For elements with even lower concentrations such as plutonium and radium a treatment after mineralization by EPA, was necessary. The measurement technique used was mass spectrometry with quadrupole and plasma induced associated (ICP-MS). Results of the analysis performed in two laboratories showed a good correspondence. This method allowed to perform the isotopic characterization of studied soils and results showed that the studied soils do not present any local pollution and that the presence of plutonium-239, is due to global failure

  1. Enhanced fluorescence sensitivity by coupling yttrium-analyte complexes and three-way fast high-performance liquid chromatography data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Mirta R.; Culzoni, María J., E-mail: mculzoni@fbcb.unl.edu.ar; Goicoechea, Héctor C., E-mail: hgoico@fbcb.unl.edu.ar

    2016-01-01

    The present study reports a sensitive chromatographic method for the analysis of seven fluoroquinolones (FQs) in environmental water samples, by coupling yttrium-analyte complex and three-way chromatographic data modeling. This method based on the use of HPLC-FSFD does not require complex or tedious sample treatments or enrichment processes before the analysis, due to the significant fluorescence increments of the analytes reached by the presence of Y{sup 3+}. Enhancement achieved for the FQs signals obtained after Y{sup 3+} addition reaches 103- to 1743-fold. Prediction results corresponding to the application of MCR-ALS to the validation set showed relative error of prediction (REP%) values below 10% in all cases. A recovery study that includes the simultaneous determination of the seven FQs in three different environmental aqueous matrices was conducted. The recovery studies assert the efficiency and the accuracy of the proposed method. The LOD values calculated are in the order of part per trillion (below 0.5 ng mL{sup −1} for all the FQs, except for enoxacin). It is noteworthy to mention that the method herein proposed, which does not include pre-concentration steps, allows reaching LOD values in the same order of magnitude than those achieved by more sophisticated methods based on SPE and UHPLC-MS/MS. - Highlights: • Highly sensitive method for the analysis of seven fluoroquinolones. • Coupling of yttrium-analyte complex and three-way modeling. • Complex or tedious sample treatments or enrichment processes are nor required. • Accuracy on the quantitation of fluoroquinolones in real water river samples.

  2. Direct fourier method reconstruction based on unequally spaced fast fourier transform

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Zhao Ming; Liu Li

    2003-01-01

    First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)

  3. Overview of major HZDR developments for fast reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno, E-mail: b.merk@hzdr.de; Glivici-Cotruţă, V.; Duerigen, S.; Rohde, U.; Kliem, S.

    2013-12-15

    The upgrading of the DYN3D code for the application for fast reactors is described. After extension and validation, a diverse code with the possibility for steady state and transient core analysis on the basis of coupled thermal hydraulics/neutronics calculations is available. The work on the use of fine distributed moderating material in SFR cores is discussed with the target on enhancing the feedback effects in SFR cores without influencing the operational. Newly developed analytical solutions without separation of space and time for the analysis of ADS experiments are shown with good agreement for the YALINA experiment. The analytical solutions are a very promising tool for the development of a new method for the analysis of ADS experiments.

  4. Fast and sensitive method for detecting volatile species in liquids

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard; Pedersen, Thomas; Hansen, Ole

    2015-01-01

    to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system...

  5. A fast method for linear waves based on geometrical optics

    NARCIS (Netherlands)

    Stolk, C.C.

    2009-01-01

    We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the

  6. Radiochemical methods. Analytical chemistry by open learning

    Energy Technology Data Exchange (ETDEWEB)

    Geary, W.J.; James, A.M. (ed.)

    1986-01-01

    This book presents the analytical uses of radioactive isotopes within the context of radiochemistry as a whole. It is designed for scientists with relatively little background knowledge of the subject. Thus the initial emphasis is on developing the basic concepts of radioactive decay, particularly as they affect the potential usage of radioisotopes. Discussion of the properties of various types of radiation, and of factors such as half-life, is related to practical considerations such as counting and preparation methods, and handling/disposal problems. Practical aspects are then considered in more detail, and the various radioanalytical methods are outlined with particular reference to their applicability. The approach is 'user friendly' and the use of self assessment questions allows the reader to test his/her understanding of individual sections easily. For those who wish to develop their knowledge further, a reading list is provided.

  7. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  8. Precision profiles and analytic reliability of radioimmunologic methods

    International Nuclear Information System (INIS)

    Yaneva, Z.; Popova, Yu.

    1991-01-01

    The aim of the present study is to investigate and compare some methods for creation of 'precision profiles' (PP) and to clarify their possibilities for determining the analytical reliability of RIA. Only methods without complicated mathematical calculations has been used. The reproducibility in serums with a concentration of the determinable hormone in the whole range of the calibration curve has been studied. The radioimmunoassay has been performed with TSH-RIA set (ex East Germany), and comparative evaluations - with commercial sets of HOECHST (Germany) and AMERSHAM (GB). Three methods for obtaining the relationship concentration (IU/l) -reproducibility (C.V.,%) are used and a comparison is made of their corresponding profiles: preliminary rough profile, Rodbard-PP and Ekins-PP. It is concluded that the creation of a precision profile is obligatory and the method of its construction does not influence the relationship's course. PP allows to determine concentration range giving stable results which improves the efficiency of the analitical work. 16 refs., 4 figs

  9. Simulation of an Electromagnetic Acoustic Transducer Array by Using Analytical Method and FDTD

    Directory of Open Access Journals (Sweden)

    Yuedong Xie

    2016-01-01

    Full Text Available Previously, we developed a method based on FEM and FDTD for the study of an Electromagnetic Acoustic Transducer Array (EMAT. This paper presents a new analytical solution to the eddy current problem for the meander coil used in an EMAT, which is adapted from the classic Deeds and Dodd solution originally intended for circular coils. The analytical solution resulting from this novel adaptation exploits the large radius extrapolation and shows several advantages over the finite element method (FEM, especially in the higher frequency regime. The calculated Lorentz force density from the analytical EM solver is then coupled to the ultrasonic simulations, which exploit the finite-difference time-domain (FDTD method to describe the propagation of ultrasound waves, in particular for Rayleigh waves. Radiation pattern obtained with Hilbert transform on time-domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle, which can produce performance parameters for an EMAT array, facilitating the optimum design of such sensors.

  10. Comparison of Three Analytical Methods for Separation of Mineral and Chelated Fraction from an Adulterated Zn-EDTA Fertilizer

    International Nuclear Information System (INIS)

    Khan, M.S.; Qazi, M.A.; Khan, N.A.; Mian, S.M.; Ahmed, N.; Ahmed, N.

    2013-01-01

    Summary: Different analytical procedures are being employed in the world to quantify the chelated portion in a Zn-EDTA fertilizer. Agriculture Department, Government of the Punjab is following Shahid's analytical method in this regard. This method is based on Ion-chromatography (IC) that separates the mineral zinc (Zn) from an adulterated Zn-EDTA fertilizer sample i.e. mixture of mineral and chelated Zn fractions. To find out its effectiveness and suitability, this comparative study was carried out by analyzing adulterated, non-adulterated Zn-EDTA standard and Zn-EDTA samples taken from market in thrice following three methods namely Shahid's (IC) analytical method, Atomic Absorption Spectrophotometric (AAS) method based on the principle of precipitating the mineral Zn fraction at high pH value by using alkali solution of suitable concentration and analysis of filtrate containing only chelated fraction and Association of Official Analytical Chemists (AOAC) method FM-841 respectively. Adulterated Zn-EDTA samples were prepared by mixing of known quantity of mineral Zn with chelated Zn-EDTA standard. The results showed that Shahid's analytical method and AAS method, both successfully estimated the chelated fraction. The AOAC FM-841 method was insensitive to put a ceiling on the mineral fraction hence did not furnish the reliable results. The Shahid's analytical method was selected being equallyeffective to produce reliable results both for solid and liquid Zn-EDTA samples. The AAS method was comparable in only liquid samples. (author)

  11. MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications

    Science.gov (United States)

    Medina, Isabel; Cappiello, Achille; Careri, Maria

    2018-01-01

    Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017.

  12. Analytical chemistry in semiconductor manufacturing: Techniques, role of nuclear methods and need for quality control

    International Nuclear Information System (INIS)

    1989-06-01

    This report is the result of a consultants meeting held in Gaithersburg, USA, 2-3 October 1987. The meeting was hosted by the National Bureau of Standards and Technology, and it was attended by 18 participants from Denmark, Finland, India, Japan, Norway, People's Republic of China and the USA. The purpose of the meeting was to assess the present status of analytical chemistry in semiconductor manufacturing, the role of nuclear analytical methods and the need for internationally organized quality control of the chemical analysis. The report contains the three presentations in full and a summary report of the discussions. Thus, it gives an overview of the need of analytical chemistry in manufacturing of silicon based devices, the use of nuclear analytical methods, and discusses the need for quality control. Refs, figs and tabs

  13. Detection of food irradiation - two analytical methods

    International Nuclear Information System (INIS)

    1994-01-01

    This publication summarizes the activities of Nordic countries in the field of detection of irradiated food. The National Food Agency of Denmark has coordinated the project. The two analytical methods investigated were: the gas-chromatographic determination of the hydrocarbon/lipid ratio in irradiated chicken meat, and a bioassay based on microelectrophoresis of DNA from single cells. Also a method for determination of o-tyrosine in the irradiated and non-irradiated chicken meat has been tested. The first method based on radiolytical changes in fatty acids, contained in chicken meat, has been tested and compared in the four Nordic countries. Four major hydrocarbons (C16:2, C16:3, C17:1 and C17:2) have been determined and reasonable agreement was observed between the dose level and hydrocarbons concentration. Results of a bioassay, where strand breaks of DNA are demonstrated by microelectrophoresis of single cells, prove a correlation between the dose levels and the pattern of DNA fragments migration. The hydrocarbon method can be applied to detect other irradiated, fat-containing foods, while the DNA method can be used for some animal and some vegetable foods as well.Both methods allow to determine the fact of food irradiation beyond any doubt, thus making them suitable for food control analysis. The detailed determination protocols are given. (EG)

  14. Treatment of fast reactor liquid waste- electrochemical method

    International Nuclear Information System (INIS)

    Mahato, Swapan Kumar; Sudha, R.; Anthonysamy, S.; Muralidaran, P.

