WorldWideScience

Sample records for far-side seismic images

  1. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    Science.gov (United States)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  2. Comparison of Far-side Helioseismic Predictions of Active Regions from SDO/HMI with Far-side Observations of Solar Activity from STEREO/EUVI

    Science.gov (United States)

    Liewer, Paulett C.; Qiu, Jiong; Charles, Lindsey

    2017-08-01

    Doppler data from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic field regions on the far side of the Sun (http:/jsoc.stanford.edu/data/farside/). To test the reliability of these active regions predictions, the far-side seismic region detections are compared with far-side observation of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme ultraviolet light as a proxy for strong magnetic fields. Two approaches are used here to compare and analyze approximately six months of STEREO and HMI data. In the first approach, after determining whether or not new large East-limb active regions were detected seismically on the far side of the Sun before they appeared Earth side, we analyze how the ability to detect these regions seismically relates to their integrated extreme ultraviolet intensity. We find that, while there is a range of intensities where far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme ultraviolet and helioseismic far-side maps for the same six month period. We find that 100% (22) of the far-side seismic regions correspond to an extreme ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  3. Imaging seismic reflections

    NARCIS (Netherlands)

    Op 't Root, Timotheus Johannes Petrus Maria

    2011-01-01

    The goal of reflection seismic imaging is making images of the Earth subsurface using surface measurements of reflected seismic waves. Besides the position and orientation of subsurface reflecting interfaces it is a challenge to recover the size or amplitude of the discontinuities. We investigate tw

  4. Reproducibility in Seismic Imaging

    Directory of Open Access Journals (Sweden)

    González-Verdejo O.

    2012-04-01

    Full Text Available Within the field of exploration seismology, there is interest at national level of integrating reproducibility in applied, educational and research activities related to seismic processing and imaging. This reproducibility implies the description and organization of the elements involved in numerical experiments. Thus, a researcher, teacher or student can study, verify, repeat, and modify them independently. In this work, we document and adapt reproducibility in seismic processing and imaging to spread this concept and its benefits, and to encourage the use of open source software in this area within our academic and professional environment. We present an enhanced seismic imaging example, of interest in both academic and professional environments, using Mexican seismic data. As a result of this research, we prove that it is possible to assimilate, adapt and transfer technology at low cost, using open source software and following a reproducible research scheme.

  5. FLARE: The Far Side Lunar Research Expedition. A design of a far side lunar observatory

    Science.gov (United States)

    Bishop, David W.; Chakrabarty, Rudhmala P.; Hannula, Dawn M.; Hargus, William A., Jr.; Melendrez, A. Dean; Niemann, Christopher J.; Neuenschwander, Amy L.; Padgett, Brett D.; Patel, Sanjiv R.; Wiesehuegel, Leland J.

    1991-12-01

    This document outlines the design completed by members of Lone Star Aerospace, Inc. (L.S.A.) of a lunar observatory on the far side of the Moon. Such a base would not only establish a long term human presence on the Moon, but would also allow more accurate astronomical data to be obtained. A lunar observatory is more desirable than an Earth based observatory for the following reasons: instrument weight is reduced due to the Moon's weaker gravity; near vacuum conditions exist on the Moon; the Moon has slow rotation to reveal the entire sky; and the lunar surface is stable for long baseline instruments. All the conditions listed above are favorable for astronomical data recording. The technical aspects investigated in the completion of this project included site selection, mission scenario, scientific instruments, communication and power systems, habitation and transportation, cargo spacecraft design, thermal systems, robotic systems, and trajectory analysis. The site selection group focused its efforts on finding a suitable location for the observatory. Hertzsprung, a large equatorial crater on the eastern limb, was chosen as the base site.

  6. The Far Side of the Moon A Photographic Guide

    CERN Document Server

    Byrne, Charles J

    2008-01-01

    This book is a companion to Byrnes's award-winning Lunar Orbiter Photographic Atlas of the Near Side of the Moon (Springer, 2005). It provides comprehensive coverage of the far side of the Moon, and is the first book that collects photographs from all five Lunar Orbiter missions: Clementine, Apollo, Luna, Zond, and Nozomi. As in the previous book, the scanning artifacts of the Lunar Orbiter photos have been cleaned. The photographs show each part of the far side in the most favorable resolution and sun angle. There are many high-altitude oblique photos that provide a feeling of being in space; this book is more like a photographic tour of the far side than an atlas.  The striking differences between the near and far side have been a major mystery for astronomers but this book suggests an explanation: a massive early impact on the near side produced the Near Side Megabasin; an impact so large that its rim is on the far side. The floor of this basin established the canvas for the portrait of the Man in the Moo...

  7. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  8. Automating Shallow Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy

  9. Lunar impact basins and crustal heterogeneity - New western limb and far side data from Galileo

    Science.gov (United States)

    Belton, Michael J. S.; Head, James W., III; Pieters, Carle M.; Greeley, Ronald; Mcewen, Alfred S.; Neukum, Gerhard; Klaasen, Kenneth P.; Anger, Clifford D.; Carr, Michael H.; Chapman, Clark R.

    1992-01-01

    Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orientale terrain that consisted of both highland materials and relatively large expanses of ancient mare basalts. The inside of the far side South Pole-Aitken basin (greater than 2000 kilometers in diameter) has low albedo, red color, and a relatively high abundance of iron- and magnesium-rich materials. These features suggest that the impact may have penetrated into the deep crust or lunar mantle or that the basin contains ancient mare basalts that were later covered by highlands ejecta.

  10. The Moon's near side megabasin and far side bulge

    CERN Document Server

    Byrne, Charles

    2013-01-01

    Since Luna and Lunar Orbiter photographed the far side of the Moon, the mysterious dichotomy between the face of the Moon as we see it from Earth and the side of the Moon that is hidden has puzzled lunar scientists. As we learned more from the Apollo sample return missions and later robotic satellites, the puzzle literally deepened, showing asymmetry of the crust and mantle, all the way to the core of the Moon. This book summarizes the author’s successful search for an ancient impact feature, the Near Side Megabasin of the Moon and the extensions to impact theory needed to find it. The implications of this ancient event are developed to answer many of the questions about the history of the Moon.

  11. SOHO sees right through the Sun, and finds sunspots on the far side

    Science.gov (United States)

    2000-03-01

    The story is told today in the journal Science by Charles Lindsey of Tucson, Arizona, and Doug Braun of Boulder, Colorado. They realised that the analytical witchcraft called helioseismic holography might open a window right through the Sun. And the technique worked when they used it to decode waves seen on the visible surface by one of SOHO's instruments, the Michelson Doppler Imager, or MDI. "We've known for ten years that in theory we could make the Sun transparent all the way to the far side," said Charles Lindsey. "But we needed observations of exceptional quality. In the end we got them, from MDI on SOHO." For more than 100 years scientists have been aware that groups of dark sunspots on the Sun's visible face are often the scene of flares and other eruptions. Nowadays they watch the Sun more closely than ever, because modern systems are much more vulnerable to solar disturbances than old-style technology was. The experts can still be taken by surprise, because the Sun turns on its axis. A large group of previously hidden sunspots can suddenly swing into view on the eastern (left-hand) edge of the Sun. It may already be blazing away with menacing eruptions. With a far-side preview of sunspots, nasty shocks for the space weather forecasters may now be avoidable. Last year, French and Finnish scientists used SWAN, another instrument on SOHO, to detect activity on the far side. They saw an ultraviolet glow lighting up gas in the Solar System beyond the Sun, and moving across the sky like a lighthouse beam as the Sun rotated. The method used by Lindsey and Braun with MDI data is completely different, and it pinpoints the source of the activity on the far side. Solar seismology chalks up another success Detection of sound waves reverberating through the Sun opened its gassy interior for investigation, in much the same way as seismologists learned to explore the Earth's rocky interior with earthquake waves. Using special telescopes on the ground and in space

  12. Seismic Imaging of Sandbox Models

    Science.gov (United States)

    Buddensiek, M. L.; Krawczyk, C. M.; Kukowski, N.; Oncken, O.

    2009-04-01

    Analog sandbox simulations have been applied to study structural geological processes to provide qualitative and quantitative insights into the evolution of mountain belts and basins. These sandbox simulations provide either two-dimensional and dynamic or pseudo-three-dimensional and static information. To extend the dynamic simulations to three dimensions, we combine the analog sandbox simulation techniques with seismic physical modeling of these sandbox models. The long-term objective of this approach is to image seismic and seismological events of static and actively deforming 3D analog models. To achieve this objective, a small-scale seismic apparatus, composed of a water tank, a PC control unit including piezo-electric transducers, and a positioning system, was built for laboratory use. For the models, we use granular material such as sand and glass beads, so that the simulations can evolve dynamically. The granular models are required to be completely water saturated so that the sources and receivers are directly and well coupled to the propagating medium. Ultrasonic source frequencies (˜500 kHz) corresponding to wavelengths ˜5 times the grain diameter are necessary to be able to resolve small scale structures. In three experiments of different two-layer models, we show that (1) interfaces of layers of granular materials can be resolved depending on the interface preparation more than on the material itself. Secondly, we show that the dilation between the sand grains caused by a string that has been pulled through the grains, simulating a shear zone, causes a reflection that can be detected in the seismic data. In the third model, we perform a seismic reflection survey across a model that contains both the prepared interface and a shear zone, and apply 2D-seismic reflection processing to improve the resolution. Especially for more complex models, the clarity and penetration depth need to be improved to study the evolution of geological structures in dynamic

  13. The Near and Far Sides of M87

    Science.gov (United States)

    Sparks, William

    2007-07-01

    We propose to assemble the deepest ever image of the M87 jet and its environs using archival data acquired for unrelated purposes. By studying the AGN, the jet and ISM physics we address the role and nature of AGN feedback to the ISM and the quantitative physical nature of the jet and AGN. With over 50 orbits of ACS/WFC F606W and F814W imaging we can detect or place significant upper limits on the brightness of a counter-jet, yielding insight into the jet beaming factor and orientation to the line of sight. With this deepest ever jet image, we will also probe the extent to which optical emission can be traced both from the primary jet into the radio lobe and the SE synchrotron hotspot at the termination of the counter-jet, to quantify optical synchrotron loss processes and map spectral ageing. We will seek scattered light from ambient hot electrons known to be present in the nuclear regions of M87 and hence identify the allowed parameter space involving nuclear luminosity, nuclear beam pattern and ISM density. Electron scattering in particular is symmetric with respect to direction and hence we have the best chance to detect a scattering beam in the counter-jet direction. Faint dust features and emission-line filaments will also be mapped and compared to the radio source morphology to better understand their interaction and provide information on the energetic interplay between radio sources, jets and the ISM.

  14. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  15. Robust seismic images amplitude recovery using curvelets

    NARCIS (Netherlands)

    Moghaddam, Peyman P.; Herrmann, Felix J.; Stolk, C.C.

    2007-01-01

    In this paper, we recover the amplitude of a seismic image by approximating the normal (demigration-migration) operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that

  16. Seismic reflection imaging at a Shallow Site

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, P.; Rector, J.; Bainer, R.

    1997-01-01

    The objective of our studies was to determine the best seismic method to image these sediments, between the water table at 3 m depth to the basement at 35 m depth. Good cross-correlation between well logs and the seismic data was also desirable, and would facilitate the tracking of known lithological units away from the wells. For instance, known aquifer control boundaries may then be mapped out over the boundaries, and may be used in a joint inversion with reflectivity data and other non-seismic geophysical data to produce a 3-D image containing quantitative physical properties of the target area.

  17. null Seismic Creep, null Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  18. Chinese scientists report a meteorite from the far side of the Moon

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Studies by astronomers from the CAS Purple Mountain Observatory (PMO) have offered solid evidence that Sayh al Uhaymir 300 (SaU 300), a lunar meteorite discovered in 2004 from the Oman desert, was originated from the far side of the Moon, the lunar hemisphere that is permanently turned away from the Earth.

  19. Tube-wave seismic imaging

    Science.gov (United States)

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  20. Distributed computing of Seismic Imaging Algorithms

    CERN Document Server

    Emami, Masnida; Jaberi, Nasrin

    2012-01-01

    The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

  1. Comparison of PMHS, WorldSID, and THOR-NT responses in simulated far side impact.

    Science.gov (United States)

    Pintar, Frank A; Yoganandan, Narayan; Stemper, Brian D; Bostrom, Ola; Rouhana, Stephen W; Digges, Kennerly H; Fildes, Brian N

    2007-10-01

    Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons. For high-speed tests, center console pelvic forces ranged from 3 to 5 kN; thorax or shoulder plate forces (when present) ranged from 3 to 4 kN. Shoulder belt forces were highly dependent on the presence of a thorax or shoulder restraint; without alternate restraint, both inboard and outboard shoulder belt forces were approximately 3 kN. Both dummies had positive and negative biofidelity outcomes. For example, the THOR shoulder against a side restraint produced much higher forces than the PMHS or WorldSID; the WorldSID produced greater pelvic loads in the presence of a shoulder plate than the PMHS or THOR. Both dummies provided good measures of head excursion compared to PMHS across most configurations. Both dummies had difficulty measuring appropriate chest deformations due to belt loading because of measurement device locations. Considerations for countermeasure design should account for the potential for increased injuries to other body regions. For example, in the PMHS tests, a high inboard shoulder belt configuration produced carotid

  2. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  3. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    Science.gov (United States)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  4. Towards Exascale Seismic Imaging and Inversion

    Science.gov (United States)

    Tromp, J.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Lei, W.; Ruan, Y.

    2015-12-01

    Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns tied to obtaining optimum performance. Several issues are currently being investigated by the HPC community. These include energy consumption, fault resilience, scalability of the current parallel paradigms, workflow management, I/O performance and feature extraction with large datasets. In this presentation, we focus on the last three issues. In the context of seismic imaging and inversion, in particular for simulations based on adjoint methods, workflows are well defined.They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts comprising it. The usual approach is to speedup the purely computational parts based on code optimization in order to reach higher FLOPS and better memory management. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from severe I/O bottlenecks. Such limitations occur both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). Parallel I/O libraries, namely HDF5 and ADIOS, are used to drastically reduce the cost of disk access. Parallel visualization tools, such as VisIt, are able to take advantage of ADIOS metadata to extract features and display massive datasets. Because large parts of the workflow are embarrassingly parallel, we are investigating the possibility of automating the imaging process with the integration of scientific workflow

  5. Performance evaluation of child safety seats in far-side lateral sled tests at varying speeds.

    Science.gov (United States)

    Ghati, Yoganand; Menon, Rajiv A; Milone, Mary; Lankarani, Hamid; Oliveres, Gerardo

    2009-10-01

    Protection of children in Child Safety Seats (CSS) in side impact crashes has been a topic of recent studies. The objective of this study was to evaluate the performance of CSS in far-side impacts through a series of sled tests conducted at varying test speeds. Forty eight sled tests were conducted at three speeds (24 km/h, 29 km/h and 36 km/h), under two different CSS attachment conditions (LATCH and seat belt attached), using rear facing and forward facing CSS from four different manufacturers. Analyses were conducted to examine head retention within the CSS, velocity of the head as it passes an imaginary plane (cross over into other occupant space or door), lateral trajectory of the head and knee; head, chest and pelvis accelerations; neck and lumbar loads and moments. In addition to these parameters, the CSS were visually inspected for structural integrity after each test. Results from these sled tests highlighted the differential performance of CSS in far-side impacts. During the tests, all CSS experienced significant lateral movement irrespective of attachment type. In rear facing CSS tests, one of the designs failed as the seat disengaged from its base. In forward facing CSS tests, it was observed that the seat belt attached CSS experienced less rotational motion than the LATCH attached CSS. ATD head retention within the seat was not achieved with either CSS attachments at any speed. The findings from this study augment the current efforts to define regulatory sled setup procedure for far-side impact crashes involving children in CSS, which currently does not exist and will eventually further the protection of children in automobiles.

  6. Deep Mantle Seismic Modeling and Imaging

    Science.gov (United States)

    Lay, Thorne; Garnero, Edward J.

    2011-05-01

    Detailed seismic modeling and imaging of Earth's deep interior is providing key information about lower-mantle structures and processes, including heat flow across the core-mantle boundary, the configuration of mantle upwellings and downwellings, phase equilibria and transport properties of deep mantle materials, and mechanisms of core-mantle coupling. Multichannel seismic wave analysis methods that provide the highest-resolution deep mantle structural information include network waveform modeling and stacking, array processing, and 3D migrations of P- and S-wave seismograms. These methods detect and identify weak signals from structures that cannot be resolved by global seismic tomography. Some methods are adapted from oil exploration seismology, but all are constrained by the source and receiver distributions, long travel paths, and strong attenuation experienced by seismic waves that penetrate to the deep mantle. Large- and small-scale structures, with velocity variations ranging from a fraction of a percent to tens of percent, have been detected and are guiding geophysicists to new perspectives of thermochemical mantle convection and evolution.

  7. Imaging fault zones using 3D seismic image processing techniques

    Science.gov (United States)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  8. Seismic imaging and evaluation of channels modeled by boolean approach

    Energy Technology Data Exchange (ETDEWEB)

    Spinola, M.; Aggio, A. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1999-07-01

    The seismic method attempt to image the subsurface architecture and has been able to significantly contribute to detect areal and vertical changes in rock properties. This work presents a seismic imaging study of channel objects generated using the boolean technique. Three channels having different thicknesses were simulated, using the same width, sinuosity and direction. A velocity model was constructed in order to allow seismic contrasts between the interior of channels and the embedding rock. To examine the seismic response for different channel thicknesses, a 3D ray tracing with a normal incident point survey was performed. The three channels were resolved and the way the seismic could image them was studied. (author)

  9. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    OpenAIRE

    Kukowski, N.; Oncken, O.; M.-L. Buddensiek; C. M. Krawczyk

    2012-01-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezo-electric transducers used here the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox mo...

  10. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    OpenAIRE

    C. M. Krawczyk; Buddensiek, M.-L.; Oncken, O.; Kukowski, N.

    2013-01-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale str...

  11. The Scientific Value and Technical Challenge of Chang'E-4 Landing on the Far-side of the Moon

    Science.gov (United States)

    Li, Fei; Zhang, He; Wu, Xueying; Ma, Jinan; Zhou, Wenyan

    2016-07-01

    The mission of Chang'E-4 probe is landing on the far-side of the moon for the first time in human history. Compared with the near-side, far-side landing has unique scientific value and more challenging technology implementation. The scientific significance of the exploration of far-side of the moon and the technical difficulties and solution approach of the Chang'E-4 were discussed in this paper. In science, the far-side of the Moon is an ideal scientific platform in that it is shielded from terrestrial radio-frequency interference. The terrane that records the formation of the primordial crust is located largely on the far-side hemisphere, and there is the largest and oldest recognized impact basin in our Solar System, the South Pole-Aitken basin. In technology, the difficulties mainly includes the analysis of the influence of lunar topography of far-side on the landing descent strategy, the study of relay orbit and operating modes for the relay satellite in the Earth-Moon L2(Lagrange point 2), and the requirement analysis of autonomous management due to the relay communication. It will provide the reference for landing exploration of the far-side of the moon.

  12. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  13. Crash characteristics and injury patterns of restrained front seat occupants in far-side impacts.

    Science.gov (United States)

    Yoganandan, Narayan; Arun, Mike W J; Halloway, Dale E; Pintar, Frank A; Maiman, Dennis J; Szabo, Aniko; Rudd, Rodney W

    2014-01-01

    The study was conducted to determine the association between vehicle-, crash-, and demographic-related factors and injuries to front seat far-side occupants in modern environments. Field data were obtained from the NASS-CDS database for the years 2009-2012. Inclusion factors included the following: adult restrained front outboard-seated occupants, no ejection or rollovers, and vehicle model years less than 10 years old at the time of crash. Far-side crashes were determined by using collision deformation classification. Injuries were scored using the Abbreviated Injury Scale (AIS). Injuries (MAIS 2+, MAIS 3+, M denotes maximum score) were examined based on demographics, change in velocity, vehicle type, direction of force, extent zone, collision partner, and presence of another occupant in the front seat. Only weighted data were used in the analysis. Injuries to the head and face, thorax, abdomen, pelvis, and upper and lower extremity regions were studied. Odds ratios and upper and lower confidence intervals were estimated from multivariate analysis. Out of 519,195 far-side occupants, 17,715 were MAIS 2+ and 4,387 were MAIS 3+ level injured occupants. The mean age, stature, total body mass, and body mass index (BMI) were 40.7 years, 1.7 m, 77.2 kg, and 26.8 kg/m2, respectively. Of occupants with MAIS 2+ injuries, 51% had head and 19% had thorax injuries. Of occupants with MAIS 3+ injuries, 50% had head and 69% had thorax injuries. The cumulative distribution of changes in velocities at the 50th percentile for the struck vehicle for all occupants and occupants with MAIS 2+ and MAIS 3+ injuries were 19, 34, and 42 km/h, respectively. Furthermore, 73% of MAIS 2+ injuries and 86% of MAIS 3+ injuries occurred at a change in velocity of 24 km/h or greater. Odds of sustaining MAIS 2+ and MAIS 3+ injuries increased with each unit increase in change in velocity, stature, and age, with one exception. Odds of sustaining injuries were higher with the presence of an occupant in

  14. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  15. Seismic imaging capabilities optimize reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, P. [Geco-Prakla, Oslo (Norway); Currie, M.T. [BP Exploration, Aberdeen (United Kingdom)

    1995-12-01

    Despite the fact that seismic is the only known method for illuminating the subsurface at any distance from a well, little has been done to use seismic as a tool for monitoring changes in the reservoir over time. This will change as 4-D, or time-lapse, seismic becomes more common. A permanent 4-D system has been installed at the Foinaven field, West of Shetlands in the North Sea. Tracking fluid or gas movements through seismic reservoir monitoring is the primary objective of 4-D seismic technology. Areas that do not show significant changes in the seismic response over time may indicate pools of bypassed oil that could be drilled and drained. This in itself could contribute an increased recovery by several percent. Unexpected changes in reservoir contacts could be used to identify hydraulic barriers and high permeability zones not interpreted on the original seismic or identified through well testing. Another application of monitoring the fluid or gas front would be to anticipate and possibly avoid early breakthrough in time to mitigate loss of flow rate and ultimate recovery.

  16. A Simple Way to Estimate the Soft X-ray Class of Far-Side Solar Flares Observed with STEREO/EUVI

    CERN Document Server

    Chertok, I M; Grechnev, V V

    2015-01-01

    Around the peaks of substantial flares, bright artifact nearly horizontal saturation streaks (B-streaks) corresponding to the brightest parts of the flare sources appear in the STEREO/EUVI 195 \\AA\\ images. We show that the length of such B-streaks can be used for the solution of an actual problem of evaluating the soft X-ray flux and class of far-side flares registered with double STEREO spacecraft but invisible from Earth. For this purpose from data on about 350 flares observed from January 2007 to July 2014 (mainly exceeding the GOES M1.0 level) both with GOES and STEREO, an empirical relation is established correlating the GOES 1-8 \\AA\\ peak flux and the B-streak length. This allowed us for the same years to estimate the soft X-ray classes for approximately 65 strong far-side flares observed by STEREO. The results of this simple and prompt method are consistent with the estimations of Nitta et al. (Solar Phys., 288, 241, 2013) based on the calculations of the EUVI full-disk digital number output. In additi...

  17. Global optimization for multisensor fusion in seismic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Protopopescu, V.; Reister, D. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research

    1997-06-01

    The accurate imaging of subsurface structures requires the fusion of data collected from large arrays of seismic sensors. The fusion process is formulated as an optimization problem and yields an extremely complex energy surface. Due to the very large number of local minima to be explored and escaped from, the seismic imaging problem has typically been tackled with stochastic optimization methods based on Monte Carlo techniques. Unfortunately, these algorithms are very cumbersome and computationally intensive. Here, the authors present TRUST--a novel deterministic algorithm for global optimization that they apply to seismic imaging. The excellent results demonstrate that TRUST may provide the necessary breakthrough to address major scientific and technological challenges in fields as diverse as seismic modeling, process optimization, and protein engineering.

  18. Lamont Doherty Seismic Reflection Scanned Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains single channel seismic reflection profiles as provided to NGDC by Lamont Doherty Earh Observatory (LDEO). The profiles were originally...

  19. Enhanced seismic depth imaging of complex fault-fold structures

    Science.gov (United States)

    Kirtland Grech, Maria Graziella

    Synthetic seismic data were acquired over numerical and physical models, representing fault-fold structures encountered in the Canadian Rocky Mountain Foothills, to investigate which migration algorithm produces the best image in such complex environments. Results showed that pre-stack depth migration from topography with the known velocity model yielded the optimum migrated image. Errors in the positioning of a target underneath a dipping antisotropic overburden were also studied using multicomponent data. The largest error was observed on P-wave data where anisotropy was highest at 18%. For an overburden thickness of 1500 m, the target was imaged 300 m updip from the true location. Field data from a two-dimensional surface seismic line and a multioffset vertical seismic profile (VSP) from the Foothills of southern Alberta, Canada, were processed using a flow designed to yield an optimum depth image. Traveltime inversion of the first arrivals from all the shots from the multioffset VSP revealed that the Mesozoic shale strata in the area exhibit seismic velocity anisotropy. The anisotropy parameters, ε and delta, were calculated to be 0.1 and 0.05 respectively. Anisotropic pre-stack depth migration code for VSP and surface seismic data, which uses a modified version of a raytracer developed in this thesis for the computation of traveltime tables, was also developed. The algorithm was then used in a new method for integrated VSP and surface seismic depth imaging. Results from the migration of synthetic and field data show that the resulting integrated image is superior to that obtained from the migration of either data set alone or to that obtained from the conventional "splicing" approach. The combination of borehole and surface seismic data for anisotropy analysis, velocity model building, and depth migration, yielded a robust image even when the geology was complex, thus permitting a more accurate interpretation of the exploration target.

  20. Time-lapse seismic imaging of the Reykjanes geothermal reservoir

    Science.gov (United States)

    Weemstra, Cornelis; Obermann, Anne; Blanck, Hanna; Verdel, Arie; Paap, Bob; Árni Guðnason, Egill; Páll Hersir, Gylfi; Jousset, Philippe; Sigurðsson, Ómar

    2016-04-01

    We report on the results obtained from a dense seismic deployment over a geothermal reservoir. The reservoir has been producing continuously for almost a decade and is located on the tip of the Reykjanes peninsula, SW Iceland. The seismic stations on top of the reservoir have continuously recorded the ambient seismic wavefield between April 2014 and September 2015. The density of the seismic network makes the data well suited for time-lapse seismic imaging of the reservoir. To that end we compute time-lapse responses through the application of seismic interferometry. These interferometric lapse responses are obtained by simple crosscorrelation of the seismic noise recorded by the different seismic stations. We subsequently evaluate the temporal variation of the coda of these crosscorrelations. The term coda refers to the later arriving, multiple scattered waves. The multiple scattering implies that these waves have sampled the subsurface very densely and hence become highly sensitive to tiny mechanical and structural changes in that subsurface. This sensitivity allows one, in principle at least, to monitor the geothermal reservoir. Preliminary results indeed suggest a relation between the temporal variation of the coda waves and the reservoir. Ultimately, this method may lead to a means to monitor a geothermal reservoir in both space and time.

  1. Imaging of converted-wave ocean-bottom seismic data

    Science.gov (United States)

    Rosales Roche, Daniel Alejandro

    Converted-wave data can be imaged with several methodologies. The transformation of data into the image space, is defined by an imaging operator, the simplest of which is normal moveout correction plus stack. Most of the converted-wave processing is carried out in the data domain, that is in time, data midpoint location, and data offset, this processing is not ideal for this type of seismic data. The processing should be carried out in the image domain, that is the one composed of depth, image midpoint location and image subsurface offset. Different processing techniques are created for an accurate image of converted wave seismic data. First, in 2-D Ocean-Bottom Seismic (OBC), the image space for converted-wave data is defined in the angle domain to form converted-wave angle-domain common-image gathers (PS-ADCIGs). The PS-ADCIGs can also be mapped into two complementary ADCIGs, the first one is function only of the P-incidence angle, the second ADCIG is function of the S-reflection angle. The method to obtain PS-ADCIGs is independent of the migration algorithm implemented, as long as the migration algorithm is based on wavefield downward-continuation, and the final prestack image is a function of the horizontal subsurface offset. The final process is done for 3-D seismic data, the creation of the converted-wave azimuth moveout operator (PS-AMO) and the converted-wave common-azimuth migration (PS-CAM) allows the definition and accurate image of 3-D prestack ocean-bottom seismic data.

  2. Seismic imaging of Southern African cratons

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad

    Cratonic regions are the oldest stable parts of continents that hold most of Earth’s mineral resources. There are several open questions regarding their formation and evolution. In this PhD study, passive source seismic methods have been used to investigate the crustal and lithosphere structures...

  3. Sparse seismic imaging using variable projection

    NARCIS (Netherlands)

    Aravkin, Aleksandr Y.; Tu, Ning; van Leeuwen, Tristan

    2013-01-01

    We consider an important class of signal processing problems where the signal of interest is known to be sparse, and can be recovered from data given auxiliary information about how the data was generated. For example, a sparse Green's function may be recovered from seismic experimental data using s

  4. Seismic reflection imaging of mixing processes in Fram Strait

    Science.gov (United States)

    Sarkar, Sudipta; Sheen, Katy L.; Klaeschen, Dirk; Brearley, J. Alexander; Minshull, Timothy A.; Berndt, Christian; Hobbs, Richard W.; Naveira Garabato, Alberto C.

    2015-10-01

    The West Spitsbergen Current, which flows northward along the western Svalbard continental slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of high-resolution seismic images and hydrographic sections across this current has uncovered the oceanographic processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding colder waters is observed. Strong seismic reflections characterize these interleaving features, with a negative polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of obliquely aligned internal waves emanating from the slope at 450-500 m. They follow the predicted trajectory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters.

  5. Seismic imaging of sandbox experiments - laboratory hardware setup and first reflection seismic sections

    Science.gov (United States)

    Krawczyk, C. M.; Buddensiek, M.-L.; Oncken, O.; Kukowski, N.

    2012-10-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezo-electric transducers used here the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads). Source receiver-offsets less than 14 cm for imaging structures as small as 2.0-1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and being applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of very good quality showing constant thickness layers as well as predefined channel structures and fault traces from shear zones. Since these can be regarded in sandbox models as zones of decompaction, they behave as reflectors and can be imaged. The multiple-offset surveying introduced here improves the quality with respect to S/N-ratio and source signature even more; the maximum depth penetration in glass bead layers thereby amounts to 5 cm. Thus, the presented mini-seismic device is

  6. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    N. Kukowski

    2012-10-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezo-electric transducers used here the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and being applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of very good quality showing constant thickness layers as well as predefined channel structures and fault traces from shear zones. Since these can be regarded in sandbox models as zones of decompaction, they behave as reflectors and can be imaged. The multiple-offset surveying introduced here improves the quality with respect to S/N-ratio and source signature even more; the maximum depth penetration in glass bead layers thereby amounts to 5 cm. Thus, the presented mini-seismic

  7. Subsalt Depth Seismic Imaging and Structural Interpretation in Dumre Area, Albania.

    OpenAIRE

    Jardin A.; Roure F.; Nikolla L.

    2011-01-01

    The challenge of seismic exploration in fold and thrust belt settings is to optimize the depth seismic images of the deep structural objectives beneath a complex overburden that may show strong horizontal and vertical velocity variations. In such areas, the seismic image is frequently of poor quality and the depth models of deep layers is often false due to the perturbed propagation of seismic energy through the deforming lens of the overlying layers. A range of seismic processing tools, incl...

  8. Seismic Imaging of Complex Structures in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Ning Guo; Chao Wu; Stuart Fagin

    2015-01-01

    Conventional time imaging techniques are not capable of producing accurate seismic imaging of the subsurface in the mountain front of the Tarim Basin, China. Their imaged structures have led to some major drilling failures before, bearing a disrepute that “their structural closures have wheels and their structural highs have springs”. This article first lists the imaging challenges, and explains in a schematic why the time imaging techniques fail in this area. Then through a series of real data examples, it demonstrates that when there exist lateral velocity variations, depth imaging is the only solution to tackle the imaging challenges in this area. Depth imaging accounts for the com-plexity of the wavefield, therefore produces superior and geological plausible images. The core task in properly performing depth imaging is building the velocity model. This article stresses some the main aspects in this regard.

  9. True-Amplitude Seismic Imaging Beneath Gas Clouds

    NARCIS (Netherlands)

    Ghazali, A.R.

    2011-01-01

    A gas cloud is a region of gas accumulation in the subsurface, which can severely deteriorate the seismic data quality from deeper reflectors. Due to complex wave propagation through the anomaly and the resulting transmission imprint on the reflections from below this area, the image below the gas c

  10. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chisum, Brad [Lumedyne Technologies Incorporated, San Diego, CA (United States)

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  11. True-Amplitude Seismic Imaging Beneath Gas Clouds

    NARCIS (Netherlands)

    Ghazali, A.R.

    2011-01-01

    A gas cloud is a region of gas accumulation in the subsurface, which can severely deteriorate the seismic data quality from deeper reflectors. Due to complex wave propagation through the anomaly and the resulting transmission imprint on the reflections from below this area, the image below the gas c

  12. Seismic imaging of sandbox experiments - laboratory hardware setup and first reflection seismic sections

    Science.gov (United States)

    Krawczyk, C. M.; Buddensiek, M.-L.; Oncken, O.; Kukowski, N.

    2013-02-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads). Source receiver-offsets less than 14 cm for imaging structures as small as 2.0-1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth penetration in glass

  13. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    C. M. Krawczyk

    2013-02-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth

  14. Seismic Imaging in Three Dimensions on the East Pacific Rise

    Science.gov (United States)

    Mutter, John C.; Carbotte, Suzanne; Nedimovic, Mladen; Canales, Juan Pablo; Carton, Hélène

    2009-10-01

    The U.S. R/V Marcus G. Langseth (operated by the Lamont-Doherty Earth Observatory of Columbia University) sailed in late June 2008 from Manzanillo, Mexico, to the 9°50'N area of the East Pacific Rise (EPR), a site of vigorous hydrothermal venting (Figure 1). The cruise, MGL0812, the first research deployment of the Langseth's advanced three-dimensional (3-D) seismic imaging capability, had as its objective obtaining high-resolution images of crustal structure beneath the ridge crest and adjacent regions. The benefits of 3-D seismic imaging had been outlined in a U.S. National Science Foundation (NSF)-sponsored workshop in 2005 [Mutter and Moore, 2005]. Short courses on techniques of 3-D survey planning were given at AGU Fall Meetings in 2007 and 2008. This brief report describes experiences during the cruise, with the objective of aiding future researchers in planning cruises using Langseth's unique imaging capability for 3-D.

  15. Seismic Imaging of Reservoir Structure at The Geysers Geothermal Reservoir

    Science.gov (United States)

    Gritto, R.; Yoo, S.; Jarpe, S.

    2013-12-01

    Three-dimensional Vp/Vs-ratio structure is presented for The Geysers geothermal field using seismic travel-time data. The data were recorded by the Lawrence Berkeley National Laboratory (LBNL) using a 34-station seismic network. The results are based on 32,000 events recorded in 2011 and represent the highest resolution seismic imaging campaign at The Geysers to date. The results indicate low Vp/Vs-ratios in the central section of The Geysers within and below the current reservoir. The extent of the Vp/Vs anomaly deceases with increasing depth. Spatial correlation with micro-seismicity, used as a proxy for subsurface water flow, indicates the following. Swarms of seismicity correlate well with areas of high and intermediate Vp/Vs estimates, while regions of low Vp/Vs estimates appear almost aseismic. This result supports past observations that high and low Vp/Vs-ratios are related to water and gas saturated zones, respectively. In addition, the correlation of seismicity to intermediate Vp/Vs-ratios is supportive of the fact that the process of water flashing to steam requires four times more energy than the initial heating of the injected water to the flashing point. Because this energy is dawn from the reservoir rock, the associated cooling of the rock generates more contraction and thus seismic events than water being heated towards the flashing point. The consequences are the presence of some events in regions saturated with water, most events in regions of water flashing to steam (low steam saturation) and the absence of seismicity in regions of high steam concentrations where the water has already been converted to steam. Furthermore, it is observed that Vp/Vs is inversely correlated to Vs but uncorrelated to Vp, leading support to laboratory measurements on rock samples from The Geysers that observe an increase in shear modulus while the core samples are dried out. As a consequence, traditional poroelastic theory is no applicable at The Geysers geothermal

  16. Multi-scale probabilistic seismic imaging with the USArray

    Science.gov (United States)

    Olugboji, T. M.; Lekic, V.; Burdick, S.; Gao, C.

    2016-12-01

    Seismological imaging of the structure of Earth's interior is essential to our understanding of the dynamics and evolution of our planet. Although some fundamental challenges in this imaging problem exist, e.g. lack of stations in the oceans and uneven earthquake distribution, other challenges can now be addressed by the emergence of high performance computing capabilities. These include the assumptions made a-priori about the parameterization and explicit regularization - damping and smoothing - of the Earth model, the inadequate accounting for observational and modeling uncertainty, and the subjectivity often imposed when deciding on the manner in which to combine seismic data with varying sensitivity to different properties in the earth model. In this talk, we present extensions of traditional seismic imaging techniques to crustal and upper mantle structure using a probabilistic (Bayesian) approach. We illustrate various benefits to this approach by analyzing Love and Rayleigh phase velocity and P-wave travel time measurements made using the USArray. We show that the probabilistic approach can: (1) Aid geophysical inference by assessing parameter uncertainty and trade-offs in seismic images (tomograms); (2) Recover multiple scales of heterogeneity by avoiding explicit regularization, even when data coverage is uniform; (3) Yield multi-modal distributions on velocities in regions of rapid velocity variations; and, (4) Quantify improvements in seismic images attributable to new data or new acquisition methods and techniques. We emphasize the central role of high performance computing and the philosophy of open software development and exchange to the success of these techniques, which explore large parameter space and generate large ensembles solutions. Finally, we describe novel approaches to exploring, presenting and understanding the large quantity of information that is contained in the ensemble solutions.

  17. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    Science.gov (United States)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  18. Use of seismic interferometry to improve the imaging of a heterogeneous landfill

    NARCIS (Netherlands)

    Konstantaki, L.A.; Draganov, D.S.; Ghose, R.; Heimovaara, T.J.

    2015-01-01

    In this study we investigate the application of seismic interferometry (SI) to seismic reflection data recorded over a landfill. Landfills represent strongly heterogeneous subsurfaces making the seismic reflection imaging challenging. We show that SI improves the imaging of high-density areas, which

  19. Reflection seismic imaging of shallow aquifers in Milano (northern Italy)

    Science.gov (United States)

    Francese, R.; Zaja, A.; Giudici, M.; Schmitt, D.

    2003-04-01

    A high resolution P-wave seismic reflection survey was conducted in the Lambro park within the city of Milano (northern Italy). The objective of the survey was to image structure and stratigraphy of shallow late tertiary and quaternary deposits. This information is necessary to develop a comprehensive 3D hydrological model of the fresh water aquifers where the municipality drilled several production wells. The expected complexity of the acoustic framework and the urban environment with its complications created a challenging test site for the reflection technique. The aquifer system was targeted with a 2-D high resolution seismic reflection survey to outline its vertical and lateral dimensions to a depth of 150-200 m and to estimate some petrophysical properties of the depositional units. A 0.8-km CMP seismic line, with 1-m station spacing, was deployed to collect reflection data. The recording geometry was a 240-channel split spread array, with 6-m shot separation, resulting in a maximum of 20-fold dataset. A single 40-Hz geophone at each station location detected the incoming signals. Field records exhibit clear reflections although the signal to noise ratio is poor because of strong surface waves and severe disturbances from the nearby highway. Optimized FK and KL transforms were used to attenuate these coherent noises and to enhance the primary reflections from the main horizons. The data analysis was also assisted by forward modeling to guide the selection of the processing parameters. The seismic data have a good correlation thourhgout the section and most of the acoustic units show flat bedding. The boundaries of the three major depositional units are clearly resolved by the seismic images. The stacked section clearly indicates that reflection technique provides a powerful method to characterize aquifers, even in a very noisy environment like the urban areas.

  20. The Salton Seismic Imaging Project (SSIP): Active Rift Processes in the Brawley Seismic Zone

    Science.gov (United States)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, acquired seismic data in and across the Salton Trough in southern California and northern Mexico in March 2011. The project addresses both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of onshore refraction and low-fold reflection data were acquired in the Coachella, Imperial, and Mexicali Valleys, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Almost 2800 land seismometers and 50 OBS's were used in almost 5000 deployments at almost 4300 sites, in spacing as dense as 100 m. These instruments received seismic signals from 126 explosive shots up to 1400 kg and over 2300 airgun shots. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. Active rifting of this new crust is manifested by shallow (geothermal energy production. This presentation is focused on an onshore-offshore line of densely sampled refraction and low-fold reflection data that crosses the Brawley Seismic Zone and Salton Buttes in the direction of plate motion. At the time of abstract submission, data analysis was very preliminary, consisting of first-arrival tomography of the onshore half of the line for upper crustal seismic velocity. Crystalline basement (>5 km/s), comprised of late-Pliocene to Quaternary sediment metamorphosed by the high heat flow, occurs at ~2 km depth beneath the Salton Buttes and geothermal field and ~4 km depth south of the BSZ. Preliminary result suggests that the velocity of basement is lower in the BSZ than to the south, which may result from fracturing. Basement velocity appears to be

  1. Thorium abundances of basalt ponds in South Pole-Aitken basin: Insights into the composition and evolution of the far side lunar mantle

    Science.gov (United States)

    Hagerty, J.J.; Lawrence, D.J.; Hawke, B.R.

    2011-01-01

    Imbrian-aged basalt ponds, located on the floor of South Pole-Aitken (SPA) basin, are used to provide constraints on the composition and evolution of the far side lunar mantle. We use forward modeling of the Lunar Prospector Gamma Ray Spectrometer thorium data, to suggest that at least five different and distinct portions of the far side lunar mantle contain little or no thorium as of the Imbrian Period. We also use spatial correlations between local thorium enhancements and nonmare material on top of the basalt ponds to support previous assertions that lower crustal materials exposed in SPA basin have elevated thorium abundances, consistent with noritic to gabbronoritic lithologies. We suggest that the lower crust on the far side of the Moon experienced multiple intrusions of thorium-rich basaltic magmas, prior to the formation of SPA basin. The fact that many of the ponds on the lunar far side have elevated titanium abundances indicates that the far side of the Moon experienced extensive fractional crystallization that likely led to the formation of a KREEP-like component. However, because the Imbrian-aged basalts contain no signs of elevated thorium, we propose that the SPA impact event triggered the transport of a KREEP-like component from the lunar far side and concentrated it on the nearside of the Moon. Because of the correlation between basaltic ponds and basins within SPA, we suggest that Imbrian-aged basaltic volcanism on the far side of the Moon was driven by basin-induced decompressional melting. Copyright ?? 2011 by the American Geophysical Union.

  2. Compositional diversity of near-, far-side transitory zone around Naonobu, Webb and Sinus Successus craters: Inferences from Chandrayaan-1 Moon Mineralogy Mapper (M3) data

    Indian Academy of Sciences (India)

    Rishikesh Bharti; D Ramakrishnan; K D Singh

    2014-02-01

    This study investigated the potential of Moon Mineralogy Mapper (M3) data for studying compositional variation in the near-, far-side transition zone of the lunar surface. For this purpose, the radiance values of the M3 data were corrected for illumination and emission related effects and converted to apparent reflectance. Dimensionality of the calibrated reflectance image cube was reduced using Independent Component Analysis (ICA) and endmembers were extracted by using Pixel Purity Index (PPI) algorithm. The selected endmembers were linearly unmixed and resolved for mineralogy using United States Geological Survey (USGS) library spectra of minerals. These mineralogically resolved endmembers were used to map the compositional variability within, and outside craters using Spectral Angle Mapper (SAM) algorithm. Cross validation for certain litho types was attempted using band ratios like Optical Maturity (OMAT), Color Ratio Composite and Integrated Band Depth ratio (IBD). The identified lithologies for highland and basin areas match well with published works and strongly support depth related magmatic differentiation. Prevalence of pigeonite-basalt, pigeonite-norite and pyroxenite in crater peaks and floors are unique to the investigated area and are attributed to local, lateral compositional variability in magma composition due to pressure, temperature, and rate of cooling.

  3. 2S1553-542: a Be/X-ray binary pulsar on the far side of the Galaxy

    CERN Document Server

    Lutovinov, Alexander A; Townsend, Lee J; Tsygankov, Sergey S; Kennea, Jamie

    2016-01-01

    We report the results of a comprehensive analysis of X-ray (Chandra and Swift observatories), optical (Southern African Large Telescope, SALT) and near-infrared (the VVV survey) observations of the Be/X-ray binary pulsar 2S1553-542. Accurate coordinates for the X-ray source are determined and are used to identify the faint optical/infrared counterpart for the first time. Using VVV and SALTICAM photometry, we have constructed the spectral energy distribution (SED) for this star and found a moderate NIR excess that is typical for Be stars and arises due to the presence of circumstellar material (disk). A comparison of the SED with those of known Be/X-ray binaries has allowed us to estimate the spectral type of the companion star as B1-2V and the distance to the system as $>15$ kpc. This distance estimation is supported by the X-ray data and makes 2S1553-542 one of the most distant X-ray binaries within the Milky Way, residing on the far side in the Scutum-Centaurus arm or even further.

  4. Toward seismic source imaging using seismo-ionospheric data

    Science.gov (United States)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  5. Mesoscopics of ultrasound and seismic waves: application to passive imaging

    Science.gov (United States)

    Larose, É.

    2006-05-01

    This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des

  6. Sparsity- and continuity-promoting seismic image recovery with curvelet frames

    NARCIS (Netherlands)

    Herrmann, Felix J.; Moghaddam, Peyman; Stolk, C.C.

    2008-01-01

    A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging pro

  7. Sparsity- and continuity-promoting seismic image recovery with curvelet frames

    NARCIS (Netherlands)

    Herrmann, Felix J.; Moghaddam, Peyman; Stolk, C.C.

    2008-01-01

    A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging

  8. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  9. Seismic imaging in laboratory trough laser Doppler vibrometry

    Science.gov (United States)

    Brito, Daniel; Poydenot, Valier; Garambois, Stéphane; Diaz, Julien; Bordes, Clarisse; Rolando, Jean-Paul

    2016-04-01

    Mimic near-surface seismic field measurements at a small scale, in the laboratory, under a well-controlled environment, may lead to a better understanding of wave propagation in complex media such as in geological materials. Laboratory experiments can help in particular to constrain and refine theoretical and numerical modelling of physical phenomena occurring during seismic propagation, in order to make a better use of the complete set of measurements recorded in the field. We have developed a laser Doppler vibrometer (laser interferometry) platform designed to measure non-contact seismic displacements (or velocities) of a surface. This technology enables to measure displacements as small as a tenth of a nanometer on a wide range of frequencies, from a few tenths to a few megahertz. Our experimental set-up is particularly suited to provide high-density spatial and temporal records of displacements on the edge of any vibrating material. We will show in particular a study of MHz wave propagation (excited by piezoelectric transducers) in cylindrical cores of typical diameter size around 10 cm. The laser vibrometer measurements will be first validated in homogeneous materials cylinders by comparing the measurements to a direct numerical simulation. Special attention will be given to the comparison of experimental versus numerical amplitudes of displacements. In a second step, we will conduct the same type of study through heterogeneous carbonate cores, possibly fractured. Tomographic images of velocity in 2D slices of the carbonate core will be derived based upon on the time of first arrival. Preliminary attempts of tomographic attenuation maps will also be presented based on the amplitudes of first arrivals. Experimental records will be confronted to direct numerical simulations and tomographic images will be compared to x-ray scanner imaging of the cylindrical cores.

