WorldWideScience

Sample records for fanal resonance parameter

  1. Review of 241 Pu resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.

    1981-10-01

    The status of 241 Pu resonance parameters is reviewed. The most important recent results are compared in some energy ranges, both from single level and multilevel point of view. It appears that an accurate set of resonance parameters is not still obtained for a general description of the cross-sections in the resonance region. Some recommendations are given for further experiments or evaluations

  2. Integral data analysis for resonance parameters determination

    International Nuclear Information System (INIS)

    Larson, N.M.; Leal, L.C.; Derrien, H.

    1997-09-01

    Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications

  3. Neutron capture measurements and resonance parameters of dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)

    2017-10-15

    Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)

  4. The LIPAR-5 resonance parameter library

    International Nuclear Information System (INIS)

    Abagyan, L.P.

    1997-08-01

    The LIPAR-5 neutron resolved resonance parameter library has been elaborated. It contains data for 94 isotopes. The author's evaluations are included in LIPAR. Other authors' results are also included after re-evaluation. The codes used for the evaluation are described briefly. Tables of results are included for every isotope: the boundaries of the resolved resonance region, the numbers of s- and p-resonances, the thermal neutron partial cross-sections and the resonance integrals. The parameters are presented in ENDF/B-6 format. LIPAR is part of the nuclear data library of the MCU Monte Carlo code for neutron transport calculations. LIPAR was verified by comparing the benchmark experiment and Monte Carlo calculation results. (author). 44 refs, 6 tabs

  5. Multilevel resonance parameters of 241Pu

    International Nuclear Information System (INIS)

    Weston, L.W.; Todd, J.H.

    1978-01-01

    The data previously reported by the authors on the neutron fission and capture cross sections of 241 Pu were simultaneously fit with the Adler formalism to obtain multilevel resonance parameters. The neutron energy range of the fit was 0.01 to 100 eV. The 241 Pu cross sections in the resonance region of neutron energies are complex, and the Adler parameters present an efficient method of representing these cross sections, which are important for plutonium-fueled reactors. The parameters represent the data to an accuracy within the quoted experimental errors. 5 figures, 2 tables

  6. Influence of resonance parameters' correlations on the resonance integral uncertainty; 55Mn case

    International Nuclear Information System (INIS)

    Zerovnik, Gasper; Trkov, Andrej; Capote, Roberto; Rochman, Dimitri

    2011-01-01

    For nuclides with a large number of resonances the covariance matrix of resonance parameters can become very large and expensive to process in terms of the computation time. By converting covariance matrix of resonance parameters into covariance matrices of background cross-section in a more or less coarse group structure a considerable amount of computer time and memory can be saved. The question is how important is the information that is discarded in the process. First, the uncertainty of the 55 Mn resonance integral was estimated in narrow resonance approximation for different levels of self-shielding using Bondarenko method by random sampling of resonance parameters according to their covariance matrices from two different 55 Mn evaluations: one from Nuclear Research and Consultancy Group NRG (with large uncertainties but no correlations between resonances), the other from Oak Ridge National Laboratory (with smaller uncertainties but full covariance matrix). We have found out that if all (or at least significant part of the) resonance parameters are correlated, the resonance integral uncertainty greatly depends on the level of self-shielding. Second, it was shown that the commonly used 640-group SAND-II representation cannot describe the increase of the resonance integral uncertainty. A much finer energy mesh for the background covariance matrix would have to be used to take the resonance structure into account explicitly, but then the objective of a more compact data representation is lost.

  7. New evaluation of 238U neutron resonance parameters

    International Nuclear Information System (INIS)

    Derrien, Herve; Leal, Luiz C.; Larson, Nancy M.

    2003-01-01

    The neutron resonance parameters of 238 U were obtained in the energy range 1 keV to 20 keV from a SAMMY Reich-Moore analysis of high resolution transmission measurements performed at ORELA. In the energy range 1 keV to 10 keV, the analysis used as prior values the ENDF/B-VI resonance parameters. The analysis in the energy range 10 keV to 20 keV resulted in the creation of a set of resonance parameters for the representation of the cross section in this energy range. The results are compared to the ENDF/B-VI evaluation. Some statistical properties of the new resonance parameters are examined. (author)

  8. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  9. Implementación de la metodología DMAIC-Seis Sigma en el envasado de licores en Fanal

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-López

    2014-09-01

    Se proponen algunas soluciones como: medir y monitorear la eficiencia de cada máquina en la línea con un indicador efectivo como el OEE (eficiencia general de los equipos, controlar las paradas no obligatorias de manera que el proceso sea más fluido y expedito, automatizar algunos subprocesos en la línea de manera que los operadores no tengan que realizar trabajos que una máquina puede hacer con facilidad y a menor costo. En síntesis, con la mejora conseguida por medio de la metodología DMAIC-Seis Sigma en la línea de envasado de licores en pet de Fanal se logra pasar de un OEE de 47% al inicio a uno de 80% al final de las mejoras implementadas (entrenamiento al personal de mantenimiento y de la línea, así como la creación del plan de mantenimiento, lo que ofrece una solución integral al problema presentado y permite cubrir la demanda en el período de mayor venta; además de permitir la reducción de tiempos muertos en el proceso y una mayor utilización de los recursos instalados y del recurso humano involucrado, de manera tal que se optimiza a su máximo rendimiento la capacidad de la línea productiva, generándole mayores ingresos anuales a la empresa.

  10. Neutron resonance parameters of CM isotopes

    International Nuclear Information System (INIS)

    Belanova, T.S.; Kolesov, A.G.; Poruchikov, V.A.

    1977-01-01

    The total neutron cross sections of isotopes 244, 245, 246, 248 Curium have been measured on reactor CM-2 using the time-of-flight method. Single-level Breit-Wigner resonance parameters: energy E 0 , neutron width 2g GITAn, total width GITA, total neutron cross section in resonance sigma 0 have been obtained by the shape and area methods

  11. Nuclear data adjustment methodology utilizing resonance parameter sensitivities and uncertainties

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1983-01-01

    This work presents the development and demonstration of a Nuclear Data Adjustment Method that allows inclusion of both energy and spatial self-shielding into the adjustment procedure. The resulting adjustments are for the basic parameters (i.e. resonance parameters) in the resonance regions and for the group cross sections elsewhere. The majority of this development effort concerns the production of resonance parameter sensitivity information which allows the linkage between the responses of interest and the basic parameters. The resonance parameter sensitivity methodology developed herein usually provides accurate results when compared to direct recalculations using existng and well-known cross section processing codes. However, it has been shown in several cases that self-shielded cross sections can be very non-linear functions of the basic parameters. For this reason caution must be used in any study which assumes that a linear relatonship exists between a given self-shielded group cross section and its corresponding basic data parameters. The study also has pointed out the need for more approximate techniques which will allow the required sensitivity information to be obtained in a more cost effective manner

  12. Determination of Intermediate Resonance Parameter with RMET21 for nTRACER

    International Nuclear Information System (INIS)

    Sohail, Muhammad; Kim, Myung Hyun

    2012-01-01

    Ray Tracing based code nTRACER is being developed in Seoul National University that has the capability of 3-dimensional whole core neutron transport calculation. As a part of development of multi-group neutron cross section library for nTRACER, the current work is intended to accurately determine intermediate resonance parameters. Beside the systematic calculation of subgroup parameters for resonance self shielding calculation, intermediate resonance parameters itself can be as important as the multi-group neutron cross section in the library and its overall accuracy. In this paper lambda factors were computed using RMET21 from ENDF/B-VII.1 for nTRACER to investigate its dependence on temperature and background cross section and replaced with lambda factors from HELIOS multi-group library. The procedure used for determining the intermediate resonance parameter for the isotope under study is introduced in the next section. Oxygen being one of the primary nuclide in PWR fuel has been selected for intermediate resonance parameters calculation

  13. Phenomenological analysis of the Δ resonance parameters

    International Nuclear Information System (INIS)

    Vasan, S.S.

    1976-01-01

    The positions of the poles in the complex energy plane corresponding to the resonances Δ ++ and Δ 0 , and the associated residues, are determined by fitting the π + p and π - p hadronic phase shift data from the CARTER 73 analysis. As an illustration of the use of the Δ pole parameters, their application to the problem of parametrizing the residue function associated with the Δ Regge trajectory is considered. The input for the parametrization is given partly by the pole position and the residue of the Δ(1950), the first recurrence of the Δ(1236). These pole parameters are deduced from fits to the F 37 partial wave data from the AYED 74 phase shift analysis. Together with the Δ(1236) pole parameters, these provide information on the behavior of the Regge residue in the resonance region u less than 0 (in the context of s-channel backward scattering being dominated by u-channel Regge exchanges). Attempts to incorporate this information in parametrizations of the residue by means of real and complex functions lead to the conclusion that both the residue and the trajectory are better represented in the resonance region by complex parametrizations

  14. Resolved resonance parameters for 236Np

    International Nuclear Information System (INIS)

    Morogovskij, G.B.; Bakhanovich, L.A.

    2002-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236 Np experimental fission cross-section in the resolved resonance region. (author)

  15. Recommended formulae and formats for a resonance parameter library

    International Nuclear Information System (INIS)

    James, M.F.

    1968-08-01

    It is proposed that a library of neutron resonance parameters be set up, on punched cards and magnetic tape, which will complement the cross section data in the present U.K. Nuclear Data Library. This report gives parametric formulae for the resolved resonance region, based on:- (i) the Breit-Wigner approximation, (ii) other approximations of R-matrix theory and (iii) the formulae of Adler and Adler. In addition, the statistical distributions of the parameters are given. The final section of the report contains the recommended formats for the parameters of the various formulae. (author)

  16. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  17. Measurement of J/ψ resonance parameters

    International Nuclear Information System (INIS)

    Bai Jingzhi; Chen Guangpei; Chen Shaomin

    1995-01-01

    The cross sections of e + e - →hadrons, e + e - , μ + μ - have been measured in the vicinity of J/ψ resonance at BES/BEPC. The fit of the observed cross sections gives the new results of J/ψ resonance parameters: the partial widths to hadrons, electrons and muons are Γ h = 74.1 +- 8.1 keV, Γ e = 5.14 +- 0.39 keV and Γ μ = 5.13 +-0.52 keV respectively; the total width Γ = 84.4 +- 8.9 keV; the branching fractions Γ h /Γ = (87.8 +- 0.5)%, Γ e /Γ (6.09 +- 0.33)%, and Γ μ /Γ = (6.08 +- 0.33)%

  18. UPSILON'(10.01) resonance parameters

    International Nuclear Information System (INIS)

    Niczyporuk, B.; Zeludziewicz, T.; Chen, K.W.; Hartung, R.

    1980-09-01

    The resonance parameters of the UPSILON'(10.01) were measured using the LENA detector at the DORIS e + e - storage ring. We obtained a mass of M(UPSILON') = (10 013.6 +- 1.2 +- 10.0) MeV and an electronic width of GAMMAsub(ee)(UPSILON') = (0.53 +- 0.07sup(+0.09)sub(-0.05) keV. The upper limit set to the μ-pair branching ratio is 3.8% which implies a lower limit on the total UPSILON' widUPSILON parameters we obtain a mass difference M(UPSILON') - M(UPSILON) = (552.0 +- 1.3 +- 10.0) MeV and GAMMAsub(ee)UPSILON')/ = 0.43 +- 0.07sup(+0.05)sub(-0.00). (orig.)

  19. A method for generating subgroup parameters from resonance tables

    International Nuclear Information System (INIS)

    Devan, K.; Mohanakrishnan, P.

    1993-01-01

    A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. (author). 8 refs., 2 tabs

  20. Discrete ambiguity resolution and baryon-resonance parameter determination

    International Nuclear Information System (INIS)

    Chew, D.M; Urban, M.

    1978-04-01

    A partial-wave analysis was performed on elastic π + p data between 1400 and 2200 MeV, using principles of analyticity (to select and amalgamate data), causality and unitarity together with Barrelet zeros are the resonating waves between 1500 and 1800 MeV examined in detail, and it is shown how a new resolution of the discrete ambiguity gives, for the S31 and D33 resonances, different parameters than found in an earlier resolution using less accurate information. In either case, mass degeneracy of these resonances is observed in agreement with general considerations regarding smooth zero trajectories. 18 references

  1. The thermal neutron absorption cross-sections, resonance integrals and resonance parameters of silicon and its stable isotopes

    International Nuclear Information System (INIS)

    Story, J.S.

    1969-09-01

    The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si 2 8, at E n = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si 3 0 has not yet been located. The thermal neutron absorption cross-section of Si 2 8 appears to result mainly from a negative energy resonance, possibly the resonance at E n = - 59 ± 5 keV detected by the Si 2 8 (d,p) reaction. (author)

  2. On the Methodology to Calculate the Covariance of Estimated Resonance Parameters

    International Nuclear Information System (INIS)

    Becker, B.; Kopecky, S.; Schillebeeckx, P.

    2015-01-01

    Principles to determine resonance parameters and their covariance from experimental data are discussed. Different methods to propagate the covariance of experimental parameters are compared. A full Bayesian statistical analysis reveals that the level to which the initial uncertainty of the experimental parameters propagates, strongly depends on the experimental conditions. For high precision data the initial uncertainties of experimental parameters, like a normalization factor, has almost no impact on the covariance of the parameters in case of thick sample measurements and conventional uncertainty propagation or full Bayesian analysis. The covariances derived from a full Bayesian analysis and least-squares fit are derived under the condition that the model describing the experimental observables is perfect. When the quality of the model can not be verified a more conservative method based on a renormalization of the covariance matrix is recommended to propagate fully the uncertainty of experimental systematic effects. Finally, neutron resonance transmission analysis is proposed as an accurate method to validate evaluated data libraries in the resolved resonance region

  3. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  4. OPTIMIZATION OF HEMISPHERICAL RESONATOR GYROSCOPE STANDING WAVE PARAMETERS

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Khalyutina

    2017-01-01

    Full Text Available Traditionally, the problem of autonomous navigation is solved by dead reckoning navigation flight parameters (NFP of the aircraft (AC. With increasing requirements to accuracy of definition NFP improved the sensors of the prima- ry navigation information: gyroscopes and accelerometers. the gyroscopes of a new type, the so-called solid-state wave gyroscopes (SSVG are currently developed and put into practice. The work deals with the problem of increasing the accu- racy of measurements of angular velocity of the hemispherical resonator gyroscope (HRG. The reduction in the accuracy characteristics of HRG is caused by the presence of defects in the distribution of mass in the volume of its design. The syn- thesis of control system for optimal damping of the distortion parameters of the standing wave due to the influence of the mass defect resonator is adapted. The research challenge was: to examine and analytically offset the impact of the standing wave (amplitude and frequency parameters defect. Research was performed by mathematical modeling in the environment of SolidWorks Simulation for the case when the characteristics of the sensitive element of the HRG met the technological drawings of a particular type of resonator. The method of the inverse dynamics was chosen for synthesis. The research re- sults are presented in graphs the amplitude-frequency characteristics (AFC of the resonator output signal. Simulation was performed for the cases: the perfect distribution of weight; the presence of the mass defect; the presence of the mass defects are shown using the synthesized control action. Evaluating the effectiveness of the proposed control algorithm is deter- mined by the results of the resonator output signal simulation provided the perfect constructive and its performance in the presence of a mass defect in it. It is assumed that the excitation signals are standing waves in the two cases are identical in both amplitude and frequency. In this

  5. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  6. Set up of a method for the adjustment of resonance parameters on integral experiments

    International Nuclear Information System (INIS)

    Blaise, P.

    1996-01-01

    Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.)

  7. Measurement of the Z Resonance Parameters at LEP

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Orteu, S; Pacheco, A; Park, I C; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Hansen, J B; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lazeyras, Pierre; Lehraus, Ivan; Maley, P; Mato, P; May, J; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Wiedenmann, W; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, F; Hansen, J D; Hansen, J R; Hansen, P H; Lindahl, A; Møllerud, R; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Picchi, P; Colrain, P; ten Have, I; Hughes, I S; Knowles, I G; Lynch, J G; Morton, W T; Raine, C; Reeves, P; O'Shea, V; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Nash, J; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Keemer, N R; Robertson, N A; Sloan, Terence; Snow, S W; Williams, M I; Bauerdick, L A T; Van Gemmeren, P; Giehl, I; Jakobs, K; Kasemann, M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmelling, M; Wachsmuth, H W; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Barberio, E; Böhrer, A; Brandt, S; Burkhardt, H; Feigl, E; Grupen, Claus; Hess, J; Lutters, G; Meinhard, H; Minguet-Rodríguez, J A; Mirabito, L; Misiejuk, A; Neugebauer, E; Prange, G; Rivera, F; Saraiva, P; Schäfer, U; Sieler, U; Smolik, L; Stephan, F; Trier, H; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pitis, L; Kim, H; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Cinabro, D; Conway, J S; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; Jin, S; Johnson, R P; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Sharma, V; Walsh, A M; Walsh, J; Wear, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    2000-01-01

    The properties of the Z resonance are measured from the analysis of 4.5 million Z decays into fermion pairs collected with the \\Aleph\\ detector at L EP. The data are consistent with lepton universality. The resonance parameters are measured to be $\\MZ=(91.1885 \\pm 0.0031)~\\Gevcc$, $\\GZ= (2.4951 \\pm 0.0043)~\\GeV$, $\\spol=(41.559 \\pm 0.058)$~nb and, combining the three lepton flavours $\\Rl= 20.725\\pm 0.039$. The corresponding number of light neutrino species is $N_{\

  8. Rho resonance parameters from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael

    2016-08-01

    We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.

  9. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  10. [Health effects of sour cherries with unique polyphenolic composition in their fruits].

    Science.gov (United States)

    Hegedűs, Attila; Papp, Nóra; Blázovics, Anna; Stefanovitsné Bányai, Éva

    2018-05-01

    Health effects of fruit consumption are confirmed by many studies. Such effects are attributed to the polyphenolic compounds accumulating in fruit skin and mesocarp tissues. They contribute to the regulation on transcriptional, post-transcriptional and epigenetic levels. Since people consume much less fruits than the recommended quantities, a new approach includes the promotion of super fruits that are extremely rich sources of specific health compounds. A comparative analysis of Hungarian stone fruit cultivars detected a huge variability in fruit in vitro antioxidant capacity and total polyphenolic content. Two outstanding sour cherry cultivars ('Pipacs 1' and 'Fanal') were identified to accumulate elevated levels of polyphenolic compounds in their fruits. Sour cherries with different polyphenolic compositions were tested against alimentary induced hyperlipidemia using male Wistar rat model. Consumption of cherry fruit had different consequences for different cultivars: consumption of 'Pipacs 1' and 'Fanal' fruits resulted in 30% lower total cholesterol levels in the sera of hyperlipidemic animals after only 10 days of treatment. However, the consumption of 'Újfehértói fürtös' fruit has not induced significant alterations in the same parameter. Other lipid parameters also reflected the short-term beneficial effects of 'Pipacs 1' and 'Fanal' fruits. We suggest that not only some tropical and berry fruits might be considered as super fruits but certain genotypes of stone fruits as well. These have indeed marked physiological effects. Since 'Pipacs 1' and 'Fanal' are rich sources of colourless polyphenolics (e.g., phenolic acids and isoflavonoids) and anthocyanins, respectively, the protective effects associated with their consumption can be attributed to different polyphenolic compounds. Orv Hetil. 2018; 159(18): 720-725.

  11. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  13. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  14. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  15. Review of the different methods to derive average spacing from resolved resonance parameters sets

    International Nuclear Information System (INIS)

    Fort, E.; Derrien, H.; Lafond, D.

    1979-12-01

    The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested

  16. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-01-01

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  17. Capture cross section and resonance parameters of thulium-169

    International Nuclear Information System (INIS)

    Arbo, J.C.; Felvinci, J.P.; Melkonian, E.; Havens, W.W. Jr.

    1975-01-01

    The previously analyzed energy range for thulium capture resonance parameters is extended from 1 keV to 2 keV. In addition, point and group averaged thulium cross section curves are extended to above 2 keV and 181 Ta impurity levels are discussed. (SDF)

  18. Measurements of the Z boson resonance parameters at SLC [SLAC Linear Collider

    International Nuclear Information System (INIS)

    Hearty, C.

    1989-07-01

    This paper presents the measurement by the Mark II experiment at the SLAC Linear Collider of the parameters of the Z boson resonance. The results are updated from those presented at the SLAC Summer Institute to include all data presented in the most recent Mark II publication, consisting of 19 nb -1 of data at ten different center-of-mass energies between 89.2 and 93.0 GeV. The resonance parameters are extracted by measuring the Z production cross section at a series of center-of-mass energies (scan points) near the Z peak, then fitting these data with the theoretical cross section. The four major aspects of the analysis are the determination at each scan point of the center-of-mass energy (E), the integrated luminosity, the number of Z decays and the expected cross section as a function of the resonance parameters, such as mass and width. I will discuss each of these steps in turn, after a brief description of the Mark II detector, then conclude with the results of the analysis. 7 refs., 9 figs., 3 tabs

  19. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  20. A method for generating subgroup parameters from resonance tables and the SPART code

    International Nuclear Information System (INIS)

    Devan, K.; Mohanakrishnan, P.

    1995-01-01

    A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. 6 refs, 2 tabs

  1. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    Directory of Open Access Journals (Sweden)

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  2. A benchmark test of computer codes for calculating average resonance parameters

    International Nuclear Information System (INIS)

    Ribon, P.; Thompson, A.

    1983-01-01

    A set of resonance parameters has been generated from known, but secret, average values; the parameters have then been adjusted to mimic experimental data by including the effects of Doppler broadening, resolution broadening and statistical fluctuations. Average parameters calculated from the dataset by various computer codes are compared with each other, and also with the true values. The benchmark test is fully described in the report NEANDC160-U (NEA Data Bank Newsletter No. 27 July 1982); the present paper is a summary of this document. (Auth.)

  3. Neutron Transmission and Capture Measurements and Resonance Parameter Analysis of Neodymium from 1eV to 500 eV

    International Nuclear Information System (INIS)

    DP Barry; MJ Trbovich; Y Danon; RC Block; RE Slovacek

    2005-01-01

    Neodymium is a 235 U fission product and is important for reactor neutronic calculations. The aim of the present work is to improve upon the existing neutron cross section data of neodymium. Neutron capture and transmission measurements were performed by the time-off-light technique at the Rensselaer Polytechnic Institute LINAC laboratory using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment NaI multiplicity detector, and the transmission measurements were performed at 15-m and 25-m flight stations, respectively, with 6 Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by combined fitting of the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1 eV to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integrals from this energy. The RPI parameters gave a resonance integral value of 32 ± 1 barns that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the uncertainties on the resonance parameters when compared with previously published parameters

  4. Evaluation of covariances for resolved resonance parameters of 235U, 238U, and 239Pu in JENDL-3.2

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Shibata, Keiichi

    2003-02-01

    Evaluation of covariances for resolved resonance parameters of 235 U, 238 U, and 239 Pu was carried out. Although a large number of resolved resonances are observed for major actinides, uncertainties in averaged cross sections are more important than those in resonance parameters in reactor calculations. We developed a simple method which derives a covariance matrix for the resolved resonance parameters from uncertainties in the averaged cross sections. The method was adopted to evaluate the covariance data for some important actinides, and the results were compiled in the JENDL-3.2 covariance file. (author)

  5. Neutron total cross-sections and resonance parameters of Mo and Ta

    Indian Academy of Sciences (India)

    Linear accelerator; total cross-sections; resonance parameters; SAMMY code. ... Centre for Atomic Research, Kalpakkam 603 102, India; Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Physics, Kyungpook National University, Daegu 702-701, Korea ...

  6. Importance of resonance parameters of fertile nuclei and of 239Pu isotope for fast power reactors

    International Nuclear Information System (INIS)

    Barre, J.Y.; Khairallah, A.

    1975-01-01

    The importance of resonance parameters of fertile nuclei and of 239 Pu isotope for fast power reactors will be restricted, in this presentation, to mixed oxide-uranium-plutonium fuelled sodium-cooled and uranium-oxide-sodium reflected fast reactors. The power range lies between 200 and 2000 MWe. Among the topics of this specialist meeting, the isotopes to be considered are, primarly 239 Pu then 238 U and 240 Pu. Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific examples: those sensitivities are small. Then, the main design parameters sensitive to the amplitude of self-shielding factors are considered: critical enrichment, global breeding gain. The relative importance of isotope, reaction rate and energy range are mentionned. In a third part, the Doppler effect, sensitive to the temperature variation of self-shielding factors, is considered in the same way. Finally, it is concluded that the present knowledge of resonance parameters for 238 U, 239 Pu and 240 Pu is sufficient for fast power reactors from a designer point of view [fr

  7. RESEND, Infinitely Dilute Point Cross-Sections Calculation from ENDF/B Resonance Parameter. ADLER, ENDF/B Adler-Adler Resonance Parameter to Point Cross-Sections with Doppler Broadening

    International Nuclear Information System (INIS)

    Bhat, M.R.; Ozer, O.

    1982-01-01

    1 - Description of problem or function: RESEND generates infinitely- dilute, un-broadened, point cross sections in the ENDF format by combining ENDF File 3 background cross sections with points calculated from ENDF File 2 resonance parameter data. ADLER calculates total, capture, and fission cross sections from the corresponding Adler-Adler parameters in the ENDF/B File 2 Version II data and also Doppler-broadens cross sections. 2 - Method of solution: RESEND calculations are done in two steps by two separate sections of the program. The first section does the resonance calculation and stores the results on a scratch file. The second section combines the data from the scratch file with background cross sections and prints the results. ADLER uses the Adler-Adler formalism. 3 - Restrictions on the complexity of the problem: RESEND expects its input to be a standard mode BCD ENDF file (Version II/III). Since the output is also a standard mode BCD ENDF file, the program is limited by the six significant figure accuracy inherent in the ENDF formats. (If the cross section has been calculated at two points so close in energy that only their least significant figures differ, that interval is assumed to have converged, even if other convergence criteria may not be satisfied.) In the unresolved range the cross sections have been averaged over a Porter-Thomas distribution. In some regions the calculated resonance cross sections may be negative. In such cases the standard convergence criterion would cause an unnecessarily large number of points to be produced in the region where the cross section becomes zero. For this reason an additional input convergence criterion (AVERR) may be used. If the absolute value of the cross section at both ends of an interval is determined to be less than AVERR then the interval is assumed to have converged. There are no limitations on the total number of points generated. The present ENDF (Version II/III) formats restrict the total number of

  8. Set up of a method for the adjustment of resonance parameters on integral experiments; Mise au point d`une methode d`ajustement des parametres de resonance sur des experiences integrales

    Energy Technology Data Exchange (ETDEWEB)

    Blaise, P.

    1996-12-18

    Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.).

  9. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  10. Total and fission cross-sections of 239Pu - statistical study of resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.; Blons, J.; Eggermann, C.; Michaudon, A.; Paya, D.; Ribon, P.

    1967-01-01

    The authors measured the total and fission cross-sections of 239 Pu with the linear accelerator at Saclay as a pulsed source of neutrons. The total cross-section was measured in the range from 4 to 700 eV and the best resolution used was 1.5 ns/m; the fission cross-section was measured between 4 eV and 6 keV, the best resolution having been 6 ns/m. The transmission measurements on five samples were made at the temperature of liquid nitrogen, and comparisons made with supplementary experiments at ambient temperature made it possible to determine the Doppler broadening factor (Δ = η√E). The resonances were identified from 4 to 500 eV in the total cross-section; the average level spacing was of the order of 2.4 eV. It would appear that, in this energy range, nearly all the levels were identified. The resonance parameters were determined by analysis of shape in conjunction with a least-squares programme on an IBM-7094 computer. The existence of a large number of broad resonances corresponding to very large fission widths has been shown to exist. Statistical study of the fission widths actually shows the existence of two families of resonances, one corresponding to a mean Γ f of the order of 45 meV and the other to a mean Γ/f of about 750 meV. The authors were therefore able to postulate a classification of resonances in terms of two spin states, the level population ratio in each family being: (2J 1 +1)/(2J 2 +1) = 1/3; J 1 = 0 corresponds to the broad resonances and J 2 = 1 to the narrow ones. The partial widths for radiative capture fluctuate slightly around a mean value of 40 meV. By using a multilevel programme, the authors were able to investigate the extent to which the existence of large fission widths might give rise to fictitious resonances (quasi-resonances) and perturbations and also to make a statistical study of the resonance parameters. (author) [fr

  11. Determination of neutron resonance parameters of Neptunium 237 between 0 and 500 eV. The covariance matrices of statistical and of systematic origin, relating the resonance parameters, are also given

    International Nuclear Information System (INIS)

    Lepretre, A.; Herault, N.; Brusegan, A.; Noguere, G.; Siegler, P.

    2002-12-01

    This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)

  12. Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto

    1998-03-01

    Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)

  13. Features of the effect of the parameters of resonance systems with different configurations on the current-voltage characteristics of resonant-tunneling nanostructures in a subterahertz frequency range

    International Nuclear Information System (INIS)

    Aleksanyan, A.A.; Volchkov, N.A.; Dravin, V.A.; Kazakov, I.P.; Karuzskij, A.L.; Murzin, V.N.; Perestoronin, A.V.; Tskhovrebov, A.M.; Shmelev, S.S.

    2014-01-01

    Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed [ru

  14. Extended Gersgorin Theorem-Based Parameter Feasible Domain to Prevent Harmonic Resonance in Power Grid

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2017-10-01

    Full Text Available Harmonic resonance may cause abnormal operation and even damage of power facilities, further threatening normal and safe operation of power systems. For renewable energy generations, controlled loads and parallel reactive power compensating equipment, their operating statuses can vary frequently. Therefore, the parameters of equivalent fundamental and harmonic admittance/impedance of these components exist in uncertainty, which will change the elements and eigenvalues of harmonic network admittance matrix. Consequently, harmonic resonance in power grid is becoming increasingly more complex. Hence, intense research about prevention and suppression of harmonic resonance, particularly the parameter feasible domain (PFD which can keep away from harmonic resonance, are needed. For rapid online evaluation of PFD, a novel method without time-consuming pointwise precise eigenvalue computations is proposed. By analyzing the singularity of harmonic network admittance matrix, the explicit sufficient condition that the matrix elements should meet to prevent harmonic resonance is derived by the extended Gersgorin theorem. Further, via the non-uniqueness of similar transformation matrix (STM, a strategy to determine the appropriate STM is proposed to minimize the conservation of the obtained PFD. Eventually, the availability and advantages in computation efficiency and conservation of the method, are demonstrated through four different scale benchmarks.

  15. POLLA-NESC, Resonance Parameter R-Matrix to S-Matrix Conversion by Reich-Moore Method

    International Nuclear Information System (INIS)

    Saussure, G. de; Perez, R.B.

    1975-01-01

    1 - Description of problem or function: The program transforms a set of r-matrix nuclear resonance parameters into a set of equivalent s-matrix (or Kapur-Peierls) resonance parameters. 2 - Method of solution: The program utilizes the multilevel formalism of Reich and Moore and avoids diagonalization of the level matrix. The parameters are obtained by a direct partial fraction expansion of the Reich-Moore expression of the collision matrix. This approach appears simpler and faster when the number of fission channels is known and small. The method is particularly useful when a large number of levels must be considered because it does not require diagonalization of a large level matrix. 3 - Restrictions on the complexity of the problem: By DIMENSION statements, the program is limited to maxima of 100 levels and 5 channels

  16. Projecte d'implantació d'energia solar fotovoltaica al municipi d'Albanyà

    OpenAIRE

    Molins i Galas, Albert

    2008-01-01

    Disseny d’una instal·lació d’energia solar fotovoltaica per als edificis públics del municipi d’Albanyà (Alt Empordà) per connectar-la a la xarxa i amb un estudi sobre la substitució dels actuals fanals de l’enllumenat públic per fanals alimentats amb energia solar fotovoltaica

  17. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Niobium

    International Nuclear Information System (INIS)

    NJ Drindak; JA Burke; G Leinweber; JA Helm; JG Hoole; RC Block; Y Danon; RE Slovacek; BE Moretti; CJ Werner; ME Overberg; SA Kolda; MJ Trbovich; DP Barry

    2005-01-01

    Epithermal neutron capture and transmission measurements were performed using the time-of-flight method at the RPI linac using metallic Nb samples. The capture measurements were made at the 25-meter flight station with a 16-section sodium iodide multiplicity detector and the transmission measurements at the 25-meter flight station with a Li-6 glass scintillation detector. Resonance parameters were determined for all resonances up to 500eV with a combined analysis of capture and transmission data using the multi-level R-matrix Bayesian code SAMMY. The present results are compared to those presented in ENDF/B-VI, updated through Release 3

  18. n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV

    Directory of Open Access Journals (Sweden)

    Pigni Marco T.

    2017-01-01

    Full Text Available In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL collaborated with the International Atomic Energy Agency (IAEA to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs and thermal prompt fission neutron spectra (PFNS. Performed with support from the US Nuclear Criticality Safety Program (NCSP in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance v̅ below 100 eV.

  19. Determination of the resonance parameters for 232Th from high resolution transmission and capture measurements at GELINA

    International Nuclear Information System (INIS)

    Brusegan, A.; Schillebeeckx, P.; Lobo, G.; Borella, A.; Volev, K.; Janeva, N.

    2003-01-01

    To deduce the resonance parameters for 232 Th in the resolved resonance region, high resolution transmission and capture measurements are being performed. The measurements are performed at the Time-Of-Flight facility GELINA. A comparison of experimental data resulting from capture (top) and transmission (bottom) are shown. The transmission measurements are performed at a 50 m flight path. The neutron are detected with a 0.25' thick lithium glass (NE912) placed in an Al sphere and viewed by a 5' EMI KQB photomultiplier orthogonal to the neutron beam axis. The injection of a stabilised light pulse in the detector during the measurements provided an efficient tool to control to better than 1% the gain of the entire electronics. The experimental set-up includes a sample-changer, placed at 23 m from the neutron source, which is driven by the acquisition system. The determination of the flight path length, was based on transmission of the 6.673 eV resonance of 238 U. We summarise, for the different energy regions of interest, the scheduled measurement conditions: the operation frequency of the accelerator and the target thickness. A simultaneous analysis of the data using REFIT will result in the resonance parameters from 0 to 4 keV. We show the result of a resonance shape analysis for the resonances at 21.8 and 23.5 eV. The resulting resonance parameters are important for the energy calibration and normalisation of the capture measurements in both the resolved and unresolved resonance region. The capture measurements are completed and were performed at a 60 m flight path. The sample consisted of a metallic natural thorium disc of 8 cm diameter and 1.0 mm thick, corresponding to a thickness of 3.176 10 -3 at/b. The neutron flux was measured with an ionisation chamber loaded with three back-to-back layers of about 40 μg/cm 2 10 B. The gamma rays, originating from the 232 Th(n,γ) reaction, were detected by four C 6 D 6 -based liquid scintillators (NE230) placed

  20. Computer code ENDSAM for random sampling and validation of the resonance parameters covariance matrices of some major nuclear data libraries

    International Nuclear Information System (INIS)

    Plevnik, Lucijan; Žerovnik, Gašper

    2016-01-01

    Highlights: • Methods for random sampling of correlated parameters. • Link to open-source code for sampling of resonance parameters in ENDF-6 format. • Validation of the code on realistic and artificial data. • Validation of covariances in three major contemporary nuclear data libraries. - Abstract: Methods for random sampling of correlated parameters are presented. The methods are implemented for sampling of resonance parameters in ENDF-6 format and a link to the open-source code ENDSAM is given. The code has been validated on realistic data. Additionally, consistency of covariances of resonance parameters of three major contemporary nuclear data libraries (JEFF-3.2, ENDF/B-VII.1 and JENDL-4.0u2) has been checked.

  1. Reevaluation and Validation of the 241Pu Resonance Parameters in the Energy Range Thermal to 20 eV

    International Nuclear Information System (INIS)

    Derrien, H.; Leal, L.C.; Courcelle, A.; Santamarina, A.

    2005-01-01

    A new SAMMY analysis of the 241 Pu resonance parameters from thermal to 20 eV is presented. This evaluation takes into account the trends given by integral experiments [post-irradiation experiments performed in French pressurized water reactors (PWRs)]. Compared to the previous evaluations performed by Derrien and de Saussure, the capture cross section increases especially in the 0.26-eV resonance. It is shown that the new resonance parameters proposed in this work improve the prediction of the 242 Pu buildup in a PWR, which was significantly underestimated with the previous evaluations

  2. Nuclear data project in Korea and resonance parameter evaluation of fission products

    International Nuclear Information System (INIS)

    Chang, Jonghwa; Oh, Soo-Youl

    2000-01-01

    Nuclear data activities in the fields of evaluation, processing, measurement, and service in Korea are presented in this paper. As one of the current activities, the neutron resonance parameters for stable or long-lived nineteen fission products have been evaluated and the results are presented here. (author)

  3. Average values of 235U resonance parameters up to 500 eV

    International Nuclear Information System (INIS)

    Leal, L.C.

    1991-01-01

    An R-matrix analysis of 235 U neutron cross sections was recently completed. The analysis was performed with the multilevel-multichannel Reich-Moore computer code SAMMY and extended the resolved resonance region up to 500 eV. Several high resolution measurements namely, transmission, fission and capture data as well as spin separated fission data were analyzed in a consistent manner and a very accurate parametrization up to 500 eV of these data were obtained. The aim of this paper is to present the results of average values of the resonance parameters. 9 refs., 1 tab

  4. Auxiliary programs for resonance parameter storage and retrieval system REPSTOR. XTOREP, ETOREP, REPTOINP, REPRENUM, REPIMRG, TREP, PASSIGN, JCONV

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Kikuchi, Yasuyuki; Fukahori, Tokio

    1999-06-01

    This report describes functions and usage of eight auxiliary computer programs for REPSTOR that is a computer program for collecting the resonance parameters and evaluating them. The programs are XTOREP to convert the experimental data in EXFOR to the REPSTOR input data, ETOREP to convert the data in ENDF format to the REPSTOR input data, REPTOINP to change the data in a REPSTOR file into the REPSTOR input format, REPRENUM to renumber the level number of resonance levels, REPIMRG to merge the XTOREP output data sets, TREP to calculate mean values of resonance parameters, widths of individual resonances, etc., PASSIGN to assign orbital angular momentum by using Bayse theorem, and JCONV to assign total spin. (author)

  5. Neutron resonance parameters of 96Zr below 100 keV

    International Nuclear Information System (INIS)

    Musgrove, A.R.D.

    1977-08-01

    Transmission data taken at the 80 m station of the Oak Ridge Electron Linear Accelerator have provided resonance parameters for 96 Zr to 100 keV. The average level spacing and neutron strength function for s-wave neutrons were as follows: = 8 +- 2 keV and S 0 = (0.21 +- 0.10) x 10 -4 . The average p-wave neutron strength function was S 1 = (7.4 +- 2.0) x 10 -4 . (Author)

  6. Determination of resonance parameters in QCD by functional analysis methods

    International Nuclear Information System (INIS)

    Ciulli, S.; Geniet, F.; Papadopoulos, N.A.; Schilcher, K.

    1988-01-01

    A mathematically rigorous method based on functional analysis is used to determine resonance parameters of an amplitude from its given asymptotic expression in the space-like region. This method is checked on a model amplitude where both the asymptotic expression and the exact function are known. This method is then applied to the determination of the mass and the width of the ρ-meson from the corresponding space-like asymptotic QCD expression. (orig.)

  7. Impact-parameter dependence of giant resonance excitations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Gruenschloss, A.; Boretzky, K.; Aumann, T.

    1999-09-01

    Angular distributions of Xe fragments produced in peripheral collisions of a 136 Xe beam (700 MeV/nucleon) with 208 Pb and nat Sn targets were measured. Equivalent sharp-cutoff minimum impact parameters were derived on the basis of a semi-classical description for the electromagnetic excitation of one- and two-phonon giant resonances. The results are compared with current standard parametrizations of minimum impact parameters and with the soft-spheres model using realistic mass density distributions for projectile and targets. (orig.)

  8. Nuclear statistics of dysprosium resonance parameters in the energy range 10 - 1000 eV

    International Nuclear Information System (INIS)

    Shin, S. G.; Kye, Y. U.; Cho, M. H.; Kim, G. N.; Namkung, W.; Lee, M. W.; Kang, Y. R.; Roe, T. I.

    2016-01-01

    A resonance parameter analysis is often performed in the Resolved Resonance Region (RRR) in order to estimate the average level spacing, distribution of the reduced widths and so on. Neutron Capture experiments on dysprosium isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. The following nuclear statistics of the resonance parameters will be discussed in this paper. The D 0 for 161 Dy and 163 Dy were judged to be constant up to 120.6 and 163.9 eV, respectively. It was assumed that the D 0 of 162 Dy and 164 Dy is constant up to 1000 eV because they have few resonances. The results were compared with the values from Reference 11 as shown in Figure 1. Statistical distributions of reduced neutron were investigated for the three isotopes in the region from 0 to 1000 eV; 161 Dy, 162 Dy, and 163 Dy, but not for 164 Dy because of a few number of resonances. The reduced neutron widths Γ n 0 were divided by the unweighted average reduced neutron width < Γ n 0 > for each isotope. A cumulative distribution of these unitless ratios is compared with the integral of the Porter-Thomas distribution (χ 2 distribution with one degree of freedom). The results agree reasonably with the Porter Thomas distributions.

  9. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    Science.gov (United States)

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  10. Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator

    Science.gov (United States)

    Al-Ghamdi, Majed S.; Alneamy, Ayman M.; Park, Sangtak; Li, Beichen; Khater, Mahmoud E.; Abdel-Rahman, Eihab M.; Heppler, Glenn R.; Yavuz, Mustafa

    2017-01-01

    We experimentally investigate the primary superharmonic of order two and subharmonic of order one-half resonances of an electrostatic MEMS actuator under direct excitation. We identify the parameters of a one degree of freedom (1-DOF) generalized Duffing oscillator model representing it. The experiments were conducted in soft vacuum to reduce squeeze-film damping, and the actuator response was measured optically using a laser vibrometer. The predictions of the identified model were found to be in close agreement with the experimental results. We also identified the noise spectral density of process (actuation voltage) and measurement noise. PMID:28505097

  11. A quantitative analysis of the diurnal evolution of Ionospheric Alfvén resonator magnetic resonance features and calculation of changing IAR parameters

    Directory of Open Access Journals (Sweden)

    S. R. Hebden

    2005-07-01

    Full Text Available Resonance features of the Ionospheric Alfvén Resonator (IAR can be observed in pulsation magnetometer data from Sodankylä, Finland using dynamic spectra visualizations. IAR resonance features were identified on 13 of 30 days in October 1998, with resonance structures lasting for 3 or more hours over 10 intervals. The diurnal evolution of the harmonic features was quantified for these 10 intervals using a manual cursor-clicking technique. The resonance features displayed strong linear relationships between harmonic frequency and harmonic number for all of the time intervals studied, enabling a homogeneous cavity model for the IAR to be adopted to interpret the data. This enabled the diurnal variation of the effective size of the IAR to be obtained for each of the 10 time intervals. The average effective size was found to be 530 km, and to have an average variation of 32% over each time interval: small compared to the average variation in Alfvén velocity of 61%. Thus the diurnal variation of the harmonics is chiefly caused by the changing plasma density within the IAR due to changing insolation. This study confirms Odzimek (2004 that the dominating factor affecting the IAR eigenfrequencies is the variation in the Alfvén velocity at the F-layer ion-density peak, with the changing IAR size affecting the IAR eigenfrequencies to a smaller extent. Another IAR parameter was derived from the analysis of the IAR resonance features associated with the phase matching structure of the standing waves in the IAR. This parameter varied over the time intervals studied by 20% on average, possibly due to changing ionospheric conductivity. Keywords. Ionosphere (Auroral ionosphere;Wave propagation – Radio science (Electromagnetic noise and interference

  12. Neutron resonance parameters for 238U

    International Nuclear Information System (INIS)

    Poortmans, F.; Mewissen, L.; Cornelis, E.; Vanpraet, G.; Rohr, G.; Shelley, R.; Veen, T. van der; Weigmann, H.

    1977-01-01

    A series of total, capture and scattering cross section measurements using the neutron time-of-flight facility at the CBNM linear electron accelerator were performed. The neutron widths have been obtained for more than 400 resonances below 4.3 keV and the total capture width for 73 resonances

  13. Effect of resonance decays on extracted kinetic freeze-out parameters in heavy ion collisions at RHIC

    International Nuclear Information System (INIS)

    Molnar, Levente; Barannikova, Olga; Wang, Fuqiang

    2006-01-01

    Statistical model fit to particle ratios in Au+Au collisions at RHIC suggests chemical freeze-out near phase transition boundary. Model interpretations of evolution from chemical to kinetic freeze-out vary. Results of the blast-wave fit to the STAR experimental data, where resonance contributions are not accounted for, suggest significant cooling and expansion between the freezeouts for central Au+Au collisions. Other models including resonances, argue for instant single freezeout with temperature close to the phase transition temperature. By combined thermal and blast-wave model parametrization including resonances, we systematically investigate the effect of resonance decays on the extracted kinetic freeze-out parameters. (authors)

  14. 56Fe resonance parameters for neutron energies up to 850 keV

    International Nuclear Information System (INIS)

    Perey, C.M.; Perey, F.G.; Harvey, J.A.; Hill, N.W.; Larson, N.M.

    1990-12-01

    High-resolution neutron measurements for 56 Fe-enriched iron targets were made at the Oak Ridge Electron Linear Accelerator (ORELA) in transmission below 20 MeV and in differential elastic scattering below 5 MeV. Transmission measurements were also performed with a natural iron target below 160 keV. The transmission data were analyzed from 5 to 850 keV with the multilevel R-matrix code SAMMY which uses Bayes' theorem for the fitting process. This code provides energies and neutron widths of the resonances inside the 5- to 850-keV energy region, as well as possible parameterization for resonances external to the analyzed region to describe the smooth cross section from a few eV to 850 keV. The resulting set of resonance parameters yields the accepted values for the thermal total and capture cross sections. The differential elastic-scattering data at several scattering angles were compared to theoretical calculations from 40 to 850 keV using the R-matrix code RFUNC based on the Blatt-Biedenharn formalism. Various combinations of spin and parity were tried to predict cross sections for the well defined ell > 0 resonances; comparison of these predictions with the data allowed us to determine the most likely spin and parity assignments for these resonances. The results of a capture data analysis by Corvi et al. (COR84), from 2 to 350 keV, were combined with our results to obtain the radiation widths of the resonances below 350 keV observed in transmission, capture, and differential elastic-scattering experiments

  15. Average resonance parameters evaluation for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    New evaluated <{Gamma}{sub n}{sup 0}> and values for {sup 238}U, {sup 237}Np, {sup 243}Cm, {sup 245}Cm, {sup 246}Cm and {sup 241}Am nuclei in the resolved resonance region are presented. The applied method based on the idea that experimental resonance missing results in correlated changes of reduced neutron widths and level spacings distributions is discussed. (author)

  16. Parameters and definitions in applied technique quality test for nuclear magnetic resonance imaging system (NMRI)

    International Nuclear Information System (INIS)

    Lin Zhikai; Zhao Lancai

    1999-08-01

    During the past two decades, medical diagnostic imaging technique has achieved dramatic development such as CT, MRI, PET, DSA and so on. The most striking examples of them are the application of X ray computerized tomography (CT) and magnetic resonance imaging in the field of medical diagnosis. It can be predicted that magnetic resonance imaging (MRI) will definitely have more widespread prospects of applications and play more and more important role in clinical diagnosis looking forward to the development of image diagnostic technique for 21 st century. The authors also present the measuring methods for some parameters. The parameters described can be used for reference by clinical diagnosticians, operators on MRI and medical physicists who engages in image quality assurance (QA) and control (QC) in performing MRI acceptance test and routine test

  17. Resonance proton scattering use for the beam parameters control of the electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    V. I. Soroka

    2013-12-01

    Full Text Available The paper discusses peculiarities of the resonance proton scattering use for the beam parameters control of the electrostatic accelerators. The expediency of the use has been confirmed by experiment. Peculiarities are caused because elastic resonance scattering through the stage of compound nucleus is always accompanied by potential and Coulomb scattering. These three components interfere and for that reason the resonance form de-pends on a scattering angle and total angular moment of a compound nucleus level. However, possessing neces-sary information in the given field of nuclear spectroscopy enables the selection of resonance with the character-istics suitable for the calibration purpose. Considerable increase of the scattering cross section in the resonance region saves the time and simplifies the experiment technical maintenance. The experiments were performed at the 10 MeV tandem accelerator of the Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, after its modernization. Silicon and oxygen were used as the targets. Silicon targets were of two types of thickness: 1 the target of complete absorption, 2 the target with the thickness in which the loss of protons ener-gy exceeded the width of the selected resonance. The elastic and non elastic scattering from silicon were used in region of the 3,100 MeV proton energy resonance. Oxygen target, as component of the surface oxidizing layer on beryllium had the thickness which in terms of the loss of proton energy was less than the width of the selected elastic narrow resonance at 3,470 MeV proton energy. As result of the measurement the corrections concerning the energy scale of the accelerator and protons energy spread in the beam were proposed.

  18. PARAMETERS OF NUCLEAR MAGNETIC RESONANCE IN PATIENTS WITH CONGENITAL NARROWING OF THE LUMBAR SPINAL CANAL

    Directory of Open Access Journals (Sweden)

    ELIU HAZAEL MORALES-RANGEL

    Full Text Available ABSTRACT Objective: To compare the morphological parameters of magnetic resonance in patients with congenital narrowing of the lumbar spinal canal with patients with low back pain. Methods: A descriptive, retrospective, observational study was conducted with measurements in the axial and sagittal magnetic resonance sections of the vertebral body and canal of the lumbar spine of 64 patients with diagnosis of low back pain, which were compared with resonance images taken from 31 Mexican patients with congenital narrowing of the lumbar spinal canal. Results: The results show that patients with congenital narrowing of the lumbar spinal canal in the axial sections have a difference in diameters, being L2<13.9 mm, L3<13.3 mm, L4<12.9 mm, L5<13.1 mm, compared with controls L2<20.5 mm, L3<20.5 mm, L4<19.3 mm, L5<18.1 mm with p = 0.000. Conclusions: We found different measurements in the Mexican population compared to those found by similar studies. With the parameters obtained, it would be possible to make the proper diagnosis, surgical planning, and treatment.

  19. Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise

    International Nuclear Information System (INIS)

    Li Yuye; Jia Bing; Gu Huaguang; An Shucheng

    2012-01-01

    Diversity in the neurons and noise are inevitable in the real neuronal network. In this paper, parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated. The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified. The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased. The results suggest that natural nervous system might profit from both parameter diversity and noise, provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise. (general)

  20. Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems

    International Nuclear Information System (INIS)

    Liu Jian; Zhai Qi-Qing; Wang You-Guo; Liu Jin

    2016-01-01

    In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system (P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated (BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate (BER) and maximize the channel capacity (CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio (SNR) environments. (paper)

  1. New WIMS library generation from ENDF/B6 and effect of resonance group structure on cell parameters

    International Nuclear Information System (INIS)

    Pazirandeh, Ali; Tabesh, Alireza

    2002-01-01

    Due to inaccessibility to NJOY, steps were taken to create WIMS library, which can be extracted from ENDF/B6 without using NJOY. In addition to using preprocessing codes few programs were written to calculate integral resonance, slowing down power per unit lethargy, potential scattering, and differential scattering cross section, scattering matrices. For neutrons with energy above 4 eV, isotropic elastic scattering was assumed. For neutrons below 4 eV the free gas model was used, except for light elements, which tabulated values of S(α,β) in ENDF/B6 used. The Goldstein-Cohen factors are taken from WIMKAL88.Lib. The integral resonance with self absorption per unit lethargy was obtained from GROUPIE output. The P 1 scattering matrices are calculated only for four elements, namely H, D, C and O at 300 K. In order to examine the created libraries, k eff , δ 28 , ρ 28 , ρ 25 and CR are calculated using new WIMS library, WIMKAL88.Lib and NEA329.Lib. The results showed general agreement. The controversial issue of WIMS library group structure, particularly in resonance region has raised the question of whether the number of resonance group i.e., 13 is optimized. We generated different WIMS libraries consisting of 5, 8, 13, 18 and 23 resonance groups. The main aim was to examine the effect to resonance group structure on calculated core parameters, mainly, k eff , δ 28 , ρ 28 , ρ 25 and CR. These parameters are also calculated and compared with those obtained using WIMKAL88, and NEA329 libraries. (author)

  2. Determination of the neutron resonance parameters for 206Pb and of the thermal neutron capture cross section for 206Pb and 209Bi

    International Nuclear Information System (INIS)

    Borella, A.

    2005-01-01

    Chapter 1 describes the motivation of the measurements (accelerator driven systems, stellar nucleosynthesis, neutron induced reactions on 206 Pb), the present status of the neutron capture data for 206 Pb and 209 Bi and the structure of this work. In Chapter 2 the basic reaction theory underlying this work is described. The neutron induced reaction mechanism and formalism are explained. The parameterisation of the cross section in terms of R-matrix theory is discussed and we put particular emphasis on the statistical behaviour of the resonance parameters and the impact of the angular distribution of gamma rays following neutron capture. The relation between experimental observables and the resonance parameters is discussed together with general comments related to resonance shape analysis. Chapter 3 is focused on the determination of resonance parameters for 206 Pb. We performed high-resolution transmission and capture measurements at the Time-Of-Flight (TOF) facility GELINA of the IRMM at Geel (B) and determined the resonance parameters. For nuclei like 206 Pb, where the total width is dominated by Γ n , the capture area allows to determine G . Transmission measurements were carried out to determine Γ n , and the statistical factor g of resonances. Before performing a Resonance Shape Analysis (RSA) on the transmission and capture data, we verified the neutron flux and resolution at GELINA. We also compared the characteristics of GELINA with those of the n-TOF facility at CERN. A special emphasis is placed on the total energy detection technique using C 6 D 6 detectors. This technique was applied for the determination of the capture cross section. To reduce systematic bias effects on the capture cross section, the response of the detectors was determined by Monte Carlo simulations, which has been validated by experiments. Using these response functions the partial capture cross sections for individual resonances of 206 Pb have been deduced, by unfolding the

  3. Atlas of giant dipole resonances. Parameters and graphs of photonuclear reaction cross sections

    International Nuclear Information System (INIS)

    Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    1999-01-01

    Parameters of giant dipole resonances (GDR) observed in photonuclear reaction cross sections using various beams of incident photons are presented. Data, given for 200 stable isotopes from 2 H to 243 Am including their natural compositions, were collected from papers published over the years 1951-1996. GDR parameters, such as energy positions, amplitudes and widths, are included into the table and organized by element, isotope and reaction. Graphs of the majority of the photonuclear reaction cross sections, included in the international nuclear data library EXFOR by the end of 1998, are presented. The graphs are provided for 182 stable isotopes and natural compositions. (author)

  4. POLLA/IECTA, ENDF/B Reich-Moore to Adler-Adler Resonance Parameter Conversion

    International Nuclear Information System (INIS)

    Carlson, B.V.; Chalhoub, E.S.; Melnikoff, M.

    1987-01-01

    1 - Description of program or function: POLLA1 transforms Reich-Moore resolved resonance parameters to the corresponding positive momentum Adler-Adler ones. It is designed to run directly on a file in the ENDF/B format, creating a new file in which the Reich-Moore parameterization has been replaced by the Adler-Adler one. 2 - Method of solution: The Adler-Adler poles are obtained by applying Newton's method to the inverse of the determinant of the Reich-Moore pole matrix. The perturbative solution of R.B. Perez and G. de Saussure, Phys. Rev. C10 (1974)187, is used as a first guess. The residues at the poles are calculated using a simple numerical difference method. 3 - Restrictions on the complexity of the problem: As currently dimensioned, the program permits a maximum of 400 coherent resonances. The transformation itself, which neglects all negative momentum poles, is only accurate for heavy nuclei

  5. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  6. Program RECENT (version 79-1): reconstruction of energy-dependent neutron cross sections from resonance parameters in the ENDF/B format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1979-01-01

    Program RECENT reconstructs energy-dependent neutron total, elastic, capture, and fission cross sections from a combination of resonance parameters and tabulated background cross sections in the ENDF/B format. Entire evaluations, not just cross sections, are written to the result file, which is in ENDF/B format. The output includes the original resonance parameters in a form that can be used in Doppler broadening and self-shielding calculations. A listing of the source deck is available on request. 5 figures, 5 tables

  7. Determination of the hadronic resonance parameters of the Zo boson with DELPHI spectrometers at LEP

    International Nuclear Information System (INIS)

    Djama, F.

    1991-05-01

    The work described was achieved on the DELPHI experiment at the LEP e + e - collider. It concerns the determination of the resonance parameters of the Z 0 boson (M z , Γ z and σ o ) through its hadronic decays. The cross-section for the production of quark-antiquark pairs in e + e - collisions was measured at 17 different collision energies close to the resonance peak. At first, a general review of the Standard Model and its predictions for the cross-section of the process e + e - → γ, Z 0 → qantiq are given, followed by a description of the LEP collider and of the DELPHI detector. The different steps of the analysis are then exposed. They concern the luminosity measurement, the selection of the hadronic events and the computation of the experimental cross-sections. Special attention was given to the systematic errors. In order to extract the resonance parameters and to test the Standard Model, the experimental cross-sections were fitted with a theoretical formula which includes the most up-to-date radiative corrections calculations. A three parameter fit gives: M z = 91.183 ± 0.011 (stat) ± 0.02 (LEP) GeV/c 2 Γ z = 2.465 ± 0.020 (stat) ± 0.005 (syst) GeV σ o = 41.92 ± 0.22 (stat) ± 0.33 (syst) ± 0.21 (theo) nb Χ 2 /d.o.f = 8.5/17 - 3. By combining these results with the Standard Model predictions for the leptonic widths, we derived the invisible width of the Z 0 resonance: Γ inv = 486 ± 7 (stat) ± 12 (syst) MeV. This result leads to the following value for the number of the light Dirac neutrino species: N ν = 2.92 ± 0.04 (stat) ± 0.07 (syst). The total and invisible widths were used to derive lower bounds of the masses of new particles predicted either by the Minimal Standard Model (top quark) or by its extensions and alternatives (4 th sequential family, sparticles, excited fermions) [fr

  8. Determination of resonance parameters at 4.90 eV for Au 197

    International Nuclear Information System (INIS)

    Tellier, Henry; Alix, Michel

    1969-12-01

    A new study of the 4.9 eV resonance of gold was carried out by the time of flight method using the 45 MeV Saclay linac as a pulsed neutron source. Four sample thicknesses were used for the measurements. The four transmission curves were shaped analysed and the following parameters were obtained: E = 4.900 ± 0.005 eV - Γ = 137.5 ± 2.0 meV and Γ n = 15.0 ± 0.2 meV. (author) [fr

  9. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1978-07-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de

  10. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.

    Science.gov (United States)

    Yong, Yook-Kong; Patel, Mihir S; Tanaka, Masako

    2010-08-01

    A novel analytical/numerical method for calculating the resonator Q and its equivalent electrical parameters due to viscoelastic, conductivity, and mounting supports losses is presented. The method presented will be quite useful for designing new resonators and reducing the time and costs of prototyping. There was also a necessity for better and more realistic modeling of the resonators because of miniaturization and the rapid advances in the frequency ranges of telecommunication. We present new 3-D finite elements models of quartz resonators with viscoelasticity, conductivity, and mounting support losses. The losses at the mounting supports were modeled by perfectly matched layers (PMLs). A previously published theory for dissipative anisotropic piezoelectric solids was formulated in a weak form for finite element (FE) applications. PMLs were placed at the base of the mounting supports to simulate the energy losses to a semi-infinite base substrate. FE simulations were carried out for free vibrations and forced vibrations of quartz tuning fork and AT-cut resonators. Results for quartz tuning fork and thickness shear AT-cut resonators were presented and compared with experimental data. Results for the resonator Q and the equivalent electrical parameters were compared with their measured values. Good equivalences were found. Results for both low- and high-Q AT-cut quartz resonators compared well with their experimental values. A method for estimating the Q directly from the frequency spectrum obtained for free vibrations was also presented. An important determinant of the quality factor Q of a quartz resonator is the loss of energy from the electrode area to the base via the mountings. The acoustical characteristics of the plate resonator are changed when the plate is mounted onto a base substrate. The base affects the frequency spectra of the plate resonator. A resonator with a high Q may not have a similarly high Q when mounted on a base. Hence, the base is an

  11. Determination of neutron resonance parameters of Neptunium 237 between 0 and 500 eV. The covariance matrices of statistical and of systematic origin, relating the resonance parameters, are also given; Determination des parametres des resonances neutroniques du neptunium 237, en dessous de 500eV, et obtention des matrices de covariances statistiques et systematiques entre les parametres de ces resonances

    Energy Technology Data Exchange (ETDEWEB)

    Lepretre, A.; Herault, N. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Brusegan, A.; Noguere, G.; Siegler, P. [Institut des Materiaux et des Metrologies - IRMM, Joint Research Centre, Gell (Belgium)

    2002-12-01

    This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)

  12. Resonance parameters of the 6.67-, 20.9-, and 36.8-eV levels in 238U

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.

    1976-01-01

    The ENDF/B-IV 238 U cross sections (MAT-1262) yield an effective capture resonance integral in strongly self-shielded situations which is too high. This situation suggests that the ENDF/B capture widths for the first few s-wave levels may be too large. Recent ORELA measurements of transmission through 238 U have been analyzed with a multilevel formula to determine the parameters of the 6.67-, 20.9-, and 36.6-eV levels. These three levels provide 86 percent of the infinitely dilute capture resonance integral

  13. Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01–200 eV

    International Nuclear Information System (INIS)

    Leinweber, G.; Barry, D.P.; Burke, J.A.; Rapp, M.J.; Block, R.C.; Danon, Y.; Geuther, J.A.; Saglime III, F.J.

    2014-01-01

    Highlights: • Metal samples were sealed and imaged with X-rays to determine sample uniformity. • Eleven new resonances were identified below 100 eV. • The resonance regions of 151 Eu and 153 Eu have been extended from 100 to 200 eV. • The thermal total cross section for 151 Eu was measured, up (9 ± 3)% from ENDF/B-VII.1. • Radiation widths were assigned for all resonances from experimental data. - Abstract: Europium is a good absorber of neutrons suitable for use as a nuclear reactor control material. It is also a fission product in the low-yield tail at the high end of the fission fragment mass distribution. Measurements have been made of the stable isotopes with natural and enriched samples. The linear electron accelerator center (LINAC) at the Rensselaer Polytechnic Institute (RPI) was used to explore neutron interactions with europium in the energy region from 0.01 to 200 eV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Two transmission measurements were performed at flight paths of 15 and 25 m with 6 Li glass scintillation detectors. The neutron capture measurements were performed at a flight path of 25 m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. To prevent air oxidation metal samples were sealed in airtight aluminum cans in an inert environment. Metal samples of natural europium, 47.8 atom% 151 Eu, 52.2 atom% 153 Eu, as well as metal samples enriched to 98.77 atom% 153 Eu were measured. The measured neutron capture resonance integral for 153 Eu is (9.9 ± 0.4)% larger than ENDF/B-VII.1. The capture resonance integral for 151 Eu is (7 ± 1)% larger than ENDF/B-VII.1. Another significant finding from these measurements was a significant increase in thermal total cross section for 151 Eu, up (9 ± 3)% from ENDF/B-VII.1

  14. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  15. Review of methods for level density estimation from resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-01-01

    A number of methods are available for statistical analysis of resonance parameter sets, i.e. for estimation of level densities and average widths with account of missing levels. The main categories are (i) methods based on theories of level spacings (orthogonal-ensemble theory, Dyson-Mehta statistics), (ii) methods based on comparison with simulated cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (iii) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The present review will concentrate on (iii) with the aim of clarifying the basic mathematical concepts and the relationship between the various techniques. Recent theoretical progress in the treatment of resolution effects, detectability thresholds and p-wave admixture is described. (Auth.)

  16. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  17. A small parameter in the 1/Nsub(c) expansion and narrowness of hadronic resonances

    International Nuclear Information System (INIS)

    Bishari, M.

    1980-01-01

    The dynamical basis for the validity of the 1/Nsub(c) expansion is investigated in the context of QCD in 1+1 dimensions. This is carried out by studying the first non-leading corrections in 1/Nsub(c) to the mass operator in the space of physical states. The correction to the real part of the mass operator has a direct implication for the convergence of the 1/Nsub(c) expansion, since a small effective parameter is identified, where its smallness depends on the dynamical circumstances in a known way. The generated imaginary part of the mass operator provides us with an insight concerning the question of the narrowness of hadronic resonances. In order to have a more realistic contact with our world, we include also effects due to the flavor symmetry group SU(Nsub(f)). This allows us to understand better the validity and usefulness of the notions of resonance dominance and (smooth) Regge behavior. We also discuss the expansion with Nsub(f)/Nsub(c) fixed and compare the results with those obtained from Dual Resonance Model. It is remarked that a non-uniformity exists between the limits Nsub(c) → infinity, Nsub(f) = fixed and Nsub(c) → infinity Nsub(f)/Nsub(c) = fixed, which may affect physical quantities. (author)

  18. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  19. Sensitivity of reactor integral parameters to #betta##betta# parameter of resolved resonances of fertile isotopes and to the α values, in thermal and epithermal spectra

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    A sensitivity analysis of reactor integral parameter to more 10% variation in the resolved resonance parameters #betta##betta# of the fertile isotope and the variations of more 10% in the α values (#betta# sub(#betta#)/#betta# sub(f)) of fissile isotopes of PWR fuel elements, is done. The analysis is made with thermal and epithermal spectra, those last generated in a fuel cell with low V sub(M)/V sub(F). The HAMMER system, the interface programs HELP and LITHE and the HAMMER computer codes, were used as a base for this study. (E.G.) [pt

  20. Low-profile wireless passive resonators for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  1. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    Science.gov (United States)

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2 s22 p5 threshold

    Science.gov (United States)

    Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando

    2017-08-01

    The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process

  3. Evaluation of resonance parameters of Mo, Tc, Te, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu isotopes for JENDL-2 fission product file

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Togawa, Orihiko; Nakagawa, Tsuneo

    1986-03-01

    The resonance parameters of 39 fission product nuclides have been evaluated. The present work is a part of the evaluation of 100 fission product nuclei for JENDL-2 by Japanese Nuclear Data Committee. All the available experimental data were collected, stored in REPSTOR system and compared with one another. The evaluation was made on the basis of the experimental data. The precise description of the evaluation is given in this report. The presently evaluated resonance parameters are tabulated in Appendix with the experimental data. (author)

  4. Estimation of uncertainties in resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    Uncertainties have been estimated for the resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U contained in JENDL-3.2. Errors of the parameters were determined from the measurements which the evaluation was based on. The estimated errors have been compiled in the MF32 of the ENDF format. The numerical results are given in tables. (author)

  5. New experimental determination of the neutronic resonance parameters of {sup 237}Np below 500 eV; Nouvelle determination experimentale des parametres de resonances neutroniques de {sup 237}Np en dessous de 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Gressier, V

    1999-10-01

    For studies of future nuclear reactors dedicated to nuclear waste transmutation, an improvement of the accuracy of the neutron radiative capture cross section of {sup 237}Np appears necessary. In the framework of a collaboration between the Commissariat a l'Energie atomique (CEA) and Institute for Reference Materials and Measurement (IRMM, Geel, Bergium), a new determination of the resonance parameters of {sup 237}Np has been performed. Two types of experiments are carried out at GELINA, the IRMM pulsed neutron source, using the time of flight method: a transmission experiment which is related to the neutron total cross section and a capture experiment which gives the neutron radiative capture cross section. The resonance parameters presented in this work are extracted from the transmission data between 0 and 500 eV with the least square code REFIT, using the Reich-Moore formalism. In parallel, the Doppler effect is investigated. The commonly used free gas model appears inadequate below 20 eV for neptunium dioxide at room temperature. By the use of the program DOPUSH, which calculates the Doppler broadening with a harmonic crystal model according to Lamb's theory, we are able to produce abetter fit of the experimental data for the resonances of {sup 237}Np in NpO{sub 2} at low energy or temperatures. In addition to the resonance parameters, a study of their mean value and distribution is included in this work. (authors)

  6. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  7. Theoretical studies of the local structure and electron paramagnetic resonance parameters for tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping [Chongqing Jiaotong Univ. (China). School of Science; Li, Ling [Sichuan University of Arts and Science, Dazhou (China). Dept. of Maths and Finance-Economics

    2015-07-01

    The optical spectra, electron paramagnetic resonance parameters (i.e., the spin Hamiltonian parameters, including paramagnetic g factors and the hyperfine structure constants A{sub i}) and the local distortion structure for the tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7} are theoretically studied based on the crystal-field theory and three-order perturbation formulas of a 3d{sup 1} centre in tetragonal site. The magnitude of orbital reduction factor, core polarisation constant κ, and local structure parameters are obtained by fitting the calculated optical spectra and electron paramagnetic resonance parameters to the experimental values. The theoretical results are in reasonable agreement with the experimental values.

  8. A measurement of the resonance parameters of the neutral intermediate vector boson

    International Nuclear Information System (INIS)

    Nash, J.A.

    1990-01-01

    This thesis presents a measurement of the Z 0 Boson resonance parameters. The measurement was performed at the Stanford Linear Collider using the Mark II detector. Based on a sample of 480 Hadronic and Leptonic decays, the mass is found to be 91.14 ± 0.12 GeV/c 2 , the total width is 2.42 -0.35 +0.45 GeV, and the peak cross section for all Hadronic events, and for Muon and Tau events with cosθ Thrust < 0. 65 is 45 ± 4 nb. By constraining the visible width to the Standard Model value for 5 quarks and 3 charged leptons, and allowing the invisible width to be a parameter, the width to invisible decay modes is found to be 0.46 ± 0.10 GeV. Assuming this width comes from massless neutrinos, this measurement corresponds to 2.8 ± 0.6 neutrino species. This measurement sets an upper limit of 3.9 neutrino generations at the 95% confidence level, ruling out a fourth generation of Standard Model neutrinos at this level. 54 refs., 65 figs., 11 tabs

  9. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  10. Photon energy dependence of left-right asymmetry parameters of Kr 4p photoelectrons in the vicinity of 3d resonant excitations

    International Nuclear Information System (INIS)

    Ricz, S.; Holste, K.; Borovik, Jr.A.A.; Bernhardt, D.; Schippers, S.; Muller, A.; Kover, A.; Varga, D.

    2011-01-01

    Complete text of publication follows. A left-right asymmetry was observed experimentally for the outer s-shell photoelectrons of noble gases and of the H 2 molecule in our previous studies (see the cited articles for the definition of 'left' and 'right' as well as for the details of the experimental method). Recently, the angular distribution of 4p photoelectrons of Kr was measured with linearly polarized synchrotron radiation in the photon energy range (90 - 94.4 eV) of the 3d -1 → np resonant excitations in order to determine the anisotropy parameters. Now, also the left-right asymmetry parameters have been determined from the measured spectra of Ref. [3]. The experiment was performed at beamline BW3 of the DORIS III storage ring at HASYLAB (Hamburg, Germany). The emitted electrons were analyzed using the ESA-22D electrostatic electron spectrometer. Fig. 1 shows the measured left-right asymmetry parameters (A LR ) of the two fine structure components of Kr 4p photoelectrons. The asymmetry parameters (A LR ) are increasing with increasing photon energies reaching a maximum value of 0.04, definitely different from zero when considering the error bars. Furthermore, the left-right asymmetry parameters oscillate around the (3d 3/2,5/2 ) -1 → 5p resonant excitation for both fine structure components. Currently, we do not know what kind of interaction can produce a left-right asymmetry in photon-atom collisions but the shape of the oscillations shows interference between the unknown and the resonant excitation channels. One of the most important observations is that the sign of A LR changes from positive to negative and then back again to positive just within a narrow photon energy range of only 250 meV around the (3d 5/2 ) -1 → 5p resonant excitation. Within such a narrow range artificial asymmetry of the experimental setup is totally unconceivable. Acknowledgements. The authors thank the DORIS III staff for providing excellent working conditions. This work was

  11. Low field magnetic resonance imaging of the lumbar spine: Reliability of qualitative evaluation of disc and muscle parameters

    DEFF Research Database (Denmark)

    Sørensen, Joan Solgaard; Kjaer, Per; Jensen, Tue Secher

    2006-01-01

    PURPOSE: To determine the intra- and interobserver reliability in grading disc and muscle parameters using low-field magnetic resonance imaging (MRI). MATERIAL AND METHODS: MRI scans of 100 subjects representative of the general population were evaluated blindly by two radiologists. Criteria......: Convincing reliability was found in the evaluation of disc- and muscle-related MRI variables....

  12. Investigation of parameters of the working substance - low temperature plasma in the ionization resonator chamber of the RF reactive engine

    International Nuclear Information System (INIS)

    Vdovin, V.S.; Zajtzev, B.V.; Kobetz, A.F.; Bomko, V.A.; Rashkovan, V.M.; Bazyma, L.A.; Belokon, V.I.

    2003-01-01

    This paper is the extension of investigations of the RF engine designed for orientation and stabilization of the spacecrafts orbit, and it is undertaken for measuring of plasma parameters of RF discharge in the ionization resonator chamber. The experiments were performed at the frequency of 80 MHz on the model engine, in which a length of coaxial line with shortening capacities at the ends was used as the ionization resonator chamber. As the result of the experiments, conditions of the RF discharge ignition in the resonator chamber are studied; dependencies of plasma density and temperature versus applied power and working body pressure are obtained for various gases. The measurements of the thrust were performed at the special-purpose test bench

  13. Obsidian sources of the Coromandel Volcanic Zone, nortthern New Zealand

    International Nuclear Information System (INIS)

    Moore, P.R.

    2013-01-01

    The Coromandel Volcanic Zone includes nine geographically discrete obsidian sources (Fanal, Awana, Te Ahumata, Cooks Beach, Hahei, Tairua, Whangamata, Maratoto and Waihi). Each has a distinctive chemical composition, and some can also be differentiated on the basis of visual characteristics of the obsidian. Chemically, the three northern sources (Fanal, Awana, Te Ahumata), constituting the 'Great Barrier Group', are distinguished by high Rb concentrations and a high Rb/Sr ratio. Obsidian from six of the sources is known to have been utilized by pre-European Maori for the manufacture of flake tools, but at present there is no evidence for exploitation of the Awana, Maratoto and Tairua deposits. (author). 54 refs., 5 figs., 2 tabs.

  14. A measurement of the Z boson resonance parameters at the SLC [Stanford Linear Center

    International Nuclear Information System (INIS)

    Nash, J.

    1989-11-01

    We have measured the resonance parameters of the Z boson using 480 hadronic and Leptonic Z decays collected by the Mark II Detector at the Stanford Linear Collider. We find the Mass to be 91.14 ± 0.12 GeV/c 2 , and the width to be 2.42 +0.45 -0.35 GeV. If we constrain the visible width to its Standard Model value, we find a partial width to invisible decay modes corresponding to 2.8 ± 0.6 neutrino species with a 95% confidence level limit of 3.9. 9 refs., 1 fig., 4 tabs

  15. Determination of the decay parameters of resonant states

    International Nuclear Information System (INIS)

    Tsoupas, N.

    1975-01-01

    The partial decay proton widths and the relative phases of six of the resonances in 29 P from excitation energies 5.7 to 7.1 MeV were determined. For this determination the angular distributions of protons scattered inelastically from the first 2 + excited state in 28 Si have been measured at 88 energies between E/sub p/ = 3.0 to 5.2 MeV. The coefficients describing the angular distributions were extracted from the experimental data and plotted as a function of C.M. bombarding energy over the resonance region. In addition triple angular correlations in the spin-flip geometry of the inelastically scattered protons from the 2 + first excited state of 28 Si with the γ-rays resulted from the de-excitation of 28 Si to its ground state were performed over the energy region E/sub p/ = 3.0 to 4.7 MeV. The coefficients describing these triple angular correlations were extracted and plotted versus C.M. bombarding energy. To aid in the analysis the experimental data of another triple angular correlation in the Goldfarb-Seyler geometry between the two radiations as in the spin flip angular correlation were used. Further analysis of the experimental data for the extraction of the partial decay widths and phases proceeded by calculating the theoretical expressions of the coefficients versus energy, using a Breit-Wigner formalism including interference between the resonances. The calculated theoretical coefficients were compared with the experimental ones through an on-line interactive program which permitted visual comparisons of the theoretically calculated coefficients to the experimental coefficients. The partial decay proton widths and the relative phases for six of the resonances will be presented in this dissertation

  16. A mathematical solution for the parameters of three interfering resonances

    Science.gov (United States)

    Han, X.; Shen, C. P.

    2018-04-01

    The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)

  17. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    Science.gov (United States)

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  18. Resonance parameter and covariance evaluation for 16O up to 6 MeV

    Directory of Open Access Journals (Sweden)

    Leal Luiz

    2016-01-01

    Full Text Available A resolved resonance evaluation was performed for 16O in the energy range 0 eV to 6 MeV using the computer code SAMMY resulting in a set of resonance parameters (RPs that describes well the experimental data used in the evaluation. A RP covariance matrix (RPC was also generated. The RP were converted to the evaluated nuclear data file format using the R-Matrix Limited format and the compact format was used to represent the RPC. In contrast to the customary use of RP, which are frequently intended for the generation of total, capture, and scattering cross sections only, the present RP evaluation permits the computation of angle dependent cross sections. Furthermore, the RPs are capable of representing the (n, α cross section from the energy threshold (2.354 MeV of the (n, α reaction to 6 MeV. The intent of this paper is to describe the procedures used in the evaluation of the RP and RPC, the use of the RPC in benchmark calculations and to assess the impact of the 16O nuclear data uncertainties in the calculate dkeff for critical benchmark experiments.

  19. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.

    Science.gov (United States)

    Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas

    2017-01-01

    The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

  20. Statistical analysis of parameters of the uranium -238 resonances

    International Nuclear Information System (INIS)

    Nikolaev, M.N.; Abagyan, L.P.

    1976-01-01

    It has been shown that the distribution for 238 U p - levels can be in agreement with the theoretical one (Porter - Thomas distribution) only if the significant lack of p - levels in the experiments would be supposed. That means that density of 238 U levels with spin 1/2 is parity dependent, and therefore the whole number of p - resonances is 4.8 (instead of 3) times greater than the number of s - resonances in the same energy internal. With the assumption about spin dependence of strength function it is impossible to agree the experimental distribution with the theoretical one

  1. A Short History of ENDF/B Unresolved Resonance Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Dermott E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-31

    This paper is designed to address two topics relating to ENDF/B data in the unresolved resonance region, Part 1: For years code users have pointed out and complained that various ENDF data processing codes, in particular PREPRO and NJOY, produce different answers from one another for the cross sections in unresolved resonance region. First I assure code users that NJOY has now been updated to agree with PREPRO, so that this problem has now been solved. Part 2: Next, this paper documents why we saw these differences; the emphasis here is on explaining what my own codes do, but I will also try to briefly outline what other codes do, so the reader can understand why we were producing different answers. The first topic should be of general interest to all readers, particularly users of our codes, whereas the second topic will be of more limited interest only to those readers who are interested in the details of our calculations in the unresolved resonance region. Now that our PREPRO and NJOY results agree we consider this problem solved and no further action is necessary.

  2. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  3. Restrictions in the realisation of multipass unstable resonators

    International Nuclear Information System (INIS)

    Strakhov, S Yu

    2009-01-01

    Main restrictions in the realisation of multipass unstable resonators caused by intracavity losses and large-scale aberrations are considered. The influence of intracavity losses on the laser radiation power and divergence is analysed based on the numerical simulation of an unstable resonator. The efficiency criterion for the unstable multipass resonator is proposed, which is proportional to the radiation brightness and takes into account the influence of the misalignment, thermal deformation and the main parameters of the active medium and resonator on the parameters of laser radiation. (resonators)

  4. Operating and mathematical representation of resonances between flow parameters oscillations and structure vibrations of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I. [Nuclear Power Plant Department of Moscow Power Engineering Institute Technical Univ., Moscow (Russian Federation)

    2007-07-01

    The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement {delta} is determined. The bigger damping ratio {zeta} provides bigger {delta} and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)

  5. Operating and mathematical representation of resonances between flow parameters oscillations and structure vibrations of NPP

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I.

    2007-01-01

    The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement δ is determined. The bigger damping ratio ζ provides bigger δ and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)

  6. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  7. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  8. Resonance parameter analysis with SAMMY

    International Nuclear Information System (INIS)

    Larson, N.M.; Perey, F.G.

    1988-01-01

    The multilevel R-matrix computer code SAMMY has evolved over the past decade to become an important analysis tool for neutron data. SAMMY uses the Reich-Moore approximation to the multilevel R-matrix and includes an optional logarithmic parameterization of the external R-function. Doppler broadening is simulated either by numerical integration using the Gaussian approximation to the free gas model or by a more rigorous solution of the partial differential equation equivalent to the exact free gas model. Resolution broadening of cross sections and derivatives also has new options that more accurately represent the experimental situation. SAMMY treats constant normalization and some types of backgrounds directly and treats other normalizations and/or backgrounds with the introduction of user-generated partial derivatives. The code uses Bayes' method as an efficient alternative to least squares for fitting experimental data. SAMMY allows virtually any parameter to be varied and outputs values, uncertainties, and covariance matrix for all varied parameters. Versions of SAMMY exist for VAX, FPS, and IBM computers

  9. Resonance Damping and Parameter Design Method for LCL-LC Filter Interfaced Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Li, Zipeng; Jiang, Aiting; Shen, Pan

    2016-01-01

    , this paper presents a systematic design method for the LCL-LC filtered grid-connected photovoltaic (PV) system. With this method, controller parameters and the active damping feedback coefficient are easily obtained by specifying the system stability and dynamic performance indices, and it is more convenient......-frequency harmonics attenuation ability, but the resonant problem affects the system stability remarkably. In this paper, active damping based on the capacitor voltage feedback is proposed using the concept of the equivalent virtual impedance in parallel with the capacitor. With the consideration of system delay...... to optimize the system performance according to the predefined satisfactory region. Finally, the simulation results are presented to validate the proposed design method and control scheme....

  10. Resonance detection of Moessbauer radiation

    International Nuclear Information System (INIS)

    Morozov, V.V.

    1985-01-01

    The resonance detection method as compared with the usual method of registering Moessbauer spectra has a number of advantages, one of which is the increase of resolution of the Moessbauer spectrum. The method is based on the modulation of a secondary radiation of a converter tuned in the resonance with the Moessbauer gamma-quantum source. The resonance detection method with account of supression, secondary radiation outgoing from the converter is investigated. The converter represents a substrate enriched by the Moessbauer isotope placed either inside the gas counter, or coupled with any other detecting device. Analytical expressions for Moessbauer spectrum parameters: effect, area and width of the spectral line are derived. It is shown that the joint application of usual and resonance detection methods for registering the Moessbauer spectrum allows one to determine parameters of the source, converter and the investigated absorber

  11. Monitoring Tumor Response to Carbogen Breathing by Oxygen-Sensitive Magnetic Resonance Parameters to Predict the Outcome of Radiation Therapy: A Preclinical Study

    International Nuclear Information System (INIS)

    Cao-Pham, Thanh-Trang; Tran, Ly-Binh-An; Colliez, Florence; Joudiou, Nicolas; El Bachiri, Sabrina; Grégoire, Vincent; Levêque, Philippe; Gallez, Bernard; Jordan, Bénédicte F.

    2016-01-01

    Purpose: In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R_1, water R_1, lipids R_1, and R_2*. R_1 is sensitive to dissolved molecular oxygen, whereas R_2* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R_1, water R_1, lipids R_1, and R_2* with pO_2 assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT). Methods and Materials: R_1, R_2*, and EPR were performed on rhabdomyosarcoma and 9L-glioma tumor models, under air and carbogen breathing conditions (95% O_2, 5% CO_2). Because the models demonstrated different radiosensitivity properties toward carbogen, a growth delay (GD) assay was performed on the rhabdomyosarcoma model and a tumor control dose 50% (TCD50) was performed on the 9L-glioma model. Results: Magnetic resonance imaging oxygen-sensitive parameters detected the positive changes in oxygenation induced by carbogen within tumors. No consistent correlation was seen throughout the study between MR parameters and pO_2. Global and lipids R_1 were found to be correlated to pO_2 in the rhabdomyosarcoma model, whereas R_2* was found to be inversely correlated to pO_2 in the 9L-glioma model (P=.05 and .03). Carbogen increased the TCD50 of 9L-glioma but did not increase the GD of rhabdomyosarcoma. Only R_2* was predictive (P<.05) for the curability of 9L-glioma at 40 Gy, a dose that showed a difference in response to RT between carbogen and air-breathing groups. "1"8F-FAZA positron emission tomography imaging has been shown to be a predictive marker under the same conditions. Conclusion: This work illustrates the sensitivity of oxygen-sensitive R_1 and R_2* parameters to changes in tumor oxygenation. However, R_1 parameters showed limitations in terms of predicting the outcome of RT in the tumor models studied, whereas R_2* was found to be

  12. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  13. Free spectral range adjustment of a silicon rib racetrack resonator

    International Nuclear Information System (INIS)

    Keča, T; Matavulj, P; Headley, W; Mashanovich, G

    2012-01-01

    One of the most important parameters that describe the quality of photonic components and devices is the free spectral range (FSR). In this paper, the measured outgoing power of a silicon rib racetrack resonator was compared with calculated transfer functions derived by coupled mode theory. The influence of geometric parameters on the FSR and resonant wavelength has been investigated. By altering the values of the coupling length and racetrack radius, derived transfer functions were adjusted to match experimental data. This procedure gives the possibility of estimating the FSR and resonant wavelength for different geometric parameters and predicting resonator functionality.

  14. New methodology for analytical calculation of resonance integrals in an heterogeneous medium

    International Nuclear Information System (INIS)

    Campos, T.P.R. de; Martinez, A.S.

    1986-01-01

    A new methodology for analytical calculation of Resonance Integral in a typical fuel cell is presented. The expression obtained for the Resonance Integral presents the advantage of being analytical. Its constituent terms are combinations of the well known function J(xi,β) with its partial derivatives in regard to β. This is a general expression for all types of resonance. The parameters used in this method depend on the resonance type and are obtained as a function of the parameter lambda. A simple expression, depending on resonance parameters is proposed for this variable. (Author) [pt

  15. Teaching stable two-mirror resonators through the fractional Fourier transform

    International Nuclear Information System (INIS)

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g parameters) and those of the equivalent FRFT systems (the FRFT order and scaling parameters). Expressions connecting Gaussian beam q-transformation with FRFT parameters are derived. In particular, we show that the beam waist of the resonator's mode is located at the plane leading to two FRFT subsystems with equal scaling parameter which, moreover, coincides with the mode Rayleigh range. Finally we analyse the resonator's stability diagram in terms of the fractional orders of each FRFT subsystem, and the round trip propagation. The presented analysis represents an interesting link between two topics (optical resonators and Fourier optics) usually covered in optics and photonics courses at university level, which can be useful to teach and connect the principles of these subjects.

  16. Statistical inference of level densities from resolved resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-08-01

    Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.) [de

  17. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  18. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  19. FANAC - a shape analysis program for resonance parameter extraction from neutron capture data for light and medium-weight nuclei

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1977-11-01

    A least-squares shape analysis program is described which is used at the Karlsruhe Nuclear Research Center for the extraction of resonance parameters from high-resolution capture data. The FORTRAN program was written for light to medium-weight or near-magic target nuclei whose cross sections are characterized on one hand by broad s-wave levels with negligible Doppler broadening but pronounced multi-level interference, on the other hand by narrow p-, d- ... wave resonances with negligible multi-level interference but pronounced Doppler broadening. Accordingly the Reich-Moore multi-level formalism without Doppler broadening is used for s-wave levels, and a single-level description with Doppler braodening for p-, d- ... wave levels. Calculated capture yields are resolution broadened. Multiple-collision events are simulated by Monte Carlo techniques. Up to five different time-of-flight capture data sets can be fitted simultaneously for samples containing up to ten isotopes. Input and output examples are given and a FORTRAN list is appended. (orig.)

  20. Monitoring Tumor Response to Carbogen Breathing by Oxygen-Sensitive Magnetic Resonance Parameters to Predict the Outcome of Radiation Therapy: A Preclinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Cao-Pham, Thanh-Trang; Tran, Ly-Binh-An; Colliez, Florence; Joudiou, Nicolas [Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels (Belgium); El Bachiri, Sabrina [Université Catholique de Louvain, IMMAQ Technological Platform, Methodology and Statistical Support, Louvain-la-Neuve (Belgium); Grégoire, Vincent [Université Catholique de Louvain, Institute of Experimental and Clinical Research, Center for Molecular Imaging, Radiotherapy and Oncology, Brussels (Belgium); Levêque, Philippe; Gallez, Bernard [Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels (Belgium); Jordan, Bénédicte F., E-mail: benedicte.jordan@uclouvain.be [Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels (Belgium)

    2016-09-01

    Purpose: In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R{sub 1}, water R{sub 1}, lipids R{sub 1}, and R{sub 2}*. R{sub 1} is sensitive to dissolved molecular oxygen, whereas R{sub 2}* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R{sub 1}, water R{sub 1}, lipids R{sub 1}, and R{sub 2}* with pO{sub 2} assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT). Methods and Materials: R{sub 1}, R{sub 2}*, and EPR were performed on rhabdomyosarcoma and 9L-glioma tumor models, under air and carbogen breathing conditions (95% O{sub 2}, 5% CO{sub 2}). Because the models demonstrated different radiosensitivity properties toward carbogen, a growth delay (GD) assay was performed on the rhabdomyosarcoma model and a tumor control dose 50% (TCD50) was performed on the 9L-glioma model. Results: Magnetic resonance imaging oxygen-sensitive parameters detected the positive changes in oxygenation induced by carbogen within tumors. No consistent correlation was seen throughout the study between MR parameters and pO{sub 2}. Global and lipids R{sub 1} were found to be correlated to pO{sub 2} in the rhabdomyosarcoma model, whereas R{sub 2}* was found to be inversely correlated to pO{sub 2} in the 9L-glioma model (P=.05 and .03). Carbogen increased the TCD50 of 9L-glioma but did not increase the GD of rhabdomyosarcoma. Only R{sub 2}* was predictive (P<.05) for the curability of 9L-glioma at 40 Gy, a dose that showed a difference in response to RT between carbogen and air-breathing groups. {sup 18}F-FAZA positron emission tomography imaging has been shown to be a predictive marker under the same conditions. Conclusion: This work illustrates the sensitivity of oxygen-sensitive R{sub 1} and R{sub 2}* parameters to changes in tumor oxygenation. However, R{sub 1

  1. Recent improvement of the resonance analysis methods

    International Nuclear Information System (INIS)

    Sirakov, I.; Lukyanov, A.

    2000-01-01

    By the use of a two-step method called Combined, the R-matrix Wigner-Eisenbud representation in the resonance reaction theory has been converted into other equivalent representations (parameterizations) of the collision matrix with Poles in E domain. Two of them called Capture Elimination (CE) and Reaction Elimination (RE) representation respectively, have energy independent parameters and are both rigorous and applicable. The CE representation is essentially a generalization of the Reich-Moore (RM) formalism. The RE representation, in turn, offers some distinct advantages when analyzing fissile nuclei. The latter does not require any approximation for the capture channels and does not need any assumption about the number of fission channels in contrast to the RM representation. Unlike the RM parameters the RE ones are uniquely determined for applications in the resonance analysis. When given in the RE representation, neutron cross sections of fissile nuclei in the resolved resonance region are presented through simple scalar expressions without the need of matrix inversion. Various computer codes have been developed to demonstrate the viability of the new method. The RM parameters of the fissile nuclei have been converted into equivalent RE parameters implying the RM assumptions (REFINE code). Conversely, the RE parameters have been converted into corresponding RM parameters when one fission channel is present and the RM parameter set is unique, e.g. Pu-239, J =1 (REVERSE code). To further enhance the flexibility of the proposed method the obtained RE parameters have been converted into equivalent Generalized Pole parameters (REFILE code), which are parameters of the rigorous pole expansion of the collision matrix in √E domain. equi valent sets of RM, RE and GP parameters of 239 Pu are given as an example. It has been pointed out that all the advantages of the newly proposed representation can be implemented through an independent evaluation of the RE resonance

  2. An analytical approximation for resonance integral

    International Nuclear Information System (INIS)

    Magalhaes, C.G. de; Martinez, A.S.

    1985-01-01

    It is developed a method which allows to obtain an analytical solution for the resonance integral. The problem formulation is completely theoretical and based in concepts of physics of general character. The analytical expression for integral does not involve any empiric correlation or parameter. Results of approximation are compared with pattern values for each individual resonance and for sum of all resonances. (M.C.K.) [pt

  3. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  4. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sigal, R.

    1988-01-01

    This book is an introduction to magnetic resonance imaging (MRI). The basic principles for the interpretation of MR images are developed. The book is divided into five chapters: introduction, tissue, parameters, acquisition parameters, contribution to diagnosis, and practical management of an MR examination. Eight exercises allow the reader to test the knowledge he has acquired. Signal localization and MR artefacts are reviewed in an appendix

  5. Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy

    Science.gov (United States)

    Salazar Mejía, C.; Born, N.-O.; Schiemer, J. A.; Felser, C.; Carpenter, M. A.; Nicklas, M.

    2018-03-01

    Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50 +xMn25 -xGa25 (x =0 , 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TM and ferromagnetic ordering at temperature TC, while the pure end member (x =0 ) also has a premartensitic transition at TP M, giving four different scenarios: TC>TP M>TM,TC>TM without premartensitic transition, TC≈TM , and TCparameters relating to magnetic ordering, a soft mode, and the electronic instability responsible for the large strains typical of martensitic transitions. Linear-quadratic or biquadratic coupling between these order parameters, either directly or indirectly via the common strains, is then used to explain the stabilities of the different structures. Acoustic losses are attributed to critical slowing down at the premartensite transition, to the mobility of interphases between coexisting phases at the martensitic transition, and to mobility of some aspect of the twin walls under applied stress down to the lowest temperatures at which measurements were made.

  6. Atomic and molecular resonance ionization

    International Nuclear Information System (INIS)

    Botter, R.; Petit, A.

    1990-01-01

    Published in summary form only the paper recalls the principle of resonance photoionization, transition probability, selectivity and critical parameters. Examples of applications are briefly treated: Trace analysis by resonance ionization mass spectroscopy for detection of Fe in Zr F 4 for fabrication of optical fibers and laser isotopic separation of U 235 and Gd 157 [fr

  7. ZZ-CENPL, Chinese Evaluated Nuclear Parameter Library. ZZ CENPL-DLS, Discrete Level Schemes and Gamma Branching Ratios Library; ZZ CENPL-FBP, Fission Barrier Parameter Library; ZZ CENPL-GDRP, Giant Dipole Resonance Parameter Library; ZZ CENPL-NLD, Nuclear Level Density Parameter Library; ZZ CENPL-MCC, Nuclear Ground State Atomic Masses Library; ZZ CENPL-OMP, Optical Model Parameter Library

    International Nuclear Information System (INIS)

    Su Zongdi

    1995-01-01

    Description of program or function: CENPL - GDRP (Giant Dipole Resonance Parameters for Gamma-Ray): - Format: special format described in documentation; - Nuclides: V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Lu, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, Th, U, Np, Pu. - Origin: Experimental values offered by S.S. Dietrich and B.L. Berman. CENPL - FBP (Fission Barrier Parameter Sub-Library): - Format: special format described in documentation; - Nuclides: (1) 51 nuclei region from Th-230 to Cf-255, (2) 46 nuclei region from Th-229 to Cf-253, (3) 24 nuclei region from Pa-232 to Cf-253; - Origin: (1) Lynn, (2) Analysis of experimental data by Back et al., (3) Ohsawa. CENPL - DLS (Discrete level scheme and branch ratio of gamma decay: - Format: Special format described in documentation; - Origin: ENSDF - BNL. CENPL - NLD (Nuclear Level Density): - Format: Special format described in documentation; - Origin: Huang Zhongfu et al. CENPL - OMP (Optical model parameter sub-library): - Format: special format described in documentation ; - Origin: CENDL, ENDF/B-VI, JENDL-3. CENPL - MC (I) and (II) (Atomic masses and characteristic constants for nuclear ground states) : - Format: Brief table format; - Nuclides: 4760 nuclides ranging from Z=0 A=1 to Z=122 A=318. - Origin: Experimental data and systematic results evaluated by Wapstra, theoretical results calculated by Moller, ENSDF - BNL and Nuclear Wallet Cards. CENPL contains the following six sub-libraries: 1. Atomic Masses and Characteristic Constants for nuclear ground states (MCC). This data consists of calculated and in most cases also measured mass excesses, atomic masses, total binding energies, spins, parities, and half-lives of nuclear ground states, abundances, etc. for 4800 nuclides. 2. Discrete Level Schemes and branching ratios of gamma decay (DLS). The data on nuclear discrete levels are based on the Evaluated

  8. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    In the damped and biharmonically driven classical Morse oscillator, by applying a theoretical approach, an analytical expression is obtained for the response amplitude at the low-frequency . Conditions are identified on the parameters for the occurrence of resonance. The system shows only one resonance and moreover ...

  9. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  10. Evaluation of neutron nuclear data for 233U in thermal and resonance regions

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki

    1981-02-01

    The thermal and resonance cross sections of 233 U were evaluated for JENDL-2. The cross sections below 1 eV are given as point-wise data and were evaluated by the use of the measured fission and capture cross sections. The resolved resonance parameters are derived up to 100 eV. The parameters were obtained by using NDES so as to reproduce the measured total and fission cross sections. The cross sections from 100 eV to 30 keV are represented by the unresolved resonance parameters. The fission and capture resonance integrals calculated from these parameters are 771 and 138 barns, respectively, which agree with the measured data within the quoted errors. (author)

  11. Accidental degeneracy of resonances

    International Nuclear Information System (INIS)

    Hernandez, E.; Mondragon, A.; Jauregui, A.

    2001-01-01

    Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)

  12. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  13. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  14. Assessment of Abdominal Fat Using High-field Magnetic Resonance Imaging and Anthropometric and Biochemical Parameters.

    Science.gov (United States)

    Al-Radaideh, Ali; Tayyem, Reema; Al-Fayomi, Kholoud; Nimer, Nisreen; Malkawi, Amer; Al-Zu Bi, Rana; Agraib, Lana; Athamneh, Imad; Hijjawi, Nawal

    2016-12-01

    To measure the abdominal subcutaneous fat (SF) and visceral fat (VF) volumes using high-field magnetic resonance imaging (MRI) and to investigate their association with selected anthropometric and biochemical parameters among obese and nonobese apparently healthy participants. A cross-sectional study was conducted by recruiting 167 healthy participants. Abdominal scans were acquired at 3T MRI, and the SF and VF were segmented and their volumes were calculated. Selected anthropometric and biochemical measurements were also determined. A significant difference (P abdominal fat volumes, leptin, resistin, adiponectin and waist circumference. Waist circumferences were measured by tape and MRI. Findings revealed that MRI-measured fat volumes were different between males and females and had a significant (P fat volumes were found to correlate moderately with interleukin-6 and weakly with cholesterol, serum triglyceride and low-density lipoprotein. Except for cholesterol, all measured biochemical variables and abdominal fat volumes in the current study were significantly associated with body mass index. All anthropometric and biochemical parameters showed weak-to-strong associations with the MRI-measured fat volumes. Abdominal fat distribution was different between males and females and their correlations with some lipid profiles were found to be sex dependent. These findings revealed that MRI can be used as an alternative tool for obesity assessment. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  15. Electron paramagnetic resonance field-modulation eddy-current analysis of silver-plated graphite resonators

    Science.gov (United States)

    Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.

    2005-09-01

    Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.

  16. Stochastic resonance in the presence of slowly varying control parameters

    International Nuclear Information System (INIS)

    Nicolis, C; Nicolis, G

    2005-01-01

    The kinetics of transitions between states in a noisy system is studied in the simultaneous presence of a periodic forcing and a ramp. It is shown that the interaction between stochastic resonance and the action of the ramp may give rise to a new method for the control of the transition rates

  17. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    Science.gov (United States)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  18. Optimization of input parameters of supra-threshold stochastic resonance image processing algorithm for the detection of abdomino-pelvic tumors on PET/CT scan

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Saroha, Kartik; Patel, C.D.; Bal, C.S.; Kumar, Rakesh

    2016-01-01

    Administration of diuretics increases the urine output to clear radioactive urine from kidneys and bladder. Hence post-diuretic pelvic PET/CT scan enhances the probability of detection of abdomino-pelvic tumor. However, it causes discomfort in patients and has some side effects also. Application of supra threshold stochastic resonance (SSR) image processing algorithm on Pre-diuretic PET/CT scan may also increase the probability of detection of these tumors. Amount of noise and threshold are two variable parameters that effect the final image quality. This study was conducted to investigate the effect of these two variable parameters on the detection of abdomen-pelvic tumor

  19. Multilevel resonance analysis of sup 59 Co neutron transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    De Saussure, G.; Larson, N.M.; Harvey, J.A.; Hill, N.W. (Oak Ridge National Lab., TN (United States))

    1992-07-01

    Large discrepancies exist between the recent high-resolution neutron transmission data of {sup 59}Co measured at the Oak Ridge Electron Linear Accelerator (ORELA) and transmissions computed from the resolved resonance parameters of the nuclear data collection ENDF/B-VI. In order to provide new resonance parameters consistent with these data, the transmission measurements have been analyzed with the computer code SAMMY in the energy range 200 eV to 100 keV. The resonance parameters reported in this paper provide an accurate total cross section from 10{sup -5} eV to 100 keV and correctly reproduce the thermal capture cross section. Thermal cross-section values and related quantities are also reviewed here. (author).

  20. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    Science.gov (United States)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  1. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  2. Characteristics of Schumann Resonance Parameters at Kuju Station

    Directory of Open Access Journals (Sweden)

    Ikeda Akihiro

    2017-01-01

    Full Text Available The ground magnetic field variation in the extremely low frequency (ELF range has been measured by an induction magnetometer at Kuju, Japan (KUJ; M.Lat. = 23.4 degrees, M. Lon. = 201.0 degrees since 2003. The first mode of the Schumann resonance (SR around 8 Hz can be seen at KUJ. The SR in H (horizontal northward component shows maximum peaks around 08 UT and 15 UT. In the case of D (horizontal eastward component, the SR shows its maximum peak around 08 UT. These peaks are coincident with the enhancement of lightning activity in Africa and Asia. Thus, we found the influence of the lightning activity on the observed SR at KUJ.

  3. On meson resonances and chiral symmetry

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-07-01

    We study meson resonances with quantum numbers J P = 1 + in terms of the chiral SU(3) Lagrangian. At leading order a parameter-free prediction is obtained for the scattering of Goldstone bosons off vector mesons with J P = 1 - once we insist on approximate crossing symmetry of the unitarized scattering amplitude. A resonance spectrum arises that is remarkably close to the empirical pattern. In particular, we find that the strangeness-zero resonances h 1 (1380), f 1 (1285) and b 1 (1235) are formed due to strong K anti K μ and K K μ channels. This leads to large coupling constants of those resonances to the latter states. (orig.)

  4. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    Science.gov (United States)

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  5. Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents.

    Directory of Open Access Journals (Sweden)

    David M Fox

    2017-06-01

    Full Text Available Neuronal membrane potential resonance (MPR is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH and calcium-currents (ICa. We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres and phasonant- (fϕ = 0 frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ. Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.

  6. Proportional-Integral-Resonant AC Current Controller

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2017-02-01

    Full Text Available In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR controller, common in the stationary-frame AC current control, is extended by the integral (I action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.

  7. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  8. Multi-objective Optimization of Large Wind Farm Parameters for Harmonic Instability and Resonance Conditions

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    wind farms in order to reduce the resonance probability and guarantee harmonic stability. In fact, a general multiobjective optimization procedure based on the genetic algorithm is proposed to set the poles of the wind farm in a desired location in order to minimize the number of the resonance...

  9. Cardiac Magnetic Resonance Imaging in Myocarditis Reveals Persistent Disease Activity Despite Normalization of Cardiac Enzymes and Inflammatory Parameters at 3-Month Follow-Up.

    Science.gov (United States)

    Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert

    2017-11-01

    There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.

  10. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  11. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  12. Investigation of neutron resonances of 247Cm in the 0.5-20 eV energy range

    International Nuclear Information System (INIS)

    Belanova, T.S.; Kolesov, A.G.; Klinov, A.V.; Nikol'skij, S.N.; Poruchikov, V.A.; Nefedov, V.N.; Artamonov, V.S.; Ivanov, R.N.; Kalebin, S.M.

    1979-01-01

    The neutron resonance parameters of 247 Cm were calculated from the transmission of a curium sample measured by the time-of-flight method. The neutron resonance parameters were calculated by the shape method using the single-level Breit-Wigner formula. Since the neutron resonance parameters of 244 Cm, 245 Cm, 246 Cm, 248 Cm, 243 Am and 240 Pu are well known, it was possible to identify the neutron resonances of 247 Cm from the measured transmission and calculate their parameters. We identified only five neutron resonances of 247 Cm with high values of 2gGAMMAsub(n). This is due to the fact that the 247 Cm content of the sample is low (1.7mg) and the resonances of this isotope are identified against the background of a large number of resonances of 244 Cm, 245 Cm, 246 Cm, 248 Cm, 243 Am and 240 Pu situated in the energy range in question

  13. 12 O resonant structure evaluated by two-proton emission process

    International Nuclear Information System (INIS)

    Leite, T.N.; Teruya, N.; Goncalves, M.

    2009-06-01

    The characteristics of 12 O resonant ground state are investigated through the analysis of the experimental data for the two-proton decay process. The sequential and simultaneous two-proton emission decay modes have been considered in a statistical calculation of the decay energy distribution. The resonant structures of 11 N have been employed as intermediate states for the sequential mode, having their parameters determined by considering the structure of single particle resonance in quantum scattering problem. The width of 12 O resonant ground state has been extracted from a best fit to the experimental data. The contributions from the different channels to the decay energy distribution have been evaluated, and width and peak location parameters of 12 O resonant ground state are compared with results of other works for the sequential and simultaneous two-proton decay modes. (author)

  14. Modeling of nanofabricated paddle bridges for resonant mass sensing

    International Nuclear Information System (INIS)

    Lobontiu, N.; Ilic, B.; Garcia, E.; Reissman, T.; Craighead, H. G.

    2006-01-01

    The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion

  15. Statistical Modelling of Resonant Cross Section Structure in URR, Model of the Characteristic Function

    International Nuclear Information System (INIS)

    Koyumdjieva, N.

    2006-01-01

    A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006

  16. Comparison of morphological and kinetic parameters in distinction of benign and malignant breast lesions in dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Direnç Özlem Aksoy

    2013-12-01

    Full Text Available Objective: To evaluate the value of qualitative morphologicaland kinetic data and quantitative kinetic data indistinction of malignancy in dynamic contrast enhancedmagnetic resonance imaging (DCE-MRI of the breast.Methods: DCE-MRIs of 49 subjects were evaluated.Morphological and contrast enhancement parameters of95 lesions were recorded in these subjects. Post-contrastkinetic behavior of these lesions were also investigated.Among the quantitative parameters, relative enhancements(E1, E2, Epeak, time-to-peak (Tpeak, slope ofcurve (Slope, signal enhancement ratio (SER, and maximumintensity time ratio (MITR were calculated. Theseresults were compared with the pathological diagnosis.Results: Spiculated contour (100%, rim enhancement(97.87%, irregular shape (95.74%, and irregular margin(91.49% were the most specific morphological featuresof malignancy in mass lesions. In non-mass lesions, focalzone (91.49% was the most specific feature of malignancy.74.5% of the benign lesions showed type 1, 77.1%of the malignant lesions showed type 2 and 3 curves accordingto the kinetic curve evaluation. All quantitativeparameters except Epeak were found to be statisticallysignificant in distinction of malignancy.Conclusion: None of the morphological features of thebenign lesions were found to be significantly specific.More specific features can be described for malignantlesions. Early behavior of the kinetic curve is not usefulfor diagnosis of malignancy but the intermediate and latebehavior gives useful information. Quantitative data involvedin this study might be promising.Key words: Morphological, kinetic, breast lesions, magnetic resonance imaging, dynamic

  17. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  18. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  19. Solidly mounted resonators aging under harsh environmental conditions

    International Nuclear Information System (INIS)

    Ivira, B; Fillit, R Y; Ndagijimana, F; Benech, Ph; Boussey, J; Parat, G; Ancey, P

    2006-01-01

    A contribution to reliability studies of Solidly Mounted Resonators (SMR) submitted to harsh environments such as temperature and humidity is presented. Electrical, structural and chemical monitoring of representative parameters is performed by means of RF, DC characterizations and also X-ray diffraction coupled to X-fluorescence to assess aging in microstructures. Results indicate that humidity affects samples stronger than high temperature. From viewpoint of robustness, non-negligible effects of SiO 2 mass-loading on antiresonance and resonance frequencies are reported. Drifts of parameters for a lonely resonator and filter transmission are both in good accordance. Finally, the need of a full sheet passivation layer is demonstrated in order to protect metals and Aluminum Nitride (AlN) against oxidation and pollutant compounds respectively

  20. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    Science.gov (United States)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  1. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  2. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  3. Impact of neutron resonance treatments on reactor calculation

    International Nuclear Information System (INIS)

    Leszczynski, F.

    1988-01-01

    The neutron resonance treatment on reactor calculation is one of the not completely resolved problems of reactor theory. The calculation required on design, fuel management and accident analysis of nuclear reactors contains adjust coefficients and semi-empirical values introduced on the computer codes; these values are obtained comparing calculation results with experimental values and more exact calculation results. This is made when the characteristics of the analyzed system are such that this type of comparisons are possible. The impact that one fixed resonance treatment method have on the final evaluation of physics reactor parameters, reactivity, power distribution, etc., is useful to know. In this work, the differences between calculated parameters with two different methods of resonance treatment in cell calculations are shown. It is concluded that improvements on resonance treatment are necessary for growing the reliability on core calculations results. Finally, possible improvements, easy to implement in current computer codes, are presented. (Author) [es

  4. A resonance without resonance. Scrutinizing the diphoton excess at 750 GeV

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Rolbiecki, Krzysztof; Ruiz de Austri, Roberto

    2015-12-01

    Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.

  5. Resonance analysis and evaluation of the 235U neutron induced cross sections

    International Nuclear Information System (INIS)

    Leal, L.C.

    1990-06-01

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the 235 U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Δ 3 -statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the 235 U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the 235 U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs

  6. Formalism for neutron cross section covariances in the resonance region using kernel approximation

    Energy Technology Data Exchange (ETDEWEB)

    Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.

    2010-04-09

    We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).

  7. Nested trampoline resonators for optomechanics

    International Nuclear Information System (INIS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Perock, B.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si 3 N 4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators

  8. Nested trampoline resonators for optomechanics

    Science.gov (United States)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  9. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  10. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  11. Doubly excited 3Pe resonance states of two-electron positive ions in Debye plasmas

    International Nuclear Information System (INIS)

    Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi; Jiang, Zishi; Jiang, Pinghui

    2015-01-01

    We investigate the doubly excited 3 P e resonance states of two-electron positive ions Li + , Be 2+ , B 3+ , and C 4+ by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of 3 P e resonances below the N = 3 threshold. The 3 P e resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time

  12. Research of isolated resonances using the average energy shift method for filtered neutron beam

    International Nuclear Information System (INIS)

    Gritzay, O.O.; Grymalo, A.K.; Kolotyi, V.V.; Mityushkin, O.O.; Venediktov, V.M.

    2010-01-01

    This work is devoted to detailed description of one of the research directions in the Neutron Physics Department (NPD), namely, to research of resonance parameters of isolated nuclear level at the filtered neutron beam on the horizontal experimental channel HEC-8 of the WWR-M reactor. Research of resonance parameters is an actual problem nowadays. This is because there are the essential differences between the resonance parameter values in the different evaluated nuclear data library (ENDL) for many nuclei. Research of resonance parameter is possible due to the set of the neutron cross sections received at the same filter, but with the slightly shifted filter average energy. The shift of the filter average energy is possible by several processes. In this work this shift is realized by neutron energy dependence on scattering angle. This method is provided by equipment.

  13. Calculation of the level density parameter using semi-classical approach

    International Nuclear Information System (INIS)

    Canbula, B.; Babacan, H.

    2011-01-01

    The level density parameters (level density parameter a and energy shift δ) for back-shifted Fermi gas model have been determined for 1136 nuclei for which complete level scheme is available. Level density parameter is calculated by using the semi-classical single particle level density, which can be obtained analytically through spherical harmonic oscillator potential. This method also enables us to analyze the Coulomb potential's effect on the level density parameter. The dependence of this parameter on energy has been also investigated. Another parameter, δ, is determined by fitting of the experimental level scheme and the average resonance spacings for 289 nuclei. Only level scheme is used for optimization procedure for remaining 847 nuclei. Level densities for some nuclei have been calculated by using these parameter values. Obtained results have been compared with the experimental level scheme and the resonance spacing data.

  14. Study of 234U(n,f) Resonances Measured at the CERN n_TOF Facility

    CERN Document Server

    Leal-Cidoncha, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Praena, J; Berthier, B; Ferrant, L; Isaev, S; Le Naour, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P.; Chepel, V; Chiaveri, E.; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S.; Dillmann, I; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A.; Ferreira-Marques, R; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A.; Igashira, M; Jericha, E; Kadi, Y.; Käppeler, F; Karadimos, D; Kerveno, M; Koehler, P; Kossionides, E; Krtička, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papadopoulos, C; Pavlik, A; Pavlopoulos, P.; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T.; Reifarth, R; Rubbia, C.; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L.; Savvidis, I; Tagliente, G; Tain, J L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A.; Villamarin, D; Vincente, M C; Vlachoudis, V.; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2014-01-01

    We present the analysis of the resolved resonance region for the U-234(n,f) cross section data measured at the CERN n\\_TOF facility. The resonance parameters in the energy range from 1 eV to 1500 eV have been obtained with the SAMMY code by using as initial parameters for the fit the resonance parameters of the JENDL-3.3 evaluation. In addition, the statistical analysis has been accomplished, partly with the SAMDIST code, in order to study the level spacing and the Mehta-Dyson correlation.

  15. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    Science.gov (United States)

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  16. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    Science.gov (United States)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  17. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  18. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars; Alias, Mohd Sharizal B.; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  19. 12O resonant structure evaluated by the two-proton emission process

    International Nuclear Information System (INIS)

    Leite, T. N.; Teruya, N.; Dimarco, A.; Duarte, S. B.; Tavares, O. A. P.; Goncalves, M.

    2009-01-01

    The characteristics of the 12 O resonant ground state are investigated through the analysis of the experimental data for the two-proton decay process. The sequential and simultaneous two-proton emission decay modes have been considered in a statistical calculation of the decay energy distribution. The resonant structures of 11 N have been employed as intermediate states for the sequential mode, having their parameters determined by considering the structure of single particle resonance in quantum scattering problem. The width of the 12 O resonant ground state has been extracted from a best fit to the experimental data. The contributions from the different channels to the decay energy distribution have been evaluated, and width and peak location parameters of the 12 O resonant ground state are compared with results of other works for the sequential and simultaneous two-proton decay modes.

  20. {sup 12} O resonant structure evaluated by two-proton emission process

    Energy Technology Data Exchange (ETDEWEB)

    Leite, T.N. [Fundacao Universidade Federal do Vale do Sao Francisco (UNIVASF), Juazeiro, BA (Brazil); Teruya, N. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Fisica; Dimarco, A. [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2009-06-15

    The characteristics of {sup 12}O resonant ground state are investigated through the analysis of the experimental data for the two-proton decay process. The sequential and simultaneous two-proton emission decay modes have been considered in a statistical calculation of the decay energy distribution. The resonant structures of {sup 11} N have been employed as intermediate states for the sequential mode, having their parameters determined by considering the structure of single particle resonance in quantum scattering problem. The width of {sup 12}O resonant ground state has been extracted from a best fit to the experimental data. The contributions from the different channels to the decay energy distribution have been evaluated, and width and peak location parameters of {sup 12}O resonant ground state are compared with results of other works for the sequential and simultaneous two-proton decay modes. (author)

  1. Evaluation of stable tungsten isotopes in the resolved resonance region

    Directory of Open Access Journals (Sweden)

    Schillebeeckx P.

    2013-03-01

    Full Text Available In the last decade benchmark experiments and simulations, together with newly obtained neutron cross section data, have pointed out deficiencies in evaluated data files of W isotopes. The role of W as a fundamental structural material in different nuclear applications fully justifies a new evaluation of 182, 183, 184, 186W neutron resonance parameters. In this regard transmission and capture cross section measurements on natural and enriched tungsten samples were performed at the GELINA facility of the EC-JRC-IRMM. A resonance parameter file used as input in the resonance shape analysis was prepared based on the available literature and adjusted in first instance to transmission data.

  2. High-frequency parameters of magnetic films showing magnetization dispersion

    International Nuclear Information System (INIS)

    Sidorenkov, V.V.; Zimin, A.B.; Kornev, Yu.V.

    1988-01-01

    Magnetization dispersion leads to skewed resonance curves shifted towards higher magnetizing fields, together with considerable reduction in the resonant absorption, while the FMR line width is considerably increased. These effects increase considerably with frequency, in contrast to films showing magnetic-anisotropy dispersion, where they decrease. It is concluded that there may be anomalies in the frequency dependence of the resonance parameters for polycrystalline magnetic films

  3. Re-evaluation of {sup 58}Ni and {sup 60}Ni resonance parameters in the neutron energy range thermal to 800 keV

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H.; Leal, L.C.; Guber, K.H.; Wiarda, D.; Arbanas, G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2009-07-01

    The previous {sup 58}Ni and {sup 60}Ni set of resonance parameters (Endf/B7.O, Jeff-3, etc.) was based on the SAMMY analysis of Oak Ridge National Laboratory neutron transmission, scattering cross section and capture cross section measurements by C.M. Perey et al. The present results were obtained by adding to the SAMMY experimental database the capture cross sections measured recently at the Oak Ridge Linear Electron Accelerator by Guber et al. and the Geel Electron Linear Accelerator and very high-resolution neutron transmission measurements performed by Brusegan et al. A complete resonance parameter covariance matrix (RPCM) was obtained from the SAMMY analysis of the experimental database. The data sets were made consistent, when needed, by adjusting the neutron energy scales, the normalization coefficients, and the background corrections. The RPCM allows the calculation of the cross section uncertainties due mainly to statistical errors in the experimental data. The systematic uncertainties of the experimental data, estimated from the preliminary analyses of the experimental database, were taken into account in the cross section covariance matrix (CSCM) for total, scattering, and capture cross sections. The diagonal elements of the CSCM were obtained by quadratic combination of the different components of the uncertainties. Because of a lack of experimental information, the energy correlations were not obtained, and a value of 0.5 was arbitrarily taken for all the CSCM nondiagonal elements. The average capture cross-sections are significantly smaller than those calculated form Endf/B7.0

  4. Interference scattering effects on intermediate resonance absorption at operating temperatures

    International Nuclear Information System (INIS)

    Goldstein, R.

    1975-01-01

    Resonance integrals may be accurately calculated using the intermediate resonance (IR) approximation. Results are summarized for the case of an absorber with given potential scattering cross sections and interference scattering parameter admixed with a non absorbing moderator of given cross section and located in a narrow resonance moderating medium. From the form of the IR solutions, it is possible to make some general observations about effects of interference scattering on resonance absorption. 2 figures

  5. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  6. Parametric resonance in an expanding universe

    International Nuclear Information System (INIS)

    Zlatev, I.; Huey, G.; Steinhardt, P.J.

    1998-01-01

    Parametric resonance has been discussed as a mechanism for copious particle production following inflation. Here we present a simple and intuitive calculational method for estimating the efficiency of parametric amplification as a function of parameters. This is important for determining whether resonant amplification plays an important role in the reheating process. We find that significant amplification occurs only for a limited range of couplings and interactions. copyright 1998 The American Physical Society

  7. Nested trampoline resonators for optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  8. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  9. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    Science.gov (United States)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  10. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Directory of Open Access Journals (Sweden)

    Alessandro Cosci

    2016-08-01

    Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  11. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    Science.gov (United States)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  12. Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.L.; Grote, D.P.; Ng, J.T.; Pivi, M.F.; Wang, L.F.

    2009-01-01

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l b c , (l b = bunch duration, ω c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ∼ 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed

  13. The theory of coherent resonance tunneling of interacting electrons

    International Nuclear Information System (INIS)

    Elesin, V. F.

    2001-01-01

    Analytical solutions of the Schrödinger equation for a two-barrier structure (resonance-tunnel diode) with open boundary conditions are found within the model of coherent tunneling of interacting electrons. Simple expressions for resonance current are derived which enable one to analyze the current-voltage characteristics, the conditions of emergence of hysteresis, and singularities of the latter depending on the parameters of resonance-tunnel diode. It is demonstrated that the hysteresis is realized if the current exceeds some critical value proportional to the square of resonance level width.

  14. R-matrix parameters in reactor applications

    International Nuclear Information System (INIS)

    Hwang, R.N.

    1992-01-01

    The key role of the resonance phenomena in reactor applications manifests through the self-shielding effect. The basic issue involves the application of the microscopic cross sections in the macroscopic reactor lattices consisting of many nuclides that exhibit resonance behavior. To preserve the fidelity of such a effect requires the accurate calculations of the cross sections and the neutron flux in great detail. This clearly not possible without viable resonance data. Recently released ENDF/B VI resonance data in the resolved range especially reflect the dramatic improvement in two important areas; namely, the significant extension of the resolved resonance ranges accompanied by the availability of the R-matrix parameters of the Reich-Moore type. Aside from the obvious increase in computing time required for the significantly greater number of resonances, the main concern is the compatibility of the Riech-Moore representation to the existing reactor processing codes which, until now, are based on the traditional cross section formalisms. This purpose of this paper is to summarize our recent efforts to facilitate implementation of the proposed methods into the production codes at ANL

  15. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    Saussure, G. de; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters

  16. Progress on Chinese evaluated nuclear parameter library (CENPL) (II)

    International Nuclear Information System (INIS)

    Su Zhongdi; Ge Zhigang; Zhou Chunmei

    1993-01-01

    CENPL collected, evaluated and compiled nuclear basic constants and model parameters. CENPL-1 contain six sub-libraries, they are: (1) Atomic masses and characteristic constants for nuclear ground states; (2) discrete level schemes and branch ratios of γ decay; (3) level density parameters; (4) giant dipole resonance parameters for γ-ray strength function (5) fission barrier parameter; (6) optical model parameters. Their progresses are introduced

  17. Electron spin resonance for the detection of long-range spin nematic order

    Science.gov (United States)

    Furuya, Shunsuke C.; Momoi, Tsutomu

    2018-03-01

    Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low

  18. Helicity amplitudes and electromagnetic decays of hyperon resonances

    International Nuclear Information System (INIS)

    Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.

    2005-01-01

    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)

  19. Electron paramagnetic resonance parameters and local structure for ...

    Indian Academy of Sciences (India)

    HUA-MING ZHANG. 1. , GUANG-DUO LU. 1 ... the above ZFSs, the local structure information for the impurity Gd. 3+ is obtained, i.e., .... parameters, extended X-ray absorption fine-structure (EXAFS) measurements and crystal-field spectrum ...

  20. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    Energy Technology Data Exchange (ETDEWEB)

    Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  1. Spectroscopic parameters and decays of the resonance Z{sub b}(10610)

    Energy Technology Data Exchange (ETDEWEB)

    Agaev, S.S. [Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azizi, K. [Dogus University, Department of Physics, Istanbul (Turkey); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Sundu, H. [Kocaeli University, Department of Physics, Izmit (Turkey)

    2017-12-15

    The resonance Z{sub b}(10610) is investigated as the diquark-antidiquark Z{sub b} = [bu][bd] state with spin-parity J{sup P} = 1{sup +}. The mass and current coupling of the resonance Z{sub b}(10610) are evaluated using QCD two-point sum rule and taking into account the vacuum condensates up to ten dimensions. We study the vertices Z{sub b}Υ(nS)π (n = 1, 2, 3) by applying the QCD light-cone sum rule to compute the corresponding strong couplings g{sub Z{sub bΥ(nS)π}} and widths of the decays Z{sub b} → Υ(nS)π. We explore also the vertices Z{sub b}h{sub b}(mP)π (m = 1, 2) and calculate the couplings g{sub Z{sub bh{sub b(mP)π}}} and the widths of the decay channels Z{sub b} → h{sub b}(mP)π. To this end, we calculate the mass and decay constants of the h{sub b}(1P) and h{sub b}(2P) mesons. The results obtained are compared with experimental data of the Belle Collaboration. (orig.)

  2. Piezoelectric Resonance Investigation of Zr-rich PZT at Room Temperature

    NARCIS (Netherlands)

    Cereceda, N.; Noheda, B.; Fernandez-del-Castillo, J.R.; Gonzalo, J.A.; Frutos, J. De

    1999-01-01

    We study the piezoelectric resonances in poled PZT ceramics by means of a microscopic model. It connects the microscopic vibrations of the ionic units, cooperatively producing the piezoelectric effect, with the macroscopic piezoelectric parameters. The behaviour at the resonance is well described in

  3. BRIGITTE-KA, ENDF/B to KEDAK Data Conversion with Resonance Cross-Sections Tables Generator

    International Nuclear Information System (INIS)

    Stein, Eckhard; Schepers, J.C.; Vandeplas, P.

    1976-01-01

    1 - Nature of physical problem solved: The program translates evaluated nuclear data from the ENDF representation (3) into the KEDAK representation (5). Nearly all nuclear data desired by the user to be present on KEDAK will be produced. 2 - Method of solution: The retrieval and processing codes of ENDF (4) have been used, but some have been modified. Point-wise cross sections are calculated from resonance parameters. In the resolved resonance region all resonances are taken into account for each energy point. In order to guarantee linear interpolation with an error less than eps in the resolved resonance region, an energy mesh constructed by using the UNICORN code (6) is refined by adding points, if a cross section value calculated from the resonance parameters differs appreciably from the value calculated by interpolation. The various ENDF interpolation rules are reduced to the linear-linear rule used by KEDAK. Pointwise cross sections are calculated from the given parameters (e.g. the angular distributions). Some data of ENDF/B MF=5 (energy distributions of secondary neutrons) are also converted. 3 - Restrictions on the complexity of the problem: Because variable dimensioning is used for nearly all arrays, there are only few restrictions. These are the following: - One (natural) element may have up to 10 isotopes. - Five different L-states (L=0,1,2,3,4) are allowed in the resolved Breit-Wigner resonance parameter set. - Three different L-states and 5 different J-states for each L-state are allowed in the unresolved Breit-Wigner resonance parameter set. - One hundred points are allowed as primary energy grid for energy distributions of secondary neutrons

  4. Controllable resonant tunnelling through single-point potentials: A point triode

    International Nuclear Information System (INIS)

    Zolotaryuk, A.V.; Zolotaryuk, Yaroslav

    2015-01-01

    A zero-thickness limit of three-layer heterostructures under two bias voltages applied externally, where one of which is supposed to be a gate parameter, is studied. As a result, an effect of controllable resonant tunnelling of electrons through single-point potentials is shown to exist. Therefore the limiting structure may be termed a “point triode” and considered in the theory of point interactions as a new object. The simple limiting analytical expressions adequately describe the resonant behaviour in the transistor with realistic parameter values and thus one can conclude that the zero-range limit of multi-layer structures may be used in fabricating nanodevices. The difference between the resonant tunnelling across single-point potentials and the Fabry–Pérot interference effect is also emphasized. - Highlights: • The zero-thickness limit of three-layer heterostructures is described in terms of point interactions. • The effect of resonant tunnelling through these single-point potentials is established. • The resonant tunnelling is shown to be controlled by a gate voltage

  5. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-01-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene

  6. Energy transport in mirror machine LISA at electron cyclotron resonance

    International Nuclear Information System (INIS)

    Cunha Rapozo, C. da; Serbeto, A.; Torres-Silva, H.

    1993-01-01

    It is shown that a classical transport calculation is adequate to predict the steady state temperature of the RF produced plasma in LISA machine for both large and small resonant volumes. Temperature anisotropy ranging from 55 to 305 was found which was larger for small resonant volume, and the temperature relaxation was larger at large resonant one. This agrees with the fact that there is a Coulomb relaxation ν c which is proportional to T e -3/2 . It is also shown that the fitting parameter alpha is larger for large resonant volume than for small resonant one. (L.C.J.A.)

  7. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    International Nuclear Information System (INIS)

    Kim, Yeo Eun; Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong; Kim, Dae Hong; Myoung, Sung Min

    2013-01-01

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K trans ) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K trans , Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K trans ; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K trans ; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K trans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  8. Ferromagnetic resonance and spin-wave resonances in GaMnAsP films

    Science.gov (United States)

    Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.

    2018-05-01

    A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.

  9. D-wave resonances in three-body system Ps- with pure Coulomb and screened Coulomb (Yukawa) potentials

    International Nuclear Information System (INIS)

    Kar, S.; Ho, Y.K.

    2009-01-01

    We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)

  10. Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

    Science.gov (United States)

    Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.

    2018-05-01

    We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He, O 16 ,22 ,24 , and Ca,4840. These resonance modes have been widely observed in experiment. In addition, we use a renormalized chiral potential Vlow-k, based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev. C 68, 041001 (2011), 10.1103/PhysRevC.68.041001]. This introduces a dependency on the cutoff parameter used in the normalization procedure as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced three-body forces in the calculations. Our results for neutron-rich O,2422 show a mixing nature of isoscalar and isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar quadrupole resonances at energies lower than 5 MeV.

  11. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    DEFF Research Database (Denmark)

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    1991-01-01

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  12. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  13. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    de Saussure, G.; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters. 25 refs., 4 figs., 5 tabs

  14. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Dorogush, E S; Afonenko, A A

    2015-01-01

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  15. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dorogush, E S; Afonenko, A A [Belarusian State University, Minsk (Belarus)

    2015-12-31

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  16. Behavior of partial cross sections and branching ratios in the neighborhood of a resonance

    International Nuclear Information System (INIS)

    Starace, A.F.

    1977-01-01

    Starting from the treatment of Fano for the behavior of the total cross section in a photoionization (or electron-ion scattering) experiment in the vicinity of a resonance, we present a theoretical formula for the behavior of an individual final-state channel in the neighborhood of a resonance. This result is then used to derive another theoretical formula for the behavior of the ratio of two partial cross sections (i.e., the branching ratio) in the vicinity of a resonance. This branching-ratio formula depends on the profile parameters q, GAMMA, and rho 2 for the resonance, on the branching ratio outside the resonance, and on two new parameters which are explicitly related to scattering-matrix elements and phase shifts

  17. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  18. Observation of Resonant Behavior in the Energy Velocity of Diffused Light

    International Nuclear Information System (INIS)

    Sapienza, R.; Garcia, P. D.; Blanco, A.; Lopez, C.; Bertolotti, J.; Wiersma, D. S.; Martin, M. D.; Vina, L.

    2007-01-01

    In this Letter we demonstrate Mie resonances mediated transport of light in randomly arranged, monodisperse dielectric spheres packed at high filling fractions. By means of both static and dynamic optical experiments we show resonant behavior in the key transport parameters and, in particular, we find that the energy transport velocity, which is lower than the group velocity, also displays a resonant behavior

  19. Method for analysis of averages over transmission energy of resonance neutrons

    International Nuclear Information System (INIS)

    Komarov, A.V.; Luk'yanov, A.A.

    1981-01-01

    Experimental data on transmissions on iron specimens in different energy groups have been analyzed on the basis of an earlier developed theoretical model for the description of resonance neutron averages in transmission energy, as the functions of specimen thickness and mean resonance parameters. The parameter values obtained agree with the corresponding data evaluated in the theory of mean neutron cross sections. The method suggested for the transmission description permits to reproduce experimental results for any thicknesses of specimens [ru

  20. Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T in nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Qian-Jun; Zhang, Shui-Xing; Chen, Wen-Bo; Liang, Long; Zhou, Zheng-Gen; Liu, Zai-Yi; Zeng, Qiong-Xin; Liang, Chang-Hong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Qiu, Qian-Hui [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Otolaryngology, Guangzhou, Guangdong Province (China)

    2014-12-15

    To determine the correlation between intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters. Thirty-eight newly diagnosed NPC patients were prospectively enrolled. Diffusion-weighted images (DWI) at 13 b-values were acquired using a 3.0-T MRI system. IVIM parameters including the pure molecular diffusion (D), perfusion-related diffusion (D*), perfusion fraction (f), DCE-MRI parameters including maximum slope of increase (MSI), enhancement amplitude (EA) and enhancement ratio (ER) were calculated by two investigators independently. Intra- and interobserver agreement were evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Relationships between IVIM and DCE-MRI parameters were evaluated by calculation of Spearman's correlation coefficient. Intra- and interobserver reproducibility were excellent to relatively good (ICC = 0.887-0.997; narrow width of 95 % limits of agreement). The highest correlation was observed between f and EA (r = 0.633, P < 0.001), with a strong correlation between f and MSI (r = 0.598, P = 0.001). No correlation was observed between f and ER (r = -0.162; P = 0.421) or D* and DCE parameters (r = 0.125-0.307; P > 0.119). This study suggests IVIM perfusion imaging using 3.0-T MRI is feasible in NPC, and f correlates significantly with EA and MSI. (orig.)

  1. Mode splitting effect in FEMs with oversized Bragg resonators

    Energy Technology Data Exchange (ETDEWEB)

    Peskov, N. Yu.; Sergeev, A. S. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Kaminsky, A. K.; Perelstein, E. A.; Sedykh, S. N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kuzikov, S. V. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Nizhegorodsky State University, Nizhny Novgorod (Russian Federation)

    2016-07-15

    Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.

  2. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  3. NRSC, Neutron Resonance Spectrum Calculation System

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2004-01-01

    1 - Description of program or function: The NRSC system is a package of four programs for calculating detailed neutron spectra and related quantities, for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening and unresolved resonance level. 2 - Methods: NRSC consists of four programs: GEXSCO, RMET21, ALAMBDA and WLUTIL. GEXSCO prepares the nuclear data from ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening or unresolved resonance level for RMET21 input. RMET21 calculates spectra and related quantities for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using slowing-down algorithms and, in the case of pin cells, the collision probability method. ALAMBDA obtains lambda factors (Goldstein-Cohen intermediate resonance factors in the formalism of WIMSD code) of different isotopes for including on WIMSD-type multigroup libraries for WIMSD or other cell-codes, from output of RMET21 program. WLUTIL is an auxiliary program for extracting tabulated parameters related with RMET21 program calculations from WIMSD libraries for comparisons, and for producing new WIMSD libraries with parameters calculated with RMET21 and ALAMBDA programs. 3 - Restrictions on the complexity of the problem: GEXSCO program has fixed array dimensions that are suitable for processing all reasonable outputs from nuclear data pre-processing programs. RMET21 program uses variable dimension method from a fixed general array. ALAMBDA and WLUTIL programs have fixed arrays that are adapted to standard WIMSD libraries. All programs can be easily modified to adapt to special requirements

  4. Strain tuneable whispering gallery mode resonators in the estimation of the elasto-optic parameters of soft materials

    Science.gov (United States)

    Pissadakis, Stavros; Milenko, Karolina; Aluculesei, Alina; Fytas, George

    2016-04-01

    In this manuscript we present the fabrication and characterization of a novel, polymer whispering gallery modes (WGMs) spherical micro-resonator, formed around the waist of an optical fiber taper. Fiber taper with well attached spheroid works as a cord, fixed on two ends enabling strain application to the resonator body. Controllable elastic elongation of the encapsulated fiber taper causes a change in the shape of the spheroid, which modifies the diameter and directional refractive index of the cavity. These changes influence the wavelength position of the WGMs resonances with a linear blue shift up to 0.6 nm, with corresponding strains up to 700Μɛ. The strain induced WGMs shift with respect to resonator diameter and annealing process is presented and analyzed.

  5. Nonlinear effects in varactor-tuned resonators.

    Science.gov (United States)

    Everard, Jeremy; Zhou, Liang

    2006-05-01

    This paper describes the effects of RF power level on the performance of varactor-tuned resonator circuits. A variety of topologies are considered, including series and parallel resonators operating in both unbalanced and balanced modes. As these resonators were designed to produce oscillators with minimum phase noise, the initial small signal insertion loss was set to 6 dB and, hence, QL/Q0 = 1/2. To enable accurate analysis and simulation, S parameter and PSPICE models for the varactors were optimized and developed. It is shown that these resonators start to demonstrate nonlinear operation at very low power levels demonstrating saturation and lowering of the resonant frequency. On occasion squegging is observed for modified bias conditions. The nonlinear effects are dependent on the unloaded Q (Q0), the ratio of loaded to unloaded Q (QL/Q0), the bias voltage, and circuit configurations with typical nonlinear effects occurring at -8 dBm in a circuit with a loaded Q of 63 and a varactor bias voltage of 3 V. Analysis, simulation, and measurements that show close correlation are presented.

  6. Low frequency wireless power transfer using modified parallel resonance matching at a complex load

    Directory of Open Access Journals (Sweden)

    Artit Rittiplang

    2016-10-01

    Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.

  7. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  8. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    Science.gov (United States)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  9. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    Science.gov (United States)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  10. Resonant frequencies of massless scalar field in rotating black-brane spacetime

    Institute of Scientific and Technical Information of China (English)

    Jing Ji-Liang; Pan Qi-Yuan

    2008-01-01

    This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.

  11. Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories.

    Science.gov (United States)

    Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro

    2003-09-01

    We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by

  12. Relationships between nuclear magnetic resonance parameters used to characterize weathering spilled oil and soil toxicity in central Patagonia.

    Science.gov (United States)

    Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma

    2014-01-01

    Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.

  13. Resonances for coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Haroutyunyan, H.L.; Nienhuis, G.

    2004-01-01

    The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice

  14. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-01-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, the parameters of each level are not known; only the average parameters. Therefore the authors simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the x 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, the authors survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors

  15. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Su-Chin [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan, Republic of China and Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Cheng, Cheng-Chieh [Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States); Chang, Hing-Chiu [Department of Diagnostic Radiology, The University of Hong Kong (Hong Kong); Chung, Hsiao-Wen [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan (China); Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China); Chiu, Hui-Chu [Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 300, Taiwan (China); Liu, Yi-Jui [Department of Automatic Control Engineering, Feng-Chia University, Taichung 407, Taiwan (China); Hsu, Hsian-He; Juan, Chun-Jung, E-mail: peterjuancj@yahoo.com.tw [Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan and Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China)

    2016-04-15

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  16. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu; Chung, Hsiao-Wen; Chiu, Hui-Chu; Liu, Yi-Jui; Hsu, Hsian-He; Juan, Chun-Jung

    2016-01-01

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s"−"1) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s"−"1, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  17. Resolved resonance parameters for uranium 238 from 4 to 6 keV

    International Nuclear Information System (INIS)

    Olsen, D.K.; Meszaros, P.S.

    1982-01-01

    Neutron widths for 145 resonances from 4 to 6 keV are reported from a least-squares shape analysis of the ORELA 150-m, 4-sample 238 U transmission data. The resultant s-wave strength function from 4 to 6 keV is found to be substantially smaller than that from 0 to 4 keV

  18. Resonant neutron-induced atomic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  19. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  20. Predicting Collateral Status With Magnetic Resonance Perfusion Parameters: Probabilistic Approach With a Tmax-Derived Prediction Model.

    Science.gov (United States)

    Lee, Mi Ji; Son, Jeong Pyo; Kim, Suk Jae; Ryoo, Sookyung; Woo, Sook-Young; Cha, Jihoon; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Bang, Oh Young

    2015-10-01

    Good collateral flow is an important predictor for favorable responses to recanalization therapy and successful outcomes after acute ischemic stroke. Magnetic resonance perfusion-weighted imaging (MRP) is widely used in patients with stroke. However, it is unclear whether the perfusion parameters and thresholds would predict collateral status. The present study evaluated the relationship between hypoperfusion severity and collateral status to develop a predictive model for good collaterals using MRP parameters. Patients who were eligible for recanalization therapy that underwent both serial diffusion-weighted imaging and serial MRP were enrolled into the study. A collateral flow map derived from MRP source data was generated through automatic postprocessing. Hypoperfusion severity, presented as proportions of every 2-s Tmax strata to the entire hypoperfusion volume (Tmax≥2 s), was compared between patients with good and poor collaterals. Prediction models for good collaterals were developed with each Tmax strata proportion and cerebral blood volumes. Among 66 patients, 53 showed good collaterals based on MRP-based collateral grading. Although no difference was noted in delays within 16 s, more severe Tmax delays (Tmax16-18 s, Tmax18-22 s, Tmax22-24 s, and Tmax>24 s) were associated with poor collaterals. The probability equation model using Tmax strata proportion demonstrated high predictive power in a receiver operating characteristic analysis (area under the curve=0.9303; 95% confidence interval, 0.8682-0.9924). The probability score was negatively correlated with the volume of infarct growth (P=0.030). Collateral status is associated with more severe Tmax delays than previously defined. The present Tmax severity-weighted model can determine good collaterals and subsequent infarct growth. © 2015 American Heart Association, Inc.

  1. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    Science.gov (United States)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  2. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  3. New experimental determination of the neutron resonance parameters of {sup 99}Tc; Nouvelle determination experimentale des parametres de resonances neutroniques de {sup 99}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Brienne-Raepsaet, C. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee]|[Aix-Marseille-1 Univ., 13 - Marseille (France)

    1999-04-01

    In order to improve nuclear data for nuclear waste transmutation cross-sections of Tc{sup 99} in the resonance energy region have been performed using the time-of-flight method at the pulsed white neutron source GELINA of the Institute for Reference Materials and Measurements, Geel, Belgium. The energy range studied spreads from 3 eV to 100 KeV. 2 kinds of measurements have been performed: capture and transmission measurements. In the energy range between 0 and 2 KeV, more than 220 resonances have been analyzed. About 130 resonances which had stayed previously undiscovered, have been detected and analyzed. Because of instability problems concerning the process of measuring itself, the systematic error is not yet determined. The accuracy which takes into account statistical and systematic errors is expected to be between 4 and 5%.

  4. A Boltzmann equation approach to the damping of giant resonances in nuclei

    International Nuclear Information System (INIS)

    Schuck, P.; Winter, J.

    1983-01-01

    The Vlasov equation plus collision term (Boltzmann equation) represents an appropriate frame for the treatment of giant resonances (zero sound modes) in nuclei. With no adjustable parameters we obtain correct positions and widths for the giant quadrupole resonances. (author)

  5. Operation States Analysis of the Series-Parallel resonant Converter Working Above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Peter Dzurko

    2007-01-01

    Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.

  6. Resonances in the proton-6Li scattering

    International Nuclear Information System (INIS)

    Haller, M.

    1986-01-01

    The differential cross section and the analyzing power of the p+ 6 Li scattering were measured in the laboratory energy range from 1.6 respectively 2.8 MeV to 10 MeV at 45 respectively 40 energies in full angular distributions. The data were subjected both to an analysis in the optical model which yielded already hints to resonance effects and to a comphrehensive scattering-phase analysis for L=0, 1, and 2 under inclusion of channel spin and orbital angular momentum mixings. The consistent description of all data required the assumption of broad resonance structures. An approximate parametrization by a Breit-Wigner formula allowed the estimation of the resonance parameters. (orig./HSI) [de

  7. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    Science.gov (United States)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  8. Subharmonic Resonance of Van Der Pol Oscillator with Fractional-Order Derivative

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2014-01-01

    Full Text Available The subharmonic resonance of van der Pol (VDP oscillator with fractional-order derivative is studied by the averaging method. At first, the first-order approximate solutions are obtained by the averaging method. Then the definitions of equivalent linear damping coefficient (ELDC and equivalent linear stiffness coefficient (ELSC for subharmonic resonance are established, and the effects of the fractional-order parameters on the ELDC, the ELSC, and the dynamical characteristics of system are also analysed. Moreover, the amplitude-frequency equation and phase-frequency equation of steady-state solution for subharmonic resonance are established. The corresponding stability condition is presented based on Lyapunov theory, and the existence condition for subharmonic resonance (ECSR is also obtained. At last, the comparisons of the fractional-order and the traditional integer-order VDP oscillator are fulfilled by the numerical simulation. The effects of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude-frequency curves, and the system stability are also studied.

  9. The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, T.H.J.J. van der; Stekelenburg, A.J.C. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.

  10. Magnetic resonance imaging textural evaluation of posterior cranial fossa tumors in childhood

    International Nuclear Information System (INIS)

    Santos, Joelson Alves dos; Costa, Maria Olivia Rodrigues da; Otaduy, Maria Concepcion Garcia; Lacerda, Maria Teresa Carvalho de; Leite, Claudia da Costa; Matsushita, Hamilton

    2004-01-01

    Objective: To distinguish healthy from pathological tissues in pediatric patients with posterior cranial fossa tumors using calculated textural parameters from magnetic resonance images. Materials And Methods: We evaluated 14 pediatric patients with posterior cranial fossa tumors using the software MaZda to define the texture parameters in selected regions of interest representing healthy and pathological tissues based on T2-weighted magnetic resonance images. Results: There was a statistically significant difference between normal and tumoral tissues as well as between supposedly normal tissues adjacent and distant from the tumoral lesion. Conclusion: Magnetic resonance textural evaluation is an useful tool for determining differences among various tissues, including tissues that appear apparently normal on visual analysis. (author)

  11. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  12. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    DEFF Research Database (Denmark)

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka

    2013-01-01

    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...

  13. Thin disk laser with unstable resonator and reduced output coupler

    Science.gov (United States)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  14. A few words about resonances in the electroweak effective Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, Ignasi [Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, 46115 Alfara del Patriarca, València (Spain); Pich, Antonio; Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Apt. Correus 22085, 46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica and Instituto Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2016-01-22

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.

  15. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  16. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-09-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, we do not know the parameters of each level but only the average parameters. Therefore we simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the X 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, we will survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors. 8 refs

  17. Covariance as input to and output from resonance analyses

    International Nuclear Information System (INIS)

    Larson, N.M.

    1992-01-01

    Accurate data analysis requires understanding of the roles played by both data and parameter covariance matrices. In this paper the entire data reduction/analysis process is examined, for neutron-induced reactions in the resonance region. Interrelationships between data and parameter covariance matrices are examined and alternative reduction/analysis methods discussed

  18. Scaling of quantum and classical resonance peaks for the quantum kicked rotor

    International Nuclear Information System (INIS)

    Sadgrove, M.; Wimberger, S.; Parkings, S.; Leonhardt, R.

    2005-01-01

    Full text: We present results which demonstrate the relationship between the quantum resonance peaks of the classical kicked rotor and a classical resonance phenomenon. Both types of behaviour may be described using the same formalism (known as the ε - classical standard map). Furthermore, a scaling law exists for classical and quantum resonances which reduces the dynamics to a stationary function of one parameter. (author)

  19. A computer code for calculating neutron cross-sections from resonance parameter data

    International Nuclear Information System (INIS)

    Mill, A.J.

    1979-08-01

    A computer code, XSEC, has been written which calculates neutron cross-sections from resonance data. Although the program was originally written in order to identify neutron 'windows' in enriched nuclides, it may be used to evaluate the total neutron cross-section of any medium mass nuclide at intermediate energies. XSEC has proved very useful in identifying suitable nuclides for use as neutron filters at intermediate energies. (author)

  20. OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING

    OpenAIRE

    Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.

    2016-01-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cram��r-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experi...

  1. Combined Clinical Parameters and Multiparametric Magnetic Resonance Imaging for Advanced Risk Modeling of Prostate Cancer-Patient-tailored Risk Stratification Can Reduce Unnecessary Biopsies.

    Science.gov (United States)

    Radtke, Jan Philipp; Wiesenfarth, Manuel; Kesch, Claudia; Freitag, Martin T; Alt, Celine D; Celik, Kamil; Distler, Florian; Roth, Wilfried; Wieczorek, Kathrin; Stock, Christian; Duensing, Stefan; Roethke, Matthias C; Teber, Dogu; Schlemmer, Heinz-Peter; Hohenfellner, Markus; Bonekamp, David; Hadaschik, Boris A

    2017-12-01

    Multiparametric magnetic resonance imaging (mpMRI) is gaining widespread acceptance in prostate cancer (PC) diagnosis and improves significant PC (sPC; Gleason score≥3+4) detection. Decision making based on European Randomised Study of Screening for PC (ERSPC) risk-calculator (RC) parameters may overcome prostate-specific antigen (PSA) limitations. We added pre-biopsy mpMRI to ERSPC-RC parameters and developed risk models (RMs) to predict individual sPC risk for biopsy-naïve men and men after previous biopsy. We retrospectively analyzed clinical parameters of 1159 men who underwent mpMRI prior to MRI/transrectal ultrasound fusion biopsy between 2012 and 2015. Multivariate regression analyses were used to determine significant sPC predictors for RM development. The prediction performance was compared with ERSPC-RCs, RCs refitted on our cohort, Prostate Imaging Reporting and Data System (PI-RADS) v1.0, and ERSPC-RC plus PI-RADSv1.0 using receiver-operating characteristics (ROCs). Discrimination and calibration of the RM, as well as net decision and reduction curve analyses were evaluated based on resampling methods. PSA, prostate volume, digital-rectal examination, and PI-RADS were significant sPC predictors and included in the RMs together with age. The ROC area under the curve of the RM for biopsy-naïve men was comparable with ERSPC-RC3 plus PI-RADSv1.0 (0.83 vs 0.84) but larger compared with ERSPC-RC3 (0.81), refitted RC3 (0.80), and PI-RADS (0.76). For postbiopsy men, the novel RM's discrimination (0.81) was higher, compared with PI-RADS (0.78), ERSPC-RC4 (0.66), refitted RC4 (0.76), and ERSPC-RC4 plus PI-RADSv1.0 (0.78). Both RM benefits exceeded those of ERSPC-RCs and PI-RADS in the decision regarding which patient to receive biopsy and enabled the highest reduction rate of unnecessary biopsies. Limitations include a monocentric design and a lack of PI-RADSv2.0. The novel RMs, incorporating clinical parameters and PI-RADS, performed significantly better

  2. Evidence for trapping and collectivization of resonances at strong coupling

    International Nuclear Information System (INIS)

    Herzberg, R.D.; Brentano, P. von; Rotter, I.

    1993-01-01

    The behavior of 22 neutron resonances in 53 Cr is investigated as a function of the coupling-strength parameter μ and of the degree of overlapping. Starting from a doorway picture at small μ, the widths of 21 resonances increase with increasing μ at the cost of the width of the original 'single-particle doorway resonance'. At μ≅1, the widths of most states decrease again. At μ→10 the widths of these 'trapped' states vanish while 'collective' states are formed which gather the widths. Thus we again observe a doorway picture at strong coupling. At μ=1, the energies and widths of the resonances are fitted to the experimental data. At this coupling strength, most resonances investigated resemble trapped modes. (orig.)

  3. Analysis of Parameters Assessment on Laminated Rubber-Metal Spring for Structural Vibration

    International Nuclear Information System (INIS)

    Salim, M.A.; Putra, A.; Mansor, M.R.; Musthafah, M.T.; Akop, M.Z.; Abdullah, M.A.

    2016-01-01

    This paper presents the analysis of parameter assessment on laminated rubber-metal spring (LR-MS) for vibrating structure. Three parameters were selected for the assessment which are mass, Young's modulus and radius. Natural rubber materials has been used to develop the LR-MS model. Three analyses were later conducted based on the selected parameters to the LR-MS performance which are natural frequency, location of the internal resonance frequency and transmissibility of internal resonance. Results of the analysis performed were plotted in frequency domain function graph. Transmissibility of laminated rubber-metal spring (LR-MS) is changed by changing the value of the parameter. This occurrence was referred to the theory from open literature then final conclusion has been make which are these parameters have a potential to give an effects and trends for LR-MS transmissibility. (paper)

  4. Tuner and radiation shield for planar electron paramagnetic resonance microresonators

    International Nuclear Information System (INIS)

    Narkowicz, Ryszard; Suter, Dieter

    2015-01-01

    Planar microresonators provide a large boost of sensitivity for small samples. They can be manufactured lithographically to a wide range of target parameters. The coupler between the resonator and the microwave feedline can be integrated into this design. To optimize the coupling and to compensate manufacturing tolerances, it is sometimes desirable to have a tuning element available that can be adjusted when the resonator is connected to the spectrometer. This paper presents a simple design that allows one to bring undercoupled resonators into the condition for critical coupling. In addition, it also reduces radiation losses and thereby increases the quality factor and the sensitivity of the resonator

  5. ZUT, Resonance Integrals in Resolved Region at Various Temperature, Escape Probability Calculation

    International Nuclear Information System (INIS)

    Kuncir, G.F.

    1984-01-01

    1 - Nature of physical problem solved: ZUT computes resonance integrals from resonance parameters for a wide variety of temperatures, compositions, and geometries for the resolved resonances. 2 - Method of solution: The form used permits specification of escape probability as a function of the lump dimension and the mean free path. The absorber term may be treated by the integral method, the narrow resonance or the infinite mass approximation. Moderator terms may be represented either by the full integral method (IM) or the asymptotic (NR) form

  6. Resonances in atomic few-body systems

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Kruppa, A.T.

    2005-01-01

    Complete text of publication follows. The variational method using a correlated Gaussian basis (SVM, see [1]) has proved to be an excellent method in calculating the characteristics of bound-states. Its trial and error procedures are very powerful to select an optimal basis, while the simple form of the trial function simplifies the calculations, because most of the matrix elements have analytic form. Combining the SVM with the complex rotational technique we are able to determine auto-ionizing states of Coulombic systems with three or more charged particles. Performing the complex rotation of the coordinates (r → re iθ the complex scaled Hamiltonian of a Coulombic system - only Coulomb interactions act between the particles - is a simple function of the rotational angle H(θ) Te -2iθ + Ve -iθ , where T,V are the kinetic and the potential energies of the system. In order to find the complex eigen energies of the rotated Hamiltonian, we have to solve the equation det/e -i2θ T i,j + e -iθ V ij - EΔ ij / = 0, where T ij and V i,j are the matrix elements of the original kinetic energy operator and the potential energy operator, while Δ ij are the overlap integrals of the basis elements. The SVM optimizes the non-linear parameters of the basis in a very specific way in order to get the best ground state energy. In the calculation of the excited auto-ionizing states we used the same set of parameters as for the ground state, because there are no simple recipes to optimize the parameters of a basis in a resonance state calculation. We have found that with the same set of non- linear parameters as for the ground state, we are able to describe all resonances of the Ps - (e + + e - + e - ) system calculated by Ho. We get almost the same accuracy as Ho, although Ho uses different bases for each resonant state. For the second resonance state in Table 1, our width is an order-of-magnitude smaller than Ho's, but our result is in a good agreement with recent calculations

  7. Active Radiative Thermal Switching with Graphene Plasmon Resonators.

    Science.gov (United States)

    Ilic, Ognjen; Thomas, Nathan H; Christensen, Thomas; Sherrott, Michelle C; Soljačić, Marin; Minnich, Austin J; Miller, Owen D; Atwater, Harry A

    2018-03-27

    We theoretically demonstrate a near-field radiative thermal switch based on thermally excited surface plasmons in graphene resonators. The high tunability of graphene enables substantial modulation of near-field radiative heat transfer, which, when combined with the use of resonant structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved heat conductance contrast between "ON" and "OFF" switching states and that a >10× higher modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative thermal switch. Furthermore, we derive shape-agnostic analytical approximations for the resonant heat transfer that provide general scaling laws and allow for direct comparison between different resonator geometries dominated by a single mode. The presented scheme is relevant for active thermal management and energy harvesting as well as probing excited-state dynamics at the nanoscale.

  8. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  9. LEP precision electroweak measurements from the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D. [Univ. of Oregon, Eugene, OR (United States)

    1997-01-01

    Preliminary electroweak measurements from the LEP Collaboration from data taken at the Z{sup 0} resonance are presented. Most of the results presented are based on a total data sample of 12 x 10{sup 6} recorded Z{sup 0} events which included data from the 1993 and 1994 LEP runs. The Z{sup 0} resonance parameters, including hadronic and leptonic cross sections and asymmetries, {tau} polarization and its asymmetry, and heavy-quark asymmetries and partial widths, are evaluated and confronted with the predictions of the Standard Model. This comparison incorporates the constraints provided by the recent determination of the top-quark mass at the Tevatron. The Z{sup 0} resonance parameters are found to be in good agreement with the Standard Model prediction using the Tevatron top-quark mass, with the exception of the partial widths for Z{sup 0} decays to pairs of b and c quarks.

  10. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  11. A Model Parameter Extraction Method for Dielectric Barrier Discharge Ozone Chamber using Differential Evolution

    Science.gov (United States)

    Amjad, M.; Salam, Z.; Ishaque, K.

    2014-04-01

    In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.

  12. Status of neutron cross sections of transactinium isotopes in the resonance region - linear accelerator measurements

    International Nuclear Information System (INIS)

    James, G.D.

    1976-01-01

    A review of the status of transactinium isotope cross sections in the resonance region and of resolved resonance parameters is given by summarising the work submitted by fourteen contributors and also by highlighting other work where notable progress has been made in our knowledge of neutron resonance phenomena. (author)

  13. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  14. Reduction of centrifugal fan noise by use of resonators

    Science.gov (United States)

    Neise, W.; Koopmann, G. H.

    1980-11-01

    A method by which an acoustic resonator can be used to reduce at source the aerodynamic noise generated by turbomachinery has been investigated experimentally. The casing of a small, centrifugal blower was modified by replacing the cut-off of the scroll with the mouth of a quarter-wavelength resonator. The mouth of the resonator was constructed from a series of perforated plates with the same curvature as the cut-off to preserve the original geometry of the casing. Tuning of the resonator was achieved by changing the length via a movable end plug. The noise measurements were made in an anechoically terminated outlet duct at nearly a free delivery operating condition of the blower. With appropriate tuning of the resonator, reductions in the blade passing frequency tones of up to 29 dB were observed with corresponding overall sound pressure levels reductions of up to 7 dB(A). Parameters which influenced the band width of the resonator response were the porosity and the size of the resonator mouth and the flow velocity near the cut-off region. Throughout the tests, the aerodynamic performance of the blower was unaffected by the addition of the resonator to the casing.

  15. Systematics of nuclear level density parameters

    International Nuclear Information System (INIS)

    Bucurescu, Dorel; Egidy, Till von

    2005-01-01

    The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between 18 F and 251 Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured

  16. Low losses left-handed materials with optimized electric and magnetic resonance

    Science.gov (United States)

    Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng

    2010-03-01

    We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.

  17. Nuclear Magnetic Resonance: new applications in the quantification and assessment of polysaccharide-based vaccine intermediates

    International Nuclear Information System (INIS)

    Garrido, Raine; Velez, Herman; Verez, Vicente

    2013-01-01

    Nuclear Magnetic Resonance has become the choice for structural studies, identity assays and simultaneous quantification of active pharmaceutical ingredient of different polysaccharide-based vaccine. In the last two decades, the application of quantitative Nuclear Magnetic Resonance had an increasing impact to support several quantification necessities. The technique involves experiments with several modified parameters in order to obtain spectra with quantifiable signals. The present review is supported by some recent relevant reports and it discusses several applications of NMR in carbohydrate-based vaccines. Moreover, it emphasizes and describes several parameters and applications of quantitative Nuclear Magnetic Resonance

  18. Electromagnetic Meson Production in the Nucleon Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Volker Burkert; T.-S. H. Lee

    2004-10-01

    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.

  19. Reaction theory for analysis of nuclear giant resonances production and decay processes

    International Nuclear Information System (INIS)

    Foglia, G.A.

    1991-01-01

    The existence of mixing parameters connected to the different decay forms of the giant resonances was theoretically justified, and their energy dependence determined as well using a reaction theory which treats in a consistent manner the giant multipolar resonances formation and their different decay modes. (L.C.J.A.)

  20. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  1. The Dependence of the Resonance Integral on the Doppler Effect

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J

    1960-12-15

    The Doppler sensitive contributions to the resonance integral for metal and oxide cylinders have been calculated using tables compiled by Adler, Hinman and Nordheim. The temperatures 20, 200, 350, 500 and 650 deg C have been investigated for the pure metal and 20, 300, 600, 900 and 1200 deg C for the oxide. Contributions from the separate resonances in the resolved region and for certain energies in the unresolved region are accounted for in detail. Integration over adequate statistical distributions has been carried out for the resonance parameters in the unresolved region. The increase in the resonance integral at elevated temperatures due to the Doppler effect is given separately in tables and diagrams.

  2. Continuous neutron slowing down theory applied to resonances

    International Nuclear Information System (INIS)

    Segev, M.

    1977-01-01

    Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient

  3. Microcomputer simulation of nuclear magnetic resonance imaging contrasts

    International Nuclear Information System (INIS)

    Le Bihan, D.

    1985-01-01

    The high information content of magnetic resonance images is due to the multiplicity of its parameters. However, this advantage introduces a difficulty in the interpretation of the contrast: an image is strongly modified according to the visualised parameters. The author proposes a micro-computer simulation program. After recalling the main intrinsic and extrinsic parameters, he shows how the program works and its interest as a pedagogic tool and as an aid for contrast optimisation of images as a function of the suspected pathology [fr

  4. Doubly excited P-wave resonance states of H− in Debye plasmas

    International Nuclear Information System (INIS)

    Jiao, L. G.; Ho, Y. K.

    2013-01-01

    We investigate the doubly excited P-wave resonance states of H − system in Debye plasmas modeled by static screened Coulomb potentials. The screening effects of the plasma environment on resonance parameters (energy and width) are investigated by employing the complex-scaling method with Hylleraas-type wave functions for both the shape and Feshbach resonances associated with the H(N = 2 to 6) thresholds. Under the screening conditions, the H(N) threshold states are no longer l degenerate, and all the H − resonance energy levels are shifted away from their unscreened values toward the continuum. The influence of Debye plasmas on resonance widths has also been investigated. The shape resonance widths are broadened with increasing plasma screening strength, whereas the Feshbach resonance widths would generally decrease. Our results associated with the H(N = 2) and H(N = 3) thresholds are compared with others in the literature

  5. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    Science.gov (United States)

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  6. Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem

    Science.gov (United States)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu

    2018-06-01

    Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.

  7. Progress on Chinese evaluated nuclear parameters library (CENPL). Pt. 3

    International Nuclear Information System (INIS)

    Su Zongdi; Ge Zhigang; Zhou Chunmei

    1994-01-01

    The progress on Chinese evaluated nuclear parameters library (CENPL) is introduced. The setting up work of each sub-library of CENPL has got some new progresses at the past period. These sub-libraries are atomic mass and characteristic constant for nuclear ground state sub-library, discrete level scheme and batch ratio of γ decay sub-library, level density parameter sub-library, giant dipole resonance parameter for γ-ray strength function sub-library and optical model parameter sub-library

  8. Tables of Shore and Fano parameters for the helium resonances 2s21S, 2p21D, and 2s 2p 1P excited in p-He collisions E/sub p/ = 33 to 150 keV

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Merchez, H.

    1976-01-01

    Absolute values of Shore and Fano parameters are tabulated for the helium atom 2s 2 1 S, 2p 2 1 D, and 2s 2p 1 P resonances produced by a proton beam. Observations were made on the spectra of ejected electrons. The important variation of the shape of the resonances with ejection angle is illustrated for E/sub p/ = 100 keV; the variation with proton energy is shown at 30 0

  9. Impact of the Parameter Variation on the Image Blurring in 3 T Magnetic Resonance Imaging: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Lee, Sang Hoon; Kim, Nam Kug; Cho, Kyung Sik; Lee, Jin Seong [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-04-15

    To evaluate the effects of the key imaging-parameter alterations on the four MR sequences in a phantom study. Magnetic resonance (MR) imaging was performed on a MR phantom with an 8-channel head coil by using a 3 T MR system. The images were obtained in the axial plane on four MR sequences [T1-weighted, T2-weighted, Proton-density, and 3 dimensional (3D) fast spin echo (FSE)] with controlled variations in the following key parameters: 1) echo train length (ETL), 2) repetition time (TR), and 3) echo time (TE). The image blurring was determined by the degree of the gradient angle; i.e., the blurring increased as the gradient angle decreases. The increasing ETL was observed to cause an increase in the image blurring on all pulse sequences with a statistical significance (p = 0.004) on the 3D FSE. Increasing the TR appeared to have no effect except a statistically significant decrease on the T1-weighted images (p = 0.011). Increasing TE showed no effect on the T1-weighted images (p = 0.932); however, it caused an increase of blurring on the proton density images (p = 0.016) as well as the T2-weighted images (p < 0.001), and a decrease on the 3D FSE (p = 0.001). To reduce the image blurring, short ETL and long TE for 3D FSE, long TR for T1-weighted images and short TE for proton-density and T2-weighted images should be applied.

  10. Time-delayed feedback control of coherence resonance chimeras

    Science.gov (United States)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  11. Resonant oscillations in open axisymmetric tubes

    Science.gov (United States)

    Amundsen, D. E.; Mortell, M. P.; Seymour, B. R.

    2017-12-01

    We study the behaviour of the isentropic flow of a gas in both a straight tube of constant cross section and a cone, open at one end and forced at or near resonance at the other. A continuous transition between these configurations is provided through the introduction of a geometric parameter k associated with the opening angle of the cone where the tube corresponds to k=0. The primary objective is to find long-time resonant and near-resonant approximate solutions for the open tube, i.e. k→ 0. Detailed analysis for both the tube and cone in the limit of small forcing (O(ɛ 3)) is carried out, where ɛ 3 is the Mach number of the forcing function and the resulting flow has Mach number O(ɛ ). The resulting approximate solutions are compared with full numerical simulations. Interesting distinctions between the cone and the tube emerge. Depending on the damping and detuning, the responses for the tube are continuous and of O(ɛ ). In the case of the cone, the resonant response involves an amplification of the fundamental resonant mode, usually called the dominant first-mode approximation. However, higher modes must be included for the tube to account for the nonlinear generation of higher-order resonances. Bridging these distinct solution behaviours is a transition layer of O(ɛ 2) in k. It is found that an appropriately truncated set of modes provides the requisite modal approximation, again comparing well to numerical simulations.

  12. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  13. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....... they possess localized solutions in the form of dipolar vortices, which can efficiently interact with resonant electrons. In the adiabatic limit, evolution equations are derived for the vortex parameters, describing exchange of the energy, enstrophy, and of the Poynting vector between the vortex and resonant...

  14. Direct vs statistical decay of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Carlson, B.V.; Merchant, A.C.; Adhikari, S.K.

    1986-01-01

    A theoretical framework for the description of the decay of giant multipole resonances id developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the giant resonance is not necessarily described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt

  15. Helmholtz resonance in a piezoelectric–hydraulic pump-based hybrid actuator

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Wang, K W

    2011-01-01

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric–hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator

  16. Evaluating the Uncertainty in Exchange Parameters Determined from Off-Resonance R1ρ Relaxation Dispersion for Systems in Fast Exchange

    Science.gov (United States)

    Bothe, Jameson R.; Stein, Zachary W.; Al-Hashimi, Hashim M.

    2014-01-01

    Spin relaxation in the rotating frame (R1ρ) is a powerful NMR technique for characterizing fast microsecond timescale exchange processes directed toward short-lived excited states in biomolecules. At the limit of fast exchange, only kex = k1 + k−1 and Φıx = pGpE(Δω)2 can be determined from R1ρ data limiting the ability to characterize the structure and energetics of the excited state conformation. Here, we use simulations to examine the uncertainty with which exchange parameters can be determined for two state systems in intermediate-to-fast exchange using off-resonance R1ρ relaxation dispersion. R1ρ data computed by solving the Bloch-McConnell equations reveals small but significant asymmetry with respect to offset (R1ρ(ΔΩ) ≠ R1ρ(−ΔΩ)), which is a hallmark of slow-to-intermediate exchange, even under conditions of fast exchange for free precession chemical exchange line broadening (kex/Δω > 10). A grid search analysis combined with bootstrap and Monte-Carlo based statistical approaches for estimating uncertainty in exchange parameters reveals that both the sign and magnitude of Δω can be determined at a useful level of uncertainty for systems in fast exchange (kex/Δω exchange parameters. Results from simulations are complemented by analysis of experimental R1ρ data measured in three nucleic acid systems with exchange processes occurring on the slow (kex/Δω = 0.2; pE = ~ 0.7%), fast (kex/Δω = ~10–16; pE = ~13%) and very fast (kex = 39,000 s−1) chemical shift timescales. PMID:24819426

  17. New Constraints on Gliese 876—Exemplar of Mean-motion Resonance

    Science.gov (United States)

    Millholland, Sarah; Laughlin, Gregory; Teske, Johanna; Butler, R. Paul; Burt, Jennifer; Holden, Bradford; Vogt, Steven; Crane, Jeffrey; Shectman, Stephen; Thompson, Ian

    2018-03-01

    Gliese 876 harbors one of the most dynamically rich and well-studied exoplanetary systems. The nearby M4V dwarf hosts four known planets, the outer three of which are trapped in a Laplace mean-motion resonance. A thorough characterization of the complex resonant perturbations exhibited by the orbiting planets, and the chaotic dynamics therein, is key to a complete picture of the system’s formation and evolutionary history. Here we present a reanalysis of the system using 6 yr of new radial velocity (RV) data from four instruments. These new data augment and more than double the size of the decades-long collection of existing velocity measurements. We provide updated estimates of the system parameters by employing a computationally efficient Wisdom–Holman N-body symplectic integrator, coupled with a Gaussian process (GP) regression model to account for correlated stellar noise. Experiments with synthetic RV data show that the dynamical characterization of the system can differ depending on whether a white-noise or correlated-noise model is adopted. Despite there being a region of stability for an additional planet in the resonant chain, we find no evidence for one. Our new parameter estimates place the system even deeper into resonance than previously thought and suggest that the system might be in a low-energy, quasi-regular double apsidal corotation resonance. This result and others will be used in a subsequent study on the primordial migration processes responsible for the formation of the resonant chain.

  18. Research on Bell-Shaped Vibratory Angular Rate Gyro’s Character of Resonator

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2013-04-01

    Full Text Available Bell-shaped vibratory angular rate gyro (abbreviated as BVG is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator’s mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG.

  19. Broadband locally resonant metamaterials with graded hierarchical architecture

    Science.gov (United States)

    Liu, Chenchen; Reina, Celia

    2018-03-01

    We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.

  20. Catastrophes in the interaction of light waves in anisotropic resonator

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Nersisyan, S.R.; Tabiryan, N.V.

    1993-01-01

    An origin of jump-like and hysteresical phenomena is predicted theoretically. Those are caused by the ruling of the state of non-linear anisotropic resonator with an orthogonal polarization of light waves. The resonator creates a turned connection as well as causes a complex tying between the waves. The later conditions a whole number of the interacting waves regimes because of a big number of ruling parameters. 5 refs

  1. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  2. Nano-resonator frequency response based on strain gradient theory

    International Nuclear Information System (INIS)

    Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad

    2014-01-01

    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)

  3. Design and construction of superconductor resonators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Goliak, T.; Holmgren, D.W.; Storm, D.W.

    1984-01-01

    A low beta resonator was fabricated at the Nuclear Physics Laboratory, then plated and successfully tested at Stony Brook. The basic design is a quarter wave, cylindrical cavity excited by a magnetic coupling loop. Before the copper prototype was made the exact design parameters were measured by the construction and RF testing of a brass model

  4. MCRTOF, Multiple Scattering of Resonance Region Neutron in Time of Flight Experiments

    International Nuclear Information System (INIS)

    Ohkubo, Mako

    1984-01-01

    1 - Description of program or function: Multiple scattering of neutrons in the resonance energy region impinging on a disk with an arbitrary angle. 2 - Method of solution: The Monte Carlo method is employed to simulate the path of an incident neutron in a medium for which macroscopic cross sections are determined by resonance parameters. By tracing a large number of neutrons, probabilities for capture, transmission, front-face scattering, rear-face scattering and side-face scattering are determined and printed out as function of incident neutron energy. Optionally, the distribution of capture locations in the disk can be printed. The incident neutron energy is swept to fit a situation as encountered in time-of-flight experiments. 3 - Restrictions on the complexity of the problem: The cross section file is constructed from input resonance parameters with a single- level Breit-Wigner formula. The following restrictions and simplifications apply: - The maximum number of resonances is five. - Reactions other than capture and scattering are neglected. - The angular scattering distribution in the center-of-mass system is assumed to be uniform. - Chemical binding effects are neglected

  5. Narrow resonances and short-range interactions

    International Nuclear Information System (INIS)

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  6. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    Science.gov (United States)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  7. TIMS-1, Multigroup Cross-Sections of Heavy Isotope Mixture with Resonance from ENDF/B

    International Nuclear Information System (INIS)

    Takano, Hideki; Ishiguro, Yukio; Matsui, Yasushi

    1984-01-01

    1 - Description of problem or function: TIMS-1 is a code for calculating the group constants of heavy resonant nuclei by using ENDF/ B-4 format data. This code calculates infinitely dilute cross sections and self-shielding factors as a function of composition sigma-0 temperature T and R-parameter, where R is the ratio of ato- mic number density of two different resonant nuclei. 2 - Method of solution: In the unresolved resonance region, a ladder of resonance parameters and levels is generated with Monte Carlo method. The temperature dependent cross sections are calculated with the Breit-Wigner single-level and multi-level formula. The neutron spectrum is accurately calculated by solving numerically the neutron slowing down equation using a recurrence formula for neutron slowing down source. 3 - Restrictions on the complexity of the problem: The maximum numbers of energy groups, temperatures and compositions are 60, 4 and 10 respectively

  8. On the nature of resonances in photonuclear reactions

    International Nuclear Information System (INIS)

    Filippov, G.F.; Vasilevsky, V.S.; Kruchinin, S.P.; Chopovsky, L.L.

    1985-01-01

    An investigation of continuous spectrum states of the 6 He, 6 Li, 7 Li and 7 Be light atomic nuclei is carried out within the microscopic approach taking into account the dynamics of cluster and quadrupole collective degrees of freedom. The interaction of these nuclei with electromagnetic radiation is shown to lead to the excitation of collective resonances with energy exceeding 20 MeV and width GITA<1 MeV, and also giant quadrupole resonances with parameters: E=12-15 MeV and GITA approximately 5 MeV

  9. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    Directory of Open Access Journals (Sweden)

    Atefeh Shirvani

    2017-01-01

    Full Text Available Background: In radiation therapy, computed tomography (CT simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P 4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.

  10. DEEBAR - A BASIC interactive computer programme for estimating mean resonance spacings

    International Nuclear Information System (INIS)

    Booth, M.; Pope, A.L.; Smith, R.W.; Story, J.S.

    1988-02-01

    DEEBAR is a BASIC interactive programme, which uses the theories of Dyson and of Dyson and Mehta, to compute estimates of the mean resonance spacings and associated uncertainty statistics from an input file of neutron resonance energies. In applying these theories the broad scale energy dependence of D-bar, as predicted by the ordinary theory of level densities, is taken into account. The mean spacing D-bar ± δD-bar, referred to zero energy of the incident neutrons, is computed from the energies of the first k resonances, for k = 2,3...K in turn and as if no resonances are missing. The user is asked to survey this set of D-bar and δD-bar values and to form a judgement - up to what value of k is the set of resonances complete and what value, in consequence, does the user adopt as the preferred value of D-bar? When the preferred values for k and D-bar have been input, the programme calculates revised values for the level density parameters, consistent with this value for D-bar and with other input information. Two short tables are printed, illustrating the energy variation and spin dependence of D-bar. Dyson's formula based on his Coulomb gas analogy is used for estimating the most likely energies of the topmost bound levels. Finally the quasi-crystalline character of a single level series is exploited by means of a table in which the resonance energies are set alongside an energy ladder whose rungs are regularly spaced with spacing D-bar(E); this comparative table expedites the search for gaps where resonances may have been missed experimentally. Used in conjunction with the program LJPROB, which calculates neutron strengths and compares them against the expected Porter Thomas distribution, estimates of the statistical parameters for use in the unresolved resonance region may be derived. (author)

  11. Study on 2D arbitrary geometry coupling resonance method

    International Nuclear Information System (INIS)

    He Lei; Wu Hongchun; Cao Liangzhi

    2014-01-01

    The paper firstly proposes a coupling resonance method in which subgroup method is employed in the serried peak energy region, and wavelet expansion method is employed in single peak energy region. The original subgroup model and wavelet expansion model are improved and coupled through the calculation of scattering source from subgroup to wavelet expansion, so that the self-shielding cross section in the whole energy region can be calculated accurately. To verify these theories and to prove the improvements, a PWR cell benchmark problem is calculated. It is demonstrated that, compared with other traditional multi-group resonance methods and continuous energy resonance method, this coupling resonance method has the ability to accurately calculate the whole energy region's self-shielding cross section while Keeping enough efficiency and finally has an ability to offer the accurate self-shielding parameters for latter transport, calculation. (authors)

  12. Secondary resonances and the boundary of effective stability of Trojan motions

    Science.gov (United States)

    Páez, Rocío Isabel; Efthymiopoulos, Christos

    2018-02-01

    One of the most interesting features in the libration domain of co-orbital motions is the existence of secondary resonances. For some combinations of physical parameters, these resonances occupy a large fraction of the domain of stability and rule the dynamics within the stable tadpole region. In this work, we present an application of a recently introduced `basic Hamiltonian model' H_b for Trojan dynamics (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez et al. in Celest Mech Dyn Astron 126:519, 2016): we show that the inner border of the secondary resonance of lowermost order, as defined by H_b, provides a good estimation of the region in phase space for which the orbits remain regular regardless of the orbital parameters of the system. The computation of this boundary is straightforward by combining a resonant normal form calculation in conjunction with an `asymmetric expansion' of the Hamiltonian around the libration points, which speeds up convergence. Applications to the determination of the effective stability domain for exoplanetary Trojans (planet-sized objects or asteroids) which may accompany giant exoplanets are discussed.

  13. The permittivity of a plasma at cyclotron resonance in large amplitude e.m. fields

    NARCIS (Netherlands)

    Schram, D.C.

    1970-01-01

    The permittivity of a collisionless plasma as a function of field parameters is measured in standing and in travelling waves. In both experiments the permittivity remains finite at cyclotron resonance; the resonance is broadened and shifted towards higher values of the magnetic field strength. The

  14. Equilibrium and stochastic resonance in finite chains of noisy bistable elements

    International Nuclear Information System (INIS)

    Morillo, Manuel; Gomez-Ordonez, Jose; Casado, Jose Manuel

    2010-01-01

    Graphical abstract: We analyze the dependence of the equilibrium distribution of a collective variable of a chain on relevant parameters including the chain size and its connectivity. We also analyze the stochastic resonance effect of the same variable. - Abstract: Using numerical simulations, we analyze equilibrium properties of finite chains of coupled noisy bistable units and their response to weak time periodic forces. Finite chains with global as well as local (nearest neighbors) coupling are considered. We focus on the study of a collective variable defined as the arithmetic mean of the variables characterizing each element of the chain. By contrast with the case of infinite size chains, where the coexistence of several equilibrium distributions for the same values of parameters is possible, for finite chains just a single equilibrium distribution exists for given values of the parameters. We demonstrate that, regardless of the chain connectivity, there exist transition lines separating regions in parameter space where the equilibrium distribution function is either monomodal or multimodal. The location of the transition line depends on the chain connectivity and the size of the system. For driven chains, the response of the system shows stochastic resonant effects. For the two types of chains considered, both the power spectral amplification and the signal-to-noise ratio of the collective variable are analyzed as the noise strength, the coupling parameter and the number of bistable units in the system are varied. Compared with the effects observed in single unit systems, the collective variable shows a strong enhancement of the stochastic resonance effects.

  15. Resonance Counters as the Best Tool for the Investigations in Material Science

    International Nuclear Information System (INIS)

    Belyaev, A. A.; Irkaev, S. M.; Panchuck, V. V.; Semenov, V. G.; Volodin, V. S.

    2008-01-01

    Sensitivity and resolution play a crucial role when Moessbauer spectroscopy is used in the materials science. Application of resonance counters in Moessbauer spectrometers allows us to increase the parameters mentioned above, and also signal-to-noise ratio considerably. The last one provides diminishing the time needed for obtaining given statistical accuracy. We carried out investigations of development of optimal counters for following isotopes: 57 Fe, 119 Sn, and 151 Eu. Influence of different parameters of resonant radiation converters on experimental results was considered theoretically. Optimization of design has been performed using mathematical modeling based on Monte-Carlo method. Comparison of different types of counters used for resonant detecting was carried out. Results of experimental works on selection of efficient radiation converters are given. Comparison of scintillation and gas resonance counters was carried out. FeAl and FeGe 2 alloys and K 2 MgFe(CN) 6 have been used as converters for experiments with 57 Fe-isotope, CaSnO 3 has been used for 119 Sn and Eu 2 O 3 and EuF 3 --for 151 Eu isotope. Gamma-optical scheme for versatile spectrometer, which expands the range of application of resonant detection for other Moessbauer isotopes, was suggested.

  16. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters.

  17. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  18. Order parameters in lanthanum gallate lightly doped with manganese and paramagnetic resonance

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Guseva, V. B.

    2010-09-01

    The Cr3+ centers have been revealed, transitions at room temperature have been identified, and spin Hamiltonian parameters have been determined for the Cr3+ and Fe3+ triclinic centers in lanthanum gallate lightly doped with manganese. The principal axes of the fourth-rank fine-structure tensor for the Fe3+ triclinic centers have been established and used to determine the order parameters, i.e., the angles of rotation of oxygen octahedra of lanthanum gallate with respect to the perovskite structure. The order parameter in the rhombohedral phase has been estimated.

  19. Resonance Spectra of Caged Stringy Black Hole and Its Spectroscopy

    Directory of Open Access Journals (Sweden)

    I. Sakalli

    2015-01-01

    quasinormal mode (QNM frequencies, is used to investigate the entropy/area spectra of the Garfinkle–Horowitz–Strominger black hole (GHSBH. Instead of the ordinary QNMs, we compute the boxed QNMs (BQNMs that are the characteristic resonance spectra of the confined scalar fields in the GHSBH geometry. For this purpose, we assume that the GHSBH has a confining cavity (mirror placed in the vicinity of the event horizon. We then show how the complex resonant frequencies of the caged GHSBH are computed using the Bessel differential equation that arises when the scalar perturbations around the event horizon are considered. Although the entropy/area is characterized by the GHSBH parameters, their quantization is shown to be independent of those parameters. However, both spectra are equally spaced.

  20. Precession of a rapidly rotating cylinder flow: traverse through resonance

    Science.gov (United States)

    Lopez, Juan; Marques, Francisco

    2014-11-01

    The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.

  1. Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance

    International Nuclear Information System (INIS)

    Pal, Sourav; Sajeev, Y.; Vaval, Nayana

    2006-01-01

    The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e - -C 2 H 4 and e - -Mg

  2. Nanodiamond resonators fabricated on 8″ Si substrates using adhesive wafer bonding

    Science.gov (United States)

    Lebedev, V.; Lisec, T.; Yoshikawa, T.; Reusch, M.; Iankov, D.; Giese, C.; Žukauskaitė, A.; Cimalla, V.; Ambacher, O.

    2017-06-01

    In this work, the adhesive wafer bonding of diamond thin films onto 8″ silicon substrates is reported. In order to characterize bonded nano-crystalline diamond layers, vibrometry and interferometry studies of micro-fabricated flexural beam and disk resonators were carried out. In particular, surface topology along with resonant frequencies, eigenmodes and mechanical quality factors were recorded and analyzed in order to obtain physical parameters of the transferred films. The vibration properties of the bonded resonators were compared to those fabricated directly on 3″ silicon substrates.

  3. Parameter prediction for microwave garnets

    International Nuclear Information System (INIS)

    Ramer, R.

    1996-01-01

    Full text: Linearity of the microwave parameters (resonance linewidth ΔH and effective linewidth ΔH eff ) is demonstrated and their use in the Computer-aided design (CAD)/Computer-aided manufacturing (CAM) of new microwave garnets is proposed. Such an approach would combine a numerical database of microwave data and several computational programs. The model is an applied formulation of the analysis of a wide range of microwave garnets

  4. Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi

    1988-01-01

    A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)

  5. Photoproduction of the f{sub 2}(1270) resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ju-Jun [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Oset, E. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Centro Mixto Universidad de Valencia-CSIC Institutos de Investigacion de Paterna, Departamento de Fisica Teorica y IFIC, Valencia (Spain)

    2015-09-15

    We have performed a calculation of the γp → π {sup +} π {sup -} p reaction, where the two pions have been separated in D-wave producing the f{sub 2}(1270) resonance. We use elements of the local hidden gauge approach that provides the interaction of vector mesons in which the f{sub 2}(1270) resonance appears as a ρ-ρ molecular state in L = 0 and spin 2. The vector meson dominance, incorporated in the local hidden gauge approach converts a photon into a ρ {sup 0} meson and the other meson connects the photon with the proton. The picture is simple and has no free parameters, since the parameters of the theory have been constrained in the previous study of the vector-vector states. In a second step we introduce new elements, not present in the local hidden gauge approach, adapting the ρN N propagator to Regge phenomenology and introducing the ρ tensor coupling. We find that both the differential cross section as well as the t dependence of the cross section are in good agreement with the experimental results and provide support for the molecular picture of the f{sub 2}(1270) resonance in the first baryonic reaction where it has been tested. (orig.)

  6. Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator

    Science.gov (United States)

    Xu, Jin

    2016-01-01

    This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.

  7. The 750 GeV Diphoton Resonance in the MSSM

    CERN Document Server

    Djouadi, Abdelhak

    2017-02-10

    We propose a simple interpretation of the 750 GeV diphoton resonance as hinted by the current 13 TeV LHC data, within the context of the Minimal Supersymmetric extension of the Standard Model (MSSM). In the CP-conserving limit of the theory, the resonance may be identified with the heavier CP-even $H$ boson of the MSSM, whose gluon-fusion production and decay into two photons are enhanced by loops of the lightest supersymmetric partner of the top quark $\\tilde{t}_1$ when its mass $m_{\\tilde{t}_1}$ happens to be near the $\\tilde{t}^*_1\\tilde{t}_1$ threshold, i.e.~for $m_{\\tilde{t}_1} \\sim \\frac12 M_H$ and, to a lesser extent, by resonant contributions due to $\\tilde{t}_1^* \\tilde{t}_1$ bound states. The scenario requires a relatively low supersymmetry-breaking scale~$M_S\\lsim 1$~TeV, but large values of the higgsino mass parameter, $\\mu \\gsim 3$ TeV that leads to a strong $H \\tilde{t}_1 \\tilde{t}_1$ coupling. Such parameters can accommodate the observed mass and standard-like couplings of the 125~GeV $h$ boson...

  8. Antiferromagnetic resonance excited by oscillating electric currents

    Science.gov (United States)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  9. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    International Nuclear Information System (INIS)

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  10. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Science.gov (United States)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  11. Influence of the whispering-gallery mode resonators shape on its inertial movement sensitivity

    Science.gov (United States)

    Filatov, Yuri V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2018-01-01

    The optical whispering-gallery mode (WGM) resonators are axially symmetrical resonators with smooth edges, supporting the existence of the WGMs by the total internal reflection on the surface of the resonator. As of today, various types of such resonators have been developed, namely the ball shaped, tor shaped, bottle shaped, disk shaped, etc. The movement of WGM resonators in inertial space causes the changes in their shape. The result is a spectral shift of the WGMs. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement in different manners. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. The work is devoted to investigation of these aspects.

  12. Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics.

    Science.gov (United States)

    Rotstein, Horacio G

    2017-08-01

    Subthreshold (membrane potential) resonance and phasonance (preferred amplitude and zero-phase responses to oscillatory inputs) in single neurons arise from the interaction between positive and negative feedback effects provided by relatively fast amplifying currents and slower resonant currents. In 2D neuronal systems, amplifying currents are required to be slave to voltage (instantaneously fast) for these phenomena to occur. In higher dimensional systems, additional currents operating at various effective time scales may modulate and annihilate existing resonances and generate antiresonance (minimum amplitude response) and antiphasonance (zero-phase response with phase monotonic properties opposite to phasonance). We use mathematical modeling, numerical simulations and dynamical systems tools to investigate the mechanisms underlying these phenomena in 3D linear models, which are obtained as the linearization of biophysical (conductance-based) models. We characterize the parameter regimes for which the system exhibits the various types of behavior mentioned above in the rather general case in which the underlying 2D system exhibits resonance. We consider two cases: (i) the interplay of two resonant gating variables, and (ii) the interplay of one resonant and one amplifying gating variables. Increasing levels of an amplifying current cause (i) a response amplification if the amplifying current is faster than the resonant current, (ii) resonance and phasonance attenuation and annihilation if the amplifying and resonant currents have identical dynamics, and (iii) antiresonance and antiphasonance if the amplifying current is slower than the resonant current. We investigate the underlying mechanisms by extending the envelope-plane diagram approach developed in previous work (for 2D systems) to three dimensions to include the additional gating variable, and constructing the corresponding envelope curves in these envelope-space diagrams. We find that antiresonance and

  13. Automation of Data Analysis Programs Used in the Cryogenic Characterization of Superconducting Microwave Resonators

    Science.gov (United States)

    Creason, A. S.; Miranda, F. A.

    1996-01-01

    Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.

  14. Piezoelectric transduction of flexural modes in pre-stressed microbeam resonators

    Science.gov (United States)

    Torri, G. B.; Janssen, N. M. A.; Zeng, Z.; Rottenberg, X.; Karabacak, D. M.; Vandecasteele, M.; Van Hoof, C.; Puers, R.; Tilmans, H. A. C.

    2014-08-01

    This paper reports on the optimization of the design of piezoelectric transducer elements integrated on doubly-clamped microbeam resonators utilized as (bio)chemical sensors. We report and emphasize the often forgotten influence of membrane stresses on defining the dimensions and optimal position of the piezoelectric transducer elements. The study takes into account stress induced structural changes and provides models for the equivalent motional parameters of resonators with particular shapes of the transducers matching the flexural modes of vibration. The above is analyzed theoretically using numerical models and is confirmed by impedance measurements and optical measurements of fabricated doubly-clamped beam resonators. We propose various transducer designs and highlight the advantages of using higher order vibration modes by implementing specially designed mode matching transducer elements. It is concluded that the paper describes and highlights the importance of accounting for the membrane stresses to optimize the resonator performance and the low power in electronic feedback of resonating sensing systems.

  15. Piezoelectric transduction of flexural modes in pre-stressed microbeam resonators

    International Nuclear Information System (INIS)

    Torri, G B; Rottenberg, X; Hoof, C Van; Puers, R; Tilmans, H A C; Janssen, N M A; Zeng, Z; Karabacak, D M; Vandecasteele, M

    2014-01-01

    This paper reports on the optimization of the design of piezoelectric transducer elements integrated on doubly-clamped microbeam resonators utilized as (bio)chemical sensors. We report and emphasize the often forgotten influence of membrane stresses on defining the dimensions and optimal position of the piezoelectric transducer elements. The study takes into account stress induced structural changes and provides models for the equivalent motional parameters of resonators with particular shapes of the transducers matching the flexural modes of vibration. The above is analyzed theoretically using numerical models and is confirmed by impedance measurements and optical measurements of fabricated doubly-clamped beam resonators. We propose various transducer designs and highlight the advantages of using higher order vibration modes by implementing specially designed mode matching transducer elements. It is concluded that the paper describes and highlights the importance of accounting for the membrane stresses to optimize the resonator performance and the low power in electronic feedback of resonating sensing systems. (paper)

  16. Resonant microsphere gyroscope based on a double Faraday rotator system.

    Science.gov (United States)

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  17. Probing evolution of binaries influenced by the spin–orbit resonances

    International Nuclear Information System (INIS)

    Gupta, A; Gopakumar, A

    2014-01-01

    We evolve isolated comparable mass spinning compact binaries experiencing Schnittman’s post-Newtonian spin–orbit resonances in an inertial frame associated with j 0 , the initial direction of the total angular momentum. We argue that accurate gravitational wave (GW) measurements of the initial orientations of the two spins and orbital angular momentum from j 0 should allow us to distinguish between the two possible families of spin–orbit resonances. Therefore, these measurements have the potential to provide direct observational evidence of possible binary formation scenarios. The above statements should also apply for binaries that do not remain in a resonant plane when they become detectable by GW interferometers. The resonant plane, characterized by the vanishing scalar triple product involving the two spins and the orbital angular momentum, naturally appears in the one parameter family of equilibrium solutions, discovered by Schnittman. We develop a prescription to compute the time-domain inspiral templates for binaries residing in these resonant configurations and explore their preliminary data analysis consequences. (paper)

  18. Wave propagation near the lower hybrid resonance in toroidal plasmas

    International Nuclear Information System (INIS)

    Ohkubo, K.; Ohasa, K.; Matsuura, K.

    1975-10-01

    Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)

  19. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Science.gov (United States)

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  20. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.

    Science.gov (United States)

    Pang, Wei; Zhao, Hongyuan; Kim, Eun Sok; Zhang, Hao; Yu, Hongyu; Hu, Xiaotang

    2012-01-07

    Piezoelectric microelectromechanical systems (MEMS) resonant sensors, known for their excellent mass resolution, have been studied for many applications, including DNA hybridization, protein-ligand interactions, and immunosensor development. They have also been explored for detecting antigens, organic gas, toxic ions, and explosives. Most piezoelectric MEMS resonant sensors are acoustic sensors (with specific coating layers) that enable selective and label-free detection of biological events in real time. These label-free technologies have recently garnered significant attention for their sensitive and quantitative multi-parameter analysis of biological systems. Since piezoelectric MEMS resonant sensors do more than transform analyte mass or thickness into an electrical signal (e.g., frequency and impedance), special attention must be paid to their potential beyond microweighing, such as measuring elastic and viscous properties, and several types of sensors currently under development operate at different resonant modes (i.e., thickness extensional mode, thickness shear mode, lateral extensional mode, flexural mode, etc.). In this review, we provide an overview of recent developments in micromachined resonant sensors and activities relating to biochemical interfaces for acoustic sensors.

  1. An alternative method to specify the degree of resonator stability

    Indian Academy of Sciences (India)

    Degree of optical stability; parameter; misalignment tolerance. ... The value of zero corresponds to marginally stable resonator and < 0 corresponds ... 452 013, India; School of Physics, University of Hyderabad, Hyderabad 500 134, India ...

  2. Resonant structure of the 3d electron's angular distribution in a free Mn+Ion

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Dolmatov, V.K.

    1995-01-01

    The 3d-electron angular anisotropy parameter of the free Mn + ion is calculated using the open-quotes spin-polarizedclose quotes random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p → 3d discrete excitation. The effect of the 3p → 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published

  3. Measurement of the resonance escape probability

    International Nuclear Information System (INIS)

    Anthony, J.P.; Bacher, P.; Lheureux, L.; Moreau, J.; Schmitt, A.P.

    1957-01-01

    The average cadmium ratio in natural uranium rods has been measured, using equal diameter natural uranium disks. These values correlated with independent measurements of the lattice buckling, enabled us to calculate values of the resonance escape probability for the G1 reactor with one or the other of two definitions. Measurements were performed on 26 mm and 32 mm rods, giving the following values for the resonance escape probability p: 0.8976 ± 0.005 and 0.912 ± 0.006 (d. 26 mm), 0.8627 ± 0.009 and 0.884 ± 0.01 (d. 32 mm). The influence of either definition on the lattice parameters is discussed, leading to values of the effective integral. Similar experiments have been performed with thorium rods. (author) [fr

  4. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    International Nuclear Information System (INIS)

    Bondarenko, E A

    2014-01-01

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  5. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    Science.gov (United States)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  6. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  7. Compact Microstrip Triple-Mode Bandpass Filters Using Dual-Stub-Loaded Spiral Resonators

    Directory of Open Access Journals (Sweden)

    K. D. Xu

    2017-04-01

    Full Text Available Two new microstrip triple-mode resonators loaded with T-shaped open stubs using axially and centrally symmetric spiral structures, respectively, are presented. Spiraled for circuit size reduction, these two half-wavelength resonators can both generate three resonant modes over a wide frequency band by loading two T-stubs with different lengths. Due to the structural symmetry, they can be analyzed by odd- and even-mode method. To validate the design concept, two compact bandpass filters (BPFs using these two novel resonators with center frequencies of 1.76 GHz and 2.44 GHz for the GSM1800 and WLAN/Zigbee applications, respectively, have been designed, fabricated and tested. The center frequencies and bandwidths can be tunable through the analysis of resonant frequency responses, fractional bandwidths and external quality factor versus the resonator parameters. The final measured results have achieved good consistence with the simulations of these two BPFs.

  8. Resonant Circuits and Introduction to Vacuum Tubes, Industrial Electronics 2: 9325.03. Course Outline.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The 135 clock-hour course for the 11th year consists of outlines for blocks of instruction on series resonant circuits, parallel resonant circuits, transformer theory and application, vacuum tube fundamentals, diode vacuum tubes, triode tube construction and parameters, vacuum tube tetrodes and pentodes, beam-power and multisection tubes, and…

  9. A novel diagnostic parameter, foraminal stenotic ratio using three-dimensional magnetic resonance imaging, as a discriminator for surgery in symptomatic lumbar foraminal stenosis.

    Science.gov (United States)

    Yamada, Kentaro; Abe, Yuichiro; Satoh, Shigenobu; Yanagibashi, Yasushi; Hyakumachi, Takahiko; Masuda, Takeshi

    2017-08-01

    No previous studies have reported the radiological features of patients requiring surgery in symptomatic lumbar foraminal stenosis (LFS). This study aims to investigate the diagnostic accuracy of a novel technique, foraminal stenotic ratio (FSR), using three-dimensional magnetic resonance imaging for LFS at L5-S by comparing patients requiring surgery, patients with successful conservative treatment, and asymptomatic patients. This is a retrospective radiological comparative study. We assessed the magnetic resonance imaging (MRI) results of 84 patients (168 L5-S foramina) aged ≥40 years without L4-L5 lumbar spinal stenosis. The foramina were divided into three groups following standardized treatment: stenosis requiring surgery (20 foramina), stenosis with successful conservative treatment (26 foramina), and asymptomatic stenotic foramen (122 foramina). Foraminal stenotic ratio was defined as the ratio of the length of the stenosis to the length of the foramen on the reconstructed oblique coronal image, referring to perineural fat obliterations in whole oblique sagittal images. We also evaluated the foraminal nerve angle and the minimum nerve diameter on reconstructed images, and the Lee classification on conventional T1 images. The differences in each MRI parameter between the groups were investigated. To predict which patients require surgery, receiver operating characteristic (ROC) curves were plotted after calculating the area under the ROC curve. The FSR showed a stepwise increase when comparing asymptomatic, conservative, and surgical groups (mean, 8.6%, 38.5%, 54.9%, respectively). Only FSR was significantly different between the surgical and conservative groups (p=.002), whereas all parameters were significantly different comparing the symptomatic and asymptomatic groups. The ROC curve showed that the area under the curve for FSR was 0.742, and the optimal cutoff value for FSR for predicting a surgical requirement in symptomatic patients was 50

  10. Hybrid model for the decay of nuclear giant resonances

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1986-12-01

    The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt

  11. The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells

    Directory of Open Access Journals (Sweden)

    A Polupanov

    2016-09-01

    Full Text Available We demonstrate an explicit numerical method for accurate calculation of the scattering matrix and its poles, and apply this method to describe the multi-channel scattering in the multiple quantum-wells structures. The S-matrix is continued analytically to the unphysical region of complex energy values. Results of calculations show that there exist one or more S-matrix poles, corresponding to the over-barrier resonant states critical for the effect of the absolute reflection of holes in the energy range where only the heavy ones may propagate over barriers in a structure. Light- and heavy-hole states are described by the Luttinger Hamiltonian matrix. In contrast to the single quantum-well case, at some parameters of a multiple quantum-wells structure the number of S-matrix poles may exceed that of the absolute reflection peaks, and at different values of parameters the absolute reflection peak corresponds to different resonant states. The imaginary parts of the S-matrix poles and hence the lifetimes of resonant states as well as the widths of resonant peaks of absolute reflection depend drastically on the quantum-well potential depth. In the case of shallow quantum wells there is in fact a long-living over-barrier resonant hole state.

  12. Integrating out resonances in strongly-coupled electroweak scenarios

    Directory of Open Access Journals (Sweden)

    Rosell Ignasi

    2017-01-01

    Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.

  13. 200 MW S-band traveling wave resonant ring development at IHEP

    Science.gov (United States)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  14. An improved intermediate resonance method for heterogeneous media

    International Nuclear Information System (INIS)

    Chiovato, O.; Corno, S.; Pasquantonio, F.Di.

    1977-01-01

    A new formulation is described of the Intermediate Resonance method which incorporates the previous developments suitably modified and improved, together with some new contributions. The 'intermediate' character is directly introduced in the integral operator K, allowing a more rigorous deduction of the equations for evaluating the intermediate parameters related to the nuclides involved in the system. There is no limit to the number of internal (admixed in the fuel) and external moderators. The capability to take into account the interference scattering has been extended to heterogeneous systems. The Doppler broadening is described by means of new accurate rational approximations to the broadened line shape psi. Finally the use of energy mean values suitably defined refines the values of the resonance integrals and resonance absorption cross sections. The Intermediate Resonance method so extended and improved, has been coded in a group of FORTRAN routines, which have been inserted as a calculation option in the fast section of the GGC code for the evaluation of multigroup cross sections. A series of calculations has been carried out, using these routines, and comparisons have been made with Monte Carlo and Nordheim's methods. The results obtained show that the Intermediate Resonance method developed in the present work offers considerable advantages over Nordheim's method: better accuracy in evaluating resonance absorption cross sections, and much smaller computing times. (author)

  15. Inter- and intra-rater reproducibility of semiautomatic determination of volume parameters in cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Trieb, Thomas; Glodny, Bernhard; Scheiblhofer, Martin; Wolf, Christian; Metzler, Bernhard; Pachinger, Otmar; Jaschke, Werner R.; Schocke, Michael F.H.

    2008-01-01

    Purpose: The purpose of this study was to evaluate inter- and intra-rater reproducibility in volume assessment using cardiac magnetic resonance imaging (CMRI). Methods: Twenty-five healthy volunteers and 106 patients were included into this retrospective study and received CMRI. The patients were divided in three groups (group I, 80 patients with arrhythmia; group II, 20 patients with cardiomyopathy; group III, 6 patients after correction of septum defects). Therefore, the images were semiautomatically segmented by an experienced and an unexperienced radiologists. The analysis of end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV) as well as ejection fraction (EF) and myocardial mass (MM) were performed twice by an experienced and an unexperienced radiologists. The intra-class correlation coefficients (ICC) were determined for the evaluation of inter- and intra-rater variance. Results: The intra-rater reproducibility for determination of EF, ESV, EDV and MM was excellent with ICCs ranging from 0.88 to 0.99 (all p < 0.001). The inter-observer reproducibility for these parameters was also excellent with ICCs ranging from 0.91 to 0.98 (all p < 0.001). The assessment of the SV showed an excellent intra-rater agreement with ICCs of 0.96 and 0.92 (both p < 0.001), but only a moderate ICC for the inter-rater reproducibility (0.54, p < 0.001). Conclusions: Our study shows that assessment of cardiac volumes can be performed on CMRIs with an excellent reproducibility by both experienced and unexperienced investigators

  16. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2017-12-01

    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.

  17. Top partner-resonance interplay in a composite Higgs framework

    Science.gov (United States)

    Yepes, Juan; Zerwekh, Alfonso

    2018-04-01

    Guided us by the scenario of weak scale naturalness and the possible existence of exotic resonances, we have explored in a SO(5) Composite Higgs setup the interplay among three matter sectors: elementary, top partners and vector resonances. We parametrize it through explicit interactions of spin-1 SO(4)-resonances, coupled to the SO(5)-invariant fermionic currents and tensors presented in this work. Such invariants are built upon the Standard Model fermion sector as well as top partners sourced by the unbroken SO(4). The mass scales entailed by the top partner and vector resonance sectors will control the low energy effects emerging from our interplaying model. Its phenomenological impact and parameter spaces have been considered via flavor-dijet processes and electric dipole moments bounds. Finally, the strength of the Nambu-Goldstone symmetry breaking and the extra couplings implied by the top partner mass scales are measured in accordance with expected estimations.

  18. Investigation on the Quality Factor Limit of the (111 Silicon Based Disk Resonator

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2018-01-01

    Full Text Available Quality factor is one of the most important parameters for a MEMS resonator. Most MEMS resonators are dominated by thermoelastic dissipation (TED. This paper demonstrates that the TED in a disk resonator that is made of (111 single-crystal silicon is surpassed by clamping loss. The stiffness-mass decoupling design method, combined with reducing the beam width, was used to engineer high QTED. Experiments show that Q of the (111 disk resonator have an upper boundary that is determined by the clamping loss caused by the unbalanced out-of-plane displacement. The origin of the out-of-plane displacement is explained by theory and simulation.

  19. Resonance Fluorescence of a Trapped Four-Level Atom with Bichromatic Driving

    International Nuclear Information System (INIS)

    Bergou, J.; Jakob, M.; Abranyos, Y.

    1999-01-01

    The resonance fluorescence spectrum of a bichromatically driven four-level atom is polarization dependent. Very narrow lines occur in the incoherent parts of the spectrum for polarization directions which are different from that of the driving fields. The degree of squeezing has a maximum of 56% which should make it easily observable. The second-order correlation function exhibits anti bunching for zero time delay and strong super bunching for certain values of the interaction parameter and time delay. For these parameters resonant two-photon emission takes place in the form of polarization entangled photon pairs. The system can be a novel source of photons in the EPR and/or Bell states. Some experiments will be proposed which make use of this unique source. (Authors)

  20. Parametric resonance in superconducting micron-scale waveguides

    International Nuclear Information System (INIS)

    Fomin, N.V.; Shalaev, O.L.; Shantsev, D.V.

    1997-01-01

    A parametric resonance due to temperature oscillations in superconducting micron-scale waveguides is considered. Oscillations of superconductor temperature are assumed to be induced by the irradiation of the waveguide with a laser beam. The laser power and parameters of the waveguide providing a possibility of parametric excitation have been calculated. It is shown that for a waveguide made of a YBa 2 Cu 3 O 7 microstrip with resonant frequency of 10 GHz a laser with a power of about 70 W/cm 2 is needed to excite oscillations. The effect can be used for the creation of high-sensitivity tuneable filters and optoelectric transformers on superconducting microstrips in the GHz range. copyright 1997 American Institute of Physics

  1. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    shape and a zero-response frequency result for the ME coefficient. The zero-response oscillator frequency may be below or above the resonance frequency. The calculated FEM resonance line shapes are fitted successfully to a superposition function of a constant component and a resonant component with a Lorentzian line shape. Equivalence of the superposition function line shape to a Fano resonance profile is derived for frequencies around the resonance. Fano resonances are ubiquitous in physics occurring due to the constructive and destructive quantum interference of two different scattering pathways, e.g., for photons or electrons. The superposition fit parameters describing the resonance line shape are calculated as a function of the cantilever substrate thickness. The inclusion of loss by adjustment of the damping parameter is discussed. The results derived here also are applicable to higher order modes or longitudinal resonance modes.

  2. arXiv Gravitational wave production from preheating -- parameter dependence

    CERN Document Server

    Figueroa, Daniel G.

    2017-10-31

    Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q. The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q. We present an analytical derivation of the GW amplitude dependence on q, valid for any scenario, which we confront against numerical results. By running lattice simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q. The GW si...

  3. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-01-01

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  4. Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films

    Science.gov (United States)

    Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2013-06-01

    A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.

  5. Efficient Approach for Harmonic Resonance Identification of Large Wind Power Plants

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    Unlike conventional power systems where the resonance frequencies are mainly determined by the passive components parameters, large Wind Power Plants (WPPs) may introduce additional harmonic resonances because of the interactions of the wideband control systems of power converters with each other...... and with passive components. This paper presents an efficient approach for identification of harmonic resonances in large WPPs containing power electronic converters, cable, transformer, capacitor banks, shunt reactors, etc. The proposed approach introduces a large WPP as a Multi-Input Multi-Output (MIMO) control...... system by considering the linearized models of the inner control loops of grid-side converters. Therefore, the resonance frequencies of the WPP resulting from passive components and the control loop interactions are identified based on the determinant of the transfer function matrix of the introduced...

  6. Resonant Tunnelling in Barrier-in-Well and Well-in-Well Structures

    International Nuclear Information System (INIS)

    Jiang-Hong, Yao; Zhang-Yan; Wei-Wu, Li; Yong-Chun, Shu; Zhan-Guo, Wang; Jing-Jun, Xu; Guo-Zhi, Jia

    2008-01-01

    A Schrödinger equation is solved numerically for a barrier in a quantum well and a quantum well in another well structure by the transfer matrix technique. Effect of structure parameters on the transmission probabilities is investigated in detail. The results suggest that symmetry plays an important role in the coupling effect between the quantum wells. The relationship between the width of the inner well and the resonant energy levels in well-in-well structures is also studied. It is found that the ground state energy and the second resonant energy decrease with increasing width of the inner well, while the first resonant energy remains constant

  7. Capture into resonance and phase-space dynamics in an optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-04-01

    The process of capture of a molecular ensemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase-space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 ,2 characterizing the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.

  8. An Enhanced Plane Wave Expansion Method to Solve Piezoelectric Phononic Crystal with Resonant Shunting Circuits

    Directory of Open Access Journals (Sweden)

    Ziyang Lian

    2016-01-01

    Full Text Available An enhanced plane wave expansion (PWE method is proposed to solve piezoelectric phononic crystal (PPC connected with resonant shunting circuits (PPC-C, which is named as PWE-PPC-C. The resonant shunting circuits can not only bring about the locally resonant (LR band gap for the PPC-C but also conveniently tune frequency and bandwidth of band gaps through adjusting circuit parameters. However, thus far, more than one-dimensional PPC-C has been studied just by Finite Element method. Compared with other methods, the PWE has great advantages in solving more than one-dimensional PC as well as various lattice types. Nevertheless, the conventional PWE cannot accurately solve coupling between the structure and resonant shunting circuits of the PPC-C since only taking one-way coupling from displacements to electrical parameters into consideration. A two-dimensional PPC-C model of orthorhombic lattice is established to demonstrate the whole solving process of PWE-PPC-C. The PWE-PPC-C method is validated by Transfer Matrix method as well as Finite Element method. The dependence of band gaps on circuit parameters has been investigated in detail by PWE-PPC-C. Its advantage in solving various lattice types is further illustrated by calculating the PPC-C of triangular and hexagonal lattices, respectively.

  9. Resonant frequency analysis on an electrostatically actuated microplate under uniform hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Zhikang; Zhao Libo; Ye Zhiying; Zhao Yulong; Jiang Zhuangde; Wang Hongyan

    2013-01-01

    The resonant frequency of a microplate is influenced by various physical parameters such as mass, surface stress, hydrostatic pressure and electrostatic force. In this paper, the effects of both electrostatic force and uniform hydrostatic pressure on the resonant frequency of a clamped circular microplate are investigated. An approximate solution is derived for the fundamental resonance frequency of the mciroplate under both types of loads using an energy equivalent method. It is found that both electrostatic force and uniform hydrostatic pressure decrease the resonant frequency of the microplate under small deflections. Additionally, the linearized expression of this solution shows that the resonant frequency varies linearly with pressure in the low and ultra-low range, and the corresponding pressure sensitivity depends on the voltage applied to the microplate. The analytical results are well validated by the finite element method. This study may be helpful for the design and optimization of electrostatically actuated resonance devices based on microplates, especially electrostatically actuated low- or ultra-low-pressure sensors. (paper)

  10. Optimal experiment design for magnetic resonance fingerprinting.

    Science.gov (United States)

    Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L

    2016-08-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.

  11. Array-Enhanced Coherence Resonance: Nontrivial Effects of Heterogeneity and Spatial Independence of Noise

    International Nuclear Information System (INIS)

    Zhou, Changsong; Kurths, Juergen; Hu, Bambi

    2001-01-01

    We demonstrate the effect of coherence resonance in a heterogeneous array of coupled Fitz Hugh--Nagumo neurons. It is shown that coupling of such elements leads to a significantly stronger coherence compared to that of a single element. We report nontrivial effects of parameter heterogeneity and spatial independence of noise on array-enhanced coherence resonance; especially, we find that (i) the coherence increases as spatial correlation of the noise decreases, and (ii) inhomogeneity in the parameters of the array enhances the coherence. Our results have the implication that generic heterogeneity and background noise can play a constructive role to enhance the time precision of firing in neural systems

  12. Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator

    DEFF Research Database (Denmark)

    Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper

    1991-01-01

    An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...

  13. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    Science.gov (United States)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  14. Plasmon resonance in multilayer graphene nanoribbons

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Wang, Di; Chung, Ting Fung

    2015-01-01

    Plasmon resonances in nanopatterned single-layer graphene nanoribbons (SL-GNRs), double-layer graphene nanoribbons (DL-GNRs) and triple-layer graphene nanoribbons (TL-GNRs) are studied experimentally using 'realistic' graphene samples. The existence of electrically tunable plasmons in stacked...... multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNRs when compared to SL-GNRs. However, further increase was not observed in TL-GNRs when compared to DL-GNRs. We carried out systematic full......-wave simulations using a finite-element technique to validate and fit experimental results, and extract the carrier-scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet...

  15. Impact of resonance decays on critical point signals in net-proton fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Marcus; Schaefer, Thomas [North Carolina State University, Department of Physics, Raleigh, NC (United States); Nahrgang, Marlene [SUBATECH, UMR 6457, Universite de Nantes, Ecole des Mines de Nantes, IN2P3/CNRS, Nantes (France); Duke University, Department of Physics, Durham, NC (United States); Bass, Steffen A. [Duke University, Department of Physics, Durham, NC (United States)

    2017-04-15

    The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants. (orig.)

  16. The Combined Internal and Principal Parametric Resonances on Continuum Stator System of Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    Baizhou Li

    2014-01-01

    Full Text Available With the increasing requirement of quiet electrical machines in the civil and defense industry, it is very significant and necessary to predict the vibration and noise characteristics of stator and rotor in the early conceptual phase. Therefore, the combined internal and principal parametric resonances of a stator system excited by radial electromagnetic force are presented in this paper. The stator structure is modeled as a continuum double-shell system which is loaded by a varying distributed electromagnetic load. The nonlinear dynamic equations are derived and solved by the method of multiple scales. The influences of mechanical and electromagnetic parameters on resonance characteristics are illustrated by the frequency-response curves. Furthermore, the Runge-Kutta method is adopted to numerically analyze steady-state response for the further understanding of the resonance characteristics with different parameters.

  17. On effect of stability of magnetic resonance position by harmonized field

    International Nuclear Information System (INIS)

    Ivanchenko, E.A.; Tolstoluzhsky, A.P.

    2006-01-01

    The formalism of density matrix in a two level system is used to study the time-periodic modulation of the magnetic field stabilizating the magnetic resonance position. An exact solution for density matrix at resonance is found. It is shown that the fundamental resonance is stable with respect to consistent variations of longitudinal and transversal magnetic fields. A differential equation for the transition probability is obtained. The dependence of time-averaged spin flip probability on the normalized Larmor frequency was numerically researched in different parameter regimes with account of dissipation and decoherence. It is shown that the position of the main resonance is independent of field deformation and dissipation; only the width of resonance line changes upon field deformation and dissipation. The odd parametric (multi-photon) resonance transitions is studied. Static magnetization induced by time-periodic modulated magnetic field is considered. The results of the investigation may be useful for analysis of interference experiments, improvement of magnetic spectrometers and in the field of quantum computing manipulation of q-bits

  18. Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle

    International Nuclear Information System (INIS)

    Jian-Peng, Wang; Yun-Xia, Jin; Jian-Yong, Ma; Jian-Da, Shao; Zheng-Xiu, Fan

    2010-01-01

    Guided-mode resonance in a diffraction band of multilayer dielectric gratings may lead to a catastrophic result in laser system, especially in the ultrashort pulse laser system, so the inhibition of guided-mode resonance is very important. In this paper the characteristics of guided-mode resonance in multilayer dielectric grating are studied with the aim of better understanding the physical process of guided-mode resonance and designing a broadband multilayer dielectric grating with no guided-mode resonance. By employing waveguide theory, all guided-wave modes appearing in multilayer dielectric grating are found, and the incident conditions, separately, corresponding to each guided-wave mode are also obtained. The electric field enhancement in multilayer dielectric grating is shown obviously. Furthermore, from the detailed analyses on the guided-mode resonance conditions, it is found that the reduction of the grating period would effectively avoid the appearing of guided-mode resonance. And the expressions for calculating maximum periods, which ensure that no guided-mode resonance occurs in the requiring broad angle or wavelength range, are first reported. The above results calculated by waveguide theory and Fourier mode method are compared with each other, and they are coincident completely. Moreover, the method that relies on waveguide theory is more helpful for understanding the guided-mode resonance excited process and analyzing how each parameter affects the characteristic of guided-mode resonance. Therefore, the effects of multilayer dielectric grating parameters, such as period, fill factor, thickness of grating layer, et al., on the guided-mode resonance characteristic are discussed in detail based on waveguide theory, and some meaningful results are obtained. (classical areas of phenomenology)

  19. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    Science.gov (United States)

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Progress on reference input parameter library for nuclear model calculations of nuclear data (III)

    International Nuclear Information System (INIS)

    Su Zongdi; Liu Jianfeng; Huang Zhongfu

    1997-01-01

    A new set of the average neutron resonance spacings D 0 and neutron strength functions S 0 for 309 nuclei were reestimated on the basis of the resolved resonance parameters reevaluated from BNL-325, ENDF/B-6, JEF-2, and JENDL-3, and the cumulative number N 0 of low low lying levels for 344 nuclei were also reevaluated by means of histograms. Three sets of level density parameters for the Gilbert-Cameron (GC) formula, back-shifted Fermi gas model(BS) and generated superfluid model (GSM) have been reesitmated by fitting the D 0 and N 0 values of CENPL.LRD-2

  1. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low residual resistance ratio (RRR) niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR = 190 niobium increased noticeably from the theoretical value if the cooling rate was slower than ∼ 10 K/min. (author)

  2. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  3. Simultaneous analysis of fission and capture cross section with Adler-Adler resonance formula

    International Nuclear Information System (INIS)

    Cao Hengdao; Qiu Guochun

    1989-01-01

    The method of simultaneous analysis of fission and capture cross section for fissile nuclide with Adler-Adler resonance formula and the corresponding computer code are presented. A simple and convenient method to correct parameters μ, γ simultaneously is given in order to acquire optimized parameters. The results are satisfactory

  4. Evaluation of Cm-247 neutron cross sections in the resonance region

    International Nuclear Information System (INIS)

    Martinelli, T.; Menapace, E.; Motta, M.; Vaccari, M.

    1980-01-01

    The neutron cross sections of Cm-247 are evaluated in the resonance (resolved and unresolved) region up to 10 keV. Average resonance parameters (i.e. spacing D, fission and radiative widths, neutron strength functions) are determined for unresolved region calculations. Moreover for a better comparison with the experimental data, fission cross section is calculated up to 10 MeV. In addition, the average number of neutrons emitted per fission as a function of energy is estimated

  5. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1992-01-01

    The use of 14 N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14 N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14 N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation

  6. Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations

    Science.gov (United States)

    Fistul, M. V.

    2002-03-01

    We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing small Josephson junctions. The current-voltage characteristics of such systems display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that in the quantum regime as the system is driven on the resonance, coherent Rabi oscillations between the quantum levels of EOs occur. At variance with the classical regime the magnitude and the width of resonances are determined by the frequency of Rabi oscillations that in turn, depends in a peculiar manner on an externally applied magnetic field and the parameters of the system.

  7. Resonant activation in 2D and 3D systems driven by multi-variate Lévy noise

    International Nuclear Information System (INIS)

    Szczepaniec, Krzysztof; Dybiec, Bartłomiej

    2014-01-01

    Resonant activation is one of the classical effects demonstrating the constructive role of noise. In resonant activation, the cooperative action of a barrier modulation process and noise lead to the optimal escape kinetics as measured by the mean first passage time. Resonant activation has been observed in versatile systems for various types of barrier modulation process and noise type. Here, we show that resonant activation is also observed in 2D and 3D systems driven by bi-variate and tri-variate α-stable noise. The strength of resonant activation is sensitive to the exact value of the noise parameters. In particular, the decrease in the stability index α results in the disappearance of the resonant activation. (paper)

  8. Panels with low-Q-factor resonators with theoretically infinite sound-proofing ability at a single frequency

    Science.gov (United States)

    Lazarev, L. A.

    2015-07-01

    An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.

  9. Capture into resonance and phase space dynamics in optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  10. The performance of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury: a meta-analysis.

    Science.gov (United States)

    Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J

    2015-06-01

    The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.

  11. Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface

    Science.gov (United States)

    Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin

    2018-05-01

    In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.

  12. On the role of resonances in double-mode pulsation

    International Nuclear Information System (INIS)

    Dziembowski, W.; Kovacs, G.

    1984-01-01

    Simultaneous effects of resonant coupling and non-linear saturation of linear driving mechanism on the finite amplitude solution of multi-modal pulsation problem and on its stability are investigated. Both effects are calculated in the lowest order of approximation in terms of amplitudes. It is shown that the 2:1 resonance between one of the two linearly unstable modes and a higher frequency mode causes double-mode (fundamental and first overtone) pulsation. In a certain range of parameters, such as the frequency mismatch, the linear growth and damping rates, it is the only stable solution of the problem. (author)

  13. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  14. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    International Nuclear Information System (INIS)

    Liguori, Carlo; Pitocco, Francesca; Di Giampietro, Ilenia; Vivo, Aldo Eros de; Schena, Emiliano; Cianciulli, Paolo; Zobel, Bruno Beomonte

    2013-01-01

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients

  15. Effect of Initial Curvature on the Static and Dynamic Behavior of MEMS Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2017-11-03

    In this paper, we investigate experimentally and analytically the effect of the initial shape, arc and cosine wave, on the static and dynamic behavior of microelectromechanical (MEMS) resonators. We show that by carefully choosing the geometrical parameters and the shape of curvature, the veering phenomenon (avoided-crossing) between the first two symmetric modes can be activated. To demonstrate this concept, we study electrothermally tuned and electrostatically driven MEMS initially curved resonators. Applying electrothermal voltage heats up the beams and then increases their curvature (stiffness) and controls their resonance frequencies. While changing the electrothermal voltage, we demonstrate high frequency tunability of arc resonators compared to the cosine-configuration resonators for the first and third resonance frequencies. For arc beams, we show that the first resonance frequency increases up to twice its fundamental value and the third resonance frequency decreases until getting very close to the first resonance frequency triggering the veering phenomenon. Around the veering regime, we study experimentally and analytically, using a reduced order model based on a nonlinear Euler-Bernoulli shallow arch beam model, the dynamic behavior of the arc beam for different electrostatic forcing.

  16. Dynamic range of atomically thin vibrating nanomechanical resonators

    International Nuclear Information System (INIS)

    Wang, Zenghui; Feng, Philip X.-L.

    2014-01-01

    Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E Y 3/2 ρ 3D -1/2 rtε 5/2 ) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies

  17. Effect of inflation on parametric resonance during preheating

    International Nuclear Information System (INIS)

    Hirai, Shiro

    2002-01-01

    The effect of inflation on parametric resonance during preheating is investigated. The behaviour of the preheating scalar field during inflation is investigated and is found to become squeezed in cases ranging from small-scale cases to large-scale cases. However, the positive-frequency solution is usually adopted in the initial condition of the scalar field at preheating. Although large squeezing occurs during inflation, the difference in the comoving occupation number of particles n k between two initial conditions is shown to be not so large. Rather, the ratio n k varies from 0.2 to 5.0, depending on k. In order to clarify this situation, we introduce the squeeze formulation. The squeeze parameters r and φ are calculated not only in preheating, but also in inflation. Since the squeeze parameters are calculated from inflation to preheating, we can clarify the behaviour of the parametric resonance. In preheating, the behaviour of r is shown to remain relatively unchanged with respect to k; however, the squeeze angle φ displays different behaviour for large-scale cases and small-scale cases

  18. A study on axial and torsional resonant mode matching for a mechanical system with complex nonlinear geometries

    Science.gov (United States)

    Watson, Brett; Yeo, Leslie; Friend, James

    2010-06-01

    Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes significantly more complex. In this paper, two novel modeling techniques are demonstrated to extract the axial and torsional resonant frequencies of a complex nonlinear geometry. The first decomposes the complex geometry into easy to model components, while the second uses scaling techniques combined with the finite element method. Both models overcome problems associated with using current analytical methods as design tools, and enable a full investigation of how changes in the geometric parameters affect the resonant frequencies of interest. The benefit of such models is then demonstrated through their use in the design of a prototype piezoelectric ultrasonic resonant micromotor which has improved performance characteristics over previous prototypes.

  19. Modelling the dynamic mechanisms associated with the principal resonance of the seated human body.

    Science.gov (United States)

    Matsumoto, Y; Griffin, M J

    2001-01-01

    Simple mathematical models have been developed to obtain insights into resonance phenomena observed at about 5 Hz in the dynamic responses of the seated human body exposed to vertical whole-body vibration. Alternative lumped parameter models with a few degrees-of-freedom have been investigated. Rotational degrees-of-freedom, with eccentricity of the centre of gravity of the mass elements, represented responses in the fore-and-aft and pitch axes caused by vertical vibration. The causes of body resonance are not fully understood, but this information is required to develop cause-effect relationships between vibration exposures and effects on human health, comfort and performance.Method. The inertial and geometric parameters for models were based on published anatomical data. Other mechanical parameters were determined by comparing model responses to experimental data. Two models, with four and five degrees-of-freedom, gave more reasonable representations than other models. Mechanical parameters obtained with median and individual experimental data were consistent for vertical degrees-of-freedom but varied for rotational degrees-of-freedom. The resonance of the apparent mass at about 5 Hz may be attributed to a vibration mode consisting of vertical motion of the pelvis and legs and a pitch motion of the pelvis, both of which cause vertical motion of the upper-body above the pelvis, a bending motion of the spine, and vertical motion of the viscera. The mathematical models developed in this study may assist understanding of the dynamic mechanisms responsible for resonances in the seated human body. The information is required to represent mechanical responses of the body and assist the development of models for specific effects of vibration.

  20. ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances

    International Nuclear Information System (INIS)

    Fort, E.

    1982-01-01

    1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions

  1. Application of the resonant 52(p,γ)53Mn reaction to the measurement of chromium depth distributions

    International Nuclear Information System (INIS)

    Switkowski, Z.E.; Petty, R.J.; Clark, G.J.

    1979-01-01

    A resonance in the 52 Cr(p,γ) 53 Mn reaction has been investigated as a probe for the quantitative determination of chromium depth distributions. The relevant nuclear parameters of this resonance were measured to be: resonance energy, Esub(p)1005.2 +- 0.2 keV, total width GAMMA < 100 eV, and resonance strength, (2J+1)GAMMAsub(p)GAMMAsub(γ)/GAMMA = 0.89 +-0.11 eV. As an example of the use of the nuclear resonance technique, the chromium profile of an electroplated chrome black solar absorber surface has been studied and the results are presented

  2. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    International Nuclear Information System (INIS)

    Hoffmann, Elisabeth Christiane Maria

    2013-01-01

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work presents the theoretical background, the fabrication techniques and

  3. Applications of the Hybrid Theory to the Scattering of Electrons from HE+ and Li++ and Resonances in these Systems

    Science.gov (United States)

    Bhatia, Anand K.

    2008-01-01

    Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.

  4. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    Science.gov (United States)

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  5. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J. [Departamento de Física Aplicada, University of Salamanca, E-37071 Salamanca (Spain); Garcia, J.; Vega, V.; Prida, V. M. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  6. Misalignment sensitivity in an intra-cavity coherently combined crossed-Porro resonator configuration

    Science.gov (United States)

    Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.

    2017-08-01

    We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.

  7. Magnetic resonance imaging of chemistry.

    Science.gov (United States)

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  8. Circuit modification and research of operation modes of high-frequency pulsed resonant converter of the X-ray tube power supply

    Science.gov (United States)

    Klonov, V. V.; Larionov, I. A.; Bessonov, V. B.

    2018-02-01

    Despite obvious drawbacks of the resonant converter, such as complicated calculation, increased size and weight of the device, deviations of the circuit parameters from product to product, the resonant converter shows significant advantages in comparison with other. The task was to design the generator, which is built on a resonant topology.

  9. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  10. Neutron strength functions: the link between resolved resonances and the optical model

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1980-01-01

    Neutron strength functions and scattering radii are useful as energy and channel radius independent parameters that characterize neutron scattering resonances and provide a connection between R-matrix resonance analysis and the optical model. The choice of R-matrix channel radii is discussed, as are limitations on the accuracies of strength functions. New definitions of the p-wave strength function and scattering radius are proposed. For light nuclei, where strength functions display optical model energy variations over the resolved resonances, a doubly reduced partial neutron width is introduced for more meaningful statistical analyses of widths. The systematic behavior of strength functions and scattering radii is discussed

  11. Experimental results of high power dual frequency resonant magnet excitation at TRIUMF

    International Nuclear Information System (INIS)

    Reiniger, K.W.; Heritier, G.

    1988-06-01

    We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)

  12. Deconvolution of ferromagnetic resonance in devitrification process of Co-based amorphous alloys

    International Nuclear Information System (INIS)

    Montiel, H.; Alvarez, G.; Betancourt, I.; Zamorano, R.; Valenzuela, R.

    2006-01-01

    Ferromagnetic resonance (FMR) measurements were carried out on soft magnetic amorphous ribbons of composition Co 66 Fe 4 B 12 Si 13 Nb 4 Cu prepared by melt spinning. In the as-cast sample, a simple FMR spectrum was apparent. For treatment times of 5-20 min a complex resonant absorption at lower fields was detected; deconvolution calculations were carried out on the FMR spectra and it was possible to separate two contributions. These results can be interpreted as the combination of two different magnetic phases, corresponding to the amorphous matrix and nanocrystallites. The parameters of resonant absorptions can be associated with the evolution of nanocrystallization during the annealing

  13. Complex basis functions for molecular resonances: Methodology and applications

    Science.gov (United States)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  14. A statistical model for combustion resonance from a DI diesel engine with applications

    Science.gov (United States)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  15. Contribution to the study of the unresolved resonance range of the neutrons cross sections

    International Nuclear Information System (INIS)

    Noguere, Gilles

    2014-01-01

    This document presents the statistical description of neutron cross sections in the unresolved resonance range. The modeling of the total cross section and of the 'shape - elastic' cross section is based on the 'average R-Matrix' formalism. The partial cross sections describing the radiative capture, elastic scattering, inelastic scattering and fission process are calculated using the Hauser-Feshbach formalism with width fluctuation corrections. In the unresolved resonance range, these models depend on the average resonance parameters (neutron strength function Sc, mean level spacing D c , average partial reaction widths Γ c , channel radius a c , effective radius R' and distant level parameter R-bar c ∞ ). The codes (NJOY, CALENDF...) dedicated to the processing of nuclear data libraries (JEFF, ENDF/B, JENDL, CENDL, BROND... ) use the average parameters to take into account the self-shielding phenomenon for the simulation of the neutron transport in Monte-Carlo (MCNP, TRIPOLI... ) and deterministic (APOLLO, ERANOS...) codes. The evaluation work consists in establishing a consistent set of average parameters as a function of the total angular momentum J of the system and of the orbital moment of the incident neutron l. The work presented in this paper aims to describe the links between the S-Matrix and the 'average R-Matrix' formalism for the calculation of Sc, R-bar c ∞ , ac and R'. (author) [fr

  16. Data mining with unsupervised clustering using photonic micro-ring resonators

    Science.gov (United States)

    McAulay, Alastair D.

    2013-09-01

    Data is commonly moved through optical fiber in modern data centers and may be stored optically. We propose an optical method of data mining for future data centers to enhance performance. For example, in clustering, a form of unsupervised learning, we propose that parameters corresponding to information in a database are converted from analog values to frequencies, as in the brain's neurons, where similar data will have close frequencies. We describe the Wilson-Cowan model for oscillating neurons. In optics we implement the frequencies with micro ring resonators. Due to the influence of weak coupling, a group of resonators will form clusters of similar frequencies that will indicate the desired parameters having close relations. Fewer clusters are formed as clustering proceeds, which allows the creation of a tree showing topics of importance and their relationships in the database. The tree can be used for instance to target advertising and for planning.

  17. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 1. Resonant spin-flavor precession constraints on the neutrino parameters and the twisting structure of the solar magnetic fields from the solar neutrino data. S Dev Jyoti Dhar Sharma U C Pandey S P Sud B C Chauhan. Research Articles Volume 61 Issue 1 ...

  18. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  19. Efimov Physics and the Three-Body Parameter within a Two-Channel Framework

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2012-01-01

    scaling laws. We recover known results for broad Feshbach resonances with small effective range, whereas in the case of narrow resonances we find a distinct non-monotonic behavior of the threshold at which the lowest Efimov trimer merges with the three-body continuum. To address the issue of the physical...... origin of the three-body parameter we provide a physically clear model for the relation between three-body physics and typical two-body atom-atom interactions. Our results demonstrate that experimental information from narrow Feshbach resonances and/or mixed systems are of vital importance to pin down...... the relation of two- and three-body physics in atomic systems....

  20. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    Science.gov (United States)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  1. Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Alexander [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Wang, Weiwei [Department of Physics, Ningbo University, Ningbo, 315211 China (China); Zhang, Shilei [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Bisotti, Marc-Antonio; Franchin, Matteo [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Hu, Chun Lian; Stamps, Robert [SUPA School of Physics and Astronomy, University of Glasgow, G12, Glasgow, 8QQ United Kingdom (United Kingdom); Hesjedal, Thorsten, E-mail: t.hesjedal1@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Fangohr, Hans [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom)

    2017-01-01

    Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general. - Highlights: ●Micromagnetic standard problem for FerroMagnetic Resonance (FMR). ●Overview of FMR simulation techniques. ●Define reproducible test problem with ring down method. ●Example configuration files, scripts and post processing for OOMMF and NMag. ●Code and data available in Ref. [23].

  2. Thin Co films with tunable ferromagnetic resonance frequency

    International Nuclear Information System (INIS)

    Maklakov, Sergey S.; Maklakov, Sergey A.; Ryzhikov, Ilya A.; Rozanov, Konstantin N.; Osipov, Alexey V.

    2012-01-01

    The tailored production of thin Co films of 50 nm thick with ferromagnetic resonance frequency in a range from 2.9 to 7.3 GHz using the DC magnetron sputtering is reported. The ferromagnetic resonance frequency, coercivity, effective magnetic field and nanocrystalline structure parameters are shown to be governed by the Co deposition rate. For this investigation, FMR, VSM and TEM techniques were used. - Highlights: ► Thin Co films with FMR frequency in a range from 2.9 to 7.3 GHz are obtained. ► The films' properties are governed by the deposition rate during DC magnetron sputtering. ► FMR, VSM and TEM techniques were used during the study.

  3. Effects of Heavy Ions on ULF Wave Resonances Near the Equatorial Region

    International Nuclear Information System (INIS)

    Lee, D.-H.; Johnson, J.R.; Kim, K.; Kim, K.-S.

    2008-01-01

    Pc1-2 ULF waves are strongly associated with the presence of various ions in the magnetosphere. We investigate the role of heavy ion resonances in nonuniform plasmas near the equatorial region. By adopting the invariant imbedding method, the coupled plasma wave equations are solved in an exact manner to calculate the resonant absorption at the ion-ion hybrid resonance. Our results show that irreversible mode conversion occurs at the resonance, which absorbs the fast wave energy. It is found that waves near the resonances appear with linear polarization, and their amplitude and frequency are sensitive to the properties of the heavy ion plasma composition. We examine how these resonances occur for various H+ - He+ populations in detail by performing an accurate calculation of the mode conversion efficiency. Because the multi-ion hybrid resonance locations in cold plasmas are determined by simple parameters such as the fraction of the ion number density of each species and the magnetic field, we suggest that it is possible to monitor heavy ion composition by examining the peak frequencies of linearly polarized wave events in either electric field or magnetic field spectral data

  4. Effects of Heavy Ions on ULF Wave Resonances Near the Equatorial Region

    Energy Technology Data Exchange (ETDEWEB)

    D.-H.Lee, J.R. Johnson, K. Kim and K.-S.Kim

    2008-11-20

    Pc1-2 ULF waves are strongly associated with the presence of various ions in the magnetosphere. We investigate the role of heavy ion resonances in nonuniform plasmas near the equatorial region. By adopting the invariant imbedding method, the coupled plasma wave equations are solved in an exact manner to calculate the resonant absorption at the ion-ion hybrid resonance. Our results show that irreversible mode conversion occurs at the resonance, which absorbs the fast wave energy. It is found that waves near the resonances appear with linear polarization, and their amplitude and frequency are sensitive to the properties of the heavy ion plasma composition. We examine how these resonances occur for various H+ - He+ populations in detail by performing an accurate calculation of the mode conversion effciency. Because the multi-ion hybrid resonance locations in cold plasmas are determined by simple parameters such as the fraction of the ion number density of each species and the magnetic field, we suggest that it is possible to monitor heavy ion composition by examining the peak frequencies of linearly polarized wave events in either electric field or magnetic field spectral data.

  5. Resonance neutron capture in 23Na and 27Al from 3 to 600 keV

    International Nuclear Information System (INIS)

    Musgrove, A.R. de L.; Allen, B.J.; Macklin, R.L.

    1978-01-01

    The radiative capture cross sections of 23 Na and 27 Al were measured with the high resolution facility at the 40 m station of the Oak Ridge Electron Linear Accelerator. Resonance parameters for the individual resonances below 600 keV are given. Particular care was taken to correct the data for prompt neutron scattering effects by Monte Carlo methods

  6. Tunable wavelength demultiplexer using modified graphene plasmonic split ring resonators for terahertz communication

    Science.gov (United States)

    Joshi, Neetu; Pathak, Nagendra P.

    2018-02-01

    This paper presents graphene modified ring resonator based wavelength demultiplexer (WDM) for THz device applications that is, a surface plasmon polaritons (SPPs) demultiplexer consisting of two nanostrip waveguides at input as well as output coupled to each other by a split ring resonator (SRR), which is modified in shape as compared to a simple ring-shaped resonator. A systematic analysis of the transmission spectra for the graphene based SRR poses clear insight on the demultiplexing phenomenon of the proposed nanodevice. The results show resonance peaks in the transmission spectrum, having a linear relationship with the chemical potential of graphene. The influence of structural parameters have also been analyzed. The tuning capability of graphene based tunable WDM, lays its foundation in the applications of optical switches, modulators, etc.

  7. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the ...

  8. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    2012-03-02

    Mar 2, 2012 ... Abstract. We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter α and the ...

  9. Buncher system parameter optimization

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1981-01-01

    A least-squares algorithm is presented to calculate the RF amplitudes and cavity spacings for a series of buncher cavities each resonating at a frequency that is a multiple of a fundamental frequency of interest. The longitudinal phase-space distribution, obtained by particle tracing through the bunching system, is compared to a desired distribution function of energy and phase. The buncher cavity parameters are adjusted to minimize the difference between these two distributions. Examples are given for zero space charge. The manner in which the method can be extended to include space charge using the 3-D space-charge calculation procedure is indicated

  10. Non-stationarity of resonance signals from magnetospheric and ionospheric plasmas

    International Nuclear Information System (INIS)

    Higel, Bernard

    1975-01-01

    Rocket observations of resonance signals from ionospheric plasma were made during EIDI relaxation sounding experiments. It appeared that their amplitude, phase, and frequency characteristics are not stationary as a function of the receipt time. The measurement of these nonstationary signals increases the interest presented by resonance phenomena in spatial plasma diagnostics, but this measurement is not easy for frequency non-stationarities. A new method, entirely numerical, is proposed for automatic recognition of these signals. It will be used for the selecting and real-time processing of signals of the same type to be observed during relaxation sounding experiments on board of the futur GEOS satellite. In this method a statistical discrimination is done on the values taken by several parameters associated with the non-stationarities of the observed resonance signals [fr

  11. A practical iterative PID tuning method for mechanical systems using parameter chart

    Science.gov (United States)

    Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.

    2017-10-01

    In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.

  12. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  13. The influence of the whispering gallery modes resonators shape on their sensitivity to the movement

    Science.gov (United States)

    Filatov, Yuri V.; Govorenko, Ekaterina V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2017-05-01

    The optical whispering gallery modes resonators are axially symmetrical resonators with smooth edges, supporting the existence of the whispering gallery modes by the total internal reflection on the surface of the resonator. For today various types of such resonators were developed, namely the ball-shaped, tor-shaped, bottle-shaped, disk-shaped etc. The movement of whispering gallery modes resonators in inertial space causes the changes of their shape. The result is a spectral shift of the whispering gallery modes. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement on a miscellaneous. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. This work is devoted to a research of these aspects.

  14. TIMS-1: a processing code for production of group constants of heavy resonant nuclei

    International Nuclear Information System (INIS)

    Takano, Hideki; Ishiguro, Yukio; Matsui, Yasushi.

    1980-09-01

    The TIMS-1 code calculates the infinitely dilute group cross sections and the temperature dependent self-shielding factors for arbitrary values of σ 0 and R, where σ 0 is the effective background cross section of potential scattering and R the ratio of the atomic number densities for two resonant nuclei if any. This code is specifically programmed to use the evaluated nuclear data file of ENDF/B or JENDL as input data. In the unresolved resonance region, the resonance parameters and the level spacings are generated by using Monte Carlo method from the Porter-Thomas and Wigner distributions respectively. The Doppler broadened cross sections are calculated on the ultra-fine lethargy meshes of about 10 -3 -- 10 -5 using the generated and resolved resonance parameters. The effective group constants are calculated by solving the neutron slowing down equation with the use of the recurrence formula for the neutron slowing down source. The output of the calculated results is given in a format being consistent with the JAERI-Fast set (JFS) or the Standard Reactor Analysis Code (SRAC) library. Both FACOM 230/75 and M200 versions of TIMS-1 are available. (author)

  15. Tailoring stress in pyrolytic carbon for fabrication of nanomechanical string resonators

    DEFF Research Database (Denmark)

    Quang, Long Nguyen; Larsen, Peter Emil; Boisen, Anja

    2018-01-01

    In order to achieve high resonance frequencies and quality factors of pyrolytic carbon MEMS string resonators the resonator material needs to have a large tensile stress. In this study, the influence of pyrolysis temperature, dwell time and ramping rate on the residual stress in thin pyrolytic...... carbon films is investigated with the bending plate method. The results show that the pyrolysis temperature is the most important parameter for tailoring the residual stress, with a transition from tensile stress at temperature below 800ºC to compressive stress at temperatures above 800ºC. Two kinds...... of photoresist: positive (AZ5214E) and negative (SU-8) and different pyrolysis conditions are used to fabricate pyrolytic carbon string resonators at variable pyrolysis conditions. The best performance is obtained for devices with a length of 400 µm fabricated at a pyrolysis temperature of 700ºC, ramping rate...

  16. Magnetic structure and resonance properties of hexagonal antidot lattice

    International Nuclear Information System (INIS)

    Marchenko, A.I.; Krivoruchko, V.N.

    2012-01-01

    Static and resonance properties of ferromagnetic films with an antidot lattice (pores in the film) are studied. The description of the system is based on micromagnetic modeling and analytical solution of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters are investigated. The dependences of a dynamic system response on frequency at fixed magnetic field and on field at fixed frequency, when the field changes cause the static magnetic order to change are explored. It is found that the specific peculiarities of the system dynamics leave unchange for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown the angular field dependences of each mode are characterized by a twofold symmetry and the related easy axes are mutually rotated by 60 degrees. As the result, a hexagonal symmetry of the system static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for working elements of magnonic devices.

  17. Design Parameter Optimization of a Silicon-Based Grating Waveguide for Performance Improvement in Biochemical Sensor Application.

    Science.gov (United States)

    Hong, Yoo-Seung; Cho, Chun-Hyung; Sung, Hyuk-Kee

    2018-03-05

    We performed numerical analysis and design parameter optimization of a silicon-based grating waveguide refractive index (RI) sensor. The performance of the grating waveguide RI sensor was determined by the full-width at half-maximum (FWHM) and the shift in the resonance wavelength in the transmission spectrum. The transmission extinction, a major figure-of-merit of an RI sensor that reflects both FWHM and resonance shift performance, could be significantly improved by the proper determination of three major grating waveguide parameters: duty ratio, grating period, and etching depth. We analyzed the transmission characteristics of the grating waveguide under various design parameter conditions using a finite-difference time domain method. We achieved a transmission extinction improvement of >26 dB under a given bioenvironmental target change by the proper choice of the design procedure and parameters. This design procedure and choice of appropriate parameters would enable the widespread application of silicon-based grating waveguide in high-performance RI biochemical sensor.

  18. Masses and widths of scalar–isoscalar multi-channel resonances from data analysis

    International Nuclear Information System (INIS)

    Surovtsev, Yurii S; Bydžovský, Petr; Kamiński, Robert; Lyubovitskij, Valery E; Nagy, Miroslav

    2014-01-01

    The peculiarities of obtaining parameters for broad multi-channel resonances from data are discussed, analyzing the experimental data on processes ππ→ππ,K K-bar in the I G J PC = 0 + 0 ++ channel in a model-independent approach based on analyticity and unitarity, and using an uniformization procedure. We show that it is possible to obtain a good description of the ππ scattering data from the threshold to 1.89 GeV with parameters of resonances cited in the Particle Data Group tables as preferred. However, in this case, first, the representation of the ππ background is unsatisfactory; second, the data on the coupled process ππ→K K-bar are not well described even qualitatively above 1.15 GeV when using the resonance parameters from only the ππ scattering analysis. The combined analysis of these coupled processes is needed, and is carried out satisfactorily. Then, both of the above-indicated issues related to the analysis of ππ scattering only are overcome. The most remarkable change of parameters with respect to the values of the ππ scattering only analysis appears for the mass of the f 0 (600), which is now in some accordance with the Weinberg prediction on the basis of mended symmetry and with an analysis using the large-N c consistency conditions between the unitarization and resonance saturation. The obtained ππ scattering length a 0 0 , in the case where we are restricted to the analysis of the ππ scattering or where we consider the so-called A-solution (with a lower mass and width of f 0 (600) meson), agrees well with the prediction of the chiral perturbation theory and with data extracted at CERN by the NA48/2 collaboration from the analysis of the K e4 decay and by the DIRAC collaboration from the measurement of the π + π − lifetime. (paper)

  19. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring–mass resonators

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Denghui, E-mail: qdhsd318@163.com; Shi, Zhiyu, E-mail: zyshi@nuaa.edu.cn

    2016-10-07

    Bandgap properties of the locally resonant phononic crystal double panel structure made of a two-dimensional periodic array of a spring–mass resonator surrounded by n springs (n equals to zero at the beginning of the study) connected between the upper and lower plates are investigated in this paper. The finite element method is applied to calculate the band structure, of which the accuracy is confirmed in comparison with the one calculated by the extended plane wave expansion (PWE) method and the transmission spectrum. Numerical results and further analysis demonstrate that two bands corresponding to the antisymmetric vibration mode open a wide band gap but is cut narrower by a band corresponding to the symmetric mode. One of the regulation rules shows that the lowest frequency on the symmetric mode band is proportional to the spring stiffness. Then, a new design idea of adding springs around the resonator in a unit cell (n is not equal to zero now) is proposed in the need of widening the bandwidth and lowering the starting frequency. Results show that the bandwidth of the band gap increases from 50 Hz to nearly 200 Hz. By introducing the quality factor, the regulation rules with the comprehensive consideration of the whole structure quality limitation, the wide band gap and the low starting frequency are also discussed. - Highlights: • The locally resonant double panel structure opens a band gap in the low frequency region. • The band gap is the coupling between the symmetric and antisymmetric vibration modes. • The band structure of the double panel is the evolution of that of the single plate. • By adding springs around the resonator in a unit cell, the bandwidth gets wider. • The band gap can be controlled by tuning the parameters.

  20. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  1. Radiation reaction effect on laser driven auto-resonant particle acceleration

    International Nuclear Information System (INIS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-01-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities

  2. Fast wave absorption at the Alfven resonance during ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Heikkinen, J.A.; Hellsten, T.; Alava, M.J.

    1991-01-01

    For ICRH scenarii where the majority cyclotron resonance intersects the plasma core, mode conversion of the fast magnetosonic wave to an Alfven wave takes place at the plasma boundary on the high field side. Simple analytical estimates of the converted power for this mode conversion process are derived and compared with numerical calculations including finite electron inertia and kinetic effects. The converted power is found to depend on the local value of the wave field as well as on plasma parameters at the Alfven wave resonance. The interference with the reflected wave will therefore modify the mode conversion. If the conversion layer is localized near the wall, the conversion will be strongly reduced. The conversion coefficient is found to be strongest for small density gradients and high density and it is sensitive to the value of the parallel wave number. Whether it increases or decreases with the latter depends on the ion composition. Analysis of this problem for ICRH in JET predicts that a large fraction of the power is mode converted at the plasma boundary for first harmonic heating of tritium in a deuterium-tritium plasma. (author). 13 refs, 10 figs, 1 tab

  3. Resonator graphene microfluidic antenna (RGMA) for blood glucose detection

    Science.gov (United States)

    Jizat, Noorlindawaty Md.; Mohamad, Su Natasha; Ishak, Muhammad Ikman

    2017-09-01

    Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show a resonator graphene microfluidic antenna (RGMA) is used to detect the dielectric properties of aqueous glucose solution which represent the glucose level in blood. Simulation verified the high sensitivity of proposed RGMA made with aqueous glucose solutions at different concentrations. The RGMA yielded a sensor sensitivity of 0.1882GHz/mgml-1 as plotted from the slope of the linear fit from the result averages in S11 and S21 parameter, respectively. This results indicate that the proposed resonator antenna achieves high sensitivity and linear to the changes of glucose concentration.

  4. Finite-size resonance dielectric cylinder in a rectangular waveguide

    International Nuclear Information System (INIS)

    Chuprina, V.N.; Khizhnyak, N.A.

    1988-01-01

    The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted

  5. Modified model of neutron resonance widths distribution. Results of total gamma-widths approximation

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    2011-01-01

    Functional dependences of probability to observe given Γ n 0 value and algorithms for determination of the most probable magnitudes of the modified model of resonance parameter distributions were used for analysis of the experimental data on the total radiative widths of neutron resonances. As in the case of neutron widths, precise description of the Γ γ spectra requires a superposition of three and more probability distributions for squares of the random normally distributed values with different nonzero average and nonunit dispersion. This result confirms the preliminary conclusion obtained earlier at analysis of Γ n 0 that practically in all 56 tested sets of total gamma widths there are several groups noticeably differing from each other by the structure of their wave functions. In addition, it was determined that radiative widths are much more sensitive than the neutron ones to resonance wave functions structure. Analysis of early obtained neutron reduced widths distribution parameters for 157 resonance sets in the mass region of nuclei 35 ≤ A ≤ 249 was also performed. It was shown that the experimental values of widths can correspond with high probability to superposition of several expected independent distributions with their nonzero mean values and nonunit dispersion

  6. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    Science.gov (United States)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  7. Materials of the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    The Report comprises abstracts of 78 communications presented during the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on November, 30 - December, 2006 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  8. Doubly excited 2s2p 1,3Po resonance states of helium in dense plasmas

    International Nuclear Information System (INIS)

    Kar, Sabyasachi; Ho, Y.K.

    2005-01-01

    We have made an investigation on the 2s2p 1,3 P o resonance states of helium embedded in dense plasma environments. A screened Coulomb potential obtained from the Debye model is used to represent the interaction between the charge particles. A correlated wave function consisting of a generalized exponential expansion has been used to represent the correlation effect. Resonance energies and widths for the doubly excited He embedded in plasmas with various Debye lengths are determined using the stabilization method by calculating the density of resonance states. The resonance energies and widths for various Debye parameters ranging from infinity to a small value for the lowest 1,3 P o resonance states are reported

  9. Excitation-energy dependence of the resonant Auger transitions to the 4p4(1D)np (n=5,6) states across the 3d3/2-15p and 3d5/2-16p resonances in Kr

    International Nuclear Information System (INIS)

    Sankari, A.; Alitalo, S.; Nikkinen, J.; Kivimaeki, A.; Aksela, S.; Aksela, H.; Fritzsche, S.

    2007-01-01

    The energy dependencies of the intensities and angular distribution parameters β of the resonant Auger final states 4p 4 ( 1 D)np (n=5,6) of Kr were determined experimentally in the excitation-energy region of the overlapping 3d 3/2 -1 5p and 3d 5/2 -1 6p resonances. The experimental results were compared with the outcome of multiconfiguration Dirac-Fock calculations. Combining experimental and calculated results allowed us to study interference effects between the direct and several resonant channels that populate the 4p 4 ( 1 D)np states. The inclusion of the direct channel was crucial in order to reproduce the observed energy behavior of the angular distribution parameters. It was also important to take into account experimentally observed shake transitions

  10. Contrast-enhanced magnetic resonance imaging of the breast: the value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in classifying lesions

    International Nuclear Information System (INIS)

    Veltman, J.; Stoutjesdijk, M.; Mann, R.; Huisman, H.J.; Barentsz, J.O.; Blickman, J.G.; Boetes, C.

    2008-01-01

    The value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in characterizing breast lesions on magnetic resonance imaging (MRI) was evaluated. Sixty-eight malignant and 34 benign lesions were included. In the scanning protocol, high temporal resolution imaging was combined with high spatial resolution imaging. The high temporal resolution images were recorded every 4.1 s during initial enhancement (fast dynamic analysis). The high spatial resolution images were recorded at a temporal resolution of 86 s (slow dynamic analysis). In the fast dynamic evaluation pharmacokinetic parameters (K trans , V e and k ep ) were evaluated. In the slow dynamic analysis, each lesion was scored according to the BI-RADS classification. Two readers evaluated all data prospectively. ROC and multivariate analysis were performed. The slow dynamic analysis resulted in an AUC of 0.85 and 0.83, respectively. The fast dynamic analysis resulted in an AUC of 0.83 in both readers. The combination of both the slow and fast dynamic analyses resulted in a significant improvement of diagnostic performance with an AUC of 0.93 and 0.90 (P = 0.02). The increased diagnostic performance found when combining both methods demonstrates the additional value of our method in further improving the diagnostic performance of breast MRI. (orig.)

  11. Tables of Shore and Fano parameters for the helium resonances 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P excited in p-He collisions E/sub p/ = 33 to 150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Merchez, H.

    1976-02-01

    Absolute values of Shore and Fano parameters are tabulated for the helium atom 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P resonances produced by a proton beam. Observations were made on the spectra of ejected electrons. The important variation of the shape of the resonances with ejection angle is illustrated for E/sub p/ = 100 keV; the variation with proton energy is shown at 30/sup 0/.

  12. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  13. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR

  14. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current; Description semiclassique de l`effet tunnel resonant: bifurcations et orbites periodiques dans le courant resonant

    Energy Technology Data Exchange (ETDEWEB)

    Rouben, D C

    1997-11-28

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.) 70 refs.

  15. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  16. Correlation between quantitative and semiquantitative parameters in DCE-MRI with a blood pool agent in rectal cancer: can semiquantitative parameters be used as a surrogate for quantitative parameters?

    Science.gov (United States)

    Dijkhoff, Rebecca A P; Maas, Monique; Martens, Milou H; Papanikolaou, Nikolaos; Lambregts, Doenja M J; Beets, Geerard L; Beets-Tan, Regina G H

    2017-05-01

    The aim of this study was to assess correlation between quantitative and semiquantitative parameters in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal cancer patients, both in a primary staging and restaging setting. Nineteen patients were included with DCE-MRI before and/or after neoadjuvant therapy. DCE-MRI was performed with gadofosveset trisodium (Ablavar ® , Lantheus Medical Imaging, North Billerica, Massachusetts, USA). Regions of interest were placed in the tumor and quantitative parameters were extracted with Olea Sphere 2.2 software permeability module using the extended Tofts model. Semiquantitative parameters were calculated on a pixel-by-pixel basis. Spearman rank correlation tests were used for assessment of correlation between parameters. A p value ≤0.05 was considered statistically significant. Strong positive correlations were found between mean peak enhancement and mean K trans : 0.79 (all patients, prectal cancer. Peak enhancement correlates strongly with K trans and wash-in showed strong correlation with V p and K ep . These parameters have been reported to predict tumor aggressiveness and response in rectal cancer. Therefore, semiquantitative analyses might be a surrogate for quantitative analyses.

  17. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah

    2016-09-12

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

  18. Testing of cross-section functionals in the unresolved resonance region

    International Nuclear Information System (INIS)

    Koshcheev, V.N.; Krivtsov, A.S.; Sinitsa, V.V.; Ukraintsev, V.F.

    1994-01-01

    The results of a comparison of the GRUCON, MMK and NJOY data processing codes in the treatment of evaluated neutron data in the unresolved resonance region are presented. The sets of average resonance parameters of 238 U and 239 Pu isotopes, which have been published by Munos-Cobos et al., and Ribon et al., were used in this exercise. Average cross-sections, self-shielding factors and Doppler broadening self-shielding factors are compared with the original results presented by the above-mentioned authors. Conclusions regarding the reliability of the neutron data processing codes are made. (author). 6 refs, 7 tabs

  19. New physics/resonances in vector boson scattering at the LHC

    International Nuclear Information System (INIS)

    Reuter, Juergen; Kilian, Wolfgang; Ohl, Thorsten; Sekulla, Marco

    2016-05-01

    Vector boson scattering is (together with the production of multiple electroweak gauge bosons) the key process in the current run 2 of LHC to probe the microscopic nature of electroweak symmetry breaking. Deviations from the Standard Model are generically parameterized by higher-dimensional operators, however, there is a subtle issue of perturbative unitarity for such approaches for the process above. We discuss a parameter-free unitarization prescription to get physically meaningful predictions. In the second part, we construct simplified models for generic new resonances that can appear in vector boson scattering, with a special focus on the technicalities of tensor resonances.

  20. Noise in nonlinear nanoelectromechanical resonators

    Science.gov (United States)

    Guerra Vidal, Diego N.

    adjusting the resonator's operating parameters. The device can access one of two stable steady states, according to a specific logic function; this operation is mediated by the noise floor, which can be directly adjusted, or dynamically "tuned" via an adjustment of the underlying nonlinearity of the resonator. The demonstration of this reprogrammable nanomechanical logic gate affords a path to the practical realization of a new generation of mechanical computer.

  1. Alfvenic resonant cavities in the solar atmosphere

    International Nuclear Information System (INIS)

    Hollweg, J.V.

    1984-01-01

    We investigate the propagation of Alfven waves in a simple medium consisting of three uniform layers; each layer is characterized by a different value for the Alfven speed, νsub(A). We show how the central layer can act as a resonant cavity under quite general conditions. If the cavity is driven externally, by an incident wave in one of the outer layers, there result resonant transmission peaks, which allow large energy fluxes to enter the cavity from outside. The transmission peaks result from the destructive interference between a wave which leaks out of the cavity, and a directly reflected wave. We show that there are two types of resonances. The first type occurs when the cavity has the largest (or smallest) of the three Alfven speeds; this situation occurs on coronal loops. The second type occurs when the cavity Alfven speed is intermediate between the other two values of νsub(A); this situation may occur on solar spicules. Significant heating of the cavity can occur if the waves are damped. We show that if the energy lost to heat greatly exceeds the energy lost by leakage out of the cavity, then the cavity heating can be independent of the damping rate. This conclusion is shown to apply to coronal resonances and to the spicule resonances. This conclusion agrees with a point made by Ionson in connection with the coronal resonances. Except for a numerical factor of order unity, we recover Ionson's expression for the coronal heating rate. However, Ionson's qualities are much too large. For solar parameters, the maximum quality is of the order of 100, but the heating is independent of the damping rate only when dissipation reduces the quality to less than about 10. (WB)

  2. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  3. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Tang, J., E-mail: jtang@engr.uconn.edu [Department of Mechanical Engineering, The University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  4. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    International Nuclear Information System (INIS)

    Xu, J.; Tang, J.

    2015-01-01

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined

  5. Effect of the resonant magnetic perturbation on the plasma parameters in COMPASS tokamak’s divertor region

    Science.gov (United States)

    Dimitrova, M.; Cahyna, P.; Peterka, M.; Hasan, E.; Popov, Tsv K.; Ivanova, P.; Vasileva, E.; Panek, R.; Cavalier, J.; Seidl, J.; Markovic, T.; Havlicek, J.; Dejarnac, R.; Weinzettl, V.; Hacek, P.; Tomes, M.; the COMPASS Team; the EUROfusion MST1 Team

    2018-02-01

    The resonant magnetic perturbation (RMP) has proven to be a useful way to suppress edge-localized modes that under certain conditions can damage the device by the large power fluxes carried from the bulk plasma to the wall. The effect of RMP on the L-mode plasma parameters in the divertor region of the COMPASS tokamak was studied using the array of 39 Langmuir probes embedded into the divertor target. The current-voltage (IV) probe characteristics were processed by the first-derivative probe technique to obtain the plasma potential and the electron energy distribution function (EEDF) which was approximated by a bi-Maxwellian EEDF with a low-energy (4-6 eV) fraction and a high-energy (11-35 eV) one, the both factions having similar electron density. Clear splitting was observed during the RMP pulse in the low-field-side scrape-off-layer profiles of the floating potential U fl and the ion saturation current density J sat; these two quantities were obtained both by direct continuous measurement and by evaluation of the IV characteristics of probes with swept bias. The negative peaks of U fl induced by RMP spatially overlaps with the local minima of J sat (and n e) rather than with its local maxima which is partly caused by the spatial variation of the plasma potential and partly by the changed shape of the EEDF. The effective temperature of the whole EEDF is not correlated with the negative peaks of U fl, and the profile of the parallel power flux density shows secondary maxima due to RMP which mimic those of J sat.

  6. Resonant Capture and Tidal Evolution in Circumbinary Systems: Testing the Case of Kepler-38

    Science.gov (United States)

    Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.

    2018-04-01

    Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disk, ultimately stopping near their present location either by a planetary trap near the disk inner edge or by resonance capture. Here, we analyze the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modeled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disk, for time-spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.

  7. Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high-grade soft tissue sarcomas treated with thermoradiotherapy

    International Nuclear Information System (INIS)

    Dewhirst, Mark W.; Poulson, Jean M.; Yu Daohai; Sanders, Linda; Lora-Michiels, Michael; Vujaskovic, Zeljko; Jones, Ellen L.; Samulski, Thaddeus V.; Powers, Barbara E.; Brizel, David M.; Prosnitz, Leonard R.; Charles, H. Cecil

    2005-01-01

    Purpose: In a prior study, the combination of 31 P magnetic resonance spectroscopy (MRS)-based intracellular pH (pHi) and T2 relaxation time was highly predictive of the pathologic complete response (pCR) rate in a small series of patients with soft tissue sarcomas (STSs) treated with thermoradiotherapy. Changes in the magnetic resonance metabolite ratios and pO 2 were related to the pCR rate. Hypoxia also correlated with a greater likelihood for the development of metastases. Because of the limited number of patients in the prior series, we initiated this study to determine whether the prior observations were repeatable and whether 31 P MRS lipid-related resonances were related to a propensity for metastasis. Methods and materials: Patients with high-grade STSs were enrolled in an institutional review board-approved Phase II thermoradiotherapy trial. All tumors received daily external beam radiotherapy (1.8-2.0 Gy, five times weekly) to a total dose of 30-50 Gy. Hyperthermia followed radiotherapy by 31 P metabolite ratios, pHi, and T2 relaxation time. The median pO 2 and hypoxic fraction were determined using pO 2 histography. Comparisons between experimental endpoints and the pCR rate and metastasis-free and overall survival were made. Results: Of 35 patients, 21 and 28 had reportable pretreatment MRS/MRI and pO 2 data, respectively. The cutpoints for a previously tested receiver operating curve for a pCR were T2 = 100 and pHi = 7.3. In the current series, few tumors fell below the cutpoints so validation was not possible. The phosphodiester (PDE)/inorganic phosphate (Pi) ratio and hypoxic fraction correlated inversely with the pCR rate in the current series (Spearman correlation coefficient -0.51, p = 0.017; odds ratio of percentage of necrosis ≥95% = 0.01 for a 1% increase in the hypoxic fraction; Wald p = 0.036). The pretreatment phosphomonoester (PME)/Pi ratio also correlated inversely with the pCR rate (odds ratio of percentage of necrosis ≥95% = 0

  8. Measurement of the parity-violation parameters Ab and Ac from the left-right forward-backward asymmetry of leptons in hadronic events at the Z0 resonance

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    The parity-violating parameters A b and A c are directly measured by the SLD experiment at the SLAC Linear Collider in e + e - collisions with polarized electrons at the Z 0 resonance. Leptons with distinctive total and transverse momenta are used to select and analyze Z 0 →bcbar events. A b and A c are extracted by forming the left-right forward-backward asymmetry in electron beam polarization and quark polar angle. From our 1993 sample of 1.8 pb --1 of Z 0 decay data with an average electron beam polarization of 63% we find A b =0.91±0.14 (stat) ±0.07 (syst) and A c =0.37±0.23 (stat) ±0.21 (syst)

  9. Gravitational wave production from preheating: parameter dependence

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Daniel G. [Theory Division, CERN, 1211 Geneva (Switzerland); Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es [Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. (Spain)

    2017-10-01

    Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q . The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q . We present an analytical derivation of the GW amplitude dependence on q , valid for any scenario, which we confront against numerical results. By running lattice simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q . The GW signal can be rather large, as h {sup 2Ω}{sub GW}( f {sub p} ) ∼< 10{sup −11}, but it is always peaked at high frequencies f {sub p} ∼> 10{sup 7} Hz. We also discuss the case of spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  10. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    Science.gov (United States)

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  11. A study on stimulation of DC high voltage power of LCC series parallel resonant in projectile velocity measurement system

    Science.gov (United States)

    Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan

    2017-10-01

    According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.

  12. Retrieving Constitutive Parameters of Plasmonic Multilayers from Reflection and Transmission Coefficients

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Yankovskaya, E. A.; Zhukovsky, Sergei

    2014-01-01

    We show how to correctly extract the effective permittivity and permeability of plasmonic multilayers in the optical domain. For material parameters retrieval the classical Nicolson-Ross-Weir method is commonly used. However, its direct application leads to spurious zero-permittivity points and f...... and false permeability resonances in the case of total reflection from the slab. We offer a way to overcome this issue and retrieve correct constitutive parameters of plasmonic multilayers...

  13. Self consistent and covariant propagation of pions, nucleon and isobar resonances in cold nuclear matter

    International Nuclear Information System (INIS)

    Korpa, C.L.; Lutz, M.F.M.; Technische Univ. Darmstadt

    2003-06-01

    We evaluate the in-medium spectral functions for pions, nucleon and isobar resonances in a self consistent and covariant manner. The calculations are based on a recently developed formulation which leads to predictions in terms of the pion-nucleon scattering phase shifts and a set of Migdal parameters describing important short range correlation effects. We do not observe any significant softening of pion modes if we insist on reasonable isobar resonance properties but predict a considerable broadening of the N(1440) and N(1520) resonances in nuclear matter. (orig.)

  14. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  15. A low-level rf control system for a quarter-wave resonator

    Science.gov (United States)

    Kim, Jongwon; Hwang, Churlkew

    2012-06-01

    A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.

  16. Induced high-order resonance linewidth shrinking with multiple coupled resonators in silicon-organic hybrid slotted two-dimensional photonic crystals for reduced optical switching power in bistable devices

    Science.gov (United States)

    Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.

    2018-01-01

    Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on

  17. The Droplet model of the Giant Fipole Resonance

    International Nuclear Information System (INIS)

    Myers, W.D.; Kodama, T.; El-Jaick, L.J.; Hilf, E.R.

    1976-10-01

    The nuclear Giant Dipole Resonance (GDR) energies are calculated using a macroscopic hydronamical model with two new features. The motion is treated as a combination of the usual Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) modes, and the restoring forces are all calculated using the Droplet Model. The A dependence of the resonance energies is well reproduced without any adjustable parameters, and the measured magnitude of the energies serves to fix the value of the effective mass m* used in the theory. The GDR is found to consist mainly of a GT-type motion with the SJ-mode becoming more important for heavy nuclei. The width P of the GDR is also estimated on the basis of an expression for one-body damping [pt

  18. The Power of Heterogeneity: Parameter Relationships from Distributions

    Science.gov (United States)

    Röding, Magnus; Bradley, Siobhan J.; Williamson, Nathan H.; Dewi, Melissa R.; Nann, Thomas; Nydén, Magnus

    2016-01-01

    Complex scientific data is becoming the norm, many disciplines are growing immensely data-rich, and higher-dimensional measurements are performed to resolve complex relationships between parameters. Inherently multi-dimensional measurements can directly provide information on both the distributions of individual parameters and the relationships between them, such as in nuclear magnetic resonance and optical spectroscopy. However, when data originates from different measurements and comes in different forms, resolving parameter relationships is a matter of data analysis rather than experiment. We present a method for resolving relationships between parameters that are distributed individually and also correlated. In two case studies, we model the relationships between diameter and luminescence properties of quantum dots and the relationship between molecular weight and diffusion coefficient for polymers. Although it is expected that resolving complicated correlated relationships require inherently multi-dimensional measurements, our method constitutes a useful contribution to the modelling of quantitative relationships between correlated parameters and measurements. We emphasise the general applicability of the method in fields where heterogeneity and complex distributions of parameters are obstacles to scientific insight. PMID:27182701

  19. Processing covariance data for the resonance region - International Evaluation Co-operation, V. 20

    International Nuclear Information System (INIS)

    Dunn, M.; Leal, L.C.; Wiarda, D.; Jacqmin, R.; Kodeli, I.; ); Chiba, G.; Shibata, K.; Ishikawa, M.; Oh, S.; Nikolaev, M.; Kahler, A.C. Jr.; Kawano, T.; Arcilla, R.

    2014-01-01

    A Working Party on International Evaluation Co-operation (WPEC) was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. Requirements for experimental data resulting from this activity are compiled. The working party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The parties to the project are ENDF (United States), JEF/EFF (NEA Data Bank member countries), and JENDL (Japan). Cooperation with evaluation projects of non- OECD countries is organized through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). This report summarizes the work performed by WPEC Subgroup 28 (SG28) on issues pertinent to the methodology used to process covariance data in the resonance region. Specifically, SG28 has developed the requisite processing methods needed to process resonance parameter covariance data, generate cross-section covariance data files and demonstrate the use of covariance data in radiation transport analyses. The work performed by SG28 and documented in this report addresses the following tasks: - Produce resonance parameter covariance evaluation for 235 U; - Develop resonance parameter covariance processing methods in widely used processing systems (e.g., NJOY, AMPX, etc.); - Use the updated cross-section processing systems to generate covariance data files for use in radiation transport analyses. In addition, use sensitivity/uncertainty (S/U) analyses to demonstrate the propagation of the covariance data in specific radiation transport applications

  20. POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.; Greene, N.M.

    2000-12-01

    POLIDENT (Point Libraries of Data from ENDF/B Tapes) is an AMPX module that accesses the resonance parameters from File 2 of an ENDF/B library and constructs the continuous-energy cross sections in the resonance energy region. The cross sections in the resonance range are subsequently combined with the File 3 background data to construct the cross-section representation over the complete energy range. POLIDENT has the capability to process all resonance reactions that are identified in File 2 of the ENDF/B library. In addition, the code has the capability to process the single- and multi-level Breit-Wigner, Reich-Moore and Adler-Adler resonance formalisms that are identified in File 2. POLIDENT uses a robust energy-mesh-generation scheme that determines the minimum, maximum and points of inflection in the cross-section function in the resolved-resonance region. Furthermore, POLIDENT processes all continuous-energy cross-section reactions that are identified in File 3 of the ENDF/B library and outputs all reactions in an ENDF/B TAB1 format that can be accessed by other AMPX modules.