    2015-01-01

    During the operation of fast reactors, components get wetted by sodium. The sodium wetted primary components such as pumps and intermediate heat exchangers (IHX) in fast reactors are cleaned free of sodium followed by suitable chemical decontamination process before taking them for maintenance or for disposal. This helps in reduction of radiation dose to the operating personnel. Sodium cleaning and decontamination generates large volumes of liquid effluent. The activity in the liquid effluent during sodium cleaning/decontamination is due to 22 Na, 54 Mn, 58 Co, 60 Co, 59 Fe, 137 Cs and 134 Cs. It is required to chemically treat the effluent to reduce the activity levels prior to storage in tanks and transportation to the waste management facility for final disposal. Conventionally the ion exchange method is used for removal of radionuclides which produces large quantities of secondary waste. A method which is suitable both for removal of radionuclides present in low concentration and that avoids generation of large quantities of secondary waste is required. Hence an electrochemical method for metal ion removal is attempted in this work which produces little or no secondary waste. Electrochemical method towards removal of manganese ions was finalized earlier using reticulated vitreous carbon (RVC) from simulated decontamination solution containing a mixture of sulphuric and phosphoric acids. In continuation of the experiments for the removal of cesium ions from simulated cleaning solution which has an alkaline pH, a thin film of nickel hexacyanoferrate (NiHCF) was deposited electrochemically on the surface of RVC. Hexacyanoferrates are known for selectively binding cesium. This NiHCF coated RVC was used for electrodeposition of Cs ions. NiHCF coated and Cs deposited RVC was characterized using SEM/EDX analysis. EDX analysis confirms the presence of Cs on NiHCF coated RVC. (author)

  15. The Methodical Instrumentarium for Analytical Monitoring of Markets for High-Tech Products

    Directory of Open Access Journals (Sweden)

    Mikaelian Suren G.

    2017-10-01

    Full Text Available The article is aimed at clarifying the essential characteristics of high-tech products and specifying the features of analytical monitoring of markets for high-tech products. The conceptual approaches to interpretation of the essence of high-tech products as a basic concept in the categorical apparatus for researching the systemic and complex processes of technological development have been clarified. The most efficient instruments for assessing innovation processes in the high-tech sphere have been systematized. The methodical instrumentarium for analytical monitoring of the markets for high-tech products has been clarified. The terminology of a high-tech product has been clarified in order to formulate the methodical instrumentarium for analytical monitoring of market for high-tech products. It has been determined that «high-tech products» are the original basic concept in the categorical apparatus for researching the systemic and complex processes of the high-tech market that needs to be concretized. Conceptual approaches to the essence of high-tech products have been systematized.

  16. Rational Selection, Criticality Assessment, and Tiering of Quality Attributes and Test Methods for Analytical Similarity Evaluation of Biosimilars.

    Science.gov (United States)

    Vandekerckhove, Kristof; Seidl, Andreas; Gutka, Hiten; Kumar, Manish; Gratzl, Gyöngyi; Keire, David; Coffey, Todd; Kuehne, Henriette

    2018-05-10

    Leading regulatory agencies recommend biosimilar assessment to proceed in a stepwise fashion, starting with a detailed analytical comparison of the structural and functional properties of the proposed biosimilar and reference product. The degree of analytical similarity determines the degree of residual uncertainty that must be addressed through downstream in vivo studies. Substantive evidence of similarity from comprehensive analytical testing may justify a targeted clinical development plan, and thus enable a shorter path to licensing. The importance of a careful design of the analytical similarity study program therefore should not be underestimated. Designing a state-of-the-art analytical similarity study meeting current regulatory requirements in regions such as the USA and EU requires a methodical approach, consisting of specific steps that far precede the work on the actual analytical study protocol. This white paper discusses scientific and methodological considerations on the process of attribute and test method selection, criticality assessment, and subsequent assignment of analytical measures to US FDA's three tiers of analytical similarity assessment. Case examples of selection of critical quality attributes and analytical methods for similarity exercises are provided to illustrate the practical implementation of the principles discussed.

  17. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis

    Directory of Open Access Journals (Sweden)

    Schlegel Brigitte

    2004-03-01

    Full Text Available Abstract Background High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination. Results 88 different E. coli expression constructs for 17 human protein domains were analysed using high-throughput cloning, purification and folding analysis to obtain candidates suitable for structural analysis. After 96 deep-well microplate expression and automated protein purification, protein domains were directly analysed using 1D 1H-NMR spectroscopy. In addition, analytical hydrophobic interaction chromatography (HIC was used to detect natively folded protein. With these two analytical methods, six constructs (representing two domains were quickly identified as being well folded and suitable for structural analysis. Conclusion The described approach facilitates high-throughput structural analysis. Clones expressing natively folded proteins suitable for NMR structure determination were quickly identified upon small scale expression screening using 1D 1H-NMR and/or analytical HIC. This procedure is especially effective as a fast and inexpensive screen for the 'low hanging fruits' in structural genomics.

  18. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  19. Methods for the calculation of uncertainty in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Sohn, S. C.; Park, Y. J.; Park, K. K.; Jee, K. Y.; Joe, K. S.; Kim, W. H

    2000-07-01

    This report describes the statistical rules for evaluating and expressing uncertainty in analytical chemistry. The procedures for the evaluation of uncertainty in chemical analysis are illustrated by worked examples. This report, in particular, gives guidance on how uncertainty can be estimated from various chemical analyses. This report can be also used for planning the experiments which will provide the information required to obtain an estimate of uncertainty for the method.

  20. FAST PALMPRINT AUTHENTICATION BY SOBEL CODE METHOD

    Directory of Open Access Journals (Sweden)

    Jyoti Malik

    2011-05-01

    Full Text Available The ideal real time personal authentication system should be fast and accurate to automatically identify a person’s identity. In this paper, we have proposed a palmprint based biometric authentication method with improvement in time and accuracy, so as to make it a real time palmprint authentication system. Several edge detection methods, wavelet transform, phase congruency etc. are available to extract line feature from the palmprint. In this paper, Multi-scale Sobel Code operators of different orientations (0?, 45?, 90?, and 135? are applied to the palmprint to extract Sobel-Palmprint features in different direc- tions. The Sobel-Palmprint features extracted are stored in Sobel- Palmprint feature vector and matched using sliding window with Hamming Distance similarity measurement method. The sliding win- dow method is accurate but time taking process. In this paper, we have improved the sliding window method so that the matching time reduces. It is observed that there is 39.36% improvement in matching time. In addition, a Min Max Threshold Range (MMTR method is proposed that helps in increasing overall system accuracy by reducing the False Acceptance Rate (FAR. Experimental results indicate that the MMTR method improves the False Acceptance Rate drastically and improvement in sliding window method reduces the comparison time. The accuracy improvement and matching time improvement leads to proposed real time authentication system.

  1. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    KAUST Repository

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  2. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    Science.gov (United States)

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  3. The essential theory of fast wave current drive with full wave method

    International Nuclear Information System (INIS)

    Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan

    2007-01-01

    The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)

  4. Methods for reactor physics calculations for control rods in fast reactors

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Rowlands, J.L.

    1988-12-01

    The IAEA Specialists' Meeting on ''Methods for Reactor Physics Calculations for Control Rods in Fast Reactors'' was held in Winfrith, United Kingdom, on 6-8 December, 1988. The meeting was attended by 23 participants from nine countries. The purpose of the meeting was to review the current calculational methods and their accuracy as assessed by theoretical studies and comparisons with measurements, and then to identify the requirements for improved methods or additional studies and comparisons. The control rod properties or effects to be considered were their reactivity worths, their effect on the power distribution through the core, and the reaction rates and energy deposition both within and adjacent to the rods. The meeting was divided into five sessions, in the first of which each national delegation presented a brief overview of their programme of work on calculational methods for fast reactor control rods. In the next three sessions a total of seventeen papers were presented describing calculational methods and assessments of their accuracy. The final session was a discussion to draw conclusions regarding the current status of methods and the further developments and validation work required. A separate abstract was prepared for each of the 23 papers presented at the meeting. Refs, figs and tabs

  5. No Impact of the Analytical Method Used for Determining Cystatin C on Estimating Glomerular Filtration Rate in Children.

    Science.gov (United States)

    Alberer, Martin; Hoefele, Julia; Benz, Marcus R; Bökenkamp, Arend; Weber, Lutz T

    2017-01-01

    Measurement of inulin clearance is considered to be the gold standard for determining kidney function in children, but this method is time consuming and expensive. The glomerular filtration rate (GFR) is on the other hand easier to calculate by using various creatinine- and/or cystatin C (Cys C)-based formulas. However, for the determination of serum creatinine (Scr) and Cys C, different and non-interchangeable analytical methods exist. Given the fact that different analytical methods for the determination of creatinine and Cys C were used in order to validate existing GFR formulas, clinicians should be aware of the type used in their local laboratory. In this study, we compared GFR results calculated on the basis of different GFR formulas and either used Scr and Cys C values as determined by the analytical method originally employed for validation or values obtained by an alternative analytical method to evaluate any possible effects on the performance. Cys C values determined by means of an immunoturbidimetric assay were used for calculating the GFR using equations in which this analytical method had originally been used for validation. Additionally, these same values were then used in other GFR formulas that had originally been validated using a nephelometric immunoassay for determining Cys C. The effect of using either the compatible or the possibly incompatible analytical method for determining Cys C in the calculation of GFR was assessed in comparison with the GFR measured by creatinine clearance (CrCl). Unexpectedly, using GFR equations that employed Cys C values derived from a possibly incompatible analytical method did not result in a significant difference concerning the classification of patients as having normal or reduced GFR compared to the classification obtained on the basis of CrCl. Sensitivity and specificity were adequate. On the other hand, formulas using Cys C values derived from a compatible analytical method partly showed insufficient

  6. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  7. Fault feature analysis of cracked gear based on LOD and analytical-FE method

    Science.gov (United States)

    Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng

    2018-01-01

    At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.