  10. P-wave seismic imaging through dipping transversely isotropic media

    Science.gov (United States)

    Leslie, Jennifer Meryl

    2000-10-01

    P-wave seismic anisotropy is of growing concern to the exploration industry. The transmissional effects through dipping anisotropic strata, such as shales, cause substantial depth and lateral positioning errors when imaging subsurface targets. Using anisotropic physical models the limitations of conventional isotropic migration routines were determined to be significant. In addition, these models were used to validate both anisotropic depth migration routines and an anisotropic, numerical raytracer. In order to include anisotropy in these processes, one must be able to quantify the anisotropy using two parameters, epsilon and delta. These parameters were determined from headwave velocity measurements on anisotropic strata, in the parallel-, perpendicular- and 45°-to-bedding directions. This new method was developed using refraction seismic techniques to measure the necessary velocities in the Wapiabi Formation shales, the Brazeau Group interbedded sandstones and shales, the Cardium Formation sandstones and the Palliser Formation limestones. The Wapiabi Formation and Brazeau Group rocks were determined to be anisotropic with epsilon = 0.23 +/- 0.05, delta = --0.05 +/- 0.07 and epsilon = 0.11 +/- 0.04, delta = 0.42 +/- 0.06, respectively. The sandstones and limestones of the Cardium and Palliser formations were both determined to be isotropic, in these studies. In a complementary experiment, a new procedure using vertical seismic profiling (VSP) techniques was developed to measure the anisotropic headwave velocities. Using a multi-offset source configuration on an appropriately dipping, uniform panel of anisotropic strata, the required velocities were measured directly and modelled. In this study, the geologic model was modelled using an anisotropic raytracer, developed for the experiment. The anisotropy was successfully modelled using anisotropic parameters based on the refraction seismic results. With a firm idea of the anisotropic parameters from the

  11. Seismic Imaging and Seismicity Analysis in Beijing-Tianjin-Tangshan Region

    Directory of Open Access Journals (Sweden)

    Xiangwei Yu

    2011-01-01

    Full Text Available In this study a new tomographic method is applied to over 43,400 high-quality absolute direct P arrival times and 200,660 relative P arrival times to determine detailed 3D crustal velocity structures as well as the absolute and relative hypocenter parameters of 2809 seismic events under the Beijing-Tianjin-Tangshan region. The inferred velocity model of the upper crust correlates well with the surface geological and topographic features in the BTT region. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocities, respectively. After relocation, the double-difference tomography method provides a sharp picture of the seismicity in the BTT region, which is concentrated along with the major faults. A broad low-velocity anomaly exists in Tangshan and surrounding area from 20 km down to 30 km depth. Our results suggest that the top boundary of low-velocity anomalies is at about 25.4 km depth. The event relocations inverted from double-difference tomography are clusted tightly along the Tangshan-Dacheng Fault and form three clusters on the vertical slice. The maximum focal depth after relocation is about 25 km depth in the Tangshan area.

  12. Review on improved seismic imaging with closure phase

    KAUST Repository

    Schuster, Gerard T.

    2014-08-13

    The timing and amplitudes of arrivals recorded in seismic traces are influenced by velocity variations all along the associated raypaths. Consequently, velocity errors far from the target can lead to blurred imaging of the target body. To partly remedy this problem, we comprehensively reviewed inverting differential traveltimes that satisfied the closure-phase condition. The result is that the source and receiver statics are completely eliminated in the data and velocities far from the target do not need to be known. We successfully used the phase closure equation for traveltime tomography, refraction statics, migration, refraction tomography, and earthquake location, all of which demonstrated the higher resolution achievable by processing data with differential traveltimes rather than absolute traveltimes. More generally, the stationary version of the closure-phase equation is equivalent to Fermat’s principle and can be derived from the equations of seismic interferometry. In summary, the general closure-phase equation is the mathematical foundation for approximately redatuming sources and/or receivers to the target of interest without the need to accurately know the statics or the velocity model away from the target.

  13. Automatic performance tuning of parallel and accelerated seismic imaging kernels

    KAUST Repository

    Haberdar, Hakan

    2014-01-01

    With the increased complexity and diversity of mainstream high performance computing systems, significant effort is required to tune parallel applications in order to achieve the best possible performance for each particular platform. This task becomes more and more challenging and requiring a larger set of skills. Automatic performance tuning is becoming a must for optimizing applications such as Reverse Time Migration (RTM) widely used in seismic imaging for oil and gas exploration. An empirical search based auto-tuning approach is applied to the MPI communication operations of the parallel isotropic and tilted transverse isotropic kernels. The application of auto-tuning using the Abstract Data and Communication Library improved the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures such as GPUs using the fairly new OpenACC standard. The same auto-tuning approach is also applied to the OpenACC accelerated seismic code for optimizing the compute intensive kernel of the Reverse Time Migration application. The application of such technique resulted in an improved performance of the original code and its ability to adapt to different execution environments.

  14. Seismic imaging using finite-differences and parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ober, C.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computers can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.

  15. Novel approach for improving signal to noise ratio of seismic images

    Institute of Scientific and Technical Information of China (English)

    陈凤; 李金宗; 李冬冬

    2004-01-01

    A novel approach of digital image processing technology is applied to improve SNR of seismic images. At first,we analyze the characters of line-like texture in seismic images, and then a preprocessing method named 2 D tracing horizon filtering is designed. After that, the technology of optical flow analysis is adopted to calculate the displacement vectors of adjacent pixels between neighboring seismic images. At last, the novel image accumulation algorithms are proposed, which are applied to greatly improve SNR and definition of seismic images. The experimental results show that SNR of seismic section images with SNR of about 20 dB and 17 dB are increased 8 dB~9 dB under keeping signal energy 67%~80% by processing section images and 3dB~4dB under keeping signalenergy 80~90% by processing horizontal slice images. Thereby, the proposed novel approaches are very helpful to the correct seismic interpretation and have very important significance for seismic exploring.

  16. Improvement of seismic imaging of complex geologic structures

    Energy Technology Data Exchange (ETDEWEB)

    Duquet, B.

    1996-04-11

    Successful imaging of complex geologic structures by pre-stack depth migration requires a correct velocity model of the subsurface. In recent years, it has been proposed to use pre-stack depth migration of the cube of pre-stack depth migrated images and the subsequent use of the interpretation for velocity model update. However, in complex geologic structures, pre-stack depth migration does not yield results of sufficient quality for interpretation. We therefore propose a new wave-field imaging technique based on linearized inversion using the paraxial approximation of the wave equation. Using this technique we can remove the artifacts contaminating the individual depth images by integrating a priori information in the inverse problem. The application of the method to synthetic and real data shows that it allows us to largely improve the quality of the depth images at reasonable cost.We thus obtain an interpretable cube of depth images that makes migration velocity analysis feasible in complex structures. In 3D, due to the size of the problem there is still a large interest in using post stack techniques for velocity model determination. The quality of the results of such techniques relies on the quality of the stacking process. Classical data stacking techniques rely on simplifications that are not valid anymore in case of complex geologic structures. We propose a data stacking technique based on depth domain stacking after pre-stack depth migration, followed by explosive reflector modeling, to obtain the stacked seismic data. This method which is totally automatic yield 3 D stacked data that are suitable for 3D post stack velocity determination techniques.

  17. Passive Seismic Imaging of the Ruby Mountains Core Complex, Nevada

    Science.gov (United States)

    Litherland, M.; Klemperer, S. L.

    2015-12-01

    We investigate the deep crustal structure of the Ruby Mountains Core Complex (RMCC) using data collected from the Ruby Mountains Seismic Experiment. This project, part of the Earthscope Flexible Array program, deployed 50 passive broadband stations across the RMCC from 2010 to 2012. Previous investigations of the area have included extensive surface mapping and active seismic profiles across the surrounding basins, but better imaging beneath the mountain range is needed to understand the tectonic processes that formed the RMCC. The RMCC exhibits typical core-complex structure of deep crustal rocks exhumed to the surface beneath a gently dipping detachment, with a thick mylonitic shear zone directly underlying the detachment. In the RMCC, the westward dip of the detachment, the ~1km-thick mylonite zone formed in the Paleogene, and a south-to-north increase in metamorphic grade provide targets for imaging. We used common conversion point stacking of receiver functions to produce 3 profiles of structural discontinuities beneath the RMCC: one along the axis of the RMCC, and two crossing lines, one in the northern RMCC, and one in the southern part of the range. Due to the deep sedimentary basins surrounding the RMCC, various de-multiple processes were required to reduce the effects of basin reverberations. To better constrain the velocity structure of the area, we used ambient-noise tomography, and finally, we produced a joint inversion of our receiver functions and ambient-noise data. We observe a mostly flat Moho at about 30 km depth beneath the RMCC that dips slightly to the south, with faint mid-crustal converters that also dip south at ~30°. In the southern RMCC, the Moho dips ~20° westward, but this is not observed in the northern RMCC. This suggests that much of the exhumation involved in the RMCC formation likely involved ductile flow that left a mostly flat Moho, but more recent processes also may have left observable changes in lower-crustal structure.

  18. EVOLUTION OF SOUTHERN AFRICAN CRATONS BASED ON SEISMIC IMAGING

    DEFF Research Database (Denmark)

    Thybo, Hans; Soliman, Mohammad Youssof Ahmad; Artemieva, Irina

    2014-01-01

    present a new seismic model for the structure of the crust and lithospheric mantle of the Kalahari Craton, constrained by seismic receiver functions and finite-frequency tomography based on the seismological data from the South Africa Seismic Experiment (SASE). The combination of these two methods...

  19. 3D Seismic Imaging over a Potential Collapse Structure

    Science.gov (United States)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  20. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    Science.gov (United States)

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  1. Imaging density and seismic velocities in the Eastern Mediterranean

    Science.gov (United States)

    Blom, Nienke; Gokhberg, Alexey; Fichtner, Andreas

    2017-04-01

    The Mediterranean domain is a geologically complicated region, a result of its complex tectonic and geodynamic evolution. Our understanding of it draws from surface geology, modeling and imaging of the subsurface. Here, we present the first results of seismic waveform inversion of the Eastern Mediterranean region. While computationally much more expensive than more traditional ray-based imaging methods, the advantage of waveform tomography lies in its ability to incorporate in a consistent manner all the information in seismograms - not just the arrivals of certain, specified phases. As a result, body and multimode surface waves, source effects, frequency-dependence, wavefront healing, anisotropy and attenuation are naturally and coherently incorporated. This not only allows us to image P- and S-wave velocity jointly for the crust and mantle, but also makes it possible to put additional constraints on density that ray tomography cannot provide. This is of special interest because heterogeneities in density drive geodynamics, and the combined knowledge of all parameters would help to distinguish between thermal and compositional effects in the subsurface, where no direct measurements can be made. Our tomography makes use of a multi-scale approach, initially using only the very lowest frequency signals of periods of around 100-150 seconds which corresponds to structures of 200 km size in the crust. Slowly, higher-frequency data is added as the model is updated and more of the data is explained by it. Our ultimate aim is to go down to periods of 10 seconds, which corresponds to structures of about 15 km size in the crust to 25 km in the mantle. Only those parts of the seismograms are used in which data and synthetics are similar enough to allow for meaningful comparison. As iterations progress and synthetics become more similar to the data, more parts of the seismogram can be included. Resolution of the final model is assessed using a resolution analysis strategy

  2. Shear wave seismic interferometry for lithospheric imaging : Application to southern Mexico

    NARCIS (Netherlands)

    Frank, J. G.; Ruigrok, E. N.; Wapenaar, K.

    2014-01-01

    Seismic interferometry allows for the creation of new seismic traces by cross correlating existing ones. With sufficient sampling of remote-source positions, it is possible to create a virtual source record by transforming a receiver location into a virtual source. The imaging technique developed he

  3. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    Science.gov (United States)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from 5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (Chocolate Mountains. The tomographic model shows that the shallow metasedimentary basement as well as the geothermal and volcanic activity seem to be bounded by the sharp western and eastern margins of the Brawley Seismic Zone. At this location, strongly fractured crust allows both hydrothermal and magmatic fluids to rise to the surface in the most rapidly extending portion of the rift basin.

  4. Seismic imaging of post-glacial sediments - test study before Spitsbergen expedition

    Science.gov (United States)

    Szalas, Joanna; Grzyb, Jaroslaw; Majdanski, Mariusz

    2017-04-01

    This work presents results of the analysis of reflection seismic data acquired from testing area in central Poland. For this experiment we used total number of 147 vertical component seismic stations (DATA-CUBE and Reftek "Texan") with accelerated weight drop (PEG-40). The profile was 350 metres long. It is a part of pilot study for future research project on Spitsbergen. The purpose of the study is to recognise the characteristics of seismic response of post-glacial sediments in order to design the most adequate survey acquisition parameters and processing sequence for data from Spitsbergen. Multiple tests and comparisons have been performed to obtain the best possible quality of seismic image. In this research we examine the influence of receiver interval size, front mute application and surface wave attenuation attempts. Although seismic imaging is the main technique we are planning to support this analysis with additional data from traveltime tomography, MASW and other a priori information.

  5. Seismic Imaging and Inversion: Application of Linear Theory (2012), Cambridge University Press, co-authored with Bob Stolt

    Energy Technology Data Exchange (ETDEWEB)

    Weglein, Arthur B.; Stolt, Bob H.

    2012-03-01

    Extracting information from seismic data requires knowledge of seismic wave propagation and reflection. The commonly used method involves solving linearly for a reflectivity at every point within the Earth, but this book follows an alternative approach which invokes inverse scattering theory. By developing the theory of seismic imaging from basic principles, the authors relate the different models of seismic propagation, reflection and imaging - thus providing links to reflectivity-based imaging on the one hand and to nonlinear seismic inversion on the other. The comprehensive and physically complete linear imaging foundation developed presents new results at the leading edge of seismic processing for target location and identification. This book serves as a fundamental guide to seismic imaging principles and algorithms and their foundation in inverse scattering theory and is a valuable resource for working geoscientists, scientific programmers and theoretical physicists.

  6. Seismic Imaging and Inversion: Application of Linear Theory (2012), Cambridge University Press, co-authored with Bob Stolt

    Energy Technology Data Exchange (ETDEWEB)

    Weglein, Arthur B.; Stolt, Bob H.

    2012-03-01

    Extracting information from seismic data requires knowledge of seismic wave propagation and reflection. The commonly used method involves solving linearly for a reflectivity at every point within the Earth, but this book follows an alternative approach which invokes inverse scattering theory. By developing the theory of seismic imaging from basic principles, the authors relate the different models of seismic propagation, reflection and imaging - thus providing links to reflectivity-based imaging on the one hand and to nonlinear seismic inversion on the other. The comprehensive and physically complete linear imaging foundation developed presents new results at the leading edge of seismic processing for target location and identification. This book serves as a fundamental guide to seismic imaging principles and algorithms and their foundation in inverse scattering theory and is a valuable resource for working geoscientists, scientific programmers and theoretical physicists.

  7. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating.

    Science.gov (United States)

    Guo, Jingjing; Xue, Shigui; Zhao, Qun; Yang, Changxi

    2014-08-11

    We report what is to our knowledge the first ultrasonic imaging of seismic physical models by using a phase-shifted fiber Bragg grating (PS-FBG). Seismic models, which consist of multiple layer structures, were immersed in water. Piezoelectric (PZT) transducer was used to generate ultrasonic waves and a PS-FBG as a receiver. Two-dimensional (2D) ultrasonic images were reconstructed by scanning the PS-FBG with a high-precision position scanning device. In order to suppress the low-frequency drift of the Bragg wavelength during scanning, a tight wavelength tracking method was employed to lock the laser to the PS-FBG resonance in its reflection bandgap. The ultrasonic images captured by the PS-FBG have been compared with the images obtained by the geophysical imaging system, Sinopec, demonstrating the feasibility of our PS-FBG based imaging system in seismic modeling studies.

  8. 3-D imaging of seismic data from a physical model of a salt structure

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P. M. (Peter M.); Huang, L. (Lianjie); House, L. S. (Leigh S.); Wiley, R. (Robert)

    2001-01-01

    Seismic data from a physical model of the SEG/EAGE salt structure were imaged to evaluate the quality of imaging of a complex structure and benchmark imaging codes. The physical model was constructed at the University of Houston. Two simulated marine surveys were collected from it: a conventional towed streamer survey, and a vertical receiver cable survey.

  9. The Utility of the Extended Images in Ambient Seismic Wavefield Migration

    Science.gov (United States)

    Girard, A. J.; Shragge, J. C.

    2015-12-01

    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  10. Multiscale Seismic Inversion in the Data and Image Domains

    KAUST Repository

    Zhang, Sanzong

    2015-12-01

    I present a general methodology for inverting seismic data in either the data or image domains. It partially overcomes one of the most serious problems with current waveform inversion methods, which is the tendency to converge to models far from the actual one. The key idea is to develop a multiscale misfit function that is composed of both a simplified version of the data and one associated with the complex part of the data. Misfit functions based on simple data are characterized by many fewer local minima so that a gradient optimization method can make quick progress in getting to the general vicinity of the actual model. Once we are near the actual model, we then use the gradient based on the more complex data. Below, we describe two implementations of this multiscale strategy: wave equation traveltime inversion in the data domain and generalized differential semblance optimization in the image domain. • Wave Equation Traveltime Inversion in the Data Domain (WT): The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we present a waveequation method that inverts the traveltimes of reflection events, and so is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function is a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag which maximizes the crosscorrelation amplitude represents the reflection-traveltime residual that is back-projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions are introduced to estimate the reflection-traveltime residual by semblance analysis and scanning. In theory, only the traveltime information is inverted and there is no need to precisely fit the amplitudes or assume a high-frequency approximation. Results

  11. Using Seismic Tomography and Holography Ground Imaging to Investigate Ground Conditions

    Institute of Scientific and Technical Information of China (English)

    Ed Kase; Tim Ross

    2004-01-01

    Unforeseen, variable subsurface ground conditions present the greatest challenge to the heavy construction and civil engineering industry in the design, construction, and maintenance of large projects. A detailed, accurate site investigation will reduce project risk, improve construction performance and safety, prolong the life of the tunnel or structure,and prevent waste in over - design. Presently, site characterization and geotechnical engineering are limited by the inability to adequately describe these subsurface ground conditions.NSA Geotechnical Services has successfully applied seismic tomography and holography ground imaging technologies on tunneling and heavy civil excavations worldwide. Seismic signal waveforms traveling through a complex medium consist of various arrivals from refractions, reflections, scattering, and dispersion. Tomography and holography are proven inversion technologies for estimating location and extent of material property variations causing changes in signal waveforms.ent attenuation rates and velocities. Seismic waves will travel faster through competent material and be generally less attenuated than through broken/fractured ground or voids.encounters an interface between ground zones possessing different seismic properties. Most geologic structures, anomalies,and changes in lithology provide detectable seismic reflections if they are within a reasonable distance of the seismic source.This paper will present various applications of these technologies, illustrating how seismic imaging can provide accurate information regarding ground conditions associated with tunneling projects. With this information, engineers can complete projects safely, within time and budget constraints.

  12. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  13. Rock mass structure analysis based on seismic velocity and attenuation images

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Seismic traveltime, amplitude and pulse-width can be used to reconstruct seismic velocity and attenuation coefficient images for a rock mass. This study discusses the appearance differences of velocity and attenuation coefficient in the ore vein and rock mass in the images. The location of the rock vein and the characteristic of the rock mass are discussed according to the difference responses of velocity and attenuation from the ore vein and mixed rock vein, fracture and rock body. The effect and limitation of the seismic tomography method for investigating ore body and rock mass is suggested on the basis of a field test result. The special observation method in this study gives a good reference for obtaining full position and directional observation in seismic tomography.

  14. Seismic wave imaging in visco-acoustic media

    Institute of Scientific and Technical Information of China (English)

    WANG Huazhong; ZHANG Libin; MA Zaitian

    2004-01-01

    Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.

  15. Seismic Imaging of Sub-Glacial Sediments at Jakobshavn Isbræ and NEEM Greenland

    Science.gov (United States)

    Tsoflias, G. P.; Velez-Gonzalez, J. A.; Black, R. A.; van der Veen, C. J.

    2015-12-01

    Sub-glacial sediment conditions can have a major control on glacier flow yet these are difficult to measure directly. We present active source seismic reflection experiments that imaged sub-glacial sections at Jakobshavn Isbræ, West Greenland and at the North Greenland Eemian Ice Drilling (NEEM) location. At Jakobshavn Isbræ we re-processed an existing 9.8 km-long high-resolution seismic line using an iterative approach to determine seismic velocities for enhancing sub-glacial imaging. The seismic profile imaged sediments ranging in thickness between 35 and 200 meters, and the underlying bedrock. Based on the geometry of the reflections we interpret three distinct seismic facies: a basal till layer, accreted sediments and re-worked till. The basal till and accreted sediments vary in thickness from less than 5 m to nearly 100 m thick and are interpreted as the zone of most recent deposition. A reflection polarity reversal observed at a low topographic region along the ice-sediment interface suggests the presence of liquid water spanning approximately 200 m along the profile. At NEEM we acquired a 5.8 km long-offset shot gather. Seismic imaging revealed two prominent reflections at the base of the ice. The upper reflection is interpreted at the base of ice - top of till interface whereas the lower reflection is interpreted as the base of till - top of bedrock. The thickness of the subglacial sediment section at NEEM is estimated to approximately 50 m using seismic imaging. The NEEM ice core drilled through the upper part of this section and ceased drilling before reaching bedrock.

  16. Geophysical imaging of subsurface structures in volcanic area by seismic attenuation profiling

    Science.gov (United States)

    Tsuru, Tetsuro; No, Tetsuo; Fujie, Gou

    2017-01-01

    Geophysical imaging by using attenuation property of multichannel seismic reflection data was tested to map spatial variation of physical properties of rocks in a volcanic area. The study area is located around Miyakejima volcanic island, where an intensive earthquake swarm was observed associated with 2000 Miyakejima eruption. Seismic reflection survey was conducted five months after the swarm initiation in order to clarify crustal structure around the hypocenters of the swarm activity. However, the resulting seismic reflection profiles were unable to provide significant information of deep structures around the hypocenters. The authors newly applied a seismic attribute method that focused seismic attenuation instead of reflectivity to the volcanic area, and designed this paper to assess the applicability of this method to subsurface structural studies in poorly reflective volcanic areas. Resulting seismic attenuation profiles successfully figured out attenuation structures around the Miyakejima volcanic island. Interestingly, a remarkable high-attenuation zone was detected between Miyakejima and Kozushima islands, being well correlated with the hypocenter distribution of the earthquake swarm in 2000. The high-attenuation zone is interpreted as a fractured area that was developed by magma activity responsible for the earthquake swarms that have been repeatedly occurring there. The present study can be one example showing the applicability of seismic attenuation profiling in a volcanic area. [Figure not available: see fulltext. Caption: .

  17. Responses of the Q6/Q6s ATD Positioned in Booster Seats in the Far-Side Seat Location of Side Impact Passenger Car and Sled Tests.

    Science.gov (United States)

    Tylko, Suzanne; Bohman, Katarina; Bussières, Alain

    2015-11-01

    Passenger car side impact crash tests and sled tests were conducted to investigate the influence of booster seats, near-side occupant characteristics and vehicle interiors on the responses of the Q6/Q6s child ATD positioned in the rear, far-side seating location. Data from nine side impact sled tests simulating a EuroNCAP AEMD barrier test were analyzed with data obtained from 44 side impact crash tests. The crash tests included: FMVSS 214 and IIHS MDB, moving car-to-stationary car and moving car-to-moving car. A Q6 or prototype Q6s ATD was seated on the far-side, using a variety of low and high back booster seats. Head and chest responses were recorded and ATD motions were tracked with high-speed videos. The vehicle lateral accelerations resulting from MDB tests were characterized by a much earlier and more rapid rise to peak than in tests where the bullet was another car. The near-side seating position was occupied by a Hybrid III 10-year-old ATD in the sled tests, and a rear or front facing child restraint or a 5th percentile side impact ATD in the crash tests. Head impacts occurred more frequently in vehicles where a forward facing child restraint was present behind the driver seat for both the low and high back booster seats. Pretensioners were found to reduce lateral head displacements in all sled test configurations but the greatest reduction in lateral excursion was obtained with a high back booster seat secured with LATCH and tested in combination with pretensioners.

  18. Seismic imaging of the shallow subsurface with high frequency seismic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kaelin, Bruno [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

    1998-07-01

    Elastic wave propagation in highly heterogeneous media is investigated and theoretical calculations and field measurements are presented. In the first part the dynamic composite elastic medium (DYCEM) theory is derived for one-dimensional stratified media. A self-consistent method using the scattering functions of the individual layers is formulated, which allows the calculation of phase velocity, attenuation and waveform. In the second part the DYCEM theory has been generalized for three-dimensional inclusions. The specific case of spherical inclusions is calculated with the exact scattering functions and compared with several low frequency approximations. In the third part log and VSP data of partially water saturated tuffs in the Yucca Mountain region of Nevada are analyzed. The anomalous slow seismic velocities can be explained by combining self-consistent theories for pores and cracks. The fourth part analyzes an air injection experiment in a shallow fractured limestone, which has shown large effects on the amplitude, but small effects on the travel time of the transmitted seismic waves. The large amplitude decrease during the experiment is mainly due to the impedance contrast between the small velocities of gas-water mixtures inside the fracture and the formation. The slow velocities inside the fracture allow an estimation of aperture and gas concentration profiles.

  19. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    Science.gov (United States)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  20. On the consistency of seismically imaged lower mantle slabs.

    Science.gov (United States)

    Shephard, G E; Matthews, K J; Hosseini, K; Domeier, M

    2017-09-08

    The geoscience community is increasingly utilizing seismic tomography to interpret mantle heterogeneity and its links to past tectonic and geodynamic processes. To assess the robustness and distribution of positive seismic anomalies, inferred as subducted slabs, we create a set of vote maps for the lower mantle with 14 global P-wave or S-wave tomography models. Based on a depth-dependent threshold metric, an average of 20% of any given tomography model depth is identified as a potential slab. However, upon combining the 14 models, the most consistent positive wavespeed features are identified by an increasing vote count. An overall peak in the most robust anomalies is found between 1000-1400 km depth, followed by a decline to a minimum around 2000 km. While this trend could reflect reduced tomographic resolution in the middle mantle, we show that it may alternatively relate to real changes in the time-dependent subduction flux and/or a mid-lower mantle viscosity increase. An apparent secondary peak in agreement below 2500 km depth may reflect the degree-two lower mantle slow seismic structures. Vote maps illustrate the potential shortcomings of using a limited number or type of tomography models and slab threshold criteria.

  1. Ground truth : vertical seismic profile data enables geophysicists to image ahead of the drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S. [SR ECO Consultants Inc., Calgary, AB (Canada)

    2001-08-01

    This paper presented a new technology which makes it possible to obtain a vertical seismic profile (VSP) of a wellbore via a wireline tool. Downhole seismic is of extreme importance in cases when there is a discrepancy between the geology in the well and surface seismic data and when drilling has gone deeper than the prognosis for oil or gas. Once VSP data are interpreted, the decision can be made to either abandon the well or sidetrack it to an optimum target position. The VSP data give the geophysicist the opportunity to recalibrate the processing of conventional 2-D or 3-D surface seismic data while drilling. Crucial assumptions for the velocity fields can be tested. This new technology links geology and geophysics, making it possible to quantify subsurface reservoir parameters and to obtain downhole seismic that provides a higher frequency and spatial resolution than conventional surface seismic surveys. The energy source for downhole seismic is situated at ground level. The signal then travels down into the earth where it is recorded in the subsurface by a vertical array of geophones situated in the wellbore. Some of the signal travels past the bottom of the borehole, through the underlying layers that still have to be drilled. Geophysicists with PanCanadian Petroleum Ltd. and Baker Atlas state that a VSP gives ground truth because the acquired data enables the geophysicist to image ahead of the drill bit. VSP is the ultimate tool in interval velocity and time to depth conversion. Downhole seismic has 25 per cent higher frequencies than surface seismic. The technology has been successfully used by Talisman Energy Inc., to drill Foothills wells in the Monkman Pass area of northeastern British Columbia. VSP data can be used to predict formation pressures, porosities, lithologies or rock types, and fluid content. The technology has been useful in the drilling of hostile holes offshore Sable Island in Nova Scotia where wells can cost up to $30 million. VSPs are

  2. Strike-slip faults imaging from galleries with seismic waveform imaging methods

    Science.gov (United States)

    Bretaudeau, F.; Gélis, C.; Leparoux, D.; Cabrera, J.; Côte, P.

    2011-12-01

    Deep argillaceous formations are potential host media for radioactive waste due to their physical properties such as low intrinsic permeability and radionuclide retention (Boisson et al 2001). The experimental station of Tournemire is composed of an old tunnel excavated in 1885 in a 250m thick Toarcien argilitte layer, and of several galleries excavated more recently in directions perpendicular and parallel to the tunnel. This station is operated by the French Institute for Radiological protection and Nuclear Safety (IRSN) in order to expertise possible projects of radioactive waste disposal in a geological clay formation. The presence of secondary strike-slip faults in argillaceous formations must be well assessed since they could change any rock properties such as permeability. The ones with small vertical offsets as observed in the station cannot be seen from the surface, indeed we investigate on new approaches to image them directly from the underground works. We investigate here on the potential of new imaging methods that take advantage of the full seismic waveforms in order to optimise the imaging performances: Full Waveform Inversion (FWI) and Reverse Time Migration (RTM). We try to assess the capacities and limits of those methods in this specific context, and to determine the optimum acquisition and processing parameters. The subvertical fault in the nearly homogeneous subhorizontal structure of the clay layer allows us to consider a 2D imaging problem with no anisotropy where the fault is surrounded by three galleries. The waveform inversion strategy used is based on the frequency domain formulation proposed by Pratt et al. (1990). Non linearity is mitigated by introducing sequentially information from 50Hz to 1000Hz and starting from an homogeneous medium as initial model. Preliminary tests on synthetic data (fig. 1) show the ability of FWI to quantitatively image the fault zone and illustrate the impact of the illumniation configuration. RTM suceeds to

  3. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    Science.gov (United States)

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J.W.; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  4. JPEG images of Seismic data collected by the U.S. Geological Survey as part of the Geologic Framework Studies project offshore of the Grand Strand, South Carolina

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — JPEG images of each seismic line were generated in order to incorporate images of the seismic data into Geographic Information System (GIS) projects and data...

  5. Seismic remote sensing image segmentation based on spectral histogram and dynamic region merging

    Science.gov (United States)

    Wang, Peng; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    Image segmentation is the foundation of seismic information extraction from high-resolution remote sensing images. While the complexity of the seismic image brings great challenges to its segmentation. Compared with the traditional pixel-level approaches, the region-level approaches are found prevailing in dealing with the complexity. This paper addresses the seismic image segmentation problem in a region-merging style. Starting from many over-segmented regions, the image segmentation is performed by iteratively merging the neighboring regions. In the proposed algorithm, the merging criterion and merging order are two essential issues to be emphatically considered. An effective merging criterion is largely depends on the region feature and neighbor homogeneity measure. The region's spectral histogram represents the global feature of each region and enhances the discriminability of neighboring regions. Therefore, we utilize it to solve the merging criterion. Under a certain the merging criterion, a better performance could be obtained if the most similar regions are always ensured to be merged first, which can be transformed into a least-cost problem. Rather than predefine an order queue, we solve the order problem with a dynamic scheme. The proposed approach mainly contains three parts. Firstly, starting from the over-segmented regions, the spectral histograms are constructed to represent each region. Then, we use the homogeneity that combines the distance and shape measure to conduct the merge criterion. Finally, neighbor regions are dynamically merged following the dynamic program (DP) theory and breadth-first strategy. Experiments are conducted using the earthquake images, including collapsed buildings and seismic secondary geological disaster. The experimental results show that, the proposed method segments the seismic image more correctly.

  6. The Obsidian Creep Project: Seismic Imaging in the Brawley Seismic Zone and Salton Sea Geothermal Field, Imperial County, California

    Science.gov (United States)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Lohman, R. B.; McGuire, J. J.

    2010-12-01

    the south, which broke the surface during a local swarm of earthquakes in 2005 and which also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The faults imaged in our profiles will be compared to high-precision earthquake relocations for the 2005 earthquake swarm and more recent events recorded by the Cal Energy borehole seismic network, and will be used as input into a reanalysis of geodetic observations spanning the 2005 earthquake swarm. The combined Obsidian Creep data set provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  7. Identifying Reflectors in Seismic Images via Statistic and Syntactic Methods

    Directory of Open Access Journals (Sweden)

    Carlos A. Perez

    2010-04-01

    Full Text Available In geologic interpretation of seismic reflection data, accurate identification of reflectors is the foremost step to ensure proper subsurface structural definition. Reflector information, along with other data sets, is a key factor to predict the presence of hydrocarbons. In this work, mathematic and pattern recognition theory was adapted to design two statistical and two syntactic algorithms which constitute a tool in semiautomatic reflector identification. The interpretive power of these four schemes was evaluated in terms of prediction accuracy and computational speed. Among these, the semblance method was confirmed to render the greatest accuracy and speed. Syntactic methods offer an interesting alternative due to their inherently structural search method.

  8. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    Science.gov (United States)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  9. 2D magnetotelluric inversion using reflection seismic images as constraints and application in the COSC project

    Science.gov (United States)

    Kalscheuer, Thomas; Yan, Ping; Hedin, Peter; Garcia Juanatey, Maria d. l. A.

    2017-04-01

    We introduce a new constrained 2D magnetotelluric (MT) inversion scheme, in which the local weights of the regularization operator with smoothness constraints are based directly on the envelope attribute of a reflection seismic image. The weights resemble those of a previously published seismic modification of the minimum gradient support method introducing a global stabilization parameter. We measure the directional gradients of the seismic envelope to modify the horizontal and vertical smoothness constraints separately. An appropriate choice of the new stabilization parameter is based on a simple trial-and-error procedure. Our proposed constrained inversion scheme was easily implemented in an existing Gauss-Newton inversion package. From a theoretical perspective, we compare our new constrained inversion to similar constrained inversion methods, which are based on image theory and seismic attributes. Successful application of the proposed inversion scheme to the MT field data of the Collisional Orogeny in the Scandinavian Caledonides (COSC) project using constraints from the envelope attribute of the COSC reflection seismic profile (CSP) helped to reduce the uncertainty of the interpretation of the main décollement. Thus, the new model gave support to the proposed location of a future borehole COSC-2 which is supposed to penetrate the main décollement and the underlying Precambrian basement.

  10. Seismic wavefield imaging based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2016-11-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analyzing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a one-dimensional (1-D) local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally-layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network (MeSO-net), which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method

  11. Seismic imaging of deformation zones associated with normal fault-related folding

    Science.gov (United States)

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard

    2016-04-01

    Folds associated with normal faulting, which are mainly the result of fault propagation and linkage of normal fault segments, can exhibit complex deformation patterns, with multiple synthetic splay faults, reverse faults and small antithetic Riedel structures accommodating flexure of the beds. Their identification is critical in evaluating connectivity of potential hydrocarbon reservoirs and sealing capacity of faults. Previous research showed that seismic attributes can be successfully used to image complex structures and deformation distribution in submarine thrust folds. We use seismic trace and coherency attributes, a combination of instantaneous phase, tensor discontinuity and semblance attributes to identify deformation structures at the limit of seismic resolution, which accommodate seismic scale folding associated with normal faulting from Inner Moray Firth Basin, offshore Scotland. We identify synthetic splay faults and reverse faults adjacent to the master normal faults, which are localized in areas with highest fold amplitudes. This zone of small scale faulting is the widest in areas with highest fault throw / fold amplitude, or where a bend is present in the main fault surface. We also explore the possibility that changes in elastic properties of the rocks due to deformation can contribute to amplitude reductions in the fault damage zones. We analyse a pre-stack time-migrated 3D seismic data-set, where seismic reflections corresponding to a regionally-continuous and homogeneous carbonate layer display a positive correlation between strain distribution and amplitude variations adjacent to the faults. Seismic amplitude values are homogeneously distributed within the undeformed area of the footwall, with a minimum deviation from a mean amplitude value calculated for each seismic line. Meanwhile, the amplitude dimming zone is more pronounced (negative deviation increases) and widens within the relay zone, where sub-seismic scale faults, which accommodate

  12. Seismic wavefield imaging based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2017-01-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analysing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a 1-D local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network, which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method, which provides not only

  13. Anatomy of the western Java plate interface from depth-migrated seismic images

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  14. Seismic imaging constraints on megathrust fault zone properties

    Science.gov (United States)

    Abers, G. A.; Janiszewski, H. A.; Keranen, K. M.; Saffer, D. M.; Shillington, D. J.

    2014-12-01

    Several lines of evidence suggest that subduction zone thrusts lie within overpressured channels. Seismic reflection data often shows a relatively thin, high-reflectivity surface with occasional bright spots, indicative of rapidly varying impedance contrasts over length scales of tens of meters. Scattered coda of teleseismic P waves, such as in receiver functions, often show a thin low-velocity layer corresponding to the top of the subducting plate. The latter have been best documented in Cascadia, where a 2-4 km thick very low velocity channel is seen above a moderately slow subducting crust, and in Alaska where similar structure has been seen. High-reflectivity bright spots occur in the same region, although perhaps over more limited areas. The low velocity zones are characterized by elevated Vp/Vs ratios (>2.0), and extend both throughout the locked, seismogenic fault zone and downdip into the region where episodic tremor and slip occur. Commonly, this combination of low velocities and high Vp/Vs is taken to indicate high pore pressures, and hence a fault zone that can withstand only very low shear stresses. However, models of the low wavespeeds suggest static porosities of 2-5% throughout a 2-4 km thick layer, extending to depths of 40 km, a situation that seems difficult to sustain. At both the Alaska and Cascadia margins, low Vp, high Poisson's ratios, and high anisotropies should result in part from the subduction of sediments well into and beyond the seismogenic zone. The presence of a significant thickness of subducted and underplated sediment is consistent with observations of preserved subduction "channels" in exhumed examples from tens of km depth. Although some elevation of pore pressure may be still needed to explain observations, if the subduction of 2-4 km of sediment is a significant factor in generating the seismic signatures, then the geophysical observations could reflect a much stronger thrust zone than one sustained by high pore pressure alone.

  15. Detailed Seismic Reflection Images of the Central American Volcanic Arc

    Science.gov (United States)

    McIntosh, K. D.; Fulthorpe, C. S.

    2005-12-01

    New high-resolution seismic reflection profiles across the Central American volcanic arc (CAVA) reveal an asymmetric deformation pattern with large-scale folding and uplift of basinal strata in the forearc contrasted by intrusive bodies, normal faults, and possible strikes-slip faults in the backarc. Since Miocene times the CAVA has migrated seaward, apparently impinging on the Sandino forearc basin and creating or modifying the low-lying Nicaragua depression, which contains the backarc and much of the arc. However the structural nature of the depression and its possible relationship to forearc sliver movement is poorly known. In November-December 2004 we recorded a large, high-resolution, seismic reflection dataset largely on the Pacific shelf (forearc) area of Central America, extending from NW Costa Rica to the SE edge of El Salvador's territorial waters. We seized an opportunity to study the nature of the CAVA by recording data into the Gulf of Fonseca, a large embayment at the intersection of Nicaragua, Honduras, and El Salvador. With 3 GI airguns and a 2100 m streamer we recorded data with typical penetration of 2-3 seconds in the Sandino basin and frequency content of ~10-250 Hz (at shallow levels). Penetration was limited over the arc summit with high velocity volcanic rocks encountered at depths as shallow as a few hundred meters. To the NE the edge of the Nicaragua depression occurs abruptly; our data show a well-developed sedimentary basin 1.5-3 km thick separated by numerous steeply-dipping faults. The broadband signal and good penetration of this dataset will help us determine the chronology of arc development in this position and the styles of deformation in the forearc, arc, and backarc areas. In turn, this will help us understand the regional tectonic and stratigraphic development of this margin due to the profound affects of the arc.

  16. Down-the-barrel and transverse observations of the Large Magellanic Cloud: evidence for a symmetrical galactic wind on the near and far sides of the galaxy

    CERN Document Server

    Barger, Kat; Howk, J Chris

    2015-01-01

    We compare the properties of gas flows on both the near and far side of the Large Magellanic Cloud (LMC) disk using Hubble Space Telescope UV absorption-line observations toward an AGN behind (transverse) and a star within (down-the-barrel) the LMC disk at an impact parameter of 3.2 kpc. We find that even in this relatively quiescent region gas flows away from the disk at speeds up to $\\sim$100 km/s in broad and symmetrical absorption in the low and high ions. The symmetric absorption profiles combined with previous surveys showing little evidence that the ejected gas returns to the LMC and provide compelling evidence that the LMC drives a global, large-scale outflow across its disk, which is the likely result of a recent burst of star formation in the LMC. We find that the outflowing gas is multiphase, ionized by both photoionization (SiII and SiIII) and collisional ionization (SiIV and CIV). We estimate a total mass and outflow rate to be $>10^7$ Msun and $>0.4$ Msun/yr. Since the velocity of this large-sca...

  17. Seismic image of the Ivanhoe Lake Fault Zone in the Kapuskasing Uplift of the Canadian Shield

    Science.gov (United States)

    Wu, Jianjun; Mereu, Robert F.; Percival, John A.

    1992-02-01

    The Kapuskasing uplift, located in the central Canadian shield, represents an oblique exposure of the Archean middle to lower crust. The Ivanhoe Lake fault zone, believed to be the basal thrust carrying the high-grade rocks of the Kapuskasing zone over the low-grade Abitibi greenstone belt, holds the key to understanding the nature and evolution of the Kapuskasing uplift. Despite numerous geological and geophysical studies, including LITHOPROBE deep seismic reflection profiles, and because of very limited bedrock exposure in the area, the shallow structure of the Ivanhoe Lake fault zone remains obscure. Here we present results obtained by reprocessing data from a LITHOPROBE seismic reflection profile across the fault zone. For the first time, the Ivanhoe Lake fault zone is clearly imaged on the seismic section as a series of west-dipping reflectors with an average dip of 20°, which can be traced to the surface. The results support the conclusion that fault zones form good reflectors.

  18. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.M.; Majer, E.L.; Karageorgi, E. [Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies.

  19. Frequency-dependent traveltime tomography using fat rays: application to near-surface seismic imaging

    Science.gov (United States)

    Jordi, Claudio; Schmelzbach, Cedric; Greenhalgh, Stewart

    2016-08-01

    Frequency-dependent traveltime tomography does not rely on the high frequency assumption made in classical ray-based tomography. By incorporating the effects of velocity structures in the first Fresnel volume around the central ray, it offers a more realistic and accurate representation of the actual physics of seismic wave propagation and thus, enhanced imaging of near-surface structures is expected. The objective of this work was to apply frequency-dependent first arrival traveltime tomography to surface seismic data that were acquired for exploration scale and near-surface seismic imaging. We adapted a fat ray tomography algorithm from global-earth seismology that calculates the Fresnel volumes based on source and receiver (adjoint source) traveltime fields. The fat ray tomography algorithm was tested on synthetic model data that mimics the dimensions of two field data sets. The field data sets are presented as two case studies where fat ray tomography was applied for near-surface seismic imaging. The data set of the first case study was recorded for high-resolution near-surface imaging of a Quaternary valley (profile length 10 km). All results of fat ray tomography are compared against the results of classical ray-based tomography. We show that fat ray tomography can provide enhanced tomograms and that it is possible to recover more information on the subsurface when compared to ray tomography. However, model assessment based on the column sum of the Jacobian matrix revealed that especially the deep parts of the structure in the fat ray tomograms might not be adequately covered by fat rays. Furthermore, the performance of the fat ray tomography depends on the chosen input frequency in relation to the scale of the seismic survey. Synthetic data testing revealed that the best results were obtained when the frequency was chosen to correspond to an approximate wavelength-to-target depth ratio of 0.1.

  20. Three-dimensional seismic imaging of the Rye Patch geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Feighner, M.; Gritto, R.; Daley, T.M.; Keers, H.; Majer, E.L.

    1999-11-01

    A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The source interval was 100 feet while the source line spacing was 400 feet. The sources were comprised of 4 vibrator trucks arranged in a box array. Seismic processing involved, among other steps, the picking of over 700,000 of the possible one million traces to determine first arrival travel times, normal moveout correction, 3-D stack, deconvolution, time migration, and depth conversion. The final data set represents a 3-D cube of the subsurface structure in the reservoir. Additionally, the travel times were used to perform tomographic inversions for velocity estimates to support the findings of the surface seismic imaging. The results suggest the presence of at least one dominant fault responsible for the migration of fluids in the reservoir. Furthermore, it is suggested that this feature might be part of a fault system that includes a graben structure.

  1. Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging

    Science.gov (United States)

    Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.

    2016-06-01

    We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.

  2. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  3. Imaging the Namibian Passive Margin with Crustal-Scale Reflection Seismics

    Science.gov (United States)

    Ryberg, T.; Haberland, C. A.; Bauer, K.; Weber, M. H.

    2012-12-01

    Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break up and the role of hot-spot related magmatism. In 2011 we conducted combined on- and offshore seismic experiments specifically designed to characterize the Southern African passive margin at the Walvis Ridge in Namibia. A coast-parallel crustal model for P- and S-waves was derived by traveltime tomography of refracted waves. These model show a characteristic high-velocity body in the lower crust at the location where the Walvis Ridge hits the African continent. This body is most likely associated with magmatic processes of the continental break-up and the formation of the Atlantic Ocean. To study this region in more detail, we conducted a crustal-scale reflection seismic project in 2012, focussing on the high-velocity body. The reflection seismic imaging processing included the application of novel line-drawing migration techniques. A high-resolution reflection seismic image of the lower crustal high-velocity body could be derived. We present the result and discuss the possible interpretation of the data.

  4. Imaging of discontinuities in nonlinear 3-D seismic inversion

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, P.M.; Cerveny, V. (PPPG/UFBA, Salvador (Brazil))

    1990-09-01

    The authors present a nonlinear approach for reconstruction of discontinuities in geological environment (earth's crust, say). The advantage of the proposed method is that it is not limited to a Born approximation (small angles of propagation and weak scatterers). One can expect significantly better images since larger apertures including wide angle reflection arrivals can be incorporated into the imaging operator. In this paper, they treat only compressional body waves: shear and surface waves are considered as noise.

  5. A framework for coupled inversion of large-scale seismic and electromagnetic data: application to subsalt imaging

    Science.gov (United States)

    Um, E. S.; Commer, M.; Newman, G. A.

    2013-12-01

    Offshore seismic and electromagnetic (EM) inversions often complement each other and play important roles in crustal studies and resource exploration. Since three-dimensional (3D) data acquisition methods are now routinely employed for reliable seismic and EM interpretation, resulting imaging and data volumes are enormous. Thus, the seismic and EM inversions typically require determining up to tens of millions of parameters to describe the 3D distribution of complex seabed geology and relevant geophysical attributes (e.g. velocity and electrical conductivity). For such large-scale inverse problems, descent-based methods are the only computationally viable choice for now. When the methods are employed, it is often challenging to manage the convergence of standalone inversion experiments. When a joint seismic-EM inversion is implemented to determine more consistent and reliable seabed models, convergence problems with the descent-based methods can be further aggravated, often making the joint inversion impractical. Moreover, resolution mismatches between seismic and EM methods pose another fundamental difficulties for their joint inversion. To overcome the two major hurdles of the joint seismic-EM inversion, we introduce a practical framework for coupled inversion of large-scale seismic and EM data and demonstrate its application to a set of full-wave-seismic, magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data for subsalt imaging. In our framework, resolution mismatches between the seismic and EM methods are resolved by implementing the seismic inversion in the Laplace domain, where the acoustic wave equation is transformed into a diffusion equation. Thus, its resolution becomes comparable to that of EM imaging. To mitigate the convergence problems, the full joint seismic-EM inverse problem is split into manageable components: seismic, EM, and an intermediate step that enforces structural coupling through a cross-gradient-only inversion and

  6. Imaging slow slip events and their relationship to seismic slow earthquakes in southwest Japan

    Science.gov (United States)

    Liu, Z.; Moore, A. W.; Owen, S. E.