  8. Use of ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry for fast screening in high throughput doping control.

    Science.gov (United States)

    Musenga, Alessandro; Cowan, David A

    2013-05-03

    We describe a sensitive, comprehensive and fast screening method based on liquid chromatography-high resolution mass spectrometry for the detection of a large number of analytes in sports samples. UHPLC coupled to high resolution mass spectrometry with polarity switching capability is applied for the rapid screening of a large number of analytes in human urine samples. Full scan data are acquired alternating both positive and negative ionisation. Collision-induced dissociation with positive ionisation is also performed to produce fragment ions to improve selectivity for some analytes. Data are reviewed as extracted ion chromatograms based on narrow mass/charge windows (±5ppm). A simple sample preparation method was developed, using direct enzymatic hydrolysis of glucuronide conjugates, followed by solid phase extraction with mixed mode ion-exchange cartridges. Within a 10min run time (including re-equilibration) the method presented allows for the analysis of a large number of analytes from most of the classes in the World Anti-Doping Agency (WADA) Prohibited List, including anabolic agents, β2-agonists, hormone antagonists and modulators, diuretics, stimulants, narcotics, glucocorticoids and β-blockers, and does so while meeting the WADA sensitivity requirements. The high throughput of the method and the fast sample pre-treatment reduces analysis cost and increases productivity. The method presented has been used for the analysis of over 5000 samples in about one month and proved to be reliable. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  10. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    Science.gov (United States)

    Jia, Meng; Fan, Yang-Yu; Tian, Wei-Jian

    2011-03-01

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 60872159).

  11. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    International Nuclear Information System (INIS)

    Jia Meng; Fan Yang-Yu; Tian Wei-Jian

    2011-01-01

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Communications overlapping in fast multipole particle dynamics methods

    International Nuclear Information System (INIS)

    Kurzak, Jakub; Pettitt, B. Montgomery

    2005-01-01

    In molecular dynamics the fast multipole method (FMM) is an attractive alternative to Ewald summation for calculating electrostatic interactions due to the operation counts. However when applied to small particle systems and taken to many processors it has a high demand for interprocessor communication. In a distributed memory environment this demand severely limits applicability of the FMM to systems with O(10 K atoms). We present an algorithm that allows for fine grained overlap of communication and computation, while not sacrificing synchronization and determinism in the equations of motion. The method avoids contention in the communication subsystem making it feasible to use the FMM for smaller systems on larger numbers of processors. Our algorithm also facilitates application of multiple time stepping techniques within the FMM. We present scaling at a reasonably high level of accuracy compared with optimized Ewald methods

  13. Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Zhi-Fei Zhang [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Chang-Qing Dong [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Xi-Feng Zhu [Key Laboratory for Biomass Clean Energy of Anhui Province, University of Science and Technology of China, Hefei (China)

    2010-10-15

    Fast pyrolysis of poplar wood followed with catalytic cracking of the pyrolysis vapors was performed using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The catalysts applied in this study were nano MgO, CaO, TiO2, Fe2O3, NiO and ZnO. These catalysts displayed different catalytic capabilities towards the pyrolytic products. The catalysis by CaO significantly reduced the levels of phenols and anhydrosugars, and eliminated the acids, while it increased the formation of cyclopentanones, hydrocarbons and several light compounds. ZnO was a mild catalyst, as it only slightly altered the pyrolytic products. The other four catalysts all decreased the linear aldehydes dramatically, while the increased the ketones and cyclopentanones. They also reduced the anhydrosugars, except for NiO. Moreover, the catalysis by Fe2O3 resulted in the formation of various hydrocarbons. However, none of these catalysts except CaO were able to greatly reduce the acids.

  14. Fast and accurate methods for phylogenomic analyses

    Directory of Open Access Journals (Sweden)

    Warnow Tandy

    2011-10-01

    Full Text Available Abstract Background Species phylogenies are not estimated directly, but rather through phylogenetic analyses of different gene datasets. However, true gene trees can differ from the true species tree (and hence from one another due to biological processes such as horizontal gene transfer, incomplete lineage sorting, and gene duplication and loss, so that no single gene tree is a reliable estimate of the species tree. Several methods have been developed to estimate species trees from estimated gene trees, differing according to the specific algorithmic technique used and the biological model used to explain differences between species and gene trees. Relatively little is known about the relative performance of these methods. Results We report on a study evaluating several different methods for estimating species trees from sequence datasets, simulating sequence evolution under a complex model including indels (insertions and deletions, substitutions, and incomplete lineage sorting. The most important finding of our study is that some fast and simple methods are nearly as accurate as the most accurate methods, which employ sophisticated statistical methods and are computationally quite intensive. We also observe that methods that explicitly consider errors in the estimated gene trees produce more accurate trees than methods that assume the estimated gene trees are correct. Conclusions Our study shows that highly accurate estimations of species trees are achievable, even when gene trees differ from each other and from the species tree, and that these estimations can be obtained using fairly simple and computationally tractable methods.

  15. Multilevel Fast Multipole Method for Higher Order Discretizations

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik

    2014-01-01

    The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....

  16. Analytical methods used at IPR (Instituto de Pesquisas Radioativas - Minas Gerais, Brazil)

    International Nuclear Information System (INIS)

    Murta, C.C.

    The analytical methods available at IPR (MG-Brazil) for the routine determination of uranium are described. These methods are: gravimetric analysis; fluorescence spectroscopy, voltametry, polarography, absorption spectroscopy, beta-and gamma-radiometric analysis, gamma spectroscopy, activation analysis, X-rays fluorescence analysis and delayed neutron analysis. Some additional methods for the study of mineral ores, such as X-rays diffractometry, emmission spectroscopy, thermal analysis, etc, are also discussed [pt

  17. 3D analytical method for the external dynamics of ship collisions and investigation of the coefficient of restitution

    Directory of Open Access Journals (Sweden)

    LIU Junfeng

    2017-03-01

    Full Text Available The analytical method for predicting the dynamic responses of a ship in a collision scenario features speed and accuracy,and the external dynamics constitute an important part. A 3D simplified analytical method is implemented by MATLAB and used to calculate the energy dissipation of ship-ship collisions. The results obtained by the proposed method are then compared with those of a 2D simplified analytical method. The total dissipated energy can be obtained through the proposed analytical method, and the influence of the collision heights,angles and locations on the dissipated energy is discussed on that basis. Furthermore,the effects of restitution on the conservative coefficients and the effects of conservative coefficients on energy dissipation are discussed. It is concluded that the proposed 3D analysis yields a lesser energy dissipation than that of the 2D analysis,and the collision height has a significant influence on the dissipated energy. In using the proposed simplified method,it is not safe to simplify the conservative coefficient as zero when the collision angle is greater than 90 degrees. In the future research, to get more accurate energy dissipation, it is a good way to adopt the 3D simplified analytical method instead of the 2D method.

  18. The chemical speciation and analysis of trace elements in sediment with Neutron Activation Analytical method(NAA) and atomic mass spectrometry

    International Nuclear Information System (INIS)

    Nam, Sang-Ho; Kim, Jae-Jin; Chung, Yong-Sam; Kim, Sun-Ha

    2003-01-01

    In this research, first of all, the analytical methods for the determination of major elements in sediment have been developed with ICP-MS (Inductively Coupled Plasma Mass Spectrometry). The analytical results of major elements (Al, Ca, K, Fe, Mg) with Cool ICP-MS were much better than those with normal ICP-MS. The analytical results were compared with those of NAA (Neutron Activation Analysis). NAA were a little superior to ICP-MS for the determination of major elements in sediment as a non-destructive trace analytical trace analytical method. The analytical methods for the determination of minor elements (Cr, Ce, U, Co, Pb, As, Se) have been also developed with ICP-MS. The analytical results by standard calibration curve with ICP-MS were not accurate due to the matrix interferences. Thus, the internal standard method was applied, then the analytical results for minor elements with ICP-MS were greatly improved. The analytical results obtained by ICP-MS were compared with those obtained by NAA. It showed that the two analytical methods have great capabilities for the determination of minor elements in sediments. Accordingly, the NAA will plan an important role in analysis of environment sample with complex matrix. ICP-MS also will play an important role because it has a great capability for the determination of Pb that could not be determined by NAA

  19. Fast multipole acceleration of the MEG/EEG boundary element method

    International Nuclear Information System (INIS)

    Kybic, Jan; Clerc, Maureen; Faugeras, Olivier; Keriven, Renaud; Papadopoulo, Theo

    2005-01-01

    The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric boundary element method (BEM). It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption

  20. The isfet in analytical chemistry

    NARCIS (Netherlands)

    van der Schoot, B.H.; Bergveld, Piet; Bousse, L.J.

    1982-01-01

    The fast chemical response of the pH-ISFET makes the device an excellent detector in analytical chemistry. The time response of ISFETs, with Al2O3 at the pH-sensitive gate insulator, is determined in a flow injection analysis system. Application of an ISFET and a glass electrode are compared in

  1. Contextual and Analytic Qualities of Research Methods Exemplified in Research on Teaching

    Science.gov (United States)

    Svensson, Lennart; Doumas, Kyriaki

    2013-01-01

    The aim of the present article is to discuss contextual and analytic qualities of research methods. The arguments are specified in relation to research on teaching. A specific investigation is used as an example to illustrate the general methodological approach. It is argued that research methods should be carefully grounded in an understanding of…

  2. A method of fast mosaic for massive UAV images

    Science.gov (United States)

    Xiang, Ren; Sun, Min; Jiang, Cheng; Liu, Lei; Zheng, Hui; Li, Xiaodong

    2014-11-01

    With the development of UAV technology, UAVs are used widely in multiple fields such as agriculture, forest protection, mineral exploration, natural disaster management and surveillances of public security events. In contrast of traditional manned aerial remote sensing platforms, UAVs are cheaper and more flexible to use. So users can obtain massive image data with UAVs, but this requires a lot of time to process the image data, for example, Pix4UAV need approximately 10 hours to process 1000 images in a high performance PC. But disaster management and many other fields require quick respond which is hard to realize with massive image data. Aiming at improving the disadvantage of high time consumption and manual interaction, in this article a solution of fast UAV image stitching is raised. GPS and POS data are used to pre-process the original images from UAV, belts and relation between belts and images are recognized automatically by the program, in the same time useless images are picked out. This can boost the progress of finding match points between images. Levenberg-Marquard algorithm is improved so that parallel computing can be applied to shorten the time of global optimization notably. Besides traditional mosaic result, it can also generate superoverlay result for Google Earth, which can provide a fast and easy way to show the result data. In order to verify the feasibility of this method, a fast mosaic system of massive UAV images is developed, which is fully automated and no manual interaction is needed after original images and GPS data are provided. A test using 800 images of Kelan River in Xinjiang Province shows that this system can reduce 35%-50% time consumption in contrast of traditional methods, and increases respond speed of UAV image processing rapidly.

  3. A data-driven prediction method for fast-slow systems

    Science.gov (United States)

    Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael

    2016-04-01

    In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.

  4. Comparison of three analytical methods for the determination of trace elements in whole blood

    International Nuclear Information System (INIS)

    Ward, N.I.; Stephens, R.; Ryan, D.E.

    1979-01-01

    Three different analytical techniques were compared in a study of the role of trace elements in multiple sclerosis. Data for eight elements (Cd, Co, Cr, Cu, Mg, Mn, Pb, Zn) from neutron activation, flame atomic absorption and electrothermal atomic absorption methods were compared and evaluated statistically. No difference (probability less than 0.001) was observed in the elemental values obtained. Comparison of data between suitably different analytical methods gives increased confidence in the results obtained and is of particular value when standard reference materials are not available. (Auth.)

  5. GenoSets: visual analytic methods for comparative genomics.

    Directory of Open Access Journals (Sweden)

    Aurora A Cain

    Full Text Available Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.

  6. Net Analyte Signal Standard Additions Method for Simultaneous Determination of Sulfamethoxazole and Trimethoprim in Pharmaceutical Formulations and Biological Fluids

    OpenAIRE

    Givianrad, M. H.; Mohagheghian, M.

    2012-01-01

    The applicability of a novel net analyte signal standard addition method (NASSAM) to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim was verified by UV-visible spectrophotometry. The results confirmed that the net analyte signal standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. Moreover, applying the net analyte signal standard a...

  7. A Fast Channel Switching Method in EPON System for IPTV Service

    Science.gov (United States)

    Nie, Yaling; Yoshiuchi, Hideya

    This paper presents a fast channel switching method in Ethernet Passive Optical Network (EPON) system for IPTV service. Fast channel switching is one of the important features of successful IPTV systems. Users surely prefer IPTV systems with small channel switching time rather than a longer one. Thus a channel switching control module and a channel/permission list in EPON system’s ONU or OLT is designed. When EPON system receives channel switching message from IPTV end user, the channel switching control module will catch the message and search the channel list and permission list maintained in EPON system, then got the matching parameter of EPON for the new channel. The new channel’s data transmission will be enabled by directly updating the optical filter of the ONU that end user connected. By using this method in EPON system, it provides a solution for dealing with channel switching delays in IPTV service.

  8. Comparing nutrition environments in bodegas and fast food restaurants

    OpenAIRE

    Neckerman, Kathryn M.; Lovasi, Laszlo; Yousefzadeh, Paulette; Sheehan, Daniel; Milinkovic, Karla; Baecker, Aileen; Bader, Michael D. M.; Weiss, Christopher; Lovasi, Gina S.; Rundle, Andrew

    2013-01-01

    Many small grocery stores or “bodegas” sell prepared or ready-to-eat items, filling a similar niche in the food environment as fast food restaurants. However, little comparative information is available about the nutrition environments of bodegas and fast food outlets. This study compared the nutrition environments of bodegas and national chain fast food restaurants using a common audit instrument, the Nutrition Environment Measures Study in Restaurants (NEMS-R) protocol. The analytic sample ...

  9. Evaluation and selection of in-situ leaching mining method using analytic hierarchy process

    International Nuclear Information System (INIS)

    Zhao Heyong; Tan Kaixuan; Liu Huizhen

    2007-01-01

    According to the complicated conditions and main influence factors of in-situ leaching min- ing, a model and processes of analytic hierarchy are established for evaluation and selection of in-situ leaching mining methods based on analytic hierarchy process. Taking a uranium mine in Xinjiang of China for example, the application of this model is presented. The results of analyses and calculation indicate that the acid leaching is the optimum project. (authors)

  10. SRC-I demonstration plant analytical laboratory methods manual. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

    1983-03-01

    This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

  11. A fast dose calculation method based on table lookup for IMRT optimization

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe

    2003-01-01

    This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)

  12. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    Science.gov (United States)

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  13. Fast neutron activation analysis using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.; Zemplen-Papp, E.

    1993-01-01

    Fast neutron activation analysis experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived activation products. A rapid pneumatic transfer system for use with neutron generators has been installed and applied for detecting radionuclides with a half-life from ∼300 ms to 20 s. The transport time for samples of total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. The reproducibility of transport times is less than 2%. The employed method of correcting time-dependent counting losses is based on the virtual pulse generator principle. The measuring equipment consists of CAMAC modules and a special gating circuit. Typical time distributions of counting losses are presented. The same 14 elements were studied by the conventional activation method (single irradiation and single counting) by both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. Furthermore, the influence of the cyclic activation technique on the elemental sensitivities was investigated. (author) 15 refs.; 5 figs.; 3 tabs

  14. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    Science.gov (United States)

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Method of analytic continuation by duality in QCD: Beyond QCD sum rules

    International Nuclear Information System (INIS)

    Kremer, M.; Nasrallah, N.F.; Papadopoulos, N.A.; Schilcher, K.

    1986-01-01

    We present the method of analytic continuation by duality which allows the approximate continuation of QCD amplitudes to small values of the momentum variables where direct perturbative calculations are not possible. This allows a substantial extension of the domain of applications of hadronic QCD phenomenology. The method is illustrated by a simple example which shows its essential features

  16. Analytical method of spectra calculations in the Bargmann representation

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz

    2014-01-01

    We formulate a universal method for solving an arbitrary quantum system which, in the Bargmann representation, is described by a system of linear equations with one independent variable, such as one- and multi-photon Rabi models, or N level systems interacting with a single mode of the electromagnetic field and their various generalizations. We explain three types of conditions that determine the spectrum and show their usage for two deformations of the Rabi model. We prove that the spectra of both models are just zeros of transcendental functions, which in one case are given explicitly in terms of confluent Heun functions. - Highlights: • Analytical method of spectrum determination in Bargmann representation is proposed. • Three types of conditions determining spectrum are identified. • Method to two generalizations of the Rabi system is applied

  17. Rapid determination of anti-estrogens by gas chromatography/mass spectrometry in urine: Method validation and application to real samples.

    Science.gov (United States)

    Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M

    2012-02-01

    A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.

  18. Evaluation of Fast Food Behavior in Pre-School Children and Parents Following a One-Year Intervention with Nutrition Education

    OpenAIRE

    Gao, Yongqing; Huang, Yuee; Zhang, Yongjun; Liu, Fengqiong; Feng, Cindy; Liu, Tingting; Li, Changwei; Lin, Dongdong; Mu, Yongping; Tarver, Siobhan; Wang, Mao; Sun, Wenjie

    2014-01-01

    A community-based intervention study was conducted to assess a nutrition education intervention on western style fast food consumption among Chinese children and parents. Eight kindergartens from three district areas of Hefei City (a total of 1252 children aged 4–6 years and their parents) were randomly selected. Descriptive and analytical statistical methods were used to evaluate the baseline, midterm, and final western style fast food knowledge, attitude, and practice in both parents and c...