    2016-12-01

    Past geodetic and seismic studies have revealed a diverse spectrum of fault slip behaviors including slow slip events (SSEs), tremor, low frequency earthquakes (LFEs) and very-low frequency earthquakes (VLFEs). Thanks to its dense GPS and seismic network, Japan has been one of the prime places to study slow slip transients and their relationship to seismic slow earthquakes such as tremor, LFEs and VLFEs. Recent studies show there are complex interactions between slow slip transients, large seismic event, downdip LFEs and up-dip VLFEs in southwest Japan [e.g., Liu et al., 2015]. In this study, we extend our Japan GEONET GPS position time series reanalysis from 1996 to 2016/07/02 using JPL GIPSY/OASIS-II based GPS Network Processor and raw data provided by Geospatial Information Authority of Japan and Caltech. Our analysis uses re-estimated JPL precise orbits, GMF troposphere model, and single receiver ambiguity resolution strategy. The resultant decades long position time series show good consistency and reduced scattering over the entire time period. We apply an in-house developed time series analysis framework to systemically identify and correct the offsets caused by earthquakes, instrument and other unknown sources, and estimate and correct common mode error. We employ a time dependent slip inversion approach to image the spatiotemporal variations of transient slip and investigate their relationship to seismic slow earthquakes. Our application to some recent events such as the one in Bungo Channel region in 2014-2015 shows different spatiotemporal slip pattern as compared to previous recurrent SSEs at the same region. The change in slip pattern, along with a shortened interval, indicates a possible change in recurrent behaviors. Within the same transient event, we find slow slip can occur with and without accompanying tremor/LFEs, suggesting different underlying mechanisms of the two. We are in the process of modeling other slip transients and investigating

  7. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India

    Science.gov (United States)

    Riedel, M.; Collett, T.S.; Kumar, P.; Sathe, A.V.; Cook, A.

    2010-01-01

    Gas hydrate was discovered in the Krishna-Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ~2.5 km2 defined using seismic attributes of the seafloor reflection, as well as " seismic sweetness" at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ~6 km NW of Site NGHP-01-10. ?? 2010.

  8. Psudeo-seismic Imaging on CSAMT Psudeo-pulse Response of Coal Bed Methane Exploration

    Science.gov (United States)

    zhao, Y.; wu, J.

    2012-12-01

    As a unique natural gas extracted from coal beds, coal bed methane (CBM) resources has become an important source of energy in China. For CBM exploration, it is still a challenge to improve the accuracy for locating and evaluating CBM deposits due to its complicated absorption characteristics. Considering the distinct change of electromagnetic parameters caused by CBM, it is possible to detect the electromagnetic anomalies using the controlled source audio-frequency magnetotellurics (CSAMT). Psudeo-pulse response of EM was re-constructed using the impendence measured on the ground surface by CSAMT, and psudeo-seismic images can be produced using linear programming inversion with stratum model restriction. An anticline structure model was built to verify the proposal of psudeo-seismic imaging using CSAMT data. Inversion results clearly revealed the electrical structure interfaces of the model. Meanwhile, a set of CSAMT data was collected from the test area located in Heshun coal field in China. The V8 CSAMT system was used for data acquisition and the frequency ranges from 0.2 to 7680 Hz. Inversed psudeo-seismic images exactly exhibited the stratum structure and the electrical property distribution. A comparison of inversion results with exploration borehole data revealed the approximate relationship between electrical property and the CBM content. The higher the value of resistivity, the more likely the coal bed is to contain CBM. Model and field test analysis demonstrated that the psudeo-seismic image improved the CSAMT interpretation results, and it can reveal the electrical property distribution, and be applied to approximately evaluate the CBM content.

  9. Imaging Reservoir Quality: Seismic Signatures of Geologic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Department of Geophysics

    2008-06-30

    }20 % to 23%). This trend is explained by a sequence stratigraphic model which predicts progressive increase in sorting by turbidity current along the flow, as well as, quantified by a rock model that heuristically accounts for sorting. The results can be applied to improve quantitative predication of sediment parameters from seismic impedance, away from well locations.

  10. Upper crustal structures beneath Yogyakarta imaged by ambient seismic noise tomography

    Science.gov (United States)

    Zulfakriza, Saygin, E.; Cummins, P.; Widiyantoro, S.; Nugraha, Andri Dian

    2013-09-01

    Delineating the upper crustal structures beneath Yogyakarta is necessary for understanding its tectonic setting. The presence of Mt. Merapi, fault line and the alluvial deposits contributes to the complex geology of Yogyakarta. Recently, ambient seismic noise tomography can be used to image the subsurface structure. The cross correlations of ambient seismic noise of pair stations were applied to extract the Green's function. The total of 27 stations from 134 seismic stations available in MERapi Amphibious EXperiment (MERAMEX) covering Yogyakarta region were selected to conduct cross correlation. More than 500 Rayleigh waves of Green's functions could be extracted by cross-correlating available the station pairs of short-period and broad-band seismometers. The group velocities were obtained by filtering the extracted Green's function between 0.5 and 20 s. 2-D inversion was applied to the retrieved travel times. Features in the derived tomographic images correlate with the surface geology of Yogyakarta. The Merapi active volcanoes and alluvial deposit in Yogyakarta are clearly described by lower group velocities. The high velocity anomaly contrasts which are visible in the images obtained from the period range between 1 and 5 s, correspond to subsurface imprints of fault that could be the Opak Fault.

  11. Coherent features of the Alpine mantle slabs imaged by recent seismic tomography studies

    Science.gov (United States)

    Brueckl, E.; Brueckl, J.; Keller, G. R.; Dando, B.

    2012-04-01

    The bifurcation of the East Alpine mountain range into branches extending northeastward to the Carpathians and southeastward to the Dinarides represents a triple junction between the European platform (EU), the Adriatic micro-plate (AD), and the Pannonian fragment (PA). During the last decade, controlled source and passive source seismic data have provided a variety of detailed images of the lithosphere and upper mantle in this area. However, the geodynamic interpretation of lithospheric slabs under the Alpine - Adriatic collision zone is still under debate. So far, arguments have been based mainly on images provided by individual seismic tomography studies. In order to enhance robust features of the upper mantle structure, we have averaged four tomographic models, weighted according to their coverage by seismic stations and boundaries of high resolution. We achieved an image of the Alpine slab of unprecedented clarity. It extends coherently from the border between the Western Alps and the Apennines to the EU-AD-PA triple junction, dipping southeastward in the west and nearly vertically in the east. The whole slab can be connected to European mantle lithosphere and a flip of subduction polarity must not be induced. The geometry of the slab infers also additional constraints on the development of the triple junction during the post-collision phase of the Eastern Alps.

  12. A seismic reflection image for the base of a tectonic plate.

    Science.gov (United States)

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  13. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  14. A data-dependent Fourier filter based on image segmentation for random seismic noise attenuation

    Science.gov (United States)

    Zhou, JiaXiong; Lu, Wenkai; He, Jianwei; Liu, Bing; Ren, Tin

    2015-03-01

    In this paper, we propose a data-dependent Fourier filter (DDFF) based on image segmentation for random seismic noise attenuation. In the proposed method, the original seismic data is divided into some overlapped small blocks. For each block, a local Fourier filter is designed automatically in two steps. At first, a binary mask is obtained by segmenting the Fourier amplitude spectra (FAS) of this block. The histogram of the FAS is used to get the threshold for the FAS segmentation. Secondly, an average filter is applied on the binary mask to get the tapered Fourier filter. In the proposed method, the DDFFs for all blocks are compact and time-space variant. After all blocks are processed, they are merged together to form the filtered result. We illustrate our method by a 2D synthetic seismic data, and give a comparison with the coherent event extraction method in Fourier domain. At last, a real 3D seismic data example demonstrates that the proposed method obtains some promising results.

  15. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet.

    Science.gov (United States)

    Tilmann, Frederik; Ni, James

    2003-05-30

    A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.

  16. Theory of reflectivity blurring in seismic depth imaging

    Science.gov (United States)

    Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.

    2016-05-01

    A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar

  17. Geoelectrical Resistivity Imaging and Refraction Seismic Investigations at Sg.Udang, Melaka

    Directory of Open Access Journals (Sweden)

    Zeinab Asry

    2012-01-01

    Full Text Available Problem statement: A Reconnaissance geophysical survey of an area near Sg.Udang, Melaka was conducted using geoelectrical resistivity and seismic refraction methods. The main objective of this study is to determine the depth of bedrock in the study area. The resistivity imaging measurement employing Wenner electrode configuration was carried out using an ABEM SAS 1000 terrameter and electrode selector system ES464. Electrodes were arranged in a straight line with constant spacing and connected to a multicore cable. The refraction seismic was conducted using 24 channel ABEM Mark6 signal enhancement seismograph with 5 m geophone spacing. The resistivity layer is associated with the residual soil with thickness of about 0.5-3 m. The high velocity layer is an average depth of about 9.4 m. The intermediate velocity zone is associated with weathered schist with thickness of about 2.5 m. The low velocity zone is with thickness of about 6 m. The thickness of residual soil obtained by seismic refraction survey appears to agree very well with the borehole data. Resistivity and the seismic refraction data have been successfully used to determine the thickness of residual soil layer and depth of bedrock. Approach: In this survey, electrodes were arranged in a straight line with constant spacing and connected to a multicore cable. The refraction seismic was conducted using 24 channel ABEM Mark6 signal enhancement seismograph with 5 m geophone spacing. The seismic data have been interpreted using SeisOpt@2D which automatically produced 2-D seismic velocity sections of the subsurface. Results: The resistivity results showed that the subsurface layers are associated with variable resistivity (296-2600Ω. m. The resistivity layer is associated with the residual soil with thickness of about 0.5-3 m. The interpreted 2-D seismic sections showed three different velocity layers. The high velocity layer (1600-2000 m sec-1 is interpreted to be associated with bedrock

  18. Transition Zone of the Cascadia Subduction Fault: Insights from Seismic Imaging of Slow Earthquakes

    Science.gov (United States)

    Ghosh, A.

    2012-12-01

    Transition zone lies between the updip locked and downdip freely slipping zone, and presumably marks the downdip extent of rupture during large megathrust earthquakes. Tectonic behavior of the transition zone and its possible implications on the occurrence of destructive megathurst earthquakes, however, remain poorly understood mainly due to lack of seismic events in this zone. Slow earthquakes, marked by seismically observed tremor and geodetically observed slow slip, occur in the transition zone offering a unique window to this zone, and allow us to study the dynamics of this enigmatic part of the fault. I developed a novel multi beam-backprojection (MBBP) algorithm to image slow earthquakes with high resolution using small-aperture seismic arrays. Application of MBBP technique on slow earthquakes in Cascadia indicates that the majority of the tremor is located near the plate interface [Ghosh et al., JGR, 2012]. Spatiotemporal distribution of tremor is fairly complex, and strikingly different over different time scales. Transition zone appears to be characterized by several patches with dimension of tens of kilometers. The patches behave like asperities, and possibly represent more seismic part of the fault embedded within a relatively aseismic background. Tremor asperities are spatially stable and marked by prolific tremor activity. These tremor asperities seem to control evolution of slow earthquakes and likely represent rheological and/or frictional heterogeneity on the fault plane. In addition, structural features on the fault plane of the transition zone seem to play an important role in shaping the characteristics of the seismic energy radiated from here. Dynamically evolving state-of-stress during slow earthquakes and its interaction with the fault structures possibly govern near-continuous rapid streaking of tremor [Ghosh et al., G-cubed, 2010] and diverse nature of tremor propagations observed over different time scales. Overall, slow quakes are giving

  19. Seismic imaging of a megathrust splay fault in the North Chilean subduction zone (Central Andes)

    Science.gov (United States)

    Storch, Ina; Buske, Stefan; Schmelzbach, Cedric; Wigger, Peter

    2016-10-01

    Prominent trench-parallel fault systems in the arc and fore-arc of the Chilean subduction zone can be traced for several thousand kilometers in north-south direction. These fault systems possibly crosscut the entire crust above the subduction megathrust and are expected to have a close relationship to transient processes of the subduction earthquake cycles. With the motivation to image and characterize the structural inventory and the processes that occur in the vicinity of these large-scale fault zones, we re-processed the ANCORP'96 controlled-source seismic data set to provide images of the faults at depth and to allow linking geological information at the surface to subsurface structures. The correlation of the imaging results with observed hypocenter locations around these fault systems reveals the origin and the nature of the seismicity bound to these fault systems. Active and passive seismic data together yield a picture of a megathrust splay fault beneath the Longitudinal Valley at mid-crustal level, which can be observed from the top of the subduction plate interface and which seems to be connected to the Precordilleran Fault System (PFS) known at the surface. This result supports a previously proposed tectonic model where a megathrust splay fault defines the Western Altiplano as a crustal-scale fault-bend-fold. Furthermore, we clearly imaged two branches of the Uyuni-Kenayani Fault (UKF) in a depth range between 0 and 20 km. In summary, imaging of these faults is important for a profound understanding of the tectonic evaluation and characterization of the subduction zone environment, for which the results of this study provide a reliable basis.

  20. Active-source seismic imaging below Lake Malawi (Nyasa) from the SEGMeNT project

    Science.gov (United States)

    Shillington, D. J.; Scholz, C. A.; Gaherty, J. B.; Accardo, N. J.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Trinhammer, P.; Wood, D. A.; Khalfan, M.; Ebinger, C. J.; Nyblade, A.; Mbogoni, G. J.; Mruma, A. H.; Salima, J.; Ferdinand-Wambura, R.

    2015-12-01

    Little is known about the controls on the initiation and development of magmatism and segmentation in young rift systems. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined in the upper crust by ~100-km-long border faults. Very little volcanism is associated with rifting; the only surface expression of magmatism occurs in an accommodation zone between segments to the north of the lake in the Rungwe Volcanic Province. The SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project is a multidisciplinary, multinational study that is acquiring a suite of geophysical, geological and geochemical data to characterize deformation and magmatism in the crust and mantle lithosphere along 2-3 segments of this rift. As a part of the SEGMeNT project, we acquired seismic reflection and refraction data in Lake Malawi (Nyasa) in March-April 2015. Over 2000 km of seismic reflection data were acquired with a 500 to 2580 cu in air gun array from GEUS/Aarhus and a 500- to 1500-m-long seismic streamer from Syracuse University over a grid of lines across and along the northern and central basins. Air gun shots from MCS profiles and 1000 km of additional shooting with large shot intervals were also recorded on 27 short-period and 6 broadband lake bottom seismometers from Scripps Oceanographic Institute as a part of the Ocean Bottom Seismic Instrument Pool (OBSIP) as well as the 55-station onshore seismic array. The OBS were deployed along one long strike line and two dip lines. We will present preliminary data and results from seismic reflection and refraction data acquired in the lake and their implications for crustal deformation within and between rift segments. Seismic reflection data image structures up to ~5-6 km below the lake bottom, including syntectonic sediments, intrabasinal faults and other complex horsts. Some intrabasinal faults in both the northern and

  1. Enhancement in Seismic Imaging using Diffraction Studies and Hybrid Traveltime Technique for PSDM

    Science.gov (United States)

    Bashir, Y.; Ghosh, D. P.; Moussavi Alashloo, S. Y.; Sum, C. W.

    2016-07-01

    The accurate migration of seismic data is conditional on the parameters which are nominated. The effective velocity used in residual processing for migration is small compared to the original migration velocity. Considering traveltime computation is a significant part of seismic imaging algorithms. Conventional implementation of Kirchhoff migration is essential for precomputing a traveltime table from the categories involving traditional ray-tracing methods and finite difference eikonal solvers. In this paper, we examine the accuracy using, the eikonal solver and paraxial ray tracing traveltime computation in pre-stack Kirchhoff depth migration. This hybrid traveltime technique can be applied to a variety of problems related to faults, fractures, and complex region. To evaluate the relevance of this identical traveltime technique, we applied on a Marmousi data set.

  2. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    Science.gov (United States)

    Pratt, Thomas L.; Shaw, John H.; Dolan, James F.; Christofferson, Shari A.; Williams, Robert A.; Odum, Jack K.; Plesch, Andreas

    2002-05-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  3. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    Science.gov (United States)

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  4. Characterizing fractures and shear zones in crystalline rock using anisotropic seismic inversion and GPR imaging

    Science.gov (United States)

    Doetsch, Joseph; Krietsch, Hannes; Lajaunie, Myriam; Jordi, Claudio; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansrudi

    2017-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. In the framework of an in-situ stimulation experiment at the Grimsel Test Site, a detailed rock mass characterization was carried out, combining geological and geophysical methods. While geological observations from tunnel mapping, core- and geophysical borehole-logging are reliable, the obtained data could just be interpolated between tunnels and boreholes. The geophysical surveys, including ground-penetration radar (GPR) imaging and tunnel-tunnel seismic tomography were able to image shear and fracture zones throughout the experimental volume. Clear GPR reflections up to a distance of 30 m from the tunnels allow to define the geometry of tunnel-mapped shear zones in the center of the experimental volume. Anisotropic traveltime inversion of tunnel-tunnel seismic data reveals fracture zones as low velocity zones and ductile shear zones as areas of increased seismic anisotropy. It is thus possible to characterize both type and geometry of shear and fracture zones, which is important for the planned rock stimulation. Combining the GPR and seismic results with the geological information, the geological model could be significantly improved, demonstrating the potential to characterize even subtle geological features in 3D.

  5. Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing

    Science.gov (United States)

    Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.

    2007-05-01

    The rich oil reserves of the Gulf of Mexico are buried in deep and ultra-deep waters up to 30,000 feet from the surface. Minerals Management Service (MMS), the federal agency in the U.S. Department of the Interior that manages the nation's oil, natural gas and other mineral resources on the outer continental shelf in federal offshore waters, estimates that the Gulf of Mexico holds 37 billion barrels of "undiscovered, conventionally recoverable" oil, which, at 50/barrel, would be worth approximately 1.85 trillion. These reserves are very difficult to find and reach due to the extreme depths. Technological advances in seismic imaging represent an opportunity to overcome this obstacle by providing more accurate models of the subsurface. Among these technological advances, Reverse Time Migration (RTM) yields the best possible images. RTM is based on the solution of the two-way acoustic wave-equation. This technique relies on the velocity model to image turning waves. These turning waves are particularly important to unravel subsalt reservoirs and delineate salt-flanks, a natural trap for oil and gas. Because it relies on an accurate velocity model, RTM opens new frontier in designing better velocity estimation algorithms. RTM has been widely recognized as the next chapter in seismic exploration, as it can overcome the limitations of current migration methods in imaging complex geologic structures that exist in the Gulf of Mexico. The chief impediment to the large-scale, routine deployment of RTM has been a lack of sufficient computer power. RTM needs thirty times the computing power used in exploration today to be commercially viable and widely usable. Therefore, advancing seismic imaging to the next level of precision poses a multi-disciplinary challenge. To overcome these challenges, the Kaleidoscope project, a partnership between Repsol YPF, Barcelona Supercomputing Center, 3DGeo Inc., and IBM brings together the necessary components of modeling, algorithms and the

  6. Gravitational self-organizing map-based seismic image classification with an adaptive spectral-textural descriptor

    Science.gov (United States)

    Hao, Yanling; Sun, Genyun

    2016-10-01

    Seismic image classification is of vital importance for extracting damage information and evaluating disaster losses. With the increasing availability of high resolution remote sensing images, automatic image classification offers a unique opportunity to accommodate the rapid damage mapping requirements. However, the diversity of disaster types and the lack of uniform statistical characteristics in seismic images increase the complexity of automated image classification. This paper presents a novel automatic seismic image classification approach by integrating an adaptive spectral-textural descriptor into gravitational self-organizing map (gSOM). In this approach, seismic image is first segmented into several objects based on mean shift (MS) method. These objects are then characterized explicitly by spectral and textural feature quantization histograms. To objectify the image object delineation adapt to various disaster types, an adaptive spectral-textural descriptor is developed by integrating the histograms automatically. Subsequently, these objects as classification units are represented by neurons in a self-organizing map and clustered by adjacency gravitation. By moving the neurons around the gravitational space and merging them according to the gravitation, the object-based gSOM is able to find arbitrary shape and determine the class number automatically. Taking advantage of the diversity of gSOM results, consensus function is then conducted to discover the most suitable classification result. To confirm the validity of the presented approach, three aerial seismic images in Wenchuan covering several disaster types are utilized. The obtained quantitative and qualitative experimental results demonstrated the feasibility and accuracy of the proposed seismic image classification method.

  7. Faults dominant structure? -Seismic images of the subsurface structure for the Ilan geothermal field in Taiwan.

    Science.gov (United States)

    Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan

    2016-04-01

    A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the

  8. Toward Exascale Seismic Imaging: Taming Workflow and I/O Issues

    Science.gov (United States)

    Lefebvre, M. P.; Bozdag, E.; Lei, W.; Rusmanugroho, H.; Smith, J. A.; Tromp, J.; Yuan, Y.

    2013-12-01

    Providing a better understanding of the physics and chemistry of Earth's interior through numerical simulations has always required tremendous computational resources. Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns on how to obtain optimum performance. Several issues are currently being investigated by the HPC community. To name a few, we can list energy consumption, fault resilience, scalability of the current parallel paradigms, large workflow management, I/O performance and feature extraction with large datasets. For this presentation, we focus on the last three issues. In the context of seismic imaging, in particular for simulations based on adjoint methods, workflows are well defined. They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts composing it. The usual approach is to speedup the purely computational parts by code tuning in order to reach higher FLOPS and better memory usage. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from a severe I/O bottleneck. This limitation occurs both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). In both cases, a parallel I/O library, ORNL's ADIOS, is used to drastically lessen the weight of disk access. Moreover, parallel visualization tools, such as VisIt, are able to take advantage of the metadata included in our ADIOS outputs to extract features and

  9. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  10. Imaging the Black Hills Fault, Clark County, Nevada Utilizing High-Resolution Seismic Reflection and Vibroseis

    Science.gov (United States)

    Zaragoza, S. A.; Snelson, C. M.; Saldana, S. C.; Hirsch, A.; Poche, S.; Taylor, W. J.

    2006-12-01

    Historically, the location, geometries, and seismic potential of southern Nevada faults are poorly constrained. Collection of such data and seismic hazard characterization of the Black Hills fault (BHF) are important steps in better defining one of these faults. The BHF forms the northwestern structural boundary of the Eldorado Valley, which lies ~20 km southeast of Las Vegas, Nevada, between the growing communities of Henderson and Boulder City. Earthquake magnitude estimates based on surface rupture length (SRL) indicate an earthquake potential of Mw 5.7; however, estimates based on displacement values documented in a paleoseismic trench indicate a higher value of Mw 6.4-6.8. This implies that the subsurface rupture length is significantly greater than the length of the scarp. Although previous attempts to image the fault with a hammer source were inconclusive, gravity studies and local geology imply that the fault continues south of the scarp. Therefore, additional high-resolution seismic reflection and refraction data were acquired in SEG2 format along portions of a 1 km profile at 5 m station spacing utilizing a vibroseis source. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. A preliminary examination of these data indicates the existence of an eastward dipping structure, potentially confirming that the BHF continues in the subsurface south of the scarp.

  11. Anatomy of the Java plate interface from depth-migrated seismic images: Implications for sediment transfer

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2008-12-01

    We present seismic data from the western Java margin off Indonesia. The newly pre-stack depth migrated seismic images resolve the structural details of the western Java forearc and the fate of sediment subducted at the trench. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is transported down a subduction channel. Basal mass transfer occurs by episodic accretion of sediment beneath the submerged forearc as the active detachment stepwise descends to a deeper level below the outer wedge. Fluctuations in subduction channel dimensions are enhanced by deep-reaching thrust faults that are traced from a velocity singularity marking the top of the oceanic basement towards the seafloor. These thrust faults breach the subduction channel and inhibit recycling of material to mantle depth, while serving as an incremental ramp along which the active detachment is transferred to a lower position. The high ratio of accreted/subducted sediment is associated with the evolution of a large bivergent wedge (>100 km) despite the comparatively low sediment input to the trench (member type of subduction zone where near-complete accretion of the trench sediment fill by frontal and basal accretion is supported by the lack of evidence for subducted sediment in the geochemical signature of Mt. Guntur and Mt. Gallunggung, two volcanoes positioned in the prolongation of our seismic line on Java.

  12. New imaging method for seismic reflection wave and its theoretical basis

    Institute of Scientific and Technical Information of China (English)

    HUANG; Guangyuan

    2001-01-01

    [1]Huang Guangyuan, Principle of "3-Basic Colors" for imaging from reflected seismic wave, Acta Geophysica Sinica (in Chinese), 2000, 43(1): 138.[2]Huang Guangyuan, Revisions of convolution model of reflected seismic wave, Chinese Physics Letters, 1998, 15(11): 851.[3]Charles, K. C., An Introduction to Wavelets, San Diego: Academic Press, Inc., 1992.[4]Huang Guangyuan, Liu Weiqian, Revision wave expression and wave equation, Abstracts of Chinese Sci. & Tech. (Letters) (in Chinese), 1999, 5(3): 335.[5]Silvia, M. T., Deconvolution of geophysical time series in the exploration for oil and natural gas, Amsterdam-Oxford-New York: Elsevier Scientific Publishing Company, 1973.[6]Huang Guangyuan, Liu Xiaojun, Inverse Problems in Mathematical Physics (in Chinese), Jinan: Shandong Sci. & Tech. Press, 1993.[7]Huang Guangyuan, Liu Xiaojun, Discussion of several mathematical inverse models in seismic prospecting, CT Theory and Application (in Chinese), 1992, 1(2): 8.[8]Huang Guangyuan, The second discussion on acoustic velocity inversion from wave equation, CT Theory and Application (in Chinese), 1993, 2(3): 14[9]Huang Guangyuan, Dynamic revision of classical laws in physics from the viewpoint of system science, Systems Science and Systems Engineering, 1993, 2(1): 15[10]Brekhovskikh, L. M., Wave in Layered Media, San Diego: Academic Press, 1980.

  13. Imaging Enhancement on Deep Seismic Reflection with Petrel and Ocean Working Environment

    Science.gov (United States)

    Yu, P.; Huang, D.; Feng, X.; Li, L.; Liu, W.; Wang, Y.; Zhao, Q.

    2011-12-01

    SinoProbe has been initiated to enhance understanding of earth deep structure, resources and geological disasters forecasting throughout Chinese continent. Besides traditional deep exploration methods, various state-of-the-art technologies have been carried out in order to acquire data and jointly utilize all possible information reflecting deep crust and mantle structures and evolution.Petrel, a powerful software application developed by Schlumberger, has been successfully applied to the O&G industry. It is now a complete seismic-to-simulation application for 3D and 2D seismic interpretation. However, it has a great potential to allow the user to extend utilization with multiple types of data sets to deal with much deeper geophysical information. Petrel all-in-one concept, that functionally comprises of massive data integration, multiple domains experts participation and 3D geological object-oriented etc., will come benefit to the deep earth study. Currently, there is no special tool designed for this purpose so that Petrel is required to extend its potential to cope with not only O&G area but also a larger area with unique requests of deeper objects.Ocean, a software framework for Petrel, provides an open development environment offering seamless integration of developer intellectual contribution to the Petrel mainstream workflow. It is able to accelerate the development and deployment of user's Petrel-like workflows to resolve complex problems. It can be implemented by means of plug-ins utilities although there is additional challenge to write a robust code with Ocean framework. Deep seismic reflection profiling is a well recognized technique to reveal the fine structure of lithosphere. Moreover, it can perform a significant role for prospective evaluation of O&G and mineral resources, and geological disasters. Its near-vertical deep seismic reflection method can enhance broad band seismic observations for imaging of the deep crust and continental geodynamics

  14. Quantitative Seismic Amplitude Analysis

    OpenAIRE

    Dey, A. K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...

  15. Bayesian uncertainty analysis for advanced seismic imaging - Application to the Mentelle Basin, Australia

    Science.gov (United States)

    Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.

    2016-04-01

    Quantifying the depths of target horizons from seismic reflection data is among the most important aspects of exploration geophysics. In order to constrain these depths we need a reliable and accurate velocity model. Here, we apply Bayesian methods, such as Gaussian process emulators, to estimate the uncertainties of the depths of key horizons near the well DSDP-258 located in the Mentelle Basin, south west of Australia, and compared the results with the drilled core extracted from that well. Eventually, this method will be applied to identify the drilling targets for the International Ocean Discovery Program (IODP), leg 369. The Mentelle Basin is a sparsely explored, deep water sedimentary basin, located between the Naturaliste Plateau and the southern part of the Western Australian Shelf. Its main depocenter, is believed to contain sediments that span from Cretaceous to Holecene, but most importantly it hosts a continuous shale sequence that it is over a kilometer thick, the study of which, is crucial for the correlation between the paleoclimate conditions and the tectonic history of the region. Using two 2D multichannel seismic reflection profiles around the drill site, we generate detailed anisotropic velocity models for the well location in order to construct initially the optimum Pre -- stack time (PSTM) and eventually the Pre - stack depth migrated (PSDM) subsurface images. Moreover, in order to enhance the sub - basalt imaging of the region of interest with the goal to constrain the tectonic models of the area, we apply deterministic deconvolution filters using the source function extracted from our seismic data. The best velocity model created from the initial processing serves as the prior information to the Bayesian model. The final goal is to try to build a multi-layered model of n layers and estimate the zero offset two way time, t0, and the interval velocities,Vi, both for isotropic (Vxi ≈ Vzi) and anisotropic (Vxi ≠ Vzi) cases, in terms of a

  16. Seismic wavefield imaging in the Tokyo metropolitan area, Japan, based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Nagata, Kenji; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2017-04-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas. To reduce these secondary disasters, it is important to rapidly evaluate seismic hazards by analyzing the seismic responses of individual structures due to the input ground motions. Such input motions are estimated utilizing an array of seismometers that are distributed more sparsely than the structures. We propose a methodology that integrates physics-based and data-driven approaches in order to obtain the seismic wavefield to be input into seismic response analysis. This study adopts the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for the estimation of the seismic wavefield together with one-dimensional local subsurface structure and source information. Numerical tests show that the REMC method is able to search the parameters related to the source and the local subsurface structure in broader parameter space than the Metropolis method, which is an ordinary MCMC method. The REMC method well reproduces the seismic wavefield consistent with the true one. In contrast, the ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce the true wavefield even at low frequencies. This indicates that it is essential to take both physics-based and data-driven approaches into consideration for seismic wavefield imaging. Then the REMC method is applied to the actual waveforms observed by a dense seismic array MeSO-net (Metropolitan Seismic Observation network), in which 296 accelerometers are continuously in operation with several kilometer intervals in the Tokyo metropolitan area, Japan. The estimated wavefield within a frequency band of 0.10-0.20 Hz is absolutely consistent with the observed waveforms. Further investigation suggests that the seismic wavefield is successfully

  17. Tomographic Imaging of Jakarta Area from Cross-correlation of Seismic Ambient Noise

    Science.gov (United States)

    Pranata, B.; Saygin, E.; Cummins, P. R.; Widiyantoro, S.; Nugraha, A. D.; Harjadi, P.; Suhardjono, S.

    2012-12-01

    Seismic imaging of sediment thickness of Jakarta is crucial where Jakarta city is currently being rapidly developed with major installations and high-rise structures being constructed at a fast pace. Therefore, information of surface geology and surface sediment thickness for Jakarta city is urgently required in order to mitigate the effects of earthquake hazards in the future. Because of this need, we deployed 36 broadband and shortperiod stations across Jakarta to record seismic ambient noise. We apply cross-correlation method to the simultaneously recorded data to retrieve interstation Green's functions. We measure group velocity dispersion of the retrieved Green's functions by applying narrowband filters. Dispersion measurements are then inverted with a nonlinear tomographic technique to image the shallow structure of Jakarta and its surrounding regions. Preliminary results from tomographic maps show low velocities dominantly located in central, west and north Jakarta. While the highest rate obtained is between stations in South Jakarta. This conforms with the known geological conditions in which the structure of sedimentary cover in northern Jakarta is thicker than the southern part.

  18. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  19. New imaging method for seismic reflection wave and its theoretical basis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some new imaging formulas for seismic reflection wave and theirtheoretical basis are given. Phenomena of wave propagation should be characterized by instantaneous spectrum and expressed by complex function of three variables (time, space and frequency) in mathematics. Various physical parameters of medium are also complex functions of two variables (space and frequency). The relationship between reflection coefficient of medium and spectrum of reflected wave is given. Multi-reflection and filter of formations are considered in inversion formulas. Prob-lems in classical convolution model and wave equation are illustrated. All these inversion formulas can be used to image underground medium by wavelet transform and method of "3-basic colors". Different colors mean different media.

  20. Seismic imaging of shallow reflectors in the eastern Kapuskasing structural zone, with correction of crossdip attitudes

    Science.gov (United States)

    Kim, Jisoo; Moon, Wooil M.; Percival, John A.; West, F. G.

    1992-10-01

    Cascaded processes of crossdip correction and residual statics are tested and applied in the reprocessing of regional data from LITHOPROBE Kapuskasing Transect line 2. The objective was to improve seismic imaging of shallow, gently dipping reflectors in the eastern Kapuskasing structural zone, a thrusted slice of Archean middle to lower crust. This focusing strategy proved to be very effective in improving the image of the reflected energy and in identifying a set of conformally dipping reflectors whose true crossdip is estimated to be approximately 17 deg NW. The estimated crossdip for a reflective, compositionally layered zone and for the basal thrust, the Ivanhoe Lake Fault zone, support the previously estimated average dip of 15-20 deg.

  1. Imaging of demultipled data: a new approach based on seismic interferometry and Marchenko autofocusing

    Science.gov (United States)

    Meles, Giovanni Angelo; Löer, Katrin; Ravasi, Matteo; Curtis, Andrew; da Costa Filho, Carlos

    2015-04-01

    Standard seismic processing steps such as velocity analysis and reverse time migration are based on the single-scattering Born approximation, and assume that all reflections are primaries; multiples represent a source of coherent noise and must be suppressed to avoid artefacts. Surface related multiples particularly impact on seismic images resulting from marine data, and much effort has been devoted to their removal. Internal multiples strongly affect land data, and relatively fewer techniques exist to predict and remove them from reflection data. We present a novel internal-multiples prediction method based on the combined use of seismic interferometry and Marchenko autofocusing. Seismic interferometry techniques synthesise Green's functions between real source or receiver locations by integrating cross-correlations or convolutions of wavefields recorded by receivers or emanating from sources located elsewhere. Marchenko autofocusing estimates up- and down-going components of Green's functions between virtual source locations inside a medium and real receivers at the surface. In contrast to interferometry, autofocusing requires an estimate of the direct wave from the virtual source, illumination only from one side of the medium, and no physical receivers inside the medium. We first illustrate how primary and internal multiple reflections are reconstructed in convolutional interferometry by combining up- and down- going Green's functions from virtual sources in the subsurface. These Green's functions can usually be neither directly measured nor modelled accurately. However, autofocusing estimates all such Green's functions and their up- and down-going components. We then discuss how primaries and internal multiples intrinsically differ in terms of the constitutive components involved in the interferometric process. Specifically, we show that primary reflections reconstructed through convolutional interferometry necessarily involve direct and reflected Green

  2. Subduction Zone Science - Examples of Seismic Images of the Central Andes and Subducting Nazca Slab

    Science.gov (United States)

    Beck, S. L.; Zandt, G.; Scire, A. C.; Ward, K. M.; Portner, D. E.; Bishop, B.; Ryan, J. C.; Wagner, L. S.; Long, M. D.

    2015-12-01

    Subduction has shaped large regions of the Earth and constitute over 55,000 km of convergent plate margin today. The subducting slabs descend from the surface into the lower mantle and impacts earthquake occurrence, surface uplift, arc volcanism and mantle convection as well as many other processes. The subduction of the Nazca plate beneath the South America plate is one example and constitutes the largest present day ocean-continent convergent margin system and has built the Andes, one of the largest actively growing mountain ranges on Earth. This active margin is characterized by along-strike variations in arc magmatism, upper crustal shortening, crustal thickness, and slab geometry that make it an ideal region to study the relationship between the subducting slab, the mantle wedge, and the overriding plate. After 20 years of portable seismic deployments in the Central Andes seismologists have combined data sets and used multiple techniques to generate seismic images spanning ~3000 km of the South American subduction zone to ~800 km depth with unprecedented resolution. For example, using teleseismic P- waves we have imaged the Nazca slab penetrating through the mantle transition zone (MTZ) and into the uppermost lower mantle. Our tomographic images show that there is significant along-strike variation in the morphology of the Nazca slab in the upper mantle, MTZ, and the lower mantle, including possible tears, folding, and internal deformation. Receiver function studies and surface wave tomography have revealed major changes in lithospheric properties in the Andes. Improved seismic images allow us to more completely evaluate tectonic processes in the formation and uplift of the Andes including: (1) overthickened continental crust driven by crustal shortening, (2) changes in slab dip and coupling with the overlying plate (3) localized lithospheric foundering, and (4) large-scale mantle and crustal melting leading to magmatic addition and/or crustal flow. Although

  3. The Apollo passive seismic experiment

    Science.gov (United States)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1979-01-01

    The completed data set obtained from the 4-station Apollo seismic network includes signals from approximately 11,800 events of various types. Four data sets for use by other investigators, through the NSSDC, are in preparation. Some refinement of the lunar model based on seismic data can be expected, but its gross features remain as presented two years ago. The existence of a small, molten core remains dependent upon the analysis of signals from a single, far-side impact. Analysis of secondary arrivals from other sources may eventually resolve this issue, as well as continued refinement of the magnetic field measurements. Evidence of considerable lateral heterogeneity within the moon continues to build. The mystery of the much meteoroid flux estimate derived from lunar seismic measurements, as compared with earth-based estimates, remains; although, significant correlations between terrestrial and lunar observations are beginning to emerge.

  4. Seismic Images of Faulting and Fossil Subduction of the Southern Baja California Margins

    Science.gov (United States)

    Gonzalez, A.; Fletcher, J. M.; Lizarralde, D.; Kent, G. M.; Harding, A. J.; Holbrook, S.; Umhoefer, P. J.; Axen, G. J.; Gorman, A. R.

    2003-12-01

    From September to November 2002, a marine geophysics experiment was carried out, using 2 ships and onshore personell, recording deep MCS (Multichannel Seismics), wide angle, gravity, magnetic and bathymetric data. The main objective of this experiment is to better understand the continental breakup processes and the rifting of the Baja California Peninsula from Mexico mainland. An array of airguns with a total air volume of 8000 cu.in. was the seismic source and a 6000 km-long, 480-channel streamer was used to record the deep MCS data. This equipment was towed by the R/V Maurice Ewing. A series of stacked and migrated sections have been obtained, showing a number of noticeable structures. To the W of the line corresponding to the Pacific margin, the fossil trench is covered by recent sediments, that are part of the Magdalena Fan. Towards the E, near the slope break, the Tosco-Abreojos fault zone is clearly imaged, showing some extensional component. Further to the E, an old syncline is covered in erosive unconformity by recent sediments. In the eastern part of the section, a half-graben structure can be observed. Under this structure, a reflective zone can be interpreted as the mylonitic zone corresponding to a detachment. Some basement scarpments seem to be parallel faults to the semigraben master fault. Other normal faults in the sediments of the basin are synthetic and antithetic with it. The master fault probably is the continuation to the S of the Santa Margarita-San Lazaro fault, reported previously as a detachment in Santa Margarita and Magdalena islands. The seismic line in the Gulf of California margin begins at a conspicuous slope at the mouth of the La Paz Bay, and corresponds to the same strike-slip fault observed in Partida and Espiritu Santo islands. The rest of the line is characterized by numerous strike-slip and normal faults, producing strong bathymetric variations.

  5. Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data

    Science.gov (United States)

    Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.

    2009-12-01

    We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  6. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    Science.gov (United States)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon

    2016-04-01

    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  7. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  8. Drill bit seismic, vertical seismic profiling, and seismic depth imaging to aid drilling decisions in the Tho Tinh structure, Nam Con Son basin, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Borland, W.; Hayashida, N.; Kusaka, H.; Leaney, W.; Nakanishi, S.

    1996-10-01

    This paper reviews the problem of overpressure, a common reason for acquiring look-ahead VSPs, and the seismic trace inversion problem, a fundamental issue in look-ahead prediction. The essential components of intermediate VSPs were examined from acquisition through processing to inversion, and recently acquired real data were provided, which were indicative of the advances being made toward developing an exclusive high resolution VSP service. A simple interpretation method and an end product of predicted mud weight versus depth were also presented, which were obtained from the inverted acoustic impedance and empirical relations. Of paramount importance in predicting the depth to a target was the velocity function used below the intermediate TD. The use of empirical or assumed density functions was an obvious weak link in the procedure. The advent of real-time time-depth measurements from drill bit seismic allowed a continuously updated predicted target depth below the present bit depth. 8 refs., 7 figs.

  9. Advanced seismic imaging technology. Data acquisition (computer simulation of elastic wave propagation); Koseido imaging gijutsu. Data shutoku gijutsu (danseiha simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, T. [Tech. Research Center, Japan National Oil Corp., Tokyo (Japan)

    1995-11-10

    Development of software was examined for the purpose of making basic data for an advanced seismic imaging technology by obtaining a seismic exploration data from a complicated underground structural model through a numerical simulation. The result in fiscal 1994 was as follows. A dimensional division difference calculus is superior in the stability and accuracy of numerical calculation and capable of calculating by dividing into one dimensional differences. Attenuation items were added which were due to medium absorbing effect by Maxwell viscoelastic model, and simultaneously a function was added which was capable of dealing with the multi focuses and a group installation of geophones. A pseudospectral method is a kind of difference calculus for numerically solving a partial differential equation, and capable of dividing an underground structural model in lattice and calculating the field on the lattice point. The space direction is differentiated by calculating Fourier series without difference approximation; and, therefore, the number of lattice may be reduced to 2 for the maximum wave length; namely, a lattice interval may be coarsened to reduce calculation time. An improvement was made on the parallel calculation part of the program for two-dimensional analysis developed in the preceding fiscal year, enabling reduction in the calculation time. 4 figs.

  10. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  11. Shallow seismic imaging of flank collapse structures in oceanic island volcanoes: Application to the Western Canary Islands

    Science.gov (United States)

    Sanchez, L.; González, P.; Tiampo, K. F.

    2013-12-01

    Volcanic flank collapse counts among the many hazards associated with volcanic activity. This type of event involves the mobilization of large volumes, producing debris avalanches. It affects mostly oceanic island volcanoes, involving the potential for tsunami occurrence. Geophysical imaging can illuminate subvolcanic features such as volcano-tectonic structures, magmatic plumbing systems or differences in rock type. The most commonly used geophysical methods are gravity, electromagnetics and seismics. In particular, seismic measurements quantify anomalies in seismic waves propagation velocities and can be used to obtain information on the subsurface arrangement of different materials. In the Western Canary Islands, the Cumbre Vieja volcano in La Palma (Canary Islands) has been proposed to be near the collapse stage. Previous geophysical studies that have been carried out on the flank of the volcano comprise gravity and electromagnetic methods. These types of surveys gather information on the deep structures of the volcano (1-2 km). In this project, we complement previous studies by using seismic methods to investigate the near-surface seismic structure of the Cumbre Vieja fault system (La Palma Island) and the structure of the well-developed San Andres fault system (El Hierro Island). We aim to compare the Cumbre Vieja and San Andres fault systems to infer the degree of maturity of collapse structures. We carried out reflection and refraction seismic surveys in order to image approximately the first 10 meters of the subsurface. We used 24 low frequency (4,5 Hz) geophones as receivers and a sledge hammer as the seismic source. The survey lines were located across visible parts of the fault systems at the Cumbre Vieja volcano and the San Andres fault in El Hierro. Here, we present the survey setup and results from the preliminary analysis of the data.

  12. Imaging blended vertical seismic profiling data using full-wavefield migration in the common-receiver domain

    NARCIS (Netherlands)

    Soni, A.K.; Verschuur, D.J.

    2015-01-01

    For vertical-seismic-profiling (VSP) measurements, the use of blended acquisition, with time-overlapping shot records, can greatly reduce the downtime and, thereby, provide large cost savings. For directly imaging blended VSP measurements, we have used full-wavefield migration (FWM). FWM is an inver

  13. JPEG image of Seismic-Reflection Profiles Collected in the Pulley Ridge Study Area

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote...

  14. JPEG image of Seismic-Reflection Profiles Collected in the Pulley Ridge Study Area

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote...

  15. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    Science.gov (United States)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Exploring the potentials and limitations of the time-reversal imaging of finite seismic sources

    Directory of Open Access Journals (Sweden)

    S. Kremers

    2011-06-01

    Full Text Available The characterisation of seismic sources with time-reversed wave fields is developing into a standard technique that has already been successful in numerous applications. While the time-reversal imaging of effective point sources is now well-understood, little work has been done to extend this technique to the study of finite rupture processes. This is despite the pronounced non-uniqueness in classic finite source inversions.

    The need to better constrain the details of finite rupture processes motivates the series of synthetic and real-data time reversal experiments described in this paper. We address questions concerning the quality of focussing in the source area, the localisation of the fault plane, the estimation of the slip distribution and the source complexity up to which time-reversal imaging can be applied successfully. The frequency band for the synthetic experiments is chosen such that it is comparable to the band usually employed for finite source inversion.

    Contrary to our expectations, we find that time-reversal imaging is useful only for effective point sources, where it yields good estimates of both the source location and the origin time. In the case of finite sources, however, the time-reversed field does not provide meaningful characterisations of the fault location and the rupture process. This result cannot be improved sufficiently with the help of different imaging fields, realistic modifications of the receiver geometry or weights applied to the time-reversed sources.

    The reasons for this failure are manifold. They include the choice of the frequency band, the incomplete recording of wave field information at the surface, the excitation of large-amplitude surface waves that deteriorate the depth resolution, the absence of a sink that should absorb energy radiated during the later stages of the rupture process, the invisibility of small slip and the neglect of prior information concerning the fault

  17. Macroscopic Fault Structure of the 1911 Mw8.1 Chon Kemin Earthquake (Tien Shan, Kyrgyzstan) from Combined Seismic Imaging, Palaeo-Seismological Investigations and Historial Seismicity

    Science.gov (United States)

    Haberland, C. A.; Sonnemann, T.; Landgraf, A.; Ryberg, T.; Kulikova, G.; Krueger, F.; Dzhumabaeva, A.; Abdrakhmatov, K.; Abdybachaev, U.; Orunbaev, S.; Rosenwinkel, S.; Sharshebaev, A.

    2014-12-01

    Earthquakes in low-strain regions and their driving forces are still sparsely studied and understood, and constitute serious first-order research questions. Data acquisition concerning paleo-earthquakes, related hazards, and tectonic activity beyond historical records plays an important role. Such information can be obtained with tools from tectonic geomorphology, geophysics, historic seismicity, and paleo-seismology that should span a variety of time and length scales. The Chon-Kemin Valley in the northern Tien Shan (Kyrgyzstan) is a small, intermontane basin of unknown origin framed by a network of active faults. In the year 1911, the Chon-Kemin earthquake (Mw=8.1) activated fault structures of about 200 km length which also ruptured the surface along the Chon-Kemin Valley and caused numerous landslides and rock avalanches of up to several tens of millions of cubic meters in volume. The Chon-Kemin earthquake was one of a series of strong seismic events that affected the northern Tien Shan between 1885 and 1938. A seismic survey across the Chon-Kemin Valley was conducted to investigate the subsurface velocity structure of the valley and its surrounding faults. Tomographic inversion techniques were applied to first-arrival traveltimes of refracted P waves, and the seismic data were screened for reflection signatures. Additionally, the region was analyzed through paleo-seismological trenching. Tomographic and reflection images identified a shallow basin structure bounded by a set of thrust faults in the south only which - in part - correlate with the surface trace of the rupture. The deformation seems to be distributed in time and space across several sub-parallel fault strands. Synthesis of historical (analog) recordings of this earthquake provide new insights into the source mechanisms and processes.

  18. LAND STREAMER SEISMIC DATA FROM NORTHERN DELAWARE: A VIABLE ALTERNATIVE FOR IMAGING AQUIFERS IN SUBURBAN AREAS

    Science.gov (United States)

    Velez, C. C.; McLaughlin, P. P.; McGeary, S. E.; Sargent, S. L.

    2009-12-01

    The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Development and a growing suburban population are increasing demand for groundwater in the area, making accurate assessment of groundwater water supply increasingly important. Previous studies of subsurface geology indicate that the Potomac Formation is characterized by laterally discontinuous fluvial sand bodies, making it difficult to precisely delineate the distribution and geometry of the aquifer facies based on well correlations alone. A 20-km high-resolution seismic reflection dataset was collected using a land-streamer system in 2008 to constrain subsurface stratigraphy between disparate well locations. The data were collected along roadways in an area of mixed development that includes suburban housing tracts, farmlands, and large industry. A 152-m-deep continuous-cored test hole was drilled in the summer of 2009 adjacent to one of the lines and a full suite of borehole geophysical logs obtained. The land-streamer data are compared to a 3-km dataset collected also in 2008 using conventional methods on farmland in the northern part of the study area. The land streamer system proved to be more effective than conventional seismic reflection methods in this area. Several advantages are evident for the land streamer: 1) overall, the conventional dataset has a higher S/N, 2) on average, collecting data with the land streamer system is four times faster, and 3) the land streamer lines can be longer and therefore more continuous than the conventional lines in a developed area. The land-streamer system has minor disadvantages: traffic control, traffic noise, and in some cases a need for larger crews. Regardless, the land streamer dataset is easier to process, of higher quality, and more cost effective. The final depth images from the land streamer data indicate that the minimum and maximum depths imaged are ~18 m and ~ 268m, with a resolution of ~4 m. This

  19. Multichannel Seismic Images of Cascadia Forearc Structure at the Oregon Margin

    Science.gov (United States)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Canales, J.; Nedimovic, M. R.