  19. A new analytical method to solve the heat equation for a multi-dimensional composite slab

    International Nuclear Information System (INIS)

    Lu, X; Tervola, P; Viljanen, M

    2005-01-01

    A novel analytical approach has been developed for heat conduction in a multi-dimensional composite slab subject to time-dependent boundary changes of the first kind. Boundary temperatures are represented as Fourier series. Taking advantage of the periodic properties of boundary changes, the analytical solution is obtained and expressed explicitly. Nearly all the published works necessitate searching for associated eigenvalues in solving such a problem even for a one-dimensional composite slab. In this paper, the proposed method involves no iterative computation such as numerically searching for eigenvalues and no residue evaluation. The adopted method is simple which represents an extension of the novel analytical approach derived for the one-dimensional composite slab. Moreover, the method of 'separation of variables' employed in this paper is new. The mathematical formula for solutions is concise and straightforward. The physical parameters are clearly shown in the formula. Further comparison with numerical calculations is presented

  20. Fast computation of the characteristics method on vector computers

    International Nuclear Information System (INIS)

    Kugo, Teruhiko

    2001-11-01

    Fast computation of the characteristics method to solve the neutron transport equation in a heterogeneous geometry has been studied. Two vector computation algorithms; an odd-even sweep (OES) method and an independent sequential sweep (ISS) method have been developed and their efficiency to a typical fuel assembly calculation has been investigated. For both methods, a vector computation is 15 times faster than a scalar computation. From a viewpoint of comparison between the OES and ISS methods, the followings are found: 1) there is a small difference in a computation speed, 2) the ISS method shows a faster convergence and 3) the ISS method saves about 80% of computer memory size compared with the OES method. It is, therefore, concluded that the ISS method is superior to the OES method as a vectorization method. In the vector computation, a table-look-up method to reduce computation time of an exponential function saves only 20% of a whole computation time. Both the coarse mesh rebalance method and the Aitken acceleration method are effective as acceleration methods for the characteristics method, a combination of them saves 70-80% of outer iterations compared with a free iteration. (author)

  1. Study on the Analytical Method for Determination of P-32 in Human Hair

    International Nuclear Information System (INIS)

    Syarbaini; Lubis, E.; Sarwani

    1996-01-01

    Neutron doses due to accident criticality can be estimated by measuring of radionuclide of neutron activation products in human hair. In this work, the analytical method for the determination of P-32 in neutron irradiated hair sample by G.A Siwabessy reactor has been studied. This analytical method consists of dissolving of human hair sample by 10 M HNO3, separation dan purification of P-32 by precipitation as ammonium molibdophosphate finally, the precipitate was measured by low backgroundα/βcounter. The minimum detectable activity of P-32 was 0,05 Bq at a background of 4,6 cpm and with a counting efficiency of 55 % for a 30 minute counting time

  2. Periodic boundary conditions and the error-controlled fast multipole method

    Energy Technology Data Exchange (ETDEWEB)

    Kabadshow, Ivo

    2012-08-22

    The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific research. Especially the calculation of long-range interactions poses limitations to the system size, since these interactions scale quadratically with the number of particles. Fast summation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). This work extends the possible range of applications of the FMM to periodic systems in one, two and three dimensions with one unique approach. Together with a tight error control, this contribution enables the simulation of periodic particle systems for different applications without the need to know and tune the FMM specific parameters. The implemented error control scheme automatically optimizes the parameters to obtain an approximation for the minimal runtime for a given energy error bound.

  3. Analytic moment method calculations of the drift wave spectrum

    International Nuclear Information System (INIS)

    Thayer, D.R.; Molvig, K.

    1985-11-01

    A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA

  4. Application of Statistical Methods to Activation Analytical Results near the Limit of Detection

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Wanscher, B.

    1978-01-01

    Reporting actual numbers instead of upper limits for analytical results at or below the detection limit may produce reliable data when these numbers are subjected to appropriate statistical processing. Particularly in radiometric methods, such as activation analysis, where individual standard...... deviations of analytical results may be estimated, improved discrimination may be based on the Analysis of Precision. Actual experimental results from a study of the concentrations of arsenic in human skin demonstrate the power of this principle....

  5. Analytical models approximating individual processes: a validation method.

    Science.gov (United States)

    Favier, C; Degallier, N; Menkès, C E

    2010-12-01

    Upscaling population models from fine to coarse resolutions, in space, time and/or level of description, allows the derivation of fast and tractable models based on a thorough knowledge of individual processes. The validity of such approximations is generally tested only on a limited range of parameter sets. A more general validation test, over a range of parameters, is proposed; this would estimate the error induced by the approximation, using the original model's stochastic variability as a reference. This method is illustrated by three examples taken from the field of epidemics transmitted by vectors that bite in a temporally cyclical pattern, that illustrate the use of the method: to estimate if an approximation over- or under-fits the original model; to invalidate an approximation; to rank possible approximations for their qualities. As a result, the application of the validation method to this field emphasizes the need to account for the vectors' biology in epidemic prediction models and to validate these against finer scale models. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories

    Science.gov (United States)

    2015-01-01

    Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351

  7. An analytical method for neutron thermalization calculations in heterogenous reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1965-07-01

    It is well known that the use of the diffusion approximation for stumethods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations.

  8. An analytical method for neutron thermalization calculations in heterogenous reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1965-01-01

    It is well known that the use of the diffusion approximation for studying neutron thermalization in heterogeneous reactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations

  9. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2009-06-19

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.

  10. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2009-01-01

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential

  11. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  12. Hanford environmental analytical methods: Methods as of March 1990. Volume 3, Appendix A2-I

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    This paper from the analytical laboratories at Hanford describes the method used to measure pH of single-shell tank core samples. Sludge or solid samples are mixed with deionized water. The pH electrode used combines both a sensor and reference electrode in one unit. The meter amplifies the input signal from the electrode and displays the pH visually.

  13. Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study

    International Nuclear Information System (INIS)

    Zhang Xiao-Jun; Chen Chang-Le

    2016-01-01

    Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions, and XM-bar are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X-bar and M-bar by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. (paper)

  14. Analytical method for high resolution liquid chromatography for quality control French Macaw

    International Nuclear Information System (INIS)

    Garcia Penna, Caridad M; Torres Amaro, Leonid; Menendez Castillo, Rosa; Sanchez, Esther; Martinez Espinosa, Vivian; Gonzalez, Maria Lidia; Rodriguez, Carlos

    2007-01-01

    Was developed and validated an analytical method for high resolution liquid chromatography applicable to quality control of drugs dry French Macaw (Senna alata L. Roxb.) With ultraviolet detection at 340 nm. The method for high resolution liquid chromatography used to quantify the sennosides A and B, main components, was validated and proved to be specific, linear, precise and accurate. (Author)

  15. Intercalibration of analytical methods on marine environmental samples

    International Nuclear Information System (INIS)

    1988-06-01

    The pollution of the seas by various chemical substances constitutes nowadays one of the principal concerns of mankind. The International Atomic Energy Agency has organized in past years several intercomparison exercises in the framework of its Analytical Quality Control Service. The present intercomparison had a double aim: first, to give laboratories participating in this intercomparison an opportunity for checking their analytical performance. Secondly, to produce on the basis of the results of this intercomparison a reference material made of fish tissue which would be accurately certified with respect to many trace elements. Such a material could be used by analytical chemists to check the validity of new analytical procedures. In total, 53 laboratories from 29 countries reported results (585 laboratory means for 48 elements). 5 refs, 52 tabs

  16. Application of FEM analytical method for hydrogen migration behaviour in Zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, K; Ohta, H [Takasago Research and Development Center, Mitsubishi Heavy Industries Ltd, Hyogo-ken (Japan)

    1997-02-01

    It is well recognized that the hydriding behaviours of Zirconium alloys are very significant problems as a safety issues. Also, it is well known that the diffusion of hydrogen in Zirconium alloys are affected not only by concentration but also temperature gradient. But in actual component, especially heat transfer tube such as fuel rod, we can not avoid the temperature gradient in some degree. So, it is very useful to develop the computer code which can analyze the hydrogen diffusion and precipitation behaviours under temperature gradient as a function of the structure of fuel rod. For this objective, we have developed the computer code for hydrogen migration behaviour using FEM analytical methods. So, following items are presented and discussed. Analytical method and conditions; correlation between the computed and test results; application to designing studies. (author). 8 refs, 4 figs, 2 tabs.

  17. A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves

    Science.gov (United States)

    Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang

    2018-03-01

    The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.

  18. Investigations of phosphate coatings of galvanized steel sheets by a surface-analytical multi-method approach

    International Nuclear Information System (INIS)

    Bubert, H.; Garten, R.; Klockenkaemper, R.; Puderbach, H.

    1983-01-01

    Corrosion protective coatings on galvanized steel sheets have been studied by a combination of SEM, EDX, AES, ISS and SIMS. Analytical statements concerning such rough, poly-crystalline and contaminated surfaces of technical samples are quite difficult to obtain. The use of a surface-analytical multi-method approach overcomes, the intrinsic limitations of the individual method applied, thus resulting in a consistent picture of those technical surfaces. Such results can be used to examine technical faults and to optimize the technical process. (Author)

  19. A Novel Method for Analytical Solutions of Fractional Partial Differential Equations

    OpenAIRE

    Mehmet Ali Akinlar; Muhammet Kurulay

    2013-01-01

    A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as...

  20. The riddle of Siegfried: exploring methods and psychological perspectives in analytical psychology.

    Science.gov (United States)

    Barreto, Marco Heleno

    2016-02-01

    Jung's dream of the killing of Siegfried poses a riddle: why did the unconscious choose precisely Siegfried as the hero to be murdered? Jung himself declares that he does not know. This paper attempts to decipher this riddle using three distinct methodological approaches accepted by Jung, two of them in fact grounded in his theories of dream interpretation. Besides presenting some possible answers to the riddle of Siegfried, this interpretative reflection brings to light the discrepancy of the psychological perspectives created by the heterogeneity of methods within analytical psychology. © 2016, The Society of Analytical Psychology.

  1. Development of special analytical system for determination of free acid

    International Nuclear Information System (INIS)

    Zhang Lihua; Wu Jizong; Liu Huanliang; Liu Quanwei; Fan Dejun; Su Tao

    2008-01-01

    The determination of free-acid plays an important role in spent fuel reprocessing analysis. Its work accounts for about 30% of all analytical work in reprocessing. It is necessary to study and develop a special fast analytical system for determination of free acid. The special analytical system is particularly applicable to determination of free acid in high-level radioactive environment, which is composed of an optical fiber spectrophotometer and an automatic sample-in device. Small sample-in volume needed, fast procedure, easy operation and physical protection are its advantages. All kinds of performance and parameters satisfy the requirements of spent fuel reprocessing control analysis. For long-distance determination, the optical fiber spectrophotometer is connected with an 4.5 meters long optical fiber. To resolve the change of 0.1 mol/L acidity, the measuring optical path is 2 cm. Mass of 10-20 μm in diameter optical fibers are assembled. The optical fiber probe is composed of a reflecting mirror and a concave mirror on the top of optical fibers. To eliminate the interference of external light, a stainless steel measuring chamber is used. The automatic sample-in device is composed of state valve, quantifying pump and pipe. The sample-in precision of 15 μl and 35 μl quantifying loops is better than 0.5%. The special analytical system takes less than 7 minutes to complete one measurement. The linear range is 0.5 mol/L-3.5 mol/L. The relative standard deviation is better than 2.0% when the concentration of the free acid is about 2.0 mol/L. For samples in different medium, the results are comparable with the method of pH titration of determining the free acid in reprocessing. (authors)

  2. Comprehension of complex biological processes by analytical methods: how far can we go using mass spectrometry?

    International Nuclear Information System (INIS)

    Gerner, C.

    2013-01-01

    Comprehensive understanding of complex biological processes is the basis for many biomedical issues of great relevance for modern society including risk assessment, drug development, quality control of industrial products and many more. Screening methods provide means for investigating biological samples without research hypothesis. However, the first boom of analytical screening efforts has passed and we again need to ask whether and how to apply screening methods. Mass spectrometry is a modern tool with unrivalled analytical capacities. This applies to all relevant characteristics of analytical methods such as specificity, sensitivity, accuracy, multiplicity and diversity of applications. Indeed, mass spectrometry qualifies to deal with complexity. Chronic inflammation is a common feature of almost all relevant diseases challenging our modern society; these diseases are apparently highly diverse and include arteriosclerosis, cancer, back pain, neurodegenerative diseases, depression and other. The complexity of mechanisms regulating chronic inflammation is the reason for the practical challenge to deal with it. The presentation shall give an overview of capabilities and limitations of the application of this analytical tool to solve critical questions with great relevance for our society. (author)

  3. A semi-analytical iterative technique for solving chemistry problems

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed AL-Jawary

    2017-07-01

    Full Text Available The main aim and contribution of the current paper is to implement a semi-analytical iterative method suggested by Temimi and Ansari in 2011 namely (TAM to solve two chemical problems. An approximate solution obtained by the TAM provides fast convergence. The current chemical problems are the absorption of carbon dioxide into phenyl glycidyl ether and the other system is a chemical kinetics problem. These problems are represented by systems of nonlinear ordinary differential equations that contain boundary conditions and initial conditions. Error analysis of the approximate solutions is studied using the error remainder and the maximal error remainder. Exponential rate for the convergence is observed. For both problems the results of the TAM are compared with other results obtained by previous methods available in the literature. The results demonstrate that the method has many merits such as being derivative-free, and overcoming the difficulty arising in calculating Adomian polynomials to handle the non-linear terms in Adomian Decomposition Method (ADM. It does not require to calculate Lagrange multiplier in Variational Iteration Method (VIM in which the terms of the sequence become complex after several iterations, thus, analytical evaluation of terms becomes very difficult or impossible in VIM. No need to construct a homotopy in Homotopy Perturbation Method (HPM and solve the corresponding algebraic equations. The MATHEMATICA® 9 software was used to evaluate terms in the iterative process.

  4. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  5. A comparison of two analytical evaluation methods for educational computer games for young children

    NARCIS (Netherlands)

    Bekker, M.M.; Baauw, E.; Barendregt, W.

    2008-01-01

    In this paper we describe a comparison of two analytical methods for educational computer games for young children. The methods compared in the study are the Structured Expert Evaluation Method (SEEM) and the Combined Heuristic Evaluation (HE) (based on a combination of Nielsen’s HE and the

  6. Analytical method for Buddleja colorants in foods.

    Science.gov (United States)

    Aoki, H; Kuze, N; Ichi, T; Koda, T

    2001-04-01

    Buddleja yellow colorant derived from Buddleja officinalis Maxim. has recently been approved for use as a new kind of natural colorant for food additives in China. In order to distinguish Buddleja yellow colorant from other yellow colorants, two known phenylpropanoid glycosides, acteoside (= verbascoside) and poliumoside, were isolated from the colorant as marker substances for Buddleja yellow colorant. Poliumoside has not been detected in B. officinalis Maxim. previously. These phenylpropanoid glycosides were not detected in the fruits of Gardenia jasminoides Ellis or in the stamens of the flowers of Crocus sativus L., which also contain crocetin derivatives as coloring components, using a photodiode array and mass chromatograms. Thus, an analytical HPLC method was developed to distinguish foods that have been colored with yellow colorants containing crocetin derivatives, using phenylpropanoid glycosides as markers.

  7. Evaluation of FTIR-based analytical methods for the analysis of simulated wastes

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Cash, R.J.; Dodd, D.A.; Lockrem, L.L.; Meacham, J.E.; Winkelman, W.D.

    1994-01-01

    Three FTIR-based analytical methods that have potential to characterize simulated waste tank materials have been evaluated. These include: (1) fiber optics, (2) modular transfer optic using light guides equipped with non-contact sampling peripherals, and (3) photoacoustic spectroscopy. Pertinent instrumentation and experimental procedures for each method are described. The results show that the near-infrared (NIR) region of the infrared spectrum is the region of choice for the measurement of moisture in waste simulants. Differentiation of the NIR spectrum, as a preprocessing steps, will improve the analytical result. Preliminary data indicate that prominent combination bands of water and the first overtone band of the ferrocyanide stretching vibration may be utilized to measure water and ferrocyanide species simultaneously. Both near-infrared and mid-infrared spectra must be collected, however, to measure ferrocyanide species unambiguously and accurately. For ease of sample handling and the potential for field or waste tank deployment, the FTIR-Fiber Optic method is preferred over the other two methods. Modular transfer optic using light guides and photoacoustic spectroscopy may be used as backup systems and for the validation of the fiber optic data

  8. Effect of the number of Ramadan fasting days on maternal and neonatal outcomes

    Directory of Open Access Journals (Sweden)

    Hassan Boskabadi

    2014-09-01

    Full Text Available Introduction: Gynecologists and perinatologists are left with many unanswered questions and concerns regarding fasting during pregnancy and its effects on maternal and neonatal health. The current study was conducted to investigate the correlation between the number of Ramadan fasting days and pregnancy outcomes. Materials & Methods: In this descriptive, analytical study, 641 newborns, whose mothers had fasting experience during pregnancy, were enrolled and allocated to three groups, based on the number of maternal fasting days during pregnancy (group A: ≤10 days, group B: 11-20 days, and group C: 21-30 days. Demographic and anthropometric data of neonates and mothers were recorded. Descriptive statistics, Chi-square, and non-parametric tests were performed for data analysis. Results: No statistically significant difference was found in maternal weight (during the last month of pregnancy, neonatal height, incidence of pre-term labor, or neonatal congenital abnormality in the three groups. Increased number of fasting days was not correlated with decreased neonatal head circumference or weight, while 1- and 5-minute Apgar scores significantly improved (P

  9. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  10. Analytical methods associated with the recovery of uranium

    International Nuclear Information System (INIS)

    Dixon, K.

    1983-01-01

    This report summarizes various approaches made to the analysis of materials arising from the processing of Karoo deposits for uranium. These materials include head and residue samples, aqueous solutions and organic solvents and, finally, the precipitated cakes of the elements recovered, i.e. uranium, molybdenum, and arsenic. Analysis was required for these elements and also vanadium, carbon, sulphur, and carbonate in the head and residue samples. The concentration of uranium, molybdenum, and arsenic, other than in the precipitated cakes, ranges from 1 to 2000μg/g, and that of carbon, sulphur, and carbonate from 0,1 to 5 per cent. The analysis of cakes necessitates the determination of silver, arsenic, iron, copper, calcium, magnesium, manganese, molybdenum, lead, tin, titanium, and vanadium within the range 1 to 1000μg/g, and of sodium and silica within the range 10 to 20 000μg/g. The methods used include combustion methods for carbon, sulphur, and carbonate, and atomic-absorption, X-ray-fluorescence, and emission methods for the other analytes. The accuracy of the analysis is within 10 per cent

  11. Rapid determination of anti-estrogens by gas chromatography/mass spectrometry in urine: Method validation and application to real samples

    Directory of Open Access Journals (Sweden)

    E. Gerace

    2012-02-01

    Full Text Available A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. Keywords: Anti-estrogens, Fast-GC/MS, Urine screening, Validation, Breast cancer

  12. A method for determining the analytical form of a radionuclide depth distribution using multiple gamma spectrometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Steven Clifford, E-mail: sdewey001@gmail.com [United States Air Force School of Aerospace Medicine, Occupational Environmental Health Division, Health Physics Branch, Radiation Analysis Laboratories, 2350 Gillingham Drive, Brooks City-Base, TX 78235 (United States); Whetstone, Zachary David, E-mail: zacwhets@umich.edu [Radiological Health Engineering Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, 1906 Cooley Building, Ann Arbor, MI 48109-2104 (United States); Kearfott, Kimberlee Jane, E-mail: kearfott@umich.edu [Radiological Health Engineering Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, 1906 Cooley Building, Ann Arbor, MI 48109-2104 (United States)

    2011-06-15

    When characterizing environmental radioactivity, whether in the soil or within concrete building structures undergoing remediation or decommissioning, it is highly desirable to know the radionuclide depth distribution. This is typically modeled using continuous analytical expressions, whose forms are believed to best represent the true source distributions. In situ gamma ray spectroscopic measurements are combined with these models to fully describe the source. Currently, the choice of analytical expressions is based upon prior experimental core sampling results at similar locations, any known site history, or radionuclide transport models. This paper presents a method, employing multiple in situ measurements at a single site, for determining the analytical form that best represents the true depth distribution present. The measurements can be made using a variety of geometries, each of which has a different sensitivity variation with source spatial distribution. Using non-linear least squares numerical optimization methods, the results can be fit to a collection of analytical models and the parameters of each model determined. The analytical expression that results in the fit with the lowest residual is selected as the most accurate representation. A cursory examination is made of the effects of measurement errors on the method. - Highlights: > A new method for determining radionuclide distribution as a function of depth is presented. > Multiple measurements are used, with enough measurements to determine the unknowns in analytical functions that might describe the distribution. > The measurements must be as independent as possible, which is achieved through special collimation of the detector. > Although the effects of measurements errors may be significant on the results, an improvement over other methods is anticipated.