    2013-12-01

    We present new Multichannel Seismic (MCS) images of the Cascadia forearc and downgoing Juan de Fuca plate offshore Oregon. The data were collected during the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 aboard the R/V Langseth. 2D processing including geometry definition, filtering and editing, deconvolution, amplitude correction, velocity analysis, CMP stacking, and post-stack time migration, has been conducted. The new images confirm some previous observations on the location of the plate boundary and structure of the forearc and also reveal new features of the Oregon margin. West of the deformation front, the Juan de Fuca Plate has a dip of ~1.5o and sediment thickness is > 3 km. A bright Moho reflection and reflections from faults cutting through the crust are imaged. The subducting oceanic crust can be traced continuously landward at least to 15 km from the deformation front. One major forearc basin and a smaller basin 10 km from its west end are imaged. Sediments in both basins are folded with wavelengths of 4-6 km and several faults are identified in the larger basin. Beneath the major basin, a low-frequency reflection is imaged at 3.7 s TWTT similar to that imaged by Trehu et al (1995) and interpreted as originating from the top of Siletz terrane. About 70-80 km from the deformation front, a shallowly dipping reflection is imaged at 7.3 s, which likely corresponds to the top of the downgoing plate. Based on existing velocity models for the margin, the location of this reflection is approximately coincident with the July 2004 earthquake cluster interpreted to have occurred at the plate boundary. This bright reflection is presumably similar in origin to the 'bright spot' imaged from two prior multichannel and wide-angle seismic reflection surveys lines located 40 km and 60 km north of our line. The brightness of the reflection may reflect high pore fluid pressure at the plate interface. Just 4 km west of this presumed top

  20. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    Science.gov (United States)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  1. Drill bit seismic, vertical seismic profiling, and seismic depth imaging to acid drilling decisions in the Tho Tinh structure Nam Con Son Basin-Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Borland, W.; Leaney, W.; Nakanishi, S.; Kusaka, H.

    1998-02-01

    Rapid deposition in the Nam Con Son Basin during the Miocene resulted in under-compacted shales. These under-compacted shales are often associated with over-pressured formations. As these shales have excess water and tend to be mechanically weak, the safe mud window for drilling the under-compacted interval can be quite narrow. Efficient and safe drilling operations require accurate depth predictions of these over-pressured formations as well a knowledge of the magnitude of the over-pressure. In this paper we describe a technique which combines the best aspects of conventional Vertical Seismic Profiles (VSP) and Reverse Vertical Seismic Profiles (RVSP) to detect under-compacted shales and predict formation pressures to locate drilling hazards below TD. Under-compacted shales with excess water will have a lower acoustic impedance than expected from the compaction trend. Shales that depart from the compaction trend may indicate potential drilling hazards below. Conventional VSPs provide high quality reflection data at discrete intervals in the well, and can be used to accurately predict acoustic impedance below the bit. This acoustic impedance is then interpreted to provide both the location (in time and depth) of the drilling hazard and the mud weight necessary to contain it. The two-way time estimate of the hazard location is usually quite accurate but the depth estimate is less certain due to the estimation error in formation velocities below TD. The RVSP using the drill bit as a source, provides a continuous time versus depth relationship while drilling. This time versus depth is used to continually update the conventional VSP depth prediction of the drilling hazard and thus provide the most accurate depth of the hazard prior to its penetration. It is also used to update a depth-indexed display of existing surface seismic at the wellsite. 10 refs., 22 figs.

  2. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  3. Imaging Geological Structures Up to the Acquisition Surface Using a Hybrid Refraction-Reflection Seismic Method

    Directory of Open Access Journals (Sweden)

    Mendes M.

    2013-08-01

    Full Text Available The aim of seismic imaging is to reconstruct the reflectivity associated with subsurface structures. In standard imaging techniques, the reflectivity model usually starts a few meters below the surface, the actual depth being dependent on data acquisition parameters and the mute used to remove stretching of first arrivals after normal moveout correction. In this paper, we describe a method to image the reflectivity of near-surface structures starting from the acquisition surface. This is achieved by processing both the first arrivals and the reflected phases present in data collected for refraction surveys. The proposed imaging procedure works in three steps. First, we obtain a velocity model for the shallow region by combining the Plus-Minus method of refraction interpretation with tomographic inversion of first arrival times. Second, by processing reflection events present in the refraction data, we obtain a standard reflectivity section for the deeper region. Finally, we compute reflectivity for the shallow region using the velocity model estimated from first arrival information in step 1. This velocity model is used both to compute reflectivity and to convert it in time. The reflectivity obtained for the shallow region is associated with velocity contrasts. In order to merge it with the reflectivity section for the deeper region a scaling factor between the two sets of reflectivity sections must be computed and applied. The novelty of this contribution is the use the tomographic velocity model in evaluating reflectivity for the upper part of the section. This improves the continuity of information about all near-surface structures in comparison with previous works that were limited to reflection data. Three field examples illustrate the proposed procedure showing continuous information about reflectivity of structures starting from the acquisition surface.

  4. New and Evolving Seismic Images of the Central Andes and Subducting Nazca Slab: 20 Years of Portable Seismology Results

    Science.gov (United States)

    Beck, S. L.

    2014-12-01

    Beno Gutenberg first identified a seismic low velocity zone in the upper mantle that we now refer to as the asthenosphere that is still the focus of many studies in active tectonic regions. The upper-most mantle is very heterogeneous and occupies the depth range where much of the tectonic action occurs especially in subduction zones and convergent margins. The central South American convergent margin is the result of the subduction of the Nazca Plate beneath the South American Plate and includes the Andes, one of the largest actively growing mountain ranges on Earth. The South American subduction zone has two regions of "flat" subduction in Peru and central Chile and Argentina separated by a segment of "normal" subduction and an active magmatic arc. The central Andean plateau has an average elevation of 3-4 km and some of the thickest crust on Earth with deformation reaching ~800 km inland. This active margin is characterized by along-strike variations in magmatism, upper crustal shortening, crustal thickness, and slab geometry that make it an ideal region to study the relationship between the subducting slab, the mantle wedge, and the overriding plate. After 20 years of portable seismic deployments in the Central Andes seismologists have generated unprecedented seismic images spanning ~3000 km of the Andean lithosphere, the subducting Nazca slab, and the surrounding mantle. Seismic travel-time, ambient noise and earthquake surface-wave tomography, receiver function imaging, and joint receiver function - surface wave dispersion inversions have produced along strike images of the Central Andes from the surface to a depth of ~700 km. These new images were made possible by PI-driven portable broadband seismic deployments and data sharing by many international groups. I will highlight images of along-strike variations in crustal properties and thickness, mantle lithospheric structure, and slab geometry. These seismic images allow us to more completely evaluate the role

  5. Application of advanced seismic reflection imaging techniques to mapping permeable zones at Dixie Valley, Nevada. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-18

    Multifold seismic reflection data from the Dixie Valley geothermal field in Nevada were reprocessed using a nonlinear optimization scheme called simulated annealing to model subsurface acoustic velocities, followed by a pre-stack Kirchhoff migration to produce accurate and detailed depth-migrated images of subsurface structure. In contrast to conventional processing techniques, these methods account for significant lateral variations in velocity and thus have the potential ability to image steeply-dipping faults and fractures that may affect permeability within geothermal fields. The optimization scheme develops two-dimensional velocity models to within 6% of velocities obtained from well and surface geologic data. Only the seismic data (i.e., first arrival times of P waves) are used to construct the velocity models and pre-stack migration images, and no other a priori assumptions are invoked. Velocities obtained by processing individual seismic tracks were integrated to develop a block diagram of velocities to 2.3 km depth within the Dixie Valley geothermal field. Details of the tectonic and stratigraphic structure allowed three dimensional extension of the interpretations of two dimensional data. Interpretations of the processed seismic data are compared with well data, surface mapping, and other geophysical data. The Dixie Valley fault along the southeastern Stillwater Range Piedmont is associated with a pronounced lateral velocity gradient that is interpreted to represent the juxtaposition of relatively low velocity basin-fill strata in the hanging wall against higher velocity crystalline rocks in the footwall. The down-dip geometry of the fault was evaluated by inverting arrival times from a negative move-out event, which we associate with the dipping fault plane, on individual shot gathers for seismic line SRC-3 for the location and depth of the associated reflection points on the fault.

  6. Deep 3-D seismic reflection imaging of Precambrian sills in the crystalline crust of Alberta, Canada

    Science.gov (United States)

    Welford, Joanna Kim

    2005-07-01

    Using deep 3-D seismic reflection datasets collected by the Canadian petroleum exploration industry in southwestern and northwestern Alberta, the Head-Smashed-In and Winagami Precambrian sill complexes within the crystalline upper crust, previously identified on Lithoprobe 2-D multichannel reflection lines, are investigated to determine their 3-D geometries and reflective characteristics. During seismic processing of the dataset in southwestern Alberta, a recently developed wavelet-based method, Physical Wavelet Frame Denoising, is applied and shown to successfully suppress ground roll contamination while preserving low frequency signals from deeper structures. A new 3-D empirical trace interpolation scheme, DSInt, is developed to address the problem of spatial aliasing associated with 3-D data acquisition. Results from applying the algorithm to both datasets are comparable to available interpolation codes while allowing for greater flexibility in the handling of irregular acquisition geometries and interpolated trace headers. Evidence of the Head-Smashed-In reflector in southwestern Alberta is obtained using a dataset acquired to 8 s TWTT (approx. 24 km depth). From locally coherent, discontinuous pockets of basement reflectivity, the dataset appears to image the tapering western edge of the deep reflections imaged by Lithoprobe. A statistical approach of tracking reflectivity is developed and applied to obtain the spatial and temporal distribution of reflections. Simple 1-D forward modelling results reveal that the brightest reflections likely arise from a 50 to 150 m thick body of high density/high velocity material although variations in the amplitudes and lateral distribution of the reflections indicate that the thickness of the sills is laterally variable. Thus, the results are consistent with imaging the tapering edge of the sill complex. Clear evidence of the Winagami reflection sequence in northwestern Alberta, emerges from the second dataset acquired to 5

  7. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  8. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Cur

  9. 基于点散射地震-地质模型的地震散射波成像%Seismic scattering wave imaging based on seismic-earth model of point scattering

    Institute of Scientific and Technical Information of China (English)

    沈鸿雁; 李庆春; 边建民

    2014-01-01

    Seismic reflection imaging result is not satisfactory when the underground geological conditions are much complex,and the conventional reflection seismic exploration would be ineffective.In the paper,one 2D seismic scattering wave imaging method is achieved from the time-distance curve equation of 2D scattering wave based on the seismic-earth model of point scattering,and the seismic scattering wave kinematics law is ana-lyzed.With the processing results of fault model and a set of real seismic data,the characteristics of the seismic scattering wave imaging technique is discussed,and the imaging results of traditional reflection imaging tech-nique are compared to prove the effectiveness of this method.%地下地质条件比较复杂时,地震反射波成像效果不理想,致使常规反射地震勘探难以奏效。本文基于点散射地震-地质模型,推导出2D散射波时距曲线方程,分析了地震散射波的运动学规律;在此基础上,提出了2D地震散射波成像的方法与技术;结合断层模型和一套实际地震资料处理,讨论了散射波地震成像的特点,并与传统反射波成像结果进行了比较,证明了该方法的有效性。

  10. Evidence for Along-Strike Variations in the Crustal Deformation beneath the Bhutan Himalaya from Receiver Function Imaging and Seismicity

    Science.gov (United States)

    Singer, J.; Kissling, E. H.; Diehl, T.; Hetényi, G.

    2015-12-01

    In the Bhutan Himalaya seismicity and geologic surface features like the Kuru Chu Spur (an embayment of the Main Central Thrust) or the Paro window indicate along-strike variations in the collisional structure. The deeper structure of the orogenic wedge and associated deformation processes, however, are poorly understood partly due to the lack of seismic images of the crust. To better understand these differences in structure and deformation, we use data of a temporary seismic broadband network in Bhutan to image the crustal structure with receiver functions (RF). We apply an iterative 3D wave-based migration scheme including a high-frequency ray approximation, which satisfies Snell's law for dipping interfaces. With this approach we image variably dipping intra-crustal interfaces and the Moho topography across the Bhutan Himalaya, and identify lateral variations in the orogenic structure, which we interpret jointly with a new local earthquake catalog. In West Bhutan, RF imaging depicts a northward dipping Moho at ~50 km depth. The low-angle dip steepens north of ~27.6°N which matches well observations by wide-angle seismics in South Tibet and the hypocenter of a deep crustal earthquake recorded by our network. We also identify the Main Himalayan Thrust (MHT) at ~14 km depth in West Bhutan with a ramp-like structure north of ~27.6°N. The ramp is characterized by a negative impedance contrast in the RF signals and coincides with a concentration of seismicity. In the East, the Moho appears to be almost flat at a depth of ~50 km without clear indications of steepening towards north. Beneath the Kuru Chu Spur in East Bhutan, we observe listric-shaped structures reaching from the upper crust beneath the Lesser Himalaya down to the Moho beneath the Greater Himalaya, which we interpret as a stack of crustal material typical for an accretionary wedge. While these structures appear aseismic, a horizontal alignment of seismicity at ~12 km depth suggests an active MHT in

  11. Coseismic deformation pattern of the Emilia 2012 seismic sequence imaged by Radarsat-1 interferometry

    Directory of Open Access Journals (Sweden)

    Christian Bignami

    2012-10-01

    Full Text Available On May 20 and 29, 2012, two earthquakes of magnitudes 5.9 and 5.8 (Mw, respectively, and their aftershock sequences hit the central Po Plain (Italy, about 40 km north of Bologna. More than 2,000 sizable aftershocks were recorded by the Isti-tuto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology National Seismic Network (http://iside.rm.ingv.it/. The sequence was generated by pure compressional faulting over blind thrusts of the western Ferrara Arc, and it involved a 50-km-long stretch of this buried outer front of the northern Apennines. The focal mechanisms of the larger shocks agree with available structural data and with present-day tectonic stress indicators, which show locally a maximum horizontal stress oriented ca. N-S; i.e. oriented perpendicular to the main structural trends. Most of the sequence occurred between 1 km and 12 km in depth, above the local basal detachment of the outer thrust fronts of the northern Apennines. We measured the surface displacement patterns associated with the mainshocks and some of the larger aftershocks (some of which had Mw >5.0 by applying the Interferometric Synthetic Aperture Radar (InSAR technique to a pair of C-Band Radarsat-1 images. We then used the coseismic motions detected over the epicentral region as input information, to obtain the best-fit model fault for the two largest shocks. […

  12. The magmatic plumbing system of the Askja central volcano, Iceland, as imaged by seismic tomography

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.; Roecker, Steven

    2016-10-01

    The magmatic plumbing system beneath Askja, a volcano in the central Icelandic highlands, is imaged using local earthquake tomography. We use a catalog of more than 1300 earthquakes widely distributed in location and depth to invert for the P wave velocity (Vp) and the Vp/Vs ratio. Extensive synthetic tests show that the minimum size of any velocity anomaly recovered by the model is 4 km in the upper crust (depth < 8 km below sea level (bsl)), increasing to 10 km in the lower crust at a depth of 20 km bsl. The plumbing system of Askja is revealed as a series of high-Vp/Vs ratio bodies situated at discrete depths throughout the crust to depths of over 20 km. We interpret these to be regions of the crust which currently store melt with melt fractions of 10%. The lower crustal bodies are all seismically active, suggesting that melt is being actively transported in these regions. The main melt storage regions lie beneath Askja volcano, concentrated at depths of 5 km bsl with a smaller region at 9 km bsl. Their total volume is 100 km3. Using the recorded waveforms, we show that there is also likely to be a small, highly attenuating magmatic body at a shallower depth of about 2 km bsl.

  13. Evaluation of the rockburst potential in longwall coal mining using passive seismic velocity tomography and image subtraction technique

    Science.gov (United States)

    Hosseini, Navid

    2017-09-01

    Rockburst is a typical dynamic disaster in underground coal mines which its occurrences relate to the mechanical quality of coal seam and surrounding rock mass and also the condition of stress distribution. The main aim of this paper is to study the potential of rockburst in a longwall coal mine by using of passive seismic velocity tomography and image subtraction technique. For this purpose, first by mounting an array of receivers on the surface above the active panel, the mining-induced seismic data as a passive source for several continuous days were recorded. Then, the three-dimensional tomograms using simultaneous iteration reconstruction technique (SIRT) for each day are created and by employing the velocity filtering, the overstressed zones are detected. In addition, the two-dimensional seismic velocity tomograms in coal seam level by slicing the three-dimensional tomograms are obtained. Then the state of stress changes in successive days by applying the image subtraction technique on these two-dimensional tomograms is considered. The results show that the compilation of filtered three-dimensional tomograms and subtracted images is an appropriate approach for detecting the overstressed zones around the panel and subsequent evaluation of rockburst potential. The research conclusion proves that the applied approach in this study in combination with field observations of rock mass status can effectively identify the rockburst-prone areas during the mining operation and help to improve the safety condition.

  14. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    Science.gov (United States)

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  15. Reflection seismic imaging of a hydraulically conductive fracture zone in a high noise area, Forsmark, Sweden

    Science.gov (United States)

    Juhlin, C.; Stephens, M. B.; Cosma, C.

    2007-05-01

    High resolution reflection seismic methods have proven to be useful tools for locating fracture zones in crystalline rock. Siting of potential high-level nuclear waste repositories is a particularly important application of these methods. By using small explosive sources (15-75 grams), high resolution images of the sub-surface have been obtained in the depth range 100 m to 2 km in Sweden, Canada and elsewhere. Although ambient noise conditions in areas such as the Fennoscandian and Canadian shields are generally low, industrial noise can be high in some areas, particularly at potential sites suitable for repositories, since these are often close to existing infrastructure. In addition, the presence of this infrastructure limits the choice of sources available to the geophysicist. Forsmark, located about 140 km north of Stockholm, is one such potential site where reflection seismics have been carried out. Existing infrastructure includes nuclear reactors for power generation and a low- level waste repository. In the vicinity of the reactors, it was not possible to use an explosive source due to permitting restrictions. Instead, a VIBSIST system consisting of a tractor mounted hydraulic hammer was used in the vicinity of the reactors. By repeatedly hitting the pavement, without breaking it, at predefined sweeps and then stacking the signals, shot records comparable to explosive data could be generated. These shot records were then processed using standard methods to produce stacked sections along 3 profiles within the reactor area. Clear reflections are seen in the uppermost 600 m along 3 of these profiles. Correlation of crossing profiles shows that the strongest reflection (B8) is generated by a gently east-southeast dipping interface. Prior to construction of the reactors, several boreholes were drilled to investigate the bedrock in the area. One of these boreholes was located close to where two of the profiles cross. Projection of the B8 reflection into the

  16. SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    John Beecherl; Bob A. Hardage

    2004-07-01

    The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than

  17. SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    John Beecherl; Bob A. Hardage

    2004-07-01

    The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than

  18. Near-Surface & High Resolution Seismic Imaging of the Bennett Thrust Fault in the Indio Mountains of West Texas

    Science.gov (United States)

    Vennemann, A.; Karplus, M. S.; Kaip, G.; Harder, S. H.

    2016-12-01

    We investigate the crustal structure of the Indio Mountains in southwest Texas, 34 km southwest of Van Horn at the University of Texas at El Paso (UTEP) field station using newly acquired active-source seismic data. These new data are the first active-source seismic data acquired at the UTEP field station. The dominant regional lithologies in this area comprise a transgressive sequence nearly 2 km in total stratigraphic thickness, formed by extensional processes. The area is highly faulted with multiple fault generations. I will show images of the Bennett Thrust Fault, a northwest-striking, northeast-dipping fault associated with the Laramide Orogeny and discuss the near-surface geometries of this fault and adjacent rock units. This region is a pre-salt analog for similar areas that are ideal for petroleum reservoirs, such are reservoirs off the coasts of Brazil and Angola. While there are no petroleum plays in the Indio Mountains region, imaging and understanding subsurface structural and lithological geometries and how that geometry directs potential fluid flow has implications for other regions with petroleum plays. I will present processed data and interpretation of a 1 km 2-D near-surface, high-resolution seismic reflection line. Along the 1 km line, we collected a lower frequency dataset using 100 third-pound explosions and a higher frequency dataset produced from 500 sledge-hammer blows at the same 100 source points (5 blows will be stacked at each source point). The lower frequency data set will be the focus of this presentation. The data will be processed using standard seismic reflection practices using ProMAX. This image will be imported into Petrel to create a model of the faults' geometries and the sedimentary layers. My research will identify near-surface structures, fault geometries and lithologies.

  19. 3D seismic imaging of voluminous earliest Eocene buried lava fields and coastal escarpments off mid-Norway

    Science.gov (United States)

    Planke, Sverre; Millett, John M.; Maharjan, Dwarika; Jerram, Dougal A.; Mansour Abdelmalak, Mohamed

    2017-04-01

    Continental breakup between Greenland and NW Europe in the Paleogene was associated with massive basaltic volcanism, forming kilometer-thick sequences of flood basalts along the conjugate rifted margins. This event was temporarily associated with a warm world, the early Eocene greenhouse, and the short-lived Paleocene-Eocene Thermal Maximum (PETM). A 2500 km2 large industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image sub-basalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intra-basalt structures. Detailed seismic geomorphological interpretation of the Top basalt horizon reveal new insight into the late-stage development of the lava flow fields and the kilometer high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by pre-existing structural highs, and locally these highs are by-passed by the lava flows which are clearly deflected around them. Volcanogenic debris flows are well-imaged on the escarpment horizon along with large-scale slump blocks. Similar features exist in active volcanic environments, e.g. on the south coast of Hawaii. Numerous post-volcanic extensional faults and incised channels cut both into the marginal high and the escarpment, and show that the area was geologically active after the volcanism ceased. In conclusion, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins, and the association of major volcanic events

  20. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Energy Technology Data Exchange (ETDEWEB)

    Lestari, Titik, E-mail: t2klestari@gmail.com [Meteorological Climatological and Geophysical Agency (MCGA), Jalan Angkasa I No.2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Jalan Ganesa 10 Bandung 40132 (Indonesia)

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  1. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Science.gov (United States)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  2. Imaging lithosphere structure and dynamic processes of a world-class metallogenic belt with passive and active seismic methods

    Science.gov (United States)

    Lu, Q.; Gu, Y.; Shi, D.; Yan, J.

    2012-12-01

    The lithosphere structure and deep processes are keys to understanding mineral system and ore-forming processes. Lithosphere-scale process could create big footprints or signatures which can be observed by geophysics methods. SinoProbe-03 has conducted a Transect exploration across middle and lower Yangtze Metallogenic Belt (YMT) in Eastern China. Broadband seismic, reflection seismic, wide-angle reflection and magnetotellurics survey were carried out along the Transect. Seismic reflection profiles and MT survey were also performed in Luzong, Tongling and Ningwu ore districts to construct 3D geological model. The resulting geophysical data provides new information which help to better understanding the lithosphere structure, deep processes and deformation history of the Metallogenic Belt. The major results are: (1) Lower velocity body at the top of upper mantle and a SE dipping high velocity body were imaged by teleseismic tomography beneath YMB; (2) Shear wave splitting results show NE parallel fast-wave polarization direction which parallel with tectonic lineament; (3) The reflection seismic data support the crustal-detachment model, the lower and upper crust was detached during contraction deformation near Tanlu fault and Ningwu volcanic basin; (4) Broadband and reflection seismic confirm the shallow Moho beneath YMB; (5) Strong correlation of lower crust reflectivity with magmatism. All these features suggest that introcontinental subduction, lithosphere delamination, mantle sources magmatic underplating, and MASH process are responsible for the formation of wild-class metallogenic belt. Acknowledgment: We acknowledge the financial support of SinoProbe by the Ministry of Finance and Ministry of Land and Resources, P. R. China, under Grant sinoprobe-03, and financial support by National Natural Science Foundation of China under Grant 40930418

  3. The Precambrian Structure of the Estancia Basin, Central New Mexico: New Seismic Images of the Mazatzal Province

    Science.gov (United States)

    Elebiju, O. O.; Miller, K. C.; Andronicos, C. L.

    2004-12-01

    The Estancia Basin, located between the Manzano Mountains and Pedernal Hills, in central New Mexico, provides an excellent location for studying the effects of Proterozoic structural grain on subsequent Phanerozoic tectonic events. The Estancia Basin lies within the Proterozoic Mazatzal province. In recent years, the National Science Foundation Continental Dynamics Program within the Rocky Mountains Project, (CD-ROM) group has been examining the boundary between the two broad northeast-trending tectonically-mixed Paleoproterozoic terranes in New Mexico: the Yavapai province to the north and the Mazatzal province to the south. Reflection data collected as part of the CD-ROM effort image a portion of the Mazatzal province at a location 100 km east of the Estancia Basin. In an effort to contribute to a deeper understanding of the CD-ROM seismic image and regional Precambrian geology, we are analyzing ten seismic reflection profiles, well-logs, magnetic and gravity data from the Estancia basin area. The seismic data show numerous dipping reflections within the Precambrian basement that may represent prominent Precambrian ductile shear zones similar to those exposed in the adjacent Manzano Mountains and Pedernal Hills. An earlier study that focused on the Paleozoic evolution of the Estancia Basin, by Barrow and Keller (1994) also noted these same reflectors and that a prominent gravity low observed in the vicinity of the basin could not be fully explained by the Paleozoic geology. We present a new interpretation of these data.

  4. Imaging and Analyzing the Upper Lithosphere Beneath the Southern Appalachians using Global Seismic Phases Recorded by the SESAME Broadband Array

    Science.gov (United States)

    Alberts, E.; Verellen, D.; Parker, H., Jr.; Hawman, R. B.; Fischer, K. M.; Wagner, L. S.

    2016-12-01

    Global-phase seismic interferometry (GloPSI) is a seismic method that allows for the extraction of zero-offset reflections. We use the global seismic phase PKIKP as a virtual source to generate reflection profiles along three survey lines of the Southeastern Suture of the Appalachian Margin Experiment (SESAME). The broadband recordings provide constraints on long-wavelength structure that complement the higher-frequency images obtained along Consortium for Continental Reflection Profiling (COCORP) lines. Targets include structures associated with Paleozoic collision and Mesozoic extension. We focus in particular on the nature of the Southern Appalachian detachment, the Alleghanian suture and its possible relation to a zone of prominent south-dipping reflections observed on COCORP profiles, and estimating the volume of mafic intrusions added to the basement beneath the Coastal Plain. The broadband profiles also provide additional constraints on the thickness and lateral extent of Triassic sediments. Relative reflection amplitudes are used to estimate impedance contrasts to constrain the nature of major discontinuities. Over the Coastal Plain, we experiment with a number of approaches for suppressing multiple reflections generated by very low-velocity, unconsolidated sediments and poorly consolidated sedimentary rocks. The resulting improvement in image quality should allow us to better evaluate the continuity of the detachment and other orogen-wide structures.

  5. Developments of Finite-Frequency Seismic Theory and Applications to Regional Tomographic Imaging

    Science.gov (United States)

    2009-01-31

    Seism . Soc. Am. 94, 1690–1705, doi 10.1785/012004016. Kennett, B. L. N. (1983). Seismic Wave Propagation in Stratified Media, Cambridge University...Vilotte (1998). The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D, geolog- ical structures, Bull. Seism ...Crosson (1990). Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares, Bull. Seism . Soc

  6. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  7. Comparing seismic tomographic images from automatically- and manually-detected arrival times

    Science.gov (United States)

    Spallarossa, Daniele; Scafidi, Davide; Turino, Chiara; Ferretti, Gabriele; Viganò, Alfio

    2013-04-01

    In this work we compare local earthquake tomographic images obtained using arrival times detected by an automatic picking procedure and by an expert seismologist. For this purpose we select a reference dataset composed of 476 earthquakes occurred in the Trentino region (north-eastern Italy) in the period 1994-2007. Local magnitudes are comprised between 0.8 and 5.3. Original recordings are mainly from the Provincia Autonoma di Trento (PAT), and from other networks operating in the surrounding areas (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - INOGS; Istituto Nazionale di Geofisica e Vulcanologia - INGV; others available via the European Integrated Data Archive). The automatic picking of P and S phases is performed through a picker engine based on the Akaike information criterion (AIC). In particular, the proposed automatic phase picker includes: (i) envelope calculation, (ii) band-pass filtering, (iii) Akaike information criterion (AIC) detector for both P- and S-arrivals, (iv) checking for impulsive arrivals, (v) evaluation of expected S onset on the basis of a preliminary location derived from the P-arrival times, and (vi) quality assessment. Simultaneously, careful manual inspection by expert seismologists is applied to the same waveform dataset, to obtain manually-repicked phase readings. Both automatic and manual procedures generate a comparable amount of readings (about 6000 P- and 5000 S-phases). These data are used for the determination of two similar 3-D propagation models for the Trentino region, applying the SIMULPS code. In order to quantitatively estimate the difference of these two models we measure their discrepancies in terms of velocity at all grid points. The small differences observed among tomographic results allow us to demonstrate that the automatic picking engine adopted in this test can be used for reprocessing large amount of seismic recordings with the aim of perform a local tomographic study with an accuracy

  8. Seismic reflection imaging of underground cavities using open-source software

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J

    2011-12-20

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impact active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.

  9. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    Science.gov (United States)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions

  10. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    Science.gov (United States)

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  11. Shear Wave Reflection Seismics Image Internal Structure of Quick-Clay Landslides in Sweden

    Science.gov (United States)

    Polom, U.; Krawczyk, C. M.; Malehmir, A.

    2014-12-01

    Covering many different sizes of scale, landslides are widespread and pose a severe hazard in many areas as soon as humans or infrastructure are affected. In order to provide geophysical tools and techniques to better characterize sites prone to sliding, a geophysical assessment working towards a geotechnical understanding of landslides is necessary. As part of a joint project studying clay-related landslides in Nordic countries by a suite of geophysical methods, we therefore tested the use of shear wave reflection seismics to survey shallow structures that are known to be related to quick-clay landslide processes in southern Sweden. On two crossing profiles, a land streamer consisting of 120 SH-geophones with 1 m spacing was deployed, and an ELVIS micro-vibrator was shaking every 4 m to generate the shear wave signal. SH-wave data of high quality were thereby acquired to resolve the gaps between P-wave data and electrical and surface wave based methods of lower resolution. After quality control, correlation, subtractive stack, and geometry setup, single shot gathers already demonstrate the high data quality gained in the region, especially on a gravel road. The migrated depth sections image the structural inventory down to ca. 50 m depth with vertical resolution of less than 1 m. Horizontally layered sediments are visible in the upper 40 m of soft (marine) sediments, followed by top basement with a rough topography varying between ca. 20-40 m depth. The imaged, bowl-shaped basement morphology centres near the profile crossing, and basement is exposed at three sides of the profiles. Three distinct sediment sequences are separated by high-amplitude unconformities. The quick-clay layer may be located above the marked reflection set that lies on top of the more transparent sequence that levels out the basement. Located between 15-20 m depth, this correlates with the height of the last scarp that occurred in the area. In addition, shear wave velocities are determined

  12. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  13. New seismic images of the crust across the Rivera Plate and Jalisco Block (Mexico)

    Science.gov (United States)

    Cordoba, Diego; Núñez-Cornú, Francisco Javier; Bartolomé, Rafael; José Dañobeitia, Juan; Bandy, William Lee; Núñez, Diana; Prada, Manel; Escudero-Ayala, Christian; Espíndola, Juan Manuel; Zamora, Araceli; Gómez, Adán; Ortiz, Modesto; Tsujal Working Group

    2015-04-01

    During the spring and summer of 2014, we achieved an extensive offshore geophysical experiment at West Coast of México entitled "Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment (TSUJAL)". The project is the result of continuous scientific collaboration between institutions in Mexico and Spain, whose main objective is to study the lithospheric structure at the collision zone between Rivera, North America Plates and the Jalisco Block, and identifying submarine structures which can potentially be tsunamigenic sources The active phase of this project carried out in February and March of 2014, we acquired around 5200 km of Multichannel Seismic Reflection (MCS) together with multibeam bathymetry and potential fields (gravity and magnetism) data. Moreover, a wide angle experiment was performed, deploying 16 OBS in 32 locations in Jalisco and Nayarit offshore regions, also recorded on a terrestrial network of 100 portable seismic stations in 240 locations across 5 seismic profiles of 200-300 km in length combined with the Seismological Network of the State of Jalisco (SisVOc). In addition, 8 land seismic stations were installed in Marías Islands and Isabel Island. These instruments registered, in continuous mode, the airgun shots generated by airgun array of 5800 ci, shooting every 120 s. The UK vessel RRS James Cook participated in this project as a part of the exchange program between Spanish and English scientific vessels, she was responsible of marine seismic experiment (MCS & WA) using a 6 km length streamer and a high capacity airgun array. Furthermore, the ARM Holzinger and RV El Puma participated in this project and were provided by the Mexican Navy and UNAM, respectively. The second phase of this project was achieved in June 2014, where 100 short period seismic stations were installed along a 200 km seismic profile from La Caldera de la Primavera (Guadalajara) to Barra de Navidad

  14. Real time magma transport imaging and earthquake localization using seismic amplitude ratio analysis

    Science.gov (United States)

    Taisne, B.; Brenguier, F.; Nercessian, A.; Beauducel, F.; Smith, P. J.

    2011-12-01

    Seismic amplitude ratio analysis (SARA) has been used successfully to track the sub-surface migration of magma prior to an eruption at Piton de la Fournaise volcano, La Réunion. The methodology is based on the temporal analysis of the seismic amplitude ratio between different pairs of stations, along with a model of seismic wave attenuation. This method has already highlighted the complexity of magma migration in the shallower part of the volcanic edifice during a seismic crisis using continuous records. We will see that this method can also be applied to the localization of individual earthquakes triggered by monitoring systems, prior to human intervention such as phase picking. As examples, the analysis is performed on two kinds of seismic events observed at Soufrière Hills Volcano, Montserrat during the last 15 years, namely: Hybrids events and Volcano-Tectonic earthquakes. Finally, we present the implementation of a fully automatic SARA method for monitoring of Piton de la Fournaise volcano using continuous data in real-time.

  15. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Science.gov (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  16. Imaging Near-Surface Controls on Hot Spring Expression Using Shallow Seismic Refraction in Yellowstone National Park

    Science.gov (United States)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We used shallow seismic refraction to image near-surface materials in the vicinity of a small group of hot springs, located in the Morning Mist Springs area of Lower Geyser Basin, Yellowstone National Park, Wyoming. Seismic velocities in the area surveyed range from a low of 0.3 km/s to a high of approximately 2.5 km/s. The survey results indicate an irregular surface topography overlain by silty sediments. The observed seismic velocities are consistent with a subsurface model in which sorted sands and gravels, probably outwash materials from the Pinedale glaciation, are overlain by silts and fine sands deposited in the flat-lying areas of the Morning Springs area. These findings are supported by published geologic maps of the area and well logs from a nearby borehole. The near-surface materials appear to be saturated with discharging hydrothermal fluids of varying temperature, and interbedded with semi-lithified geothermal deposits (sinter). We hypothesize that the relatively low-conductivity deposits of fines at the surface may serve to confine a shallow, relatively low-temperature (sub-boiling) hydrothermal aquifer, and that the distribution of sinter in the shallow subsurface plays an important role in determining the geometry of hydrothermal discharge (hot springs) at the land surface. Few studies of the shallow controls on hot spring expression exist for the Yellowstone caldera, and the present study therefore offers a unique glimpse into near-subsurface fluid flow controls.

  17. 3D Seismic Imaging of a Geological Storage of CO2 Site: Hontomín (Spain)

    Science.gov (United States)

    Alcalde, Juan; Martí, David; Juhlin, Christopher; Malehmir, Alireza; Sopher, Daniel; Marzán, Ignacio; Calahorrano, Alcinoe; Ayarza, Puy; Pérez-Estaún, Andrés; Carbonell, Ramon

    2013-04-01

    A 3D seismic reflection survey was acquired in the summer of 2010 over the Hontomín CO2 storage site (Spain), with the aim of imaging its internal structure and to provide a 3D seismic baseline model prior to CO2 injection. The 36 km2 survey utilised 25 m source and receiver point spacing and 5000 shotpoints recorded with mixed source (Vibroseis and explosives). The target reservoir is a saline aquifer located at approximately 1450 m, within Lower Jurassic carbonates (Lias). The main seal is formed by inter-layered marls and marly limestones of Early to Middle Jurassic age (Dogger and Lias). The relatively complex geology and the rough topography strongly influenced the selection of parameters for the data processing. Static corrections and post stack migration were shown to be the most important processes affecting the quality of the final image. The match between the differing source wavelets is also studied here. The resulting 3D image provides information of all the relevant geological features of the storage site, including position and shape of the main underground formations. The target structure is an asymmetric dome. The steepest flank of the structure was selected as the optimum location for CO2 injection, where the updip migration of the plume is anticipated. A major strike slip fault (the South fault), crossing the study area W-E, has been mapped through the whole seismic volume. The injection position and the expected migration plume are located to the north of this main fault and away from its influence.

  18. Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    Science.gov (United States)

    Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.

  19. Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    Science.gov (United States)

    Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.

  20. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  1. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    Science.gov (United States)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  2. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching

    Science.gov (United States)

    Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun

    2008-01-01

    The Mw=7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DIn

  3. Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia

    Science.gov (United States)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.

    2009-12-01

    In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit

  4. A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region -

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Nakagawa, S.; Ishikawa, M.; Sato, H.; Kasahara, K.; Kimura, H.; Honda, R.

    2012-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo metropolitan region. Devastating M8-class earthquakes occurred on the upper surface of the Philippine Sea plate (SPS), examples of which are the Genroku earthquake of 1703 (magnitude M=8.0) and the Kanto earthquake of 1923 (M=7.9), which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions although it is smaller than the megathrust type M8-class earthquakes. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. The M7+ earthquakes may occur either on the upper surface or intra slab of PSP. The Central Disaster Management Council of Japan estimates the next great M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss at worst case if it occur beneath northern Tokyo bay with M7.3. However, the estimate is based on a source fault model by conventional studies about the PSP geometry. To evaluate seismic hazard due to the great quake we need to clarify the geometry of PSP and also the Pacific palate (PAP) that subducs beneath PSP. We identify those plates with use of seismic tomography and available deep seismic reflection profiling and borehole data in southern Kanto area. We deployed about 300 seismic stations in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area. We obtain clear P- and S- wave velocity (Vp and Vs) tomograms which show a clear image of PSP and PAP. A depth to the top of PSP, 20 to 30 kilometer beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo

  5. Improved images of crustal structures in the Bergslagen, central Sweden, through seismic reprocessing of BABEL lines 1, 6 and 7

    Science.gov (United States)

    Buntin, Sebastian; Malehmir, Alireza; Malinowski, Michał; Högdahl, Karin; Juhlin, Christopher; Buske, Stefan

    2017-04-01

    In a joint effort through the BABEL project, geoscientists from five countries acquired marine seismic data in the Baltic Sea with a total length of 2268 km in the year 1989. These consisted of near-vertical reflection and wide-angle refraction seismic data, providing insights into the subsurface down to the Moho and suggesting the existence of plate tectonics already during the Paleoproterozoic. The seismic data were acquired using a receiver group interval of 50 m and a total cable length of 3 km. In total, 60 groups of 64 hydrophones at 15 m depth were used. An airgun array consisting of six equal subarrays towed at 7.5 m depth was used to generate the seismic signal. The shot interval and the corresponding record lengths were different among the lines. A record length of 25 s and 75 m shot spacing for lines 1 and 7, respectively and 23 s and 62.5 m for line 6, respectively was used. The sampling rate was 4 ms for all three profiles. Lines 1, 6 and 7 are located at the boundary to the world-class and historical Bergslagen mineral district, and are being revisited in this study. Improved images can be used to refine previous interpretations, particularly at shallower depths (< 5 km). About 27 years after the acquisition, these data have been processed again in our study. Aside from the original processing steps, like spherical divergence correction, deconvolution and NMO corrections, additional processing steps such as DMO corrections or pre- and post-stack deconvolutions and coherency enhancements were applied. The reprocessing revealed reflections in the shallow part of the profiles, likely from major deformation (multi-phase) zones extending down to the lower crust, which were not present in the previous images. Also the images of the reflections in the deeper parts are remarkably improved. This also includes a few sub-Moho reflections. The three reprocessed profiles help constrain the nature of the northern boundary of Bergslagen and associated crustal

  6. The Use of Ultrasonic Seismic Wave Attenuation (Q) for Better Subsurface Imaging, Energy Exploration, and Tracking of Sequestrated Carbon Dioxide

    Science.gov (United States)

    Delaney, D.; Purcell, C. C.; Mur, A. J.; Haljasmaa, I.; Soong, Y.; Harbert, W.

    2012-12-01

    allowed us to more accurately represent subsurface conditions. Pore filling fluids consisted of deionized water, oil, gas, and supercritical CO2. We have found that Q for the P, S1, and S2 seismic waves is strongly dependent on and proportional to the effective pressure of the rock. Also our experiments indicate that the presence of different pore filling fluids such as water, oil, and CO2 alter the value of Q. Carbonate samples were tested dry (atmospheric gas as pore fluid) and with deionized water, oil, and CO2. With the substitution of each of these fluids into the dry rock core sample, we see the value of Q shift as much as 20% lower for the P, S1, and S2 seismic waves. Our experiments indicate that the presence of oil, water, or CO2 lowers the value of Q of a rock. For all effective pressures we see this shift in the value of Q, it would seem that with the introduction of these pore-filling fluids the quality factor value is typically lowered, however at higher effective pressures (about 40 MPa) the shift in Q is less. By understanding how seismic waves attenuate we can better understand what collected seismic signals traveled through. This knowledge and understanding of seismic wave attenuation could prove to be a powerful tool for better subsurface imaging, tracking of sequestrated CO2, and energy exploration.

  7. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    Science.gov (United States)

    Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  8. The 1946 Unimak Tsunami Earthquake Area: revised tectonic structure in reprocessed seismic images and a suspect near field tsunami source

    Science.gov (United States)

    Miller, John J.; von Huene, Roland; Ryan, Holly F.

    2014-01-01

    In 1946 at Unimak Pass, Alaska, a tsunami destroyed the lighthouse at Scotch Cap, Unimak Island, took 159 lives on the Hawaiian Islands, damaged island coastal facilities across the south Pacific, and destroyed a hut in Antarctica. The tsunami magnitude of 9.3 is comparable to the magnitude 9.1 tsunami that devastated the Tohoku coast of Japan in 2011. Both causative earthquake epicenters occurred in shallow reaches of the subduction zone. Contractile tectonism along the Alaska margin presumably generated the far-field tsunami by producing a seafloor elevation change. However, the Scotch Cap lighthouse was destroyed by a near-field tsunami that was probably generated by a coeval large undersea landslide, yet bathymetric surveys showed no fresh large landslide scar. We investigated this problem by reprocessing five seismic lines, presented here as high-resolution graphic images, both uninterpreted and interpreted, and available for the reader to download. In addition, the processed seismic data for each line are available for download as seismic industry-standard SEG-Y files. One line, processed through prestack depth migration, crosses a 10 × 15 kilometer and 800-meter-high hill presumed previously to be basement, but that instead is composed of stratified rock superimposed on the slope sediment. This image and multibeam bathymetry illustrate a slide block that could have sourced the 1946 near-field tsunami because it is positioned within a distance determined by the time between earthquake shaking and the tsunami arrival at Scotch Cap and is consistent with the local extent of high runup of 42 meters along the adjacent Alaskan coast. The Unimak/Scotch Cap margin is structurally similar to the 2011 Tohoku tsunamigenic margin where a large landslide at the trench, coeval with the Tohoku earthquake, has been documented. Further study can improve our understanding of tsunami sources along Alaska’s erosional margins.

  9. High-resolution seismic imaging of the Kevitsa mafic-ultramafic Cu-Ni-PGE hosted intrusion, northern Finland

    Science.gov (United States)

    Malehmir, Alireza; Koivisto, Emilia; Wjins, Chris; Tryggvason, Ari; Juhlin, Christopher

    2014-05-01

    Kevitsa, in northern Finland, is a large nickel/copper ore body hosted by a massive mafic-ultramafic intrusion with measured and indicated resources of 240 million tons (cutoff 0.1%) grading 0.30% Ni and 0.41% Cu. Mining started in 2012 with an open pit that will extend down to about 550-600 m depth. The expected mine life is more than 20 years. Numerous boreholes are available in the area, but the majority of them are shallow and do not provide a comprehensive understanding of the dimensions of the intrusion. However, a number of boreholes do penetrate the basal contact of the intrusion. Most of these are also shallow and concentrated at the edge of the intrusion. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area, but also a better understanding of the geology. Exact mapping of the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu than the disseminated mineralization away from the contact. With the objective of better characterizing the intrusion, a series of 2D profiles were acquired followed by a 3D reflection survey that covered an area of about 3 km by 3 km. Even though the geology is complex and the seismic P-wave velocity ranges between 5 to 8 km/s, conventional processing results show gently- to steeply-dipping reflections from depths of approximately 2 km to as shallow as 100 m. Many of these reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Correlations between the 3D surface seismic data and VSP data, based upon time shifts or phase changes along the reflections, support the interpretation that numerous faults are imaged in the volume. Some of these faults cross the planned open-pit mine at depths of about 300-500 m, and it is, therefore, critical to map them for mine planning. The seismic 3D

  10. 3D Seismic Imaging through Reverse-Time Migration on Homogeneous and Heterogeneous Multi-Core Processors

    Directory of Open Access Journals (Sweden)

    Mauricio Araya-Polo

    2009-01-01

    Full Text Available Reverse-Time Migration (RTM is a state-of-the-art technique in seismic acoustic imaging, because of the quality and integrity of the images it provides. Oil and gas companies trust RTM with crucial decisions on multi-million-dollar drilling investments. But RTM requires vastly more computational power than its predecessor techniques, and this has somewhat hindered its practical success. On the other hand, despite multi-core architectures promise to deliver unprecedented computational power, little attention has been devoted to mapping efficiently RTM to multi-cores. In this paper, we present a mapping of the RTM computational kernel to the IBM Cell/B.E. processor that reaches close-to-optimal performance. The kernel proves to be memory-bound and it achieves a 98% utilization of the peak memory bandwidth. Our Cell/B.E. implementation outperforms a traditional processor (PowerPC 970MP in terms of performance (with an 15.0× speedup and energy-efficiency (with a 10.0× increase in the GFlops/W delivered. Also, it is the fastest RTM implementation available to the best of our knowledge. These results increase the practical usability of RTM. Also, the RTM-Cell/B.E. combination proves to be a strong competitor in the seismic arena.

  11. Seismic imaging in the eastern Scandinavian Caledonides: siting the 2.5 km deep COSC-2 borehole, central Sweden

    Science.gov (United States)

    Juhlin, Christopher; Hedin, Peter; Gee, David G.; Lorenz, Henning; Kalscheuer, Thomas; Yan, Ping

    2016-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project, a contribution to the International Continental Scientific Drilling Program (ICDP), aims to provide a deeper understanding of mountain belt dynamics. Scientific investigations include a range of topics, from subduction-related tectonics to the present-day hydrological cycle. COSC investigations and drilling activities are focused in central Scandinavia, where rocks from the middle to lower crust of the orogen are exposed near the Swedish-Norwegian border. Here, rock units of particular interest occur in the Seve Nappe Complex (SNC) of the so-called Middle Allochthon and include granulite facies migmatites (locally with evidence of ultra-high pressures) and amphibolite facies gneisses and mafic rocks. This complex overlies greenschist facies metasedimentary rocks of the dolerite-intruded Sarv Nappes and underlying, lower grade Jamtlandian Nappes (Lower Allochthon). Reflection seismic profiles have been an important component in the activities to image the subsurface structure in the area. Subhorizontal reflections in the upper 1-2 km are underlain and interlayered with strong west- to northwest-dipping reflections, suggesting significant east-vergent thrusting. Two 2.5 km deep fully cored boreholes are a major component of the project, which will improve our understanding of the subsurface structure and tectonic history of the area. Borehole COSC-1 (IGSN: http://hdl.handle.net/10273/ICDP5054EEW1001), drilled in the summer of 2014, targeted the subduction-related Seve Nappe Complex and the contact with the underlying allochthon. The COSC-2 borehole will be located further east and will investigate the lower grade, mainly Cambro-Silurian rocks of the Lower Allochthon, the Jamtlandian decollement, and penetrate into the crystalline basement rocks to identify the source of some of the northwest-dipping reflections. A series of high-resolution seismic profiles have been acquired along a composite ca

  12. Depth imaging system for seismic reflection data. Part 1. Outline of system; Hanshaho jishin tansa data no tame no shindo imaging system. 1. System no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, N. [Japex Jeoscience Institute, Tokyo (Japan); Matsuoka, T. [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsuru, T. [Japan National Oil Corp., Tokyo (Japan)

    1996-10-01

    Structures of oil and gas fields to be recently explored have changed from simple structures represented by anticline into more complicated and more delicate structures in the deeper underground. In order to discover and develop prospective oil and gas fields among such geological structures, it is indispensable to construct a system which can treat seismic exploration date collectively before stacking and can easily perform imaging of underground structures accurately. Based on the advancement of hardware, Japan National Oil Corporation and Japan Petroleum Exploration Co., Ltd. have developed a depth imaging system as an interactive tool for constructing underground structures accurately through a cooperation of highly accurate imaging technology. Using this system, two-dimensional underground structure models can be easily given and modified by interactively referring to results of depth migration velocity analysis and stacking velocity analysis, well data, cross sections after depth transform, etc. 1 fig.

  13. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    Directory of Open Access Journals (Sweden)

    Tingting Gang

    2016-12-01

    Full Text Available A micro-fiber-optic Fabry-Perot interferometer (FPI is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF. The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs, especially to the high-frequency (up to 10 MHz UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  14. Combining seismic arrays to image the high-frequency characteristics of large earthquakes

    Science.gov (United States)

    Kiser, Eric; Ishii, Miaki

    2012-03-01

    This study investigates the source properties of the 2007 ? 8.0 Pisco, Peru, 2007 ? 8.4 and 7.9 Mentawai Islands, Indonesia, 2009 ? 8.1 Samoa Islands and 2010 ? 8.8 Maule, Chile, earthquakes using a backprojection technique that utilizes data from multiple seismic arrays. Combining seismic arrays increases azimuth and distance coverage and improves lateral resolution. The four subduction interface events show rupture propagation towards the bottom of the seismogenic zone. In addition, all of the earthquakes show evidence of multiple rupture segments with varying rupture speeds and directions. Relating these segments to the specific features of the subduction zones (e.g. interseismic coupling) suggests that asperity sizes may be controlled by subtle features of the subducted slab.

  15. DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Protopopescu, V.; Reister, D.

    1999-07-10

    A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools.

  16. Seismic Velocities Imaging around "AFA" Hydrothermal Area in West Java, Indonesia derived from Dense Seimometer Network

    Science.gov (United States)

    Fanani Akbar, Akhmad; Nugraha, Andri Dian; Jousset, Philippe GM; Ryannugroho, Riskiray; Gassner, Alexandra; Jaya, Makky S.; Sule, Rachmat; Diningrat, Wahyuddin; Hendryana, Andri; Kusnadi, Yosep; Umar, Muksin; Indrinanto, Yudi; Erbas, Kemal

    2015-04-01

    We have deployed about 48 three component seismometers around "AFA" hydrothermal are in West Java, Indonesia from October 2012 up to October 2014 in order to detect microseismic event and to enhance our knowledge about subsurface seismic stucture. The seismometer network in this study, is the first dense seismometer array monitoring around hydrothermal area in Indonesia so far. We analyzed a huge waveform data set to distinguish microseismic, local and regional events. Then, we picked the onset of P-and S-wave arrival of microseismic events carefully visually by eye. We determined the initial microseismic event by applying Geiger's method with uniform seismic velocity model. Totally, we have been successfully determined 2,497 microseismic events around this hydrothermal area. We also improved 1D seismic velocities (Vp, Vs) and simultaneously with hypocenter adjustment as input for the tomography inversion in this study. Overall, the microseismic events are concentrated around production area activities and we also found strong cluster microseismic event in Southern part of this region which still need to be investigated in more details. Now, we are going on tomographic inversion step by using double-difference method. We are going to show more information during the meeting.

  17. 基于Gabor滤波器族的地震图像增强算法%Seismic image enhancement algorithm based on Gabor filter bank

    Institute of Scientific and Technical Information of China (English)

    刘天时; 杨雪; 李湘眷

    2015-01-01

    为在增强地震剖面图像时获取纹线的构造及层序信息,提出一种基于地震剖面图像纹线方向的地震图像增强算法。根据地震剖面纹线的方向性,设计一个Gabor滤波器族,用其对低频分量图进行滤波去噪。利用小波变换与Gabor滤波器族各自的优点,实现地震剖面图像纹线的增强,提高整体运算效率。仿真结果表明,该算法对地震剖面图像处理后,均方误差与峰值信噪比均有明显的改善。%To obtain the structure and sequence information of stripe lines accurately while enhancing the seismic profile image ,a seismic image enhancement algorithm was proposed based on the directions of stripe lines on seismic profile image .Based on the directionality of stripe lines on seismic profile image ,a Gabor filter bank was designed ,by which low frequency component figure was filtered and denoised .With the advantages of wavelet transform and Gabor filter bank ,the enhancement of stripe lines on seismic profile was realized ,which improved overall operational efficiency .The simulation results show that the mean square er‐ror and peak signal to noise ratio are improved obviously after the seismic profile image being processed using this algorithm .

  18. The Application of Seismic Array Techniques to Image UXO-Contaminated Littoral Environments

    Science.gov (United States)

    Gritto, R.; Korneev, V.; Nihei, K.; Johnson, L.

    2004-12-01

    We investigate the application of seismic array techniques to increase the energy radiation and resolution of seismic waves in littoral areas to improve the success rate of detecting UXO in contaminated underwater sites. The investigation is carried out based on numerical modeling, including 2-D finite difference modeling and 3-D analytical solutions of the problem. In addition to various UXO orientations, we also modeled the presence of clutter in the subsurface. An array of 31 source and receiver elements was located floating in the water as well as sited on the seafloor, which allowed the comparison between single source-receiver combinations and beam-forming techniques. The numerical forward modeling involved noise-free and noisy data as well as interferences by free surface reflections (off the water-air interface), which produced the strongest phases on the seismograms. The inversion of the scattered seismic energy was performed using a 2-D eikonal solver (curved rays), which stacked and located the recorded amplitudes in space to determine the location of the UXO. The inversion also included the determination of the best fitting velocity model for the bay mud. The results of the 2-D modeling indicated that a single, horizontally oriented, UXO could be well detected as a function of depth and horizontal location. In the case of the source-receiver array being placed on the seafloor, the edges of the UXO were resolved indicating its horizontal extent, while the top of the UXO was correctly located. The cases of a second, vertically oriented, UXO and clutter located 0.1 m next to the first UXO, produced similar results. In each case the two objects produced slight interference in the backscattered seismic signal, yet the resolution of the seismic wave was still good enough to resolve the two objects from each other. The introduction of a rippled water-seafloor interface during the forward modeling didn't change the results for the case of a floating source

  19. Imaging the continental lithosphere: Perspectives from global and regional anisotropic seismic tomography

    Science.gov (United States)

    Lebedev, Sergei; Schaeffer, Andrew

    2016-04-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Lateral variations in isotropic-average seismic velocities reflect variations in the temperature of the rocks at depth. Seismic tomography thus also provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new global, anisotropic, 3D tomographic models of the upper mantle and the crust are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere at the global scale, compared to other available models. The most prominent high-velocity anomalies, seen down to around 200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The tomography resolves the deep boundaries of the cratons even where they are not exposed and difficult to map at the surface. Our large waveform dataset, with complementary large global networks and high-density regional array data, also produces improved resolution of azimuthal anisotropy patterns, so that regional-scale variations related to lithospheric deformation and mantle flow can be resolved, in particular in densely sampled regions. The depth of the boundary between the cold, rigid lithosphere (preserving ancient, frozen anisotropic fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently) can be inferred from the depth layering of seismic anisotropy and its comparison to the past and present plate motions. Beneath oceans, the lithosphere-asthenosphere boundary (LAB) is defined clearly by the layering of anisotropy, with a dependence on

  20. Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry

    Science.gov (United States)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-06-01

    We report on earthquake and temperature-related velocity changes in high-frequency autocorrelations of ambient noise data from seismic stations of the Integrated Plate Boundary Observatory Chile project in northern Chile. Daily autocorrelation functions are analyzed over a period of 5 years with passive image interferometry. A short-term velocity drop recovering after several days to weeks is observed for the Mw 7.7 Tocopilla earthquake at most stations. At the two stations PB05 and PATCX, we observe a long-term velocity decrease recovering over the course of around 2 years. While station PB05 is located in the rupture area of the Tocopilla earthquake, this is not the case for station PATCX. Station PATCX is situated in an area influenced by salt sediment in the vicinity of Salar Grande and presents a superior sensitivity to ground acceleration and periodic surface-induced changes. Due to this high sensitivity, we observe a velocity response of several regional earthquakes at PATCX, and we can show for the first time a linear relationship between the amplitude of velocity drops and peak ground acceleration for data from a single station. This relationship does not hold true when comparing different stations due to the different sensitivity of the station environments. Furthermore, we observe periodic annual velocity changes at PATCX. Analyzing data at a temporal resolution below 1 day, we are able to identify changes with a period of 24 h, too. The characteristics of the seismic velocity with annual and daily periods indicate an atmospheric origin of the velocity changes that we confirm with a model based on thermally induced stress. This comprehensive model explains the lag time dependence of the temperature-related seismic velocity changes involving the distribution of temperature fluctuations, the relationship between temperature, stress and velocity change, plus autocorrelation sensitivity kernels.

  1. The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough

    Science.gov (United States)

    Kell, Anna Marie

    The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery

  2. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  3. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-06-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  4. Contourite Deposition in the North Atlantic Ocean Moderated By Mantle Plume Activity: Evidence from Seismic Reflection Images

    Science.gov (United States)

    Parnell-Turner, R. E.; McCave, I. N. N.; White, N. J.; Henstock, T.; Murton, B. J.; Jones, S. M.

    2014-12-01

    It is generally accepted that the strength of Northern Component Water overflow, the ancient precursor of North Atlantic Deep Water, has varied throughout Neogene times. Variations in dynamic support of the lithosphere, due to transient behavior of the Iceland mantle plume, probably control spatial and temporal water depth variations this region. Pathways and intensities of oceanic bottom currents, together with deposition of contourite drifts, are strongly influenced by changing bathymetry. Here, we combine detailed observations of contourite drift deposits from seismic reflection profiles with a chronology of plume activity, to test the relationships between deep-water circulation, sedimentary drift accumulation and mantle convection. We present multi-channel seismic reflection profiles acquired over Bjorn, Gardar and Hatton Drifts in the Iceland Basin and over the northernmost portion of Eirik Drift, east of Greenland. Depositional hiatuses are easily identified and correlated between these high-quality images and nearby boreholes, which allows us to construct history of sedimentation across the North Atlantic Ocean over the past 5 Ma. We observe kilometer-scale westward-migration of Bjorn Drift, which can be explained by varying current strength and sediment supply, probably moderated by fluctuating dynamic support on overall subsidence. We place these observations into a new continuous 55 Ma record of Iceland mantle plume activity. There is compelling evidence to support the hypothesis that variations in mantle convection deep beneath the plates has profound consequences for deep-water flow and sediment deposition at Earth's surface.

  5. Seismic waveform inversion and imaging of deepwater glacial sedimentary fans in the northern Norwegian-Greenland Sea

    Science.gov (United States)

    Libak, Audun; Poor Moghaddam, Peyman; Minakov, Alexander; Ruud, Bent Ole; Keers, Henk; Mjelde, Rolf

    2013-04-01

    In this poster we show results from 2D acoustic pre-stack depth migration and full waveform inversion using multichannel seismic data, complemented by coincident travel-time tomography of wide-angle ocean bottom seismometer data. The study area is located within the deep ocean basin in the northeastern parts of the Norwegian-Greenland Sea. This area was affected by intense Quaternary glacial sedimentation in the Storfjorden and Bjørnøya Fans and formation of submarine mega-slides. The seismic source used for the data acquisition consisted of an array of six airguns, and the wavefield was recorded by a 3-km-long 240-channel streamer. After some initial processing, pre-stack depth migration and waveform inversion was performed in order to obtain an image the glacial sedimentary package. The background velocity model was obtained from travel time tomography on the coincident ocean bottom seismometer data. We first show inversion results for a test model which is based on the our knowledge of the geology of the area. We then show the inversion results on the real data. One of the main differences between the test inversion and the real data inversion is the inknown source wavelet in the latter case. We show how the source wavelet affects the inversion results and how to properly take the source wavelet into account.

  6. 3-D seismic imaging of lithospheric fault-block structures, core complexes, alteration fronts, and hydrothermal systems along the Mid-Atlantic Ridge, Rainbow area

    Science.gov (United States)

    Dunn, R. A.; Arai, R.; Eason, D. E.; Canales, J. P.; Sohn, R. A.

    2016-12-01

    Oceanic lithosphere formed along slow-spreading mid-ocean ridges is structurally and compositionally heterogeneous due to spatial and temporal variations in tectonic extension and magmatic accretion processes. Sorting out the different influences requires detailed imaging of the subsurface. The MARINER seismic and geophysical mapping experiment was designed to examine seafloor spreading across an area that includes a non-transform offset of the Mid-Atlantic Ridge, 36°14'N, the site of the Rainbow core complex and its associated hydrothermal vent field. Using seismic refraction data from this experiment, we constructed three-dimensional anisotropic tomographic images of the crust and upper mantle around the Rainbow area. Approaching Rainbow along the spreading ridges from either side, the seismic images reveal the onset of a clear ridge-parallel stripe-like structures, with alternating high- and low-velocities throughout the crust, correlated with changing lower crustal thickness and the locations of large normal faults. The pattern indicates that large normal faults rotate large blocks of the entire crust during tectonic stretching. Sitting within the ridge offset, the Rainbow core complex appears to be genetically related to neighboring fault blocks, and is largely an ultramafic exposure. Relatively low seismic velocities drape the core complex, having a sharp contact with higher-velocities below. The sharp contact may demarcate alteration (to serpentinite) and cracking fronts, since also draping the core complex are corresponding regions of high seismic anisotropy and high microseismicity, indicating pervasive cracking of its upper regions. The anisotropy and seismicity funnel upwards under the vent field, presumably marking the flow paths of vent fluids that cool melt lenses found to be intruded deep below the surface. The tomographic images reveal lithospheric structures in greater detail than previously possible, and when taken together with our other

  7. Joint Audio-Magnetotelluric and Passive Seismic Imaging of the Cerdanya Basin

    Science.gov (United States)

    Gabàs, A.; Macau, A.; Benjumea, B.; Queralt, P.; Ledo, J.; Figueras, S.; Marcuello, A.

    2016-09-01

    The structure of Cerdanya Basin (north-east of Iberian Peninsula) is partly known from geological cross sections, geological maps and vintage geophysical data. However, these data do not have the necessary resolution to characterize some parts of Cerdanya Basin such as the thickness of soft soil, geometry of bedrock or geometry of geological units and associated faults. For all these reasons, the main objective of this work is to improve this deficiency carrying out a detailed study in this Neogene basin applying jointly the combination of passive seismic methods ( H/V spectral ratio and seismic array) and electromagnetic methods (audio-magnetotelluric and magnetotelluric method). The passive seismic techniques provide valuable information of geometry of basement along the profile. The maximum depth is located near Alp village with a bedrock depth of 500 m. The bedrock is located in surface at both sites of profile. The Neogene sediments present a shear-wave velocity between 400 and 1000 m/s, and the bedrock basement presents a shear-wave velocity values between 1700 and 2200 m/s. These results are used as a priori information to create a 2D resistivity initial model which constraints the inversion process of electromagnetic data. We have obtained a 2D resistivity model which is characterized by (1) a heterogeneous conductivity zone (conductive zone (600 Ohm m approx.) and is explained as a combination of fractured rock and a fluid network. The result highlights that the support between different geophysical methods is essential in producing geophysical meaningful models.

  8. Bridge pier foundation evaluation using cross-hole seismic tomographic imaging

    Science.gov (United States)

    Butchibabu, B.; Sandeep, N.; Sivaram, Y. V.; Jha, P. C.; Khan, P. K.

    2017-09-01

    An ambitious project connecting Jammu and Srinagar through a railway link in tectonically active and geologically complex Himalayan Mountain terrain is under progress. Under this project, the world's highest (359 m) railway arch-bridge is under construction across the River Chenab in the northern territory of India. This mega engineering structure has a two-fold ribbed arch design, comprising of steel girders. During the excavation for one of the concrete pillars on the right abutment, wide open joints and weak/shear zones were noticed. The width of these joints varies from 30 to 50 cm, trending along N170° with a dip of 65°. The foundation area of this pillar is 13 m × 24 m and on the cut slopes of the right bank of Chenab River. These exposed joints and weak zones were treated with consolidation grouting to strengthen the foundation area. To delineate the extent of these joints and weak zones below the foundation level, seismic tomography was carried out in five boreholes drilled for this purpose to cover the 300 sq-m area. The results of cross-hole seismic tomography reveals the presence of three low velocity (≤ 2600 m/s) anomalous zones below the foundation area. This also ascertained the efficacy of grouting in consolidating the joints and weak zones. Later, rock-mass quality (Q) was determined based on the relationship between the P-wave velocity and the Q-value (Barton, 2002) to infer the support system for the slope stabilization below the foundation. 3-D visualization of the seismic velocity demarcates the extent of weak or untreated zones. This methodology facilitates to update the design parameters according to Q-values during the construction stage and estimate the required level of reinforcement and support system. Similar methodology can be applicable in other areas under same site conditions.

  9. The Katla volcanic system imaged using local earthquakes recorded with a temporary seismic network

    Science.gov (United States)

    Jeddi, Zeinab; Tryggvason, Ari; Gudmundsson, Ólafur

    2016-10-01

    Katla is one of the most active subglacial volcanoes in Iceland. A temporary seismic network was operated on and around Katla for 2.5 years. A subset of 800 analyzed local earthquakes clustered geographically in four regions: (1) the caldera, (2) the western region, (3) the southern rim, and (4) the eastern rim of the glacier. Based on the frequency content of recorded seismograms, each event was labeled as volcano tectonic (VT), long period (LP), or `Mixed'. The southern cluster consists of LP events only, and the eastern cluster consists of VT events, while the western cluster is `Mixed' although primarily LP. The caldera seismicity is confined to a subregion centered in the northeastern part of the caldera above 1 km below sea level (bsl) and gradually deepens away from its center to about 4 km depth. Deeper events are almost all VT, whereas LP events in the center of caldera locate at shallow depths. This is also where the velocities are lowest in the top 3 km of the crust of our 3-D tomographic model. A high-velocity core ( 6.5 km/s) is found at 4 km bsl beneath this low-velocity zone. We propose that a "subcaldera" may be developing within the present caldera and suggest a conceptual model for Katla volcano with a thin volume ( 1 km thick) that may host hot rhyolitic material in the shallow crust below the relocated seismic activity and above the high-velocity core. We interpret this core to consist of mafic cumulates resulting from fractionation of mafic intrusions and partial melting of subsiding hydrothermally altered rocks.

  10. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    Energy Technology Data Exchange (ETDEWEB)

    Frary, R.; Louie, J. [UNR; Pullammanappallil, S. [Optim; Eisses, A.

    2016-08-01

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  11. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.

  12. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching

    Directory of Open Access Journals (Sweden)

    Jian-Jun Zhu

    2008-10-01

    Full Text Available The Mw=7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction, with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground. Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more

  13. Seismic image of the petroleum structures in Cuba; Imagen sismica de las estructuras para petroleo en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Sora Monroy, America; Socorro Trujillo, Rafael [Empresa de Geofisica, La Habana (Cuba)

    1999-07-01

    The main oil trap in Cuba are associated with structural highs. These structures are ;located within different types of rocks (ophiolitics, volcanics sedimentary rocks). During the compressive stage (Late Cretacic - Early Tertiary) have produced the Cuban fold and thurst belt. By the Campanian, the volcanic arc and associated oceanic basement were obducted onto the Continental Crust, consequently sedimentary cover was folded to form many oil structures, for example: ramp anticline structures, fold system duplex. In postorogenic period, tectonic stress is still active, is in this moment a lot of traps has been recognized by floowers structures, and as a result, pull apart basin of 4-6 km thick sediments were mostly in the south of Cuba. This paper illustrates the characteristics of seismic images of oil traps in Cuba. (author)

  14. Imaging fluid-related subduction processes beneath Central Java (Indonesia) using seismic attenuation tomography

    Science.gov (United States)

    Bohm, Mirjam; Haberland, Christian; Asch, Günter

    2013-04-01

    We use local earthquake data observed by the amphibious, temporary seismic MERAMEX array to derive spatial variations of seismic attenuation (Qp) in the crust and upper mantle beneath Central Java. The path-averaged attenuation values (t∗) of a high quality subset of 84 local earthquakes were calculated by a spectral inversion technique. These 1929 t∗-values inverted by a least-squares tomographic inversion yield the 3D distribution of the specific attenuation (Qp). Analysis of the model resolution matrix and synthetic recovery tests were used to investigate the confidence of the Qp-model. We notice a prominent zone of increased attenuation beneath and north of the modern volcanic arc at depths down to 15 km. Most of this anomaly seems to be related to the Eocene-Miocene Kendeng Basin (mainly in the eastern part of the study area). Enhanced attenuation is also found in the upper crust in the direct vicinity of recent volcanoes pointing towards zones of partial melts, presence of fluids and increased temperatures in the middle to upper crust. The middle and lower crust seems not to be associated with strong heating and the presence of melts throughout the arc. Enhanced attenuation above the subducting slab beneath the marine forearc seems to be due to the presence of fluids.

  15. Comparison of seismic sources for imaging geologic structures on the Oak Ridge Reservation, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Doll, W.E. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Miller, R.D.; Xia, J. [Kansas Geological Survey, Lawrence, KS (United States)

    1997-02-01

    In this study, five non-invasive swept sources, three non-invasive impulsive sources and one invasive impulsive source were compared. Previous shallow seismic source tests (Miller and others, 1986, 1992, 1994) have established that site characteristics should be considered in determining the optimal source. These studies evaluated a number of invasive sources along with a few non-invasive impulsive sources. Several sources (particularly the high frequency vibrators) that were included in the ORR test were not available or not practical during previous tests, cited above. This study differs from previous source comparisons in that it (1) includes many swept sources, (2) is designed for a greater target depth, (3) was conducted in a very different geologic environment, and (4) generated a larger and more diverse data set (including high fold CMP sections and walkaway vertical seismic profiles) for each source. The test site is centered around test injection well HF-2, between the southern end of Waste Area Grouping 5 (WAG 5) and the High Flux Isotope Reactor (HFIR).

  16. Imaging fluid channels within the NW Bohemia/Vogtland region using ambient seismic noise and MFP analysis

    Science.gov (United States)

    Umlauft, Josefine; Flores Estrella, Hortencia; Korn, Michael

    2016-04-01

    Presently ongoing geodynamic processes within the intracontinental lithospheric mantle give rise to different natural phenomena in the NW Bohemia/Vogtland region, among others: earthquake swarms, mineral springs and degassing zones of mantle-derived fluids (mofettes). Their interaction mechanisms and relations are not yet fully understood, therefore they are intensively studied using geophysical, geological and biological approaches. We focus on the investigation of near-surface channels that conduct mantle-originating fluids as well as CO2 near the Earth's surface. We aim at the detection, imaging and characterization of the fluid channel structure as well as the observation of their temporal and spatial variability. The Hartoušov Mofette Field within the Cheb Basin (NW Bohemia/Vogtland region) is a key site to study fluid flow as it is characterized by strong surface degassing of CO2. On this field, we applied the noise source localization method Matched Field Processing (MFP) considering the fluid flow as seismic noise source. Within multiple campaigns, we measured ambient seismic noise in continous mode during the night to avoid cultural noise generated by human activity. We used arrays of about 30 randomly distributed stations with 1 to 4 ha extent. We compared the surface position of the MFP output with punctual CO2 flux measurements performed by Nickschick et al. (2015) and observed a strong relation between high CO2 flux values and the position of the MFP maxima. Additionally, we observed surface indicators for CO2 degassing on the same positions of the MFP predicted noise sources: wet and dry mofettes accompanied by bog cotton, bug traps and brown to yellow coloured grass. The MFP maxima can be followed into the subsoil to image the fluid channel structure down to 50 m depth. We analyzed the influence of the array size on the vertical and horizontal MFP resolution as well as the temporal and spatial variability of the flow activity.

  17. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    Science.gov (United States)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  18. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    Science.gov (United States)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, http://crlab.eu) consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  19. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array

    Science.gov (United States)

    Li, Zhiwei; Ni, Sidao; Zhang, Baolong; Bao, Feng; Zhang, Senqi; Deng, Yang; Yuen, David A.

    2016-05-01

    The Wudalianchi Volcano Field (WDF) is a typical intraplate volcano in northeast China with generation mechanism not yet well understood. As its last eruption was around 300 years ago, the present risk for volcano eruption is of particular public interest. We have carried out a high-resolution ambient noise tomography to investigate the location of magma chambers beneath the volcanic cones with a dense seismic array of 43 seismometers and ~ 6 km spatial interval. Significant low-velocity anomalies up to 10% are found at 7-13 km depth under the Weishan volcano, consistent with the pronounced high electrical-conductivity anomalies from previous magnetotelluric survey. We propose these extremely low velocity anomalies can be interpreted as partial melting in a shallow magma chamber with volume at least 200 km3 which may be responsible for most of the recent volcanic eruptions in WDF. Therefore, this magma chamber may pose a serious hazard for northeast China.

  20. Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics

    Science.gov (United States)

    Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte

    2016-04-01

    Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were

  1. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    Science.gov (United States)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-04-01

    Historical records that before the 17th century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon's central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 - 5 years, with an average interval of 3 years and a rest interval ranged from 8 - 64 years. Then, on June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4th, 2011 that Mount Lokon erupted continuously until August 28th, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  2. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  3. High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures - a case study in Bad Frankenhausen, Germany

    Science.gov (United States)

    Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.

    2016-10-01

    Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10

  4. Applications of seismic pattern recognition and gravity inversion techniques to obtain enhanced subsurface images of the Earth's crust under the Central Metasedimentary Belt, Grenville Province, Ontario

    Science.gov (United States)

    Roy, Baishali; Mereu, R. F.

    2000-12-01

    Project Lithoprobe's Abitibi-Grenville transect seismic reflection lines 32 and 33 traverse the exposed Central Metasedimentary Belt (CMB) located in the Grenville province of the Precambrian Shield of Canada in southern Ontario. These seismic lines image a zone with a protracted deformational history spanning more than 300Myr. Detailed examination of the commercially processed stacked sections reveals a number of significant deficiencies in some important areas. The image quality in these zones of reduced coherency needs to be enhanced to examine specific features and their relation to the surface geology. Examination of near-vertical seismic data from Lines 32 and 33 revealed that the signal-to-noise ratio was not improved by stacking, due to misalignment of signals even after static, normal moveout corrections and residual static corrections. The presumed reason is that reflected seismic energy following long ray paths in heterogeneous media suffers from relative advances and delays in its propagation, and hence arrives at slightly different times at the receivers, tending to be poorly aligned relative to its theoretical traveltime curves. A pattern recognition (PR) method for signal enhancement followed by energy stacking in moving time windows was used in this study to improve the images in spite of misalignments. Reprocessing has refined the geometry of the reflection profiles. The objective of this paper is to use enhanced images of the seismic reflection data obtained by using a PR approach together with gravity data, using 2.5-D forward and 3-D inversion routines, to give an improved model of subsurface structure in the vicinity of lines 32 and 33. Line 32 is dominated by southeast-dipping reflectors soling into the lower crust. The listric geometry of the strong reflection packages of the CMB boundary thrust zone is interpreted to represent a crustal-scale ramp-flat geometry that accommodated northwest-directed tectonic transport of the CMB. This

  5. Reflection imaging of the Moho and the aseismic Nazca slab in the Malargüe region with global-phase seismic interferometry

    Science.gov (United States)

    Draganov, D.; Nishitsuji, Y.; Ruigrok, E.; Gomez, M.; Wapenaar, C. P. A.

    2015-12-01

    A number of passive seismic methods have been developed over many decades. Still, imaging of aseismical zones of the subducting slabs is one of challenging themes in the geoscience community. Conventional seismological approaches, such as hypocentral mapping, receiver functions, and global tomography, have been providing useful imaging of the Nazca slab, which subducts under the South American plate; however, the aseismic zones remained unclear. Here, we propose to apply global-phase seismic interferometry (GloPSI) for the imaging of the aseismic zones of the Nazca slab beneath the Malargüe region (Mendoza, Argentina). GloPSI uses global phases (epicentral distances ≥ 120°) such as PKP, PKiKP, and PKIKP, recorded on the vertical component of the seismic sensors. These phases illuminate the lithosphere below the receivers with small angles of incidence, which illumination suffices for creating virtual sources that radiate primarily downwards. We then migrate the retrieved virtual responses to obtain a subsurface reflection image with high resolution (< 15 km in depth). We use data recorded in the Malargüe region using an exploration-type receiver array called MalARRgue. This array was recording continuously in 2012 for one year. In this presentation, we show the imaging results from the Moho down to the aseismic Nazca slab, including the upper mantle.

  6. Data Compression of Seismic Images by Neural Networks Compression d'images sismiques par des réseaux neuronaux

    Directory of Open Access Journals (Sweden)

    Epping W. J. M.

    2006-11-01

    Full Text Available Neural networks with the multi-layered perceptron architecture were trained on an autoassociation task to compress 2D seismic data. Networks with linear transfer functions outperformed nonlinear neural nets with single or multiple hidden layers. This indicates that the correlational structure of the seismic data is predominantly linear. A compression factor of 5 to 7 can be achieved if a reconstruction error of 10% is allowed. The performance on new test data was similar to that achieved with the training data. The hidden units developed feature-detecting properties that resemble oriented line, edge and more complex feature detectors. The feature detectors of linear neural nets are near-orthogonal rotations of the principal eigenvectors of the Karhunen-Loève transformation. Des réseaux neuronaux à architecture de perceptron multicouches ont été expérimentés en auto-association pour permettre la compression de données sismiques bidimensionnelles. Les réseaux neuronaux à fonctions de transfert linéaires s'avèrent plus performants que les réseaux neuronaux non linéaires, à une ou plusieurs couches cachées. Ceci indique que la structure corrélative des données sismiques est à prédominance linéaire. Un facteur de compression de 5 à 7 peut être obtenu si une erreur de reconstruction de 10 % est admise. La performance sur les données de test est très proche de celle obtenue sur les données d'apprentissage. Les unités cachées développent des propriétés de détection de caractéristiques ressemblant à des détecteurs de lignes orientées, de bords et de figures plus complexes. Les détecteurs de caractéristique des réseaux neuronaux linéaires sont des rotations quasi orthogonales des vecteurs propres principaux de la transformation de Karhunen-Loève.

  7. Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    Science.gov (United States)

    Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.

    2011-01-01

    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into

  8. Body-wave retrieval and imaging from ambient seismic fields with very dense arrays

    Science.gov (United States)

    Nakata, N.; Boué, P.; Beroza, G. C.

    2015-12-01

    Correlation-based analyses of ambient seismic wavefields is a powerful tool for retrieving subsurface information such as stiffness, anisotropy, and heterogeneity at a variety of scales. These analyses can be considered to be data-driven wavefield modeling. Studies of ambient-field tomography have been mostly focused on the surface waves, especially fundamental-mode Rayleigh waves. Although the surface-wave tomography is useful to model 3D velocities, the spatial resolution is limited due to the extended depth sensitivity of the surface wave measurements. Moreover, to represent elastic media, we need at least two stiffness parameters (e.g., shear and bulk moduli). We develop a technique to retrieve P diving waves from the ambient field observed by the dense geophone network (~2500 receivers with 100-m spacing) at Long Beach, California. With two-step filtering, we improve the signal-to-noise ratio of body waves to extract P wave observations that we use for tomography to estimate 3D P-wave velocity structure. The small scale-length heterogeneity of the velocity model follows a power law with ellipsoidal anisotropy. We also discuss possibilities to retrieve reflected waves from the ambient field and show other applications of the body-wave extraction at different locations and scales. Note that reflected waves penetrate deeper than diving waves and have the potential to provide much higher spatial resolution.

  9. High Resolution Seismic Survey off the Pacific Shore of Costa Rica - Detailed Imaging of Deformational Patterns, Fluid Venting and Carbonate Mounds

    Science.gov (United States)

    Fekete, N.; Spiess, V.; Heidersdorf, F.; v. Lom, H.; Zuehlsdorff, L.; Denil, D.; Huguen, C.; Schnabel, M.

    2003-04-01

    R/V METEOR Research Cruise M54/1 in summer 2002 from Balboa (Panama) to Caldera (Costa Rica) aimed at imaging the near sea floor sedimentary structures of both the continental and oceanic plates of the Costa Rican Subduction Zone with the high resolution seismic method. The cruise evolved from a cooperation of the Marine Seismics Group of the University of Bremen with the DFG funded Special Research Project 574 - Fluids and Volatiles in Subduction Zones - and is intended to supplement the marine geophysical, geological and geochemical as well as oceanographic data collected during R/V SONNE cruises in the area, as well as subsequent R/V METEOR cruises M54/2 and /3. The objectives of SFB 574 are the investigation of shallow and deep processes in subduction zones through near surface sampling of fluid vent sites and gas hydrate occurrences, as well as through detailed seismic and acoustic imaging of related structures. The main objectives of the cruise were to study 1) the volatile and material input into the sedimentary system on the oceanic plate, 2) the distribution of gas hydrates within the sediments, and 3) possible pathways and resulting structures of fluid/gas escape. Several working areas were selected, which had been identified as highly fractured sediment packages above subducting seamounts (Jaco Scar, Parrita Scar, Rio Bongo, Hongo area), areas of pronounced decollement reflection, major slump masses (Nicoya slide), regions of major fracturing of the oceanic crust, or carbonate mounds (Hongo area, Mound Culebra) during previous cruises. For calibration of seismic data, survey lines were also shot in the vicinity of ODP Leg 170 drill sites. Several seismic examples from various survey sites will be shown. Closely spaced profiles, allowing the acquisition of 3D and 2.5D seismic data in the Hongo area and near Mound Culebra, respectively, reveal the complex internal structure of fluid pathways, the distribution of gas hydrates, and the tectonic framework of

  10. A memory-efficient staining algorithm in 3D seismic modelling and imaging

    Science.gov (United States)

    Jia, Xiaofeng; Yang, Lu

    2017-08-01

    The staining algorithm has been proven to generate high signal-to-noise ratio (S/N) images in poorly illuminated areas in two-dimensional cases. In the staining algorithm, the stained wavefield relevant to the target area and the regular source wavefield forward propagate synchronously. Cross-correlating these two wavefields with the backward propagated receiver wavefield separately, we obtain two images: the local image of the target area and the conventional reverse time migration (RTM) image. This imaging process costs massive computer memory for wavefield storage, especially in large scale three-dimensional cases. To make the staining algorithm applicable to three-dimensional RTM, we develop a method to implement the staining algorithm in three-dimensional acoustic modelling in a standard staggered grid finite difference (FD) scheme. The implementation is adaptive to the order of spatial accuracy of the FD operator. The method can be applied to elastic, electromagnetic, and other wave equations. Taking the memory requirement into account, we adopt a random boundary condition (RBC) to backward extrapolate the receiver wavefield and reconstruct it by reverse propagation using the final wavefield snapshot only. Meanwhile, we forward simulate the stained wavefield and source wavefield simultaneously using the nearly perfectly matched layer (NPML) boundary condition. Experiments on a complex geologic model indicate that the RBC-NPML collaborative strategy not only minimizes the memory consumption but also guarantees high quality imaging results. We apply the staining algorithm to three-dimensional RTM via the proposed strategy. Numerical results show that our staining algorithm can produce high S/N images in the target areas with other structures effectively muted.

  11. Seismic images of Caledonian, lithosphere-scale collision structures in the southeastern North Sea along Mona Lisa Profile 2

    Science.gov (United States)

    Abramovitz, Tanni; Thybo, Hans

    2000-02-01

    The unexposed suture between Baltica and Eastern Avalonia is imaged by coincident normal-incidence reflection and wide-angle reflection/refraction seismic data of the MONA LISA project. We present new results of the upper lithospheric, seismic structure from the N-S-striking profile 2 across the Caledonian Deformation Front, which represents the crustal collision suture between Baltica and Eastern Avalonia that formed after closure of the Tornquist Sea during the Caledonian orogeny in Late Ordovician times. Three different crustal types are identified with great similarities to the nearby profile 1: (1) a three-layered crust typical of shields to the north; (2) a transitional crust (suture zone) in the central part; and (3) a two-layered crust of Caledonian origin to the south characterized by very low velocities throughout the crust. The crustal thickness varies from 38-35 km under the northern margin of the Ringkøbing-Fyn High (Baltica crust) to 28-27 km beneath the North German Basin in the Caledonian crust to the south. The suture zone is imaged by S-dipping crustal reflections from 1.9 to 10.6 s two-way travel time (twt) over a horizontal distance of ˜70 km within the transitional crust. The reflection suture zone terminates in a ˜60 km wide reflective lens with velocities of 6.6-6.8 km/s in the lowermost crust. The reflective lens may be interpreted as a remnant of oceanic or island-arc crust that was accreted to the leading edge of Baltica during closure of the Tornquist Sea. Alternatively, the reflective lens may represent an indentor of Baltica crust into the Avalonian terrane. The change in lower crustal reflectivity and the abrupt transition from a three- to a two-layered crust further south suggest that the Trans-European Fault and the Elbe Lineament continue into the North Sea. The upper mantle reflectivity is dominated by bands of strong-amplitude, S-dipping reflections from 13.5 to 21.8 s twt, and a weaker band of N-dipping reflections from 12 to

  12. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    Science.gov (United States)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is

  13. Spoc-experiment: Seismic Imaging and Bathymetry of The Central Chile Margin - First Results

    Science.gov (United States)

    Ladage, S.; Reichert, C.; Schreckenberger, B.; Block, M.; Bönnemann, C.; Canuta, J.; Damaske, D.; Diaz-Naveas, J.; Gaedicke, C.; Krawczyk, C.; Kus, J.; Urbina, O.; Sepulveda, J.

    During the RV SONNE cruise 161 Leg 1 to 5 (October 2001 to January 2002) Sub- duction Processes Off Chile (SPOC) have been investigated using a multi-disciplinary geoscientific approach. Here we report first results of multi channel seismic (MCS) experiments and high-resolution swath bathymetry data from Leg 3, south of Val- paraiso. 24 MCS profiles with a total length of 3670 km were run between 36 S to 4020' S, providing a detailed view of the structures related to the subduction of the Nazca Plate under the Chile Margin. The oceanic crust of the Nazca Plate shows at least three sets of structural trends associated with the Mocha and Valdivia Fractures Zones, the spreading lineations and subduction related horst and graben structures. In the study area the trench is filled with well stratified turbidites up to 2 seconds TWT thick. Along the trench axis a turbidite channel exceeding 80 m relief exists. Several large deep sea fan complexes are developed at the slope toe. Their distributary canyons cut deep into the slope and shelf and can be traced back to major river mouths. The deformation front is coincident with the slope toe; compressional structures of the trench fill are uncommon. The deformation front is curved and offset along strike, caused presumably by collision and indentation of structures of the Nazca Plate. The most remarkable features of the MCS - profiles, yet, are the only very rudimentary developed modern accretionary prism as well as the high variability of the lower slope angles. Lower slope angles locally exceed 10. The continental crust extends seawards to the middle slope and acts as a backstop. Several profiles reveal landward dipping reflectors above the downgoing slab, possibly depicting a subduction channel beneath the slope. Thus, the geometry of the subduction units U a young thick trench fill, only rudimental frontal accretion and a subduction channel U argues for subduction of the bulk of the sediments.

  14. Multicomponent Seismic Imaging of the Cheyenne Belt: Data Improvement Through Non-Conventional Filtering

    Science.gov (United States)

    Johnson, R. A.; Shoshitaishvili, E.; Sorenson, L. S.

    2001-12-01

    The Cheyenne Belt in southeastern Wyoming separates Archean Wyoming Craton from accreted juvenile Proterozoic crust making it one of the fundamental sutures in the Proterozoic assemblage of western North America. As one of the multidisciplinary components of the Continental Dynamics - Rocky Mountains Transect project (CDROM), reflection seismic data were acquired from south-central Wyoming to central Colorado to characterize crustal structure associated with this boundary and younger Proterozoic shear zones to the south. In addition to acquisition of more conventional vertical-component data, 3-component data were acquired to better constrain rock properties and reflection directionality, providing information that tends to be lost with one-component recording. In order to achieve the highest possible signal-to-noise ratios in the processed data, considerable work was focused on removal of noise caused by private vehicles driving on forest roads during active recording and, perhaps more problematical, harmonic noise generated from power-line and other electrical-equipment interference. Noise generated from these sources was successfully attenuated using 1) short-window 2D FFT filtering to remove irregular, high-amplitude vehicular noise, and 2) harmonic-noise-subtraction algorithms developed at the University of Arizona to remove harmonic electrical-induction noise. This latter filtering procedure used a time-domain-based method of automatic estimation of noise frequencies and their amplitudes, followed by subtraction of these estimated anomalous harmonics from the data. Since the technique estimates the best fit of noise for the entire trace, subtraction of the noise avoids many of the deleterious effects of simple notch filtering. After noise removal, it was possible to pick both P-wave and S-wave first arrivals and model shallow subsurface rock properties. This model provides a link between deeper events and the surface geology.

  15. Frequency-dependent seismic coda-attenuation imaging of volcanic geomorphology: from debris flows at Mount St. Helens volcano to cross-faulting at Campi Flegrei caldera.

    Science.gov (United States)

    De Siena, Luca; Gabrielli, Simona; Spagnolo, Matteo

    2017-04-01

    The stochastic loss of energy measured using the later portion of seismic recordings (coda) can be used to image and monitor geomorphology in volcanoes, once appropriate sensitivity kernels for the application of attenuation tomography have been developed. The use of this advanced seismic method with GIS/InSAR techniques is an unexplored field, which is receiving increasing attention in volcano-seismology. By using this integrated approach we can image structure and monitor dynamics of the debris flow that followed the 1980 explosive eruption of Mount St. Helens (US) volcano at resolution similar to that of remote sensing data, and depths of Italy, the results provide a novel perspective on the links between deep fluid migration and surface structures. The implications of the proposed approach on volcano monitoring are evident.

  16. Reverse Time Migration: A Seismic Imaging Technique Applied to Synthetic Ultrasonic Data

    Directory of Open Access Journals (Sweden)

    Sabine Müller

    2012-01-01

    Full Text Available Ultrasonic echo testing is a more and more frequently used technique in civil engineering to investigate concrete building elements, to measure thickness as well as to locate and characterise built-in components or inhomogeneities. Currently the Synthetic Aperture Focusing Technique (SAFT, which is closely related to Kirchhoff migration, is used in most cases for imaging. However, this method is known to have difficulties to image steeply dipping interfaces as well as lower boundaries of tubes, voids or similar objects. We have transferred a processing technique from geophysics, the Reverse Time Migration (RTM method, to improve the imaging of complicated geometries. By using the information from wide angle reflections as well as from multiple events there are fewer limitations compared to SAFT. As a drawback the required computing power is significantly higher compared to the techniques currently used. Synthetic experiments have been performed on polyamide and concrete specimens to show the improvements compared to SAFT. We have been able to image vertical interfaces of step-like structures as well as the lower boundaries of circular objects. It has been shown that RTM is a step forward for ultrasonic testing in civil engineering.

  17. Integrated interpretation of seismic and resistivity images across the «Val d'Agri» graben (Italy

    Directory of Open Access Journals (Sweden)

    E. Ceragioli

    2002-06-01

    Full Text Available Val d'Agri is a «recent SSW - NNE graben» located in the middle of the Southern Apennines thrust belt «chain» and emplaced in Plio-Pleistocene.The recent sedimentation of the valley represents a local critical geophysical problem. Several strong near surface velocity anomalies and scattering degrades seismic data in different ways and compromises the seismic visibility. In 1998, ENI and Enterprise, with the contribution of the European Community (ESIT R & D project - Enhance Seismic In Thrust Belt; EU Thermie fund acquired two «experimental seismic and Resistivity lines» across the valley. The purpose of the project was to look for methods able to enhance seismic data quality and optimize the data processing flow for «thrust belt» areas. During the work, it was clear that some part of the seismic data processing flow could be used for the detailed geological interpretation of the near subsurface too. In fact, the integrated interpretation of the near surface tomography velocity/depth seismic section, built for enhancing the resolution of static corrections, with the HR resistivity profile, acquired for enhancing the seismic source coupling, allowed a quite detailed lithological interpretation of the main shallow velocity changes and the 2D reconstruction of the structural setting of the valley.

  18. High-Resolution Seismicity Image of the Shallow Part of the Subduction Zone Beneath Mejillones in Northern Chile

    Science.gov (United States)

    Kummerow, Jörn; Bloch, Wasja; Salazar, Pablo; Wigger, Peter; Asch, Günter; Shapiro, Serge A.

    2015-04-01

    We analyze slab-related seismicity which has been recorded by a recently (June 2013) installed local seismic monitoring system on the Mejillones peninsula in the forearc region of Northern Chile. The monitoring system consists of 20 seismic stations and is complemented by components of the permanent IPOC (Integrated Plate Boundary Obervatory Chile) seismic network, providing a singular on-shore possibility to study in detail the relatively shallow seismicity of the subducting Nazca slab. To date, about thousand local seismic events have been identified. Precise earthquake relocation involving a local 2.5D velocity model and improved arrival time picks from an iterative cross-correlation based technique allows to trace sharply the slab interface between 25km and 40km depth. Furthermore, we observe distinct and continuous seismic activity on a near-vertical structure which transects the subducting oceanic crust from 40km to 50km depth. Location, orientation and size of this plane correspond to the rupture fault of the MW6.8 Michilla intraslab earthquake which occurred weeks after the MW7.7 Tocopilla earthquake of November 2007. We discuss here particularly the results from cluster analysis and the spatio-temporal signatures of the recorded seismicity.

  19. REPROCESSING OF SHALLOW SEISMIC REFLECTION DATA TO IMAGE FAULTS NEAR A HAZARDOUS WASTE SITE ON THE OAK RIDGE RESERVATION, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    DOLL, W.E.

    1997-12-30

    Shallow seismic reflection data from Bear Creek Valley on the Oak Ridge Reservation demonstrates that spectral balancing and tomographic refraction statics can be important processing tools for shallow seismic data. At this site, reprocessing of data which had previously yielded no useable CMP stacked sections was successful after application of these processing techniques.

  20. Reprocessing of Shallow Seismic Reflection Data to Image Faults Near a Hazardous Waste Site on the Oak Ridge Reservation, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Doll, W.E.

    1997-12-31

    Shallow seismic reflection data from Bear Creek Valley on the Oak Ridge Reservation demonstrates that spectral balancing and tomographic refraction statics can be important processing tools for shallow seismic data. At this site, reprocessing of data which had previously yielded no usable CMP stacked sections was successful after application of these processing techniques.

  1. The geological implications of some 3-D 'Fishnet' seismic images of Guelph pinnacle reefs in Ontario : a different perspective on their growth, destruction and complexity

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S.M.B. [Bailey Geological Services Ltd., London, ON (Canada)

    2002-07-01

    Exploration of underground oil and gas reservoirs has been enhanced since the development of 3-D seismic technology, which provides the ability to view structural anomalies, salt domes or lithologic buildups. 3-D seismic images were used to view the true geometry of carbonate structures within Silurian Guelph reefs in southwestern Ontario. The images provided a better understanding of how they grew, plus when and how they were destroyed by post-depositional weathering processes. 3-D seismic images allow oil and gas companies to explore and develop a series of wells through tight and porous segments of a reservoir with extreme precision. The Guelph reefs of Ontario are Middle Silurian in age and are part of an entire complex of reefs, banks, barriers and associated facies which grew in a circular fashion around a structural basement sag known as the Michigan Basin. The author explains how two reefs of the same physical height can be so evidently different in physical appearance. He presents his interpretation of how the Bentpath East Pinnacle Reef and the Tipperary Pinnacle reef underwent completely different histories of weathering, destruction, and construction. 16 refs., 1 tab., 33 figs.