  13. A fast nodal neutron diffusion method for cartesian geometry

    International Nuclear Information System (INIS)

    Makai, M.; Maeder, C.

    1983-01-01

    A numerical method based on an analytical solution to the three-dimensional two-group diffusion equation has been derived assuming that the flux is a sum of the functions of one variable. In each mesh the incoming currents are used as boundary conditions. The final equations for the average flux and the outgoing currents are of the response matrix type. The method is presented in a form that can be extended to the general multigroup case. In the SEXI computer program developed on the basis of this method, the response matrix elements are recalculated in each outer iteration to minimize the data transfer between disk storage and central memory. The efficiency of the method is demonstrated for a light water reactor (LWR) benchmark problem. The SEXI program has been incorporated into the LWR simulator SILWER code as a possible option

  14. A method for determining an effective porosity correction factor for thermal conductivity in fast reactor uranium-plutonium oxide fuel pellets

    International Nuclear Information System (INIS)

    Inoue, Masaki; Abe, Kazuyuki; Sato, Isamu

    2000-01-01

    A reliable method has been developed for determining an effective porosity correction factor for calculating a realistic thermal conductivity for fast reactor uranium-plutonium (mixed) oxide fuel pellets. By using image analysis of the ceramographs of transverse sections of mixed-oxide fuel pellets, the fuel morphology could be classified into two basic types. One is a 'two-phase' type that consists of small pores dispersed in the fuel matrix. The other is a 'three-phase' type that has large pores in addition to the small pores dispersed in the fuel matrix. The pore sizes are divided into two categories, large and small, at the 30 μm area equivalent diameter. These classifications lead to an equation for calculating an effective porosity correction factor by accounting for the small and large pore volume fractions and coefficients. This new analytical method for determining the effective porosity correction factor for calculating the realistic thermal conductivity of mixed-oxide fuel was also experimentally confirmed for high-, medium- and low-density fuel pellets

  15. Analytical methods applied to the study of lattice gauge and spin theories

    International Nuclear Information System (INIS)

    Moreo, Adriana.

    1985-01-01

    A study of interactions between quarks and gluons is presented. Certain difficulties of the quantum chromodynamics to explain the behaviour of quarks has given origin to the technique of lattice gauge theories. First the phase diagrams of the discrete space-time theories are studied. The analysis of the phase diagrams is made by numerical and analytical methods. The following items were investigated and studied: a) A variational technique was proposed to obtain very accurated values for the ground and first excited state energy of the analyzed theory; b) A mean-field-like approximation for lattice spin models in the link formulation which is a generalization of the mean-plaquette technique was developed; c) A new method to study lattice gauge theories at finite temperature was proposed. For the first time, a non-abelian model was studied with analytical methods; d) An abelian lattice gauge theory with fermionic matter at the strong coupling limit was analyzed. Interesting results applicable to non-abelian gauge theories were obtained. (M.E.L.) [es

  16. Selection and authentication of botanical materials for the development of analytical methods.

    Science.gov (United States)

    Applequist, Wendy L; Miller, James S

    2013-05-01

    Herbal products, for example botanical dietary supplements, are widely used. Analytical methods are needed to ensure that botanical ingredients used in commercial products are correctly identified and that research materials are of adequate quality and are sufficiently characterized to enable research to be interpreted and replicated. Adulteration of botanical material in commerce is common for some species. The development of analytical methods for specific botanicals, and accurate reporting of research results, depend critically on correct identification of test materials. Conscious efforts must therefore be made to ensure that the botanical identity of test materials is rigorously confirmed and documented through preservation of vouchers, and that their geographic origin and handling are appropriate. Use of material with an associated herbarium voucher that can be botanically identified is always ideal. Indirect methods of authenticating bulk material in commerce, for example use of organoleptic, anatomical, chemical, or molecular characteristics, are not always acceptable for the chemist's purposes. Familiarity with botanical and pharmacognostic literature is necessary to determine what potential adulterants exist and how they may be distinguished.

  17. Integrative Mixed Methods Data Analytic Strategies in Research on School Success in Challenging Circumstances

    Science.gov (United States)

    Jang, Eunice E.; McDougall, Douglas E.; Pollon, Dawn; Herbert, Monique; Russell, Pia

    2008-01-01

    There are both conceptual and practical challenges in dealing with data from mixed methods research studies. There is a need for discussion about various integrative strategies for mixed methods data analyses. This article illustrates integrative analytic strategies for a mixed methods study focusing on improving urban schools facing challenging…

  18. Development of an advanced code system for fast-reactor transient analysis

    International Nuclear Information System (INIS)

    Konstantin Mikityuk; Sandro Pelloni; Paul Coddington

    2005-01-01

    FAST (Fast-spectrum Advanced Systems for power production and resource management) is a recently approved PSI activity in the area of fast spectrum core and safety analysis with emphasis on generic developments and Generation IV systems. In frames of the FAST project we will study both statics and transients core physics, reactor system behaviour and safety; related international experiments. The main current goal of the project is to develop unique analytical and code capability for core and safety analysis of critical (and sub-critical) fast spectrum systems with an initial emphasis on a gas cooled fast reactors. A structure of the code system is shown on Fig. 1. The main components of the FAST code system are 1) ERANOS code for preparation of basic x-sections and their partial derivatives; 2) PARCS transient nodal-method multi-group neutron diffusion code for simulation of spatial (3D) neutron kinetics in hexagonal and square geometries; 3) TRAC/AAA code for system thermal hydraulics; 4) FRED transient model for fuel thermal-mechanical behaviour; 5) PVM system as an interface between separate parts of the code system. The paper presents a structure of the code system (Fig. 1), organization of interfaces and data exchanges between main parts of the code system, examples of verification and application of separate codes and the system as a whole. (authors)

  19. Time-domain analytic Solutions of two-wire transmission line excited by a plane-wave field

    Institute of Scientific and Technical Information of China (English)

    Ni Gu-Yan; Yan Li; Yuan Nai-Chang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain.By the frequency-domain Baum-Liu-Tesche(BLT)equation,the time-domain analytic solutions are obtained and expressed in an infinite geometric series.Moreover,it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval.In other word.the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval.The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform,and the agreement is excellent.

  20. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  1. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  2. The application of the analytic hierarchy process (AHP) in uranium mine mining method of the optimal selection

    International Nuclear Information System (INIS)

    Tan Zhongyin; Kuang Zhengping; Qiu Huiyuan

    2014-01-01

    Analytic hierarchy process, AHP, is a combination of qualitative and quantitative, systematic and hierarchical analysis method. Basic decision theory of analytic hierarchy process is applied in this article, with a project example in north Guangdong region as the research object, the in-situ mining method optimization choose hierarchical analysis model is established and the analysis method, The results show that, the AHP model for mining method selecting model was reliable, optimization results were conformity with the actual use of the in-situ mining method, and it has better practicability. (authors)

  3. Aspects of investigating scrambling in the synthesis of porphyrins Different analytical methods

    DEFF Research Database (Denmark)

    Nielsen, C.B.; Krebs, Frederik C

    2005-01-01

    Herein, we discuss the analyses and quantification of the different components in porphyrin mixtures, prepared from p-anisaidehyde, p-tolualdehyde, and 5-(4-bromophenyl)-dipyrromethane with acid catalysis, using NMR and HPLC. The advantages and disadvantages of these analytical methods are emphas...

  4. Asynchronous Execution of the Fast Multipole Method Using Charm++

    OpenAIRE

    AbdulJabbar, Mustafa; Yokota, Rio; Keyes, David

    2014-01-01

    Fast multipole methods (FMM) on distributed mem- ory have traditionally used a bulk-synchronous model of com- municating the local essential tree (LET) and overlapping it with computation of the local data. This could be perceived as an extreme case of data aggregation, where the whole LET is communicated at once. Charm++ allows a much finer control over the granularity of communication, and has a asynchronous execution model that fits well with the structure of our FMM code. Unlike previous ...

  5. Analytical method validation for quality control and the study of the 50 mg Propylthiouracil stability

    International Nuclear Information System (INIS)

    Valdes Bendoyro, Maria Olga; Garcia Penna, Caridad Margarita; Fernandez, Juan Lugones; Garcia Borges, Lisandra; Martinez Espinosa, Vivian

    2010-01-01

    A high-performance liquid chromatography analytical method was developed and validated for the quality control and stability studies of 50 mg Propylthiouracil tablets. Method is based in active principle separation through a 100 RP-18 RP-18 (5 μm) (250 x 4 mm) Lichrospher chromatography with UV detection to 272 nm, using a mobile phase composed by a ungaseous mixture of a 0.025 M buffer solution-monobasic potassium phosphate to pH= 4,6 ad acetonitrile in a 80:20 ratio with a flux speed of 0,5 mL/min. Analytical method was linear, precise, specific and exact in the study concentrations interval

  6. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.