  2. The Larderello-Travale geothermal field (Tuscany, central Italy): seismic imaging as a tool for the analysis and assessment of the reservoir

    Science.gov (United States)

    Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.

    2013-12-01

    The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto

  3. Seismic time-lapse imaging using Interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal

    2016-09-06

    One of the problems with 4D surveys is that the environmental conditions change over time so that the experiment is insufficiently repeatable. To mitigate this problem, we propose the use of interferometric least-squares migration (ILSM) to estimate the migration image for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for ILSM. Results with synthetic and field data show that ILSM can eliminate artifacts caused by non-repeatability in time-lapse surveys.

  4. Acoustic and seismic imaging of the Adra Fault (NE Alboran Sea: in search of the source of the 1910 Adra earthquake

    Directory of Open Access Journals (Sweden)

    E. Gràcia

    2012-11-01

    Full Text Available Recently acquired swath-bathymetry data and high-resolution seismic reflection profiles offshore Adra (Almería, Spain reveal the surficial expression of a NW–SE trending 20 km-long fault, which we termed the Adra Fault. Seismic imaging across the structure depicts a sub-vertical fault reaching the seafloor surface and slightly dipping to the NE showing an along-axis structural variability. Our new data suggest normal displacement of the uppermost units with probably a lateral component. Radiocarbon dating of a gravity core located in the area indicates that seafloor sediments are of Holocene age, suggesting present-day tectonic activity. The NE Alboran Sea area is characterized by significant low-magnitude earthquakes and by historical records of moderate magnitude, such as the Mw = 6.1 1910 Adra Earthquake. The location, dimension and kinematics of the Adra Fault agree with the fault solution and magnitude of the 1910 Adra Earthquake, whose moment tensor analysis indicates normal-dextral motion. The fault seismic parameters indicate that the Adra Fault is a potential source of large magnitude (Mw ≤ 6.5 earthquakes, which represents an unreported seismic hazard for the neighbouring coastal areas.

  5. Joint inversion of multichannel seismic reflection and wide-angle seismic data: Improved imaging and refined velocity model of the crustal structure of the north Ecuador-south Colombia convergent margin

    Science.gov (United States)

    Agudelo, W.; Ribodetti, A.; Collot, J.-Y.; Operto, S.

    2009-02-01

    Improving seismic imaging of the crust is essential for understanding the structural factors controlling subduction zones processes. We developed a processing work flow based on the combined analysis of multichannel seismic reflection (MCS) and wide angle (WA) reflection/refraction data to derive both shallow and deep velocities suitable for prestack depth migration and to construct a blocky velocity model integrating all identifiable seismic phases contained in MCS and WA data. We apply this strategy to the study of the north Ecuador-SW Colombia subduction margin to improve the imaging and geostructural interpretation of a splay fault and surrounding outer and inner margin wedges. Results show improvements over tomographic inversion of WA data only, such as (1) sediment velocity variation across the trench and margin slope that correlates with lateral lithologic changes, tectonic compaction and effect of mass wasting processes; (2) a two-layer velocity structure of the inner wedge basement that is consistent with the crust of an oceanic plateau; (3) a complex velocity structure of the outer wedge basement that consists of a deep, high-velocity (5.0-5.5 km s-1) core and a low-velocity zone (3.8-5.0 km s-1) associated with the major splay fault; (4) a ˜1.3-km-thick, low-velocity (3.5-4.0 km s-1) subduction channel that extends beneath the margin outer wedge. Both the splay fault and subduction channel are expected to direct fluid flows; and (5) downdip velocity increase (5-6 km s-1) in the subducting oceanic crust associated with a low (7.8 km s-1) upper mantle velocity, possibly reflecting changes in rock nature or properties.

  6. Seismic structure of the Costa Rican subduction system from active-source onshore-offshore seismic data and imaging plate boundary processes at the Cascadia subduction zone offshore Washington

    Science.gov (United States)

    Everson, Erik D.

    The goal of this thesis is to use seismic methods, either wide-angle refraction or multi-channel seismic (MCS) reflection, to characterize the physical processes occurring at the subduction zones occurring offshore Costa Rica and Cascadia. The first two chapters use wide-angle refraction data to characterize lithospheric structure and velocities, based on the modeling of wide-angle refractions and reflections from the crust, Moho and upper mantle. They also use MCS data to characterize the uppermost structure that wide-angle refraction data alone cannot provide. The first chapter uses both wide-angle refraction and MCS data to address the hypothesis that bending-related normal faulting, clearly imaged in the MCS data, provides a pathway for seawater to percolate down into the uppermost mantle and serpentinize it. This process causes a reduction in the seismic p-wave velocity in the upper mantle, which can be detected by wide-angle refraction analysis. We found the upper 1-2 km of the mantle has reduced velocities of 7.5 - 7.6 km/s in the area of pervasive normal faulting within the CNS-2 segment, and regular upper mantle velocities of 8.0 - 8.2 km/s in the CNS-1 segment, which lacks pervasive normal faulting. Our results suggest a link between bending-related large-offset normal faults seen in bathymetric and MCS reflection data in subduction trenches and serpentinization of the upper mantle. The second chapter uses both wide-angle refraction and MCS data like the first chapter but addresses the hypothesis that juvenile continental crust is created at some volcanic arcs. We addressed this hypothesis by creating a lithospheric velocity and structural model for the Central American subduction system through Costa Rica. This model allows us to estimate the seismic velocity, structure, infer bulk composition (from seismic velocities), and estimate a magmatic flux rate for the volcanic arc. We found a total crustal thickness of ~44 km and mid-to-lower-crustal velocities

  7. Seismic Imaging of the Waltham Canyon Fault, California: Comparison of Ray-Theoretical and Fresnel Volume Prestack Migration

    Science.gov (United States)

    Bauer, K.; Ryberg, T.; Fuis, G. S.; Lueth, S.

    2011-12-01

    Steep faults can be imaged by migration of reflected refractions observed in controlled-source seismic data. The processing can be focussed on the enhancement of the reflected refractions and simultaneous suppression of undesired phases. The Kirchhoff prestack migration is then applied where migration noise is suppressed by constructive stacking of multi-fold data. The Fresnel volume migration is an efficient alternative method, where smearing along isochrones (potential reflection points, partly migration noise) is limited to the first Fresnel zone in this technique. This makes the Fresnel volume migration particularly interesting for the imaging of steep faults using only low-fold data. We depeloped a ray-theroretical line drawing migration, which can be considered as the high-frequency approximation of the Fresnel volume migration. The ray-theoretical migration is less time consuming, and, hence, can be used to optimize the migration parameters before the final application of Fresnel volume migration. Another advantage of our ray-theoretical migration is possible wave field separation before and after migration. This feature can be used to optimize the pre-processing of the data before migration. We tested the prestack migration techniques with synthetic data. The methods were then applied to low-fold data collected across the SAFOD drill site near Parkfield, California. We chose five shot gathers with clear phases interpreted as reflected refractions. The phases are not obvious in shot gathers apart from the five shot locations. The resulting images show near-vertical reflector segments at 1-5 km depth, which project close to the surface track of the Waltham Canyon fault running approximately 10 km eastward and parallel to the San Andreas fault. Some more details were resolved in comparison with previous investigations. Based on modeling studies, the imaged features can be interpreted as reflections from a fault with lower internal velocities compared with the

  8. Architecture and tectono-stratigraphic evolution of the intramontane Baza Basin (Bétics, SE-Spain): Constraints from seismic imaging

    Science.gov (United States)

    Haberland, Christian; Gibert, Luis; Jurado, María José; Stiller, Manfred; Baumann-Wilke, Maria; Scott, Gary; Mertz, Dieter F.

    2017-07-01

    The Baza basin is a large Neogene intramontane basin in the Bétic Cordillera of southern Spain that formed during the Tortonian (late Miocene). The Bétic Cordillera was produced by NW-SE oblique convergence between the Eurasian and African Plates. Three seismic reflection lines (each 18 km long; vibroseis method) were acquired across the Baza basin to reveal the architecture of the sedimentary infill and faulting during basin formation. We applied rather conventional CDP data processing followed by first arrival P-wave tomography to provide complementary structural information and establish velocity models for the post-stack migration. These images show a highly asymmetric structure for the Basin with sediments thickening westward, reaching a maximum observed thickness of > 2200 m near the governing Baza Fault zone (BFZ). Three major seismic units (including several subunits) on top of the acoustic basement could be identified. We use stratigraphic information from the uplifted block of the BFZ and other outcrops at the basin edges together with available information from neighboring Bétic basins to tentatively correlate the seismic units to the known stratigraphy in the area. Until new drilling or surface outcrop data is not available, this interpretation is preliminary. The seismic units could be associated to Tortonian marine deposits, and latest Miocene to Pleistocene continental fluvio-lacustrine sediments. Individual strands of the BFZ truncate the basin sediments. Strong fault reflections imaged in two lines are the product of the large impedance contrast between sedimentary fill and basement. In the central part of the Basin several basement faults document strong deformation related to the early stages of basin formation. Some of these faults can be traced up to the shallowest imaged depth levels indicating activity until recent times.

  9. Deep seismic image enhancement with the common reflection surface (CRS) stack method: evidence from the Aravalli-Delhi fold belt of northwestern India

    Science.gov (United States)

    Mandal, Biswajit; Sen, Mrinal K.; Vaidya, Vijaya Rao; Mann, Juergen

    2014-02-01

    Imaging of deep crustal features from narrow-angle deep seismic reflection data, especially from fold belt region, has been a challenging task. The common reflection surface (CRS) stack is an alternative seismic imaging technique for multicoverage reflection data. It is an automatic stacking process, which does not require explicit knowledge of stacking velocity. This CRS stack is especially useful when the data quality is poor and foldage is low. In this paper, we demonstrate an application of the CRS stack to a deep seismic reflection data set acquired across the Aravalli-Delhi fold belt of the northwestern India, which provides a seismic stack section with much improved signal-to-noise ratio. Comparing the conventional common mid-point (CMP) Stack with the CRS stack, we find that the Moho and other crustal reflections have been resolved clearly and the continuity of the reflectors has also been enhanced with the CRS stack method. The major findings from our CRS processing include clear image of the Moho discontinuity below the Marwar Basin and Sandmata Complex, and prominent upper and mid-crustal reflections. Our study for the first time images an extension of crustal-scale Jahazpur thrust below the Sandmata Complex, which becomes listric at the Moho. Some of the crustal features derived in this study were not identified in the earlier investigations using the CMP stack. Our study clearly demonstrates that the CRS stacking method is more appropriate for imaging the crustal and subcrustal structures of the thrust fold belt region than the conventional CMP method, where limited velocity information is available. Crustal thickness across the Proterozoic orogenic Aravalli-Delhi fold belt varies between 38 and 50 km. Global correlation of the seismic results suggests no relation between crustal thickness and age of the crustal block, but it depends on the thermorheological and tectonic history of the region. Palaeosignatures of the Proterozoic subduction and

  10. Use of Southern California Integrated GPS Network (SCIGN) to image post-seismic perturbations of the ionosphere.

    Science.gov (United States)

    Artru, J.; Ducic, V.; Lognonné, P.

    2002-12-01

    Post-seismic perturbations in the atmosphere and ionosphere are induced by solid earth-atmosphere coupling, and can be monitored systematically after large earthquakes, e.g. using Doppler sounding. We will focus here on the capacity of short-scale imagery of the ionosphere offered by dense GPS networks. SCIGN is composed of 250 receivers in Southern California that provide continuous measurements of Total Electron Content along each receiver-satellite. A reconstruction of 2-D vertical electron content maps is performed, with a special attention paid on the accuracy and resolution achieved. We applied our technique to the detection of post-seismic ionospheric perturbations by the Hector Mine Earthquake in Southern California on October 16th, 1999. Two regimes of seismic perturbations are found, the first one related to seismic waves traveling in the ionosphere at about 3 km/s whereas the second regime would be induced by the onset of a gravity wave.

  11. 4D seismic to image a thin carbonate reservoir during a miscible C02 flood: Hall-Gurney Field, Kansas, USA

    Science.gov (United States)

    Raef, A.E.; Miller, R.D.; Franseen, E.K.; Byrnes, A.P.; Watney, W.L.; Harrison, W.E.

    2005-01-01

    The movement of miscible CO2 injected into a shallow (900 m) thin (3.6-6m) carbonate reservoir was monitored using the high-resolution parallel progressive blanking (PPB) approach. The approach concentrated on repeatability during acquisition and processing, and use of amplitude envelope 4D horizon attributes. Comparison of production data and reservoir simulations to seismic images provided a measure of the effectiveness of time-lapse (TL) to detect weak anomalies associated with changes in fluid concentration. Specifically, the method aided in the analysis of high-resolution data to distinguish subtle seismic characteristics and associated trends related to depositional lithofacies and geometries and structural elements of this carbonate reservoir that impact fluid character and EOR efforts.

  12. High-resolution images of tremor migrations beneath the Olympic Peninsula from stacked array of arrays seismic data

    Science.gov (United States)

    Peng, Yajun; Rubin, Allan M.

    2016-02-01

    Episodic tremor and slip (ETS) in subduction zones is generally interpreted as the manifestation of shear slip near the base of earthquake-generating portion of the plate interface. Here we devise a new method of cross-correlating stacked Array of Arrays seismic data that provides greatly improved tremor locations, a proxy for the underlying slow slip, beneath the Olympic Peninsula. This increased resolution allows us to image many features of tremor that were not visible previously. We resolve the spatial transition between the rupture zones of the inter-ETS and major ETS episodes in 2010, suggesting stress redistribution by the former. Most tremor migrations propagated along the slowly advancing main tremor front during both the inter-ETS and the major ETS episodes, even though the main front of the former deviated strongly from its usual (along-dip) orientation. We find a distinct contrast between along-dip rupture extent of large-scale rapid tremor reversals (RTRs) to the south and that to the north in our study region that anticorrelates with the locations of inter-ETS events. These RTRs originate from the main front, similar to smaller-scale RTRs previously observed at high-resolution, and many start by propagating along the main front. This could be consistent with RTRs being triggered by a cascading failure of brittle asperities. After initiation, the RTRs repeatedly occupy the same source region, and the early repetitions appear not to be tidally driven. Their stress drop may come from continuing fault weakening processes within the tremor zone, or loading by aseismic slip in surrounding regions.

  13. New CHIRP Seismic Images of Submarine Terraces Around San Clemente Island Constrain its Tectonic Evolution and Geomorphology

    Science.gov (United States)

    Derosier, B.; Driscoll, N. W.; Graves, L. G.; Holmes, J. J.; Nicholson, C.

    2015-12-01

    New High-resolution CHIRP data acquired on the R/V Point Loma in 2015 imaged flights of submarine Terraces off of San Clemente Island. Outboard terraces at ~90 to 115 m below sea level (using a nominal water column velocity of 1500 m/s) may correlate with the Marine Isotope Stage 2 (MIS2); the last glacial maximum (LGM). Submarine terraces were mapped on both the gentle sloping windward (west) and the steeper sloping leeward (east) sides of San Clemente Island. The submarine terrace's depths are roughly the same on both sides of the island and suggest uniform uplift. These findings are consistent with the onshore mapping of terraces on San Clemente Island. The island exhibits a marked asymmetry both onshore and offshore, with a steeply dipping eastern margin and a gentle dipping western margin. This marked asymmetry cannot be explained by the uniform uplift of San Clemente Island based on the observed onshore and offshore terraces. In our model, the asymmetry of San Clemente Island records an early phase of predominantly extensional deformation during the middle to late Miocene, with San Clemente Island being the footwall block. Such asymmetry is also observed across the 30-mile bank and the Coronado Bank with steeply dipping eastern margins and gently dipping western margins. New regional multichannel seismic data and reprocessed industry data show no sediment divergence along the hangingwall blocks, which suggests that extensional deformation predated sedimentation. Finally, the elevations of the terraces on San Clemente Island are similar to those observed on the mainland from Baja California to Newport Beach, requiring any tectonic model fitting the uplift pattern of mainland terraces to account for the similar elevations not only along the margin but also across the margin out to 70 nautical miles offshore.

  14. Seismic Fault Preserving Diffusion

    CERN Document Server

    Lavialle, Olivier; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-01-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  15. Seismic fault preserving diffusion

    Science.gov (United States)

    Lavialle, Olivier; Pop, Sorin; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-02-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non-linear diffusion filtering leading to a better detection of seismic faults. The non-linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  16. 2D and 3D imaging of the metamorphic carbonates at Omalos plateau/polje, Crete, Greece by employing independent and joint inversion on resistivity and seismic data

    Directory of Open Access Journals (Sweden)

    Pangratis Pangratis

    2012-07-01

    Full Text Available A geophysical survey carried out at Omalos plateau in Chania, Western Crete, Greece employed seismic as well as electrical tomography methods in order to image karstic structures and the metamorphic carbonates (Tripali unit and Plattenkalk group which are covered by post-Mesozoic deposits (terra rossa, clays, sands and gravels. The geoelectrical sections image the metamorphic carbonates which exhibit a highly irregular relief. At the central part of the plateau the thickness of post-Mesozoic deposits (terra rossa, clays, sands and gravels ranges from 40-130 m. A 3D resistivity image was generated by inverting resistivity data collected on a grid to the south west at the Omalos plateau. The 3D resistivity image delineated a karstic structure at a depth of 25 to 55 m. On the same grid the depth to the top of the karstified carbonates ranges from 25-70 m. This is also verified on the resistivity sections and seismic velocity sections along lines 5 and 7 of the above mentioned grid which are derived from the cross-gradients joint inversion.

  17. Multiple Suppression and Imaging of Marine Seismic Data from The Shallow Water Area in Southern East China Sea Shelf Basin

    Science.gov (United States)

    Shi, J.; Luan, X.; Yang, C.

    2015-12-01

    Neither surface-related multiple elimination(SRME) nor predictive de-convolution method is effective to suppress the multiple of marine seismic data from the shallow water area. The former method needs the accurate reflection of seafloor, which is mixed with the direct wave in the near offset range. The other one could probably lose the primary wave when applied to the shallow water seismic data. We introduced the new method: deterministic water-layer de-multiple method (DWD) which is capable for the poor extrapolate result of near-offset traces. Firstly, the data shifts as downward continuation in tau-p domain with a water-layer period and the multiple model will be obtained. Then, the original seismic subtracts adaptively with the multiple model. Finally, we would get the de-multiple data after inverse tau-p transform. Marine seismic real data is from southern part of East China Sea Shelf Basin. This area has become the potential target for marine hydrocarbon exploration, it is located in the junction of the Eurasian plate pacific plate and Indian plate. Because the average water depth is less than 100 meters, seismic data contains abundant of multiple, especially the surface-related multiple. As a result it is difficult to distinguish the strata structure clearly. We used DWD approach to remove the water-layer multiple, cut off the seafloor reflection events and then suppressed the residual surface-related multiple by the traditional SRME. At last , the radon transform was applied to eliminate the multiple with long period . With these steps, we suppressed the multiple of marine seismic data from this area effectively. After multiple is removed , we acquired more accurate velocity to build the velocity model of migration. With the pre-stack migration technique, reflections from each geological period are shown clearly in the seismic section. This work was supported by the National Science Foundation of China(grant no. 41476053).

  18. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes

    Science.gov (United States)

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo

    2017-04-01

    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer

  19. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging

    Science.gov (United States)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.

    2012-12-01

    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the

  20. Fractal analysis of INSAR and correlation with graph-cut based image registration for coastline deformation analysis: post seismic hazard assessment of the 2011 Tohoku earthquake region

    Directory of Open Access Journals (Sweden)

    P. K. Dutta

    2012-04-01

    Full Text Available Satellite imagery for 2011 earthquake off the Pacific coast of Tohoku has provided an opportunity to conduct image transformation analyses by employing multi-temporal images retrieval techniques. In this study, we used a new image segmentation algorithm to image coastline deformation by adopting graph cut energy minimization framework. Comprehensive analysis of available INSAR images using coastline deformation analysis helped extract disaster information of the affected region of the 2011 Tohoku tsunamigenic earthquake source zone. We attempted to correlate fractal analysis of seismic clustering behavior with image processing analogies and our observations suggest that increase in fractal dimension distribution is associated with clustering of events that may determine the level of devastation of the region. The implementation of graph cut based image registration technique helps us to detect the devastation across the coastline of Tohoku through change of intensity of pixels that carries out regional segmentation for the change in coastal boundary after the tsunami. The study applies transformation parameters on remotely sensed images by manually segmenting the image to recovering translation parameter from two images that differ by rotation. Based on the satellite image analysis through image segmentation, it is found that the area of 0.997 sq km for the Honshu region was a maximum damage zone localized in the coastal belt of NE Japan forearc region. The analysis helps infer using matlab that the proposed graph cut algorithm is robust and more accurate than other image registration methods. The analysis shows that the method can give a realistic estimate for recovered deformation fields in pixels corresponding to coastline change which may help formulate the strategy for assessment during post disaster need assessment scenario for the coastal belts associated with damages due to strong shaking and tsunamis in the world under disaster risk

  1. High-resolution seismic reflection/refraction images near the outer margin of the Chesapeake Bay impact crater, York-James Peninsula, southeastern Virginia

    Science.gov (United States)

    Catchings, R.D.; Saulter, D.E.; Powars, D.S.; Goldman, M.R.; Dingler, J.A.; Gohn, G.S.; Schindler, J.S.; Johnson, G.H.

    2001-01-01

    faults and fractures in basement are not well determined. To better determine some of the unknowns associated with the CBIC, we conducted a 350-m-long, high-resolution seismic reflection and refraction survey, referred to here as the CBIC-1 seismic survey, on the York-James Peninsula in June 1999. In particular, we attempted to: better define the outer margin of the CBIC, understand lateral variations in the stratigraphic sequence, help assess potential hazards associated with regional seismicity, and determine acquisition parameters needed for shallow-depth seismic imaging in the Chesapeake Bay area.

  2. Integrated Seismic Arrays for Imaging the North China Craton: the ¡°Destruction of the North China Craton¡± Project

    Science.gov (United States)

    Chen, Y. J.; Chen, L.; Zheng, T.; Zhou, S.

    2007-12-01

    imaging results of the crustal and upper mantle structures this integrated seismic arrays will provide the fundamental observational information to the overarching goal of understanding the ¡°Destruction of the North China cration¡±, which is one of the important tectonic processes in the evolution of the continents on the earth.

  3. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: Geothermal Resources Council Transactions, 35, 7 pp. Preprint at http://crack.seismo.unr.edu/geothermal/Eisses-GRCpaper-sm.pdf The Pyramid Lake fault zone lies within a vitally important area of the northern Walker Lane where not only can transtension can be studied through a complex arrangement of strike-slip and normal faults but also geothermal activity can be examined in the extensional regime for productivity. This study used advanced and economical seismic methods in attempt to develop the Paiute Tribe’s geothermal reservoir and to expand upon the tectonics and earthquake hazard knowledge of the area. 500 line-kilometers of marine CHIRP data were collected on Pyramid Lake combined with 27 kilometers of vibrator seismic on-land data from the northwest side of the basin were collected in 2010 that highlighted two distinct phases of faulting. Preliminary results suggest that the geothermal fluids in the area are controlled by the late Pleistoceneto Holocene-aged faults and not through the mid-Miocene-aged conduits as originally hypothesized.

  4. How the structure of a continental margin affects the development of a fold and thrust belt. 2: Imaging basement structures with seismic velocities and seismicity in south-central Taiwan

    Science.gov (United States)

    Biete, Cristina; Brown, Dennis; Alvarez-Marron, Joaquina; Camanni, Giovanni; Kuo-Chen, Hao; Ho, Chun-Wei

    2016-04-01

    We investigate the geophysical signature within the south-central Taiwan fold and thrust belt of the reactivation of pre-existing structures developed on the Eurasian margin. Seismic tomography (P-wave) and earthquake hypocenters are combined to trace structures mapped on the margin offshore western Taiwan into the fold and thrust belt. The extensional tectonic history of the margin began in the Early Eocene and culminated in the Late Eocene to Early Oligocene with sea-floor spreading and the opening of the South China Sea. Several NE trending basins developed during the rifting of a pre-Cenozoic basement and these were filled with Eocene sediments. Further extension on the outer margin took place during the Middle to Late Miocene, forming basins that are now involved in the Taiwan deformation. Finally, the margin's transition from the platform to the slope takes place across south-central Taiwan and is oriented at a high angle to the active deformation front. We define the basement as pre-Eocene rocks and use a P-wave velocity (Vp) of 5.2 km/s as a proxy for the interface between them and their younger cover. This Vp interface is characterized by highs and lows that can be interpreted to image basement topography whose possible causes we investigate here. In the Hsuehshan Range there is a pronounced shallowing of the 5.2 km/s surface across the Shuilikeng fault. It is accompanied by an east-dipping cluster of seismicity down to more than 25 km depth, and forming what appears to be a crustal ramp across which the Eocene-age Hsuehshan Basin is being inverted. Westward, the 5.2 km/s interface forms a high called Paikang basement high, the southern flank of which is the on land projection of the Mesozoic basement shelf break. Southward, there is an increase in seismicity and topography that is associated to a NE-SW oriented lateral structure in the fold and thrust belt. South of this lateral structure, beneath the Alishan Range, a shallowing of the 5.2 km/s interface

  5. Tomographic Imaging of a New Seismic Zone in Northern Taiwan: Implications for Crustal Magnetism and Tectonic Inheritance

    Science.gov (United States)

    Cheng, Win-Bin; Chang, Gen-Sin; Hsu, Shu-Kun

    2016-04-01

    To the west of 121°E, we found that the northern South China Sea magnetic anomaly in central Taiwan is coincident with high seismic velocity zone derived from a joint analysis of gravity anomaly and seismic travel time data. To the east of 121°E, we found a new seismic zone which remains enigmatic because of its apparent relationship with both the emplacement of high magnetic anomaly and termination of Okinawa Trough. In order to understand the new seismic zone and breakup of the high magnetic anomaly, a joint analysis of gravity anomaly and seismic travel time data have been used to construct three-dimensional velocity structure for the study area. Earthquake data were collected by the Central Weather Bureau Seismological Network from 2000 to 2012. A modified velocity model obtained by previously local earthquake tomography, was used to construct an initial three-dimensional gravity model, using a linear velocity-density relationship. To derive a crustal velocity-density model that accounts for both types of observations, this study performed a sequential inversion of traveltime and gravity data. The main features of our three-dimensional velocity model are: (1) an uplifted zone with velocity greater than 6.5 km/s is observed in the lower crust, (2) the width and the shape of the uplifted zone is found strongly correlated with the high magnetic belt, (3) the trend of the high-velocity zone turns from NE to N in central Taiwan, where the feature of high magnetic was truncated. This study suggested that integration of seismic data with new perspectives on crustal magnetism will provide a better understanding of terrane accretion, rifting processes, and passive margin formation in the Taiwan region.

  6. High-resolution seismic reflection and refraction imaging across the epicentral area of the 2009, Mw 6.1 Aquila (Italy) earthquake.

    Science.gov (United States)

    Bruno, Pier Paolo G.; Villani, Fabio; Improta, Luigi; Castiello, Antonio; Pucci, Stefano; Civico, Riccardo; Pantosti, Stefania

    2017-04-01

    We present for the first time the results of high-resolution seismic reflection profiling aimed at imaging the shallow structure of Paganica and Bazzano Quaternary sub-basins across the shallow segments of the Paganica-S. Demetrio Fault, which has been indicated as the causative fault of the 6th April 2009 (Mw 6.1) L'Aquila earthquake (central Italy). The seismic data were collected along five dense and partly overlapping wide-aperture profiles, which run SW-NE for a total length of 6 km, mostly in the hanging wall of the Paganica-S. Demetrio Fault. To evaluate the optimal seismic reflection imaging strategy, we applied three different processing techniques to the dense, wide-aperture acquired data: a conventional CMP reflection processing; pre-stack depth migration (PSDM); and finally the Common-Reflection-Surface (CRS) stack technique. PSDM has proven capable of overcoming many of the typical drawbacks of CMP processing in the presence of complex subsurface velocity distributions. However, PSDM is highly sensitive to the accuracy of the background velocity model. Despite the use of an acquisition geometry effective for refraction tomography (e.g. dense wide-aperture), we were able to estimate a high-resolution background tomographic model suitable for migration purpose for Bazzano profile, whereas this was not the case for Paganica profile, due to greater structural complexity and a higher level of ambient noise. In these settings, the data-driven and velocity-independent CRS method provided a feasible alternative for seismic imaging in Paganica sub-basin. Integration of reflection seismology with refraction tomography and with new surface, paleoseismological and borehole data during interpretation provides new insights on the shallow architecture of the 2009 Mw 6.1 L'Aquila earthquake fault-system and related basins. Bazzano sub-basin is about 50-100 m deeper than Paganica sub-basin. The latter is offset by a large number of NE and SW-dipping faults affecting

  7. Seismostratigraphy and tectonic architecture of the Carboneras Fault offshore based on multiscale seismic imaging: Implications for the Neogene evolution of the NE Alboran Sea

    Science.gov (United States)

    Moreno, Ximena; Gràcia, Eulàlia; Bartolomé, Rafael; Martínez-Loriente, Sara; Perea, Héctor; de la Peña, Laura Gómez; Iacono, Claudio Lo; Piñero, Elena; Pallàs, Raimon; Masana, Eulàlia; Dañobeitia, Juan José

    2016-10-01

    In the SE Iberian Margin, which hosts the convergent boundary between the European and African Plates, Quaternary faulting activity is dominated by a large left-lateral strike-slip system referred to as the Eastern Betic Shear Zone. This active fault system runs along more than 450 km and it is characterised by low to moderate magnitude shallow earthquakes, although large historical events have also occurred. The Carboneras Fault is the longest structure of the Eastern Betic Shear Zone, and its southern termination extends further into the Alboran Sea. Previously acquired high-resolution data (i.e. swath-bathymetry, TOBI sidescan sonar and sub-bottom profiler) show that the offshore Carboneras Fault is a NE-SW-trending upwarped zone of deformation with a length of 90 km long and a width of 0.5 to 2 km, which shows geomorphic features typically found in subaerial strike-slip faults, such as deflected drainage, pressure ridges and "en echelon" folds. However, the neotectonic, depth architecture, and Neogene evolution of Carboneras Fault offshore are still poorly known. In this work we present a multiscale seismic imaging of the Carboneras Fault (i.e. TOPAS, high-resolution multichannel-seismic reflection, and deep penetration multichannel-seismic reflection) carried out during three successive marine cruises, from 2006 to 2010. The new dataset allowed us to define a total of seven seismostratigraphic units (from Tortonian to Late Quaternary) above the basement, to characterise the tectonic architecture and structural segmentation of the Carboneras Fault, and to estimate its maximum seismic potential. We finally discuss the role of the basement in the present-day tectonic evolution of the Carboneras Fault, and explore the northern and southern terminations of the fault and how the strain is transferred to nearby structures.

  8. Development and testing of a two-dimensional ultrasonic laboratory model system for seismic imaging of heterogeneous structures

    Science.gov (United States)

    Mo, Yike; Karaman, Hakki; Greenhalgh, Stewart

    2014-05-01

    dispersion curves were experimentally determined for both modes in aluminium, brass and perspex plates. For the heterogeneous models, we collected reflection data for various source positions and applied various processing techniques such as AGC, filtering, deconvolution, and pre-stack Kirchhoff migration. Some muting and pre-processing was necessary to attenuate the refractions, guided waves and surface waves produced by the low velocity near surface layer (perspex) which has a large impedance contrast with the host rock (aluminium). Pre-stack migration was able to resolve the two main buried interfaces when the surface layer was flat but for the variable thickness irregular surface layer the interfaces could not be properly imaged. First-arrival tomography was implemented to the crosshole seismic data set and yielded the correct velocity distribution. Unfortunately, the presence of anti-symmetric Lamb waves in this data precluded the application of 2D full waveform inversion. The VSP data enhanced the imaging of the near-surface layer as well as providing additional control for the reflection experiments.

  9. Seismic detection of meteorite impacts on Mars

    OpenAIRE

    Teanby, N.A.; Wookey, J.

    2011-01-01

    Abstract Meteorite impacts provide a potentially important seismic source for probing Mars? interior. It has recently been shown that new craters can be detected from orbit using high resolution imaging, which means the location of any impact-related seismic event could be accurately determined thus improving the constraints that could be placed on internal structure using a single seismic station. This is not true of other seismic sources on Mars such as sub-surface faulting, whic...

  10. 3D Seismic Reflection Images of An Off-Axis Melt Lens And Its Associated Upper Crust Around 9°39'N, East Pacific Rise

    Science.gov (United States)

    Han, S.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimović, M. R.

    2011-12-01

    During the 3D multi-channel seismic (MCS) survey MGL0812 aboard the R/V Langseth, several mid-crust reflectors were discovered off axis on both flanks of the East Pacific Rise from 9°35.6-57.0'N. The reversed polarity of these off-axis reflections with respect to the seafloor and Moho reflections and the high attenuation of the crust detected beneath two of them in the north suggest that they arise from melts residing at the mid-crust level outside the axial low velocity zone (Canales et al. 2010). These off-axis melt lenses (OAML) are probable sites of off-axis volcanism and potential heat sources for localized hydrothermal circulation on the ridge flanks. We focus here on a prominent OAML discovered on the eastern flank around 9°39'N. Results from 1D travel time modeling and 2D streamer tomography of downward continued shot gathers show the presence of a thinner seismic layer 2A above the center of the OAML compared with its surrounding crust. We attribute this thinning to the effects of alteration associated with localized off-axis hydrothermal circulation driven by the OAML, where precipitation of secondary minerals infills pore space within the lower basalt section, leading to increased seismic velocities and thereby converting the lowermost seismic layer 2A into seismic layer 2B. To further constrain the respective 3D geometries of the OAML and the AMC, their spatial relations, and the spatial extent and shape of the region of altered upper crust associated with the OAML, we conduct 3D processing of a small MCS grid that encompasses most of this OAML, aimed at imaging both on- and off-axis melt lens events and the base of seismic layer 2A. This grid covers an ~4 km x 24 km area centered on the ridge crest between ˜9°37.5'-40'N and extending on both flanks, within which a third order ridge axis discontinuity and two high temperature hydrothermal vents identified during Alvin dives in 1991 and 1994 are present. The data were recorded by four 468-channel

  11. Subduction-to-Strike-Slip-Transition in the Southeastern Caribbean Imaged Using Deeply-Penetrating Seismic Reflection Lines and Tomography

    Science.gov (United States)

    Alvarez, T.; Vargas, C. A.; Mann, P.; Latchman, J.

    2010-12-01

    The subduction-to-strike-slip transition (SSST) zone of the southeastern Caribbean is one of thirty identified locations where active subduction and strike-slip tectonic styles transition along strongly curved and seismogenic plate boundaries. This SSST zone provides a field laboratory for understanding how sedimentary basins, faults, basement areas and subducted slabs change from an area of dominantly westward-directed subduction beneath the Lesser Antilles arc to an area of dominantly east-west strike-slip faulting along northern South America. We use two geophysical data types to image the lithosphere and study the relationships between lithospheric scale deformation and basin scale response to the transitional tectonic configuration. Interpretation of deeply-penetrating seismic reflection lines recorded down to 16 seconds two-way time, or depths of about 18 km, is combined with tomographic slices of the upper mantle and lower crust which were constructed using the coda method on ~ 700 earthquakes in the depth range of 70-250 km. Results from the tomographic study are compared with nine seismogenic zones in the southeast Caribbean SSST zone which are defined based on the depth, and focal mechanism of earthquake events. These zones include: (1) the Paria slab tear region; (2) Caribbean/South American strike-slip zone; (3) Hinge area separating continental margin in Trinidad from Tobago forearc basin; (4) Central Range -strike-slip fault zone, onshore Trinidad; (5) Underthrust zone of South American beneath southern onshore and offshore eastern Trinidad, including the prolific hydrocarbon-bearing Columbus Basin; (6) Venezuela foreland and fold-thrust belt; (7) flexural bulge area of oceanic crust located east of Barbados accretionary prism (BAP); (8) Subducted slab beneath the stabilized and supracomplex zones of the BAP; (9) Inner accretionary prism of the BAP. Primary controls on the seismogenic character of each curving tectonic belt include the strike of the

  12. Seismically Imaged Architecture of the Chicxulub Impact Crater: Preliminary Results From the Last Cruise of the R/V Maurice Ewing

    Science.gov (United States)

    Gulick, S. S.; Barton, P. J.; Christeson, G.; Morgan, J. V.; Warner, M. R.; Urrutia-Fucugauchi, J.; Melosh, H. J.; Rebolledo-Vieyra, M.; McDonald, M.; Vermeesch, P. M.; Surendra, A. T.; Goldin, T.; Mendoza, K.; Sears, T. J.

    2005-05-01

    A new suite of multi-channel seismic reflection lines image key structural elements of the 195 km wide Chicxulub Impact Crater, the best preserved, large impact crater on Earth. The seismic transects, acquired using the R/V Maurice Ewing in January and February 2005, include regional radial lines (dip-oriented), a regional constant-radius profile (strike-oriented), and a dense grid of lines spaced 2 km by 5 km apart near the center of the crater. The radial lines image, from the exterior to interior, the crater rings, crater rim, slump blocks, and peak ring providing an enhanced look at the 3-D architecture of Chicxulub. The constant-radius profile, together with the radial lines, was designed to study any radial variations in deformation, or possibly ejecta, which may lend insight into impact angle and direction. The grid of lines near the crater center examine the structural relationships between the slump blocks, peak ring, and central uplift which according to impact modeling all formed within minutes of the Cretaceous-Tertiary impact. The regional lines, both radial and the constant radius profile, largely confirm the observations of the regional seismic lines collected in 1996. Both datasets show the existence of at least one ring outside of the crater rim and an elevated crater rim with as much as 500 m of offset between the top of the crater rim and the KT boundary within the crater that was subsequently buried by ~1 km of Tertiary sediments. Our preliminary interpretations from the seismic grid near the crater center yield a general architecture of the central crater that includes a 10-15 km wide, doughnut-shaped peak ring that lies ~25 km from the crater center. Underlying the peak ring are sediments with inconsistent reflectivity (possibly breccia), underlain by inward slumped blocks of varying widths, and underlain by ~10 km thick package of reflective lower crust ending with the Moho. The slump blocks, where imaged, underlie the peak ring suggesting

  13. Near-Surface Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, From Seismic Imaging

    Science.gov (United States)

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Steedman, Clare

    2007-01-01

    reservoirs, pipelines, and flood-protection facilities maintained by SCVWD. As one component of these joint studies, the USGS acquired an approximately 10-km-long, high-resolution, combined seismic reflection/refraction transect from the Santa Cruz Mountains to the central SCV in December 2000 (Figs. 1 and 2a,b). The overall seismic investigation of the western Santa Clara Valley also included an ~18-km-long, lower-resolution (~50-m sensor) seismic imaging survey from the central Santa Cruz Mountains to the central part of the valley (Fig. 1). Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI). Results of the high-resolution investigation, referred to as SCSI-HR, are presented in this report, and Catchings et al. (2006) present results of the low-resolution investigation (SCSI-LR) in a separate report. In this report, we present data acquisition parameters, unprocessed and processed seismic data, and interpretations of the SCSI-HR seismic transect.

  14. Seismic amplitude recovery with curvelets

    NARCIS (Netherlands)

    Moghaddam, P.P.; Herrmann, F.J.; Stolk, C.C.

    2007-01-01

    A non-linear singularity-preserving solution to the least-squares seismic imaging problem with sparseness and continuity constraints is proposed. The applied formalism explores curvelets as a directional frame that, by their sparsity on the image, and their invariance under the imaging operators,

  15. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    Science.gov (United States)

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-06-07

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.

  16. Linking geomorphology and high resolution seismic imaging for defining the evolution of a formerly glaciated valley in Vinschgau/Val Venosta, Eastern Italian Alps.

    Science.gov (United States)

    Maraio, Stefano; Bruno, Pier Paolo; Brardinoni, Francesco; Picotti, Vincenzo; Cucato, Maurizio; Morelli, Corrado; Mair, Volkmar

    2017-04-01

    Understanding the sedimentary architecture of Quaternary valley fills, in relation to past climate changes, represents an essential condition for estimating the evolution of the contemporary mountain landscape. Mountain drainage basins are considered as systems that are largely affected by environmental changes, during glacial-interglacial transitions and consequently represent natural archives that record the main processes depending on climate variations. In this paper, we aim to reconstruct the post-Last Glacial Maximum (LGM) evolution of a cross-sectional transect of the Venosta Valley (Eastern Italian Alps), with a special focus on the confluences between the Adige River and its tributaries Gadria-Strimm and Lasa streams. We acquired and processed four high-resolution dense, wide-aperture seismic profiles to obtain seismic data of quality and resolution adequate to 1) study the internal architecture of the debris-flow fans; 2) delineate the morphology of the bedrock valley bottom and the associated sedimentary fills above it; and 3) evaluate the geometric relationships between the debris-flow fans and the hosting valley fills. We integrated the results of the high-resolution seismic imaging with existing speleothem and radiocarbon dating, and with four newly acquired sedimentary cores and about twenty new radiocarbon dates. The new set of radiocarbon ages, allowed us to define timelines across the seismic imaging, and consequently across the stratigraphic profiles to calculate average sedimentation rates between the dated samples, within each core. Our results show that the onset of paraglacial sediment evacuation from the three tributary systems was primarily controlled by basin aspect, a proxy for incoming solar radiation that typically affects the timing and pace of deglaciation. We further show that the debris-flow sediment flux associated with the formation of the Gadria fan, the best-constrained tributary system in the study area, describes a primary

  17. Sensitivity of Seismic Interferometry and Conventional Reflection Seismics at a Landfil to Processing and Survey Errors

    NARCIS (Netherlands)

    Konstantaki, L.A.; Draganov, D.S.; Heimovaara, T.J.; Ghose, R.

    2013-01-01

    Understanding how sensitive the seismic method is to errors that can occur during a seismic survey or during the processing of the seismic data is of high importance for any exploration geophysical project. Our aim is to image the subsurface of a landfill, which is typically a heterogeneous system

  18. High-Resolution Seismic Reflection and Refraction Imaging of the Hayward Fault in Fremont, Alameda County, California

    Science.gov (United States)

    Everson, E. D.; Rymer, M. J.; Goldman, M. R.; Catchings, R. D.

    2007-12-01

    In July 2007, the U.S. Geological Survey acquired a 60-m-long seismic reflection and refraction profile across the main trace of the Hayward fault in Fremont Central Park, Fremont, California. The profile was designed to determine the geometry, seismic velocities, and possible structural complexities of the fault. The study was along a part of the surface rupture of the 1868 M 7.0 Hayward earthquake. We used single-element, 40-Hz vertical geophones placed at 1-m intervals along the profile with 0.5-m lateral offset from the shot points, also with 1-m intervals. Seismic sources were generated by multiple sledgehammer blows at each shot point. Data were recorded unfiltered in the field on a Geometrics Strataview RX-60 seismograph at a sampling rate of 0.5 ms for 2 s. Geophone locations were measured in 3D using differential GPS. We developed a velocity model using the Hole (1992) code to invert P-wave first arrivals of the refraction data. Seismic P-wave velocities range from about 200 m/s near the surface to approximately 800 m/s at a depth of 13 to 16 m. The velocity model was then applied to the reflection data to develop an unmigrated common depth point (CDP) stack. The reflection data indicate the presence of at least three fault strands in an approximately 20-m-wide zone. We believe the three strands define an upwardly flaring 'flower structure', with the central strand being the main strand of the Hayward fault. The three strands project to merge at a depth of about 150 m; the overall dip of the fault zone in the upper 100 m is to the northeast, at about 88 degrees.

  19. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    KAUST Repository

    Sana, Furrukh

    2016-06-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\\\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  20. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    Science.gov (United States)

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    The Imperial and Coachella Valleys are being formed by active plate-tectonic processes. From the Imperial Valley southward into the Gulf of California, plate motions are rifting the continent apart. In the Coachella Valley, the plates are sliding past one another along the San Andreas and related faults (fig. 1). These processes build the stunning landscapes of the region, but also produce damaging earthquakes. Rupture of the southern section of the San Andreas Fault (SAF), from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard that California will face in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of infrastructure (freeways, aqueducts, power, petroleum, and communication lines) that might bring much of southern California to a standstill. As part of the nation’s efforts to avert a catastrophe of this magnitude, a number of projects have been undertaken to more fully understand and mitigate the effects of such an event. The Salton Seismic Imaging Project (SSIP), funded jointly by the National Science Foundation (NSF) and the U.S. Geological Survey (USGS), seeks to understand, through seismic imaging, the structure of the Earth surrounding the SAF, including the sedimentary basins on which cities are built. The principal investigators (PIs) of this collaborative project represent the USGS, Virginia Polytechnic Institute and State University (Virginia Tech), California Institute of Technology (Caltech), Scripps Institution of Oceanography (Scripps), University of Nevada, Reno (UNR), and Stanford University. SSIP will create images of underground structure and sediments in the Imperial and Coachella Valleys and adjacent mountain ranges to investigate the earthquake hazards posed to cities in this area. Importantly, the images will help determine the underground geometry of the SAF, how deep the sediments are, and how fast

  1. Landslide seismic magnitude

    Science.gov (United States)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  2. Seismic Creep

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden erupture associated with an earthquake. It is a usually slow deformation...

  3. Seismic seiches

    Science.gov (United States)

    McGarr, Arthur; Gupta, Harsh K.

    2011-01-01

    Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic waves from an earthquake.

  4. Infrared dark clouds on the far side of the Galaxy

    CERN Document Server

    Giannetti, A; Leurini, S; Urquhart, J; Csengeri, T; Menten, K M; Bronfman, L; van der Tak, F F S

    2015-01-01

    Context: Infrared dark clouds are the coldest and densest portions of giant molecular clouds. The most massive ones represent some of the most likely birthplaces for the next generation of massive stars in the Milky Way. Because a strong mid-IR background is needed to make them appear in absorption, they are usually assumed to be nearby. Aims: We use THz absorption spectroscopy to solve the distance ambiguity associated with kinematic distances for the IR-dark clouds in the TOP100 ATLASGAL sample, a flux-limited selection of massive clumps in different evolutionary phases of star formation. Methods: The para-H2O ground state transition at 1113.343 GHz, observed with Herschel/HIFI, was used to investigate the occurrence of foreground absorption along the line of sight directly towards infrared-dark clouds. Additional consistency checks were performed using MALT90 and HiGAL archival data and targeted Mopra and APEX spectroscopic observations. Results: We report the first discovery of five IRDCs in the TOP100 ly...

  5. Science Fiction at the Far Side of Technology

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum

    2017-01-01

    This chapter explores the relationship between scientific discussions in evolutionary biology and the (re-)construction of fictional settings based upon evolutionary knowledge claims that are surrounded with controversy. Exploring Jean-Jacques Annaud’s problems with evolutionary reconstruction in...

  6. High-resolution seismic reflection/refraction imaging from Interstate 10 to Cherry Valley Boulevard, Cherry Valley, Riverside County, California: implications for water resources and earthquake hazards

    Science.gov (United States)

    Gandhok, G.; Catchings, R.D.; Goldman, M.R.; Horta, E.; Rymer, M.J.; Martin, P.; Christensen, A.

    1999-01-01

    This report is the second of two reports on seismic imaging investigations conducted by the U.S. Geological Survey (USGS) during the summers of 1997 and 1998 in the Cherry Valley area in California (Figure 1a). In the first report (Catchings et al., 1999), data and interpretations were presented for four seismic imaging profiles (CV-1, CV-2, CV-3, and CV-4) acquired during the summer of 1997 . In this report, we present data and interpretations for three additional profiles (CV-5, CV-6, and CV-7) acquired during the summer of 1998 and the combined seismic images for all seven profiles. This report addresses both groundwater resources and earthquake hazards in the San Gorgonio Pass area because the shallow (upper few hundred meters) subsurface stratigraphy and structure affect both issues. The cities of Cherry Valley and Beaumont are located approximately 130 km (~80 miles) east of Los Angeles, California along the southern alluvial fan of the San Bernardino Mountains (see Figure 1b). These cities are two of several small cities that are located within San Gorgonio Pass, a lower-lying area between the San Bernardino and the San Jacinto Mountains. Cherry Valley and Beaumont are desert cities with summer daytime temperatures often well above 100 o F. High water usage in the arid climate taxes the available groundwater supply in the region, increasing the need for efficient management of the groundwater resources. The USGS and the San Gorgonio Water District (SGWD) work cooperatively to evaluate the quantity and quality of groundwater supply in the San Gorgonio Pass region. To better manage the water supplies within the District during wet and dry periods, the SGWD sought to develop a groundwater recharge program, whereby, excess water would be stored in underground aquifers during wet periods (principally winter months) and retrieved during dry periods (principally summer months). The SGWD preferred a surface recharge approach because it could be less expensive than a

  7. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    Science.gov (United States)

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  8. 3D reflection seismic imaging at the 2.5 km deep COSC-1 scientific borehole, central Scandinavian Caledonides

    Science.gov (United States)

    Hedin, Peter; Almqvist, Bjarne; Berthet, Théo; Juhlin, Christopher; Buske, Stefan; Simon, Helge; Giese, Rüdiger; Krauß, Felix; Rosberg, Jan-Erik; Alm, Per-Gunnar

    2016-10-01

    The 2.5 km deep scientific COSC-1 borehole (ICDP 5054-1-A) was successfully drilled with nearly complete core recovery during spring and summer of 2014. Downhole and on-core measurements through the targeted Lower Seve Nappe provide a comprehensive data set. An observed gradual increase in strain below 1700 m, with mica schists and intermittent mylonites increasing in frequency and thickness, is here interpreted as the basal thrust zone of the Lower Seve Nappe. This high strain zone was not fully penetrated at the total drilled depth and is thus greater than 800 m in thickness. To allow extrapolation of the results from downhole logging, core analysis and other experiments into the surrounding rock and to link these with the regional tectonic setting and evolution, three post-drilling high-resolution seismic experiments were conducted in and around the borehole. One of these, the first 3D seismic reflection land survey to target the nappe structures of the Scandinavian Caledonides, is presented here. It provides new information on the 3D geometry of structures both within the drilled Lower Seve Nappe and underlying rocks down to at least 9 km. The observed reflectivity correlates well with results from the core analysis and downhole logging, despite challenges in processing. Reflections from the uppermost part of the Lower Seve Nappe have limited lateral extent and varying dips, possibly related to mafic lenses or boudins of variable character within felsic rock. Reflections occurring within the high strain zone, however, are laterally continuous over distances of a kilometer or more and dip 10-15° towards the southeast. Reflections from structures beneath the high strain unit and the COSC-1 borehole can be followed through most of the seismic volume down to at least 9 km and have dips of varying degree, mainly in the east-west thrust direction of the orogen.

  9. Midget Seismic in Sandbox Models

    Science.gov (United States)

    Krawczyk, C. M.; Buddensiek, M. L.; Philipp, J.; Kukowski, N.; Oncken, O.

    2008-12-01

    Analog sandbox simulation has been applied to study geological processes to provide qualitative and quantitative insights into specific geological problems. In nature, the structures, which are simulated in those sandbox models, are often inferred from seismic data. With the study introduced here, we want to combine the analog sandbox simulation techniques with seismic physical modeling of those sandbox models. The long-term objectives of this approach are (1) imaging of seismic and seismological events of actively deforming and static 3D analogue models, and (2) assessment of the transferability of the model data to field data in order to improve field data acquisition and interpretation according to the addressed geological problem. To achieve this objective, a new midget-seismic facility for laboratory use was designed and developed, comprising a seismic tank, a PC control unit including piezo-electric transducers, and a positioning system. The first experiments are aimed at studying the wave field properties of the piezo- transducers in order to investigate their feasibility for seismic profiling. The properties investigated are their directionality and the change of waveform due to their size (5-12 mm) compared to the wavelengths (material properties and the effects of wave propagation in an-/isotropic media by physical studies, before we finally start using different seismic imaging and processing techniques on static and actively deforming 3D analog models.

  10. The Amatrice 2016 seismic sequence: fault system geometry and crustal velocity structure imaged by fast and nearly automatic procedures.

    Science.gov (United States)

    Chiarabba, C.; Chiaraluce, L.; Di Stefano, R.; Michele, M.; Cattaneo, M.; De Gori, P.; Latorre, D.; Monachesi, G.; Marzorati, S.; Valoroso, L.; Ladina, C.

    2016-12-01

    On August 24th, 2016 a MW6.0 struck an area of central Apennines that is part of a 150k-m long fault system that starting from 1979 has been episodically ruptured by 5Wdata. The retrieved catalogue has been first located with a non-linear probabilistic method and subsequently relocated with both a double-difference algorithm and 3D velocity models rapidly obtained by local earthquake tomography. Earthquakes distribution shows the activation of an Apenninic-trending normal fault system with a main SW-dipping fault plane (dip 45-50°) extending for a total length of 40 km. On the northern portion of the main fault hanging-wall volume, the structure becomes complex showing antithetic faults and minor-shallow fault branches. It is worth noting that below 8-9 km of depth seismicity aligns on an about 2 km thick, sub-horizontal discontinuity, possibly representing a deep level where deformation of the belt is decoupled. Seismicity mostly occurs within high VP/VS anomalies, suggesting that over-pressurized crustal volumes along the fault system might have controlled the aftershocks release and propagation. Aftershocks distribution permits also to define the lateral geometry of the main fault and possible causes for both fault segmentation and activation of distinct patches during the coseismic evolution of the MW6.0 rupture.

  11. Laboratory Seismic Monitoring and X-ray CT imaging of Supercritical CO2 Injection in Reservoir Sand: WESTCAB King Island Project

    Science.gov (United States)

    Nakashima, S.; Kneafsey, T. J.; Nakagawa, S.; Harper, E. J.

    2013-12-01

    The Central Valley of California contains promising locations for on-shore geologic CO2 storage. DOE's WESTCARB (West Coast Regional Carbon Sequestration Partnership) project drilled and cored a borehole (Citizen Green Well) at King Island (near Stockton, CA) to study the CO2 storage capability of saline and gas-bearing formations in the southwestern Sacramento Basin. Potential reservoirs encountered in the borehole include Domengine, Mokelumne River (primary target), and Top Starkey formations. In anticipation of geophysical monitoring of possible CO2 injection into this particular borehole and of the long-term migration of the CO2, we conducted small-scale CO2 injection experiments on three core samples retrieved from the well (Mokelumne River sand A and B) and from a mine outcrop (Domengine sandstone). During the experiment, a jacketed core sample (diameter 1.5 inches, length 4.0-6.0 inches) saturated with brine- (1% NaCl aq.) was confined within a pressure vessel via compressed nitrogen to 3,500-4,000psi, and supercritical CO2 was injected into the core at 2,000-2,500psi and 45-60 degrees C. The CO2 pressure and temperature were adjusted so that the bulk elastic modulus of the CO2 was close to the expected in-situ modulus--which affects the seismic properties most--while keeping the confining stress within our experimental capabilities. After the CO2 broke through the core, fresh brine was re-injected to remove the CO2 by both displacement and dissolution. Throughout the experiment, seismic velocity and attenuation of the core sample were measured using the Split Hopkinson Resonant Bar method (Nakagawa, 2012, Rev. Sci. Instr.) at near 1 kHz (500Hz--1.5 kHz), and the CO2 distribution determined via x-ray CT imaging. In contrast to relatively isotropic Mokelumne sand A, Domengine sandstone and Mokelumne sand B cores exhibited CO2 distributions strongly controlled by the bedding planes. During the CO2 injection, P-wave velocity and attenuation of the layered

  12. High resolution seismic imaging at the Odessa (TX) meteorite impact site: the ground-impact geohazard and integration with magnetic gradiometry and time-domain electromagnetics

    Science.gov (United States)

    Soule, D.; Everett, M.

    2007-05-01

    Comet and asteroid bombardment along with impact crater formation has occurred continuously throughout Earth's history. The greatest impact-related geohazard is due to moderate sized impactors which represent the worst-case trade-off between frequency of occurrence, difficulty of mitigation, and severity of environmental destruction. Impacts in this size range pose a significant regional threat to densely populated areas. The primary objective of this research is to evaluate the ground-impact geohazard via high resolution seismic imaging of the remnants of a moderate-sized impact event, namely that associated with the 50 ka Odessa (TX) Group IAB iron meteorite. We provide high-resolution subsurface images of the 150-m diameter crater, the outcropping crater rim, the ejecta blanket, and the surrounding plain. The subsurface images are analyzed in terms of the deformation and thrusting of the underlying Cretaceous limestone and shale strata and the likely environmental effects caused by the impact. The analysis will build upon and extend our previous geophysical investigations based on magnetic gradiometry and time-domain electromagnetic data.

  13. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  14. Seismic images of ocean meso-scale eddies and internal waves%海洋中尺度涡与内波的地震图像

    Institute of Scientific and Technical Information of China (English)

    宋海斌; Luis Pinheiro; 王东晓; 董崇志; 宋洋; 拜阳

    2009-01-01

    海洋反射地震通常用于调查、研究海底地质构造,勘探油气与天然气水合物资源.近期研究表明多道反射地震方法也可以对水柱的热盐细结构成像.中尺度涡与内波是重要的物理海洋现象,但是常规的物理海洋调查是在间隔若干公里的离散测站上进行的,水平分辨率较低,因此对中尺度涡的结构与内波的横向分布了解较差.本文利用在大西洋东部、南海采集的地震数据给出了低频反射地震可以对中尺度涡与内波清晰成像的新的证据.反射地震方法较传统海洋观测手段,具有明显的优势,主要体现在高的水平分辨率和短时间内对整个海水剖面进行成像方面.从地震剖面上,能够清楚地观测到中尺度涡、内波造成的反射特征变化,从而有助于改进对能量在不同尺度的海水运动之间传递过程的认识.%Marine reflection seismics is usually used for imaging the seafloor geological structure and exploring hydrocarbon and gas hydrate resources.Recent researches have shown that multichannel seismic reflection method can also image the thermohaline fine structure in the water column.Meso-scale eddies and internal waves are important phenomena.Because conventional physical oceanographic measurements are carried out at discrete sites separated several kilometers with low lateral resolution,their lateral distribution is poorly known.This paper provides new evidence of clear seismic images of the meso-scale eddy in the eastern Atlantic Ocean and internal waves in the northeastern South China Sea.Compared with the traditional physical oceanographic methods,reflection seismology has several advantages,such as high lateral resolution and the ability of imaging a large ocean profile in short time.The change of reflection feature due to the meso-scale eddies and internal waves can be clearly imaged,which helps for better understanding of energy transfer among different scale process in the

  15. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  16. Quaternary onset and evolution of Kimberley coral reefs (Northwest Australia) revealed by high-resolution seismic imaging

    Science.gov (United States)

    Bufarale, Giada; Collins, Lindsay B.; O'Leary, Michael J.; Stevens, Alexandra; Kordi, Moataz; Solihuddin, Tubagus

    2016-07-01

    The inner shelf Kimberley Bioregion of Northwest Australia is characterised by a macrotidal setting where prolific coral reefs growth as developed around a complex drowned landscape and is considered a biodiversity "hotspot". High-resolution shallow seismic studies were conducted across various reef settings in the Kimberley (Buccaneer Archipelago, north of Dampier Peninsula, latitude: between 16°40‧S and 16°00‧S) to evaluate stratigraphic evolution, interaction with different substrates, morphological patterns and distribution. Reef sites were chosen to assess most of the reef types present, particularly high intertidal planar reefs and fringing reefs. Reef internal acoustic reflectors were identified according to their shape, stratigraphic position and characteristics. Two main seismic horizons were identified marking the boundaries between Holocene reef (Marine Isotope Stage 1, MIS 1, last 12 ky), commonly 10-20 m thick, and MIS 5 (Last Interglacial, LIG, ~120 ky, up to 12 m thick) and Proterozoic rock foundation over which Quaternary reef growth occurred. Within the Holocene Reef unit, at least three minor internal reflectors, generally discontinuous, subparallel to the reef flat were recognised and interpreted as either growth hiatuses or a change of the coral framework or sediment matrix. The LIG reefs represent a new northernmost occurrence along the Western Australian coast. The research presented here achieved the first regional geophysical study of the Kimberley reefs. Subbottom profiles demonstrated that the surveyed reefs are characterised by a multi-stage reef buildup, indicating that coral growth occurred in the Kimberley during previous sea level highstands. The data show also that antecedent substrate and regional subsidence have contributed, too, in determining the amount of accommodation available for reef growth and controlling the morphology of the successive reef building stages. Moreover, the study showed that in spite of macrotidal

  17. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  18. Infrasound Generation from the HH Seismic Hammer.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  19. Infrasound Generation from the HH Seismic Hammer.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  20. Very High Resolution Optical Images for Detecting Co-seismic Surface Effects: the Cases of the 2005 Kashmir (Pakistan) and the 2003 Bam (Iran) Earthquakes

    Science.gov (United States)

    Chini, M.; Cinti, F. R.; Stramondo, S.

    2008-12-01

    Very High Resolution (VHR) satellite panchromatic image has revealed to be a reliable tool to detect surface effects of natural disasters. This is particularly true whereas the hit territory is a remote land and/or with logistic and security problems. Data from this kind of sensor have a potential for more exhaustive and accurate mapping of the environment with details of sub-meter ground resolution. We show two large earthquake case studies, the 2005 Mw 7.6 Kashmir and the 2003 Mw 6.6 Bam events, both producing significant surface effects as ruptures, landslides and building damages. In order to test the capability of VHR images to recognize and evaluate such features we used panchromatic QuickBird imagery (0.6 m spatial resolution) acquired before and after the events (kindly provided by DigitalGlobe). Concerning the Pakistan we focus on the Muzaffarabad and Balakot areas, both crossed by the earthquake fault and experiencing edifice collapses. Same sort of analysis is performed for the ancient town of Bam. We proceed with: 1. identification on the images of the main rupture trace and of major landslides; 2. generation of a detailed spatial distribution of damage and collapses through a single building automatic classification approach; 3. cross-comparison of the different surface effects. The QuickBird panchromatic images provide a view of the co-seismic features at large scale, revealing complex geometric pattern of the cracks and compressional deformation features. It is possible to detect the lateral sense of movement, and based on the sun shade projection in the images, we infer the facing of the scarp, thus the uplifted side. Regarding point two, if in one hand the use of QuickBird images leads to detect very small details, on the other hand buildings become rather complex structures. Furthermore they may be surrounded by scattering objects making less evident the contrast between the roofs and the ground, thus increasing the difficulties in the

  1. Deep reflection seismic imaging in SE Poland using extended correlation method applied to PolandSPAN™ data

    Science.gov (United States)

    Malinowski, M.

    2016-10-01

    Here I apply the extended correlation technique to a 156-km long regional seismic profile, PL1-5100, from the PolandSPAN™ survey located in SE Poland. This method allows the extension of the nominal record length of the survey (12 s in this case) to much longer times (22 s tested here), given that in the field the raw uncorrelated data were stored and a broadband sweep was used. Processing of the ground force correlated data compared to pilot sweep correlated one produced qualitatively similar results. Based on the consistency of the ground force measured along the profile, data were correlated with the mean of the ground force estimates. Results of the processing were validated against the coincident wide-angle reflection/refraction (WARR) profile (CELEBRATION 2000 CEL05 profile) and a deep reflection profile located further to the SE (POLCRUST-01 profile). I found a good correspondence between the wide-angle Moho signature and the near-vertical incidence (NVI) Moho reflectivity, both in terms of the depth and the reflection strength, with the exception of the area of the crustal keel (Moho > 50 km) interpreted from the WARR data, where the NVI reflectivity is observed at depth ca. 47 km. Similarly to POLCRUST-01, line PL1-5100 is portraying the attenuated crust of the East European Platform margin with the dipping crystalline basement down to ca. 20 km depth and the reflective lower crust. Two important fault zones: Izbica-Zamość Fault and Wilczopole Fault Zone are interpreted as the deeply-rooted crustal features, but there is no evidence for the Teisseyre-Tornquist Zone itself.

  2. Seismic structure of the North American lithosphere and upper mantle imaged using Surface and S waveform tomography

    Science.gov (United States)

    Schaeffer, A. J.; Lebedev, S.

    2010-12-01

    The evolution, stability, and dynamics of continental lithosphere remain a central focus of Earth Science research. The continued deployment of the US Array is producing a massive new dataset that samples North America at scales from tectonic units to continent-wide domains and enables resolution of structure and deformation of the lithosphere previously possible only at regional scales. With this resolving power come new challenges relating to efficient management and processing of such large data volumes. In this study, we have assembled a dataset comprising over 3.5 million three-component broadband seismic waveforms from more than 3000 stations. We augment available US Array stations with ~600 additional North American stations of the GSN and affiliates, Canadian National Seismograph Network, regional arrays, past PASSCAL experiments, and other stations from Iceland, Greenland, Central and South America, the Caribbean, and several Mid-Atlantic Islands. We exploit the resolving power of this unprecedentedly large dataset using the Automated Multimode Inversion of surface- and S-wave forms. The waveforms are inverted for path-averaged linear constraints on elastic structure along the source-receiver paths. The linear equations are then simultaneously solved for a high-resolution 3D upper mantle shear velocity model of the continent. We present a model of the North American continent's and the surrounding Ocean's (Pacific, Atlantic, Gulf of Mexico) upper mantle structure down to the 660 km discontinuity. Clearly identifiable boundaries between different tectonic features such as basins and relic mountain ranges are readily observable. For example, a strong correlation between the Hudson Bay geoid anomaly can be identified with an underlying domain of particularily cold cratonic lithosphere. Our model also includes the 3D distribution of azimuthal anisotropy within these structures, which provides new insight into past and present dynamics of the lithosphere and

  3. Seismic activity at the western Pyrenean edge

    Science.gov (United States)

    Ruiz, M.; Gallart, J.; Díaz, J.; Olivera, C.; Pedreira, D.; López, C.; González-Cortina, J. M.; Pulgar, J. A.

    2006-01-01

    The present-day seismicity at the westernmost part of the Pyrenean domain reported from permanent networks is of low to moderate magnitude. However, it is poorly constrained due to the scarce station coverage of the area. We present new seismic data collected from a temporary network deployed there for 17 months that provides an enhanced image of the seismic activity and its tectonic implications. Our results delineate the westward continuity of the E-W Pyrenean band of seismicity, through the Variscan Basque Massifs along the Leiza Fault, ending up at the Hendaya Fault. This seismicity belt is distributed on a crustal scale, dipping northward to almost 30 km depth. Other relevant seismic events located in the area can be related to the central segment of the Pamplona fault, and to different E-W thrust structures.

  4. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  5. EIAGRID: In-field optimization of seismic data acquisition by real-time subsurface imaging using a remote GRID computing environment.

    Science.gov (United States)

    Heilmann, B. Z.; Vallenilla Ferrara, A. M.

    2009-04-01

    The constant growth of contaminated sites, the unsustainable use of natural resources, and, last but not least, the hydrological risk related to extreme meteorological events and increased climate variability are major environmental issues of today. Finding solutions for these complex problems requires an integrated cross-disciplinary approach, providing a unified basis for environmental science and engineering. In computer science, grid computing is emerging worldwide as a formidable tool allowing distributed computation and data management with administratively-distant resources. Utilizing these modern High Performance Computing (HPC) technologies, the GRIDA3 project bundles several applications from different fields of geoscience aiming to support decision making for reasonable and responsible land use and resource management. In this abstract we present a geophysical application called EIAGRID that uses grid computing facilities to perform real-time subsurface imaging by on-the-fly processing of seismic field data and fast optimization of the processing workflow. Even though, seismic reflection profiling has a broad application range spanning from shallow targets in a few meters depth to targets in a depth of several kilometers, it is primarily used by the hydrocarbon industry and hardly for environmental purposes. The complexity of data acquisition and processing poses severe problems for environmental and geotechnical engineering: Professional seismic processing software is expensive to buy and demands large experience from the user. In-field processing equipment needed for real-time data Quality Control (QC) and immediate optimization of the acquisition parameters is often not available for this kind of studies. As a result, the data quality will be suboptimal. In the worst case, a crucial parameter such as receiver spacing, maximum offset, or recording time turns out later to be inappropriate and the complete acquisition campaign has to be repeated. The

  6. Record of Subducting Topography revealed in 3D Seismic Imaging of Pleistocene unconformities, offshore Southern Costa Rica

    Science.gov (United States)

    Edwards, J. H.; Kluesner, J. W.; Silver, E. A.

    2015-12-01

    3D seismic reflection data (CRISP) collected across the southern Costa Rica forearc reveals broad, survey-wide erosional events in the upper ~1 km of slope sediments in the mid-slope to outer shelf. The upper 0-280 m of continuous, weakly deformed sediments, designated by IODP Expedition 344 as structural domain I, is bounded by a major erosional event, (CRISP-U1, dated near 1 Ma), suggesting wave-plain erosion from the present shelf break out to 25 km seaward, to a present-day water depth of 900-1300 m. The eastern toe of its surface is characterized by a large drainage system, likely including submarine channels that eroded to depths >1500 m below present-day water depth. CRISP-U1 is variably uplifted by a series of fault propagation folds and cut by an intersecting array of normal faults. Another, major erosional event, (CRISP-M1, approximately 2 Ma) extended from the outer shelf to the mid slope and removed 500-1000 m of material. Overlying CRISP-M1 is up to 1 km of sediments that are more deformed by fault propagation folds, back thrusts, and intersecting arrays of normal faults. Unconformities with smaller areal extent are variably found in these overlying sediments across the mid-slope to outer shelf, at present-day water depths >220 m. Below CRISP-M1, sediments are more densely deformed and also contain major unconformities that extend survey-wide. Both unconformities, CRISP-U1 and CRISP-M1, are encountered in well U1413 and are demarcated by major benthic foraminifera assemblage changes at 149 mbsf and ~504 mbsf (Harris et al., 2013, Proceeding of the IODP, Volume 344).CRISP-M1 is likely correlative to the major sediment facies and benthic foraminifera assemblage change found in U1379 at ~880 mbsf (Vannuchi et al., 2013). The unconformities and intersecting array of normal faults may demarcate the passing of topography on the downgoing Cocos plate, episodically lifting and then subsiding the Costa Rica margin, with amplitudes up to about 1 km.

  7. The Application of Seismic Attribute Image Mutation Characteristics in Auxiliary Fault Identification%地震属性图像突变特征在辅助断层识别中的应用

    Institute of Scientific and Technical Information of China (English)

    袁静

    2016-01-01

    对地震断层进行准确识别,能够为地震破坏力的评估和余震的预测提供准确的依据,具有重要的应用价值。当前只能对地震属性图像中单一的特征属性进行识别,不能全面反映断层的属性特征。为此,提出一种基于地震属性图像突变特征的辅助断层识别方法。利用灰度共生矩阵能够对断层的地震属性图像中多个变化特征进行准确提取,通过一定的窗截取灰度图像,建立地震突变特征的纹理基元,并将地震突变特征的纹理基元划分为体、剖面和道。仿真实验结果表明,改进算法能够对辅助断层识别提供更准确的依据,效果令人满意。%The earthquake fault accurately identify, can for the prediction of seismic damage evaluation and aftershocks to provide accurate basis, has important application value. Traditional algorithm can only in the image of seismic attribute, which can identify the characteristics of the single attribute cannot fully reflect the characteristics of the fault attributes. For this, put forward a kind of mutation based on seismic attributes image characteristics of auxiliary fault identification method. Using gray level co-occurrence matrix can change image of multiple seismic attributes of fault characteristics accurately extract, grayscale image through a window, establish seismic mutation characteristics of the texture primitives, and seismic mutation characteristics of the texture primitive is divided into body, section and the way. The simulation experimental results show that the improved algorithm can provide more accurate basis for auxiliary fault identification, the effect is satisfied.

  8. Seismic imaging beneath an InSAR anomaly in eastern Washington State: Shallow faulting associated with an earthquake swarm in a low-hazard area

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; Wicks, Chuck; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    In 2001, a rare swarm of small, shallow earthquakes beneath the city of Spokane, Washington, caused ground shaking as well as audible booms over a five‐month period. Subsequent Interferometric Synthetic Aperture Radar (InSAR) data analysis revealed an area of surface uplift in the vicinity of the earthquake swarm. To investigate the potential faults that may have caused both the earthquakes and the topographic uplift, we collected ∼3  km of high‐resolution seismic‐reflection profiles to image the upper‐source region of the swarm. The two profiles reveal a complex deformational pattern within Quaternary alluvial, fluvial, and flood deposits, underlain by Tertiary basalts and basin sediments. At least 100 m of arching on a basalt surface in the upper 500 m is interpreted from both the seismic profiles and magnetic modeling. Two west‐dipping faults deform Quaternary sediments and project to the surface near the location of the Spokane fault defined from modeling of the InSAR data.

  9. Appfication of High Density Seismic Imaging in Ancient Buildings Detection%高密度地震映像在古建筑检测中的应用

    Institute of Scientific and Technical Information of China (English)

    刘波; 王占雷; 刘超; 李佩

    2011-01-01

    古建筑由于年代久远,易受到自然和人为破坏.为了对古建筑的保护修缮提供依据,所以对古建筑的无损检测工作尤为重要.该文介绍了采用高密度地震映像技术对鸡鸣驿古城范围内的地下洞穴进行无损检测,取得了显著的检测效果.该文可供同行借鉴或参考.%Ancient buildings which have long-standing history are suffered from the erosion under different natural conditions and the damage of human activities. In order to provide a basis for the protection and repair of ancient buildings,the nondestructive testing work for ancient buildings is particularly important. The nondestructive testing work is carried out underground cavern in the ancient city of Jirmngyi with high density seismic imaging detection technology, and the good results are obtained.It provides reference for the colleagues.

  10. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  11. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  12. SEISMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091465 Cai Xuelin(College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China);Cao Jiamin Preliminary Study on the 3-D Crust Structure for the Longmen Lithosphere and the Genesis of the Huge Wenchuan Earthquake,Sichuan Province,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,35(4),2008,p.357-365,8 illus.,39 refs.)Key words:deep-seated structures,large earthquakes,Longmenshan Fracture ZoneBased on a structural analysis of many seismic sounding profiles,there are two fault systems in Longmen collisional orogenic belt,Sichuan Province,China.They are both different obviously and correlative closely.One is shallow fault system composed mainly of brittle shear zones in surface crust,and the other is deep fault system composed mainly of crust-mantle ductile shear zones cutting Moho discontinuity.Based on the result of researching geological structure and seismic sounding profiles,

  13. Combining Seismic Arrays to Image Detailed Rupture Properties of Large Earthquakes: Evidence for Frequent Triggering of Multiple Faults

    Science.gov (United States)

    Ishii, M.; Kiser, E.

    2010-12-01

    Imaging detailed rupture characteristics using the back-projection method, which time-reverses waveforms to their source, has become feasible in recent years due to the availability of data from large aperture arrays with dense station coverage. In contrast to conventional techniques, this method can quickly and indiscriminately provide the spatio-temporal details of rupture propagation. Though many studies have utilized the back-projection method with a single regional array, the limited azimuthal coverage often leads to skewed resolution. In this study, we enhance the imaging power by combining data from two arrays, i.e., the Transportable Array (TA) in the United States and the High Sensitivity Seismographic Network (Hi-net) in Japan. This approach suppresses artifacts and achieves good lateral resolution by improving distance and azimuthal coverage while maintaining waveform coherence. We investigate four large events using this method: the August 15, 2007 Pisco, Peru earthquake, the September 12, 2007 Southern Sumatra earthquake, the September 29, 2009 Samoa Islands earthquake, and the February 27, 2010 Maule, Chile earthquake. In every case, except the Samoa Islands event, the distance of one of the arrays from the epicenter requires us to use the direct P wave and core phases in the back-projection. One of the common features of the rupture characteristics obtained from the back-projection analysis is spatio-temporal rupture discontinuities, or discrete subevents. Both the size of the gaps and the timing between subevents suggest that multiple segments are involved during giant earthquakes, and that they trigger slip on other faults. For example, the 2009 Samoa Islands event began with a rupture propagating north for about 15 seconds followed by a much larger rupture that originated 30 km northwest of the terminus of the first event and propagated back toward the southeast. The involvement of multiple rupture segments with different slip characteristics

  14. 2010-2014 Seismic activity images the activated fault system in the Pollino area, at the Appennines-Calabrian arc boundary region

    OpenAIRE

    De Gori, P.; Margheriti, L.; Lucente, F. P.; Govoni, A.; Moretti, M.; Pastori, M.; Marchetti, A.; R. Di Giovanbattista; Anselmi, M.; Luca, P.; Nardi, A.; N. Piana Agostinetti; LA TORRE, D.; D. Piccinini; Passarelli, L

    2014-01-01

    The main goal of this study is to increase the understanding of the physical mechanisms behind the ongoing seismic activity in the Pollino area and its influence on the seismic hazard of the Apennines-Calabrian arc boundary region. The study area, near the Pollino massif, is located at the northernmost edge of the Calabrian Arc, which is the last oceanic subduction segment along the Africa-Eurasian plate. The subduction results from the sinking of the Ionian oceanic plate beneath the Calabria...

  15. Crustal imaging of western Michoacán and the Jalisco Block, Mexico, from Ambient Seismic Noise

    Science.gov (United States)

    Spica, Zack; Cruz-Atienza, Víctor M.; Reyes-Alfaro, Gabriel; Legrand, Denis; Iglesias-Mendoza, Arturo

    2014-12-01

    Detailed crustal imaging of western Michoacán and the Jalisco Block is obtained from ambient noise tomography. Results show a deep and well-delineated volcanic system below the Colima volcano complex, rooting up to ~ 22 km depth, with a shallow magmatic chamber constrained to the first ~ 7 km. A shallow low-velocity system to the south of the Chapala rift and west of the Michoacán-Guanajuato volcanic field merges, underneath the Colima rift, with the Colima volcano system at about 20 km depth, honoring the geometry of the Trans-Mexican Volcanic Belt. For depths greater than ~30 km, low-velocity features become parallel to the slab strike, right beneath the Mascota, Ayutla and Tapalpa volcanic fields, suggesting the presence of the mantle wedge above the Rivera plate. All mentioned low-velocity bodies are spatially correlated with the superficial volcanic activity suggesting their magmatic origin so that, the shallower these bodies, the younger are the associated volcanic deposits. Along the coast, different depths of the uppermost layer of the Rivera and the Cocos plates suggest that the latter plate subducts with an angle ~ 9° steeper than the former.

  16. Imagerie sismique d'un réservoir carbonaté : le dogger du Bassin parisien Seismic Imaging a Carbonate Reservoir: the Paris Basin Dogger

    Directory of Open Access Journals (Sweden)

    Mougenot D.

    2006-11-01

    inversion, 3D interpretation through automatic picking and horizon attributes. The combined use of all these techniques on the Villeperdue (Total operator and Fontaine-au-Bron fields (EAP, operator illustrates the appropriateness of surface seismic for describing the characteristics of the thin reservoir (30 m lying at the top of the Dogger carbonate, at a depth of 1900 m. Widening the frequency content of the seismic comes into conflict with the limitations imposed by the attenuation of the high frequencies as they are propagated in the subsurface. An evaluation of this attenuation, made by VSP, indicates that the filtering related to propagation as far as the Dogger (1. 3 s twt is sharply amplified beyond 90 Hz. High-resolution seismic (2D-HR is used to record this transition frequency at the level of the target, since it provides sufficiently adequate vertical resolution for the reflections at the top and at the base of the reservoir not to interfere (lambda/2 = 26 m. The amplitude of these reflectors is therefore representative of the impedance contrasts on either limit of the reservoir and their lateral variations reveal heterogeneities, such as porosity changes, which are expressed well acoustically. The high frequency content of the 3D seismic (70 Hz was more difficult to enhance. As a result of careful static corrections, which are related to a geological database and uphole surveys, the time-image of the reservoir, at the location of the syncline described by the 3D, is not influenced by the topographic variations and the associated strong surface heterogeneities. Yet the essential contribution made by the 3D, thanks to the continuity of its spatial sampling, is to evidence, via the picking of the reservoir and the corresponding horizon attributes, submeridian lineaments corresponding to faults with throw of several meters which is too weak to be detected on vertical sections. The distribution of these faults, via which water tends to invade the reservoir, and the

  17. Imaging P-to-S conversions with broad-band seismic arrays using multichannel time-domain deconvolution

    Science.gov (United States)

    Neal, Scott L.; Pavlis, Gary L.

    2001-09-01

    reduced and the input model is reliably recovered. Further tests with data from the Lodore broad-band array in Colorado and Wyoming show significant improvement over conventional time domain methods. We image lateral variations in Moho continuity and reflectivity across the array, with significant improvement in resolution in the first 10 seconds of data.

  18. Generation of seismic base map using satellite images in the southern deltaic area, People`s Republic of Bangladesh; Eisei data ni motozuku jishin tansa base map no sakusei (Bangladesh nanbu delta no rei)

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Y. [Japan Energy Corp., Tokyo (Japan); Ochi, M. [Nikko Exploration and Development Co. Ltd., Tokyo (Japan); Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-05-27

    Assuming a two-dimensional seismic survey in a mangrove jungle in the southeast part of People`s Republic of Bangladesh and trially making a basemap for the survey plan from images of satellites such as LANDSAT, the paper considered the use and marginal use in the case of using satellite remote sensing for such a use field. When utilizing water channels in the mangrove jungle in the southwest of Bangladesh and using the seismic survey method for shallow sea, it is important to grasp the distribution of channels in the planning stage of the survey. Satellite remote sensing data are extremely important for knowing the wide-regional information including factors of hourly variations. In the area for this survey, for directly recognizing the channel, it is good only if the difference in reflectance between water and substances except water is indicated in the image because of flatness of the topography. There was seen few difference in accuracy between the passive multispectral image and the active SAR image which is sensitive to topographical changes. 2 figs.

  19. Caveats on tomographic images

    DEFF Research Database (Denmark)

    Foulger, Gillian R.; Panza, Giuliano F.; Artemieva, Irina

    2013-01-01

    Geological and geodynamic models of the mantle often rely on joint interpretations of published seismic tomography images and petrological/geochemical data. This approach tends to neglect the fundamental limitations of, and uncertainties in, seismic tomography results. These limitations and uncer......Geological and geodynamic models of the mantle often rely on joint interpretations of published seismic tomography images and petrological/geochemical data. This approach tends to neglect the fundamental limitations of, and uncertainties in, seismic tomography results. These limitations...

  20. Optimization of prediction layout parameters of real seismic tomography imaging%地震波真反射层析成像超前预报布置参数优化

    Institute of Scientific and Technical Information of China (English)

    刘勇锋; 马海涛

    2013-01-01

    By real seismic tomography imaging technique, a prediction was made for the deep mine engineering of Xishimen Iron Mine. The influence of seismic wave amplitude variation on prediction accuracy of tunnel geology was investigated. An improvement and innovation research on the layout parameters of TRT system was performed. The optimal parameters of seismic focus, minimal row spacing and shot interval were obtained. The research provides reliable basis for prevention of major water inrush, and the mine development of the iron mine.%利用地震波真反射层析成像技术对西石门铁矿深部开拓工程进行了超前预报,分析了各种不利因素引起的地震波振幅变化对井巷地质超前预报效果带来的影响.对TRT地质超前预报系统布置参数进行了改进与创新研究,得出了震源、最小偏移距和炮间距最优参数.防止了重大突水事故的发生,为西石门铁矿后期进行的开拓工程提供了可靠的依据.

  1. Subsurface imaging in a sector of Cerro Prieto transform fault near to pull-apart basin, Mexicali Valley, Baja California, Mexico, based on crooked lines 2D seismic reflection.

    Science.gov (United States)

    Mares-Agüero, M. A.; González-Escobar, M.; Arregui, S.

    2016-12-01

    In the transition zone between San Andres continental transformation system and the coupled transform faults system and rifting of Gulf of California is located the Cerro Prieto pull-apart basin delimitated by Imperial fault (northeast) and Cerro Prieto fault (CPF) (southwest), this last, is the limit west of Cerro Prieto geothermic field (CPGF). Crooked lines 2D seismic reflection, covering a portion near the intersection of CPF and CPGF are processed and interpreted. The seismic data were obtained in the early 80's by Petróleos Mexicanos (PEMEX). By decades, technical and investigation works in Cerro Prieto geothermic field and its vicinity had mapped faults at several depths but do not stablish a clear limit where this faults and CPF interact due the complex hydrothermal effects imaging the subsurface. The profiles showing the presence of a zone of uplift effect due to CPF. Considering the proximity of the profiles to CPF, it is surprising almost total absence of faults. A strong reflector around 2 km of depth, it is present in all profiles. This seismic reflector is considered a layer of shale, result of the correlation with a well located in the same region.

  2. Natural fracture characterization using passive seismic illumination

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.

    2003-01-08

    The presence of natural fractures in reservoir rock can significantly enhance gas production, especially in tight gas formations. Any general knowledge of the existence, location, orientation, spatial density, and connectivity of natural fractures, as well as general reservoir structure, that can be obtained prior to active seismic acquisition and drilling can be exploited to identify key areas for subsequent higher resolution active seismic imaging. Current practices for estimating fracture properties before the acquisition of surface seismic data are usually based on the assumed geology and tectonics of the region, and empirical or fracture mechanics-based relationships between stratigraphic curvature and fracturing. The objective of this research is to investigate the potential of multicomponent surface sensor arrays, and passive seismic sources in the form of local earthquakes to identify and characterize potential fractured gas reservoirs located near seismically active regions. To assess the feasibility of passive seismic fracture detection and characterization, we have developed numerical codes for modeling elastic wave propagation in reservoir structures containing multiple, finite-length fractures. This article describes our efforts to determine the conditions for favorable excitation of fracture converted waves, and to develop an imaging method that can be used to locate and characterize fractures using multicomponent, passive seismic data recorded on a surface array.

  3. Studies on seismic waves

    Institute of Scientific and Technical Information of China (English)

    张海明; 陈晓非

    2003-01-01

    The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.

  4. Modelling of a coal seam of the deposit Đurđevik (BiH) by means of 2D reflection seismic imaging

    Science.gov (United States)

    Arsenović, Siniša; Urošević, Milovan; Sretenović, Branislav; Cvetkov, Vesna; Životić, Dragana

    2016-06-01

    A low cost 2D reflection seismic survey was used to map the continuity of the main seams as well as the numerous faults at the Đurđevik sub-bituminous coal deposit (BiH). A 24-channel seismic data acquisition system was available for this survey. The natural high reflectivity of the coal seams and a favourable geometry of seismic profiles enabled the identification and correlation of major faults across the area. Rugged terrain presented challenges to both data acquisition and processing. Stacks of acceptable quality were obtained only after the application of surface consistent statics and careful application of multi-channel filtering. A set of recorded 2D lines was interpreted in a 3D environment. Inferred structural elements disrupting the seam continuity were identified and were in agreement with available drilling results and mine workings. The result of this work was used to reduce mining hazards and also to help optimise mine planning.

  5. Seismic risk perception test

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro

    2013-04-01

    The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to

  6. Expanding Conventional Seismic Stratigrphy into the Multicomponent Seismic Domain

    Energy Technology Data Exchange (ETDEWEB)

    Innocent Aluka

    2008-08-31

    Multicomponent seismic data are composed of three independent vector-based seismic wave modes. These wave modes are, compressional mode (P), and shear modes SV and SH. The three modes are generated using three orthogonal source-displacement vectors and then recorded using three orthogonal vector sensors. The components travel through the earth at differing velocities and directions. The velocities of SH and SV as they travel through the subsurface differ by only a few percent, but the velocities of SV and SH (Vs) are appreciably lower than the P-wave velocity (Vp). The velocity ratio Vp/Vs varies by an order of magnitude in the earth from a value of 15 to 1.5 depending on the degree of sedimentary lithification. The data used in this study were acquired by nine-component (9C) vertical seismic profile (VSP), using three orthogonal vector sources. The 9C vertical seismic profile is capable of generating P-wave mode and the fundamental S-wave mode (SH-SH and SV-SV) directly at the source station and permits the basic components of elastic wavefield (P, SH-SH and SV-SV) to be separated from one another for the purposes of imaging. Analysis and interpretations of data from the study area show that incident full-elastic seismic wavefield is capable of reflecting four different wave modes, P, SH , SV and C which can be utilized to fully understand the architecture and heterogeneities of geologic sequences. The conventional seismic stratigraphy utilizes only reflected P-wave modes. The notation SH mode is the same as SH-SH; SV mode means SV-SV and C mode which is a converted shear wave is a special SV mode and is the same as P-SV. These four wave modes image unique geologic stratigraphy and facies and at the same time reflect independent stratal surfaces because of the unique orientation of their particle-displacement vectors. As a result of the distinct orientation of individual mode's particle-displacement vector, one mode may react to a critical subsurface sequence

  7. Robotization in Seismic Acquisition

    NARCIS (Netherlands)

    Blacquière, G.; Berkhout, A.J.

    2013-01-01

    The amount of sources and detectors in the seismic method follows "Moore’s Law of seismic data acquisition", i.e., it increases approximately by a factor of 10 every 10 years. Therefore automation is unavoidable, leading to robotization of seismic data acquisition. Recently, we introduced a new

  8. Imaging Fractures Through Relative Velocity Change Using Ambient Seismic Noise And Distributed Acoustic Sensing (DAS): A SUBTER Pilot Study At Blue Canyon Dome, Socorro NM

    Science.gov (United States)

    James, S. R.; Knox, H. A.; Ajo Franklin, J. B.; Johnson, T. C.; Morris, J.; Grubelich, M. C.; King, D. K.

    2016-12-01

    Knowledge of fracture systems, including locations, morphology, and evolution, is critical for groundwater management, contaminant transport, and energy applications such as reservoir development (i.e. tight shale and geothermal) and reservoir management (i.e. carbon sequestration and wastewater injection). It has long been understood that the presence of fractures reduces bulk seismic velocity, with waves traveling perpendicular to fracture planes experiencing the strongest velocity reduction. We present results from seismic interferometry using ambient seismic noise to detect velocity changes following fracture emplacement from two energetic stimulations. Distributed Acoustic Sensing (DAS) using fiber optic cables was used to record seismic arrivals at high spatial resolution ( 3 ft). Cables were grouted in the annulus of four cased monitoring boreholes surrounding the stimulation borehole at a radius of 4 feet. Ambient noise was recorded before and after each stimulation for 12-hour time periods. We used the Python package MSNoise to compute cross-correlations of all near-horizontal (less than 60°) channel pairs between boreholes and calculated the velocity change of each time period relative to initial conditions prior to stimulation. Results show an average velocity decrease of approximately 6% following the first fracturing event. Variations between channel pairs suggest some are more strongly affected than others, which is supported by evaluation of other geophysical data. These results show promise for locating fractures based on spatial variation in velocity changes. Unsurprisingly, results following the second stimulation are generally more scattered. Some velocities are further reduced compared to those after the first stimulation while others show a relative velocity increase. These results are roughly consistent with time-lapse seismic measurements conducted using active sources and classical sensors (e.g. hydrophones). Sandia National Laboratories is

  9. Quantifying Similarity in Seismic Polarizations

    Science.gov (United States)

    Eaton, D. W. S.; Jones, J. P.; Caffagni, E.

    2015-12-01

    Measuring similarity in seismic attributes can help identify tremor, low S/N signals, and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via. computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in signal-to-noise (S/N) ratio. Using records of the Mw=8.3 Sea of Okhotsk earthquake from CNSN broadband sensors in British Columbia and Yukon Territory, Canada, and vertical borehole array data from a monitoring experiment at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Because histogram distance metrics are bounded by [0 1], clustering allows empirical time-frequency separation of seismic phase arrivals on single-station three-component records. Array processing for automatic seismic phase classification may be possible using subspace clustering of polarization similarity, but efficient algorithms are required to reduce the dimensionality.

  10. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  11. SEISMIC STUDIES OF MARINE GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    SONG Haibin

    2003-01-01

    We give a brief introduction of developments of seismic methods in the studies of marine gas hydrates. Then we give an example of seismic data processing for BSRs in western Nankai accretionary prism, a typical gas hydrate distribution region. Seismic data processing is proved to be important to obtain better images of BSRs distribution. Studies of velocity structure of hydrated sediments are useful for better understanding the distribution of gas hydrates. Using full waveform inversion, we successfully derived high-resolution velocity model of a double BSR in eastern Nankai Trough area. Recent survey and research show that gas hydrates occur in the marine sediments of the South China Sea and East China Sea.But we would like to say seismic researches on gas hydrate in China are very preliminary.

  12. Seabeam and seismic reflection imaging of the tectonic regime of the Andean continental margin off Peru (4°S to 10°S)

    Science.gov (United States)

    Bourgois, J.; Pautot, G.; Bandy, W.; Boinet, T.; Chotin, P.; Huchon, P.; Mercier de Lepinay, B.; Monge, F.; Monlau, J.; Pelletier, B.; Sosson, M.; von, Huene R.

    1988-01-01

    Marine geophysical surveys employing Seabeam, multi- and single-channel seismic reflection, gravity and magnetic instruments were conducted at two locations along the continental slope of the Peru Trench during the Seaperc cruise of the R/V “Jean Charcot” in July 1986. These areas are centered around 5°30′S and 9°30′S off the coastal towns of Paita and Chimbote respectively.

  13. Astor Pass Seismic Surveys Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring

  14. Subsalt Depth Seismic Imaging and Structural Interpretation in Dumre Area, Albania Imagerie sismique profondeur sub-salifère et interprétation structurale dans la région de Dumre, Albanie

    Directory of Open Access Journals (Sweden)

    Jardin A.

    2011-09-01

    Full Text Available The challenge of seismic exploration in fold and thrust belt settings is to optimize the depth seismic images of the deep structural objectives beneath a complex overburden that may show strong horizontal and vertical velocity variations. In such areas, the seismic image is frequently of poor quality and the depth models of deep layers is often false due to the perturbed propagation of seismic energy through the deforming lens of the overlying layers. A range of seismic processing tools, including post-stack and pre-stack depth migrations, are appropriate to predict the accurate geometry of deep target structures and to improve the building of a depth structural model. A strong combination of geological reasoning and depth seismic imaging processing can improve the understanding of the deep geological structures by reducing the uncertainties in depth geometrical and velocity model estimation. We propose an interpretative and iterative approach to the post stack depth migration method to guide the interpreter in the development of a reliable subsurface model. We have applied this approach during an exploration study in the Dumre area, located in the Ionian Basin (Albania which is a complex fold and thrust belt. The main objectives of this study were to understand the failure of a former exploration well and to propose a new location for the potential closure of the carbonate structure. This subsalt imaging study aims at illustrating the improvements obtained by application of this integrated seismic imaging method especially in the evaluation of a subthrust prospect in a tectonically complex belt setting. Le challenge de l’exploration pétrolière par la sismique réflexion dans les zones de montagne est d’obtenir des coupes capables de bien imager les structures géologiques profondes situées sous une couverture sédimentaire plissée. Cette série de sédiments peut être très complexe et engendrer ainsi de fortes variations latérales et

  15. Passive seismic experiment - A summary of current status. [Apollo-initiated lunar surface station data

    Science.gov (United States)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1978-01-01

    The data set obtained from the four-station Apollo seismic network including signals from approximately 11,800 events, is surveyed. Some refinement of the lunar model will result, but its gross features remain the same. Attention is given to the question of a small, molten lunar core, the answer to which remains dependent on analysis of signals from a far side impact. Seventy three sources of repeating, deep moonquakes have been identified, thirty nine of which have been accurately located. Concentrated at depths from 800 to 1000 km, the periodicities of these events have led to the hypothesis that they are generated by tidal stresses. Lunar seismic data has also indicated that the meteoroid population is ten times lower than originally determined from earth based observations. Lunar seismic activity is much lower and mountainous masses show no sign of sinking, in contrast to earth, as a result of the lunar crust being four times thicker. While much work remains to be done, significant correlation between terrestrial and lunar observations can be seen.

  16. Combined imaging and velocity estimation by Joint Migration Inversion

    NARCIS (Netherlands)

    Staal, X.R.

    2015-01-01

    Seismic imaging projects aim to reveal the structure of the earths crust from seismic data. These projects typically include three separate processing steps, being: • attenuation of multiple reflections in the seismic data. • estimating seismic wave propagation velocities from the seismic data. • ma

  17. Parallelisation of seismic algorithms using PVM and FORGE

    NARCIS (Netherlands)

    Wedemeijer, H.; Cox, H.L.H.; Verschuur, D.J.; Ritsema, I.L.

    1996-01-01

    The processing of seismic data, for the imaging of the earth's subsurface, is pushing current computational possibilities to the limit. In this paper results are presented obtained by optimisation and parallelisation of two innovative seismic algorithms with the use of PVM and FORGE. It shows that w

  18. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  19. Deep seismic profiling of the continents and their margins

    DEFF Research Database (Denmark)

    Ito, T.; Iwasaki, T.; Thybo, Hans

    2009-01-01

    Application of deep seismic methods to studies of the crust and lithospheric mantle receives considerable interest and the methods are constantly refined and new methods are developed, which allows the extension of studies to new subjects and regions. Deep seismic methods are applied to a long......, in many applications, the methods are used up-to their limits at the present technological state. Therefore, development of methods has high priority in the seismic community. This volume provides an overview of recent development of deep seismic techniques and their application to the imaging and probing...

  20. Integrated well log and 2-D seismic data interpretation to image the subsurface stratigraphy and structure in north-eastern Bornu (Chad) basin

    Science.gov (United States)

    Isyaku, Aminu A.; Rust, Derek; Teeuw, Richard; Whitworth, Malcolm

    2016-09-01

    Structural and stratigraphic mapping within the Bornu Basin in north east Nigeria was commonly carried out using traditional field geological methods. However, such traditional approaches remain inadequate in the semi-arid region characterised by topographically flat areas and lack of continuous bedrock outcrops that are mostly concealed beneath sand cover. Previous studies in the north-eastern part of the basin carried out using ditch cuttings from few wells and disconnected seismic data were largely inadequate and the resulting stratigraphic analyses were more often generalised. This paper presents an integrated structural and stratigraphic study of the basin using combined subsurface geophysical datasets. A Combined Log Pattern (CLP) method is a well log analysis, which utilises various well log data including gamma ray, resistivity, bulk density and sonic logs to identify lithology and stratigraphic boundaries of subsurface formations. This method is applied to constrain the subsurface stratigraphy of the north-eastern part of the Bornu Basin bordering the Lake Chad. In addition to qualitative combined well log analysis, the time-depth relationship of the sonic log and seismic data was quantitatively determined by tying a well with an intersecting seismic section to validate the stratigraphic facies horizons identified. Four well log facies and their environments of deposition were characterised from the combined well log analysis of the different log types. It is discovered that the Cretaceous basement structural features controlled the deposition of overlying formations in the basin. Without intact core data, the shallower wells were discovered to have bottomed over subsurface horst features while deeper wells penetrated into the basal facies contained mainly within the grabens. Main subsurface structural lineaments in the area include NW-SE, NE-SW and NNW-SSE trending faults, which mainly formed the horst and graben features. Some stratigraphic formations

  1. Coseismic and post-seismic velocity changes detected by Passive Image Interferometry: comparison of one great and five strong earthquakes in Japan

    Science.gov (United States)

    Hobiger, Manuel; Wegler, Ulrich; Shiomi, Katsuhiko; Nakahara, Hisashi

    2016-05-01

    We present a systematic study of seismic velocity changes associated with a megathrust and five strong crustal earthquakes in Japan. We perform both cross-correlation and single-station cross-correlation analysis for station pairs and stations, respectively. The correlation of ambient seismic noise allows us to reconstruct the Green's functions of the wave propagation. By relating the coda parts of the daily Green's functions with the long-term reference Green's functions, shear wave velocity changes are determined. We analyse data from four areas in Japan where large earthquakes occurred: Iwate-Miyagi (2008 MW 6.9 Iwate-Miyagi Nairiku earthquake), Niigata (2004 MW 6.6 Chūetsu, 2007 MW 6.6 Chūetsu-oki and 2011 MW 6.2 Nagano/Niigata earthquakes), Noto Peninsula (2007 MW 6.7 Noto Hantō earthquake) and Fukuoka (2005 MW 6.6 Fukuoka earthquake). In all areas, we analyse time-series which start before the respective earthquakes and last until after the 2011 MW 9.0 Tōhoku-oki earthquake. The analysis in five different frequency ranges between 0.125 and 4.0 Hz yields time-series of the velocity changes for the different station pairs or stations. At the time of the respective earthquakes, we observe coseismic velocity drops in all areas which are followed by a partial post-seismic recovery process. For the Tōhoku-oki earthquake, coseismic velocity drops can also be observed in all regions. There is a general trend of increasing coseismic velocity drops with frequency in all four areas. The largest coseismic drops are observed close to the fault zones. Over the observed time range, the post-seismic recovery is only partial and around half of the coseismic velocity drops do not recover. The characteristic recovery times for the recovering part are similar in all areas and frequency ranges, with an average value of 0.55 yr. We model the volumetric strain changes for the different earthquakes and find that the observed pattern of the coseismic velocity drops cannot be

  2. Simplified seismic risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pellissetti, Manuel; Klapp, Ulrich [AREVA NP GmbH, Erlangen (Germany)

    2011-07-01

    Within the context of probabilistic safety analysis (PSA) for nuclear power plants (NPP's), seismic risk assessment has the purpose to demonstrate that the contribution of seismic events to overall risk is not excessive. The most suitable vehicle for seismic risk assessment is a full scope seismic PSA (SPSA), in which the frequency of core damage due to seismic events is estimated. An alternative method is represented by seismic margin assessment (SMA), which aims at showing sufficient margin between the site-specific safe shutdown earthquake (SSE) and the actual capacity of the plant. Both methods are based on system analysis (fault-trees and event-trees) and hence require fragility estimates for safety relevant systems, structures and components (SSC's). If the seismic conditions at a specific site of a plant are not very demanding, then it is reasonable to expect that the risk due to seismic events is low. In such cases, the cost-benefit ratio for performing a full scale, site-specific SPSA or SMA will be excessive, considering the ultimate objective of seismic risk analysis. Rather, it will be more rational to rely on a less comprehensive analysis, used as a basis for demonstrating that the risk due to seismic events is not excessive. The present paper addresses such a simplified approach to seismic risk assessment which is used in AREVA to: - estimate seismic risk in early design stages, - identify needs to extend the design basis, - define a reasonable level of seismic risk analysis Starting from a conservative estimate of the overall plant capacity, in terms of the HCLPF (High Confidence of Low Probability of Failure), and utilizing a generic value for the variability, the seismic risk is estimated by convolution of the hazard and the fragility curve. Critical importance is attached to the selection of the plant capacity in terms of the HCLPF, without performing extensive fragility calculations of seismically relevant SSC's. A suitable basis

  3. Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions

    Science.gov (United States)

    Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.

    2016-10-01

    Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability

  4. Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: Implications for strain localization and crustal rigidity

    Science.gov (United States)

    ten Brink, U.S.; Al-Zoubi, A. S.; Flores, C.H.; Rotstein, Y.; Qabbani, I.; Harder, S.H.; Keller, Gordon R.

    2006-01-01

    New seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust. Copyright 2006 by the American Geophysical Union.

  5. Seismic Catalogue and Seismic Network in Haiti

    Science.gov (United States)

    Belizaire, D.; Benito, B.; Carreño, E.; Meneses, C.; Huerfano, V.; Polanco, E.; McCormack, D.

    2013-05-01

    The destructive earthquake occurred on January 10, 2010 in Haiti, highlighted the lack of preparedness of the country to address seismic phenomena. At the moment of the earthquake, there was no seismic network operating in the country, and only a partial control of the past seismicity was possible, due to the absence of a national catalogue. After the 2010 earthquake, some advances began towards the installation of a national network and the elaboration of a seismic catalogue providing the necessary input for seismic Hazard Studies. This paper presents the state of the works carried out covering both aspects. First, a seismic catalogue has been built, compiling data of historical and instrumental events occurred in the Hispaniola Island and surroundings, in the frame of the SISMO-HAITI project, supported by the Technical University of Madrid (UPM) and Developed in cooperation with the Observatoire National de l'Environnement et de la Vulnérabilité of Haiti (ONEV). Data from different agencies all over the world were gathered, being relevant the role of the Dominican Republic and Puerto Rico seismological services which provides local data of their national networks. Almost 30000 events recorded in the area from 1551 till 2011 were compiled in a first catalogue, among them 7700 events with Mw ranges between 4.0 and 8.3. Since different magnitude scale were given by the different agencies (Ms, mb, MD, ML), this first catalogue was affected by important heterogeneity in the size parameter. Then it was homogenized to moment magnitude Mw using the empirical equations developed by Bonzoni et al (2011) for the eastern Caribbean. At present, this is the most exhaustive catalogue of the country, although it is difficult to assess its degree of completeness. Regarding the seismic network, 3 stations were installed just after the 2010 earthquake by the Canadian Government. The data were sent by telemetry thought the Canadian System CARINA. In 2012, the Spanish IGN together

  6. Seismicity of Afghanistan and vicinity

    Science.gov (United States)

    Dewey, James W.

    2006-01-01

    This publication describes the seismicity of Afghanistan and vicinity and is intended for use in seismic hazard studies of that nation. Included are digital files with information on earthquakes that have been recorded in Afghanistan and vicinity through mid-December 2004. Chapter A provides an overview of the seismicity and tectonics of Afghanistan and defines the earthquake parameters included in the 'Summary Catalog' and the 'Summary of Macroseismic Effects.' Chapter B summarizes compilation of the 'Master Catalog' and 'Sub-Threshold Catalog' and documents their formats. The 'Summary Catalog' itself is presented as a comma-delimited ASCII file, the 'Summary of Macroseismic Effects' is presented as an html file, and the 'Master Catalog' and 'Sub-Threshold Catalog' are presented as flat ASCII files. Finally, this report includes as separate plates a digital image of a map of epicenters of earthquakes occurring since 1964 (Plate 1) and a representation of areas of damage or strong shaking from selected past earthquakes in Afghanistan and vicinity (Plate 2).

  7. Seismic imaging of esker structures from a combination of high-resolution broadband multicomponent streamer and wireless sensors, Turku-Finland

    Science.gov (United States)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2015-04-01

    Eskers and glaciofluvial interlobate formations, mainly composed of sands and gravels and deposited in winding ridges, define the locations of glacial melt-water streams. These sediments, porous and permeable, form the most important aquifers in Finland and are often used as aggregates or for artificial aquifer recharge. The Virttaankangas interlobate suite and artificial aquifer recharge plant provides the entire water supply for the city of Turku and therefore an accurate delineation of the aquifer is critical for long term planning and sustainable use of these natural resources. The study area is part of the Säkylänharju-Virttaankangas Glaciofluvial esker-chain complex and lies on an igneous, crystalline basement rocks. To provide complementary information to existing boreholes and GPR studies at the site, such as identification of potential esker cores, planning for a water extraction, fractured bedrock and possible kettle holes, a new seismic investigation was designed and carried out during summer 2014. Two seismic profiles each about 1 km long were acquired using a newly developed 200 m long prototype, comprising of 80-3C MEMs-based, landstreamer system. To provide velocity information at larger depths (and longer offsets), fifty-two 10-Hz 1C wireless sensors spaced at about every 20 m were used. A Bobcat mounted drop-hammer source, generating three hits per source location, was used as the seismic source. This proved to be a good choice given the attenuative nature of the dry sediments down to about 20 m depth. One of the seismic lines overlaps an existing streamer survey and thus allows a comparison between the system used in this study and the one employed before. Except at a few places where the loose sands mixed with leaves affected the coupling, the data quality is excellent with several reflections identifiable in the raw shot gathers. First arrivals were easily identifiable in almost all the traces and shots and this allowed obtaining velocity

  8. SOAR Telescope seismic performance II: seismic mitigation

    Science.gov (United States)

    Elias, Jonathan H.; Muñoz, Freddy; Warner, Michael; Rivera, Rossano; Martínez, Manuel

    2016-07-01

    We describe design modifications to the SOAR telescope intended to reduce the impact of future major earthquakes, based on the facility's experience during recent events, most notably the September 2015 Illapel earthquake. Specific modifications include a redesign of the encoder systems for both azimuth and elevation, seismic trigger for the emergency stop system, and additional protections for the telescope secondary mirror system. The secondary mirror protection may combine measures to reduce amplification of seismic vibration and "fail-safe" components within the assembly. The status of these upgrades is presented.

  9. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  10. Lateral extrusion of the northern Tibetan Plateau interpreted from seismic images, potential field data, and structural analysis of the eastern Kunlun fault

    Science.gov (United States)

    Xu, Xiao; Gao, Rui; Dong, Shuwen; Wang, Haiyan; Guo, Xiaoyu

    2017-01-01

    The extrusion model suggests that the India-Eurasia collision triggered lateral escape of the Tibetan Plateau via strike-slip faults from south to north. However, questions remain as to how the collision resulted in the different geological settings of northern Tibet. The area between the Haiyuan fault and the eastern Kunlun fault is ideal for investigating whether major strike-slip faults contributed to lateral extrusion of the plateau. This study uses a deep seismic profile spanning a 257 km transect, along with regional geologic, gravity, and magnetic data. Examining our results integrated with those of previous studies, we propose that the block between the Elashan and Riyueshan faults extruded southward under the background of a large-scale eastward extrusion of the Tibetan Plateau. According to regional tectonic events, the north-dipping intracrustal seismic reflectors that appear beneath the Western Qinling orogen are the remnants of the Indosinian Mianlue suture zone. The subduction of the Mianlue Ocean led to the underthrusting of South China beneath the Qinling orogen, similar to the process that occurred in the Western Kunlun Range and central Alps. As a result, the Moho was duplicated beneath the Western Qinling orogen. Southward extrusion resulted in the offset of the eastern Kunlun fault from the Diebu-Bailongjiang fault, which transferred part of the Western Qinling orogen to the Ruo'ergai basin and pulled the Ruo'ergai basin as well. Based on interpretations of structures and other evident features, we develop a kinematic model to specifically explain how the northern Tibetan Plateau between the Elashan and Riyueshan faults, located between the Haiyuan and Kunlun faults, accommodates southwesterly compression.

  11. Multifrequency seismic detectability of seasonal thermoclines assessed from ARGO data

    Science.gov (United States)

    Ker, S.; Le Gonidec, Y.; Marié, L.

    2016-08-01

    Seismic oceanography is a developing research topic where new acoustic methods allow high-resolution teledetection of the thermohaline structure of the ocean. First implementations to study the Ocean Surface Boundary Layer have recently been achieved but remain very challenging due to the weakness and shallowness of such seismic reflectors. In this article, we develop a multifrequency seismic analysis of hydrographic data sets collected in a seasonally stratified midlatitude shelf by ARGO network floats to assess the detectability issue of shallow thermoclines. This analysis, for which sensitivity to the data reduction scheme used by ARGO floats for the transmission of the profiles is discussed, allows characterizing both the depth location and the frequency dependency of the dominant reflective feature of such complex structures. This approach provides the first statistical distribution of the range of variability of the frequency-dependent seismic reflection amplitude of the midlatitude seasonal thermoclines. We introduce a new parameter to quantify the overall capability of a multichannel seismic setup, including the source strength, the fold, and the ambient noise level, to detect shallow thermoclines. Seismic source signals are approximated by Ricker wavelets, providing quantitative guidelines to help in the design of seismic experiments targeting such oceanic reflectors. For shallow midlatitude seasonal thermoclines, we show that the detectability is optimal for seismic peak frequencies between 200 and 400 Hz: this means that airgun and Sparker sources are not well suited and that significant improvements of source devices will be necessary before seismic imaging of OSBL structures can be reliably attempted.

  12. Seismic monitoring at The Geysers

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

    1993-04-01

    During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

  13. 地震波逆时偏移中的层位校正与去噪方法%Imaging Horizon Correction and Denoising Method in Seismic Wave Reverse-time Migration

    Institute of Scientific and Technical Information of China (English)

    牟海波; 何兵寿

    2016-01-01

    波动方程逆时偏移是目前比较精确的基于波动理论的深度域偏移成像方法,但逆时偏移成像条件的运用会产生低频噪音,影响成像质量及层位的准确性。依据低频噪声的产生机理,运用交错网格有限差分法求取各向同性介质中的地震波场,通过对比炮点与检波点波场在不同频率条件下的互相关成像特征,分析其子波频率与周期差异(或时移)条件下逆时偏移成像对层位解释精度与低频噪音产生的影响,提出了改进的时移逆时偏移成像层位校正方法和低频噪声压制策略。数据算例表明,改进后的时移逆时偏移成像有效的压制了低频噪声,成像层位准确。%The wave equation reverse-time migration is a rather accurate depth domain migration imaging method based on wave theo⁃ry. But the application of reverse-time migration imaging conditions will produce low frequency noise, thus impacting imaging quality and horizon interpretation accuracy. Considering low frequency noise forming mechanism, using staggered grid finite difference method to evaluate seismic wave field in isotropic media, through comparison of shotpoint and geophone station wave fields ’mutual correlation imaging features under different frequency conditions analyzed impacts on horizon interpretation accuracy and low frequency noise from reverse-time migration imaging under wavelet frequency and periodic differences (or time shifting), put forward an improved time shifting reverse-time migration imaging horizon correction method and low frequency suppression tactics. The numerical examples have shown that the improved time shifting reverse-time migration imaging can effectively suppress low frequency noise and get correct imaging horizons.

  14. Numerical Simulation of Borehole Seismic Scattered Wave Imaging for the Detection of Underground Obstacles%地下障碍物探测井中地震散射波成像数值模拟

    Institute of Scientific and Technical Information of China (English)

    刘伍; 曾来; 司永峰; 沈恩来

    2012-01-01

      井中地震具有多波接收、高精度、高分辨率、能量传播距离短、接近探测目标、避开低速带等优点,在工程中得到了越来越广泛的应用。地震散射波是由地下三维不均匀体引起的地震波的变化,因此散射波成像特征与不均匀体分布情况密切相关。采用声波方程有限差分法对城市地下不均匀体如桩基、深埋管道等的散射波成像特征进行了数值模拟和分析;根据理论模拟给出了多种探测方式,并讨论了各方式的适用条件及应注意的问题。为城市地下空间开发中地下障碍物探测提供了理论指导。%  Borehole seismic imaging has been widely applied in a variety of engineering projects, and its advantages include multi-wave receiving, accuracy, high resolution, a short energy transfer distance, ease of use, and the avoidance of low-speed zones. Scattered seismic waves are generated when the original waves pass through subsurface 3D inhomogeneous layers, and the imaging characteristics of such scattered waves are closely related to the characteristics of the inhomogeneous body. This paper discusses the numerical simulation and analysis of the imaging features of scattered waves from typical inhomogeneous bodies in urban underground spaces (e.g., piles and deep-buried tubes) by applying the finite difference method to the acoustic equation. Several detection methods are used in the theoretical simulations, with the relevant conditions and other important points highlighted for each method, and we present theoretical guidance for detecting underground obstructions in urban developments.

  15. The Seismic Wavefield

    Science.gov (United States)

    Kennett, B. L. N.

    2002-12-01

    The two volumes of The Seismic Wavefield are a comprehensive guide to the understanding of seismograms in terms of physical propagation processes within the Earth. The focus is on the observation of earthquakes and man-made sources on all scales, for both body waves and surface waves. Volume I provides a general introduction and a development of the theoretical background for seismic waves. Volume II looks at the way in which observed seismograms relate to the propagation processes. Volume II also discusses local and regional seismic events, global wave propagation, and the three-dimensional Earth.

  16. Imaging continental shelf shallow stratigraphy by using different high-resolution seismic sources: an example from the Calabro-Tyrrhenian margin (Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Eleonora Martorelli

    2010-01-01

    Full Text Available High-resolution seismic reflection profiles of the Calabro-Tyrrhenian continental shelf were collected using different seismic sources (Sub-Bottom Profiler, Uniboom, Sparker 0.5-1-4.5 kJ. Noticeable differences and results were obtained both from a geophysical and geological-interpretative point of view. The availability of different sources permitted the definition of the most suitable seismostratigraphic characterization in terms of resolution, penetration and acoustic facies. Very high resolution stratigraphy was defined through profiles produced by different seismic systems used in parallel. This permitted the application of sequence-stratigraphy concepts with the reconstruction of a thick postglacial depositional sequence, formed by a transgressive and a high-stand systems tract. The thickness distribution of postglacial deposits reveals that the main depocenter (55-65 m is located offshore of the Coastal Range, along a stretch of coast supplied by several small and seasonal streams ("fiumare" and characterized by the lack of a coastal plain. This suggests the greater efficiency of sediment supply and bypass in this area relatively to sectors located offshore of the main rivers. The transgressive systems tract, usually thin or nearly absent, is particularly well developed (up to 33 m and is composed of up to three parasequences with a retrogradational stacking pattern. The high-stand systems tract, up to 30 m thick, is made up of two parasequences and has a quite regular geometry and acoustic facies.Perfis de reflexão sísmica de alta resolução da plataforma continental tirreniana de Calabro foram obtidos utilizando-se recursos sísmicos diversos (Perfilador de Sub-superfície, Uniboom, Sparker 0.5-1-4.5 kJ. Diferenças evidentes foram encontradas sob o ponto de vista geofísico e geológico-interpretativo. A disponibilidade de diferentes fontes permitiu a definição de uma caracterização sismo-estratigráfica mais acurada em termos

  17. Anisotropic seismic-waveform inversion: Application to a seismic velocity model from Eleven-Mile Canyon in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sabin, Andrew [Geothermal Program Office, China Lake, CA (United States)

    2016-03-31

    Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquired at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.

  18. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  19. Pre-plate tectonics and structure of the Archean mantle lithosphere imaged by seismic anisotropy - inferences from the LAPNET array in northern Fennoscandia

    Science.gov (United States)

    Plomerova, Jaroslava; Vecsey, Ludek; Babuska, Vladislav; Lapnet Working Group

    2013-04-01

    Various studies of seismic anisotropy clearly demonstrate the Archean mantle lithosphere consists of domains with different fabrics reflecting fossil anisotropic structures. We detect anisotropic signal both in the P-wave travel-time deviations and shear-wave splitting recorded by the LAPNET array (2007-2009) in the Archean craton of Fennoscandia (Plomerova et al., 2011). The anisotropic parameters change across the array and stations with similar characteristics form groups. The geographical variations of seismic-wave anisotropy delimit individual sharply bounded domains of the mantle lithosphere, each of them having a consistent fabric. The domains can be modelled in 3D by peridotite aggregates with dipping lineation a, or foliation (a,c). Also radial anisotropy of the Archean lithosphere derived from surface waves indicates inclined structure of all the cratonic regions of the continents, though with less detailed lateral resolution in comparison with body-wave anisotropy. These findings allow us to interpret the domains as micro-plate fragments retaining fossil fabrics in the mantle lithosphere, reflecting thus an olivine LPO created before the micro-plates assembled. Successive subductions of oceanic lithosphere is a mechanism which can work in modern-style plate tectonics as we know it now, being considered as widespread since 2.7 Ga. Though the modern plate tectonics is the most distinct tectonic style acting up to now, we have to consider a mechanism creating oriented structures (fabrics) in a pre-plate-tectonic style. The early lithosphere formed in dynamic conditions far from simple cooling which would result in sub-horizontal layered structure of the lithosphere. Earlier tectonic modes in a hotter and more dynamic Earth might be similar in some respects to those of the modern-plate tectonics. Basaltic "rockbergs" on convecting magma ocean in the Hadean Earth are supposed to turn to either proto-plate tectonics with platelets and supercratonal, or, to

  20. Seismic migration in generalized coordinates

    Science.gov (United States)

    Arias, C.; Duque, L. F.

    2017-06-01

    Reverse time migration (RTM) is a technique widely used nowadays to obtain images of the earth’s sub-surface, using artificially produced seismic waves. This technique has been developed for zones with flat surface and when applied to zones with rugged topography some corrections must be introduced in order to adapt it. This can produce defects in the final image called artifacts. We introduce a simple mathematical map that transforms a scenario with rugged topography into a flat one. The three steps of the RTM can be applied in a way similar to the conventional ones just by changing the Laplacian in the acoustic wave equation for a generalized one. We present a test of this technique using the Canadian foothills SEG velocity model.

  1. Research on seismic stress triggering

    Institute of Scientific and Technical Information of China (English)

    万永革; 吴忠良; 周公威; 黄静; 秦立新

    2002-01-01

    This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.

  2. Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals and Associated Carbonate Sediments in Coastal Plain Sequences on the Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cumbest, R. J.

    1999-01-05

    The objectives of the pilot study were to investigate the limitations of the technique for imaging the presence, extent, and boundaries of the low-resistance intervals and associated carbonate sediments.

  3. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  4. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  5. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  6. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Science.gov (United States)

    Karyono, Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Masturyono, Rudiyanto, Ariska; Pranata, Bayu; Muzli, Widodo, Handi Sulistyo; Sudrajat, Ajat; Sugiharto, Anton

    2015-04-01

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green's functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  7. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  8. Illuminating Asset Value through New Seismic Technology

    Science.gov (United States)

    Brandsberg-Dahl, S.

    2007-05-01

    The ability to reduce risk and uncertainty across the full life cycle of an asset is directly correlated to creating an accurate subsurface image that enhances our understanding of the geology. This presentation focuses on this objective in areas of complex overburden in deepwater. Marine 3D seismic surveys have been acquired in essentially the same way for the past decade. This configuration of towed streamer acquisition, where the boat acquires data in one azimuth has been very effective in imaging areas in fairly benign geologic settings. As the industry has moved into more complicated geologic settings these surveys no longer meet the imaging objectives for risk reduction in exploration through production. In shallow water, we have seen increasing use of ocean bottom cables to meet this challenge. For deepwater, new breakthroughs in technology were required. This will be highlighted through examples of imaging below large salt bodies in the deep water Gulf of Mexico. GoM - Mad Dog: The Mad Dog field is located approximately 140 miles south of the Louisiana coastline in the southern Green Canyon area in water depths between 4100 feet to 6000 feet. The complex salt canopy overlying a large portion of the field results in generally poor seismic data quality. Advanced processing techniques improved the image, but gaps still remained even after several years of effort. We concluded that wide azimuth acquisition was required to illuminate the field in a new way. Results from the Wide Azimuth Towed Streamer (WATS) survey deployed at Mad Dog demonstrated the anticipated improvement in the subsalt image. GoM - Atlantis Field: An alternative approach to wide azimuth acquisition, ocean bottom seismic (OBS) node technology, was developed and tested. In 2001 deepwater practical experience was limited to a few nodes owned by academic institutions and there were no commercial solutions either available or in development. BP embarked on a program of sea trials designed to both

  9. Retrieving Drill Bit Seismic Signals Using Surface Seismometers

    Institute of Scientific and Technical Information of China (English)

    Linfei Wang; Huaishan Liu; Siyou Tong; Yanxin Yin; Lei Xing; Zhihui Zou; Xiugang Xu

    2015-01-01

    Seismic while drilling (SWD) is an emerging borehole seismic imaging technique that uses the downhole drill-bit vibrations as seismic source. Without interrupting drilling, SWD technique can make near-real-time images of the rock formations ahead of the bit and optimize drilling operation, with reduction of costs and the risk of drilling. However, the signal to noise ratio (SNR) of surface SWD-data is severely low for the surface acquisition of SWD data. Here, we propose a new method to retrieve the drill-bit signal from the surface data recorded by an array of broadband seismometers. Taking advantages of wavefield analysis, different types of noises are identified and removed from the surface SWD-data, resulting in the significant improvement of SNR. We also optimally synthesize seis-mic response of the bit source, using a statistical cross-coherence analysis to further improve the SNR and retrieve both the drill-bit direct arrivals and reflections which are then used to establish a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth. The subsurface images de-rived from these data compare well with the corresponding images of the three-dimension surface seis-mic survey cross the well.

  10. Observation of seismicity based on DOMERAPI and BMKG seismic networks: A preliminary result from DOMERAPI project

    Science.gov (United States)

    Ramdhan, Mohamad; Nugraha, Andri Dian; Widiyantoro, Sri; Kristyawan, Said; Sembiring, Andry Syaly; Mtaxian, Jean-Philippe

    2016-05-01

    DOMERAPI project has involved earth scientists from Indonesia and France to conduct comprehensively a study of the internal structure of Mt. Merapi and its vicinity based on seismic tomographic imaging. The DOMERAPI seismic network was running from October 2013 to April 2015 consisting of 53 broad-band seismometers, covering Mt. Merapi and Mt. Merbabu, and some geological features such as Opak and Dengkeng faults. Earthquake hypocenter determination conducted in this study is an important step before seismic tomographic imaging. The earthquake events were identified and picked manually and carefully. The majority of earthquakes occured outside the DOMERAPI network. The ray paths of seismic waves from these earthquakes passed through the deep part of the study area around Merapi. The joint data of BMKG and DOMERAPI networks can minimize the azimuthal gap, which is often used to obtain an indication of the reliability of the epicentral solution. Our preliminary results show 279 events from October 2013 to mid August 2014. For future work, we will incorporate the BPPTKG (Center for Research and Technology Development of Geological Disaster) data catalogue in order to enrich seismic ray paths. The combined data catalogues will provide information as input for further advanced studies and volcano hazards mitigation.

  11. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  12. Benchmarking Passive Seismic Methods of Imaging Surface Wave Velocity Interfaces Down to 300 m — Mapping Murray Basin Thickness in Southeastern Australia

    Science.gov (United States)

    Gorbatov, A.; Czarnota, K.

    2015-12-01

    In shallow passive seismology it is generally thought that the spatial autocorrelation (SPAC) method is more robust than the horizontal over vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Drilled depths of this interface are between 27 and 300 m. A three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium compact broadband seismometers was deployed at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighborhood algorithm of Sambridge (1999) implemented in geopsy by Wathelet et al (2005). The HVSR technique yielded depth estimates, of the target interface (Vs > 1000 m/s), generally within 20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments. Half of the SPAC estimates showed significantly higher errors than obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low degrees of anthropogenic noise at the benchmark sites. At a few sites SPAC curves showed clear overtones suggesting that more reliable SPAC estimates maybe obtained utilizing a multi modal inversion. Nevertheless, our study seems to indicate that reliable basin thickness estimates in remote Australia can be obtained utilizing HVSR data from a single seismometer, without a priori knowledge of the surface-wave velocity of the basin material, thereby negating the need to deploy cumbersome arrays.

  13. Millennial-scale climatic fluctuation in the fluvial record during MIS3: Very high-resolution seismic images from NE Hungary

    Science.gov (United States)

    Cserkész-Nagy, Ágnes; Sztanó, Orsolya

    2016-12-01

    Alluvial architectures of a meandering river existing in MIS3 were observed on very high-resolution (VHR) single-channel waterborne seismic profiles, 20-30 m below the Tisza River in the Pannonian Basin (Hungary). The study investigated the spatial and temporal variations of two, more than 2 km-long continuous series of inclined reflections interpreted as laterally accreted point bar complexes. The phases of natural meander migration were reconstructed in 3D based on the changes in the geometry and dip of the inclined reflections. A channel-forming discharge curve extending over approximately 2.5 ky was calculated by using paleo-width and depth data derived from the lateral accretion surfaces. Systematic analysis of the geometrical variations coupled with the discharge curve evaluation on each point bar complexes indicates millennial-scale discharge fluctuations 40-50 ky ago, to that the river responded principally by incision and infilling. The primary periodicity, comparable to the sub-Milankovitch cycles, is superimposed by shorter periods: ca. 500-year cycles reflect the phases of unidirectional meander development, while the smallest ones reflect the recurrence interval (150-200 years) of the highest floods. River-bed incisions happened step-by-step related to extreme floods, when the meander development also changed. The smaller-scale and more rapid fluctuations within a development unit were represented in variations of the channel width. Although the poor geochronology of the sandy fluvial deposits cannot allow any direct correlation to the climatostratigraphic events, the millennial-scale climate variations of MIS3 were pronouncedly characteristic in the discharge fluctuations.

  14. Seismicity in Northern Germany

    Science.gov (United States)

    Bischoff, Monika; Gestermann, Nicolai; Plenefisch, Thomas; Bönnemann, Christian

    2013-04-01

    Northern Germany is a region of low tectonic activity, where only few and low-magnitude earthquakes occur. The driving tectonic processes are not well-understood up to now. In addition, seismic events during the last decade concentrated at the borders of the natural gas fields. The source depths of these events are shallow and in the depth range of the gas reservoirs. Based on these observations a causal relationship between seismicity near gas fields and the gas production is likely. The strongest of these earthquake had a magnitude of 4.5 and occurred near Rotenburg in 2004. Also smaller seismic events were considerably felt by the public and stimulated the discussion on the underlying processes. The latest seismic event occurred near Langwedel on 22nd November 2012 and had a magnitude of 2.8. Understanding the causes of the seismicity in Northern Germany is crucial for a thorough evaluation. Therefore the Seismological Service of Lower Saxony (NED) was established at the State Office for Mining, Energy and Geology (LBEG) of Lower Saxony in January 2013. Its main task is the monitoring and evaluation of the seismicity in Lower Saxony and adjacent areas. Scientific and technical questions are addressed in close cooperation with the Seismological Central Observatory (SZO) at the Federal Institute for Geosciences and Natural Resources (BGR). The seismological situation of Northern Germany will be presented. Possible causes of seismicity are introduced. Rare seismic events at greater depths are distributed over the whole region and probably are purely tectonic whereas events in the vicinity of natural gas fields are probably related to gas production. Improving the detection threshold of seismic events in Northern Germany is necessary for providing a better statistical basis for further analyses answering these questions. As a first step the existing seismic network will be densified over the next few years. The first borehole station was installed near Rethem by BGR

  15. Multiscale seismic tomography and mantle dynamics

    Science.gov (United States)

    Zhao, Dapeng

    2010-05-01

    ; Zhao, 2004). Evidence also shows that arc magma and slab dehydration may also contribute to the generation of various types of earthquakes in subduction zones (Zhao et al., 2002). Most of the slab materials in NW Pacific regions are stagnant in the mantle transition zone before finally collapsing down to the CMB as a result of large gravitational instability from phase transitions. The active intraplate volcanoes in NE Asia continent (such as Changbai and Wudalianchi volcanoes) are not plume-related hotspots, but are a kind of back-arc volcanoes whose formation was closely related to the deep subduction of the Pacific slab and its stagnancy in the mantle transition zone (Zhao, 2004; Zhao et al., 2009). The origin of the active Tengchong volcano in SW China is related to the subduction of the Burma microplate (Huang and Zhao, 2006; Zhao, 2009). The Philippine Sea slab is subducting aseismically down to about 500 km depth (Abdelwahed and Zhao, 2007; Zhao, 2009). The Apollo seismic data (1969-1977) are used to estimate P and S wave tomography down to 1000 km depth under the near-side of the Moon, which shows a correlation between the lateral heterogeneity in the lunar mantle and distribution of deep moonquakes (Zhao et al., 2008). The non-uniform nature of the current distribution of seismic stations and earthquakes on Earth requires a multiscale approach to seismic imaging. Regions that are covered densely by stations and/or seismicity can be imaged with a high resolution by using local tomography, while poorly instrumented regions can only be imaged roughly by global or large-scale regional tomography. This situation will last for quite a long time. A thorough understanding of the seismic structure and deep Earth dynamics will only be achieved by a combination of more effective seismic imaging techniques and dense coverage of global seismic networks, particularly in the oceans. References Abdelwahed, M., D. Zhao (2007) Deep structure of the Japan subduction zone. Phys

  16. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    Science.gov (United States)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  17. Linearized inversion of multiple scattering seismic energy

    Science.gov (United States)

    Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad

    2014-05-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains

  18. Seismic transducer modeling using ABAQUS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Novascone

    2004-05-01

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  19. Seismic tomography of the Moon

    Institute of Scientific and Technical Information of China (English)

    ZHAO DaPeng; LEI JianShe; LIU Lucy

    2008-01-01

    We attempted to determine the first three-dimensional P and S wave velocity and Poisson's ratio structures of the lunar crust and mantle down to 1000 km depth under the near-side of the Moon by applying seismic tomography to the moonquake arrival-time data recorded by the Apollo seismic network operated during 1969 to 1977. Our results show that significant lateral heterogeneities may exist in the lunar interior. Because there is no plate tectonics in the Moon, the lateral heterogeneities may be produced at the early stage of the Moon formation and evolution, and they have been preserved till today. There seems to be a correlation between the distribution of deep moonquakes and lateral velocity variations in the lunar lower mantle, suggesting that the occurrence of deep moonquakes may be affected by the lunar structural heterogeneity in addition to the tidal stresses. Although this is an experimental work and the result is still preliminary, it indicates that tomographic imaging of the lunar interior is feasible.

  20. TRT地震波三维成像技术在隧道施工地质超前预报中的应用%TRT Seismic Wave 3D Imaging Technology Application in Advance Geological Forecast in Tunnel Construction

    Institute of Scientific and Technical Information of China (English)

    刘兆勇; 杨威; 王羿磊

    2016-01-01

    Tunnel geological prediction plays a key role in the tunnel construction, and is also a major technical problem in the field of engineering geophysics. In this paper,through the introduction of trt6000 tunnel geological predic-tion system principle and successful application examples that TRT 3-D seismic imaging technology in Tunnel Advance Geological Forecast in the advanced and effective,explore the in tunnel advanced detection application prospects.%隧道地质超前预报在隧道施工开挖中起着关键性作用,同时也是工程地球物理学界所面临的一大技术难题。本文通过介绍TRT6000隧道地质超前预报系统的方法原理以及成功应用实例,说明TRT地震波三维成像技术在隧道超前地质预报中的先进性和有效性,探讨其在隧道超前探测中的应用前景。

  1. Seismic probing of continental subduction zones

    Science.gov (United States)

    Zhao, Liang; Xu, Xiaobing; Malusà, Marco G.

    2017-09-01

    High-resolution images of Earth's interior provide pivotal information for the understanding of a range of geodynamic processes, including continental subduction and exhumation of ultrahigh-pressure (UHP) metamorphic rocks. Here we present a synthesis of available global seismic observations on continental subduction zones, and selected examples of seismic probing from the European Alps, the Himalaya-Tibet and the Qinling-Dabie orogenic belts. Our synthesis and examples show that slabs recognized beneath exhumed continental UHP terranes generally have shallow dip angles (100 km. Slabs underlined by a clear high velocity anomaly from Earth's surface to the mantle are generally Cenozoic in age. Some of these slabs are continuous, whereas other continental subduction zones are located above discontinuous high velocity anomalies possibly suggesting slab breakoff. The density of seismic stations and the quality of recordings are of primary importance to get high-resolution images of the upper mantle to be used as a starting point to provide reliable geodynamic interpretations. In some cases, areas previously indicated as possible site of slab breakoff, such as the European Alps, have been later proven to be located above a continuous slab by using higher quality travel time data from denser seismic arrays. Discriminating between oceanic and continental slabs can be challenging, but valuable information can be provided by combining teleseismic tomography and receiver function analysis. The upper mantle beneath most continental UHP terranes generally shows complex seismic anisotropy patterns that are potentially preserved even in pre-Cenozoic subduction zones. These patterns can be used to provide information on continental slabs that are no longer highlighted by a clear high-velocity anomaly.

  2. Monitoring hydraulic fracturing with seismic emission volume

    Science.gov (United States)

    Niu, F.; Tang, Y.; Chen, H.; TAO, K.; Levander, A.

    2014-12-01

    Recent developments in horizontal drilling and hydraulic fracturing have made it possible to access the reservoirs that are not available for massive production in the past. Hydraulic fracturing is designed to enhance rock permeability and reservoir drainage through the creation of fracture networks. Microseismic monitoring has been proven to be an effective and valuable technology to image hydraulic fracture geometry. Based on data acquisition, seismic monitoring techniques have been divided into two categories: downhole and surface monitoring. Surface monitoring is challenging because of the extremely low signal-to-noise ratio of the raw data. We applied the techniques used in earthquake seismology and developed an integrated monitoring system for mapping hydraulic fractures. The system consists of 20 to 30 state-of-the-art broadband seismographs, which are generally about hundreds times more sensible than regular geophones. We have conducted two experiments in two basins with very different geology and formation mechanism in China. In each case, we observed clear microseismic events, which may correspond to the induced seismicity directly associated with fracturing and the triggered ones at pre-existing faults. However, the magnitude of these events is generally larger than magnitude -1, approximately one to two magnitudes larger than those detected by downhole instruments. Spectrum-frequency analysis of the continuous surface recordings indicated high seismic energy associated with injection stages. The seismic energy can be back-projected to a volume that surrounds each injection stage. Imaging seismic emission volume (SEV) appears to be an effective way to map the stimulated reservior volume, as well as natural fractures.

  3. Full Wavefield Migration of Vertical Seismic Profiling data

    NARCIS (Netherlands)

    Soni, A.K.

    2014-01-01

    Until now, in most seismic imaging technologies, both surface and internal multiples are considered as noise. In today’s industrial practice, we see various methods for suppressing multiples before migration. This means that only a fraction of the recorded wavefield is used in imaging. In this thesi

  4. On horizontal resolution for seismic acquisition geometries in complex 3D media

    Science.gov (United States)

    Wei, Wei; Fu, Li-Yun

    2014-09-01

    Spatial sampling has a crucial influence on the horizontal resolution of seismic imaging, but how to quantify the influence is still controversial especially in complex media. Most of the studies on horizontal resolution focus on the measurement of wavelet widths for seismic migration, but neglect to evaluate the effect of side-lobe perturbations on spatial resolution. The side-lobe effect, as a migration noise, is important for seismic imaging in complex media. In this article, with focal beam analysis, we define two parameters to represent the horizontal resolution of an acquisition geometry: the width of the main lobe (WML) along the inline and crossline directions and the ratio of the main-lobe amplitude to the total amplitude (RMT) in a focal beam. We provide examples of typical acquisition geometries to show how spatial sampling affects the horizontal resolution, measured in terms of WML and RMT values. WML defines the horizontal resolution to image the target, whereas RMT describes the clarity of the imaging. Migration noise reduces with increasing RMT, indirectly improving both the vertical and horizontal resolutions of seismic imaging. Case studies of seismic migration with 3D seismic data from an oil field of China, demonstrate how the acquisition geometries with different WML and RMT values influence the performance of seismic imaging. Prior WML and RMT analyses to predict the quality of acquired datasets can optimize acquisition geometries before the implementation of seismic acquisition.

  5. Studies on seismic source

    Institute of Scientific and Technical Information of China (English)

    李世愚; 陈运泰

    2003-01-01

    During the period of 1999~2002, the Chinese seismologists made a serious of developments in the study on seismic sources including observations, experiments and theory. In the field of observation, the methods of the accuracy location of earthquake sources, the inversion of seismic moment tensor and the mechanism of earthquake source are improved and developed. A lot of important earthquake events are studied by using these methods. The rupture processes of these events are inverted and investigated combined with the local stress fields and the tectonic moment by using the measurements of surface deformation. In the fields of experiments and theory, many developments are obtained in cause of seismic formation, condition of stress and tectonics, dynamics of earthquake rupture, rock fracture and nucleation of strong earthquakes.

  6. Seismic Disaster Reduction in China

    Institute of Scientific and Technical Information of China (English)

    Ministry of Construction

    2001-01-01

    @@ Great accomplishments have been made in seismic disaster reduction in China's engineering construction and city construction projects during the past decade (1990~2000). A new national map on the division of seismic intensity has been promulgated, and a series of anti-seismic standards and norms have been drafted or revised, which has further improved the country's technical code system on anti-seismic engineering measures.

  7. Multiband array detection and location of seismic sources recorded by dense seismic networks

    Science.gov (United States)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-06-01

    We present a new methodology for detection and space-time location of seismic sources based on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multiscale non-stationary statistical characteristics, through multiband higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3-D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time-series of 3-D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3-D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  8. B341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-02

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3. Based on our evaluation the building does not meet a Life Safety performance level for the BSE- 1E earthquake ground shaking hazard. The BSE-1E is the recommended seismic hazard level for evaluation of existing structures and is based on a 20% probability of exceedence in 50 years.

  9. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  10. Nonstructural seismic restraint guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Butler, D.M.; Czapinski, R.H.; Firneno, M.J.; Feemster, H.C.; Fornaciari, N.R.; Hillaire, R.G.; Kinzel, R.L.; Kirk, D.; McMahon, T.T.

    1993-08-01

    The Nonstructural Seismic Restraint Guidelines provide general information about how to secure or restrain items (such as material, equipment, furniture, and tools) in order to prevent injury and property, environmental, or programmatic damage during or following an earthquake. All SNL sites may experience earthquakes of magnitude 6.0 or higher on the Richter scale. Therefore, these guidelines are written for all SNL sites.

  11. Understanding induced seismicity

    NARCIS (Netherlands)

    Elsworth, Derek; Spiers, Christopher J.; Niemeijer, Andre R.

    2016-01-01

    Fluid injection–induced seismicity has become increasingly widespread in oil- and gas-producing areas of the United States (1–3) and western Canada. It has shelved deep geothermal energy projects in Switzerland and the United States (4), and its effects are especially acute in Oklahoma, where seismi

  12. Understanding induced seismicity

    NARCIS (Netherlands)

    Elsworth, Derek; Spiers, Christopher J.; Niemeijer, Andre R.

    2016-01-01

    Fluid injection–induced seismicity has become increasingly widespread in oil- and gas-producing areas of the United States (1–3) and western Canada. It has shelved deep geothermal energy projects in Switzerland and the United States (4), and its effects are especially acute in Oklahoma, where

  13. Mobile seismic exploration

    Science.gov (United States)

    Dräbenstedt, A.; Cao, X.; Polom, U.; Pätzold, F.; Zeller, T.; Hecker, P.; Seyfried, V.; Rembe, C.

    2016-06-01

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  14. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  15. Geophysics and Seismic Hazard Reduction

    Institute of Scientific and Technical Information of China (English)

    YuGuihua; ZhouYuanze; YuSheng

    2003-01-01

    The earthquake is a natural phenomenon, which often brings serious hazard to the human life and material possession. It is a physical process of releasing interior energy of the earth, which is caused by interior and outer forces in special tectonic environment in the earth, especially within the lithosphere. The earthquake only causes casualty and loss in the place where people inhabit. Seismic hazard reduction is composed of four parts as seismic prediction, hazard prevention and seismic engineering, seismic response and seismic rescuing, and rebuilding.

  16. Complex seismic wavefi eld interpolation based on the Bregman iteration method in the sparse transform domain

    Institute of Scientific and Technical Information of China (English)

    Gou Fu-Yan; Liu Cai; Liu Yang; Feng Xuan; Cui Fang-Zi

    2014-01-01

    In seismic prospecting,fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent high-precision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model andfi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.

  17. Transdimensional Bayesian seismic ambient noise tomography across SE Tibet

    Science.gov (United States)

    Zheng, DingChang; Saygin, Erdinc; Cummins, Phil; Ge, Zengxi; Min, Zhaoxu; Cipta, Athanasius; Yang, Runhai

    2017-02-01

    We analyze seismic ambient noise data recorded at a set of permanent and temporary stations across southeastern Tibet to image crustal structure. High-resolution phase velocity maps are presented based on Transdimensional Bayesian seismic ambient noise tomography. Seismic images exhibit more apparent horizontal heterogeneities and show more detailed information compared to previous studies based on traditional ambient noise tomography. As noted from the phase velocity image at 25 s, the rigid high velocity anomalies beneath the Sichuan Basin and the South China Fold System act as a blockage to crustal material expansion, and the distribution of velocity anomalies contributes to the interpretation of a surface clockwise rotation pattern. Our results imply a more complex distributed low-velocity zone rather than two isolated channels beneath SE Tibet.

  18. Modeling the Corona and Solar Wind using ADAPT Maps that Include Far-Side Observations

    Science.gov (United States)

    2013-11-01

    document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated...Government’s approval or disapproval of its ideas or findings. Approved for public release; distribution is unlimited. REPORT DOCUMENTATION PAGE...Los Alamos National Laboratory ( LANL ) and the National Solar Observatory (NSO), has developed a model that produces more realistic estimates of the

  19. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  20. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  1. Foundations of image science

    CERN Document Server

    Barrett, Harrison H

    2013-01-01

    Winner of the 2006 Joseph W. Goodman Book Writing Award! A comprehensive treatment of the principles, mathematics, and statistics of image science In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world. Foundations of Image Science presents a comprehensive treatment of the principles, mathematics, and st

  2. Least-Squares Seismic Inversion with Stochastic Conjugate Gradient Method