    Science.gov (United States)

    Fukushima, Romualdo S; Hatfield, Ronald D

    2004-06-16

    Present analytical methods to quantify lignin in herbaceous plants are not totally satisfactory. A spectrophotometric method, acetyl bromide soluble lignin (ABSL), has been employed to determine lignin concentration in a range of plant materials. In this work, lignin extracted with acidic dioxane was used to develop standard curves and to calculate the derived linear regression equation (slope equals absorptivity value or extinction coefficient) for determining the lignin concentration of respective cell wall samples. This procedure yielded lignin values that were different from those obtained with Klason lignin, acid detergent acid insoluble lignin, or permanganate lignin procedures. Correlations with in vitro dry matter or cell wall digestibility of samples were highest with data from the spectrophotometric technique. The ABSL method employing as standard lignin extracted with acidic dioxane has the potential to be employed as an analytical method to determine lignin concentration in a range of forage materials. It may be useful in developing a quick and easy method to predict in vitro digestibility on the basis of the total lignin content of a sample.

  7. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding

    Science.gov (United States)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam

    2018-03-01

    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  8. Pyrrolizidine alkaloids in honey: comparison of analytical methods.

    Science.gov (United States)

    Kempf, M; Wittig, M; Reinhard, A; von der Ohe, K; Blacquière, T; Raezke, K-P; Michel, R; Schreier, P; Beuerle, T

    2011-03-01

    Pyrrolizidine alkaloids (PAs) are a structurally diverse group of toxicologically relevant secondary plant metabolites. Currently, two analytical methods are used to determine PA content in honey. To achieve reasonably high sensitivity and selectivity, mass spectrometry detection is demanded. One method is an HPLC-ESI-MS-MS approach, the other a sum parameter method utilising HRGC-EI-MS operated in the selected ion monitoring mode (SIM). To date, no fully validated or standardised method exists to measure the PA content in honey. To establish an LC-MS method, several hundred standard pollen analysis results of raw honey were analysed. Possible PA plants were identified and typical commercially available marker PA-N-oxides (PANOs). Three distinct honey sets were analysed with both methods. Set A consisted of pure Echium honey (61-80% Echium pollen). Echium is an attractive bee plant. It is quite common in all temperate zones worldwide and is one of the major reasons for PA contamination in honey. Although only echimidine/echimidine-N-oxide were available as reference for the LC-MS target approach, the results for both analytical techniques matched very well (n = 8; PA content ranging from 311 to 520 µg kg(-1)). The second batch (B) consisted of a set of randomly picked raw honeys, mostly originating from Eupatorium spp. (0-15%), another common PA plant, usually characterised by the occurrence of lycopsamine-type PA. Again, the results showed good consistency in terms of PA-positive samples and quantification results (n = 8; ranging from 0 to 625 µg kg(-1) retronecine equivalents). The last set (C) was obtained by consciously placing beehives in areas with a high abundance of Jacobaea vulgaris (ragwort) from the Veluwe region (the Netherlands). J. vulgaris increasingly invades countrysides in Central Europe, especially areas with reduced farming or sites with natural restorations. Honey from two seasons (2007 and 2008) was sampled. While only trace amounts of

  9. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  10. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  11. Big Data Analytics and Its Applications

    Directory of Open Access Journals (Sweden)

    Mashooque A. Memon

    2017-10-01

    Full Text Available The term, Big Data, has been authored to refer to the extensive heave of data that can't be managed by traditional data handling methods or techniques. The field of Big Data plays an indispensable role in various fields, such as agriculture, banking, data mining, education, chemistry, finance, cloud computing, marketing, health care stocks. Big data analytics is the method for looking at big data to reveal hidden patterns, incomprehensible relationship and other important data that can be utilize to resolve on enhanced decisions. There has been a perpetually expanding interest for big data because of its fast development and since it covers different areas of applications. Apache Hadoop open source technology created in Java and keeps running on Linux working framework was used. The primary commitment of this exploration is to display an effective and free solution for big data application in a distributed environment, with its advantages and indicating its easy use. Later on, there emerge to be a required for an analytical review of new developments in the big data technology. Healthcare is one of the best concerns of the world. Big data in healthcare imply to electronic health data sets that are identified with patient healthcare and prosperity. Data in the healthcare area is developing past managing limit of the healthcare associations and is relied upon to increment fundamentally in the coming years.

  12. Comparison of fast neutron-induced tracks in plastics using the electrochemical etching method

    International Nuclear Information System (INIS)

    Cotter, S.J.; Gammage, R.B.; Thorngate, J.H.; Ziemer, P.L.

    1979-01-01

    Four plastics were examined by the electrochemical etching method for their suitability in registering fast neutron-induced recoil particle tracks. The plastics were cellulose acetate, cellulose triacetate, cellulose acetobutyrate and polycarbonate. Cellulose acetate and triacetate displayed high levels of water absorptivity during etching while the acetobutyrate foils cracked due to electromechanical stresses at high frequencies (>500 Hz). The clarity of the etched track was superior in the polycarbonate foils, suggesting the latter as the generally preferred dosimeter for fast neutrons. (author)

  13. Simultaneous determination of domperidone and Itopride in pharmaceuticals and human plasma using RP-HPLC/UV detection: Method development, validation and application of the method in in-vivo evaluation of fast dispersible tablets.

    Science.gov (United States)

    Khan, Amjad; Iqbal, Zafar; Khadra, Ibrahim; Ahmad, Lateef; Khan, Abad; Khan, Muhammad Imran; Ullah, Zia; Ismail

    2016-03-20

    Domperidone and Itopride are pro-kinetic agents, regulating the gastric motility and are commonly prescribed as anti emetic drugs. In the present study a simple, rapid and sensitive RP-HPLC/UV method was developed for simultaneous determination of Domperidone and Itopride in pharmaceutical samples and human plasma, using Tenofavir as internal standard. Experimental conditions were optimized and method was validated according to the standard guidelines. Combination of water (pH 3.0) and acetonitrile (65:35 v/v) was used as mobile phase, pumped at the flow rate of 1.5 ml/min. Detector wavelength was set at 210 nm and column oven temperature was 40oC. Unlike conventional liquid-liquid extraction, simple precipitation technique was applied for drug extraction from human plasma using acetonitrile for deprotienation. The method showed adequate separation of both the analytes and best resolution was achieved using Hypersil BDS C8 column (150 mm × 4.6 mm, 5 μm). The method was quite linear in the range of 20-600 ng/ml. Recovery of the method was 92.31% and 89.82% for Domperidone and Itopride, respectively. Retention time of both the analytes and internal standard was below 15 min. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) for Domperidone were 5 and 10 ng/ml while for Itopride was 12 and 15 ng/ml, respectively. The developed method was successfully applied for in-vivo analysis of fast dispersible tablets of Domperidone in healthy human volunteer. The proposed method was a part of formulation development study and was efficiently applied for determination of the two drugs in various pharmaceutical products and human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    International Nuclear Information System (INIS)

    Meeks, S.L.; Buatti, J.M.; Eyster, B.; Kendrick, L.A.

    1999-01-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations. (author)

  15. IAEA coordinated research project on 'analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Ait-Abderrahim, H.; Stanculescu, A.

    2006-01-01

    This paper provides the general background and the main specifications of the benchmark exercises performed within the framework of the IAEA Coordinated Research Project (CRP) on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWG-FR) of IAEA's Nuclear Energy Dept., is to contribute to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e. heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. (authors)

  16. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1985-08-05

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises: (1) a whole blood sample disc; (2) a serum sample disc; (3) a sample preparation rotor; and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analyticaly rotor for conventional methods. 5 figs.

  17. Characterization, thermal stability studies, and analytical method development of Paromomycin for formulation development.

    Science.gov (United States)

    Khan, Wahid; Kumar, Neeraj

    2011-06-01

    Paromomycin (PM) is an aminoglycoside antibiotic, first isolated in the 1950s, and approved in 2006 for treatment of visceral leishmaniasis. Although isolated six decades back, sufficient information essential for development of pharmaceutical formulation is not available for PM. The purpose of this paper was to determine thermal stability and development of new analytical method for formulation development of PM. PM was characterized by thermoanalytical (DSC, TGA, and HSM) and by spectroscopic (FTIR) techniques and these techniques were used to establish thermal stability of PM after heating PM at 100, 110, 120, and 130 °C for 24 h. Biological activity of these heated samples was also determined by microbiological assay. Subsequently, a simple, rapid and sensitive RP-HPLC method for quantitative determination of PM was developed using pre-column derivatization with 9-fluorenylmethyl chloroformate. The developed method was applied to estimate PM quantitatively in two parenteral dosage forms. PM was successfully characterized by various stated techniques. These techniques indicated stability of PM for heating up to 120 °C for 24 h, but when heated at 130 °C, PM is liable to degradation. This degradation is also observed in microbiological assay where PM lost ∼30% of its biological activity when heated at 130 °C for 24 h. New analytical method was developed for PM in the concentration range of 25-200 ng/ml with intra-day and inter-day variability of stability of PM was determined successfully. Developed analytical method was found sensitive, accurate, and precise for quantification of PM. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Validation of analytical method for quality control of B12 Vitamin-10 000 injection

    International Nuclear Information System (INIS)

    Botet Garcia, Martha; Garcia Penna, Caridad Margarita; Troche Concepcion, Yenilen; Cannizares Arencibia, Yanara; Moreno Correoso, Barbara

    2009-01-01

    Analytical method reported by USA Pharmacopeia was validated for quality control of injectable B 1 2 Vitamin (10 000 U) by UV spectrophotometry because this is a simpler and low-cost method allowing quality control of finished product. Calibration curve was graphed at 60 to 140% interval, where it was linear with a correlation coefficient similar to 0, 9999; statistical test for interception and slope was considered non-significant. There was a recovery of 99.7 % in study concentrations interval where the Cochran (G) and Student(t) test were not significant too. Variation coefficient in repetition study was similar to 0.59 % for the 6 assayed replies, whereas in intermediate precision analysis, the Fisher and Student tests were not significant. Analytical method was linear, precise, specific and exact in study concentrations interval

  19. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Science.gov (United States)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  20. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters