WorldWideScience

Sample records for family-specific phage library

  1. Methods for Selecting Phage Display Antibody Libraries.

    Science.gov (United States)

    Jara-Acevedo, Ricardo; Diez, Paula; Gonzalez-Gonzalez, Maria; Degano, Rosa Maria; Ibarrola, Nieves; Gongora, Rafael; Orfao, Alberto; Fuentes, Manuel

    2016-01-01

    The selection process aims sequential enrichment of phage antibody display library in clones that recognize the target of interest or antigen as the library undergoes successive rounds of selection. In this review, selection methods most commonly used for phage display antibody libraries have been comprehensively described.

  2. Deep sequencing analysis of phage libraries using Illumina platform.

    Science.gov (United States)

    Matochko, Wadim L; Chu, Kiki; Jin, Bingjie; Lee, Sam W; Whitesides, George M; Derda, Ratmir

    2012-09-01

    This paper presents an analysis of phage-displayed libraries of peptides using Illumina. We describe steps for the preparation of short DNA fragments for deep sequencing and MatLab software for the analysis of the results. Screening of peptide libraries displayed on the surface of bacteriophage (phage display) can be used to discover peptides that bind to any target. The key step in this discovery is the analysis of peptide sequences present in the library. This analysis is usually performed by Sanger sequencing, which is labor intensive and limited to examination of a few hundred phage clones. On the other hand, Illumina deep-sequencing technology can characterize over 10(7) reads in a single run. We applied Illumina sequencing to analyze phage libraries. Using PCR, we isolated the variable regions from M13KE phage vectors from a phage display library. The PCR primers contained (i) sequences flanking the variable region, (ii) barcodes, and (iii) variable 5'-terminal region. We used this approach to examine how diversity of peptides in phage display libraries changes as a result of amplification of libraries in bacteria. Using HiSeq single-end Illumina sequencing of these fragments, we acquired over 2×10(7) reads, 57 base pairs (bp) in length. Each read contained information about the barcode (6bp), one complimentary region (12bp) and a variable region (36bp). We applied this sequencing to a model library of 10(6) unique clones and observed that amplification enriches ∼150 clones, which dominate ∼20% of the library. Deep sequencing, for the first time, characterized the collapse of diversity in phage libraries. The results suggest that screens based on repeated amplification and small-scale sequencing identify a few binding clones and miss thousands of useful clones. The deep sequencing approach described here could identify under-represented clones in phage screens. It could also be instrumental in developing new screening strategies, which can preserve

  3. Antibody Phage Library Screening Efficiency Measured by KD Values

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-tang; SHAN Ya-ming; TANG Li-li; GAO Li-zeng; WANG Li-ping; LI Wei; LI Yu-xin

    2005-01-01

    An antibody phage library was screened with two target molecules, IFNα-2a and FGFR-GST, and the KD value of each round of panning was measured. It was found that the apparent KD values decreased along with each additional panning round, which indicates the increase of the binding affinity between the phage and the target molecules.This result shows that the KD value is a reliable intrinsic parameter and a new method for screening efficiency detection is thus provided.

  4. DNA Libraries for the Construction of Phage Libraries: Statistical and Structural Requirements and Synthetic Methods

    Directory of Open Access Journals (Sweden)

    Thomas Lindner

    2011-02-01

    Full Text Available Peptide-based molecular probes identified by bacteriophage (phage display technology expand the peptide repertoire for in vivo diagnosis and therapy of cancer. Numerous peptides that bind cancer-associated antigens have been discovered by panning phage libraries. However, until now only few of the peptides selected by phage display have entered clinical applications. The success of phage derived peptides essentially depends on the quality of the library screened. This review summarizes the methods to achieve highly homogenous libraries that cover a maximal sequence space. Biochemical and chemical strategies for the synthesis of DNA libraries and the techniques for their integration into the viral genome are discussed in detail. A focus is set on the methods that enable the exclusion of disturbing sequences. In addition, the parameters that define the variability, the minimal numbers of copies per library and the use of alternating panning cycles to avoid the loss of selected hits are evaluated.

  5. DNA libraries for the construction of phage libraries: statistical and structural requirements and synthetic methods.

    Science.gov (United States)

    Lindner, Thomas; Kolmar, Harald; Haberkorn, Uwe; Mier, Walter

    2011-02-15

    Peptide-based molecular probes identified by bacteriophage (phage) display technology expand the peptide repertoire for in vivo diagnosis and therapy of cancer. Numerous peptides that bind cancer-associated antigens have been discovered by panning phage libraries. However, until now only few of the peptides selected by phage display have entered clinical applications. The success of phage derived peptides essentially depends on the quality of the library screened. This review summarizes the methods to achieve highly homogenous libraries that cover a maximal sequence space. Biochemical and chemical strategies for the synthesis of DNA libraries and the techniques for their integration into the viral genome are discussed in detail. A focus is set on the methods that enable the exclusion of disturbing sequences. In addition, the parameters that define the variability, the minimal numbers of copies per library and the use of alternating panning cycles to avoid the loss of selected hits are evaluated.

  6. Screening for PreS specific binding ligands with a phage displayed peptides library

    Institute of Scientific and Technical Information of China (English)

    Qiang Deng; Ming Zhuang; Yu-Ying Kong; You-Hua Xie; Yuan Wang

    2005-01-01

    AIM: To construct a random peptide phage display library and search for peptides that specifically bind to the PreS region of hepatitis B virus (HBV).METHODS: A phage display vector, pFuse8, based on the gene 8 product (pⅧ) of M13 phage was made and used to construct a random peptide library. E. coli derived thioredoxin-PreS was purified with Thio-bond beads, and exploited as the bait protein for library screening. Five rounds of bio-panning were performed. The PreS-binding specificities of enriched phages were characterized with phage ELISA assay.RESULTS: A phage display vector was successfully constructed as demonstrated to present a pⅧ fused HBV PreS1 epitope on the phage surface with a high efficiency.A cysteine confined random peptide library was constructed containing independent clones exceeding 5±108 clone forming unit (CFU). A pool of phages showing a PreS-binding specificity was obtained after the screening against thioPres with an enrichment of approximately 400 times. Five phages with high PreS-binding specificities were selected and characterized. Sequences of the peptides displayed on these phages were determined.CONCLUSION: A phage library has been constructed,with random peptides displaying as pⅧ-fusion proteins.Specific PreS-binding peptides have been obtained, which may be useful for developing antivirals against HBV infection.

  7. Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library

    Directory of Open Access Journals (Sweden)

    McMahon James B

    2007-10-01

    Full Text Available Abstract Background Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis. Methods In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method. Results We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource. Conclusion The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.

  8. SELECTION OF NEW EPITOPES FROM MONOVALENT DISPLAYED PHAGE OCTAPEPTIDE LIBRARY

    Institute of Scientific and Technical Information of China (English)

    李全喜; 王琰; 李竞; 王雅明; 徐建军; 王力民; 董志伟

    1998-01-01

    A library of 2×l07 random oetspaptides was constructed by use of phegemid-based monovaient phage display system. The randomly synthesized degenerated oilgodeoxyribonucleotides (oligos) were fused to the truncated gⅢ (p210-p408). Sequeraze analysis of 11 randomly chosen clones suggested that the degenerated inserts and its deduced amino acid (an) sequences are randomly distributed. The library was used to select binding paptides to the morroeloncl antlhody (mAb) 9E10, which recognizes a continuous decapaptide epitope of denatured human c-myc protein. After four to five rounds of panning, most of the eluted clones could bind to 9E10. Sequerlce analysis of the selected positive clones indlcated that the binding sequences could fall into two chsses, one class (clone 1) shares a consensus motif, ISE x x L, with c-mire decapeprider and the sequences of the other class are entirely different. The binding of both classes to 9E10 could be specifically lnhlhited by froe c-myc deeapeptide. The immunogenlcitF cff the phage peptide was further investigsted h5, construction of multivalent displayed phage peptides and immunization of animals with or without adjuvant. ELISA and competitive ELISA showed that anti-serum from both mice and rabbit immunized with either done could bind to the original antigen, c-myc decapeptide. These results denote that in spite of the dissimilarity of the selected psptides with c-myc decapeptide, they are capable of inducing similar immune respones in vivo, thus actually mimicking the antigen epitope.

  9. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    Science.gov (United States)

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  10. Isolation of Human Antibodies Against Hepatitis E From Phage Display Library by Metal Affinity Chromatography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To isolate human antibodies against hepatitis E virus from phage display library by a new method of panning phage antibody library based on immobilized metal affinity chromatography (IMAC). Methods Phage antibody library was allowed to mix with hex-His tagged expressed HEV specific antigen, NE2, in solution for adequate binding before affinity resin for hex-His was added. The non-specific phage antibodies were removed by extensive washing and the specific bound phage antibodies could then be eluted to infect TG1 or repeat the binding process for subsequent rounds of purification. The specificity of the selected human antibodies were tested by antigen competitive ELISA, human sera blocking ELISA, scFv expression, and sequence analysis. Results His-NE2 specific recombinant phages were successfully enriched after panning procedure. Two individual phage clones, 126 and 138, showed 50% inhibition in NE2 antigen competition ELISA and obvious blocking effect by HEV positive serum in blocking ELISA. Soluble scFv of 126, 138 bound to NE2 specifically. Conclusion Two specific human phage antibodies against hepatitis E virus (HEV) from phage display library were isolated by immobilized metal affinity chromatography. The immobilized metal affinity chromatography applied to phage antibody selection was a helpful supplement to the selection in solution.

  11. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  12. Modification and identification of a vector for making a large phage antibody library

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-min; CHEN Yü-ping; GUAN Yuan-zhi; WANG Yan; AN Yun-qing

    2007-01-01

    Background The large phage antibody library is used to obtain high-affinity human antibody, and the Loxp/cre site-specific recombination system is a potential method for constructing a large phage antibody library. In the present study, a phage antibody library vector pDF was reconstructed to construct diabody more quickly and conveniently without injury to homologous recombination and the expression function of the vector and thus to integrate construction of the large phage antibody library with the preparation of diabodies.Methods scFv was obtained by overlap polymerase chain reaction (PCR) amplification with the newly designed VL and VH extension primers. loxp511 was flanked by VL and VH and the endonuclease ACC Ⅲ encoding sequences were introduced on both sides of loxp511. scFv was cloned into the vector pDF to obtain the vector pDscFv. The vector expression function was identified and the feasibility of diabody preparation was evaluated. A large phage antibody library was constructed in pDscFv. Several antigens were used to screen the antibody library and the quality of the antibody library was evaluated.Results The phage antibody library expression vector pDscFv was successfully constructed and confirmed to express functional scFv. The large phage antibody library constructed using this vector was of high diversity. Screening of the library on 6 antigens confirmed the generation of specific antibodies to these antigens. Two antibodies were subjected to enzymatic digestion and were prepared into diabody with functional expression.Conclusions The reconstructed vector pDscFv retains its recombination capability and expression function and can be used to construct large phage antibody libraries. It can be used as a convenient and quick method for preparing diabodies after simple enzymatic digestion, which facilitates clinical trials and application of antibody therapy.

  13. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library.

    Science.gov (United States)

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2016-11-01

    Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase.

  14. Design and Screening of M13 Phage Display cDNA Libraries

    Directory of Open Access Journals (Sweden)

    Yuliya Georgieva

    2011-02-01

    Full Text Available The last decade has seen a steady increase in screening of cDNA expression product libraries displayed on the surface of filamentous bacteriophage. At the same time, the range of applications extended from the identification of novel allergens over disease markers to protein-protein interaction studies. However, the generation and selection of cDNA phage display libraries is subjected to intrinsic biological limitations due to their complex nature and heterogeneity, as well as technical difficulties regarding protein presentation on the phage surface. Here, we review the latest developments in this field, discuss a number of strategies and improvements anticipated to overcome these challenges making cDNA and open reading frame (ORF libraries more readily accessible for phage display. Furthermore, future trends combining phage display with next generation sequencing (NGS will be presented.

  15. Construction of Human ScFv Phage Display Library against Ovarian Tumor

    Institute of Scientific and Technical Information of China (English)

    XIA Jinsong; BI Hao; YAO Qin; QU Shen; ZONG Yiqiang

    2006-01-01

    In order to construct a single chain fragment variable (ScFv) phage display library against ovarian tumor, by using RT-PCR, the human heavy chain variable region genes (VH) and light chain variable region genes (VL) were amplified from lymphocytes of ovarian tumor patients and subsequently assembled into ScFv genes by SOE. The resulting ScFv genes were electrotransformed into E.coli TG1 and amplified with the co-infection of helper phage M13KO7 to obtain phage display library. The capacity and titer of the resulting library were detected. The phage antibody library with a capacity of approximately 3 × 109 cfu/μg was obtained. After amplification with helper phage, the titer of antibody library reached 5 × 1012 cfu/mL. Human ScFv library against ovarian tumor was constructed successfully, which laid a foundation for the screening of ovarian tumor specific ScFv for the radioimmunoimaging diagnosis of ovarian tumor.

  16. Construction of human antibody gene libraries and selection of antibodies by phage display.

    Science.gov (United States)

    Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael

    2014-01-01

    Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

  17. Phage display library screening for identification of interacting protein partners.

    Science.gov (United States)

    Addepalli, Balasubrahmanyam; Rao, Suryadevara; Hunt, Arthur G

    2015-01-01

    Phage display is a versatile high-throughput screening method employed to understand and improve the chemical biology, be it production of human monoclonal antibodies or identification of interacting protein partners. A majority of cell proteins operate in a concerted fashion either by stable or transient interactions. Such interactions can be mediated by recognition of small amino acid sequence motifs on the protein surface. Phage display can play a crucial role in identification of such motifs. This report describes the use of phage display for the identification of high affinity sequence motifs that could be responsible for interactions with a target (bait) protein.

  18. Construction and diversity analysis of a murine IgE phage surface display library

    Institute of Scientific and Technical Information of China (English)

    LIZONGDONG; MINGYEH

    1997-01-01

    To make further investigation of the IgE antibody repertoire in Trichosanthin (TCS) allergic responses,a murine IgE phage surface display library was constructed (3.0×105 independent clones).We first constructed the Vε cDNA library (4.6×105 independent clones) and Vκ cDNA library (3.0×105 independent clones).Then,the Vε and Vκgene segments were amplified from both libraries by PCR respectively,and assembled into Fab fragment by SOE PCR.The phage library containing Fabs was thus constructed.The diversity of Vε from this library was analyzed and proved.Fab clones with high specificity to TCS have been screened out.

  19. Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures.

    Science.gov (United States)

    Thomas, William D; Golomb, Miriam; Smith, George P

    2010-12-15

    Phage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior. Many TUPs are propagation related; they have mutations conferring a growth advantage and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus-strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus-strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus-strand origin. The founder's infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption.

  20. Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures

    Science.gov (United States)

    Thomas, William D.; Golomb, Miriam; Smith, George P.

    2010-01-01

    Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225

  1. Peptide substrate identification for yeast Hsp40 Ydj1 by screening the phage display library

    Directory of Open Access Journals (Sweden)

    Li Jingzhi

    2004-01-01

    Full Text Available We have identified a peptide substrate for molecular chaperone Hsp40 Ydj1 by utilizing the combination of phage display library screening and isothemol titration calirimetry (ITC. The initial peptide substrate screening for Hsp40 Ydj1 has been carried out by utilizing a 7-mer phage display library. The peptide sequences from the bio-panning were synthesized and object to the direct affinity measurement for Hsp40 Ydj1 by isothemol titration calirimetry studies. The peptide which has the measurable affinity with Ydj1 shows enriched hydrophobic residues in the middle of the substrate fragment. The peptide substrate specificity for molecular chaperone Hsp40 has been analyzed.

  2. Targeting Phosphatidylserine on Apoptotic Cells with Phages and Peptides Selected from a Bacteriophage Display Library

    Directory of Open Access Journals (Sweden)

    Ruping Shao

    2007-11-01

    Full Text Available Phosphatidylserine (PS is a well-characterized biomarker for apoptosis. Ligands that bind to PS can be used for noninvasive imaging of therapy-induced cell death, particularly apoptosis. In this study, we screened a random 12-mer peptide phage library on liposomes prepared from PS. One clone displaying the peptide SVSVGMKPSPRP (designated as PS3-10 bound to PS approximately 4-fold better than its binding to phosphatidylcholine and 18-fold better than to bovine serum albumin in a solid-phase binding assay. In addition, the binding of the corresponding PS3-10 peptide to PS was significantly higher than that of a scrambled peptide. PS3-10 phages, but not a control 4-2-2 phage, bound to aged red blood cells that had PS exposed on their surface. Binding of PS3-10 phages and PS3-10 peptide to TRAIL-induced apoptotic DLD1 cells was 3.2 and 5.4 times higher than their binding to untreated viable cells, respectively. Significantly, immunohistochemical staining confirmed selective binding of PS3-10 phages to apoptotic cells. Our data suggest that panning of phage display libraries may allow the selection of suitable peptide ligands for apoptotic cells and that PS3-10 peptide may serve as a template for further development of molecular probes for in vitro and in vivo imaging of apoptosis.

  3. Phage-display libraries of murine and human antibody Fab fragments

    DEFF Research Database (Denmark)

    Engberg, J; Andersen, P S; Nielsen, L K

    1996-01-01

    We provide efficient and detailed procedures for construction, expression, and screening of comprehensive libraries of murine or human antibody Fab fragments displayed on the surface of filamentous phage. In addition, protocols for producing and using ultra-electrocompetent cells, for producing Fab...

  4. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    Directory of Open Access Journals (Sweden)

    Wadim L. Matochko

    2013-01-01

    Full Text Available Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N×1 frequency vector n=ni, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N×N matrix and a stochastic sampling operator (Sa. The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of Sa and use them to define the sequencing operator (Seq. Sequencing without any bias and errors is Seq=Sa IN, where IN is a N×N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (CEN, which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.

  5. Construction of Large Human Single-chain Antibody Phage Display Library

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A large human naive single chain antibody (scFv) library is constructed from 60 healthy donors via phage display technique. During the period, some methods are employed to optimize the diversity, such as multi donors, different annealing temperature, half-nest PCR, and assembly by two-way fusion PCR. In this stud y, 78 electroporations resulted in 1010 library, diversity of which is assayed by enzyme fingerprint. The efficiency and diversity are all better than other rese arches.

  6. Construction and selection of the natural immune Fab antibody phage display library from patients with colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Bao-Ping Wu; Bing Xiao; Tian-Mo Wan; Ya-Li Zhang; Zhen-Shu Zhang; Dian-Yuan Zhou; Zhuo-Sheng Lai; Chun-Fang Gao

    2001-01-01

    AIM: To construct the natural immune Fab antibody phage display libraries of colorectal cancer and to select antibodies related with colorectal cancer. METHODS: Extract total RNA from tissue of local cancer metastasis lymph nodes of patients with colorectal cancer.RT-PCR was used to amplify the heavy chain Fd and light chain к and the amplification products were inserted successively into the vector pComb3 to construct the human libraries of Fab antibodies. They were then panned by phage display technology. By means of Dot immunoblotting and ELISA, the libraries were identified and the Fab phage antibodies binding with antigens of colorectal cancer were selected. RESULTS: The amplified fragments of Fd and к gained by RT-PCR were about 650bp. Fd and к PCR products were subsequently inserted into the vector pComb3, resulting in a recombination rate of 40% and the volume of Fab phage display library reached 1.48 x 106. The libraries were enriched about 120-fold by 3 cycles of adsorption-elution- multiplication (panning). Dot immunoblotting showed Fab expressions on the phage libraries and ELISA showed 5clones of Fab phage antibodies which had binding activities with antigens of colorectal cancer. CONCLUSION: The natural immune Fab antibody phage display libraries of colorectal cancer were constructed. They could be used to select the relative antibodies of colorectal cancer.

  7. ISOLATION OF ENDOTOXIN-SPECIFIC ANTIBODIES BY SELECTION OF AN SINGLE CHAIN PHAGE ANTIBODY LIBRARY

    Institute of Scientific and Technical Information of China (English)

    陈鸣; 俞丽丽; 张雪; 府伟灵

    2002-01-01

    Objective: To isolate murine anti endotoxin single chain phage antibody from a constructed library. Methods: Total RNA was firstly extracted from murine splenic cells and mRNA was reverse-transcribed into cDNA. Then the designed primers were used to amplify the variable region genes of the heavy and light chain (VH, VL) with polymerase chain reaction. The linker was used to assemble the VH and VL into ScFv, and the NotI and SfiI restriction enzymes were used to digest the ScFv in order to ligate into the pCANTAB5E phagemid vector that was already digested with the same restriction enzymes. The ligated vector was then introduced into competent E.coli TG1 cells to construct a single-chain phage antibody library. After rescued with M13KO7 helper phage, recombinant phages displaying ScFv fragments were harvested from the supernatant and selected with endotoxin. The enriched positive clones were reinfected into TG1 cells. Finally, 190 clones were randomly selected to detect the anti endotoxin antibody with indirect ELISA. Results: The titer of anti endotoxin in murine sera was 1:12,800. The concentration of total RNA was 12.38 μg/ml. 1.9×107 clones were obtained after transformed into TG1. 3×104 colonies were gotten after one round panning. Two positive colonies were confirmed with indirect ELISA among 190 randomly selected colonies. Conclusion: A 1.9×107 murine anti endotoxin single chain phage antibody library was successfully constructed. Two anti endotoxin antibodies were obtained from the library.

  8. Rapid Selection of Phage Se-scFv with GPX Activity via Combination of Phage Display Antibody Library with Chemical Modification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glutathione peroxidase (GPX) plays an important role in scavenging reactive oxygen species. A series of catalytic antibodies with GPX activity have been generated by the authors of this study. To obtain humanized catalytic antibodies, the phage-displayed human antibody library was used to select novel antibodies by repetitive screening. Phage antibodies, scFv-B8 and scFv-H6 with the GSH-binding site, were obtained from the library by enzyme-linked immunosorbent assay(ELISA) analysis with 4 rounds of selection against their respective haptens, S-2,4-dinitriphenyl t-butyl ester(GSH-s-DNP-Bu) and S-2,4-dinitriphenyl t-hexyl ester(GSH-s-DNP-He). Nevertheless, several studies need to be conducted to determine whether scFv-B8 and scFv-H6 possess GPX activity. To enhance the speed of the selection, selenocysteine(Sec, the catalytic group of GPX) was incorporated directly into the phages, scFv-B8 and scFv-H6, by chemical mutation to form the phages Se-scFv-B8 and Se-scFv-H6. The GPX activities were found to be 3012 units/μmol and 2102 units/μmol, respectively. To improve the GPX activity of the phage Se-scFv-B8, DNA shuffling was used to construct a secondary library and another positive phage antibody scFv-B9 was screened out by another panning against GSH-s-DNP-Bu. When Sec was incorporated via chemical mutation into the phage antibody scFv-B9, its GPX activity reached 3560 units/μmol, which is 1.17-fold higher than the phage antibody Se-scFv-B8and almost approached the order of magnitude of native GPX. The rapid selection is the prerequisite for generating humanized Se-scFv with GPX activity.

  9. Silent Encoding of Chemical Post-Translational Modifications in Phage-Displayed Libraries.

    Science.gov (United States)

    Tjhung, Katrina F; Kitov, Pavel I; Ng, Simon; Kitova, Elena N; Deng, Lu; Klassen, John S; Derda, Ratmir

    2016-01-13

    In vitro selection of chemically modified peptide libraries presented on phage, while a powerful technology, is limited to one chemical post-translational modification (cPTM) per library. We use unique combinations of redundant codons to encode cPTMs with "silent barcodes" to trace multiple modifications within a mixed modified library. As a proof of concept, we produced phage-displayed peptide libraries Ser-[X]4-Gly-Gly-Gly, with Gly and Ser encoded using unique combinations of codons (TCA-[X]4-GGAGGAGGA, AGT-[X]4-GGTGGTGGT, etc., where [X]4 denotes a random NNK library). After separate chemical modification and pooling, mixed-modified libraries can be panned and deep-sequenced to identify the enriched peptide sequence and the accompanying cPTM simultaneously. We panned libraries bearing combinations of modifications (sulfonamide, biotin, mannose) against matched targets (carbonic anhydrase, streptavidin, concanavalin A) to identify desired ligands. Synthesis and validation of sequences identified by deep sequencing revealed that specific cPTMs are significantly enriched in panning against the specific targets. Panning on carbonic anhydrase yielded a potent ligand, sulfonamide-WIVP, with Kd = 6.7 ± 2.1 nM, a 20-fold improvement compared with the control ligand sulfonamide-GGGG. Silent encoding of multiple cPTMs can be readily incorporated into other in vitro display technologies such as bacteriophage T7 or mRNA display.

  10. Identification of peptides that selectively bind to myoglobin by biopanning of phage displayed-peptide library.

    Science.gov (United States)

    Padmanaban, Guruprasath; Park, Hyekyung; Choi, Ji Suk; Cho, Yong-Woo; Kang, Woong Chol; Moon, Chan-Il; Kim, In-San; Lee, Byung-Heon

    2014-10-10

    Biopanning of phage displayed-peptide library was performed against myoglobin, a marker for the early assessment of acute myocardial infarction (AMI), to identify peptides that selectively bind to myoglobin. Using myoglobin-conjugated magnetic beads, phages that bound to myoglobin were collected and amplified for the next round of screening. A 148-fold enrichment of phage titer was observed after five rounds of screening relative to the first round. After phage binding ELISA, three phage clones were selected (3R1, 3R7 and 3R10) and the inserted peptides were chemically synthesized. The analysis of binding affinity showed that the 3R7 (CPSTLGASC) peptide had higher binding affinity (Kd=57 nM) than did the 3R1 (CNLSSSWIC) and 3R10 (CVPRLSAPC) peptide (Kd=125 nM and 293 nM, respectively). Cross binding activity to other proteins, such as bovine serum albumin, troponin I, and creatine kinase-MB, was minimal. In a peptide-antibody sandwich ELISA, the selected peptides efficiently captured myoglobin. Moreover, the concentrations of myoglobin in serum samples measured by a peptide-peptide sandwich assay were comparable to those measured by a commercial antibody-based kit. These results indicate that the identified peptides can be used for the detection of myoglobin and may be a cost effective alternative to antibodies.

  11. Screening of a specific peptide binding to esophageal squamous carcinoma cells from phage displayed peptide library.

    Science.gov (United States)

    Ma, Caixia; Li, Chunyan; Jiang, Dongliang; Gao, Xiaojie; Han, Juanjuan; Xu, Nan; Wu, Qiong; Nie, Guochao; Chen, Wei; Lin, Fenghuei; Hou, Yingchun

    2015-06-01

    To select a specifically binding peptide for imaging detection of human esophageal squamous cell carcinoma (ESCC), a phage-displayed 12-mer peptide library was used to screen the peptide that bind to ESCC cells specifically. After four rounds of bio-panning, the phage recovery rate gradually increased, and specific phage clones were effectively enriched. The 60 randomly selected phage clones were tested using cellular enzyme-linked immunosorbent assay (ELISA), and 41 phage clones were identified as positive clones with the over 2.10 ratio of absorbance higher than other clones, IRP and PBS controls. From the sequencing results of the positive clones, 14 peptide sequences were obtained and ESCP9 consensus sequence was identified as the peptide with best affinity to ESCC cells via competitive inhibition, fluorescence microscopy, and flow cytometry. The results indicate that the peptide ESCP9 can bind to ESCC cells specifically and sensitively, and it is a potential candidate to be developed as an useful molecule to the imaging detection and targeting therapy for ESCC.

  12. Selection of trkB-binding peptides from a phage-displayed random peptide library

    Institute of Scientific and Technical Information of China (English)

    马仲才; 吴晓兰; 曹明媚; 潘卫; 朱分禄; 陈景山; 戚中田

    2003-01-01

    Brain-derived neurotrophic factor (BDNF) shows potential in the treatment of neurodegenerative diseases, but the therapeutic application of BDNF has been greatly limited because it is too large in molecular size to permeate blood-brain barrier. To develop low-molecular-weight BDNF-like peptides, we selected a phage-displayed random peptide library using trkB expressed on NIH 3T3 cells as target in the study. With the strategy of peptide library incubation with NIH 3T3 cells and competitive elution with 1 υg/mL of BDNF in the last round of selection, the specific phages able to bind to the natural conformation of trkB and antagonize BDNF binding to trkB were enriched effectively. Five trkB-binding peptides were obtained, in which a core sequence of CRA/TXφXXφXXC (X represents the random amino acids, φ represents T, L or I) was identified. The BDNF-like activity of these five peptides displayed on phages was not observed, though all of them antagonized the activity of BDNF in a dose-dependent manner. Similar results were obtained with the synthetic peptide of C1 clone, indicating that the 5 phage-derived peptides were trkB antagonists. These low-molecular-weight antagonists of trkB may be of potential application in the treatment of neuroblastoma and chronic pain. Meanwhile, the obtained core sequence also could be used as the base to construct the secondary phage-displayed peptide library for further development of small peptides mimicking BDNF activity.

  13. Partial protection induced by phage library-selected peptides mimicking epitopes of Schistosoma japonicum

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To obtain peptide mimicking epitopes of Schistosoma japonicum (S.japonicum) through screening of a phage peptide library and to test their potential for induction of protection. Methods S.japonicum infected sera from Microtus fortis (IMFS) and normal sera from Microtus fortis (NMFS) were used respectively to screen a 12-mers random peptide library by testing the reactivity of anti-S.japonicum serum with the phagotopes. After three rounds of biopanning, the pooled phages were used to immunize mice, after which challenge infection was performed. Results Of 12 randomly picked clones, 10 clones selected using IMFS and 7 clones selected using NMFS were shown to be antigenic. Significant reduction in adult worms (22.6%) and a high reduction (68.9%) in liver eggs were achieved following immunization with phages screened with IMFS. However, no protection was elicited by those selected with NMFS. Conclusion The results show that the phagotopes are both antigenic and immunogenic, suggesting a potential use of phage displayed peptide as novel vaccines against S. japonicum.

  14. Epitope Mapping of Dengue-Virus-Enhancing Monoclonal-Antibody Using Phage Display Peptide Library

    Directory of Open Access Journals (Sweden)

    Chung-I Rai

    2008-01-01

    Full Text Available The Antibody-Dependent Enhancement (ADE hypothesis has been proposed to explain why more severe manifestations of Dengue Hemorrhagic Fever and Dengue Shock Syndrome (DHF/DSS occur predominantly during secondary infections of Dengue Virus (DV with different serotypes. However, the epitopes recognized by these enhancing antibodies are unclear. Recently, anti-pre-M monoclonal antibody (mAb 70-21, which recognized all DV serotypes without neutralizing activity, were generated and demonstrated as an enhancing antibody for DV infection. In the present study, the epitope recognized by mAb 70-21 was identified using a phage-displayed random-peptide library. After three rounds of biopanning, ELISA showed that immunopositive phage clones specifically bound to mAb 70-21 but not to serum or purified IgG from naive mice. DNA sequencing of these phage clones showed a consensus sequence, QNNLGPR. Like mAb70-21, these phage-induced antisera also enhanced the DV infection of cells. In addition, indirect fluorescent assays showed phage-induced antisera bound to human rhabdomyosarcoma or Vero cells. Western blotting and immunoprecipitation analysis showed that phage-induced antisera recognized hsp 60 in BHK cell lysate. Moreover, the sera levels of antibodies against the synthetic peptide QNNLGPR correlated with the disease severity of dengue patients. Taken together, these results suggest that antibodies which recognized epitopes shared by pre-M of DV and hsp 60 of host cells may enhance DV infection and be involved in the development of DHF or DSS.

  15. A novel phage-library-selected peptide inhibits human TNF-α binding to its receptors.

    Science.gov (United States)

    Brunetti, Jlenia; Lelli, Barbara; Scali, Silvia; Falciani, Chiara; Bracci, Luisa; Pini, Alessandro

    2014-06-03

    We report the identification of a new human tumor necrosis factor-alpha (TNF-α) specific peptide selected by competitive panning of a phage library. Competitive elution of phages was obtained using the monoclonal antibody adalimumab, which neutralizes pro-inflammatory processes caused by over-production of TNF-α in vivo, and is used to treat severe symptoms of rheumatoid arthritis. The selected peptide was synthesized in monomeric and branched form and analyzed for binding to TNF-α and competition with adalimumab and TNF-α receptors. Results of competition with TNF-α receptors in surface plasmon resonance and melanoma cells expressing both TNF receptors make the peptide a candidate compound for the development of a novel anti-TNF-α drug.

  16. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-09-09

    Highlights: {yields} Successfully selected specific PreS1-interacting peptides by using phage displayed library. {yields} Alignment of the positive phage clones revealed a consensus PreS1 binding motif. {yields} A highly enriched peptide named P7 had a strong binding ability for PreS1. {yields} P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX{sub n}HX{sub m}HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  17. Automated panning and screening procedure on microplates for antibody generation from phage display libraries.

    Science.gov (United States)

    Turunen, Laura; Takkinen, Kristiina; Söderlund, Hans; Pulli, Timo

    2009-03-01

    Antibody phage display technology is well established and widely used for selecting specific antibodies against desired targets. Using conventional manual methods, it is laborious to perform multiple selections with different antigens simultaneously. Furthermore, manual screening of the positive clones requires much effort. The authors describe optimized and automated procedures of these processes using a magnetic bead processor for the selection and a robotic station for the screening step. Both steps are performed in a 96-well microplate format. In addition, adopting the antibody phage display technology to automated platform polyethylene glycol precipitation of the enriched phage pool was unnecessary. For screening, an enzyme-linked immunosorbent assay protocol suitable for a robotic station was developed. This system was set up using human gamma-globulin as a model antigen to select antibodies from a VTT naive human single-chain antibody (scFv) library. In total, 161 gamma-globulin-selected clones were screened, and according to fingerprinting analysis, 9 of the 13 analyzed clones were different. The system was further tested using testosterone bovine serum albumin (BSA) and beta-estradiol-BSA as antigens with the same library. In total, 1536 clones were screened from 4 rounds of selection with both antigens, and 29 different testosterone-BSA and 23 beta-estradiol-BSA binding clones were found and verified by sequencing. This automated antibody phage display procedure increases the throughput of generating wide panels of target-binding antibody candidates and allows the selection and screening of antibodies against several different targets in parallel with high efficiency.

  18. Design of phage-displayed cystine-stabilized mini-protein libraries for proteinaceous binder engineering.

    Science.gov (United States)

    Chang, Hung-Ju; Yang, An-Suei

    2014-01-01

    Cystine-stabilized mini-proteins are important scaffolds in the combinatorial search of binders for molecular recognition. The structural determinants of a cystine-stabilized scaffold are the critical residues determining the formation of the native disulfide-bonding configuration, and thus should remain unchanged in the combinatorial libraries so as to allow a large portion of the library sequences to be compatible with the scaffold structure. A high-throughput molecular evolution procedure has been developed to select and screen for the polypeptide sequences folding into a specific cystine-stabilized structure. Patterns of sequence preference that emerge from the resultant sequence profiles provide structural determinant information, which facilitates the designs of combinatorial libraries for combinatorial approaches as in phage display. This methodology enables artificial cystine-stabilized proteins to be engineered with enhanced folding and binding properties.

  19. Modular and aggregation resistant Vh antibodies from a phage display library

    DEFF Research Database (Denmark)

    Friis, Niels Anton; Mandrup, Ole Aalund; Lykkemark, Simon

    2012-01-01

    Directed evolution of antibodies through phage display is a powerful technique for producing binders of various biological targets. One of the recent innovations in the fi eld is the domain antibody, an antibody consisting only of a single variable domain. These anti bodies can be obtained either...... through immunisation of sharks or camels, or alternatively from recombinant libraries1. The domain antibodies have certain advantages, both pharmacologically and technically. Here we report the construction of a semi-synthetic and highly modular antibody library, based on a human framework (V3-23/D47......). The antibody scaffold has been codon optimised to improve expression, and the CDR’s have been created using trinucleotide synthesis. These methods give a strict control over the randomisations, and the ability to design a library with minimal aggregation propensity. To facilitate further manipulation, unique...

  20. A novel peptide, selected from phage display library of random peptides, can efficiently target into human breast cancer cell

    Institute of Scientific and Technical Information of China (English)

    DONG Jian; LIU WeiQing; JIANG AiMei; ZHANG KeJian; CHEN MingQing

    2008-01-01

    To develop a targeting vector for breast cancer biotherapy, MDA-MB-231 cell, a human breast cancer cell line, was co-cultured with pC89 (9 aa) phage display library of random peptides. In multiple inde-pendent peptide-presenting phage screening trials, subtilisin was used as a protease to inactivate ex-tra-cellular phages. The internalized phages were collected by cell lysising and amplified in E. coli XLI-Blue. Through five rounds of selection, the peptide-presenting phages which could be internalized in MDA-MB-231 cells were isolated. A comparison was made between internalization capacities of pep-tide-presenting phages isolated from MDA-MB-231 cells and RGD-integrin binding phage by cocultur-ing them with other human tumor cell lines and normal cells. The nucleotide sequences of isolated peptide-presenting phages were then determined by DNA sequencing. To uncover whether phage coat protein or amino acid order was required for the character of the peptide to MDA-MB-231 cells, three peptides were synthesized. They are CASPSGALRSC, ASPSGALRS and CGVIFDHSVPC (the shifted sequence of CASPSGALRSC), and after coculturing them with different cell lines, their targeting ca-pacities to MDA-MB-231 cells were detected. These data suggested that the internalization process was highly selective, and capable of capturing a specific peptide from parent peptide variants. Moreover, the targeting internalization event of peptides was an amino acid sequence dependent manner. The results demonstrated the feasibility of using phage display library of random peptides to develop new targeting system for intracellular delivery of macromolecules, and the peptide we obtained might be modified as a targeting vector for breast cancer gene therapy.

  1. Screening and Identification of a Novel Hepatocellular Carcinoma Cell Binding Peptide by Using a Phage Display Library

    Institute of Scientific and Technical Information of China (English)

    Xiaohua ZHU; Hua WU; Sha LUO; Zhiqun XIANYU; Dan ZHU

    2008-01-01

    The purpose of this study was to screen peptides that can specifically bind to human hepatocellular carcinoma (hHCC) cells using phage display of random peptide library in order to develope a peptide-based carrier for the diagnosis or therapy of hHCC. A peptide 12-mer phage display library was employed and 4 rounds of subtractive panning were performed using the hHCC cell line HepG2 as the target. After panning, the phages that specifically bound to and internalized in hHCC cells were selected. The selected phages demonstrated highly specific affinity to HepG2 cells analyzed by ELISA and immunofluorescence analysis. 57.3% of the selected phage clones displayed repeated sequence FLLEPHLMDTSM, and 4 amino acid residues, FLEP were extremely conservative. Based on the sequencing results, a 16-mer peptide (WH-16) was synthesized. The competitive ELISA showed that the binding of the phage clones displayed sequence FLLEPHLMDTSM to HepG2 cells was efficiently inhibited by WH-16. Our findings indicate that cellular binding of phage is mediated via its displayed peptide and the synthesized 16-mer peptide may have the potential to be a delivery Carrier in target diagnosis or therapy for hHCC.

  2. Structural analysis and molecular modeling of two antitrichosanthin IgE clones from phage antibody library

    Institute of Scientific and Technical Information of China (English)

    LIZONGDONG; YURENYUAN; 等

    1997-01-01

    Recently we constructed a murine IgE phage surface display library and screened out two IgE (Fab) clones with specific binding activity to Trichosanthin (TCS).In this work,the Vε and Vκ genes of the two clones were sequenced and their putative germline gene usages were studied.On the basis of the known 3D structure of Trichosanthin and antibody,molecular modeling was carried out to study the antigen-antibody interaction.The possible antigenic determinant sites on the surface of TCS recognized by both the clones were analyzed,and the reaction forces between TCS and two Fab fragments were also analyzed respectively.

  3. In vivo recombination as a tool to generate molecular diversity in phage antibody libraries.

    Science.gov (United States)

    Sblattero, D; Lou, J; Marzari, R; Bradbury, A

    2001-06-01

    The creation of diversity in populations of polypeptides has become an important tool in the derivation of polypeptides with useful characteristics. This requires efficient methods to create diversity coupled with methods to select polypeptides with desired properties. In this review we describe the use of in vivo recombination as a powerful way to generate diversity. The novel principles for the recombination process and several applications of this process for the creation of phage antibody libraries are described. The advantage and disadvantages are discussed and possible future exploitation presented.

  4. Variable domain antibodies specific for viral hemorrhagic septicemia virus (VHSV) selected from a randomized IgNAR phage display library.

    Science.gov (United States)

    Ohtani, Maki; Hikima, Jun-ichi; Jung, Tae-Sung; Kondo, Hidehiro; Hirono, Ikuo; Takeyama, Haruko; Aoki, Takashi

    2013-02-01

    Phage display libraries are used to screen for nucleotide sequences that encode immunoglobulin variable (V) regions that are specific for a target antigen. We previously constructed an immunoglobulin new antigen receptor (IgNAR) phage display library. Here we used this library to obtain an IgNAR V region that is specific for viral hemorrhagic septicemia virus (VHSV). A phage clone (clone 653) was found to be specific for VHSV by the biopanning method. The V region of clone 653 was used to construct a 6 × His tagged recombinant IgNAR-653 V protein (rIgNAR-653) using the Escherichia coli pET system. The rIgNAR-653 protein bound specifically to VHSV, confirming its activity.

  5. Phage-displayed peptide library screening for preferred human substrate peptide sequences for transglutaminase 7.

    Science.gov (United States)

    Kuramoto, Katsuma; Yamasaki, Risa; Shimizu, Yoshitaka; Tatsukawa, Hideki; Hitomi, Kiyotaka

    2013-09-01

    Transglutaminases are a family of enzymes that catalyze cross-linking reactions between proteins. Among the members, there is currently no information regarding the substrate preferences of transglutaminase 7 (TG7), that would clarify its physiological significance. We previously obtained several highly reactive substrate peptide sequences of transglutaminases from a random peptide library. In this study, we screened for preferred substrate sequences for TG7 from a phage-displayed 12-mer peptide library. The most preferred sequence was selected based on reactivity and isozyme specificity. We firstly exhibited the tendency for the preference of substrate sequence for TG7. Then, using the most efficient peptide, Z3S, we established an in vitro assay system to assess enzymatic activity of TG7.

  6. High affinity antibodies against Lex and sialyl Lex from a phage display library.

    Science.gov (United States)

    Dinh, Q; Weng, N P; Kiso, M; Ishida, H; Hasegawa, A; Marcus, D M

    1996-07-15

    Our previous studies of seven murine mAbs against the carbohydrate Lex Ag demonstrated that they were all encoded by VH441 and V kappa 24B. To obtain higher affinity Abs, and to ascertain whether their L chains could be encoded by other genes, we constructed a phage display library in a modified pComb 8 vector. The library contained random L chains, and Fd segments enriched in VH domains encoded by the VHX24 gene family. We selected phage with an Lex-BSA Ag, and obtained two Fab mAbs, clones 23 and 24, whose affinities were more than 100-fold higher than hybridoma mAb PM81. Both new mAbs were encoded by VH441, and their L chains were encoded by genes of the V kappa Ox1 and V kappa 9 families. In contrast to hybridoma mAb PM81, which binds only Lex, clones 23 and 24 bound sialyl Lex (SLex) as well as Lex, and clone 23 also binds the backbone carbohydrate structure nLacCer. Analysis of the binding of these three mAbs to synthetic glycolipids that contained structural modifications indicated that they recognize different aspects of the Lex structure, and suggested that they bind to limited regions of the oligosaccharide.

  7. Isolation of BNYVV coat protein-specific single chain Fv from a mouse phage library antibody.

    Science.gov (United States)

    Jahromi, Zahra Moghaddassi; Salmanian, Ali Hatef; Rastgoo, Nasrin; Arbabi, Mehdi

    2009-10-01

    Beet necrotic yellow vein virus (BNYVV) infects sugar beet plants worldwide and is responsible for the rhizomania disease and severe economic losses. Disease severity and lack of naturally occurring resistant plants make it very difficult to control the virus, both from epidemiological and economic standpoints. Therefore, early detection is vital to impose hygiene restrictions and prevent further spread of the virus in the field. Immunoassays are one of the most popular methodologies for the primary identification of plant pathogens including BNYVV since they are robust, sensitive, fast, and inexpensive. In this study, the major coat protein (CP21) of BNYVV was cloned and expressed in Escherichia coli. Thereafter, mice were immunized with purified CP21 and a phage antibody library was constructed from their PCR-amplified immunoglobulin repertoire. Following filamentous phage rescue of the library and four rounds of panning against recombinant CP21 antigen, several specific single chain Fv fragments were isolated and characterized. This approach may pave the way to develop novel immunoassays for a rapid detection of viral infection. Moreover, it will likely provide essential tools to establish antibody-mediated resistant transgenic technology in sugar beet plants.

  8. Analysis of the Resveratrol-binding Protein using Phage-displayed Random Peptide Library

    Institute of Scientific and Technical Information of China (English)

    Lei FENG; Jian JIN; Lian-Feng ZHANG; Ting YAN; Wen-Yi TAO

    2006-01-01

    Resveratrol, a plant polyphenol, is found in significant amounts in the skin of grapes and in some traditional herbs. It is reported to exert different biological activities, such as inhibiting lipid peroxidation,scavenging free radicals, inhibiting platelet aggregation, and anticancer activity. In order to screen the resveratrol-binding proteins, we synthesized biotinylated resveratrol, purified by liquid chromatography and immobilized it into streptavidin-coated microplate wells. 3-(4,5-Demethylthiazol-)-2,5-diphenyl tetrazolium bromide assay showed little change in the anticancer activity of biotinylated resveratrol in vitro. A random library of phage-displayed peptides was screened for binding to immobilized resveratrol to isolate resveratrolbinding proteins. Several peptides were found to bind to resveratrol specifically, which was proven by enzyme-linked immunosorbent assay. Through amino acid sequence analysis of the selected peptides and human proteins using the BLAST program, the results showed that resveratrol has an affinity for various proteins such as breast cancer-associated antigen, breast cancer resistance protein, death-associated transcription factor, and human cyclin-dependent kinase. These results demonstrate that our study provides a feasible method for the study of binding proteins of natural compounds using a phage-displayed random peptide library.

  9. Screening Peptide Inhibitors Using Phage Peptide Library with Isocitrate Lyase in Mycobacterium tuberculosis as Target

    Institute of Scientific and Technical Information of China (English)

    YIN Yu-he; NIU Xue; SUN Bo; TENG Guo-sheng; ZHAO Yun-hui; WU Cong-mei

    2011-01-01

    When devoured by macrophages,Mycobacterium tuberculosis remains persistent in macrophages and gains energy through the glyoxylate bypass to maintain its long-term existence in host cells.Therefore it is possible to stop persistent infections by interdicting the glyoxylate bypass in which the isocitrate lyase(ICL) is the key rate-limiting enzyme and a persistence factor.ICL is the target of anti-TB(TB:tubercular) drugs,which could screen ICL out and effectively inhibit the activity of ICL in Mycobacterium tuberculosis,and because of this,anti-TB drugs can be used to kill persistent Mycobacterium tuberculosis.In this study,the ICL gene of the Mycobacterium tuberculosis H37Rv was cloned successfully and recombinant protein with bioactivity was obtained through the enzyme characteristic appraisal.The specific activity of the recombined ICL is 24 μmol·mg-1 -min-1.The recombined ICL protein was used as the target,and phages which can specifically combine to ICL were screened in the phage 7 peptide library.According to the results of the ELISA and DNA sequence detection,eventually three 7-peptide chains were synthesized.Then the peptide chains were reacted with ICL,respectively,to detect their inhibitory effects on ICL.The results show that all the three 7-peptide chains possessed varying inhibitory effects on the activity of ICL.This study provided lead compounds for the research and development of new peptide anti-TB drugs.

  10. Novel ZnO-binding peptides obtained by the screening of a phage display peptide library

    Energy Technology Data Exchange (ETDEWEB)

    Golec, Piotr [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology (affiliated with the University of Gdansk) (Poland); Karczewska-Golec, Joanna [University of Gdansk and Medical University of Gdansk, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology (Poland); Los, Marcin; Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [University of Gdansk, Department of Molecular Biology (Poland)

    2012-11-15

    Zinc oxide (ZnO) is a semiconductor compound with a potential for wide use in various applications, including biomaterials and biosensors, particularly as nanoparticles (the size range of ZnO nanoparticles is from 2 to 100 nm, with an average of about 35 nm). Here, we report isolation of novel ZnO-binding peptides, by screening of a phage display library. Interestingly, amino acid sequences of the ZnO-binding peptides reported in this paper and those described previously are significantly different. This suggests that there is a high variability in sequences of peptides which can bind particular inorganic molecules, indicating that different approaches may lead to discovery of different peptides of generally the same activity (e.g., binding of ZnO) but having various detailed properties, perhaps crucial under specific conditions of different applications.

  11. Isolation of Osteosarcoma-Associated Human Antibodies from a Combinatorial Fab Phage Display Library

    Directory of Open Access Journals (Sweden)

    Carmela Dantas-Barbosa

    2009-01-01

    Full Text Available Osteosarcoma, a highly malignant disease, is the most common primary bone tumor and is frequently found in children and adolescents. In order to isolate antibodies against osteosarcoma antigens, a combinatorial osteosarcoma Fab library displayed on the surface of phages was used. After three rounds of selection on the surface of tumor cells, several osteosarcoma-reactive Fabs were detected. From these Fabs, five were better characterized, and despite having differences in their VH (heavy chain variable domain and Vκ (kappa chain variable domain regions, they all bound to a protein with the same molecular mass. Further analysis by cell ELISA and immunocytochemistry suggested that the Fabs recognize a membrane-associated tumor antigen expressed in higher amounts in neoplasic cells than in normal tissue. These results suggest that the human Fabs selected in this work are a valuable tool for the study of this neoplasia.

  12. Identification of Target Ligands of CORYNE in Arabidopsis by Phage Display Library

    Institute of Scientific and Technical Information of China (English)

    Heng Zhao; Shuzhen Li; Jiping Sheng; Lin Shen; Yuhui Yang; Bin Yao

    2011-01-01

    CORYNE (CRN) plays important roles in stem cell division and differentiation of shoot apical meristem (SAM) in Arabidopsis thaliana. The cytoplasmic kinase domain of CRN has been cloned and expressed in Escherichia coil, and further purified by two consecutive steps of affinity chromatography. By using this purified CRN as a ligand, a 12-mer random-peptide library was used to determine the specific amino acid sequences binding with the recombinant CRN molecule. After four rounds of biopanning, positive phage clones were isolated and sequenced, and further tested by enzyme linked immunosorbent assay for their binding ability and specificity. Two positive clones that specifically bind to the intracellular protein kinase domain of CRN have been identified. Alignment of these peptides and the kinase-associated protein phosphatase (KAPP) shows high similarity, indicating that KAPP might interact with the cytoplasmic kinase domain of CRN and negatively regulate the CLV signal. Our current study would be helpful to better understand the CLV3 signal pathway.

  13. Construction of white spot syndrome virus (WSSV) whole genome phage display library

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanbing; YANG Feng

    2007-01-01

    A rebuilt vector pCANTAB 5 EE was obtained by inserting a 34 bp double-stranded oligonucleotide which contained a EcoRV recognition sequence into pCANTAB 5 E. White spot syndrome virus (WSSV) genome DNA was fragmented by sonication to isolate fragments mainly in the range of 0.8 ~2.0 kb, then the fragments were blunt-ended with T4 DNA polymerase and cloned into the EcoRV site of pCANTAB 5 EE. The primary recombinant clone of the library was 3.0 × 105.Colony PCR of random selected recombinants showed that the size of the inserts was 0.12 ~ 1.77 kb. After the whole library recombinant phages infected Escherichia coli HB2151 cells, the extracellular and periplasmic extracts were dropped on PVDF membranes to perform dot blot, using polyclonal mouse anti-VP24 serum,anti-WSV026 serum,anti-WSV063 serum,anti-WSV069 serum,anti-WSV112 serum, anti WSV238 serum,anti-WSV303 serum and anti-VP26 serum as the primary antibody, respectively. The results showed that the display library could express the viral proteins.

  14. Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library.

    Science.gov (United States)

    Rhaiem, Rafik Ben; Houimel, Mehdi

    2016-07-01

    Cutaneous leishmaniasis (CL) is a global problem caused by intracellular protozoan pathogens of the genus Leishmania for which there are no suitable vaccine or chemotherapy options. Thus, de novo identification of small molecules binding to the Leishmania parasites by direct screening is a promising and appropriate alternative strategy for the development of new drugs. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select binding peptides to metacyclic promastigotes from a highly virulent strain of Leishmania major (Zymodeme MON-25; MHOM/TN/94/GLC94). After four rounds of stringent selection and amplification, polyclonal and monoclonal phage-peptides directed against L. major metacyclic promastigotes were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to L. major by monoclonal phage ELISA. The DNA of 42 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences deduced. Six different peptide sequences were obtained with frequencies of occurrence ranging from 2.3% to 85.7%. The biological effect of the peptides was assessed in vitro on human monocytes infected with L. major metacyclic promastigotes, and in vivo on susceptible parasite-infected BALB/c mice. The development of cutaneous lesions in the right hind footpads of infected mice after 13 weeks post-infection showed a protection rate of 81.94% with the injected peptide P2. Moreover, Western blots revealed that the P2 peptide interacted with the major surface protease gp63, a protein of 63kDa molecular weight. Moreover, bioinformatics were used to predict the interaction between peptides and the major surface molecule of the L. major. The molecular docking showed that the P2 peptide has the minimum interaction energy and maximum shape complimentarity with the L. major gp63 active site. Our study demonstrated that the P2 peptide occurs at high frequency

  15. Generation and selection of immunized Fab phage display library against human B cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    Yongmei Shen; Xiaochun Yang; Ningzheng Dong; Xiaofang Xie; Xia Bai; Yizhen Shi

    2007-01-01

    The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production of monoclonal antibodies by the traditional hybridoma technology is costly, and the resulting murine antibodies often have the disadvantage of triggering human anti-mouse antibody (HAMA) response. Therefore recombinant Fab antibodies generated by the phage display technology can be a suitable alternative in managing B cell lymphoma. In this study, we extracted total RNA from spleen cells of BALB/c mice immunized with human B lymphoma cells, and used RT-PCR to amplify cDNAs coding for the K light chains and Fd fragments of heavy chains. After appropriate restriction digests, these cDNA fragments were successively inserted into the phagemid vector pComb3H-SS to construct an immunized Fab phage display library. The diversity of the constructed library was approximately 1.94×107. Following five rounds of biopanning, soluble Fab antibodies were produced from positive clones identified by ELISA. From eight positive clones, FabC06, FabC21, FabC43 and FabC59 were selected for sequence analysis. At the level of amino acid sequences, the variable heavy domains (VH) and variable light domains (VL) were found to share 88-92% and 89-94% homology with sequences coded by the corresponding murine germline genes respectively. Furthermore, reactivity with membrane proteins of the B cell lymphoma was demonstrated by immunohistochemistry and western blotting. These immunized Fab antibodies may provide a valuable tool for further study of B cell lymphoma and could also contribute to the improvement of disease therapy.

  16. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library

    Science.gov (United States)

    Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua

    2016-02-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 ‑ 2.0 × 108 cells mL‑1), a low limit of detection (79 cells mL‑1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  17. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library.

    Science.gov (United States)

    Han, Lei; Liu, Pei; Petrenko, Valery A; Liu, Aihua

    2016-02-24

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 10(2) - 2.0 × 10(8) cells mL(-1)), a low limit of detection (79 cells mL(-1), S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  18. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library.

    Science.gov (United States)

    Bakhshinejad, Babak; Zade, Hesam Motaleb; Shekarabi, Hosna Sadat Zahed; Neman, Sara

    2016-12-01

    Phage display is known as a powerful methodology for the identification of targeting ligands that specifically bind to a variety of targets. The high-throughput screening of phage display combinatorial peptide libraries is performed through the affinity selection method of biopanning. Although phage display selection has proven very successful in the discovery of numerous high-affinity target-binding peptides with potential application in drug discovery and delivery, the enrichment of false-positive target-unrelated peptides (TUPs) without any actual affinity towards the target remains a major problem of library screening. Selection-related TUPs may emerge because of binding to the components of the screening system rather than the target. Propagation-related TUPs may arise as a result of faster growth rate of some phage clones enabling them to outcompete slow-propagating clones. Amplification of the library between rounds of biopanning makes a significant contribution to the selection of phage clones with propagation advantage. Distinguishing nonspecific TUPs from true target binders is of particular importance for the translation of biopanning findings from basic research to clinical applications. Different experimental and in silico approaches are applied to assess the specificity of phage display-derived peptides towards the target. Bioinformatic tools are playing a rapidly growing role in the analysis of biopanning data and identification of target-irrelevant TUPs. Recent progress in the introduction of efficient strategies for TUP detection holds enormous promise for the discovery of clinically relevant cell- and tissue-homing peptides and paves the way for the development of novel targeted diagnostic and therapeutic platforms in pharmaceutical areas.

  19. A variety of human monoclonal antibodies against epidermal growth factor receptor isolated from a phage antibody library.

    Science.gov (United States)

    Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu

    2016-11-04

    When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of VH and VL genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Structural guided scaffold phage display libraries as a source of bio-therapeutics.

    Directory of Open Access Journals (Sweden)

    Y K Stella Man

    Full Text Available We have developed a structurally-guided scaffold phage display strategy for identification of ligand mimetic bio-therapeutics. As a proof of concept we used the ligand of integrin αvβ6, a tumour cell surface receptor and a major new target for imaging and therapy of many types of solid cancer. NMR structure analysis showed that RGD-helix structures are optimal for αvβ6 ligand-interaction, so we designed novel algorithms to generate human single chain fragment variable (scFv libraries with synthetic VH-CDR3 encoding RGD-helix hairpins with helices of differing pitch, length and amino acid composition. Study of the lead scFv clones D25scFv and D34scFv and their corresponding VH-CDR3 derived peptides, D25p and D34p, demonstrated: specific binding to recombinant and cellular αvβ6; inhibition of αvβ6-dependent cell and ligand adhesion, αvβ6-dependent cell internalisation; and selective retention by αvβ6-expressing, but not αvβ6-negative, human xenografts. NMR analysis established that both the D25p and D34p retained RGD-helix structures confirming the success of the algorithm. In conclusion, scFv libraries can be engineered based on ligand structural motifs to increase the likelihood of developing powerful bio-therapeutics.

  1. Insight into screening immunoglobulin gene combinatorial libraries in a phage display vector: a tale of two antibodies.

    Science.gov (United States)

    Kakinuma, A; Portolano, S; Chazenbalk, G; Rapoport, B; McLachlan, S M

    1997-01-01

    Combinatorial libraries of immunoglobulin genes in "phage display" vectors are a powerful tool for obtaining antigen-specific antibody fragments. To date, this approach has been used to isolate abundant, but not rare, human autoantibodies of IgG class. We have compared the relative efficiencies of panning pComb3 libraries made from intrathyroidal plasma cells for abundant human autoantibodies to thyroid peroxidase (TPO) and rare autoantibodies to the thyrotropin receptor (TSHR). TPO-specific Fab were readily obtained from a library using three different forms of recombinant antigen, (i) purified TPO, (ii) impure TPO in culture medium and, (iii) TPO expressed on the surface of CHO cells. In contrast, TSHR-specific Fab were not isolated. This was the case despite repeated pannings of six libraries from three optimal patients (IgG/kappa and IgG/lambda libraries for each patient). Both purified recombinant TSHR and CHO cells expressing TSHR on their surface were used. Library enrichment was observed on some screenings. However, Fab expressed by individual clones or from enriched libraries were not specific as determined by (i) binding to purified, radio-labeled antigen, (ii) FACS analysis of TSHR on intact CHO cells and, (iii) inhibition of radiolabeled TSH binding. Remarkably, in screening for both TPO- and TSHR-specific Fab, neither library enrichment nor the retention of cDNA inserts of the correct size correlated with obtaining Fab with the antigenic specificity sought. Indeed, excellent enrichment could be observed with conditioned medium from untransfected cells. Our data suggest that the key to isolating rare antibodies from phage display libraries is not the creation of vast libraries of greater diversity or even the development of more stable vectors. Rather, success in this endeavor appears to require reducing the "noise" of non-specific clones in a moderately sized library.

  2. Identification of Bacterial Surface Antigens by Screening Peptide Phage Libraries Using Whole Bacteria Cell-Purified Antisera

    Science.gov (United States)

    Hu, Yun-Fei; Zhao, Dun; Yu, Xing-Long; Hu, Yu-Li; Li, Run-Cheng; Ge, Meng; Xu, Tian-Qi; Liu, Xiao-Bo; Liao, Hua-Yuan

    2017-01-01

    Bacterial surface proteins can be good vaccine candidates. In the present study, we used polyclonal antibodies purified with intact Erysipelothrix rhusiopthiae to screen phage-displayed random dodecapeptide and loop-constrained heptapeptide libraries, which led to the identification of mimotopes. Homology search of the mimotope sequences against E. rhusiopthiae-encoded ORF sequences revealed 14 new antigens that may localize on the surface of E. rhusiopthiae. When these putative surface proteins were used to immunize mice, 9/11 antigens induced protective immunity. Thus, we have demonstrated that a combination of using the whole bacterial cells to purify antibodies and using the phage-displayed peptide libraries to determine the antigen specificities of the antibodies can lead to the discovery of novel bacterial surface antigens. This can be a general approach for identifying surface antigens for other bacterial species. PMID:28184219

  3. Identification of a novel skin penetration enhancement peptide by phage display peptide library screening.

    Science.gov (United States)

    Kumar, Sunny; Sahdev, Preety; Perumal, Omathanu; Tummala, Hemachand

    2012-05-07

    Skin is an important site for local or systemic application of drugs. However, a majority of drugs have poor permeability through the skin's topmost layer, stratum corneum (SC). The aim of this study was to identify safe and smaller peptides that could enhance the skin penetration of drug molecules. By screening phage display peptide library, we have identified a T2 peptide (LVGVFH), which enhanced the penetration of bacteriophages (~800 nm long bacterial viruses) across porcine and mouse skin. Pretreating the skin with synthetic T2 peptide at pH 4.5 resulted in significant penetration enhancement of hydrophilic drug 5-fluorouracil (5-FU) across skin. FTIR spectroscopy showed that the T2 peptide interacted with skin lipids to enhance the skin penetration. Pretreating the skin with T2 peptide enhanced the partitioning of small molecules with different lipophilicities (5-FU, fluorescein isothiocyanate, and rhodamine 123 hydrochloride) into skin. Fluorescence studies showed that T2 peptide enhanced the diffusion of these molecules into intercellular lipids of SC and thus enhanced the penetration into the skin. Histidine at the c-terminus of T2 peptide was identified to be critical for the skin penetration enhancement. T2 peptide interacted with skin lipids to cause skin penetration enhancement. The study identified a novel, safe, and noninvasive peptide to improve the skin penetration of drugs without chemical conjugation.

  4. Schistosoma japonicum:Isolation and Identification of Peptides Mimicking Ferritin Epitopes from Phage Display Library

    Institute of Scientific and Technical Information of China (English)

    Lian-Fei TANG; Xin-Yuan YI; Xian-Fang ZENG; Lin-Qian WANG; Shun-Ke ZHANG

    2004-01-01

    In an attempt to isolate and identify the antigenic epitopes on ferritin of Schistosoma japonicum(SjFer)and to test their protective potentiality against Schistosomajaponicum(S.j),polyclonal antisera against SjFer was prepared to screen a 12-mer random peptide library.Three rounds of biopanning were performed and resulted in an enrichment.Six peptides selected randomly from the third elute were all found to be positive by evaluating the binding to anti-SjFer sera by ELISA and Western blotting.Three amino acid sequences were deduced from the six phage clones by sequencing.When they were used to vaccinate mice,the three peptides could induce significant reduction in adult worms(26.7% ,20.4%,and 25.9%)as well as in liver eggs per gram(LEPG)(40.0%,38.2%,and 40.8%).This result showed that three mimotopes on SjFer were obtained and they could induce significant protective efficacy against S.j.

  5. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    Science.gov (United States)

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-09-11

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  6. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library

    Science.gov (United States)

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-01-01

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective. PMID:27626445

  7. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library

    Directory of Open Access Journals (Sweden)

    Han Wang

    2016-09-01

    Full Text Available Tetanus neurotoxin (TeNT produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  8. A large semi-synthetic single-chain Fv phage display library based on chicken immunoglobulin genes

    Directory of Open Access Journals (Sweden)

    Jordaan Frances

    2004-04-01

    Full Text Available Abstract Background Antibody fragments selected from large combinatorial libraries have numerous applications in diagnosis and therapy. Most existing antibody repertoires are derived from human immunoglobulin genes. Genes from other species can, however, also be used. Because of the way in which gene conversion introduces diversity, the naïve antibody repertoire of the chicken can easily be accessed using only two sets of primers. Results With in vitro diagnostic applications in mind, we have constructed a large library of recombinant filamentous bacteriophages displaying single chain antibody fragments derived from combinatorial pairings of chicken variable heavy and light chains. Synthetically randomised complementarity determining regions are included in some of the heavy chains. Single chain antibody fragments that recognise haptens, proteins and virus particles were selected from this repertoire. Affinities of three different antibody fragments were determined using surface plasmon resonance. Two were in the low nanomolar and one in the subnanomolar range. To illustrate the practical value of antibodies from the library, phage displayed single chain fragments were incorporated into ELISAs aimed at detecting African horsesickness and bluetongue virus particles. Virus antibodies were detected in a competitive ELISA. Conclusion The chicken-derived phage library described here is expected to be a versatile source of recombinant antibody fragments directed against a wide variety of antigens. It has the potential to provide monoclonal reagents with applications in research and diagnostics. For in vitro applications, naïve phage libraries based on avian donors may prove to be useful adjuncts to the selectable antibody repertoires that already exist.

  9. Selection of Immunogenic Peptide Mimics of Male Worm Origin of Schistosoma Japonicum using Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    陈欲晓; 易新元; 曾宪芳; 王林纤; 唐连飞; 章洁; McreynoldsLarry

    2004-01-01

    To select the immunogenic short peptide mimics of male worm origin of Schistosoma japonicum (Sj) and to explore their protection effect against schistosomiasis in mice, the random phage display peptide hbrary of 12 - mer was screened with IgG to soluble male worm antigen of Sj, and the specific positive clones selected through three rounds of screenings were detected by Dot-ELISA, and then injected subcutaneously into mice for vaccination and protection assessment against Sj. It was found that 18 randomly picked phage displayed clones all showed definite antigenicity with various intensities. The pooled phages displayed clones could induce production of specific antibodies and cause 31.72% of worm reduction rate and 51.54 % of egg reduction rate in mice, revealing a significant difference ( P < 0. 001 ) in comparison with those of the controls. It concludes that the short peptide mimics of male worm origin of Sj obtained by affinity screening phage display ptide library can elicit partial protection against this pathogen.

  10. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Renata Rosito Tonelli

    2013-01-01

    Full Text Available Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques.The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment, were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction.In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic

  11. Isolation of high-affinity human IgE and IgG antibodies recognising Bet v 1 and Humicola lanuginosa lipase from combinatorial phage libraries

    DEFF Research Database (Denmark)

    Jakobsen, Charlotte G; Bodtger, Uffe; Kristensen, Peter

    2004-01-01

    Allergen-specific Fab fragments isolated from combinatorial IgE and IgG libraries are useful tools for studying allergen-antibody interactions. To characterise the interaction between different allergens and antibodies we have created recombinant human phage antibody libraries in the Fab format. ...

  12. Antagonist peptides of human interferon-α2b isolated from phage display library inhibit interferon induced antiviral activity

    Institute of Scientific and Technical Information of China (English)

    Wang TIAN; Gang BAI; Zheng-he LI; Wen-bo YANG

    2006-01-01

    Aim: To screen human interferon (IFN)-α2b antagonist peptides from a phage displayed heptapeptide library. Methods: WISH cells and polyclonal anti-IFN-α2b antibodies were used to select IFN receptor-binding peptides from a phage displayed heptapeptide library. The specific binding of phage clones was examined by phage ELISA and immunohistochemistry. The specific binding activities of synthetic peptides to WISH cells were detected by competition assay. Effects of synthetic peptides to IFN-induced antiviral activity were analyzed by evaluating the cytopathic effect (CPE) using the MTT method. Results: Twenty-three positive clones were obtained after seven rounds of selection. Ten clones were randomly picked from the positive clones and were sequenced. The corresponding amino acid sequences suggested 3 groups homologous to the 3 domains of IFN-α2b, defined by residues 24-41, 43-49, and 148-158 of IFN-α2b. As they presented as corresponding to IFN receptor-binding domains, AB loop and E helix, clone № 26 and 35 were chosen for further characterization and shown to bind to WISH cells. Two peptides corresponding to clone № 26 and 35, designated SP-7(SLSPGLP) and FY-7(FSAPVRY) were shown to compete with GFP-IFN-α2b for binding to its receptor and to inhibit the IFN-α2b-induced antiviral activity. Conclusion: Both IFN-α2b antagonist peptides, SP-7 and FY-7, were able to inhibit the IFN-induced antiviral activity, and could be helpful in laying the foundation for the molecular mechanism of the interaction between IFN and its receptor.

  13. Identification of Hitherto Undefined B-Cell Epitopes by Antibodies in the Sera of Vitiligo Patients Using Phage-Display Peptide Library

    Directory of Open Access Journals (Sweden)

    Zohreh Jadali

    2003-12-01

    Full Text Available A random 12 mers phage library was used to screen a pool of immunoglo¬bulin fractions obtained from vitiligo patients. Subsequent to panning experiments, a panel of affinity selected phage from vitiligo patients were obtained. This panel was tested using an ELIS A for their reactivity with pooled sera from patients and normal controls. Among the 16 randomly selected clones, two of clones showed distinct positive reactivity with the patient's sera compared with controls. The peptides displayed by these phages expressed the following amino acid sequences: SHMPLANQYQWA and NHVQAWEQFWDS. Thus, screening with phage-displayed random peptide library of vitiligo sera can reveal peptide sequences that mimic vitiligo-related self-antigen.

  14. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    OpenAIRE

    Oliinyk O. S.; Kaberniuk A. A.; Kolibo D. V.; Komisarenko S. V.

    2014-01-01

    Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv) antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized) human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, an...

  15. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xiao

    Full Text Available High throughput screenings of single chain Fv (scFv antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins

  16. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    Science.gov (United States)

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2017-09-07

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10(9) independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  17. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library.

    Science.gov (United States)

    Zhao, Ning; Schmitt, Margaret A; Fisk, John D

    2016-04-01

    Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that may be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins that may serve as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the S. solfataricus protein Sso7d scaffold. Sso7d is a small cysteine-free DNA-binding protein (approximately 7 kDa, 63 amino acids), with a melting temperature of nearly 100 °C. Tight-binding Sso7d variants were selected for a diverse set of protein targets from a 10(10) member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely related human, bovine and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context. Furthermore, phage-displayed Sso7d variants retain their binding affinity after exposure to temperatures up to 70 °C. Taken together, our results suggest that the Sso7d scaffold will be a complementary addition to the range of non-antibody scaffold proteins that may be utilized in phage display. Variants of hyperthermostable binding proteins have potential applications in diagnostics and therapeutics for environments with extreme conditions of storage and deployment.

  18. Specific probe selection from landscape phage display library and its application in enzyme-linked immunosorbent assay of free prostate-specific antigen.

    Science.gov (United States)

    Lang, Qiaolin; Wang, Fei; Yin, Long; Liu, Mingjun; Petrenko, Valery A; Liu, Aihua

    2014-03-01

    Probes against targets can be selected from the landscape phage library f8/8, displaying random octapeptides on the pVIII coat protein of the phage fd-tet and demonstrating many excellent features including multivalency, stability, and high structural homogeneity. Prostate-specific antigen (PSA) is usually determined by immunoassay, by which antibodies are frequently used as the specific probes. Herein we found that more advanced probes against free prostate-specific antigen (f-PSA) can be screened from the landscape phage library. Four phage monoclones were selected and identified by the specificity array. One phage clone displaying the fusion peptide ERNSVSPS showed good specificity and affinity to f-PSA and was used as a PSA capture probe in a sandwich enzyme-linked immunosorbent assay (ELISA) array. An anti-human PSA monoclonal antibody (anti-PSA mAb) was used to recognize the captured antigen, followed by horseradish peroxidase-conjugated antibody (HRP-IgG) and o-phenylenediamine, which were successively added to develop plate color. The ELISA conditions such as effect of blocking agent, coating buffer pH, phage concentration, antigen incubation time, and anti-PSA mAb dilution for phage ELISA were optimized. On the basis of the optimal phage ELISA conditions, the absorbance taken at 492 nm on a microplate reader was linear with f-PSA concentration within 0.825-165 ng/mL with a low limit of detection of 0.16 ng/mL. Thus, the landscape phage is an attractive biomolecular probe in bioanalysis.

  19. Structural characterization and optimization of antibody-selected phage library mimotopes of an antigen associated with autoimmune recurrent thrombosis.

    Science.gov (United States)

    Sem, D S; Baker, B L; Victoria, E J; Jones, D S; Marquis, D; Yu, L; Parks, J; Coutts, S M

    1998-11-17

    The presence of high titers of anti-cardiolipin antibodies (ACA's) of autoimmune origin, which are known to bind to plasma beta2-glycoprotein I (aka apolipoprotein H), correlates clinically with autoimmune recurrent thrombosis. Soluble beta2-glycoprotein I binds to solid-phase ACA (immobilized on a surface plasmon resonance chip) with a Kd of 1.4 microM, but if the reactants are reversed and beta2-glycoprotein I is on the solid-phase support, then the Kd is 52 nM. This 27-fold difference in affinity reflects the avidity/entropic advantage obtained for an antibody binding to an antigen that is made multivalent because it is attached to a solid phase. A mimotope of this antigen, selected from a phage display peptide library screen with an ACA, has been shown to bind to solid-phase ACA as a phage, using surface plasmon resonance. This peptide is representative of the motif from 37 peptides obtained in a previously reported phage library screen with this ACA (1). A synthetic version of this peptide, referred to as P4, has the sequence: A1G2P3C4I5L6L7A8R9D10R11C12P13G14, and binds to its selecting antibody with a Kd of 42 nM. NMR data indicate that proline-13 is present in both cis and trans configurations, and that these two geometries dramatically affect the overall tertiary structure of the molecule. The peptide lacking this proline binds severalfold better to the ACA, consistent with at least one of these structures having low affinity for binding ACA. Replacement of the arginine-9 position with a proline decreases binding affinity to ACA 10-fold. Another phage library-selected peptide has a proline in position 9, but also has a leucine in position 5, instead of isoleucine. Since its affinity for ACA is nearly as good as that for peptide P4, the phage library screening must have selected for a non-beta-branched amino acid in this position to compensate for the adverse effects of the arginine-9 to proline-9 substitution. The solution structure of a modified version

  20. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    Science.gov (United States)

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  1. Immunodiagnosis of Canine Visceral Leishmaniasis Using Mimotope Peptides Selected from Phage Displayed Combinatorial Libraries

    Directory of Open Access Journals (Sweden)

    Christina Monerat Toledo-Machado

    2015-01-01

    Full Text Available ELISA and RIFI are currently used for serodiagnosis of canine visceral leishmaniasis (CVL. The accuracy of these tests is controversial in endemic areas where canine infections by Trypanosoma cruzi may occur. We evaluated the usefulness of synthetic peptides that were selected through phage display technique in the serodiagnosis of CVL. Peptides were chosen based on their ability to bind to IgGs purified from infected dogs pooled sera. We selected three phage clones that reacted only with those IgGs. Peptides were synthesized, polymerized with glutaraldehyde, and used as antigens in ELISA assays. Each individual peptide or a mix of them was reactive with infected dogs serum. The assay was highly sensitive and specific when compared to soluble Leishmania antigen that showed cross-reactivity with anti-T. cruzi IgGs. Our results demonstrate that phage display technique is useful for selection of peptides that may represent valuable synthetic antigens for an improved serodiagnosis of CVL.

  2. 噬菌体抗体库筛选技术%Screening Isolates from Antibody Phage-display Libraries

    Institute of Scientific and Technical Information of China (English)

    高鹏; 胡立勇; 钱钰; 徐晨

    2012-01-01

    For almost 20 years, phage display antibody (Ab) libraries screening have been widely used in antibody screen, clinical diagnostic, treatment of disease and basic research areas. Rapid identification of the autofit monoclonal antibody, and reliable and efficient data management and analysis are very important in the application of this technology. This review described reported methods for high-throughput screening of antibody phage-display libraries and further more gave a brief introduction to data management.%在过去的20年中,噬菌体抗体库筛选技术被广泛的应用于抗体筛选、疾病治疗,临床诊断以及基础研究之中.在该技术的应用过程中,快速有效的筛选出最适合的单克隆抗体并进行可靠和高效的数据管理和分析是十分重要的.文中总结了近年来噬菌体抗体库的高通量筛选方法并且对数据管理做了简要介绍.

  3. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yan-Da Lai

    2016-02-01

    Full Text Available Vascular endothelial growth factor (VEGF is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%–347% tumor growth ratio (% of Day 0 tumor volume on Day 21 vs. 435% with Avastin. This finding suggests a potential use of these three antibodies for VEGF-targeted therapy.

  4. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification.

    Science.gov (United States)

    Sotelo, Pablo; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen

    2012-01-01

    Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.

  5. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice.

    Directory of Open Access Journals (Sweden)

    Maliha Zahid

    Full Text Available BACKGROUND: A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library. METHODS AND RESULTS: A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP. We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain. CONCLUSIONS: Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.

  6. Isolation and Evaluation of Specific Human Recombinant Antibodies from a Phage Display Library against HER3 Cancer Signaling Antigen

    Directory of Open Access Journals (Sweden)

    Foroogh Nejatollahi

    2014-07-01

    Full Text Available Background: The human epidermal growth factor receptor family comprises four homologous members: EGFR (ErbB1, ErbB2 (HER2, ErbB3 (HER3 and ErbB4 (HER4.This family plays an important role in the signaling pathway and cell proliferation. The heterodimerization of HER2 with HER3 leads to tumor cell proliferation. Monoclonal antibody to the human HER3 receptor blocks HER3 heterodimerization and inhibits the growth of breast cancer cells. Due to their human origin, small size, rapid penetration and high affinity properties, recombinant single chain antibodies (scFv have been introduced as the most desired agents for cancer immunotherapy. In this study, we use a phage display system to select specific scFvs against HER3 for their use in cancer targeted therapy. Methods: A phage antibody display library of scFv was panned against an immunodominant epitope of HER3. Phage rescue was performed on the library. The supernatant that contained the appropriate scFv (109 PFU/ml was added to an immunotube which was coated with the peptide. Elution was done using log phase E. coli TG1. The clones were amplified by PCR and DNA fingerprinted to select the specific clones against the epitope. The specificity of the selected antibodies was tested in ELISA. Results: The results represented two predominant patterns with the frequency of 25%. The other patterns showed the frequencies of 5%-10%. scFv1 and scFv2 demonstrated positive ELISA with absorbances of 0.63 and 0.46, respectively while the absorbances of wells without peptide were 0.19 and 0.11, respectively. Conclusion: In this study two specific scFvs were selected against HER3 antigen in a successful panning process. Phage ELISA represented the specific binding of scFvs against HER3.The selected scFvs reacted only with the corresponding peptides. However, no reaction with the other peptides was detected. The selected anti-HER3 scFvs have suggested that these human high affinity and small antibodies that bind

  7. Construction of an artificially randomized IgNAR phage display library: screening of variable regions that bind to hen egg white lysozyme.

    Science.gov (United States)

    Ohtani, Maki; Hikima, Jun-ichi; Jung, Tae Sung; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi

    2013-02-01

    To develop a multi-antigen-specific immunoglobulin new antigen receptor (IgNAR) variable (V) region phage display library, CDR3 in the V region of IgNAR from banded houndshark (Triakis scyllium) was artificially randomized, and clones specific for hen egg white lysozyme (HEL) were obtained by the biopanning method. The nucleotide sequence of CDR3 in the V region was randomly rearranged by PCR. Randomized CDR3-containing segments of the V region were ligated into T7 phage vector to construct a phage display library and resulted in a phage titer of 3.7 × 10(7) PFU/ml. Forty clones that contained randomized CDR3 inserts were sequenced and shown to have different nucleotide sequences. The HEL-specific clones were screened by biopanning using HEL-coated ELISA plates. After six rounds of screening, nine clones were identified as HEL-specific, eight of which showed a strong affinity to HEL in ELISA compared to a negative control (i.e., empty phage clone). The deduced amino acid sequences of CDR3 from the HEL-specific phage clones fell into four types (I-IV): type I contains a single cysteine residue and type II-IV contain two cysteine residues. These results indicated that the artificially randomized IgNAR library is useful for the rapid isolation of antigen-specific IgNAR V region without immunization of target antigen and showed that it is possible to isolate an antigen-specific IgNAR V region from this library.

  8. Identification of antigenic epitopes of the SapA protein of Campylobacter fetus using a phage display peptide library.

    Science.gov (United States)

    Zhao, Hailing; Yu, Shenye; Liu, Huifang; Si, Wei; Wang, Chunlai; Liu, Siguo

    2012-12-01

    In this study, we immunized mice with prokaryotically expressed recombinant surface layer protein, SapA, of Campylobacter fetus, generated hybridomas secreting mouse monoclonal antibodies (mAb) targeting SapA, and purified the mAb A2D5 from mouse ascites using saturated ammonium sulfate solution. The mAb A2D5, coated onto ELISA plates, was used to screen the phage random 12-peptide library through three rounds of panning. Following panning, 15 phage clones were randomly chosen and tested for reactivity with mAb A2D5 by indirect ELISA. Single-stranded DNA from positive clones was sequenced and compared with the sequence of SapA to predict the key epitope. ELISA and/or Western blot analyses further validated that synthetic peptides and recombinant peptide mimotopes all interact with mAb A2D5. Nine of ten positive phage clones identified by screening were sequenced successfully. Seven clones shared the same sequence HYDRHNYHWWHT; one had the sequence LSKNLPLTALGN; and the final one had the sequence SGMKEPELRSYS. These three sequences shared high homology with SapA J05577 in the region GNEKDFVTKIYSIALGNTSDVDGINYW, in which the underlined amino acids may serve as key residues in the epitope. ELISA and/or Western blot analyses showed that mAb A2D5 not only interacted with the four synthetic peptide mimotopes, but also with 14 prokaryotically expressed recombinant peptide mimotopes. The mimotopes identified in this study will aid future studies into the pathological processes and immune mechanisms of the SapA protein of C. fetus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. An anti-tumor protein produced by Trichinella spiralis and identified by screening a T7 phage display library, induces apoptosis in human hepatoma H7402 cells

    Science.gov (United States)

    Trichinella spiralis infection confers effective resistance to tumor cell expansion. In this study, a T7 phage cDNA display library was constructed to express genes encoded by T. spiralis. Organic phase multi-cell screening was used to sort through candidate proteins in a transfected human chronic m...

  10. Peptide-binding motif prediction by using phage display library for SasaUBA*0301, a resistance haplotype of MHC class I molecule from Atlantic Salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Zhao, Heng; Hermsen, Trudi; Stet, Rene J M;

    2008-01-01

    -terminus. Meanwhile, phage display peptide library encoding random 12mer peptides was also screened against beta(2)m/SasaUBA*0301. Eighty-five percentages of the corresponding peptides have an enrichment of leucine, methionine, valine, or isoleucine at the C-terminus. We predict that this particular allele of Salmon...

  11. A LIVER-TUMOR ADHESION PEPTIDE FROM RANDOM PHAGE DISPLAY LIBRARY

    Institute of Scientific and Technical Information of China (English)

    WU Miao; DU Bing; WANG Lei; ZHOU Zhong-liang; QIAN Min

    2006-01-01

    Objective: To identify and localize the synthesized targeting peptide A54 to liver cancer cell line BEL-7402 in vivo and in vitro for confirming the potential clinical application of peptide A54 in hepatocarcinoma targeting therapy. Methods: Phage A54 was confirmed by ELISA. Biotin and FAM labeled A54 peptides were identified and localized by means of immunohistochemistry and immunocytochemistry. Results: A54 peptide could target the liver-tumor tissue in vivo and adhere to several liver-tumor cells in vitro. FAM-labeled A54 peptides were localized on the membrane surface of liver-tumor cells. Conclusion: Synthesized A54 peptide obtained from in vivo phage display technology still kept special ability to adhere liver-tumor cell in vivo and in vitro. The A54 peptide could be a candidate carrier for hepatocarcinoma targeting therapy.

  12. Targeting essential Eimeria ninakohlyakimovae sporozoite ligands for caprine host endothelial cell invasion with a phage display peptide library.

    Science.gov (United States)

    Ruiz, A; Pérez, D; Muñoz, M C; Molina, J M; Taubert, A; Jacobs-Lorena, M; Vega-Rodríguez, J; López, A M; Hermosilla, C

    2015-11-01

    Eimeria ninakohlyakimovae is an important coccidian parasite of goats which causes severe diarrhoea in young animals. Specific molecules that mediate E. ninakohlyakimovae host interactions and molecular mechanisms involved in the pathogenesis are still unknown. Although strong circumstantial evidence indicates that E. ninakohlyakimovae sporozoite interactions with caprine endothelial host cells (ECs) are specific, hardly any information is available about the interacting molecules that confer host cell specificity. In this study, we describe a novel method to identify surface proteins of caprine umbilical vein endothelial cells (CUVEC) using a phage display library. After several panning rounds, we identified a number of peptides that specifically bind to the surface of CUVEC. Importantly, caprine endothelial cell peptide 2 (PCEC2) and PCEC5 selectively reduced the infection rate by E. ninakohlyakimovae sporozoites. These preliminary data give new insight for the molecular identification of ligands involved in the interaction between E. ninakohlyakimovae sporozoites and host ECs. Further studies using this phage approach might be useful to identify new potential target molecules for the development of anti-coccidial drugs or even new vaccine strategies.

  13. Induction of immunity in sheep to Fasciola hepatica with mimotopes of cathepsin L selected from a phage display library.

    Science.gov (United States)

    Villa-Mancera, A; Quiroz-Romero, H; Correa, D; Ibarra, F; Reyes-Pérez, M; Reyes-Vivas, H; López-Velázquez, G; Gazarian, K; Gazarian, T; Alonso, R A

    2008-10-01

    An M13 phage random 12-mers peptide library was used to screen cathepsin L mimotopes of Fasciola hepatica and to evaluate their immunogenicity in sheep. Seven clones showed positive reactivity to a rabbit anti-cathepsin L1/L2 antiserum in ELISA, and their amino acid sequences deduced by DNA sequencing were tentatively mapped on the protein. Twenty sheep were randomly allocated into 4 groups of 5 animals each, for immunization with 1x10(14) phage particles of clones 1, 20, a mixture of 7 clones and PBS, without adjuvant at the beginning, and 4 weeks later. All groups were challenged with 300 metacercariae at week 6 and slaughtered 16 weeks later. The mean worm burdens after challenge were reduced by 47.61% and 33.91% in sheep vaccinated with clones 1 and 20, respectively; no effect was observed in animals inoculated with the clone mixture. Also, a significant reduction in worm size and burden was observed for those sheep immunized with clone 1. Animals receiving clone 20, showed a significant reduction in egg output. Immunization induced a reduction of egg viability ranging from 58.92 to 82.11%. Furthermore, vaccinated animals produced clone-specific antibodies which were boosted after challenge with metacercariae of F. hepatica.

  14. Development of a T7 Phage Display Library to Detect Sarcoidosis and Tuberculosis by a Panel of Novel Antigens

    Directory of Open Access Journals (Sweden)

    Harvinder Talwar

    2015-04-01

    Full Text Available Sarcoidosis is a granulomatous inflammatory disease, diagnosed through tissue biopsy of involved organs in the absence of other causes such as tuberculosis (TB. No specific serologic test is available to diagnose and differentiate sarcoidosis from TB. Using a high throughput method, we developed a T7 phage display cDNA library derived from mRNA isolated from bronchoalveolar lavage (BAL cells and leukocytes of sarcoidosis patients. This complex cDNA library was biopanned to obtain 1152 potential sarcoidosis antigens and a microarray was constructed to immunoscreen two different sets of sera from healthy controls and sarcoidosis. Meta-analysis identified 259 discriminating sarcoidosis antigens, and multivariate analysis identified 32 antigens with a sensitivity of 89% and a specificity of 83% to classify sarcoidosis from healthy controls. Additionally, interrogating the same microarray platform with sera from subjects with TB, we identified 50 clones that distinguish between TB, sarcoidosis and healthy controls. The top 10 sarcoidosis and TB specific clones were sequenced and homologies were searched in the public database revealing unique epitopes and mimotopes in each group. Here, we show for the first time that immunoscreenings of a library derived from sarcoidosis tissue differentiates between sarcoidosis and tuberculosis antigens. These novel biomarkers can improve diagnosis of sarcoidosis and TB, and may aid to develop or evaluate a TB vaccine.

  15. A New Combination of Mutated loxPs in a Vector for Construction of Phage Antibody Libraries

    Institute of Scientific and Technical Information of China (English)

    Yu GAN; Xin-Tai ZHAO

    2005-01-01

    In the construction of large antibody libraries by in vivo recombination, two non-homogeneous loxP sites are required for the exchange of Vgenes between phagemids to create many new VH-VL combinations.The mutated loxP511 was designed not to recombine with the wild-type loxP (loxPwt) in early studies and a combination of the two has been used to construct antibody libraries. But recent reports have shown that recombination occurs between loxPwt and loxP511. This suggests that the combinational use of loxP511 and loxPwt might lead to the loss of the V gene diversity of antibody libraries. Therefore, it is necessary to find a new combination of loxPs to avoid the excision recombination in the antibody library. In this study,we found that the excision recombination between loxP511 and loxP2272, another mutated loxP sequence,was undetectable within one phagemid, while the excision recombination between loxP511 and loxPwt occurred at a frequency of 40%, higher than that reported previously. Furthermore, the in vivo recombination of different phagemids with loxP511 and loxP2272 showed that the V gene exchange was efficiently mediated to produce new VH-VL combinations. It was concluded that the loxP511 and loxP2272 combination was more favorable for reducing the excision recombination and constructing large phage antibody libraries with high diversity.

  16. Schistosoma japonicum:construction of phage display antibody library and its application in the immunodiagnosis of infection

    Institute of Scientific and Technical Information of China (English)

    陈代雄; 何蔼; 詹希美; 俞慕华; 雷智刚; 孟锦绣; 李卓雅; 梁瑜; 张瑞琳

    2004-01-01

    Background A monoclonal antibody would be an effective tool for the detection of circulating antigens in the serum of patients with schistosomiasis, but the traditional way of producing monoclonal antibodies is not cost-effective. The objective of this study was to find a new method for the large-scale production of monoclonal antibodies against Schistosoma japonicum (Sj).Methods A phage display antibody library for Sj was constructed. To obtain a single-chain variable fragment antibody (scFv) against Sj, the library was screened with metabolic antigens from adult Sj worms (Sj-MAg) using enzyme-linked immunosorbent assay. The soluble scFvs selected were used to detect Sj antigens in the serum of acute and chronic schistosomiasis patients.Results Six positive clones with good reactivity to Sj-MAg were obtained from the phage display antibody library of about 1.07×106 individual clones. Only two of these six clones bound specifically to Sj-MAg and were chosen for further analysis. Specific soluble anti-Sj-MAg scFvs were produced by inducing the 2 clones with isopropyl-D-thiogalactopyranoside. The characteristics of the scFvs were then determined. The results of Western blot showed that these scFvs could bind to Sj-MAg specifically and had a molecular weight of about 31 kD. When testing serum from schistosomiasis patients with one of the two specific scFvs, its sensitivity was found to be 60% and 37% in acute and chronic patients, respectively, with a specificity of 90%. When the two specific scFvs were combined, their sensitivity was found to be 75% and 57% in acute and chronic patients, respectively, with a specificity of 85%.Conclusions The results indicate that the scFvs are potentially useful for the diagnosis of schistosomiasis. The library construction also provides a useful tool for the further screening of other antibodies for both diagnostic and immunotherapeutic applications and for epitope analysis and vaccine design.

  17. Screening and identification of human ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes phage display library.

    Science.gov (United States)

    Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei

    2016-07-01

    Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.

  18. Construction of normal human IgE phage antibody library and the screening of the anti—trichosanthin IgE

    Institute of Scientific and Technical Information of China (English)

    ZANHONG; MINGYEH

    1996-01-01

    Allergen specific IgE response is the major cause of immediate hypersensitivity.However the number of IgEproducing B cells and the amount of IgE,especially the specific IgE,are so low,it greatly impedes the study of the allergic-specifc antibody responses.Here we report the construction of a normal human IgE combinatorial library.The repertoire of IgE VH genes and of κ genes were separately amplified from normal human peripheral blood lymphocytes through RT-PCR,and were then constructed to form the phage surface display human Fab(IgEVH) library.A plant protein allergen,trichosanthin(TCS),was used to affinity-enrich and to screen the anti-TCS phage HuFab clones from the library.Human IgE(Fab) to TCS were detected.

  19. Use of a recombination-deficient phage lambda system to construct wheat genomic libraries.

    Science.gov (United States)

    Murray, M G; Kennard, W C; Drong, R F; Slightom, J L

    1984-10-01

    The poor cloning efficiency of wheat (Triticum aestivum cv. Yamhill) DNA in conventional cloning vectors has previously prevented the preparation of complete genomic libraries. We show here that while wheat DNA does not clone efficiently using the vector Ch4A, it can be cloned efficiently using Ch32. Ch32 clones are red- gam+ and therefore can be propagated on recombination-deficient hosts. These results suggest that instability of wheat sequences in conventional lambda vector systems has frustrated previous attempts to prepare libraries.

  20. Analysis of proteins that interact with nucleocapsid protein of SARS-CoV using 15-mer phage-displayed library

    Institute of Scientific and Technical Information of China (English)

    LIU ZhengXue; WANG ZhanHui; LIU YingLe; DONG Wei; QI YiPeng

    2007-01-01

    Analysis of proteins that interact with N protein of SARS-CoV using 15-mer phage-displayed library will help to explore the virus pathogenesis and to develop new drugs and vaccines against SARS. In this study, we cloned, expressed and purified N protein of SARS-CoV. This 46-kD N protein was verified by SDS-PAGE and Western-blot. Then, the peptides binding-specific to N protein were identified using 15-mer phage-displayed library. Surprisingly, all of the 89 clones from monoclonal ELISA were positive (S/N>2.1) and the result was further confirmed experimentally once again. Six N protein-binding peptides, designated separately as SNA1, SNA2, SNA4, SNA5, SNA9 and SNG11, were selected for sequencing. Sequence analysis suggested that SNA5 shared approximatively 100% sequence identity to SNA4, SNA2, SNA9 and SNA1. In addition, the binding specificity of the 15-mer peptides with the SARS-CoV N protein was further demonstrated by blocking ELISA using the synthetical 15-mer peptide according to the deduced amino acid sequence of SNA5. Also, the deduced amino sequence of SNA5 was compared with proteins in translated database using the tblastx program, and the results showed that the proteins with the highest homology were Ubiquinol-cytochrome c reductase iron-sulfur subunits (UCRI or UQCR), otherwise known as the Rieske iron-sulfur proteins (RISP). Notablely, in the [2Fe-2S] redox centre of UCRI, there were 6 residues [GGW(Y)F(Y)CP] compatible to the residues (position 2→7, GGWFCP7) of the NH2-terminal of the 15-mer peptide, which indicated higher binding specificity between the N protein of SARS-CoV and the redox centre of UCRI to some extent. Here, the possible molecular mechanisms of SARS-CoV N protein in the pathogenesis of SARS are discussed.

  1. Screening of Peptide Inhibitors of TACE from a Phage Display Random 15-Peptide Library by Recombinant TACE Ectodomain

    Institute of Scientific and Technical Information of China (English)

    Huang Wei; Yang Yuzhen; Wang Zhen; Hang Ling

    2006-01-01

    Tumor necrosis factor (TNF)-oc-converting enzyme (TACE) is the major protease responsible for processing pro-TNF-α from membrane-anchored precursors to secreted TNF-α.In the present study,a 15-peptide library was used to identify potential TACE antagonists.To obtain the recombinant TACE ectodomain and to use it as a selective molecule for the screening of peptide inhibitors of TACE,cDNA coding for the catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by reverse transcription-polymerase chain reaction.The expression plasmid were constructed by inserting T800/T1300 into plasmid pET-28a/c respectively and were transformed into Escherichia coli BL21 (DE3).Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDSPAGE) and Western blot analysis revealed that T800/T1300 were highly expressed in the form of an inclusion body induced by isopropylthiogalactoside.After Ni2+-NTA resin affinity chromatography,the purity of the recombinant T800/T1300 protein was more than 90%.T800 and T1300 proteins were used in the screening of T800/T1300-binding peptides from a phage display random 15-peptide library.Aider four rounds of biopanning,the positive phage clones were analyzed by enzyme-linked immunosorbent assay,competitive inhibition assay (ELESA),and DNA sequencing.A common amino acid sequence (TRWLVYFS RPYLVAT) was confirmed and synthesized.A synthetic peptide was shown to bind to TACE and to inhibit TNF-α release from lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMC) by up to 60.3%.Fluorescence-activated cell sorter (FACS) analysis revealed that the peptide mediated the accumulation of TNF-α on an LPS-stimulated PBMC surface.These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE and that the deduced motif might be applied to the molecular design of anti-inflammatory drugs.

  2. Design and construction of immune phage antibody library against Tetanus neurotoxin: Production of single chain antibody fragments.

    Science.gov (United States)

    Sadreddini, Sanam; Seifi-Najmi, Mehrnosh; Ghasemi, Babollah; Kafil, Hossein Samadi; Alinejad, Vahideh; Sadreddini, Sevil; Younesi, Vahid; Jadidi-Niaragh, Farhad; Yousefi, Mehdi

    2015-12-23

    Tetanus neurotoxin (TeNT) is composed of a light (LC) and heavy chain (HC) polypeptides, released by anaerobic bacterium Clostridium tetani and can cause fatal life-threatening infectious disease. Toxin HC and LC modules represents receptor binding and zinc metalloprotease activity, respectively. The passive administration of animal-derived antibodies against tetanus toxin has been considered as the mainstay therapy for years. However, this treatment is associated with several adverse effects due to the presence of anti-isotype antibodies. In the present study, we have produced the fully human single chain antibody fragments (HuScFv) from two human antibody phage display libraries. Twenty-four different HuscFvs were isolated from two anti TeNT immune libraries. Our produced human ScFv (HuScFv) were converted to IgG platform and analyzed regarding their specific reactivity to TeNT. All of the selected scFvs have the same VL but different VH. Three HuscFvs from the first library (TTX15, 51, 75) and two HuscFvs from the second library (TTX16, 20) were chosen to convert to IgG1 using pOptiVEC and pcDNA3.3 systems. Production of IgG1 from transfected DG44 and binding capacity of them to tetanus toxin and toxoid were measured by ELISA. ELISA results showed no detectable production of TTX16 and TTX20 IgG1. Although, TTX51 and TTX75 were converted and produced as IgG1, no reactivity to tetanus toxin and toxoid was observed. However, TTX15 was successfully produced as whole IgG1 platform with reactivity to both tetanus toxin and toxoid. The latter would be an appropriate replacement for conventional polyclonal antibodies if would meet the further characterization including specificity determination, affinity measurement and toxin neutralizing assays. Our results demonstrated production of functional IgG1 derived from TTX15 scFv and might be an appropriate replacement for polyclonal Tetabulin but it needs further characterization.

  3. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  4. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    Science.gov (United States)

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  5. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries

    Directory of Open Access Journals (Sweden)

    Antti Tullila

    2017-05-01

    Full Text Available Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab library.

  6. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries

    Science.gov (United States)

    Tullila, Antti; Nevanen, Tarja K.

    2017-01-01

    Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library. PMID:28561803

  7. Progress of phage antibody library technique and its application prospect in aquaculture%噬菌体抗体库技术及其在水产养殖的应用前景

    Institute of Scientific and Technical Information of China (English)

    章晋勇; 吴英松; 汪建国

    2004-01-01

    Phage display antibody library has been proven to be a powerful technique used in development of antibodies. Since it was established in 1990, the technology has made enormous improvement and played more and more important role in basic research of biology, immunology, oncology, protein engineering, ligand-receptor studies and proteomics among others in last two decades while there is no report about the application of it in aquaculture so far. It is a success implication of phage display technique in antibody engineering in which antibodies or antibody fragments are displayed on the surface of filamentous bacteriophage by genetic fusion to a coat protein of phage. Cooperating with the effective screening technique, affinity panning, these form the principle of phage display antibody library. The most characteristic of it is a direct physical link between phenotype and genotype. So,the technology makes it practicable to improve characteristic of selected antibodies by genetic manipulation. In the present work, the background, principle and advantages of the powerful tool over traditional hybridroma technolgy are summarized. In addition, several key problems possible to face in the course of application of the technology,including improving the diversity of library, augmentation of library size, generation of high affinity antibody and effective screening of specific antibody were dissertated. At last the possible implication prospect of phage display antibody technique in aquaculture was discussed, especially in elucidating the immune system of fish and producing large amount antibodies with important diagnostic and therapeutic value in fish diseases.

  8. MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries

    Directory of Open Access Journals (Sweden)

    Guo William W

    2011-05-01

    Full Text Available Abstract Background A B-cell epitope is a group of residues on the surface of an antigen which stimulates humoral responses. Locating these epitopes on antigens is important for the purpose of effective vaccine design. In recent years, mapping affinity-selected peptides screened from a random phage display library to the native epitope has become popular in epitope prediction. These peptides, also known as mimotopes, share the similar structure and function with the corresponding native epitopes. Great effort has been made in using this similarity between such mimotopes and native epitopes in prediction, which has resulted in better outcomes than statistics-based methods can. However, it cannot maintain a high degree of satisfaction in various circumstances. Results In this study, we propose a new method that maps a group of mimotopes back to a source antigen so as to locate the interacting epitope on the antigen. The core of this method is a searching algorithm that is incorporated with both dynamic programming (DP and branch and bound (BB optimization and operated on a series of overlapping patches on the surface of a protein. These patches are then transformed to a number of graphs using an adaptable distance threshold (ADT regulated by an appropriate compactness factor (CF, a novel parameter proposed in this study. Compared with both Pep-3D-Search and PepSurf, two leading graph-based search tools, on average from the results of 18 test cases, MimoPro, the Web-based implementation of our proposed method, performed better in sensitivity, precision, and Matthews correlation coefficient (MCC than both did in epitope prediction. In addition, MimoPro is significantly faster than both Pep-3D-Search and PepSurf in processing. Conclusions Our search algorithm designed for processing well constructed graphs using an ADT regulated by CF is more sensitive and significantly faster than other graph-based approaches in epitope prediction. MimoPro is a

  9. One-Step Recovery of scFv Clones from High-Throughput Sequencing-Based Screening of Phage Display Libraries Challenged to Cells Expressing Native Claudin-1

    Directory of Open Access Journals (Sweden)

    Emanuele Sasso

    2015-01-01

    Full Text Available Expanding the availability of monoclonal antibodies interfering with hepatitis C virus infection of hepatocytes is an active field of investigation within medical biotechnologies, to prevent graft reinfection in patients subjected to liver transplantation and to overcome resistances elicited by novel antiviral drugs. In this paper, we describe a complete pipeline for screening of phage display libraries of human scFvs against native Claudin-1, a tight-junction protein involved in hepatitis C virus infection, expressed on the cell surface of human hepatocytes. To this aim, we implemented a high-throughput sequencing approach for library screening, followed by a simple and effective strategy to recover active binder clones from enriched sublibraries. The recovered clones were successfully converted to active immunoglobulins, thus demonstrating the effectiveness of the whole procedure. This novel approach can guarantee rapid and cheap isolation of antibodies for virtually any native antigen involved in human diseases, for therapeutic and/or diagnostic applications.

  10. Isolation of ScFv antibodies of rP27Kip1 from phage display libraries constructed from immunized and non-immunized repertoires

    Institute of Scientific and Technical Information of China (English)

    曹跃琼; 乔守怡; 袁有忠; 黄建生; 赵寿元

    1999-01-01

    Through mRNA extract, RT and a series of PCR, phage antibody libraries were constructed from rP27Kiplimmunized and non-immunized mice. After only one round of selection with rP27Kipl, clones from each library were chosen randomly and digested by Taq I and Hinf I. 11 of 64 clones from the immunized animal had consistent restriction pattern, while none of the 64 clones from the non-immunized animal had, except that one had the same fragments pattern as that of the 11 clones. The 12 fragments were expressed in E. coli BL21(DE3)/pET-28b(+) system. ELISA showed that some of the fragments could bind to rP27Kipl specifically. All these results implied that specific antibody can be obtained by genetic engineering without hybridoma or many rounds of growth and panning selection.

  11. Identification of a novel aFGF-binding peptide with anti-tumor effect on breast cancer from phage display library

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xiaoyong; Cai, Cuizan [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); Xiao, Fei [Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong (China); Xiong, Yaoling [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); Huang, Yadong; Zhang, Qihao [Department of Biopharmaceutical Research and Development Centre, Institute of Biomedicine, Jinan University, Guangzhou 510632, Guangdong (China); Xiang, Qi [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); Lou, Guofeng [Department of Biopharmaceutical Research and Development Centre, Institute of Biomedicine, Jinan University, Guangzhou 510632, Guangdong (China); Lian, Mengyang [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); Su, Zhijian, E-mail: tjnuszj@jnu.edu.cn [Department of Biopharmaceutical Research and Development Centre, Institute of Biomedicine, Jinan University, Guangzhou 510632, Guangdong (China); Zheng, Qing, E-mail: tzhengq@jnu.edu.cn [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China)

    2014-03-21

    Highlights: • A specific aFGF-binding peptide AP8 was identified from a phage display library. • AP8 could inhibit aFGF-stimulated cell proliferation in a dose-dependent manner. • AP8 arrested the cell cycle at the G0/G1 phase by suppressing Cyclin D1. • AP8 could block the activation of Erk1/2 and Akt kinase. • AP8 counteracted proliferation and cell cycle via influencing PA2G4 and PCNA. - Abstract: It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs have been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.

  12. Antibody binding site mapping of SARS-CoV spike protein receptor-binding domain by a combination of yeast surface display and phage peptide library screening.

    Science.gov (United States)

    Zhang, Xiaoping; Wang, Jingxue; Wen, Kun; Mou, Zhirong; Zou, Liyun; Che, Xiaoyan; Ni, Bing; Wu, Yuzhang

    2009-12-01

    The receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein plays an important role in viral infection, and is a potential major neutralizing determinant. In this study, three hybridoma cell lines secreting specific monoclonal antibodies against the RBD of the S protein were generated and their exact binding sites were identified. Using yeast surface display, the binding sites of these antibodies were defined to two linear regions on the RBD: S(337-360) and S(380-399). Using these monoclonal antibodies in phage peptide library screening identified 10 distinct mimotopes 12 amino acids in length. Sequence comparison between native epitopes and these mimotopes further confirmed the binding sites, and revealed key amino acid residues involved in antibody binding. None of these antibodies could neutralize the murine leukemia virus pseudotyped expressing the SARS-CoV spike protein (MLV/SARS-CoV). However, these mAbs could be useful in the diagnosis of SARS-CoV due to their exclusive reactivity with SARS-CoV. Furthermore, this study established a feasible platform for epitope mapping. Yeast surface display combined with phage peptide library screening provides a convenient strategy for the identification of epitope peptides from certain antigenic proteins.

  13. Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage

    Directory of Open Access Journals (Sweden)

    Cianfriglia Maurizio

    2004-11-01

    Full Text Available Abstract Background Tumor-associated antigens recognized by humoral effectors of the immune system are a very attractive target for human cancer diagnostics and therapy. Recent advances in molecular techniques have led to molecular definition of immunogenic tumor proteins based on their reactivity with autologous patient sera (SEREX. Methods Several high complexity phage-displayed cDNA libraries from breast carcinomas, human testis and breast carcinoma cell lines MCF-7, MDA-MB-468 were constructed. The cDNAs were expressed in the libraries as fusion to bacteriophage lambda protein D. Lambda-displayed libraries were efficiently screened with sera from patients with breast cancer. Results A panel of 21 clones representing 18 different antigens, including eight proteins of unknown function, was identified. Three of these antigens (T7-1, T11-3 and T11-9 were found to be overexpressed in tumors as compared to normal breast. A serological analysis of the 21 different antigens revealed a strong cancer-related profile for at least five clones (T6-2, T6-7, T7-1, T9-21 and T9-27. Conclusions Preliminary results indicate that patient serum reactivity against five of the antigens is associated with tumor disease. The novel T7-1 antigen, which is overexpressed in breast tumors and recognized specifically by breast cancer patient sera, is potentially useful in cancer diagnosis.

  14. Screening of scFvs against cTnI from Phage Display Antibody Library and Their Expression in E.coli Rosetta

    Institute of Scientific and Technical Information of China (English)

    WEI Jing-yan; ZHANG Han-qi; JIN Qin-han; LI Wei; LUO Gui-min; LI Shan-yu; MU Ying; ZHU Xue-jun; LIU Lei; GAO Li-zeng; SONG Da-qian; SUN Zhi-wei; YAN Gang-lin

    2005-01-01

    The single chain variable fragments of antibodies(scFvs) against eTnI were screened from the phage display antibody library by using cTnI as the target antigen. After four rounds of panning, four clones(H2, G5,A9, B9) from the phage display antibody library were verified to show higher binding affinity for cTnI by ELISA and to contain the variable region genes of the light and heavy chains of scFvs by sequencing. The variable region genes of scFvs H2 and G5 were successfully amplified by polymerase chain reactions (PCR)and cloned into expression vector pPELB and expressed as a soluble protein in E. coli Rosetta, whose expression yield was about 2% of total proteins. The expressed proteins were purified by nickel(Ni) affinity chromatography and a single band is shown in the position of 28 kDa on SDS-PAGE. The western blot analysis result verifies that the expressed scFv proteins are capable of binding with monoclonal antibodies against hexa-histidine, indicating that they are hexa-histidin-tagged aim proteins. The immunoassay demonstrates that the expressed scFv proteins are able to specifically react with cTnI molecules. The association constant (KA)values range from 1.2×104 to 1.7×105 L/mol that are correspondent to the affinities of polyclonal antibodies against cTnI from rabbits. These antibodies can be valuable reagents for the immunoassay of cTnI.

  15. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenhui; Chen, Xilei; Li, Tao; Li, Yanmei; Wang, Ruixue; He, Dan; Luo, Wu [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); Li, Xiaokun [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China); Wu, Xiaoping, E-mail: twxp@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China)

    2013-05-01

    Fibroblast growth factor 8b (FGF8b) is the major isoform of FGF8 expressed in prostate cancer and it correlates with the stage and grade of the disease. FGF8b has been considered as a potential target for prostate cancer therapy. Here we isolated 12 specific FGF8b-binding phage clones by screening a phage display heptapeptide library with FGF8b. The peptide (HSQAAVP, named as P12) corresponding to one of these clones showed high homology to the immunoglobulin-like (Ig-like) domain II(D2) of high-affinity FGF8b receptor (FGFR3c), contained 3 identical amino acids (AVP) to the authentic FGFR3 D2 sequence aa 163–169 (LLAVPAA) directly participating in ligand binding, carried the same charges as its corresponding motif (aa163–169) in FGFR3c, suggesting that P12 may have a greater potential to interrupt FGF8b binding to its receptors than other identified heptapeptides do. Functional analysis indicated that synthetic P12 peptides mediate significant inhibition of FGF8b-induced cell proliferation, arrest cell cycle at the G0/G1 phase via suppression of Cyclin D1 and PCNA, and blockade of the activations of Erk1/2 and Akt cascades in both prostate cancer cells and vascular endothelial cells. The results demonstrated that the P12 peptide acting as an FGF8b antagonist may have therapeutic potential in prostate cancer. - Highlights: ► A novel FGF8b-binding peptide P12 was isolated from a phage display library. ► The mechanisms for P12 peptide inhibiting cell proliferation were proposed. ► P12 caused cell cycle arrest at G0/G1 phase via suppression of Cyclin D1 and PCNA. ► P12 suppressed FGF8b-induced activations of Akt and MAP kinases. ► P12 acting as an FGF8b antagonist may have therapeutic potential in prostate cancer.

  16. Evolutional selection of a combinatorial phage library displaying randomly-rearranged various single domains of immunoglobulin (Ig-binding proteins (IBPs with four kinds of Ig molecules

    Directory of Open Access Journals (Sweden)

    Jia Jian-An

    2008-08-01

    Full Text Available Abstract Background Protein A, protein G and protein L are three well-defined immunoglobulin (Ig-binding proteins (IBPs, which show affinity for specific sites on Ig of mammalian hosts. Although the precise functions of these molecules are not fully understood, it is thought that they play an important role in pathogenicity of bacteria. The single domains of protein A, protein G and protein L were all demonstrated to have function to bind to Ig. Whether combinations of Ig-binding domains of various IBPs could exhibit useful novel binding is interesting. Results We used a combinatorial phage library which displayed randomly-rearranged various-peptide-linked molecules of D and A domains of protein A, designated PA(D and PA(A respectively, B2 domain of protein G (PG and B3 domain of protein L (PL for affinity selection with human IgG (hIgG, human IgM (hIgM, human IgA (hIgA and recombinant hIgG1-Fc as bait respectively. Two kinds of novel combinatorial molecules with characteristic structure of PA(A-PG and PA(A-PL were obtained in hIgG (hIgG1-Fc and hIgM (hIgA post-selection populations respectively. In addition, the linking peptides among all PA(A-PG and PA(A-PL structures was strongly selected, and showed interestingly divergent and convergent distribution. The phage binding assays and competitive inhibition experiments demonstrated that PA(A-PG and PA(A-PL combinations possess comparable binding advantages with hIgG/hIgG1-Fc and hIgM/hIgA respectively. Conclusion In this work, a combinatorial phage library displaying Ig-binding domains of protein A, protein G, or protein L joined by various random linking peptides was used to conducted evolutional selection in vitro with four kinds of Ig molecules. Two kinds of novel combinations of Ig-binding domains, PA(A-PG and PA(A-PL, were obtained, and demonstrate the novel Ig binding properties.

  17. Phage therapy pharmacology phage cocktails.

    Science.gov (United States)

    Chan, Benjamin K; Abedon, Stephen T

    2012-01-01

    Phage therapy is the clinical or veterinary application of bacterial viruses (bacteriophages) as antibacterial "drugs." More generally, phages can be used as biocontrol agents against plant as well as foodborne pathogens. In this chapter, we consider the therapeutic use of phage cocktails, which is the combining of two or more phage types to produce more pharmacologically diverse formulations. The primary motivation for the use of cocktails is their broader spectra of activity in comparison to individual phage isolates: they can impact either more bacterial types or achieve effectiveness under a greater diversity of conditions. The combining of phages can also facilitate better targeting of multiple strains making up individual bacterial species or covering multiple species that might be responsible for similar disease states, in general providing, relative to individual phage isolates, a greater potential for presumptive or empirical treatment. Contrasting the use of phage banks, or even phage isolation against specific etiologies that have been obtained directly from patients under treatment, here we consider the utility as well as potential shortcomings associated with the use of phage cocktails as therapeutic antibacterial agents.

  18. Homology modelling and bivalent single-chain Fv construction of anti-HepG2 single-chain immunoglobulin Fv fragments from a phage display library

    Indian Academy of Sciences (India)

    Ming Ni; Bing Yu; Y U Huang; Zhenjie Tang; Ping Lei; Xin Shen; Wei Xin; Huifen Zhu; Guanxin Shen

    2008-12-01

    We prepared single-chain immunoglobulin Fv fragments (scFv) SLH10 specific for the HepG2 cell line after biopanning from a large human-naïve phage display library (Griffin. 1 Library). The three-dimensional (3D) structure of SLH10 was modelled by the Insight II molecule simulation software. The structure was refined using the molecular dynamics method. The structures with the least steric clashes and lowest energy were determined finally. The optimized structures of heavy (VH) and light (VL) variable chains of SLH10 scFv were obtained. Then SLH10 bivalent single-chain Fv (BsFv) was constructed that would be suitable for high-affinity targeting. SLH10 BsFv was generated by linking scFvs together and identified by sequencing. Its expression products were confirmed by western blot analysis. The relative molecular masses of scFv and BsFv were approximately 30 kDa and 60 kDa, respectively. Flow cytometry revealed that SLH10 BsFv bound the selected cell lines with greater signal intensity than the parental scFv. The improved antigen binding of SLH10 BsFv may be useful for immunodiagnostics or targeted gene therapy for liver cancer.

  19. Identification of a conserved B-cell epitope on reticuloendotheliosis virus envelope protein by screening a phage-displayed random peptide library.

    Directory of Open Access Journals (Sweden)

    Mei Xue

    Full Text Available BACKGROUND: The gp90 protein of avian reticuloendotheliosis-associated virus (REV-A is an important envelope glycoprotein, which is responsible for inducing protective antibody immune responses in animals. B-cell epitopes on the gp90 protein of REV have not been well studied and reported. METHODS AND RESULTS: This study describes the identification of a linear B-cell epitope on the gp90 protein by screening a phage-displayed 12-mer random peptide library with the neutralizing monoclonal antibody (mAb A9E8 directed against the gp90. The mAb A9E8 recognized phages displaying peptides with the consensus motif SVQYHPL. Amino acid sequence of the motif exactly matched (213SVQYHPL(219 of the gp90. Further identification of the displayed B cell epitope was conducted using a set of truncated peptides expressed as GST fusion proteins and the Western blot results indicated that (213SVQYHPL(219 was the minimal determinant of the linear B cell epitope recognized by the mAb A9E8. Moreover, an eight amino acid peptide SVQYHPLA was proven to be the minimal unit of the epitope with the maximal binding activity to mAb A9E8. The REV-A-positive chicken serum reacted with the minimal linear epitopes in Western blot, revealing the importance of the eight amino acids of the epitope in antibody-epitope binding activity. Furthermore, we found that the epitope is a common motif shared among REV-A and other members of REV group. CONCLUSIONS AND SIGNIFICANCE: We identified (213SVQYHPL(219 as a gp90-specific linear B-cell epitope recognized by the neutralizing mAb A9E8. The results in this study may have potential applications in development of diagnostic techniques and epitope-based marker vaccines against REV-A and other viruses of the REV group.

  20. Phage display: concept, innovations, applications and future.

    Science.gov (United States)

    Pande, Jyoti; Szewczyk, Magdalena M; Grover, Ashok K

    2010-01-01

    Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.

  1. Phage therapy--constraints and possibilities.

    Science.gov (United States)

    Nilsson, Anders S

    2014-05-01

    The rise of antibiotic-resistant bacterial strains, causing intractable infections, has resulted in an increased interest in phage therapy. Phage therapy preceded antibiotic treatment against bacterial infections and involves the use of bacteriophages, bacterial viruses, to fight bacteria. Virulent phages are abundant and have proven to be very effective in vitro, where they in most cases lyse any bacteria within the hour. Clinical trials on animals and humans show promising results but also that the treatments are not completely effective. This is partly due to the studies being carried out with few phages, and with limited experimental groups, but also the fact that phage therapy has limitations in vivo. Phages are large compared with small antibiotic molecules, and each phage can only infect one or a few bacterial strains. A very large number of different phages are needed to treat infections as these are caused by genetically different strains of bacteria. Phages are effective only if enough of them can reach the bacteria and increase in number in situ. Taken together, this entails high demands on resources for the construction of phage libraries and the testing of individual phages. The effectiveness and host range must be characterized, and immunological risks must be assessed for every single phage.

  2. Upregulation of Mrps18a in breast cancer identified by selecting phage antibody libraries on breast tissue sections

    DEFF Research Database (Denmark)

    Sørensen, Karen Marie Juul; Meldgaard, Theresa; Melchjorsen, Connie Jenning

    2017-01-01

    of recombinant antibody libraries displayed on the surface of filamentous bacteriophage as a proteomics discovery tool for the identification of breast cancer biomarkers. A small subpopulation of breast cells expressing both cytokeratin 19 and cytokeratin 14 was targeted using a novel selection procedure...

  3. Potential of Peptides as Inhibitors and Mimotopes: Selection of Carbohydrate-Mimetic Peptides from Phage Display Libraries

    Directory of Open Access Journals (Sweden)

    Teruhiko Matsubara

    2012-01-01

    Full Text Available Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase. However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These peptides are known as “carbohydrate-mimetic peptides (CMPs” because they mimic carbohydrate structures. Compared to carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes that are conjugated with adjuvant for vaccination.

  4. Amplification and polyclonal antibody preparation of M13 phage display library%M13噬菌体肽库扩增及兔抗血清制备

    Institute of Scientific and Technical Information of China (English)

    任晓峰; 马晓微

    2013-01-01

    为制备M13噬菌体多克隆抗体,将噬菌体十二肽原始文库进行大量扩增,作为免疫原制备兔抗M13的多克隆抗体血清并进行间接ELISA鉴定.结果表明,该多抗效价达1∶1 048 576,说明此多抗可与扩增噬菌体文库发生很好的抗原抗体反应.将制备的噬菌体M13多克隆抗体与商业化M13抗体水平比较,制备多抗与商业化M13抗体效果相当.本研究成功制备兔抗M13噬菌体多克隆抗体,为深入研究噬菌体展示技术提供了材料.%In order to generate polyclonal antibodies of the M13 Phage,one M13 of Ph..D.-12TM Phage Display Peptide Library was amplified and used to immunize a rabbit to generate polyclonal antibody.Indirect ELISA analysis showed that the titer of the polyclonal antibody was approximately 1∶1 048 576,showing that the anti-M13 antibody had a high titer.Compared this polyclonal antibody with a Rabbit polyclonal antibody (Rb pAb) to M13 Bacteriophage Coat Proteins (commercialization),the binding activity of the produced polyclonal antibody to the identical target was as good as that of the Rb pAb to M13 Bacteriophage Coat Proteins.In the study,polyclonal antibody to this M13 of phage library was successfully generated and such phage polyclonal antibody is important material for functional analysis with phage.

  5. Identification of peptides that bind hepatitis C virus envelope protein E2 and inhibit viral cellular entry from a phage-display peptide library.

    Science.gov (United States)

    Lü, Xin; Yao, Min; Zhang, Jian-Min; Yang, Jing; Lei, Ying-Feng; Huang, Xiao-Jun; Jia, Zhan-Sheng; Ma, Li; Lan, Hai-Yun; Xu, Zhi-Kai; Yin, Wen

    2014-05-01

    Hepatitis C virus (HCV) envelope protein E2 is required for the entry of HCV into cells. Viral envelope proteins interact with cell receptors in a multistep process, which may be a promising target for the development of novel antiviral agents. In this study, a heptapeptide M13 phage-display library was screened for peptides that bind specifically to prokaryotically expressed, purified truncated HCV envelope protein E2. ELISA assay was used to quantify the binding of the peptides to HCV E2 protein. Flow cytometry, quantitative reverse-transcription PCR and western blotting were used to investigate the inhibition effect of one peptide on HCV infection in hepatoma cells (Huh7.5) in vitro. Four peptides capable of binding specifically to HCV E2 protein were obtained after three rounds of biopanning. Peptide C18 (WPWHNHR), with the highest affinity for binding HCV E2 protein, was synthesized. The results showed that peptide C18 inhibited the viral infectivity of both HCV pseudotype particles (HCVpp) harboring HCV envelope glycoproteins and cell-culture produced HCV (HCVcc). Thus, this study demonstrated that peptide C18 is a potential candidate for anti-HCV therapy as a novel viral entry inhibitor.

  6. Screening of Proteins Interacting with Nonstructural 1 Protein of H5N1 Avian Influenza Virus from T7-phage Display Library

    Institute of Scientific and Technical Information of China (English)

    ZHU Chun-yu; WU Jian-guo; LIU Hong-sheng; SUN Ting-ting; ZHAO Jian; WANG Ning; ZHENG Fang-liang; AI Hai-xin; ZHU Jun-feng; WANG Xiao-ying; ZHU Ying

    2012-01-01

    Avian influenza virus(AIV) nonstructural 1(NS1) gene was amplified by real-time polymerse chain reaction(RT-PCR) and inserted into pET28a,then transformed into E.coli BL21(DE3) competent cell.With the induction of isopropyl-β-D-thiogalactoside(IPTG) and the purification of Ni-NTA column,we finally obtained purified NS1 protein.T7-phage display system was used to screen the proteins that interacted with NS1 from lung cell cDNA library.The selected positive clones were identified by DNA sequencing and analyzed by BLAST program in GeneBank.Two proteins were obtained as NS 1 binding proteins,Homo sapiens nucleolar and coiled-body phosphoprotein 1(NOLC1) and Homo sapiens similar to colon cancer-associated antigen.By co-immunoprecipitation and other methods,Homo sapiens NOLC1 was found to interact with the NS1 protein,the results would provide the basis for further studying biological function of NS1 protein.

  7. A modified protocol for RNA isolation from high polysaccharide containing Cupressus arizonica pollen. Applications for RT-PCR and phage display library construction.

    Science.gov (United States)

    Pico de Coaña, Yago; Parody, Nuria; Fernández-Caldas, Enrique; Alonso, Carlos

    2010-02-01

    RNA isolation is the first step in the study of gene expression and recombinant protein production. However, the isolation of high quantity and high-quality RNA from tissues containing large amounts of polysaccharides has proven to be a difficult process. Cupressus arizonica pollen, in addition to containing high polysaccharide levels, is a challenging starting material for RNA isolation due to the roughness of the pollen grain's walls. Here, we describe an improved technique for RNA isolation from C. arizonica pollen grains. The protocol includes a special disruption and homogenization process as well as a two-step modified RNA isolation technique which consists of an acid phenol extraction followed by a final cleanup using a commercial kit. Resulting RNA proved to be free of contaminants as determined by UV spectrophotometry. The quality of the RNA was analyzed on a bioanalyzer and showed visible 25S and 18S bands. This RNA was successfully used in downstream applications such as RT-PCR and phage display library construction.

  8. [Peptide phage display in biotechnology and biomedicine].

    Science.gov (United States)

    Kuzmicheva, G A; Belyavskaya, V A

    2016-07-01

    To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.

  9. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    Science.gov (United States)

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia.

  10. Recombinant phage probes for Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S; Gioffre, G; Felici, F; Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2007-10-03

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 10{sup 4} cells ml{sup -1}. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  11. Recombinant phage probes for Listeria monocytogenes

    Science.gov (United States)

    Carnazza, S.; Gioffrè, G.; Felici, F.; Guglielmino, S.

    2007-10-01

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 104 cells ml-1. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  12. Generation of a phage-display library of single-domain camelid VH H antibodies directed against Chlamydomonas reinhardtii antigens, and characterization of VH Hs binding cell-surface antigens.

    Science.gov (United States)

    Jiang, Wenzhi; Rosenberg, Julian N; Wauchope, Akelia D; Tremblay, Jacqueline M; Shoemaker, Charles B; Weeks, Donald P; Oyler, George A

    2013-11-01

    Single-domain antibodies (sdAbs) are powerful tools for the detection, quantification, purification and subcellular localization of proteins of interest in biological research. We have generated camelid (Lama pacos) heavy chain-only variable VH domain (VH H) libraries against antigens in total cell lysates from Chlamydomonas reinhardtii. The sdAbs in the sera from immunized animals and VH H antibody domains isolated from the library show specificity to C. reinhardtii and lack of reactivity to antigens from four other algae: Chlorella variabilis, Coccomyxa subellipsoidea, Nannochloropsis oceanica and Thalassiosira pseudonana. Antibodies were produced against a diverse representation of antigens as evidenced by sera ELISA and protein-blot analyses. A phage-display library consisting of the VH H region contained at least 10(6) individual transformants, and thus should represent a wide range of C. reinhardtii antigens. The utility of the phage library was demonstrated by using live C. reinhardtii cells to pan for VH H clones with specific recognition of cell-surface epitopes. The lead candidate VH H clones (designated B11 and H10) bound to C. reinhardtii with EC50 values ≤ 0.5 nm. Treatment of cells with VH H B11 fused to the mCherry or green fluorescent proteins allowed brilliant and specific staining of the C. reinhardtii cell wall and analysis of cell-wall genesis during cell division. Such high-complexity VH H antibody libraries for algae will be valuable tools for algal researchers and biotechnologists.

  13. Construction of human phage antibody library and screening for human monoclonal antibodies of amylin%人源性噬菌体抗体库的构建及抗amylin抗体的初步筛选

    Institute of Scientific and Technical Information of China (English)

    公倩; 李常颖; 畅继武; 朱铁虹

    2012-01-01

    AIM- To screen monoclonal antibodies to amyiin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. METHODS: The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I , Xho I and Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive donas were determined by Phage-ELISA analysis. RESULTS; A Fab phage antibody library with 0.8x 108 members was constructed with the efficacy of about 70%. DNA sequence analysis indicated VH gene belonged to VH3 gene family and Vλ gene belonged to the Vλ gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. CONCLUSION; The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.%目的:构建人源性噬菌体抗体库,从中筛选胰淀素(amylin)单克隆抗体(mAb),测定其特异性及抗原结合活性.方法:从正常健康人的外周血淋巴细胞中提取总RNA,用RT-PcR方法扩增人免疫球蛋白Fd段和轻链基因,构建噬菌体抗体库.酶切和PcR鉴定后,阳性克隆进行DNA测序分析.用人amylin抗原对抗体库进行筛选富集,将得到的阳性克隆进行Phage-ELISA鉴定,结果进行统计学分析.结果:最终构建的抗体库库容约为0.8×108,酶切鉴定显示有插入片段,抗体库重组率为70%.阳性克

  14. Identification of two linear B-cell epitopes from West Nile virus NS1 by screening a phage-displayed random peptide library

    Directory of Open Access Journals (Sweden)

    Qin Yong-Li

    2011-07-01

    Full Text Available Abstract Background The West Nile virus (WNV nonstructural protein 1 (NS1 is an important antigenic protein that elicits protective antibody responses in animals and can be used for the serological diagnosis of WNV infection. Although previous work has demonstrated the vital role of WNV NS1-specific antibody responses, the specific epitopes in the NS1 have not been identified. Results The present study describes the identification of two linear B-cell epitopes in WNV NS1 through screening a phage-displayed random 12-mer peptide library with two monoclonal antibodies (mAbs 3C7 and 4D1 that directed against the NS1. The mAbs 3C7 and 4D1 recognized phages displaying peptides with the consensus motifs LTATTEK and VVDGPETKEC, respectively. Exact sequences of both motifs were found in the NS1 (895LTATTEK901 and 925VVDGPETKEC934. Further identification of the displayed B cell epitopes were conducted using a set of truncated peptides expressed as MBP fusion proteins. The data indicated that 896TATTEK901 and925VVDGPETKEC934 are minimal determinants of the linear B cell epitopes recognized by the mAbs 3C7 and 4D1, respectively. Antibodies present in the serum of WNV-positive horses recognized the minimal linear epitopes in Western blot analysis, indicating that the two peptides are antigenic in horses during infection. Furthermore, we found that the epitope recognized by 3C7 is conserved only among WNV strains, whereas the epitope recognized by 4D1 is a common motif shared among WNV and other members of Japanese encephalitis virus (JEV serocomplex. Conclusions We identified TATTEK and VVDGPETKEC as NS1-specific linear B-cell epitopes recognized by the mAbs 3C7 and 4D1, respectively. The knowledge and reagents generated in this study may have potential applications in differential diagnosis and the development of epitope-based marker vaccines against WNV and other viruses of JEV serocomplex.

  15. Phage Library Screening for the Rapid Identification and In Vivo Testing of Candidate Genes for a DNA Vaccine against Mycoplasma mycoides subsp. mycoides Small Colony Biotype

    Science.gov (United States)

    March, John B.; Jepson, Catherine D.; Clark, Jason R.; Totsika, Makrina; Calcutt, Michael J.

    2006-01-01

    A new strategy for rapidly selecting and testing genetic vaccines has been developed, in which a whole genome library is cloned into a bacteriophage λ ZAP Express vector which contains both prokaryotic (Plac) and eukaryotic (PCMV) promoters upstream of the insertion site. The phage library is plated on Escherichia coli cells, immunoblotted, and probed with hyperimmune and/or convalescent-phase antiserum to rapidly identify vaccine candidates. These are then plaque purified and grown as liquid lysates, and whole bacteriophage particles are then used directly to immunize the host, following which PCMV-driven expression of the candidate vaccine gene occurs. In the example given here, a semirandom genome library of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony (SC) biotype was cloned into λ ZAP Express, and two strongly immunodominant clones, λ-A8 and λ-B1, were identified and subsequently tested for vaccine potential against M. mycoides subsp. mycoides SC biotype-induced mycoplasmemia. Sequencing and immunoblotting indicated that clone λ-A8 expressed an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible M. mycoides subsp. mycoides SC biotype protein with a 28-kDa apparent molecular mass, identified as a previously uncharacterized putative lipoprotein (MSC_0397). Clone λ-B1 contained several full-length genes from the M. mycoides subsp. mycoides SC biotype pyruvate dehydrogenase region, and two IPTG-independent polypeptides, of 29 kDa and 57 kDa, were identified on immunoblots. Following vaccination, significant anti-M. mycoides subsp. mycoides SC biotype responses were observed in mice vaccinated with clones λ-A8 and λ-B1. A significant stimulation index was observed following incubation of splenocytes from mice vaccinated with clone λ-A8 with whole live M. mycoides subsp. mycoides SC biotype cells, indicating cellular proliferation. After challenge, mice vaccinated with clone λ-A8 also exhibited a reduced level of mycoplasmemia

  16. Construction and identification of anti-ENR phage display scFv libraries%抗恩诺沙星噬菌体单链抗体库的构建及鉴定

    Institute of Scientific and Technical Information of China (English)

    温凯; 沈建忠; 孟辉; 吴聪明; 王战辉; 张素霞

    2011-01-01

    本研究以兽药恩诺沙星为对象,构建噬菌体抗体库,为低成本、快速制备目的抗体提供新的途径.以恩诺沙星-鸡卵清蛋白(ENR-OVA)为免疫原对Balb/c小鼠进行免疫,取其脾细胞提取总RNA,并分别扩增全套抗体轻、重链基因,通过重叠延伸PCR技术,以编码柔性多肽(Gly3Ser)4的基因为接头,将轻重链基因组装为完整的scFv基因,将之克隆入pCANTAB5E载体,转化大肠杆菌XL1-Blue,以辅助噬菌体M13KO7对其进行超感染,构建噬菌体抗体库并进行富集、筛选和鉴定;构建了库容量约为2.2×106的抗恩诺沙星噬菌体单链抗体库,并筛选出26株阳性克隆,为表达单链抗体、建立免疫检测方法奠定基础.%This study focuses on construction and identification of immunized phage display library from splenocytes of hyperimmunized BALB/C mice for screening and isolation of scFv fragment against ENR, an alternative method to produce antibodies for veterinary drug residues detection. The total RNA was isolated from splenocytes of a BALB/C mouse hyperimmunized with the Enrofloxacin conjugated to chicken OVA. Variable light and heavy domains of the immunoglobulin genes were amplified by PCR and assembled to produce full-length single-chain Fv(scFV) by overlap extension PCR using a linker primer containing flexible polypeptide-(Gly3Ser)4. The scFv DNA fragment was ligated into phagemid vector pCANTAB5E and electroporated into E. coli XL1-Blue cells. The transformed cells were rescued by M13KO7 helper phage and phage libraries were constructed. The size of antibody libraries is 2.2 × 106. Following the construction of phage display scFv libraries, the recombinant phage displaying scFv were enriched and identified. There are 26 clones against ENR generated in this study.

  17. Construct breast carcinoma T7 phage display cDNA library%乳腺癌T7噬菌体展示cDNA文库的构建

    Institute of Scientific and Technical Information of China (English)

    张涛; 施宝民; 王洪; 陈鹊汀; 季堃; 余松林

    2015-01-01

    目的 构建乳腺癌组织T7噬菌体展示cDNA文库,为下一步筛选差异蛋白打下基础.方法 利用乳腺癌新鲜标本,提取总RNA,分离mRNA并进行纯化,然后合成cDNA,连接体外包装获得T7噬菌体展示cDNA文库.结果 总RNA经检测,A260/A280=1.87,纯化的mRNA产量为4.0μg,A260/A280=1.91,合成的cDNA大小在200~6 000 bp之间,原始文库的容量为2×107pfu,文库重组率为90%,插入片段长度在300~2 000 bp之间.结论 噬菌体展示技术是进行蛋白质功能研究的高效方法,构建高质量的乳腺癌噬菌体展示cDNA文库,可用于肿瘤标志物的筛选、肿瘤疫苗的研制、多肽药物的开发、靶向治疗的研究等众多领域.%Objective To construct the breast carcinoma T7 phage display cDNA library,so the foundation for the screening of differentially expressed proteins was laid. Methods Firstly,fresh specimens of breast carcinoma was used to extract total RNA,separating and purifying of mRNA. Then synthesis cDNA was done. At last,the packaging was connected in vitro and T7 phage display cDNA library was obtained. Results The total RNA was tested,the result is A260/A280=1.87. The purified mRNA is 4.0μg,A260/A280=1.91. The size of cDNA is 200-6 000 bp. The primary library capacity is 2 × 107pfu. Recombination rate of the library is 90%. The length of inserted fragments is 300-2 000 bp. Conclusions Phage display is an efficient method of protein function research. We constructed a high quality breast cancer phage display cDNA Library. The library can be used for screening tumor markers,tumor vaccine,polypeptide drug development,targeted research,and so on.

  18. The comparison of BLyS-binding peptides from phage display library and computer-aided design on BLyS-TACI interaction.

    Science.gov (United States)

    Zhao, Yacong; Hao, Xiafei; Feng, Jiannan; Shen, Beifen; Wei, Jing; Sun, Jian

    2015-02-01

    BLyS antagonists have become the therapeutic reagents in the treatment of autoimmune disorders. BLyS binding peptides and their Fc fusion proteins may be alternative BLyS antagonists in such application. In this study, the activity of BLyS binding peptide 814 obtained from phage display library and peptide TA designed by computer-aided modeling on the interaction of BLyS-TACI was compared. In addition, to maintain the spatial conformation and stability of the peptides, human IgG1 Fc fragment was fused to peptides 814 and TA to form peptide-Fc fusion proteins, steady and innovative peptibodies. The prokaryotic expression plasmids pET30a-814-Fc and pET30a-TA-Fc for these peptibodies were acquired by genetic engineering, and confirmed by DNA sequencing. After the right plasmids were transformed into Escherichia coli BL21 (DE3), the fusion proteins were expressed and purified by protein A affinity column. As a result of competitive ELISA, peptides 814 and TA at 100μg/ml displayed 52.2% and 28.6% inhibition on the interaction of TACI-Fc with BLyS respectively. Moreover, 814-Fc and TA-Fc fusion proteins could bind to BLyS in a dosage-dependent manner as TACI-Fc did, and displayed 54.7% and 26.1% inhibition on the interaction of TACI-Fc-Myc with BLyS at 100μg/ml respectively. So 814-Fc and TA-Fc proteins had the similar bioactivity as the peptides did. Furthermore, compared with TA-Fc, 814-Fc showed two-fold inhibition effect on BLyS binding to TACI, suggesting that 814-Fc could inhibit BLyS bioactivity significantly and might serve as a potential antagonist to treat autoimmune diseases associated with BLyS overexpression.

  19. Chemical posttranslational modification of phage-displayed peptides.

    Science.gov (United States)

    Ng, Simon; Tjhung, Katrina F; Paschal, Beth M; Noren, Christopher J; Derda, Ratmir

    2015-01-01

    Phage-displayed peptide library has fueled the discovery of novel ligands for diverse targets. A new type of phage libraries that displays not only linear and disulfide-constrained cyclic peptides but moieties that cannot be encoded genetically or incorporated easily by bacterial genetic machinery has emerged recently. Chemical posttranslational modification of phage library is one of the simplest approaches to encode nonnatural moieties. It confers the library with new functionality and makes it possible to select and evolve molecules with properties not found in the peptides, for instance, glycopeptides recognized by carbohydrate-binding protein and peptides with photoswitching capability. To this end, we describe the newly emerging techniques to chemically modify the phage library and quantify the efficiency of the reaction with a biotin-capture assay. Finally, we provide the methods to construct N-terminal Ser peptide library that allows site-selective modification of phage.

  20. Phage display peptide library technology's application in the diagnosis and therapy of tumor%噬菌体展示肽库技术在肿瘤诊治研究中的应用

    Institute of Scientific and Technical Information of China (English)

    黄斌; 俞杨; 王自正

    2011-01-01

    噬菌体展示肽库技术是将高度多样性的多肽与噬菌体衣壳蛋白融合表达,呈现于噬菌体表面的多肽具有相对独立的空间结构,能与配体结合,从而筛选特异性分子表位,其已成为肿瘤诊治研究的重要手段和有力工具.筛选与肿瘤细胞或血管表面细胞特异结合的多肽作为核素载体,制成探针,可以对肿瘤进行早期诊断和转移灶的定位,还可以进行核素治疗;以多肽为基础的靶向药物,可以弥补化学药物在杀伤肿瘤细胞的同时也损伤正常组织和器官的弊端,使得肿瘤治疗进入一个新时代.%Phage display peptide library technology facilitates displaying peptides of high diversity on the surface of phage coat proteins,which with their independent space structure bind with ligands to screen the specific molecule epitopes.With the development of this technology,it becomes an effective and powerful tool in tumor research.As nuclide carrier,peptides screened from phage display library binding specifically with tumor cells and tumor blood vessels,can be manufactured into a probe for prophase diagnosis of tumor,localization of metastasis and nuclide therapy.Targeting chemotherapy drugs on the basis of peptides greatly lower the risk of killing normal tissue and organs,which impulses entering a new therapy time.

  1. Phage therapy pharmacology: calculating phage dosing.

    Science.gov (United States)

    Abedon, Stephen

    2011-01-01

    Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter.

  2. Application of whole-cell subtractive panning in phage display library screening%全细胞差减筛选法在噬菌体展示文库筛选中的应用

    Institute of Scientific and Technical Information of China (English)

    吴红珍; 张林波

    2012-01-01

    全细胞差减筛选法是近年来在细胞筛选的基础上发展起来的一项筛选技术,其利用成对的细胞,即两种不同状态的细胞对噬菌体展示文库进行差减筛选,主要用于筛选新的抗原表位、受体、配体、新型疫苗、肿瘤细胞的靶向活性肽、靶向基因载体及受体或酶的激动剂或抑制剂等.本文就其筛选的原理、优缺点、优化及其在噬菌体展示文库筛选中的应用作一综述.%Whole-cell subtractive panning is a screening technique developed based on whole-cell screening in recent years, which performs subtractive panning on phage display library by using couple cells, I.e. Two states of cells. It is mainly used for screening of novel antigenic epitopes, receptors, ligands, novel vaccines, the targeted active peptides of tumor cells, targeted gene vectors, and stimulants or antagonists of receptors or enzyme etc. The principle, advantages, disadvantages and optimization of the technique as well as its application in phage display library screening are reviewed in this paper.

  3. A phosphate group at the cos ends of phage lambda DNA is not a prerequisite for in vitro packaging: an alternative method for constructing genomic libraries using a new phasmid vector, lambda pGY97.

    Science.gov (United States)

    Vincze, E; Kiss, G B

    1990-11-30

    It is shown here that the phosphate groups at the cos ends of phage lambda DNA are not a prerequisite for in vitro packaging. Molecules with phosphatase-treated cos ends are packaged in vitro as efficiently as native lambda DNA. This observation can be used for an alternative strategy to improve the efficiency of gene library construction, since cos-cos ligation decreases in vitro encapsidation and infectivity. Dephosphorylated cos ends and a new phasmid vector lambda pGY97 have been used to construct a representative gene bank of alfalfa in a Mcr- (5-methylcytosine restriction deficient) Escherichia coli host strain. These recombinant clones can be propagated as phages or more conveniently as plasmids in recA- E. coli, to prevent possible homologous recombination events between repetitive sequences of the insert that would otherwise interfere with clone stability. The 5-19-kb inserts can be easily recloned as plasmids from the recombinant phasmids with simple EcoRI digestion and re-ligation. This observation also implies that the construction of gene libraries in cosmid vectors can be made more efficient if cos-cos ligates were cleaved by lambda terminase just before in vitro packaging.

  4. Identification of systemic lupus erythematosus infection-associated epitope by random 7 peptide libraries displayed on phage%SLE患者血清中病原体相关噬菌体7肽的检测

    Institute of Scientific and Technical Information of China (English)

    王垚; 张凤民; 王亚贤; 颜培宇; 于晓红; 蔡文辉; 李玉军; 胡云龙; 翟爱霞; 陈杨

    2011-01-01

    目的用噬菌体7肽库筛选系统性红斑狼疮(SLE)患者血清特异性抗体,测序分析其实际意义。方法先用30例正常人混合血清与噬菌体7肽库反应,未与正常人白清结合的7肽再与30例SLE患者混合血清结合,获得SLE血清特异性结合的噬菌体克隆。用患者混合血清进行Dot-ELISA实验鉴定获得的噬菌体克隆,进一步用SLE患者及正常人血清各12例筛选阳性噬菌体的混合克隆,确定阳性噬菌体克隆与个体血清之间的结合情况,并对最终鉴定的噬菌体克隆进行测序与比对分析。结果混合的阳性噬菌体克隆与SLE患者个体血清反应阳性率明显高于其与正常人血清的反应率;序列分析显示阳性噬菌体克隆的抗原表位与杆菌、球菌、弧菌等微生物有同源性,与裂殖酵母属、链球菌属、立克次(氏)体属等有100%同源性,与人类抗原表位无关。结论SLE患者血清中存在与病原体抗原表位结合的抗体成分,提示SLE可能与病原体感染有关。%Objective To screen and identify the phage expressing random 7 amino acid peptide specific to the systemic lupus erythematosus(SLE)and analyze its practical significance. Methods Using the phage random 7 peptide library screening, the SLE specific phage clones were obtained by mixing with the sera from 30 SLE patients' and 30 normal controls respectively. Dot-ELISA was used to identify the SLE specific phage clones reacting to the sera of SLE patients and normal controls. Finally, the identified phages expressing random 7 amino acid peptides were sequenced and analyzed. Results Total 12 phages expressing random 7 amino acid peptides were obtained by phage peptide library screening and dot-ELISA identification. Sequence analysis showed that the no homology was found between the sequences of the deduced amino acid of the 7 antigen peptides and the sequence of human antigens. Peptides homology was found with coccus, coli, and

  5. Designing phage therapeutics.

    Science.gov (United States)

    Goodridge, Lawrence D

    2010-01-01

    Phage therapy is the application of phages to bodies, substances, or environments to effect the biocontrol of pathogenic or nuisance bacteria. To be effective, phages, minimally, must be capable of attaching to bacteria (adsorption), killing those bacteria (usually associated with phage infection), and otherwise surviving (resisting decay) until they achieve attachment and subsequent killing. While a strength of phage therapy is that phages that possess appropriate properties can be chosen from a large diversity of naturally occurring phages, a more rational approach to phage therapy also can include post-isolation manipulation of phages genetically, phenotypically, or in terms of combining different products into a single formulation. Genetic manipulation, especially in these modern times, can involve genetic engineering, though a more traditional approach involves the selection of spontaneously occurring phage mutants during serial transfer protocols. While genetic modification typically is done to give rise to phenotypic changes in phages, phage phenotype alone can also be modified in vitro, prior to phage application for therapeutic purposes, as for the sake of improving phage lethality (such as by linking phage virions to antibacterial chemicals such as chloramphenicol) or survival capabilities (e.g., via virion PEGylation). Finally, phages, both naturally occurring isolates or otherwise modified constructs, can be combined into cocktails which provide collectively enhanced capabilities such as expanded overall host range. Generally these strategies represent different routes towards improving phage therapy formulations and thereby efficacy through informed design.

  6. 人源Fab抗体库的构建和抗hPRLR抗体的筛选鉴定%Screening and identification of human Fab antibody against hPRLR from large phage-display library originated from breast cancer patients

    Institute of Scientific and Technical Information of China (English)

    屈芫; 魏钦俊; 姚俊; 鲁雅洁; 王天明; 曹新; 冯振卿

    2012-01-01

    cWe aim to get specific Fab antibody against human prolactin receptor (hPRLR) from the human Fab antibody library constructed by phage display technology. Human lymphocytes were collected from peripheral blood of 24 breast cancer patients. And then the total RNA was extracted and reversely transcribed to cDNA. Genes of light and heavy chains of human antibody were amplified by RT-PCR to construct anti-hPRLR immunized human antibody library. After three rounds of panning and one round of crossed-panning with against his-hPRLR fusion protein, BSA-polypeptide (epitopes of hPRLR) and GST-hPRLR fusion protein, positive clones were chosen by Phage-ELISA and DNA sequencing. Then the positive clones were transformed into E. coli Top 10' and induced to express antibody protein. The results indicated that the human Fab phage-display library consisting of l.0×l09 clones were successfully constructed, and six clones were selected after four rounds. One of them named FabG2 expressed protein correctly. ELISA and Western blot analysis showed that FabG2 could bind hPRLR specifically. We concluded that the hPRLR specific Fab antibody selected from large phage-display library could be used as candidates for therapy agent of breast cancer which over-expresses hPRLR.%目的 构建人源Fab噬菌体抗体库,筛选抗hPRLR抗体片段并进行初步鉴定.方法 从乳腺癌患者外周血提取总RNA,通过RT-PCR扩增人抗体轻链和重链基因,构建抗hPRLR人源Fab抗体库.分别以His-hPRLR融合蛋白、BSA-hPRLR表位多肽融合蛋白和GST-hPRLR融合蛋白作为抗原包板,经过3轮循环的吸附一洗脱一扩增的筛选及1轮交叉筛选,挑单克隆用Phage-ELISA、DNA测序筛选阳性克隆,将筛选到的阳性克隆Fabc2转化至Top10’受体菌,诱导表达可溶性Fab抗体,通过Western blot和ELISA进行特异性的鉴定.结果 构建的人源Fab库容为1.0×109,4轮的筛选,获得6株能与hPRLR结合的人源抗体克隆.选取的Fabc2能够进行

  7. Cross-neutralizing anti-HIV-1 human single chain variable fragments(scFvs) against CD4 binding site and N332 glycan identified from a recombinant phage library

    Science.gov (United States)

    Khan, Lubina; Kumar, Rajesh; Thiruvengadam, Ramachandran; Parray, Hilal Ahmad; Makhdoomi, Muzamil Ashraf; Kumar, Sanjeev; Aggarwal, Heena; Mohata, Madhav; Hussain, Abdul Wahid; Das, Raksha; Varadarajan, Raghavan; Bhattacharya, Jayanta; Vajpayee, Madhu; Murugavel, K. G.; Solomon, Suniti; Sinha, Subrata; Luthra, Kalpana

    2017-01-01

    More than 50% of HIV-1 infection globally is caused by subtype_C viruses. Majority of the broadly neutralizing antibodies (bnAbs) targeting HIV-1 have been isolated from non-subtype_C infected donors. Mapping the epitope specificities of bnAbs provides useful information for vaccine design. Recombinant antibody technology enables generation of a large repertoire of monoclonals with diverse specificities. We constructed a phage recombinant single chain variable fragment (scFv) library with a diversity of 7.8 × 108 clones, using a novel strategy of pooling peripheral blood mononuclear cells (PBMCs) of six select HIV-1 chronically infected Indian donors whose plasma antibodies exhibited potent cross neutralization efficiency. The library was panned and screened by phage ELISA using trimeric recombinant proteins to identify viral envelope specific clones. Three scFv monoclonals D11, C11 and 1F6 selected from the library cross neutralized subtypes A, B and C viruses at concentrations ranging from 0.09 μg/mL to 100 μg/mL. The D11 and 1F6 scFvs competed with mAbs b12 and VRC01 demonstrating CD4bs specificity, while C11 demonstrated N332 specificity. This is the first study to identify cross neutralizing scFv monoclonals with CD4bs and N332 glycan specificities from India. Cross neutralizing anti-HIV-1 human scFv monoclonals can be potential candidates for passive immunotherapy and for guiding immunogen design. PMID:28332627

  8. 抗呼吸道合胞病毒Fab噬菌体抗体库的构建及初步筛选%Construction and preliminary panning of Fab phage display antibody library against respiratory syncytial virus

    Institute of Scientific and Technical Information of China (English)

    汪治华; 张国成; 李安茂; 周南; 陈一; 李小青; 苏字飞; 邓阳彬; 王治静

    2008-01-01

    Objective To construct a human phage display antibody library,which will help to develop new drugs and vaccines against respiratory syncytial virus (RSV) and solve many of the issues that have limited the progression and application of murine monoclonal antibodies (McAbs) in the clinic.This can provide a platform for human antibody preparation and diagnosis,prophylaxis and therapy of RSV infection in children.Methods Peripheral blood lymphocytes were isolated from 52 children with RSV infection,cDNA was synthesized from the total RNA of lymphocytes.The light and heavy chain Fd (VH-CH1)fragments of immunoglobulin gene were amplified by RT-PCR.The amplified products were cloned into phagemid vector pComb3x and the clone samples were electrotransformed into competent E.coli XL1-Blue.The transformed cells were then infected with M13K07 helper phage to yield recombinant phage antibody of Fabs.The plasmids extracted from amplified E.coil were digested with restriction endonucleases Sac 1,Xba I,Spe I and Xho I to monitor the insertion of the light or heavy chain Fd genes.RSV virions were utilized as antigens to screen Fab antibodies.Results By recombination of light and heavy chain genes,an immune Fab phage display antibody library against RSV containing 2.08×107 different clones was constructed,in which 70% clones had light chains and heavy chain Fd genes.The capacity of Fab phage antibody gene library was 1.46×107 and the titre of the original Fab antibody library was about 1.06 x 1012 pfu/mL The antibody library gained an enrichment in different degrees after the preliminary panning.Condusions Utilizing the technology of phage display,an immune Fab phage display antibody library against RSV was successfully constructed in this study,which laid a valuable experimental foundation for further study and created favorable conditions for preparing human McAbs. This may also contribute to the improvement in the diagnosis,therapy and prophylaxis of RSV infection in children

  9. Fluorescent T7 display phages obtained by translational frameshift

    NARCIS (Netherlands)

    Slootweg, E.J.; Keller, H.J.H.G.; Hink, M.A.; Borst, J.W.; Bakker, J.; Schots, A.

    2006-01-01

    Lytic phages form a powerful platform for the display of large cDNA libraries and offer the possibility to screen for interactions with almost any substrate. To visualize these interactions directly by fluorescence microscopy, we constructed fluorescent T7 phages by exploiting the flexibility of pha

  10. 人源性抗乳腺癌单链抗体库的筛选与初步鉴定%Isolation and identification of single chain Fv antibodies against breast cancer from a human phage display library

    Institute of Scientific and Technical Information of China (English)

    王净; 王慧; 王超; 袁媛; 崔岩; 叶菁; 李青

    2012-01-01

    [目的]本研究旨在已构建的大容量人源性抗乳腺癌噬菌体单链抗体库的基础上,筛选出高亲和力的特异性单链抗体(scFv)并对抗体基本特性进行初步鉴定.[方法]以人乳腺癌细胞系MCF-7为靶标,经过4轮淘洗,筛选出高亲和力的特异性抗乳腺癌scFv,并对其结构序列进行分析;通过ELISA和Western blot方法,鉴定scFv的亲和力和特异性,以及其蛋白的基本表达情况.[结果]成功构建具有高亲和力的抗乳腺癌单链抗体库,获得scFv的长度约为750 bp,ELISA证实所得抗体对乳腺癌细胞具有良好的亲和力和高度的特异性,IPTG诱导表达及Western blot结果显示,scFv为相对分子质量(Mr)30 000的可溶性蛋白.[结论]本研究在已构建的大容量抗乳腺癌单链抗体库的基础上,筛选获得了高亲和力的抗乳腺癌单链抗体库.研究结果为进一步获得可应用于临床诊断和治疗的乳腺癌靶向性抗体奠定了良好的基础.%AIM: To Isolate and identify single chain Fv (scFv) antibodies against breast cancer from a constructed human phage display library. METHODS: Recombinant phages specific for breast cancer cells were enriched after four-round screening with MCF-7 cells. We selected the antigen-positive ones from the enriched clones by phage ELISA. The positive clones were used to infect E. coli HB2151 to express soluble scFv antibody. The antigen binding activity of the soluble antibodies was detected by West-em blotting. RESULTS; The specific antibodies against MCF-7 cells were enriched after four rounds of affinity selection. SDS-PAGE and Western blotting showed a band at relative molecular mass 30 000 Da, which indicated soluble antibodies were present. ELISA analysis revealed that soluble antibodies had the affinity to a human breast cancer cell line MCF-7 but not to other cancer cell line, which demonstrated scFv could react specifically with breast cancer cells. CONCLUSION; We constructed a scFv phage

  11. Engineered phages for electronics.

    Science.gov (United States)

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications.

  12. Hepatitis A virus mimotope mapping by phage display peptide library%用噬菌体展示肽库技术筛选甲肝病毒抗原模拟表位

    Institute of Scientific and Technical Information of China (English)

    曹经瑗; 李建东; 郑惠惠; 毕胜利; 李德新

    2012-01-01

    Objective A 12 mer phage display peptide library was used to identify hepatitis A virus mimotopes of antigenic determinants,to provide the feasibility of virus epitope mapping by using this approach.Methods Using purified anti-hepatitis A virus monoclonal antibody as affinity selective molecule,phage display peptide library was biopanned and positive clones were selected by ELISA,competition assay and DNA sequencing.Results 10 ELISA positive clones were chosen for DNA sequencing,and the displayed peptide sequences were deduced.9 of them showed identical nucleotide sequence,and similarity in their amino acid sequence with VP1 of HAV HM175 was found,but no sequence homology was found between the other phage clone and the capsid proteins of HAV.Those peptides may behave as mimotopes of HAV.Conclusion The mimotope of HAV was selected by using phage display peptide library screening.The results provide the potential of this method to search for the mimotopes of the virus.%目的 用噬菌体展示肽库技术筛选甲型肝炎(甲肝)病毒抗原模拟表位,为病毒抗原决定簇定位探索可行方法.方法 用纯化的抗甲肝病毒单克隆抗体,对噬菌体展示12肽库进行3轮“吸附-洗脱-扩增”筛选,随机挑取10个克隆,用酶联免疫吸附法(ELISA)对噬菌体克隆进行抗原性鉴定、竞争抑制鉴定及DNA序列测定分析,推导出展示肽氨基酸序列并与甲肝病毒(HAV)代表株结构蛋白氨基酸序列比较.结果 10个噬菌体克隆ELISA检测全为阳性,9个具有一致序列,与HAVHM175株结构蛋白中和活性表位之一:VP1 157-171区具有类似序列,另一株噬菌体克隆在HAVHM175中未发现类似序列,结果表明这些展示肽可能是HAV抗原模拟表位.结论 用噬菌体展示肽库技术筛选得到了HAV模拟表位,为开展病毒模拟表位研究打下了基础.

  13. Construction and characterization of a non-immune Llama variable heavy chain phage display antibody library%羊驼非免疫重链单域抗体库的构建和鉴定

    Institute of Scientific and Technical Information of China (English)

    吴标; 王树军; 夏立亮; 季萍; 葛海良; 赵国屏; 王颖

    2011-01-01

    本研究旨在通过构建羊驼非免疫重链单域抗体库,完成抗体库多样性的鉴定,为进一步筛选抗原特异性重链抗体奠定基础.我们从未经免疫的羊驼外周血中分离外周血单个核细胞(PBMC),抽提RNA后,用RT-PCR方法特异性扩增羊驼重链抗体可变区(VHH)片段;并采用两步连接方法将重链抗体可变区片段与噬菌粒载体pCANTAB5E连接获得重组子,多次电转感受态大肠杆菌TG1后获得VHH抗体基因库;并采用稀释计数法测定抗体库库容量,随机挑取克隆测序验证抗体库多样性.结果显示,我们所构建的羊驼非免疫重链单域抗体库的库容量为1.5×109,随机克隆测序验证多样性良好,独立克隆所占比例为80%,并显示出和人源抗体较高的同源性.上述结果表明,我们已经成功构建获得大容量的羊驼非免疫重链单域抗体库,为进一步筛选抗原特异性重链抗体奠定基础.%To construct a non-immune Llama variable domain of heavy chain antibody(VHH) phage display antibody library (VHH antibody library). Llama peripheral blood mononuclear lymphocytes were isolated from whole blood by Ficoll-hypaque density gradient centrifugation. Total RNA was extracted from PBMCs and reverse-transcripted into cDNA by using specific primers. VHH were amplified by nested PCR. PCR products of VHH fragments were then purified and ligated with phagemid vector pCANTAB5E by a modified two-step ligation method. Recombinant pCANTAB5E-VHH vectors were electroporated into competent TGI E.coli cells to obtain the primary VHH antibody library. The library capacity was titrated through limited dilution. Recombination efficacy and diversity of VHH antibody library was determined by sequencing analysis. Alignment a-nalysis was performed to compare the homology between Llama VHH domain and human/mouse variable regions of heavy chains. By using a modified strategy, we have constructed a non-immune Llama VHH antibody library with 1. 5

  14. Pitfalls to avoid when using phage display for snake toxins.

    Science.gov (United States)

    Laustsen, Andreas Hougaard; Lauridsen, Line Præst; Lomonte, Bruno; Andersen, Mikael Rørdam; Lohse, Brian

    2017-02-01

    Antivenoms against bites and stings from snakes, spiders, and scorpions are associated with immunological side effects and high cost of production, since these therapies are still derived from the serum of hyper-immunized production animals. Biotechnological innovations within envenoming therapies are thus warranted, and phage display technology may be a promising avenue for bringing antivenoms into the modern era of biologics. Although phage display technology represents a robust and high-throughput approach for the discovery of antibody-based antitoxins, several pitfalls may present themselves when animal toxins are used as targets for phage display selection. Here, we report selected critical challenges from our own phage display experiments associated with biotinylation of antigens, clone picking, and the presence of amber codons within antibody fragment structures in some phage display libraries. These challenges may be detrimental to the outcome of phage display experiments, and we aim to help other researchers avoiding these pitfalls by presenting their solutions.

  15. 肝癌特异性噬菌体多肽的筛选和初步鉴定%Screening and preliminary identification of liver cancer specific peptide from a phage display peptide library

    Institute of Scientific and Technical Information of China (English)

    罗时敏; 臧林泉

    2009-01-01

    目的 利用噬菌体展示肽库筛选与肝癌HepG2细胞特异性结合的多肽,为筛选及明确新的肝癌早期诊断和治疗标志物打下基础.方法 以肝癌细胞HepG2为靶细胞,LO-2为吸附细胞,在37℃条件下对噬菌体随机12肽库进行多轮减性筛选,挑取单克隆扩增并鉴定.利用ELISA初步鉴定克隆亲和力,测定阳性克隆DNA测序并进行同源性及氨基酸分析.结果 经过3轮减性筛选发现,随机挑选的30个单克隆中,其中ZS-9对HepG2具有较高亲和力,氨基酸测序结果表明,该序列与美国国立生物技术信息中心(NCBI)GenBankDNA序列数据库和Swiss-Prot蛋白数据库中的已知基因和蛋白无同源性,而且,国内外文献均未见报道,表明笔者筛选到一新的肝癌相关抗原的配体.结论 利用噬菌体随机12肽库成功筛选到与肝癌细胞HepG2具有较高亲和力的多肽,为筛选鉴定新的肝癌特异的标志物奠定工作基础,也为肝癌的早期诊断和靶向治疗进一步研发确定了靶标.%Objective To obtain short peptides which specifically binds to HepG2 cell line from 12 peptide libraries, and lay foundation for screening and identifying the new liver cancer markers for early diagnosis and treatment of liver cancer. Methods The liver cancer cell line HepG2 was used as the antigen and LO-2 as the absorber cells for subtraction biopanning from a phage display peptide library at 37℃. The positive phage clones were identified by cell enzyme-linked immunosorbentassay (EL1SA), and the identity of DNA sequence and amino acids were analyzed. Results After 3 rounds of screening, 30 phage clones were identified by EL1SA, ZS-9 of them bind to the HepG2 specifically. The amino acid sequence was blast in NCBI and Swiss-Prot, the results show that the sequence has not identity with the known genes and proteins in the database, and the sequence was not reported in literature. All these show that we had discovered several novel liver cancer

  16. Construction and selection of human Fab antibody phage display library of extracellular domain of HER 2%人源性抗HER2胞外段Fab噬菌体抗体库的构建及筛选

    Institute of Scientific and Technical Information of China (English)

    张为家; 刘孝荣; 李官成; 贺智敏

    2011-01-01

    目的:构建全人源抗HER2胞外段(HER7. ECD)噬菌体Fab抗体库,从中筛选出特异性的抗体,并对其进行鉴定.方法:体外致敏并用EB病毒(EBV)转化HER2高表达乳腺癌患者的外周血单核细胞(PBMC),用PCR分别扩增重链Fd和轻链k/λ基因.经Sac I/Xba I和Xho/SpeI双酶切,依次克隆入噬菌体载体pComb3中,并电转化大肠杆菌XL1Blue,以辅助噬菌体VCSM13进行超感染,构建抗HER2 ECD人源化Fab噬菌体抗体库.以纯化HER2 ECD蛋白为抗原进行3轮固相淘选,富集抗HER2 ECD的抗体,并随机挑选克隆进行ELISA,获得的阳性克隆进一步以Western blot鉴定其抗原结合活性,对其中活性最高的克隆进行DNA测序.结果:构建了容量为2. 5 X 107的抗HER2 ECD的Fab噬菌体抗体库,并筛选获得了4株与HE2 ECD特异性结合的阳性克隆,Western blot分析显示其与HER?-ECD能较好的结合.选取结合活性最高的阳性克隆进行DNA序列分析,结果显示其重链可变区、轻链可变区分别与人胚系免疫球蛋白基因有高度的同源性.结论:成功构建了全人源抗HER2 ECD噬菌体抗体库,并筛选出抗HER2 ECD特异性较强的噬菌体克隆,为获得新的有临床应用价值的HER2 ECD抗体提供了实验基础.%AIM: To construct the fully humanized antiextracellular domain (ECD) of HER2.Fab fragment phage library, select antibodies against HER2 ECD specifically and identify its characteristics.METHODS: Peripheral blood monouclear cells (PBMCs) of breast cancer patients with HER2-overexpressing were immunized in vitro with purification protein of recombinant HEF2 ECD and were then transformed by Epstein-Barr virus (EBV).After total RNA was extracted, the heavy chain Fd and k/λ light chain were am plified by RT-PCR.Following restrictive digestion with Sac I/ Xba I and Xho I/Spe I, the light chain κ/λ genes and heavy chain genes Fd were inserted into the phagemid vector pComb3 successively and then electroporated into E.coil XL1-Blue

  17. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  18. A Novel Strategy for Proteome-wide Ligand Screening Using Cross-linked Phage Matrices*

    OpenAIRE

    Qian, Chen; LIU, Jian-ning; Tang, Fengyuan; Yuan, Dawen; Guo, Zhigang; Zhang, Jing

    2010-01-01

    To find a suitable ligand from a complex antigen system is still a mission to be accomplished. Here we have explored a novel “library against proteome” panning strategy for ligand screening and antigen purification from a complex system using phage-displayed antibody technology. Human plasma proteome was targeted for phage library panning. During the process, the panning was carried out in solution, using a biotin/streptavidin beads separation system, for three rounds. Nine monoclonal phages,...

  19. High-throughput Identification of Phage-derived Imaging Agents

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-01-01

    Full Text Available The use of phage-displayed peptide libraries is a powerful method for selecting peptides with desired binding properties. However, the validation and prioritization of “hits” obtained from this screening approach remains challenging. Here, we describe the development and testing of a new analysis method to identify and display hits from phage-display experiments and high-throughput enzyme-linked immunosorbent assay screens. We test the method using a phage screen against activated macrophages to develop imaging agents with higher specificity for active disease processes. The new methodology should be useful in identifying phage hits and is extendable to other library screening methods such as small-molecule and nanoparticle libraries.

  20. Interaction Analysis through Proteomic Phage Display

    Directory of Open Access Journals (Sweden)

    Gustav N. Sundell

    2014-01-01

    Full Text Available Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs, or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.

  1. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy.

    Science.gov (United States)

    Khan Mirzaei, Mohammadali; Nilsson, Anders S

    2015-01-01

    Phage therapy, treating bacterial infections with bacteriophages, could be a future alternative to antibiotic treatment of bacterial infections. There are, however, several problems to be solved, mainly associated to the biology of phages, the interaction between phages and their bacterial hosts, but also to the vast variation of pathogenic bacteria which implies that large numbers of different phages are going to be needed. All of these phages must under present regulation of medical products undergo extensive clinical testing before they can be applied. It will consequently be of great economic importance that effective and versatile phages are selected and collected into phage libraries, i.e., the selection must be carried out in a way that it results in highly virulent phages with broad host ranges. We have isolated phages using the Escherichia coli reference (ECOR) collection and compared two methods, spot testing and efficiency of plating (EOP), which are frequently used to identify phages suitable for phage therapy. The analyses of the differences between the two methods show that spot tests often overestimate both the overall virulence and the host range and that the results are not correlated to the results of EOP assays. The conclusion is that single dilution spot tests cannot be used for identification and selection of phages to a phage library and should be replaced by EOP assays. The difference between the two methods can be caused by many factors. We have analysed if the differences and lack of correlation could be caused by lysis from without, bacteriocins in the phage lysate, or by the presence of prophages harbouring genes coding for phage resistance systems in the genomes of the bacteria in the ECOR collection.

  2. Screening of peptides binding to HpaA of Helicobacter pylori from a random phage library%与幽门螺杆菌HpaA定植相关的功能性亲和肽的筛选

    Institute of Scientific and Technical Information of China (English)

    朱俊谕; 向一郎; 李琳; 杨厅; 潘剑珍; 王庆林; 吴翔

    2013-01-01

    目的 HpaA是幽门螺杆菌(Helicobacter pylori)的主要粘附因子,参与幽门螺杆菌在人胃黏膜上的定植过程.特异性阻断HpaA与人胃上皮细胞的粘附,可能成为阻断Hp感染的新方法,从而弥补常规治疗中出现的毒副作用大、耐药性等问题.方法 以人工合成的HpaA主要结构域KRTIQKKRTIQK多肽为靶标,应用噬菌体随机十二肽库进行筛选,经过3轮淘选,提取阳性噬菌体克隆ssDNA,测序并进行序列分析.通过相应的分析软件对亲和肽进行分析比对.结果 通过多次筛选与富集,获得了与HpaA相互作用的功能分子ASPH、EGR2.运用软件模拟发现ASPH、EGR2均能与HpaA分子高度吻合.结论 通过噬菌体肽库技术筛选出与幽门螺杆菌主要粘附分子HpaA相互作用的2个功能分子,可能参与幽门螺杆菌的定植与致病过程,为进一步研究幽门螺杆菌在人胃内致病的机制和多肽治疗方法提供了依据.%Objective Helicobacter pylori adhesin A (HpaA) is the main adhesion factor of H.pylori and is involved in the bacterial colonization of human gastric mucosa.Specifically inhibiting the adhesion of H.pylori to human epithelial cells may be a possible way to inhibit H.pylori infection.This treatment could also deal with other issues such as adverse reactions to conventional treatment and drug resistance.Methods Short synthetic peptides of HpaA's major domain KRTIQK were used as a target to screen for compatible short peptides from a phage display library.Positive phage clones were obtained by 3 rounds of biopanning,followed by single-stranded DNA extraction and sequencing.Results Repeated screening and enrichment yielded the functional molecules ASPH and EGR2,both of which interact with HpaA.A software simulation indicated that ASPH and EGR2 closely bind to HpaA molecules.Conclusion Two functional candidates that interact with HpaA were identified from a phage display library.This lays the theoretic foundation for

  3. Two novel neutralizing antigenic epitopes of the s1 subunit protein of a QX-like avian infectious bronchitis virus strain Sczy3 as revealed using a phage display peptide library.

    Science.gov (United States)

    Zou, Nianli; Xia, Jing; Wang, Fuyan; Duan, Zhenzhen; Miao, Dan; Yan, Qigui; Cao, Sanjie; Wen, Xintian; Liu, Ping; Huang, Yong

    2015-11-15

    The spike (S) protein of the infectious bronchitis virus (IBV) plays a central role in the pathogenicity, the immune antibody production, serotype and the tissue tropism. In this study, we generate 11 monoclonal antibodies (mAbs) against S1 subunit of IBV Sczy3 strain, and two mAbs 1D5 and 6A12 were positive in indirect ELISA against both His-S1 protein and the purified whole viral antigen. MAb 6A12 and 1D5 could recognized by other 10 IBV strains (IBVs) from five different genotypes, except that 1D5 had a relatively low reaction with two of the 10 tested IBVs. End-point neutralizing assay performed in chicken embro kidney (CEK) cells revealed that the neutralization titer of 6A12 and 1D5 against Sczy3 reached 1:44.7 and 1:40.6, respectively. After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 1D5 and 6A12, which corresponded to the amino acid sequences (87)PPQGMAW(93) and (412)IQTRTEP(418), respectively, in the IBV S1 subunit. Sequences comparison revealed that epitope (412)IQTRTEP(418) was conserved among IBVs, while the epitope (87)PPQGMAW(93) was relatively variable among IBVs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections.

  4. Modulation of the CD40-CD40 ligand interaction using human anti-CD40 single-chain antibody fragments obtained from the n-CoDeR phage display library.

    Science.gov (United States)

    Ellmark, Peter; Ottosson, Camilla; Borrebaeck, Carl A K; Malmborg Hager, Ann-Christin; Furebring, Christina

    2002-08-01

    CD40 plays a central regulatory role in the immune system and antibodies able to modulate CD40 signalling may consequently have a potential in immunotherapy, in particular for treatment of lymphomas and autoimmune disease like multiple sclerosis. As a first step to achieve this goal, we describe the selection and characterization of a novel set of fully human anti-CD40 antibody fragments (scFv) from a phage display library (n-CoDeR). In order to determine their biological potential, these antibody fragments have been analysed for their ability to promote B-cell activation, rescue from apoptosis and to block the CD40-CD40 ligand (CD40L) interaction. The selected cohort of human scFv could be subcategorized, each expressing a distinct functional signature. Thus scFv were generated that induced B-cell proliferation, rescued B cells from apoptosis and blocked the CD40-CD40L interaction to different extents. In particular, one of the scFv clones (F33) had the ability to abrogate completely this interaction. The epitope recognition patterns as well as individual rate constants were also determined and the affinity was shown to vary from low to high nanomolar range. In conclusion, this panel of human anti-CD40 scFv fragments displays a number of distinct properties, which may constitute a valuable source when evaluating candidates for in vivo trials.

  5. 噬菌体随机肽库技术在肿瘤靶向治疗中的应用%Application of phage random peptide library in tumour targeted therapy

    Institute of Scientific and Technical Information of China (English)

    谢松丽; 刘杞

    2008-01-01

    肿瘤的保守治疗主要是化疗及放疗,化疗在作用于肿瘤的同时也损害了健康的组织和器官.靶向治疗只针对肿瘤组织,有较好的特异性和靶向性,将成为治疗肿瘤的主要方法.靶向治疗的关键是特异性载体的构建,利用噬菌体随机肽库技术筛选出的肽分子小、组织穿透性好,能成为理想的载体.此技术简便易行、分离纯化效率高,必将对肿瘤靶向治疗产生深远影响.%Radiotherapy and chemotherapy are main methods of tumor conservative treatments,but chemotherapy damages healthy tissues and organs while treats tumour.Targeted therapy which aims directly at the tumour owns better specificity and targeting,and it will be the major treatment of tumour.The primary problem of targeted therapy is construction of specific carrier.By phage random peptide library we can obtain peptide with smaller molecule and better penetrativity,which can be used as an ideal carrier.This technology is convenient and efficient.It will contribute greatly to the treatment of tumour.

  6. Phage therapy: present and future

    Science.gov (United States)

    Kolesnikova, S. G.; Tulyakova, E. N.; Moiseeva, I. Y.

    2017-01-01

    In recent years, bacteriophages are known to have become an effective alternative to antibiotic drugs. The article describes the current and potential applications of bacteriophages and phage endolysins. Also of interest is the devastating effect of phages on biofilms. The development of phage resistance is touched upon as well. Furthermore, the authors discuss the issue of laying down the rules of rational phage therapy.

  7. Estimating richness from phage metagenomes

    Science.gov (United States)

    Bacteriophages are important drivers of ecosystem functions, yet little is known about the vast majority of phages. Phage metagenomics, or the study of the collective genome of an assemblage of phages, enables the investigation of broad ecological questions in phage communities. One ecological cha...

  8. Phage choice, isolation, and preparation for phage therapy.

    Science.gov (United States)

    Gill, Jason J; Hyman, Paul

    2010-01-01

    Phage therapy is the use of bacteriophages--viruses that use bacteria as their host cells--as biocontrol agents of bacteria. Currently, phage therapy is garnering renewed interest as bacterial resistance to antibiotics becomes widespread. Historically, phage therapy was largely abandoned in the West in the 1940s due to the advent of chemical antibiotics, and the unreliability of phage-based treatments when compared to antibiotics. The choice of phage strain and the methods of phage preparation are now thought to have been critical to the success or failure of phage therapy trials. Insufficiently virulent phages, especially against actual target bacteria, allow bacteria to survive treatment while poorly prepared phage stocks, even if of sufficiently virulent phages, lack the numbers of viable phages required for adequate treatment. In this review we discuss the factors that determine the methods of isolation, analysis, and identification of phage species for phage therapy. We go on to discuss the various methods available for purifying phages as well as considerations of the degree of purification which is sufficient for various applications. Lastly, we review the current practices used to prepare commercial phage therapy products.

  9. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do....... The scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  10. Construction of a human na(i)ve Fab library and screening of phage antibody against arginine vasopressin%人源Fab噬菌体抗体库的构建与抗精氨酸加压素抗体的筛选

    Institute of Scientific and Technical Information of China (English)

    董越华; 胡占东; 公倩; 李常颖; 畅继武; 朱铁虹

    2012-01-01

    Objective: To construct a naive human Fab phage display library, screen and identify arginine vasopressin Fab antibody from the library. Methods: Total RNA was extracted from peripheral blood lymphocytes of 18 healthy donors, and the light chain and heavy chain Fd genes were amplified by RT-PCR. Then the amplification products were sequentially cloned into phagemid vector pComb3XSS to construct a human Fab phage antibody library. The insertion of the light chain or heavy chain Fd genes were identified by cutting with endonucleases and PCR amplification. Arginine vasopressin was used as target antigen to pan the original Fab antibody library. After five rounds of panning were carried out,fifty randomly selected clones were assayed by phage-ELISA analysis. The positive clones were analyzed by DNA sequencing. Results: A large human Fab phage antibody library consisting of 2.4 × 108 members was successfully constructed. After having been panned by AVP,we obtained six positive clones which had specificity and binding reactivity towards AVP. The C4 clone was analyzed and showed that its heavy chain belonged to IgG subvariety and its light chain to X family. Conclusion : We successfully constructed a large human Fab phage antibody library and isolated the specific human anti-AVP Fab antibodies,which provided a solid foundation for the establishment of rapid detection method of arginine vasopressin in future research.%目的:构建人源天然Fab噬菌体抗体库,筛选抗精氨酸加压素特异性抗体并进行初步鉴定.方法:从18位健康成人的外周血淋巴细胞,提取总RNA.利用RT-PCR扩增人Fab抗体基因片段,将其克隆至噬菌粒载体pComb3XSS内,构建人源天然Fab噬菌体抗体库.以固相化的精氨酸加压素为靶抗原对抗体库进行五轮筛选后,随机挑取50个单克隆进行phage-ELISA检测,阳性克隆行DNA测序分析.结果:成功构建库容为2.4×108的噬菌体抗体库,从中筛选到6株阳性克隆能够与精

  11. 利用噬菌体随机9肽库筛选寻常型天疱疮抗原模拟表位%Selection of mimotopes of pemphigus vulgaris antigen from a phage-displayed random nonapeptide library

    Institute of Scientific and Technical Information of China (English)

    黄丽群; 姚刚; 薛峰; 潘萌; 孙兵; 郑捷

    2008-01-01

    目的 利用噬菌体随机9肽库筛选寻常型天疱疮抗原桥粒芯糖蛋白3(desmoglein,Dsg3)模拟表位,加深对寻常型天疱疮发病机制的认识. 方法 通过大肠杆菌表达Dsg3的胞外结构域1和2(extracellular domain,EC1-2)和谷胱甘肽转移酶(GST)的融合蛋白,从寻常型天疱疮患者血清中纯化与EC1-2特异结合的多克隆抗体,对噬菌体随机线九肽库和环九肽库进行亲和筛选,阳件噬菌体展示肽经ELISA和竞争性ELISA验证. 结果 经过两轮亲和筛选,与自身抗体结合的噬菌体明显富集,免疫筛查、验证后得到3个阳性噬菌体展示肽,ELISA检测显示它们与患者血清反应,而不与正常人血清反应,竞争性ELISA检测显示它们可以抑制寻常型天疱疮患者血清与重组蛋白EC1-2的结合. 结论 利用噬菌体随机9肽库筛选到3个与寻常性大疱疮密切相关的模拟表位.%Objective To screen the mimotopes ofpemphigus vulgaris (PV) antigen, desmoglein3 (Dsg3) with a phage-displayed random nonapeptide library, so as to update the knowledge on the patho-genesis of PV. Methods Recombinant fusion protein of extracellular domain 1-2 (EC1-2) of Dsg3 and glutathione transferase was expressed by E.coli BL21, and used to purify polyclonal autoantibody binding to recombinant EC 1-2 from the sera of patients with PV. Then, selected autoantibody was applied as a ligand for biopanning of a phage-displayed linear random nonapeptide library and circular random nonapeptide library. Monoclonal phages were selected by immunoscreening and tested with ELISA and competitive ELISA. Results After two rounds ofbiopanning, a population ofpeptide-displaying phages binding to autoan- tidody were highly enriched. Sixty individual phage clones selected by immunosereening were further sub-jected to screening with ELISA and competitive ELISA. Finally, three positive phage clones were obtained. As shown by ELISA and competitive ELISA, they reacted with serum from

  12. Oligopeptide M13 Phage Display in Pathogen Research

    Directory of Open Access Journals (Sweden)

    Michael Hust

    2013-10-01

    Full Text Available Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.

  13. 应用噬菌体肽库技术获得与猪鼻支原体蛋白P37结合的多肽序列%Identification of Oligopeptides Binding to Mycoplasma Hyorhinis P37 Using a Phage Display Library

    Institute of Scientific and Technical Information of China (English)

    杨华; 冯勤; 徐慧玉; 寿成超

    2011-01-01

    Phage display random heptapeptide library was screened with recombinant P37 in this study. The positive phage clones were identified by ELISA and were sequenced, and the amino acid sequences of the polypeptides displayed on phage were deduced. After GST-polypeptides fusion protein was constructed and expressed, its binding to P37 was determined by GST-pull down and Western blot. After 4 rounds of bio-panning, the enriched positive phage clones were identified by ELISA. Eighteen positive phage clones were sequenced and the peptide sequences were as follows, ACAPKPPWLC (12/18), RPLSIDPWSPHL (3/18), RPLSNDPWSPHL (1/18), QNMMSPIEGVRI (1/ 18) and WAPEKDYMQLMK (1/18). The results from GST-pull down and Western blot showed that peptide RPLSIDPWSPHL could interact with P37. The study will be helpful for identifying the protein reacting with P37.%本研究以猪鼻支原体P37蛋白作为筛选分子,对噬菌体展示随机肽库进行亲和淘选.利用ELISA法鉴定亲和力高的阳性噬菌体克隆,对其进行DNA测序和分析,据此推导随机多肽的氨基酸序列,然后构建、表达GST-多肽重组蛋白,经GST-pull down进一步鉴定该多肽与P37的结合力.经过4轮筛选和单克隆检测,获得18个有较强特异反应的阳性克隆,18个克隆包括了5种不同的小肽序列,它们分别为ACAPKPPWLC(12/18)、RPLSIDP-WSPHL(3/18)、RPLSNDPWSPHL(1/18)、QNMMSPIEGVRI (1/18)和WAPEKDYMQLMK(1/18).用ACAPKPPWLC、RPLSIDPWSPHL与GST重组的融合蛋白进行GST-pull down实验表明,RPLSIDPWSPHL多肽能与P37相互作用.本研究为进一步筛选与P37相互作用的蛋白提供了实验依据和结构基础.

  14. Selection of Triptolide Ligands from a Random Phage Display Library and Primary Verification of Their Combination%雷公藤内酯醇靶蛋白的筛选及其结合的初步验证

    Institute of Scientific and Technical Information of China (English)

    杨旭光; 徐晓煜; 李家璜; 姚其正; 朱彤阳; 华子春; 郑伟娟

    2012-01-01

    Triptolide is an extract from the Chinese herb Tripterygium wilfordii Hook f. We screened out a peptide from a C7 phage display library and presumed it was a potential peptide ligand for triptolide. The specificity of the selected clone for triptolide was confirmed by ELISA and immunoprecipi-tation. After DNA sequencing, a BLAST search was carried out and 77 matching sequences was retrieved. The most promising candidate is human steroidogenic factor-1 (hSF-1), a member of the nuclear receptor family that controls the synthesis of steroid hormones by regulating steroidogenic enzyme genes. We purified the ligand binding domain (LBD) of hSF-1 and then used it for further experiments. Fluorescence spectrum experiments showed that triptolide could cause fluorescence quenching of hSF-1-LBD, isothermal titration calorimetric(ITC) measurements showed a enthalpydriven interaction between triptolide and hSF-1-LBD, and a dose-dependent interaction between them was observed by surface plasmon resonance(SPR). All these results confirmed the specific interaction between hSF-1 and triptolide.%采用噬菌体展示肽库技术筛选雷公藤内酯醇的靶蛋白,得到了一个肽段,并通过酶联免疫吸附(ELISA)和免疫共沉淀验证了该片段对雷公藤内酯醇的结合特异性.用Basic Local Alignment Search Tool (BLAST)进行序列对比后,找到了77个匹配序列,其中最为匹配的序列是人类类固醇生成因子-1(hSF-1),因此hSF-1可能是雷公藤内酯醇的一个潜在受体.在大肠杆菌中表达纯化了hSF-1的配体结合域(LBD),荧光光谱实验表明雷公藤内酯醇对hSF-1-LBD有荧光淬灭作用、等温滴定量热(ITC)实验表明雷公藤内酯醇与hSF-1-LBD发生焓驱动的特异性结合,表面等离子体共振(SPR)实验表明雷公藤内酯醇可以与hSF-1-LBD剂量依赖性结合,这些都证实了hSF-1与雷公藤内酯醇存在特异性相互作用.

  15. Clostridium difficile phages: still difficult?

    Directory of Open Access Journals (Sweden)

    Katherine Rose Hargreaves

    2014-04-01

    Full Text Available Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however developing suitable phages is challenging. In this review we summarise the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics.Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage-host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution.No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using whole-phages are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen.

  16. Phage neutralization by sera of patients receiving phage therapy.

    Science.gov (United States)

    Łusiak-Szelachowska, Marzanna; Zaczek, Maciej; Weber-Dąbrowska, Beata; Międzybrodzki, Ryszard; Kłak, Marlena; Fortuna, Wojciech; Letkiewicz, Sławomir; Rogóż, Paweł; Szufnarowski, Krzysztof; Jończyk-Matysiak, Ewa; Owczarek, Barbara; Górski, Andrzej

    2014-08-01

    The aim of our investigation was to verify whether phage therapy (PT) can induce antiphage antibodies. The antiphage activity was determined in sera from 122 patients from the Phage Therapy Unit in Wrocław with bacterial infections before and during PT, and in sera from 30 healthy volunteers using a neutralization test. Furthermore, levels of antiphage antibodies were investigated in sera of 19 patients receiving staphylococcal phages and sera of 20 healthy volunteers using enzyme-linked immunosorbent assay. The phages were administered orally, locally, orally/locally, intrarectally, or orally/intrarectally. The rate of phage inactivation (K) estimated the level of phages' neutralization by human sera. Low K rates were found in sera of healthy volunteers (K ≤ 1.73). Low K rates were detected before PT (K ≤ 1.64). High antiphage activity of sera K > 18 was observed in 12.3% of examined patients (n = 15) treated with phages locally (n = 13) or locally/orally (n = 2) from 15 to 60 days of PT. High K rates were found in patients treated with some Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis phages. Low K rates were observed during PT in sera of patients using phages orally (K ≤ 1.04). Increased inactivation of phages by sera of patients receiving PT decreased after therapy. These results suggest that the antiphage activity in patients' sera depends on the route of phage administration and phage type. The induction of antiphage activity of sera during or after PT does not exclude a favorable result of PT.

  17. Phage display of peptide / major histocompatibility class I complexes

    DEFF Research Database (Denmark)

    Vest Hansen, N; Ostergaard Pedersen, L; Stryhn, A;

    2001-01-01

    Major histocompatibility complex class I (MHC-I) molecules sample peptides from the intracellular environment and present them to cytotoxic T cells (CTL). To establish a selection system, and, thereby, enable a library approach to identify the specificities involved (that of the MHC-I for peptides...... and subsequently that ot the T cell receptor for peptide-MHC-I complex), we have fused a single chain peptide-MHC-I complex to the phage minor coat protein, gpIII, and displayed it on filamentous phage. Expression of peptide-MHC-I complexes was shown with relevant conformation-specific monoclonal antibodies and...

  18. Screening peptide mimotopes of blood group B carbohydrate antigen using phage display peptide library%随机十二肽噬菌体展示文库筛选血型B抗原模拟多肽的实验研究

    Institute of Scientific and Technical Information of China (English)

    李许锋; 罗敏; 邹建军; 岑东芝; 何克菲; 张积仁

    2011-01-01

    OBJECTIVE: To screen peptide mimotopes of blood group B carbohydrate antigen with high affinity for blood group B monoclonal antibody which can replace carbohydrate antigen using a phage display peptide library, and find a new tool for application of blood group B carbohydrate antigen. METHODS: A 12-mer phage peptide library was screened for 3 rounds by using a blood group B monoclonal antibody as target protein according to such a procedure as “adsorbing,eluting and amplification”, and positive clones were selected randomly,confirmed by sandwich ELISA, single strand DNA was extracted from these positive clones and sequenced, and the mimic peptides were deduced by the DNA sequence. RESULTS: After 3 rounds of effective bio-panning, two major mimic peptides with high affinity for target protein were obtained, one peptide sequence was TKNMLSLPVGPG,the other one was HSLKHTQMSYSS. CONCLUSION: The resuits shows that the motif identified through a 12- mer phage display peptide library can be mimiced and may be a substitute for blood group B antigen.%目的:筛选出替代血型B抗原的模拟多肽,用多肽抗原替代糖类抗原.方法:抗血型B抗原的单克隆抗体作为固相筛选靶分子,对随机十二肽噬菌体展示文库进行生物淘选(bio-panning),经包被-结合-洗脱-扩增等循环3轮,对筛选的克隆ELISA鉴定,并通过剂量依赖实验验证其结合特异性.最后提取DNA测序,确定模拟肽氨基酸序列.结果:3轮筛选结束,得到2个亲和力较强的十二肽序列TKNMLSL-PVGPG和HSLKHTQMSYSS.结论:经过生物筛选得到模拟多肽序列,利用噬菌体展示技术筛选糖类抗原的模拟肽具有可行性,为糖类抗原的研究提供一种新思路.

  19. Epitope screening of influenza A (H3N2) by using phage display library%应用噬菌体表面展示技术筛选流感病毒H3N2抗原模拟表位

    Institute of Scientific and Technical Information of China (English)

    钟彦伟; 徐东平; 李晓东; 戴久增; 许彪; 李乐

    2009-01-01

    Objective To screen the influenza A (H3N2) mimotopes by using phage display library. Methods Using influenza A (H3N2) monaclonai antibody as selective molecule, a 7 mer phage peptide library was biopanned and positive clones were selected by ELISA, competition assay and DNA sequencing. Results 21 positive clones were chosen for DNA sequencing. From the experiment and sequencing comparison results, one epitope was comfirmed as mimotope of influenza A (H3N2). Conclusion Influenza A (H3N2) mimotope was obtained by phage peptide library screening. The result provide a new approach for new Influenza vitals vaccine development.%目的 筛选特异性流感病毒H3N2抗原模拟表位,为开展新的流感病毒疫苗研究探索新的途径.方法 应用噬菌体表面展示技术,以抗-H3N2的单克隆抗体作为固相筛选分子,对人工合成的噬菌体随机肽库进行5轮"吸附-洗脱-扩增"的筛选过程,在第5轮筛选后,随机挑取48个克隆,经噬菌体酶联免疫吸附法(ELISA)鉴定并进行交叉反应实验以及竞争抑制性实验,最后对所选克隆进行DNA序列分析,以确定H3N2抗原的模拟表位.结果 经噬菌体富集后,从随机筛选的48个克隆中得到21个阳性克隆,经ELISA鉴定及交叉反应实验、竞争抑制性实验后,确定氨基酸序列XTXPYXX为H3N2的模拟表位.结论 用噬菌体7肽库筛选得到H3N2的模拟表位,为开展用流感病毒模拟表位探索新的防治方法研究奠定了基础.

  20. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  1. Construction of human naive phage antibody library and primary screening of the gab antibodies against gp96%人天然噬菌体抗体库的构建及抗gp96抗体的初步筛选

    Institute of Scientific and Technical Information of China (English)

    马小兵; 畅继武; 李成文; 李慧忠; 王馨

    2009-01-01

    Objective To construct a naive human Fab fragment phage display library,from which the anti-gp96 antibodies may be panned by the gp96 purified from the tissue of urothelial carcinoma in the urinary bladder and provide a basis to new therapy for the malignant tumors.Methods Peripheral blood lymphocytes were isolated from 800 ml of blood,which was obtained from four healthy blood donors.The heavy chain Fd and light chain cDNA synthesized from the total RNA of lympbocytes were amplified by PCR with variable regions 5' and 3' primers of heavy and light chain, and the amplification products were ligated into the phagemid vector pComb3, then the ligated sample was transformed into competent E.coli XL1-Blue by electroperation.The transformed cells were infected with VCSM13 helper phage to yield recombinant phage antibody Fabs.The phagemids abstracted from amplified E.coli were cut with endonucleases such as Sac Ⅰ,Xba Ⅰ,Xho Ⅰ and Spe Ⅰ, and both the phage antibody Fabs and phage-raids abstracted from amplified E.coil were amplified by PCR to monitor the insertion of the genes of light chain or heavy chain Fd fragment.The gp96 purified from the urothelial carcinoma tissue of the bladder by affinity chromatog-raphy on eoncanavalin-A sephnrose and DEAE-sephnrose ion exchange chromatography were utilized as antigens to process three rounds of panning to the original Fab antibody library.Results The quantity of total RNA and cDNA were qualified.By combination of light chain and heavy chain genes, an antibody library containing 6.6×106 clones was obtained, and both the cutting of enzymes and PCR showed that there were the genes of light chain or heavy chain Fd fragment in the phagemids.The gp96 protein was obtained from urothelial carcinoma tissue in the urinary bladder.After having been panned by gp96, the original antibody library gained enrichment by 68 times.Conclusion Utilizing the technology of phage surface display, specific antibody can be gained from the human

  2. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  3. Phage cocktails and the future of phage therapy.

    Science.gov (United States)

    Chan, Benjamin K; Abedon, Stephen T; Loc-Carrillo, Catherine

    2013-06-01

    Viruses of bacteria, known as bacteriophages or phages, were discovered nearly 100 years ago. Their potential as antibacterial agents was appreciated almost immediately, with the first 'phage therapy' trials predating Fleming's discovery of penicillin by approximately a decade. In this review, we consider phage therapy that can be used for treating bacterial infections in humans, domestic animals and even biocontrol in foods. Following an overview of the topic, we explore the common practice - both experimental and, in certain regions of the world, clinical - of mixing therapeutic phages into cocktails consisting of multiple virus types. We conclude with a discussion of the commercial and medical context of phage cocktails as therapeutic agents. In comparing off-the-shelf versus custom approaches, we consider the merits of a middle ground, which we deem 'modifiable'. Finally, we explore a regulatory framework for such an approach based on an influenza vaccine model.

  4. Construction and screening of phage display single chain antibody library against histidine-rich protein Ⅱ of Plasmodium falciparum%抗恶性疟原虫富含组氨酸蛋白Ⅱ单链抗体库的构建及筛选

    Institute of Scientific and Technical Information of China (English)

    侯云霞; 董文其; 徐伟文; 王萍; 陈白虹; 李明

    2001-01-01

    Objective To construct phage display single-chain antibody fragments (scFvs) library against histidine-rich protein Ⅱ (HRP-Ⅱ) of Plasmodium falciparum and select specific scFvs of anti- HRP-Ⅱ for the purpose of malaria diagnosis. Method The genes of variable fragments of heavy chain (VH) and light chain (VL) were gained from the spleen cells of BALB/c mice immunized with HRP-Ⅱ protein. The VH and VL genes were then assembled by the method of splicing overlapping extension and cloned into phagemid vector pCANTAB 5E. The scFv phage antibodies were expressed at the surface of the phage after the rescue by helper phage M13K07. HRP- Ⅱ protein was used as antigenic reagent for panning and screening. Results The total RNA from the spleen cells was isolated, and cDNA obtained and VH and VL gene regions amplified using PCR. The VH and VL gene regions were combined with a flexible linker ligated into the pCANTAB 5E phagemid vector, and transformed into TG1 Escherichia coli. The repertoire of the phage antibody was about 106. After panning and screening, 8 positive clones expressed scFv antibodies which were specific for HPR-Ⅱ as demonstrated by ELISA. Conclusion Phage display technology can be used as a powerful tool in making scFv antibodies which have the potential to be used as reagents in the diagnosis and therapy of malaria.%目的构建抗恶性疟原虫富含组氨酸蛋白Ⅱ(Histidine- rich protein II, HRP-II)单链抗体库,并筛选出阳性克隆。方法用噬菌体抗体库技术构建抗恶性疟原虫HRP-Ⅱ单链抗体库,并以HRP-Ⅱ为靶抗原对该库进行了三轮"亲和吸附-援救-感染扩增"的富集,挑取单菌落筛选并鉴定阳性克隆。结果获得目的基因并成功构建抗恶性疟原虫HRP-Ⅱ的单链抗体库,库容为106,并从中筛选出8株阳性克隆。结论噬菌体抗体库技术具有高效的筛选性能,抗 HRP-Ⅱ单链抗体的制备为其在恶性疟的免疫快速诊断方法中的应用奠定了基础。

  5. The epic of phage therapy

    OpenAIRE

    Alain Dublanchet; Shawna Bourne

    2007-01-01

    The present report describes the presentation given by Dr Alain Dublanchet at the Stanier/Oxford Hygiene Symposium, held in Oxford, England, on November 10, 2004. Dr Dublanchet's lecture, entitled ‘The epic of phage therapy’, provided a sequential account of the use of phage as an antimicrobial from its discovery to its rise and fall and current rediscovery.

  6. In Vivo Selection of Phage Sequences and Characterization of Peptide-specific Binding to Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Ruifang Niu; Lin Zhang; Hongkai Zhang; Xiyin Wei; Yi Yang; Shiwu Zhang; Jing Wu; Min Wu; Youjia Cao

    2008-01-01

    OBJECTIVE To screen specific polypeptide target binding to breast cancer xenografts in vivo from a phage-displayed peptide library in order to provide peptide sequences for breast cancer tumor-targeting diagnosis and therapy.METHODS A mouse model for carrying breast cancer xenografts was established using Tientsin Albinao Ⅱ mice (TAII). A 12-peptide library was biopanned through 4 rounds.Phages were recovered and titrated from tumor xenografts and control tissue (liver). The distribution of phages was detected by immunohistochemical staining.RESULTS Phage homing to breast cancer was enriched through 4 rounds of biopanning, being 14-fold of that recovered from liver tissue. A peptide sequence, ASANPFPTKALL was characterized by randomly picked-up clones which appeared most frequently.Immunohistochemical staining revealed phage localization in cancer xenografts 40 min after injection of the enriched phages.When a specific phage was tested individually, the phage reclaimed from breast cancer xenografts was 14 times as those from control tissues.CONCLUSION Tumor-specific homing peptides may provide an effective tool for breast cancer target therapy. The in vivo phage display selection technique employed in this study was feasible and applicable to screening peptides that home to.breast cells.

  7. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display

    Directory of Open Access Journals (Sweden)

    Dragana eGagic

    2016-04-01

    Full Text Available Microbial surface and secreted proteins (the secretome contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of phage, called filamentous phage, have the ability to hijack the cellular protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to bait of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that have functions of interest for bacterial colonization and pathogenesis, through filamentous phage display library screening. Published literature also shows that phage display is suitable for secretome protein display as a tool for identification immunogenic peptides and can be used for discovery of vaccine candidates. Secretome selection aided by next-generation sequence analysis can also be used for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea.

  8. Phages targeting infected tissues: novel approach to phage therapy.

    Science.gov (United States)

    Górski, Andrzej; Dąbrowska, Krystyna; Hodyra-Stefaniak, Katarzyna; Borysowski, Jan; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata

    2015-01-01

    While the true efficacy of phage therapy still requires formal confirmation in clinical trials, it continues to offer realistic potential treatment in patients in whom antibiotics have failed. Novel developments and approaches are therefore needed to ascertain that future clinical trials would evaluate the therapy in its optimal form thus allowing for reliable conclusions regarding the true value of phage therapy. In this article, we present our vision to develop and establish a bank of phages specific to most threatening pathogens and armed with homing peptides enabling their localization in infected tissues in densities assuring efficient and stable eradication of infection.

  9. Information Phage Therapy Research Should Report

    OpenAIRE

    Stephen T. Abedon

    2017-01-01

    Bacteriophages, or phages, are viruses which infect bacteria. A large subset of phages infect bactericidally and, consequently, for nearly one hundred years have been employed as antibacterial agents both within and outside of medicine. Clinically these applications are described as phage or bacteriophage therapy. Alternatively, and especially in the treatment of environments, this practice instead may be described as a phage-mediated biocontrol of bacteria. Though the history of phage therap...

  10. Production of monoclonal anti-GP Ⅱ b/Ⅲa scFv antibodies from scFv phage libraries%从scFv噬菌体抗体库中筛选抗GPⅡ b/Ⅲa单链抗体

    Institute of Scientific and Technical Information of China (English)

    夏红利; 谭最; 陈德杰; 乔建国; 邱仁峰

    2011-01-01

    目的 从scFv噬菌体库中获取人源化特异性Anti-GPⅡb/Ⅲa单克隆scFv抗体.方法 对Tomlinson I+J scFv文库进行3次淘洗,富集特异性的抗GPⅡb/Ⅲa抗体.通过酶联免疫吸附试验(ELISA)和双脱氧终止法基因测序及同源性对比,检测出人源化的抗GPⅡb/Ⅲa单克隆抗体.结果 在3次淘洗后,得到了抗GPⅡb/Ⅲa单克隆噬菌体抗体,阳性克隆的获取率在95.6%以上;ELISA和基因测序筛选出25种不同的全长抗GPⅡb/Ⅲa噬菌体抗体,这些基因序列与人免疫球蛋白可变区基因同源性达到89%以上;分泌性抗体ELISA检测提示这些抗体顺利表达了蛋白并特异性结合GPⅡb/Ⅲa,其中15种scFv对GPⅡb/Ⅲa有更强的阳性反应.结论 人源化的特异性抗-GPⅡb/Ⅲa scFv能通过噬菌体展示技术快速有效地获得.%Objective To screen monoclonal anti-GP Ⅱ b/Ⅲ a antibodies from scFv phage libraries and obtain specific monoclonal anti-GP Ⅱ b/Ⅲ a scFv. Methods Specific anti-GP Ⅱ b/Ⅲ a scFv antibodies were enriched by three rounds of selection from Tomlinson Ⅰ + J libraries. By using polyclonal and monoclonal phage enzyme linked immunosorbent assay ( ELISA) and gene sequencing by bideoxy chain termination, full-length specific monoclonal anti-GP Ⅱ b/Ⅲ a antibodies were picked out and their gene sequences were obtained. Results Twenty-five different full-length monoclonal scFv phage fragments were obtained after three rounds of panning and their gene sequences were identified, and positive rate of monoclones was above 95.6%; homology comparison with variable regions of human immunoglobulin gene showed the similarity was above 89%; the result of soluble scFv ELISA showed that these specific scFv could be expressed smoothly, and 15 full-length monoclonal scFv antibodies were stronger positive than the other in these scFv. Conclusion Antibody phage display was a rapid and effective method to obtain Anti-GP Ⅱ b/Ⅲ a scFv fragements.

  11. Panning and identification of antagonistic active peptides specifically bin-ding to the first and second extracellular membrane loops of rat CCR5 by technique of phage display peptide library%应用噬菌体展示肽库技术淘选大鼠 CCR5膜外第一、二胞外环特异性结合的活性拮抗肽与初步鉴定

    Institute of Scientific and Technical Information of China (English)

    刘思雪; 胡梅; 叶小研; 黄花荣; 钟英强

    2015-01-01

    [ ABSTRACT] AIM: To pan the active peptides which specifically bound to the first and second extracellular membrane loops of rat CC chemokine receptor 5 ( CCR5 ) .METHODS: The technique of phage display peptide library was used and binding ability of the peptides was identified.The amino acid sequences of the first and second extracellular loops of rat CCR5 were searched in the protein database and chemically synthesized corresponding linear peptides were used as targets in the biopanning.After 3 to 4 rounds of screening with Ph.D.TM-7 Phage Display Peptide Library were per-formed, the specific phages were collected and primarily identified by ELISA.RESULTS:The sequences of the peptides displayed on the selected phages were GHWKVWL and HYIDFRW, both of them exhibited positive in phage binding ELISA and the binding to phages and targets were concentration dependent and saturable.CONCLUSION:Two antagonis-tic active peptides specifically binding to CCR5 were successfully obtained by the technique of phage display peptide librar-y, and the binding ability to the first and second extracellular membrane loops of rat CCR5 were proved in vitro.%目的:利用噬菌体展示肽库技术淘选与大鼠CC趋化因子受体5( CCR5)膜外第一、二胞外环特异性结合的短肽,并鉴定其与CCR5的结合能力。方法:在蛋白质数据库中查得大鼠CCR5第一、二胞外环的氨基酸序列,合成相应的线性短肽作为淘选的靶分子,利用噬菌体展示7肽文库进行3~4轮淘选,用ELISA法鉴定所选肽与靶分子的结合,并测定其与浓度的关系。结果:与CCR5第一、二胞外环特异性结合的噬菌体展示的短肽序列分别为GHWKVWL和HYIDFRW,ELISA鉴定呈阳性反应,且短肽与靶分子的结合具有浓度依赖性和可饱和性。结论:利用噬菌体展示技术成功获得了2条CCR5特异性结合的短肽,并在体外证明其可与CCR5第一、二胞外环具有结合能力。

  12. Human Volunteers Receiving Escherichia coli Phage T4 Orally: a Safety Test of Phage Therapy

    OpenAIRE

    Bruttin, Anne; Brüssow, Harald

    2005-01-01

    Fifteen healthy adult volunteers received in their drinking water a lower Escherichia coli phage T4 dose (103 PFU/ml), a higher phage dose (105 PFU/ml), and placebo. Fecal coliphage was detected in a dose-dependent way in volunteers orally exposed to phage. All volunteers receiving the higher phage dose showed fecal phage 1 day after exposure; this prevalence was only 50% in subjects receiving the lower phage dose. No fecal phage was detectable a week after a 2-day course of oral phage applic...

  13. Genetic Evidence for O-Specific Antigen as Receptor of Pseudomonas aeruginosa Phage K8 and Its Genomic Analysis

    Directory of Open Access Journals (Sweden)

    Xuewei ePan

    2016-03-01

    Full Text Available Phage therapy requires the comprehensive understanding of the mechanisms underlying the host-phage interactions. In this work, to identify the genes related to Pseudomonas aeruginosa phage K8 receptor synthesis, 16 phage-resistant mutants were selected from a Tn5G transposon mutant library of strain PAK. The disrupted genetic loci were identified and they were related to O-specific antigen (OSA synthesis, including gene wbpR, ssg, wbpV, wbpO, and Y880_RS05480, which encoded a putative O-antigen polymerase Wzy. The LPS profile of the Y880_RS05480 mutant was analyzed and shown to lack the O-antigen. Therefore, the data from characterization of Y880_RS05480 by TMHMM and SDS-PAGE silver staining analysis suggest that this locus might encode Wzy. The complete phage K8 genome was characterized as 93879 bp in length and contained identical 1188-bp terminal direct repeats. Comparative genomic analysis showed that phage K8 was highly homologous to members of the genus PaP1-like phages. On the basis of our genetic findings, OSA of P. aeruginosa PAK is proven to be the receptor of phage K8. The highly conserved structural proteins among the genetic closely related phages suggest that they may recognize the same receptor.

  14. Engineering human interferon α1c/86D with phage display technology

    Institute of Scientific and Technical Information of China (English)

    马学军; 胡荣; 吕海; 魏开坤; 张丽兰; 薛水星; 侯云德

    1999-01-01

    Human interferon-α1c/86D (IFNα1c/86D) was functionally displayed on the surface of the filamentous bacteriophage using a phagemid vector system (pCANTAB5E). The key amino acid residues involved in the receptor binding were further defined with phage displayed 6-mer peptide library and two neutralizing antibodies against linear epitopes on the IFN-α1b, indicating that residues 30, 33, 34, (AB-loop) and residues 124, 126, 127 (D helix, DE-loop) were more critical than the adjacent residues for recognition of receptor. In addition, a cassette mutagenesis library was generated by fully randomizing the sequence of the four positions 29, 31, 32 and 35 in AB-loop, and used to select phage-IFN variants with WISH-hased panning method. Three phage-IFN variants were isolated to possess more antiviral activity in the range of 4—16-fold than parental phage-IFN after IPTG-induced soluble expression. The results suggest that phage displayed phage-IFN α1c/86D variants with increased specific activity might be obta

  15. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine.

    Science.gov (United States)

    Martins, Ivone M; Reis, Rui L; Azevedo, Helena S

    2016-11-18

    The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.

  16. Clinical aspects of phage therapy.

    Science.gov (United States)

    Międzybrodzki, Ryszard; Borysowski, Jan; Weber-Dąbrowska, Beata; Fortuna, Wojciech; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Pawełczyk, Zdzisław; Rogóż, Paweł; Kłak, Marlena; Wojtasik, Elżbieta; Górski, Andrzej

    2012-01-01

    Phage therapy (PT) is a unique method of treatment of bacterial infections using bacteriophages (phages)-viruses that specifically kill bacteria, including their antibiotic-resistant strains. Over the last decade a marked increase in interest in the therapeutic use of phages has been observed, which has resulted from a substantial rise in the prevalence of antibiotic resistance of bacteria, coupled with an inadequate number of new antibiotics. The first, and so far the only, center of PT in the European Union is the Phage Therapy Unit (PTU) established at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland in 2005. This center continues the rich tradition of PT in Poland, which dates from the early 1920s. The main objective of this chapter is to present a detailed retrospective analysis of the results of PT of 153 patients with a wide range of infections resistant to antibiotic therapy admitted for treatment at the PTU between January 2008 and December 2010. Analysis includes the evaluation of both the efficacy and the safety of PT. In general, data suggest that PT can provide good clinical results in a significant cohort of patients with otherwise untreatable chronic bacterial infections and is essentially well tolerated. In addition, the whole complex procedure employed to obtain and characterize therapeutic phage preparations, as well as ethical aspects of PT, is discussed.

  17. Complete Genome Sequence of Vibrio anguillarum Phage CHOED Successfully Used for Phage Therapy in Aquaculture

    OpenAIRE

    Romero, Jaime; Higuera, Gastón; Gajardo,Felipe; Castillo, Daniel; Middleboe, Mathias; García, Katherine; Ramírez, Carolina; Espejo, Romilio T.

    2014-01-01

    Vibrio anguillarum phage CHOED was isolated from Chilean mussels. It is a virulent phage showing effective inhibition of V. anguillarum. CHOED has potential in phage therapy, because it can protect fish from vibriosis in fish farms. Here, we announce the completely sequenced genome of V. anguillarum phage CHOED.

  18. Information Phage Therapy Research Should Report

    National Research Council Canada - National Science Library

    Stephen T Abedon

    2017-01-01

    .... Clinically these applications are described as phage or bacteriophage therapy. Alternatively, and especially in the treatment of environments, this practice instead may be described as a phage-mediated biocontrol of bacteria...

  19. Construction of human naive Fab library, screening and identification of phage antibody against c-Met%人源天然Fab噬菌体抗体库的构建及抗c-Met抗体的筛选、鉴定

    Institute of Scientific and Technical Information of China (English)

    万佳艺; 孙慧; 焦永军; 朱晓娟; 朱进; 刘政; 冯振卿

    2008-01-01

    目的:构建大容量人源天然Fab噬菌体抗体库,筛选抗c-Met特异性抗体并进行初步鉴定.方法:采集20位健康成人的骨髓淋巴细胞.用PCR扩增人Fab片断抗体基因,插入载体pComb3XSS内,构建人源天然Fab抗体库.以固相化的抗原对抗体库进行6轮筛选后,随机挑选60个克隆用Phage ELISA、BstO I酶切片断分析进行检测,阳性克隆作可溶性表达和鉴定.结果:构建的Fab噬菌体抗体库的库容为1.2×109,从中筛选到1株与c-Met特异性结合的人源抗体克隆,命名为AM2-26.DNA序列分析证明为人免疫球蛋白可变区基因,Western blot证实为人源抗c-Met Fab抗体片段,ELISA特异性鉴定阳性.结论:构建了大容量人源天然Fab抗体库,从中获得1株抗c-Met人源Fab抗体片段,有望为抗肿瘤药物的研制提供新的候选分子.

  20. Phage Therapy: Eco-Physiological Pharmacology

    OpenAIRE

    Abedon, Stephen T.

    2014-01-01

    Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virio...

  1. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  2. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  3. Collection of phage-peptide probes for HIV-1 immunodominant loop-epitope.

    Science.gov (United States)

    Palacios-Rodríguez, Yadira; Gazarian, Tatiana; Rowley, Merrill; Majluf-Cruz, Abraham; Gazarian, Karlen

    2007-02-01

    Early diagnosis and prevention of human immunodeficiency virus type-1 (HIV-1) infection, which remains a serious public health threat, is inhibited by the lack of reagents that elicit antiviral responses in the immune system. To create mimotopes (peptide models of epitopes) of the most immunodominant epitope, CSGKLIC, that occurs as a loop on the envelope gp41 glycoprotein and is a key participant in infection, we used phage-display technology involving biopanning of large random libraries with IgG of HIV-1-infected patients. Under the conditions used, library screening with IgG from patient serum was directed to the CSGKLIC epitope. Three rounds of selection converted a 12 mer library of 10(9) sequences into a population in which up to 79% of phage bore a family of CxxKxxC sequences ("x" designates a non-epitope amino acid). Twenty-one phage clones displaying the most frequently selected peptides were obtained and were shown to display the principal structural (sequence and conformational), antigenic and immunogenic features of the HIV-1 immunodominant loop-epitope. Notably, when the mixture of the phage mimotopes was injected into mice, it induced 2- to 3-fold higher titers of antibody to the HIV-1 epitope than could be induced from individual mimotopes. The described approach could be applicable for accurately reproducing HIV-1 epitope structural and immunological patterns by generation of specialized viral epitope libraries for use in diagnosis and therapy.

  4. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    1999-01-01

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell kil

  5. Phage typing of Staphylococcus saprophyticus.

    Science.gov (United States)

    Torres Pereira, A.; Melo Cristino, J. A.

    1991-01-01

    This study included 502 staphylococcus strains; Staphylococcus saprophyticus (297 strains) S. cohnii (47), S. xylosus (10), S. epidermidis (67) and S. aureus (81). Mitomycin C induction was performed on 100 isolates of S. saprophyticus and all induced strains were reacted with each other. Twenty-six strains proved to be lysogenic. Phages were propagated and titrated. With 12 of the phages there were three frequent associations, named lytic groups A, B and C, which included 75% of all typable strains. Typability of the system was 45% and reproducibility was between 94.2% and 100%. Phages did not lyse S. aureus and S. epidermidis strains, but they lysed S. saprophyticus and only rare strains of other novobiocin resistant species. Effective S. saprophyticus typing serves ecological purposes and tracing the origin of urinary strains from the skin or mucous membranes. Phage typing in association with plasmid profiling previously described, are anticipated as complementary methods with strong discriminatory power for differentiating among S. saprophyticus strains. PMID:1752305

  6. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil

    2015-01-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  7. Phage-Host Interactions in Flavobacterium psychrophilum and the Potential for Phage Therapy in Aquaculture

    DEFF Research Database (Denmark)

    Christiansen, Rói Hammershaimb

    , the increasing problem with antibiotic resistance has led to increased attention to the use of phages for controlling F. psychrophilum infections in aquaculture. In a synopsis and four scientific papers, this PhD project studies the potential and optimizes the use of phage therapy for treatment and prevention...... of F. psychrophilum infections in rainbow trout fry. In the first paper, studies of the controlling effect of different phages infecting F. psychrophilum in liquid cultures showed that a high initial phage concentration was crucial for fast and effective bacterial lysis in the cultures and sensitive...... cells could be maintained at a low level throughout the rest of the experiment. Surprisingly, no difference was observed between infection with single phages or phage cocktails. At the end of incubation phage-sensitive strains dominated in the cultures with low initial phage concentrations and phage...

  8. The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages

    Directory of Open Access Journals (Sweden)

    James J Bull

    2014-11-01

    Full Text Available The use of bacteriophages as antibacterial agents is being actively researched on a global scale. Typically, the phages used are isolated from the wild by plating on the bacteria of interest, and a far larger set of candidate phages is often available than can be used in any application. When an excess of phages is available, how should the best phages be identified? Here we consider phage-bacterial population dynamics as a basis for evaluating and predicting phage success. A central question is whether the innate dynamical properties of phages are the determinants of success, or instead, whether extrinsic, indirect effects can be responsible. We address the dynamical perspective, motivated in part by the absence of dynamics in previously suggested principles of phage therapy. Current mathematical models of bacterial-phage dynamics do not capture the realities of in vivo dynamics, nor is this likely to change, but they do give insight to qualitative properties that may be generalizable. In particular, phage adsorption rate may be critical to treatment success, so understanding the effects of the in vivo environment on host availability may allow prediction of useful phages prior to in vivo experimentation. Principles for predicting efficacy may be derived by developing a greater understanding of the in vivo system, or such principles could be determined empirically by comparing phages with known differences in their dynamic properties. The comparative approach promises to be a powerful method of discovering the key to phage success. We offer five recommendations for future study: (i compare phages differing in treatment efficacy to identify the phage properties associated with success, (ii assay dynamics in vivo, (iii understand mechanisms of bacterial escape from phages, (iv test phages in model infections that are relevant to the intended clinical applications, and (v develop new classes of models for phage growth in spatially heterogeneous

  9. Construction and identification of an expressing vector for a large human naive phage antibody library%用于大容量人源天然噬菌体抗体库的表达载体的构建及鉴定

    Institute of Scientific and Technical Information of China (English)

    潘博; 陈斌; 童贻刚; 付文卓; 王晓娜; 张宝中; 米志强; 安小平; 刘大斌; 李存; 姜焕焕

    2012-01-01

    目的 构建一个应用于大容量Fab段天然噬菌体抗体库的表达载体.方法 用定点突变技术将表面呈现噬菌粒载体pDF上的BssHⅡ酶切位点改为BglⅡ酶切位点,然后分别在抗体轻链和重链位置插入自杀基因SacB,构建含自杀基因的噬菌粒载体pDF-D-SacB;利用抗乙肝表面抗原抗体的基因为模板,PCR扩增重链和轻链基因片段.将PCR扩增的轻链基因和重链基因分别插入载体pDF-D-SacB内,利用电转化的方法将其转入Transl-Blue大肠杆菌,构建2个初级质粒,再利用初级质粒超感染BS1365菌,使其轻链与重链发生重组,获得重组质粒,进一步获得抗乙肝表面抗原抗体的噬菌体.之后利用该噬菌体感染大肠杆菌Transl-Blue进行扩增,得到大量抗乙肝表面抗原的噬菌体抗体.最后,通过酶联免疫吸附剂测定检测所获得的抗体.结果 通过向pDF重轻链区域插入SacB基因,改造抗体基因克隆位点,构建了pDF-D-SacB载体;经检测,pDF-D-SacB可以表达具有功能的Fab噬菌体抗体,可以在分泌Cre蛋白酶的细菌胞内发生预期的Cre-Loxp介导的定点重组.结论 所获得的含自杀基因的噬菌粒载体pDF-D-SacB适用于构建大容量噬菌体抗体库.%Objective To construct an expression vector that can be applied to the construction of large Fab fragment phage display library. Methods BssH II restriction site in phagemid vector pDF was mutated to Bgl Ⅱ restriction sites by site-directed mutagenesis techniques, and a suicide gene SacB was inserted into both the heavy and light chain region, resulting in phagemid vector pDF-D-SacB. Heavy chain (VH) and light chain (VL) genes of anti-hepatitis B surface antigen (HBsAg) antibody were inserted into the phagemid vector pDF-D-SacB separately. The recombinant VH and VL phagemids were transformed into Transl-Blue E, coli by electroporation respectively. By co-infecting the VH and VL phagemids into bacteria BS1365 at high multiplicity

  10. Phage display screen for peptides that bind Bcl-2 protein.

    Science.gov (United States)

    Park, Hye-Yeon; Kim, Joungmok; Cho, June-Haeng; Moon, Ji Young; Lee, Su-Jae; Yoon, Moon-Young

    2011-01-01

    Bcl-2 family proteins are key regulators of apoptosis associated with human disease, including cancer. Bcl-2 protein has been found to be overexpressed in many cancer cells. Therefore, Bcl-2 protein is a potential diagnostic target for cancer detection. In the present study, the authors have identified several Bcl-2 binding peptides with high affinity (picomolar range) from a 5-round M13 phage display library screening. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.

  11. Identification of nose-to-brain homing peptide through phage display.

    Science.gov (United States)

    Wan, Xiao-Mei; Chen, Yong-Ping; Xu, Wen-Rui; Yang, Wen-Jun; Wen, Long-Ping

    2009-02-01

    Brain delivery of drug molecules through the nasal passage represents a viable approach for bypassing the blood-brain barrier (BBB) but remains a major challenge due to lack of efficient homing carriers. To screen for potential peptides with the ability to transport into the brain via the nasal passage, we applied a C7C phage peptide display library (Ph.D.-C7C) intra-nasally to anesthetized rats and recovered phage from the brain tissue 45 min after phage administration. After three rounds of panning, 10 positive phage clones were selected and sequenced. Clone7, which exhibited highest translocation efficiency, was chosen for further studies. After nasal administration, Clone7 entered the brain within 30 min and exhibited translocation efficiency about 50-fold higher than a random phage. A 11-amino acid synthetic peptide derived from the displayed sequence of Clone7 (ACTTPHAWLCG) efficiently inhibited the nasal-brain translocation of Clone7. Both phage recovery results and fluorescent microscopy images revealed the presence of many more Clone7 phage in the brain than in the liver, kidney and other internal organs after the nasal administration, suggesting that Clone7 bypassed the BBB and entered brain directly. Furthermore, both Clone7 and the ACTTPHAWLCG peptide were found to be heavily distributed along the olfactory nerve after the nasal administration, further suggesting a direct passage route into the brain via the olfactory region. These results demonstrated the feasibility of using the in vivo phage display approach for selecting peptides with the nose-to-brain homing capability and may have implications for the development of novel targeting carriers useful for brain delivery.

  12. Preparation of single chain variable fragment of MG7 mAb by phage display technology

    Institute of Scientific and Technical Information of China (English)

    Zhao-Cai Yu; Jie Ding; Yong-Zhan Nie; Dai-Ming Fan; Xue-Yong Zhang

    2001-01-01

    AIM To develop the single chain variable fragment of MG7 murine anti-human gastric cancer monoclonal antibody using the phage display technology for obtaining a tumor-targeting mediator. METHODS mRNA was isolated from MG7-producing murine hybridoma cell line and converted into cDNA. The variable fragments of heavy and light chain were amplified separately and assembled into ScFv with a specially constructed DNA linker by PCR. The ScFvs DNA was ligated into the phagmid vector pCANTAB5E and the ligated sample was transformed into competent E. Coli TG1. The transformed cells were infected with M13K07 helper phage to form MG7 recombinant phage antibody library. The volume and recombinant rate of the library were evaluated by means of bacterial colony count and restriction analysis. After two rounds of panning with gastric cancer cell line KATOⅢ of highly expressing MG7binding antigen, the phage clones displaying ScFv of the antibody were selected by ELISA from the enriched phage clones. The antigen-binding affinity of the positive clone was detected by competition ELISA. HB2151 E. Coli was transfected with the positive phage clone demonstrated by competition ELISA for production of a soluble form of the MG7 ScFv. ELISA assay was used to detect the antigenbinding affinity of the soluble MG7 ScFv. Finally, the relative molecular mass of soluble MG7 ScFv was measured by SDS-PAGE. RESULTS The VH, VL and ScFv DNAs were about 340bp,320bp and 750bp, respectively. The volume of the library was up to 2 × 106 and 8 of 11 random clones were recombinants. Two phage clones could strongly compete with the original MG7 antibody for binding to the antigen expressed on KATO Ⅲ cells. Within 2 strong positive phage clones, the soluble MG7 ScFv from one clone was found to have the binding activity with KATO Ⅲ cells.SDS-PAGE showed that the relative molecular weight of soluble MG7 ScFv was 32. CONCLUSION The MG7 ScFv was successfully produced by phage antibody technology, which may

  13. Last of the T Phages

    Energy Technology Data Exchange (ETDEWEB)

    Studier, F. W.

    1978-01-01

    Results clearly show that it is possible to induce mutations in T7 DNA at a physically measurable rate in the laboratory, and to follow genetic divergence by restriction analysis. The rate of accumulation of changes in the presence of mutagen is high enough that it may be feasible to induce changes at least as great as those found among the T7-related phages isolated from nature.

  14. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails.

    Science.gov (United States)

    Pereira, Carla; Moreirinha, Catarina; Lewicka, Magdalena; Almeida, Paulo; Clemente, Carla; Cunha, Ângela; Delgadillo, Ivonne; Romalde, Jésus L; Nunes, Maria L; Almeida, Adelaide

    2016-07-15

    The aim of this study was to compare the dynamics of three previously isolated bacteriophages (or phages) individually (phSE-1, phSE-2 and phSE-5) or combined in cocktails of two or three phages (phSE-1/phSE-2, phSE-1/phSE-5, phSE-2/phSE-5 and phSE-1/phSE-2/phSE-5) to control Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) in order to evaluate their potential application during depuration. Phages were assigned to the family Siphoviridae and revealed identical restriction digest profiles, although they showed a different phage adsorption, host range, burst size, explosion time and survival in seawater. The three phages were effective against S. Typhimurium (reduction of ∼2.0 log CFU/mL after 4h treatment). The use of cocktails was not significantly more effective than the use of single phages. A big fraction of the remained bacteria are phage-resistant mutants (frequency of phage-resistant mutants 9.19×10(-5)-5.11×10(-4)) but phage- resistant bacterial mutants was lower for the cocktail phages than for the single phage suspensions and the phage phSE-1 presented the highest rate of resistance and phage phSE-5 the lowest one. The spectral changes of S. Typhimurium resistant and phage-sensitive cells were compared and revealed relevant differences for peaks associated to amide I (1620cm(-1)) and amide II (1515cm(-1)) from proteins and from carbohydrates and phosphates region (1080-1000cm(-1)). Despite the similar efficiency of individual phages, the development of lower resistance indicates that phage cocktails might be the most promising choice to be used during the bivalve depuration to control the transmission of salmonellosis.

  15. Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy

    OpenAIRE

    Maciej Żaczek; Marzanna Łusiak-Szelachowska; Ewa Jończyk-Matysiak; Beata Weber-Dąbrowska; Ryszard Międzybrodzki; Barbara Owczarek; Agnieszka Kopciuch; Wojciech Fortuna; Paweł Rogóż; Andrzej Górski

    2016-01-01

    In this study, we investigated the humoral immune response (through the release of IgG, IgA, and IgM antiphage antibodies) to a staphylococcal phage cocktail in patients undergoing experimental phage therapy at the Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy in Wrocław, Poland. We also evaluated whether occurring antiphage antibodies had neutralizing properties towards applied phages (K rate). Among 20 examined patients receiving...

  16. Two flagellotropic phages and one pilus-specific phage active against Asticcacaulis biprosthecum.

    Science.gov (United States)

    Pate, J L; Petzold, S J; Umbreit, T H

    1979-04-15

    Three phages active against cells of Asticcacaulis biprosthecum attach to receptor sites located at the pole of the cell where pili, flagella, and holdfast are produced. Phage phiAcS2, a large phage with a prolate cylindrical head and flexible, noncontractile tail, attaches to flagella as well as to receptor sites at the pole of the cell. Attachment to flagella occurs at the region where head and tail of the phage are joined, leaving the distal end of the tail free for attachment to receptor sites at the cell surface. Phages phiAcM2 and phiAcM4, are identical in appearance to each other, possessing prolate cylindrical heads and flexible, noncontractile tails, and are smaller than phage phiAcS2. Phage phiAcM4, exhibits the same flagellotropic characteristic as described for phage phiAcS2, including the manner of attachment to flagella. Phage phiAcM2 has no affinity for flagella, but attaches by the distal end of the tail to pili and to receptor sites at the pole of the cell. Mechanical removal of flagella and pili protects against infection by all three phages. Studies with phage-resistant mutants and with KCN-treated cells suggest that pili are required for infection by both flagellotropic and pilus-specific phages.

  17. Use of phages to control Campylobacter spp.

    Science.gov (United States)

    Janež, Nika; Loc-Carrillo, Catherine

    2013-10-01

    The use of phages to control pathogenic bacteria has been investigated since they were first discovered in the beginning of the 1900s. Over the last century we have slowly gained an in-depth understanding of phage biology including which phage properties are desirable when considering phage as biocontrol agents and which phage characteristics to potentially avoid. Campylobacter infections are amongst the most frequently encountered foodborne bacterial infections around the world. Handling and consumption of raw or undercooked poultry products have been determined to be the main route of transmission. The ability to use phages to target these bacteria has been studied for more than a decade and although we have made progress towards deciphering how best to use phages to control Campylobacter associated with poultry production, there is still much work to be done. This review outlines methods to improve the isolation of these elusive phages, as well as methods to identify desirable characteristics needed for a successful outcome. It also highlights the body of research undertaken so far and what criteria to consider when doing in-vivo studies, especially because some in-vitro studies have not been found to translate into to phage efficacy in-vivo.

  18. Information Phage Therapy Research Should Report.

    Science.gov (United States)

    Abedon, Stephen T

    2017-04-30

    Bacteriophages, or phages, are viruses which infect bacteria. A large subset of phages infect bactericidally and, consequently, for nearly one hundred years have been employed as antibacterial agents both within and outside of medicine. Clinically these applications are described as phage or bacteriophage therapy. Alternatively, and especially in the treatment of environments, this practice instead may be described as a phage-mediated biocontrol of bacteria. Though the history of phage therapy has involved substantial clinical experimentation, current standards along with drug regulations have placed a premium on preclinical approaches, i.e., animal experiments. As such, it is important for preclinical experiments not only to be held to high standards but also to be reported in a manner which improves translation to clinical utility. Here I address this latter issue, that of optimization of reporting of preclinical as well as clinical experiments. I do this by providing a list of pertinent information and data which, in my opinion, phage therapy experiments ought to present in publications, along with tips for best practices. The goal is to improve the ability of readers to gain relevant information from reports on phage therapy research, to allow other researchers greater potential to repeat or extend findings, to ease transitions from preclinical to clinical development, and otherwise simply to improve phage therapy experiments. Targeted are not just authors but also reviewers, other critical readers, writers of commentaries, and, perhaps, formulators of guidelines or policy. Though emphasizing therapy, many points are applicable to phage-mediated biocontrol of bacteria more generally.

  19. Screening for the mimetic homologous oligopeptides of keratins 14 and 17 related with psoriasis from phage random peptide library%应用噬菌体肽库研究银屑病相关的角蛋白K14,K17模拟表位

    Institute of Scientific and Technical Information of China (English)

    张亮; 刘玉峰; 杨乔欣; 任君萍; 黎志东

    2001-01-01

    目的获得与银屑病相关的角蛋白K14和K17同源序列的模拟表位,评估含有此基序的短肽与银屑病发病的关系. 方法将1株抗角蛋白K14和K17同源序列的单克隆抗体(mAb)5G5经亲和层析纯化后进行生物素标记,对噬菌体递呈的随机6肽库进行3轮淘洗并进行ELISA检测. 挑取10个阳性克隆进行DNA测序,分析所获数据,并进行竞争阻断实验. 结果氨基酸序列分析表明模拟短肽的基序为VL(x)AG,角蛋白K14、K17的同源序列及链球菌M蛋白均含有此基序. 携有这些短肽的噬菌体可与mAb 5G5特异结合,并可阻断单抗与角蛋白反应. 结论含有此基序的短肽可以模拟mAb 5G5识别的与银屑病相关的角蛋白K14和K17同源序列的抗原表位,为银屑病特异性短肽的研究提供了一个新途径,同时也为肽疫苗用于银屑病的治疗提供了崭新的思路.%AIM To acquire the mimetic homologous oligopeptides of human epidermal keratins 14 and 17 related with psoriasis and evaluate the effect of the oligopeptides on the pathogenesis of psoriasis. METHODS The mAb 5G5 recognizing the common epitope of human epidermal keratin K14 and K17 was purified by HiTrap Protein G affinity column, and was biotinylated by the biotin ester. A 6-mer phage random peptide library was biopanned for 3 cycles, then positive clones were identified by ELISA and DNA were extracted for sequencing. RESULTS Amino acid sequence analysis showed that 10 positive clones selected randomly had the consensus Amino acid sequence (motif) VL(x)AG. The motif VL(x)AG could be detected in the homologous amino acid sequence of keratins 14 and 17, and streptococcal M protein contained the motif too. The phages of positive clones reacted with mAb 5G5 specifically and prevented the interaction between mAb 5G5 and keratins with dose-dependent effects. CONCLUSION The motif could mimic the common epitope on human epidermal keratins 14,17 and streptococcal M protein, perhaps the

  20. Heterogeneous catalysis on the phage surface: Display of active human enteropeptidase.

    Science.gov (United States)

    Gasparian, Marine E; Bobik, Tatyana V; Kim, Yana V; Ponomarenko, Natalia A; Dolgikh, Dmitry A; Gabibov, Alexander G; Kirpichnikov, Mikhail P

    2013-11-01

    Enteropeptidase (EC 3.4.21.9) plays a key role in mammalian digestion as the enzyme that physiologically activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the recognition sequence D4K. The high specificity of enteropeptidase makes it a powerful tool in modern biotechnology. Here we describe the application of phage display technology to express active human enteropeptidase catalytic subunits (L-HEP) on M13 filamentous bacteriophage. The L-HEP/C122S gene was cloned in the g3p-based phagemid vector pHEN2m upstream of the sequence encoding the phage g3p protein and downstream of the signal peptide-encoding sequence. Heterogeneous catalysis of the synthetic peptide substrate (GDDDDK-β-naphthylamide) cleavage by phage-bound L-HEP was shown to have kinetic parameters similar to those of soluble enzyme, with the respective Km values of 19 μM and 20 μM and kcat of 115 and 92 s(-1). Fusion proteins containing a D4K cleavage site were cleaved with phage-bound L-HEP/C122S as well as by soluble L-HEP/C122S, and proteolysis was inhibited by soybean trypsin inhibitor. Rapid large-scale phage production, one-step purification of phage-bound L-HEP, and easy removal of enzyme activity from reaction samples by PEG precipitation make our approach suitable for the efficient removal of various tag sequences fused to the target proteins. The functional phage display technology developed in this study can be instrumental in constructing libraries of mutants to analyze the effect of structural changes on the activity and specificity of the enzyme or generate its desired variants for biotechnological applications.

  1. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections.

    Science.gov (United States)

    Krylov, Victor; Shaburova, Olga; Pleteneva, Elena; Krylov, Sergey; Kaplan, Alla; Burkaltseva, Maria; Polygach, Olga; Chesnokova, Elena

    2015-02-01

    The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefits and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specific conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.

  2. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics

    Directory of Open Access Journals (Sweden)

    Ewa Jończyk-Matysiak

    2017-06-01

    Full Text Available Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes—contained in granules—that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.

  3. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections

    Institute of Scientific and Technical Information of China (English)

    Victor; Krylov; Olga; Shaburova; Elena; Pleteneva; Sergey; Krylov; Alla; Kaplan; Maria; Burkaltseva; Olga; Polygach; Elena; Chesnokova

    2015-01-01

    The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefi ts and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specifi c conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.

  4. A shortcut in phage screening technique

    Directory of Open Access Journals (Sweden)

    Alexandre de Andrade

    2005-03-01

    Full Text Available A simple modification of the traditional Benton & Davis technique for phage screening is presented that avoids the tedious sample dilutions of putative spots/phages towards the second screening. With the use of a sole agar plate and nylon filter, the modification distinguishes a true positive recombinant from a false positive, with high probability of success.

  5. Aeromonas phages encode tRNAs for their overused codons.

    Science.gov (United States)

    Prabhakaran, Ramanandan; Chithambaram, Shivapriya; Xia, Xuhua

    2014-01-01

    The GC-rich bacterial species, Aeromonas salmonicida, is parasitised by both GC-rich phages (Aeromonas phages - phiAS7 and vB_AsaM-56) and GC-poor phages (Aeromonas phages - 25, 31, 44RR2.8t, 65, Aes508, phiAS4 and phiAS5). Both the GC-rich Aeromonas phage phiAS7 and Aeromonas phage vB_AsaM-56 have nearly identical codon usage bias as their host. While all the remaining seven GC-poor Aeromonas phages differ dramatically in codon usage from their GC-rich host. Here, we investigated whether tRNA encoded in the genome of Aeromonas phages facilitate the translation of phage proteins. We found that tRNAs encoded in the phage genome correspond to synonymous codons overused in the phage genes but not in the host genes.

  6. Identification of gliadin-binding peptides by phage display

    Directory of Open Access Journals (Sweden)

    Östman Sofia

    2011-02-01

    Full Text Available Abstract Background Coeliac disease (CD is a common and complex disorder of the small intestine caused by intolerance to wheat gluten and related edible cereals like barley and rye. Peptides originating from incomplete gliadin digestion activate the lamina propria infiltrating T cells to release proinflammatory cytokines, which in turn cause profound tissue remodelling of the small intestinal wall. There is no cure for CD except refraining from consuming gluten-containing products. Results Phage from a random oligomer display library were enriched by repeated pannings against immobilised gliadin proteins. Phage from the final panning round were plated, individual plaques picked, incubated with host bacteria, amplified to a population size of 1011 to 1012 and purified. DNA was isolated from 1000 purified phage populations and the region covering the 36 bp oligonucleotide insert from which the displayed peptides were translated, was sequenced. Altogether more than 150 different peptide-encoding sequences were identified, many of which were repeatedly isolated under various experimental conditions. Amplified phage populations, each expressing a single peptide, were tested first in pools and then one by one for their ability to inhibit binding of human anti-gliadin antibodies in ELISA assays. These experiments showed that several of the different peptide-expressing phage tested inhibited the interaction between gliadin and anti-gliadin antibodies. Finally, four different peptide-encoding sequences were selected for further analysis, and the corresponding 12-mer peptides were synthesised in vitro. By ELISA assays it was demonstrated that several of the peptides inhibited the interaction between gliadin molecules and serum anti-gliadin antibodies. Moreover, ELISA competition experiments as well as dot-blot and western blot revealed that the different peptides interacted with different molecular sites of gliadin. Conclusions We believe that several of

  7. Screening scFv Specific to Vcam-1 by Phage Display Library and Its Activity Evaluation%噬菌体展示库筛选构建血管细胞黏附分子-1单链抗体及其效价检测

    Institute of Scientific and Technical Information of China (English)

    刘纯宝; 宋夷龄; 张永学

    2015-01-01

    目的:从噬菌体重组抗体库中筛选获得靶向血管细胞黏附分子‐1(Vcam‐1)的单链抗体,纯化浓缩后进行亲和性鉴定,并与单克隆抗体效价进行比较。方法扩增Vcam‐1基因克隆质粒并转入真核细胞中表达获得Vcam‐1抗原蛋白,纯化后包被免疫管,通过4轮压力逐渐增大的“吸附‐洗脱‐扩增”过程筛选获得阳性克隆。对阳性克隆进行ELISA检测,选取效价高的克隆送予测序并转入大肠埃希菌进行表达,认定高表达的样品为最终的阳性克隆。将该阳性克隆转染入感受态细胞表达单链抗体,纯化后经ELISA检测并评价其抗原亲和性。结果真核细胞表达的Vcam‐1抗原蛋白的分子量为85~90 kD。以Vcam‐1抗原蛋白为免疫原筛选4轮所得的阳性克隆进行单噬菌体ELISA检测,从检测结果中选取9个效价高的克隆经基因测序共获得3个序列,其中1个序列对应的克隆高表达。表达的单链抗体分子量约30 kD ,ELISA检测其对Vcam‐1抗原蛋白有较高亲和性,效价较单克隆抗体低。结论利用噬菌体展示技术获得了靶向Vcam‐1的单链抗体,为随后的诊断和治疗应用奠定了基础。%Objective To screen out single chain variable fragment antibody (scFv)specific to vascular cell adhesion mole‐cule 1(Vcam‐1)from phage recombinant antibody library ,and to evaluate its activity and compare its activity with full‐length monoclonal antibody.Methods Amplification of Vcam‐1 was performed by PCR and Vcam‐1 gene plasmid was transferred into eukaryotic cells to express Vcam‐1 antigen protein.Immune cuvette was coated with purified Vcam‐1 antigen ,and the positive clones were screened out by 4 rounds of “adhesion‐elution‐proliferation” process with gradually increasing pressure.The posi‐tive clones were tested by ELISA method and high titer clones were chosen for gene sequencing.Then the high‐titer clones

  8. Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo.

    OpenAIRE

    Seed, B

    1983-01-01

    Cloned genes have been purified from recombinant DNA bacteriophage libraries by a method exploiting homologous reciprocal recombination in vivo. In this method 'probe' sequences are inserted in a very small plasmid vector and introduced into recombination-proficient bacterial cells. Genomic bacteriophage libraries are propagated on the cells, and phage bearing sequences homologous to the probe acquire an integrated copy of the plasmid by reciprocal recombination. Phage bearing integrated plas...

  9. Protein sequence alignment with family-specific amino acid similarity matrices

    Science.gov (United States)

    2011-01-01

    Background Alignment of amino acid sequences by means of dynamic programming is a cornerstone sequence comparison method. The quality of alignments produced by dynamic programming critically depends on the choice of the alignment scoring function. Therefore, for a specific alignment problem one needs a way of selecting the best performing scoring function. This work is focused on the issue of finding optimized protein family- and fold-specific scoring functions for global similarity matrix-based sequence alignment. Findings I utilize a comprehensive set of reference alignments obtained from structural superposition of homologous and analogous proteins to design a quantitative statistical framework for evaluating the performance of alignment scoring functions in global pairwise sequence alignment. This framework is applied to study how existing general-purpose amino acid similarity matrices perform on individual protein families and structural folds, and to compare them to family-specific and fold-specific matrices derived in this work. I describe an adaptive alignment procedure that automatically selects an appropriate similarity matrix and optimized gap penalties based on the properties of the sequences being aligned. Conclusions The results of this work indicate that using family-specific similarity matrices significantly improves the quality of the alignment of homologous sequences over the traditional sequence alignment based on a single general-purpose similarity matrix. However, using fold-specific similarity matrices can only marginally improve sequence alignment of proteins that share the same structural fold but do not share a common evolutionary origin. The family-specific matrices derived in this work and the optimized gap penalties are available at http://taurus.crc.albany.edu/fsm. PMID:21846354

  10. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.

    Science.gov (United States)

    Bandyopadhyay, Deepak; Huan, Jun; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2009-11-01

    Protein function prediction is one of the central problems in computational biology. We present a novel automated protein structure-based function prediction method using libraries of local residue packing patterns that are common to most proteins in a known functional family. Critical to this approach is the representation of a protein structure as a graph where residue vertices (residue name used as a vertex label) are connected by geometrical proximity edges. The approach employs two steps. First, it uses a fast subgraph mining algorithm to find all occurrences of family-specific labeled subgraphs for all well characterized protein structural and functional families. Second, it queries a new structure for occurrences of a set of motifs characteristic of a known family, using a graph index to speed up Ullman's subgraph isomorphism algorithm. The confidence of function inference from structure depends on the number of family-specific motifs found in the query structure compared with their distribution in a large non-redundant database of proteins. This method can assign a new structure to a specific functional family in cases where sequence alignments, sequence patterns, structural superposition and active site templates fail to provide accurate annotation.

  11. Information Phage Therapy Research Should Report

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2017-04-01

    Full Text Available Bacteriophages, or phages, are viruses which infect bacteria. A large subset of phages infect bactericidally and, consequently, for nearly one hundred years have been employed as antibacterial agents both within and outside of medicine. Clinically these applications are described as phage or bacteriophage therapy. Alternatively, and especially in the treatment of environments, this practice instead may be described as a phage-mediated biocontrol of bacteria. Though the history of phage therapy has involved substantial clinical experimentation, current standards along with drug regulations have placed a premium on preclinical approaches, i.e., animal experiments. As such, it is important for preclinical experiments not only to be held to high standards but also to be reported in a manner which improves translation to clinical utility. Here I address this latter issue, that of optimization of reporting of preclinical as well as clinical experiments. I do this by providing a list of pertinent information and data which, in my opinion, phage therapy experiments ought to present in publications, along with tips for best practices. The goal is to improve the ability of readers to gain relevant information from reports on phage therapy research, to allow other researchers greater potential to repeat or extend findings, to ease transitions from preclinical to clinical development, and otherwise simply to improve phage therapy experiments. Targeted are not just authors but also reviewers, other critical readers, writers of commentaries, and, perhaps, formulators of guidelines or policy. Though emphasizing therapy, many points are applicable to phage-mediated biocontrol of bacteria more generally.

  12. Rapid enumeration of phage in monodisperse emulsions.

    Science.gov (United States)

    Tjhung, Katrina F; Burnham, Sean; Anany, Hany; Griffiths, Mansel W; Derda, Ratmir

    2014-06-17

    Phage-based detection assays have been developed for the detection of viable bacteria for applications in clinical diagnosis, monitoring of water quality, and food safety. The majority of these assays deliver a positive readout in the form of newly generated progeny phages by the bacterial host of interest. Progeny phages are often visualized as plaques, or holes, in a lawn of bacteria on an agar-filled Petri dish; however, this rate-limiting step requires up to 12 h of incubation time. We have previously described an amplification of bacteriophages M13 inside droplets of media suspended in perfluorinated oil; a single phage M13 in a droplet yields 10(7) copies in 3-4 h. Here, we describe that encapsulation of reporter phages, both lytic T4-LacZ and nonlytic M13, in monodisperse droplets can also be used for rapid enumeration of phage. Compartmentalization in droplets accelerated the development of the signal from the reporter enzyme; counting of "positive" droplets yields accurate enumeration of phage particles ranging from 10(2) to 10(6) pfu/mL. For enumeration of T4-LacZ phage, the fluorescent signal appeared in as little as 90 min. Unlike bulk assays, quantification in emulsion is robust and insensitive to fluctuations in environmental conditions (e.g., temperature). Power-free emulsification using gravity-driven flow in the absence of syringe pumps and portable fluorescence imaging solutions makes this technology promising for use at the point of care in low-resource environments. This droplet-based phage enumeration method could accelerate and simplify point-of-care detection of the pathogens for which reporter bacteriophages have been developed.

  13. A Co-expression System Based on Phage and Phagemid to Select Cognate Antibody-antigen Pairs in vivo

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A modified selectively-infective phage (SIP) is developed to facilitate the selection of interacting antibody-antigen pairs from a large single-chain antibody (scFv) library in vivo. The system is constructed with a modified helper phage M13KO7 and phagemid pCANTAB 5 E. The antigen fused to the C-terminal of N1-N2 domain and the scFv to the N-terminal of CT domain of the gIIIp of filamentous phage are encoded on the phage and phagemid vectors respectively. The phages produced by co-transformants restore infectivity via interaction between antigen and antibody fusions in the cell periplasm. In a model system, the scFv fragment of the anti-hemagglutinin 17/9 antibody and its corresponding antigen are detected in the presence of a 105 fold excess of a non-interacting control pairs, which demonstrates this system to be very sensitive and facile to screen a large single-chain antibody library.

  14. In Vivo Selection of Phage for the Optical Imaging of PC-3 Human Prostate Carcinoma in Mice

    Directory of Open Access Journals (Sweden)

    Jessica R. Newton

    2006-09-01

    Full Text Available There is an increasing medical need to detect and spatially localize early and aggressive forms of prostate cancer. Affinity ligands derived from bacteriophage (phage library screens can be developed to molecularly target prostate cancer with fluorochromes for optical imaging. Toward this goal, we used in vivo phage display and a newly described micropanning assay to select for phage that extravasate and bind human PC-3 prostate carcinoma xenografts in severe combined immune deficiency mice. One resulting phage clone (G1 displaying the peptide sequence IAGLATPGWSHWLAL was fluorescently labeled with the near-infrared fluorophore AlexaFluor 680 and was evaluated both in vitro and in vivo for its ability to bind and target PC-3 prostate carcinomas. The fluorescently labeled phage clone (G1 had a tumor-to-muscle ratio of ~30 in experiments. In addition, prostate tumors (PC-3 were readily detectable by optical-imaging methods. These results show proof of principle that diseasespecific library-derived fluorescent probes can be rapidly developed for use in the early detection of cancers by optical means.

  15. Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors

    Directory of Open Access Journals (Sweden)

    Tomaz Bratkovic

    2011-01-01

    Full Text Available Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein’s activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.

  16. Mammalian Host-Versus-Phage immune response determines phage fate in vivo

    OpenAIRE

    Katarzyna Hodyra-Stefaniak; Paulina Miernikiewicz; Jarosław Drapała; Marek Drab; Ewa Jończyk-Matysiak; Dorota Lecion; Zuzanna Kaźmierczak; Weronika Beta; Joanna Majewska; Marek Harhala; Barbara Bubak; Anna Kłopot; Andrzej Górski; Krystyna Dąbrowska

    2015-01-01

    Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity in vitro, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency in vivo. Anti-phage activity of phagocytes, antibodies, and serum complement were identified by direct testing and by high-resolution fluor...

  17. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.

    Science.gov (United States)

    Bandyopadhyay, Deepak; Huan, Jun; Liu, Jinze; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2010-09-01

    We describe a new approach for inferring the functional relationships between nonhomologous protein families by looking at statistical enrichment of alternative function predictions in classification hierarchies such as Gene Ontology (GO) and Structural Classification of Proteins (SCOP). Protein structures are represented by robust graph representations, and the fast frequent subgraph mining algorithm is applied to protein families to generate sets of family-specific packing motifs, i.e., amino acid residue-packing patterns shared by most family members but infrequent in other proteins. The function of a protein is inferred by identifying in it motifs characteristic of a known family. We employ these family-specific motifs to elucidate functional relationships between families in the GO and SCOP hierarchies. Specifically, we postulate that two families are functionally related if one family is statistically enriched by motifs characteristic of another family, i.e., if the number of proteins in a family containing a motif from another family is greater than expected by chance. This function-inference method can help annotate proteins of unknown function, establish functional neighbors of existing families, and help specify alternate functions for known proteins.

  18. Phage as a modulator of immune responses: practical implications for phage therapy.

    Science.gov (United States)

    Górski, Andrzej; Międzybrodzki, Ryszard; Borysowski, Jan; Dąbrowska, Krystyna; Wierzbicki, Piotr; Ohams, Monika; Korczak-Kowalska, Grażyna; Olszowska-Zaremba, Natasza; Łusiak-Szelachowska, Marzena; Kłak, Marlena; Jończyk, Ewa; Kaniuga, Ewelina; Gołaś, Aneta; Purchla, Sylwia; Weber-Dąbrowska, Beata; Letkiewicz, Sławomir; Fortuna, Wojciech; Szufnarowski, Krzysztof; Pawełczyk, Zdzisław; Rogóż, Paweł; Kłosowska, Danuta

    2012-01-01

    Although the natural hosts for bacteriophages are bacteria, a growing body of data shows that phages can also interact with some populations of mammalian cells, especially with cells of the immune system. In general, these interactions include two main aspects. The first is the phage immunogenicity, that is, the capacity of phages to induce specific immune responses, in particular the generation of specific antibodies against phage antigens. The other aspect includes the immunomodulatory activity of phages, that is, the nonspecific effects of phages on different functions of major populations of immune cells involved in both innate and adaptive immune responses. These functions include, among others, phagocytosis and the respiratory burst of phagocytic cells, the production of cytokines, and the generation of antibodies against nonphage antigens. The aim of this chapter is to discuss the interactions between phages and cells of the immune system, along with their implications for phage therapy. These topics are presented based on the results of experimental studies and unique data on immunomodulatory effects found in patients with bacterial infections treated with phage preparations.

  19. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth.

    Science.gov (United States)

    Comeau, André M; Tétart, Françoise; Trojet, Sabrina N; Prère, Marie-Françoise; Krisch, H M

    2007-08-29

    Although the multiplication of bacteriophages (phages) has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold. We name this phenomenon Phage-Antibiotic Synergy (PAS). A related effect was observed in diverse host-phage systems, including the T4-like phages, with beta-lactam and quinolone antibiotics, as well as mitomycin C. A common characteristic of these antibiotics is that they inhibit bacterial cell division and trigger the SOS system. We therefore examined the PAS effect within the context of the bacterial SOS and filamentation responses. We found that the PAS effect appears SOS-independent and is primarily a consequence of cellular filamentation; it is mimicked by cells that constitutively filament. The fact that completely unrelated phages manifest this phenomenon suggests that it confers an important and general advantage to the phages.

  20. Phage-Antibiotic Synergy (PAS: beta-lactam and quinolone antibiotics stimulate virulent phage growth.

    Directory of Open Access Journals (Sweden)

    André M Comeau

    Full Text Available Although the multiplication of bacteriophages (phages has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold. We name this phenomenon Phage-Antibiotic Synergy (PAS. A related effect was observed in diverse host-phage systems, including the T4-like phages, with beta-lactam and quinolone antibiotics, as well as mitomycin C. A common characteristic of these antibiotics is that they inhibit bacterial cell division and trigger the SOS system. We therefore examined the PAS effect within the context of the bacterial SOS and filamentation responses. We found that the PAS effect appears SOS-independent and is primarily a consequence of cellular filamentation; it is mimicked by cells that constitutively filament. The fact that completely unrelated phages manifest this phenomenon suggests that it confers an important and general advantage to the phages.

  1. Affinity peptide developed by phage display selection for targeting gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Wen-Jie Zhang; Yan-Xia Sui; Arun Budha; Jian-Bao Zheng; Xue-Jun Sun; Ying-Chun Hou; Thomas D Wang; Shao-Ying Lu

    2012-01-01

    AIM:To develop an affinity peptide that binds to gastric cancer used for the detection of early gastric cancer.METHODS:A peptide screen was performed by biopanning the PhD-12 phage display library,clearing non-specific binders against tumor-adjacent normal appearing gastric mucosa and obtaining selective binding against freshly harvested gastric cancer tissues.Tumortargeted binding of selected peptides was confirmed by bound phage counts,enzyme-linked immunosorbent assay,competitive inhibition,fluorescence microscopy and semi-quantitative analysis on immunohistochemistry using different types of cancer tissues.RESULTS:Approximately 92.8% of the non-specific phage clones were subtracted from the original phage library after two rounds of biopanning against normalappearing gastric mucosa.After the third round of positive screening,the peptide sequence AADNAKTKSFPV (AAD) appeared in 25% (12/48) of the analyzed phages.For the control peptide,these values were 6.8 ± 2.3,5.1 ± 1.7,3.5 ± 2.1,4.6 ± 1.9 and 1.1 ± 0.5,respectively.The values for AAD peptide were statistically significant (P < 0.01) for gastric cancer as compared with other histological classifications and control peptide.CONCLUSION:A novel peptide is discovered to have a specific binding activity to gastric cancer,and can be used to distinguish neoplastic from normal gastric mucosa,demonstrating the potential for early cancer detection on endoscopy.

  2. Phage display:development of nanocarriers for targeted drug delivery to the brain

    Institute of Scientific and Technical Information of China (English)

    Babak Bakhshinejad; Marzieh Karimi; Mohammad Khalaj-Kondori

    2015-01-01

    The blood brain barrier represents a formidable obstacle for the transport of most systemati-cally administered neurodiagnostics and neurotherapeutics to the brain. Phage display is a high throughput screening strategy that can be used for the construction of nanomaterial peptide libraries. These libraries can be screened for ifnding brain targeting peptide ligands. Surface func-tionalization of a variety of nanocarriers with these brain homing peptides is a sophisticated way to develop nanobiotechnology-based drug delivery platforms that are able to cross the blood brain barrier. These efifcient drug delivery systems raise our hopes for the diagnosis and treatment of various brain disorders in the future.

  3. Genome Sequence of Mycobacterium Phage Waterfoul

    Science.gov (United States)

    Jackson, Paige N.; Embry, Ella K.; Johnson, Christa O.; Watson, Tiara L.; Weast, Sayre K.; DeGraw, Caroline J.; Douglas, Jessica R.; Sellers, J. Michael; D’Angelo, William A.

    2016-01-01

    Waterfoul is a newly isolated temperate siphovirus of Mycobacterium smegmatis mc2155. It was identified as a member of the K5 cluster of Mycobacterium phages and has a 61,248-bp genome with 95 predicted genes. PMID:27856585

  4. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis.

    Directory of Open Access Journals (Sweden)

    Emmanuel Dias-Neto

    Full Text Available BACKGROUND: Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i the counting of transducing units and (ii the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges. METHODOLOGY/PRINCIPAL FINDINGS: We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU, with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs approximately 250-fold for generating 10(6 ligand sequences. CONCLUSIONS/SIGNIFICANCE: Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall

  5. Production of High Affinity Human Single-chain Antibody Against PreS1 of Hepatitis B Virus:Comparison of Large Na(i)ve and In vitro Immune Phage Displayed Antibody Library%高亲和力抗乙型肝炎病毒PreS1的人源单链抗体的获得:天然及免疫抗体库的对比研究

    Institute of Scientific and Technical Information of China (English)

    张志超; 胡学军; 包永明; 杨青; 张红梅; 安利佳

    2002-01-01

    A large nave phage displayed human single-chain variable fragments antibody (scFv) library and an in vitro immune library were constructed in parallel conditions, based on the PBLs from healthy and sero-negative blood donors, part of which were in vitro immunized by peptide PreS1 conjugated to BSA. After 3 rounds of panning against PreS1, measurement of antibody-antigen reaction revealed: a scFv specific to PreS1 from the immune library was obtained, which affinity (k=10-7~10-8 M) was higher than that from the nave one (k=10-6~10-7 M). Sequencing of the two scFv showed they were human antibodies, which may be of interest in therapy of Hepatitis B. This investigation also illustrated that the method of in vitro immunization results in antibody library more satisfied even than the large nave one.%以健康人的外周血淋巴细胞为来源,以偶联BSA的乙型肝炎病毒PreS1肽体外免疫.分别从免疫和未经免疫的淋巴细胞提取RNA,扩增抗体基因,构建大容量天然单链抗体(scFv)噬菌体展示文库和体外免疫scFv抗体库.以PreS1肽进行3轮淘选后,抗原抗体反应结果显示,从免疫库中获得了亲和力10-7~10-8 M的抗乙型肝炎病毒PreS1的单链抗体,高于天然库的结果(10-6~10-7 M).测序结果表明两株抗体均为人抗体.为基因工程抗体用于临床治疗乙型肝炎奠定基础.同时证明淋巴细胞体外免疫方法构建的免疫抗体库优于大容量天然抗体库.

  6. Supersize me: Cronobacter sakazakii phage GAP32

    Energy Technology Data Exchange (ETDEWEB)

    Abbasifar, Reza; Griffiths, Mansel W. [Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Sabour, Parviz M. [Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, ON, Canada N1G 5C9 (Canada); Ackermann, Hans-Wolfgang [Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC (Canada); Vandersteegen, Katrien; Lavigne, Rob [Laboratory of Gene Technology, Katholieke Universiteit Leuven, Leuven (Belgium); Noben, Jean-Paul [Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek (Belgium); Alanis Villa, Argentina; Abbasifar, Arash [Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Nash, John H.E. [Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, Canada N1G 3W4 (Canada); Kropinski, Andrew M., E-mail: akropins@uoguelph.ca [Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, Canada N1G 3W4 (Canada); Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada)

    2014-07-15

    Cronobacter sakazakii is a Gram-negative pathogen found in milk-based formulae that causes infant meningitis. Bacteriophages have been proposed to control bacterial pathogens; however, comprehensive knowledge about a phage is required to ensure its safety before clinical application. We have characterized C. sakazakii phage vB{sub C}saM{sub G}AP32 (GAP32), which possesses the second largest sequenced phage genome (358,663 bp). A total of 571 genes including 545 protein coding sequences and 26 tRNAs were identified, thus more genes than in the smallest bacterium, Mycoplasma genitalium G37. BLASTP and HHpred searches, together with proteomic analyses reveal that only 23.9% of the putative proteins have defined functions. Some of the unique features of this phage include: a chromosome condensation protein, two copies of the large subunit terminase, a predicted signal-arrest-release lysin; and an RpoD-like protein, which is possibly involved in the switch from immediate early to delayed early transcription. Its closest relatives are all extremely large myoviruses, namely coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2, with whom it shares approximately 44% homologous proteins. Since the homologs are not evenly distributed, we propose that these three phages belong to a new subfamily. - Highlights: • Cronobacter sakazakii phage vB{sub C}saM{sub G}AP32 has a genome of 358,663 bp. • It encodes 545 proteins which is more than Mycoplasma genitalium G37. • It is a member of the Myoviridae. • It is peripherally related to coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2. • GAP32 encodes a chromosome condensation protein.

  7. The Staphylococci Phages Family: An Overview

    Directory of Open Access Journals (Sweden)

    Laurence Van Melderen

    2012-11-01

    Full Text Available Due to their crucial role in pathogenesis and virulence, phages of Staphylococcus aureus have been extensively studied. Most of them encode and disseminate potent staphylococcal virulence factors. In addition, their movements contribute to the extraordinary versatility and adaptability of this prominent pathogen by improving genome plasticity. In addition to S. aureus, phages from coagulase-negative Staphylococci (CoNS are gaining increasing interest. Some of these species, such as S. epidermidis, cause nosocomial infections and are therefore problematic for public health. This review provides an overview of the staphylococcal phages family extended to CoNS phages. At the morphological level, all these phages characterized so far belong to the Caudovirales order and are mainly temperate Siphoviridae. At the molecular level, comparative genomics revealed an extensive mosaicism, with genes organized into functional modules that are frequently exchanged between phages. Evolutionary relationships within this family, as well as with other families, have been highlighted. All these aspects are of crucial importance for our understanding of evolution and emergence of pathogens among bacterial species such as Staphylococci.

  8. Sequencing and Characterization of Pseudomonas aeruginosa phage JG004

    Directory of Open Access Journals (Sweden)

    Bunk Boyke

    2011-05-01

    Full Text Available Abstract Background Phages could be an important alternative to antibiotics, especially for treatment of multiresistant bacteria as e.g. Pseudomonas aeruginosa. For an effective use of bacteriophages as antimicrobial agents, it is important to understand phage biology but also genes of the bacterial host essential for phage infection. Results We isolated and characterized a lytic Pseudomonas aeruginosa phage, named JG004, and sequenced its genome. Phage JG004 is a lipopolysaccharide specific broad-host-range phage of the Myoviridae phage family. The genome of phage JG004 encodes twelve tRNAs and is highly related to the PAK-P1 phage genome. To investigate phage biology and phage-host interactions, we used transposon mutagenesis of the P. aeruginosa host and identified P. aeruginosa genes, which are essential for phage infection. Analysis of the respective P. aeruginosa mutants revealed several characteristics, such as host receptor and possible spermidine-dependance of phage JG004. Conclusions Whole genome sequencing of phage JG004 in combination with identification of P. aeruginosa host genes essential for infection, allowed insights into JG004 biology, revealed possible resistance mechanisms of the host bacterium such as mutations in LPS and spermidine biosynthesis and can also be used to characterize unknown gene products in P. aeruginosa.

  9. Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks.

    Directory of Open Access Journals (Sweden)

    Sophie Kittler

    Full Text Available The pathogens Campylobacter jejuni and Campylobacter coli are commensals in the poultry intestine and campylobacteriosis is one of the most frequent foodborne diseases in developed and developing countries. Phages were identified to be effective in reducing intestinal Campylobacter load and this was evaluated, in the first field trials which were recently carried out. The aim of this study was to further investigate Campylobacter population dynamics during phage application on a commercial broiler farm. This study determines the superiority in colonisation of a Campylobacter type found in a field trial that was susceptible to phages in in vitro tests. The colonisation factors, i.e. motility and gamma glutamyl transferase activity, were increased in this type. The clustering in phylogenetic comparisons of MALDI-TOF spectra did not match the ST, biochemical phenotype and phage susceptibility. Occurrence of Campylobacter jejuni strains and phage susceptibility types with different colonisation potential seem to play a very important role in the success of phage therapy in commercial broiler houses. Thus, mechanisms of both, phage susceptibility and Campylobacter colonisation should be further investigated and considered when composing phage cocktails.

  10. Recombinant human antibody fragment against tetanus toxoid produced by phage display

    Science.gov (United States)

    Neelakantam, B.; Sridevi, N. V.; Shukra, A. M.; Sugumar, P.; Samuel, S.

    2014-01-01

    Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen. PMID:24678405

  11. Phage Display: Selecting Straws Instead of a Needle from a Haystack

    Directory of Open Access Journals (Sweden)

    Mojca Lunder

    2011-01-01

    Full Text Available An increasing number of peptides with specific binding affinity to various protein and even non-protein targets are being discovered from phage display libraries. The power of this method lies in its ability to efficiently and rapidly identify ligands with a desired target property from a large population of phage clones displaying diverse surface peptides. However, the search for the needle in the haystack does not always end successfully. False positive results may appear. Thus instead of specific binders phage with no actual affinity toward the target are recovered due to their propagation advantages or binding to other components of the screening system, such as the solid phase, capturing reagents, contaminants in the target sample or blocking agents, rather than the target. Biopanning experiments on different targets performed in our laboratory revealed some previously identified and many new target-unrelated peptide sequences, which have already been frequently described and published, but not yet recognized as target-unrelated. Distinguishing true binders from false positives is an important step toward phage display selections of greater integrity. This article thoroughly reviews and discusses already identified and new target-unrelated peptides and suggests strategies to avoid their isolation.

  12. Identification of hepatitis A virus mimotopes by phage display, antigenicity and immunogenicity.

    Science.gov (United States)

    Larralde, Osmany G; Martinez, Raiza; Camacho, Frank; Amin, Nevis; Aguilar, Alicia; Talavera, Arturo; Stott, David I; Perez, Ela M

    2007-03-01

    A phage-displayed peptide approach was used to identify ligands mimicking antigenic determinants of hepatitis A virus (HAV) for the first time. Bacteriophages displaying HAV mimotopes were isolated from a phage-display peptide library by affinity selection on serum antibodies from hepatitis A patients. Selected phage-peptides were screened for reactivity with sera from HAV infected patients and healthy controls. Four cloned peptides with different sequences were identified as mimotopes of HAV; three of them showed similarity in their amino acid sequences with at least one of the VP3 and VP1 antigenic proteins of HAV. One clone was recognised by 92% of the positive sera. The phagotopes competed effectively with HAV for absorption of anti-HAV-specific antibodies in human sera, as determined by ELISA. The four phage clones induced neutralising anti-HAV antibodies in immunised mice. These results demonstrate the potential of this method to elucidate the disease related epitopes of HAV and to use these mimotopes in diagnostic applications or in the development of a mimotope-based hepatitis A vaccine without the necessity of manipulation of the virus.

  13. The isolation of novel phage display-derived human recombinant antibodies against CCR5, the major co-receptor of HIV.

    Science.gov (United States)

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai; Hizi, Amnon

    2013-08-01

    Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest.

  14. Characterization and lytic activity of Pseudomonas fluorescens phages from sewage

    Directory of Open Access Journals (Sweden)

    Ananthi Radhakrishnan

    2012-03-01

    Full Text Available Pseudomonas fluorescens phages from sewage were tested against P. fluorescens isolates of soil and sewage. The phages were characterized as to host range, morphology, structural proteins and genome fingerprint. Of the seven phages isolated, one was found to be abundant in sewage (5.9×10(7 pfu/mL, having broad host range, and distinct protein and DNA profile when compared to the other six phages. DNA restriction and protein profiles of the phages and their morphology indicate the diversity in the sewage environment. None of the isolates from the rhizosphere regions of various cultivated soils were susceptible to phages isolated from sewage.

  15. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity.

    Science.gov (United States)

    Kamal, Fatima; Dennis, Jonathan J

    2015-02-01

    The Burkholderia cepacia complex (Bcc) is a group of at least 18 species of Gram-negative opportunistic pathogens that can cause chronic lung infection in cystic fibrosis (CF) patients. Bcc organisms possess high levels of innate antimicrobial resistance, and alternative therapeutic strategies are urgently needed. One proposed alternative treatment is phage therapy, the therapeutic application of bacterial viruses (or bacteriophages). Recently, some phages have been observed to form larger plaques in the presence of sublethal concentrations of certain antibiotics; this effect has been termed phage-antibiotic synergy (PAS). Those reports suggest that some antibiotics stimulate increased production of phages under certain conditions. The aim of this study is to examine PAS in phages that infect Burkholderia cenocepacia strains C6433 and K56-2. Bcc phages KS12 and KS14 were tested for PAS, using 6 antibiotics representing 4 different drug classes. Of the antibiotics tested, the most pronounced effects were observed for meropenem, ciprofloxacin, and tetracycline. When grown with subinhibitory concentrations of these three antibiotics, cells developed a chain-like arrangement, an elongated morphology, and a clustered arrangement, respectively. When treated with progressively higher antibiotic concentrations, both the sizes of plaques and phage titers increased, up to a maximum. B. cenocepacia K56-2-infected Galleria mellonella larvae treated with phage KS12 and low-dose meropenem demonstrated increased survival over controls treated with KS12 or antibiotic alone. These results suggest that antibiotics can be combined with phages to stimulate increased phage production and/or activity and thus improve the efficacy of bacterial killing.

  16. The usage of phage mini-antibodies as a means of detecting ferritin concentration in animal blood serum.

    Science.gov (United States)

    Staroverov, Sergey A; Volkov, Alexei A; Fomin, Alexander S; Laskavuy, Vladislav N; Mezhennyy, Pavel V; Kozlov, Sergey V; Larionov, Sergey V; Fedorov, Michael V; Dykman, Lev A; Guliy, Olga I

    2015-01-01

    Mini-antibodies that have specific ferritin response have been produced for the first time using sheep's phage libraries (Griffin.1, Medical Research Council, Cambridge, UK). Produced phage antibodies were used for the first time for the development of diagnostic test kits for ferritin detection in the blood of cattle. The immunodot assay with secondary biospecific labeling is suggested as means of ferritin detection in cow blood serum (antiferritin phage antibodies and rabbit antiphage antibodies conjugated with different labels). Сolloidal gold, gold nanoshells, and horse reddish peroxidase used as labels have shown a similar response while detecting concentration of ferritin (0.2 mg/mL). It is shown that the method of solid-phase immunoassay with a visual view of the results allows determination of the minimum concentration of ferritin in the blood of cows at 0.225 g/mL.

  17. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Zhifeng Chen

    Full Text Available Respiratory syncytial virus (RSV is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction.

  18. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  19. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections.

    Science.gov (United States)

    Semler, Diana D; Goudie, Amanda D; Finlay, Warren H; Dennis, Jonathan J

    2014-07-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria.

  20. Phages of Listeria offer novel tools for diagnostics and biocontrol

    Directory of Open Access Journals (Sweden)

    Martin J Loessner

    2014-04-01

    Full Text Available Historically, bacteriophages infecting their hosts have perhaps been best known and even notorious for being a nuisance in dairy-fermentation processes. However, with the rapid progress in molecular microbiology and microbial ecology, a new dawn has risen for phages. This review will provide an overview on possible uses and applications of Listeria phages, including phage-typing, reporter phage for bacterial diagnostics, and use of phage as biocontrol agents for food safety. The use of phage-encoded enzymes such as endolysins for the detection and as antimicrobial will also be addressed. Desirable properties of candidate phages for biocontrol will be discussed. While emphasizing the enormous future potential for applications, we will also consider some of the intrinsic limitations dictated by both phage and bacterial ecology.

  1. Current taxonomy of phages infecting lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Jennifer eMahony

    2014-01-01

    Full Text Available Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp. and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.

  2. HostPhinder: A Phage Host Prediction Tool

    DEFF Research Database (Denmark)

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within...... reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference...... phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k) is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST...

  3. European regulatory conundrum of phage therapy.

    Science.gov (United States)

    Verbeken, Gilbert; De Vos, Daniel; Vaneechoutte, Mario; Merabishvili, Maya; Zizi, Martin; Pirnay, Jean-Paul

    2007-10-01

    The treatment of infectious diseases with antibiotics is becoming increasingly challenging. Very few new antimicrobials are in the pharmaceutical industry pipeline. One of the potential alternatives for antibiotics is phage therapy. Major obstacles for the clinical application of bacteriophages are a false perception of viruses as 'enemies of life' and the lack of a specific frame for phage therapy in the current Medicinal Product Regulation. Short-term borderline solutions under the responsibility of a Medical Ethical Committee and/or under the umbrella of the Declaration of Helsinki are emerging. As a long-term solution, however, we suggest the creation of a specific section for phage therapy under the Advanced Therapy Medicinal Product Regulation.

  4. Phage therapy in the food industry.

    Science.gov (United States)

    Endersen, Lorraine; O'Mahony, Jim; Hill, Colin; Ross, R Paul; McAuliffe, Olivia; Coffey, Aidan

    2014-01-01

    Despite advances in modern technologies, the food industry is continuously challenged with the threat of microbial contamination. The overuse of antibiotics has further escalated this problem, resulting in the increasing emergence of antibiotic-resistant foodborne pathogens. Efforts to develop new methods for controlling microbial contamination in food and the food processing environment are extremely important. Accordingly, bacteriophages (phages) and their derivatives have emerged as novel, viable, and safe options for the prevention, treatment, and/or eradication of these contaminants in a range of foods and food processing environments. Whole phages, modified phages, and their derivatives are discussed in terms of current uses and future potential as antimicrobials in the traditional farm-to-fork context, encompassing areas such as primary production, postharvest processing, biosanitation, and biodetection. The review also presents some safety concerns to ensure safe and effective exploitation of bacteriophages in the future.

  5. Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide.

    Science.gov (United States)

    Morris, Christopher J; Smith, Mathew W; Griffiths, Peter C; McKeown, Neil B; Gumbleton, Mark

    2011-04-10

    With the aim of identifying a peptide sequence that promotes pulmonary epithelial transport of macromolecule cargo we used a stringent peptide-phage display library screening protocol against rat lung alveolar epithelial primary cell cultures. We identified a peptide-phage clone (LTP-1) displaying the disulphide-constrained 7-mer peptide sequence, C-TSGTHPR-C, that showed significant pulmonary epithelial translocation across highly restrictive polarised cell monolayers. Cell biological data supported a differential alveolar epithelial cell interaction of the LTP-1 peptide-phage clone and the corresponding free synthetic LTP-1 peptide. Delivering select phage-clones to the intact pulmonary barrier of an isolated perfused rat lung (IPRL) resulted in 8.7% of lung deposited LTP-1 peptide-phage clone transported from the IPRL airways to the vasculature compared (pprobes. This study shows proof-of principle that array technologies can be effectively exploited to identify peptides mediating enhanced transmucosal delivery of macromolecule therapeutics across an intact organ.

  6. Whole genome phage display selects for proline-rich Boi polypeptides against Bem1p.

    Science.gov (United States)

    Hertveldt, Kirsten; Robben, Johan; Volckaert, Guido

    2006-08-01

    Interaction selection by biopanning from a fragmented yeast proteome displayed on filamentous phage particles was successful in identifying proline-rich fragments of Boi1p and Boi2p. These proteins bind to the second "src homology region 3'' (SH3) domain of Bem1p, a protein of Saccharomyces cerevisiae involved in bud formation. Target Bem1p was a doubly-tagged recombinant, Bem1([Asn142-Ile551]), which strongly interacts in ELISA with a C-terminal 75 amino acids polypeptide from Cdc24p exposed on phage. The whole yeast genomic display library contained approximately 7.7 x 10(7) independent clones of sheared S. cerevisiae genomic DNA fused to a truncated M13 gene III. This study corroborates the value of fragmented-proteome display to identify strong and direct interacting protein modules.

  7. The Caulobacter crescentus phage phiCbK: genomics of a canonical phage

    Directory of Open Access Journals (Sweden)

    Gill Jason J

    2012-10-01

    Full Text Available Abstract Background The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. Results Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK to 280 kb encoding 448 proteins (CcrColossus, and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell’s replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. Conclusions Due to their lack of any apparent relationship to

  8. Vi I typing phage for generalized transduction of Salmonella typhi.

    Science.gov (United States)

    Cerquetti, M C; Hooke, A M

    1993-01-01

    Salmonella typhi Vi typing phages were used to transduce temperature-sensitive (Ts) mutants of Salmonella typhi. Antibiotic resistance and Ts+ markers were transduced at high frequency (> 10(-4) per virulent phage). Several markers were cotransduced by phage Vi I, suggesting that it may be useful for mapping studies of the S. typhi genome. PMID:8349572

  9. Phage therapy reduces Campylobacter jejuni colonization in broilers

    NARCIS (Netherlands)

    Wagenaar, J.A.; Bergen, van M.A.P.; Mueller, M.A.; Wassenaar, T.M.; Carlton, R.M.

    2005-01-01

    The effect of phage therapy in the control of Campylobacter jejuni colonization in young broilers, either as a preventive or a therapeutic measure, was tested. A prevention group was infected with C. jejuni at day 4 of a 10-day phage treatment. A therapeutic group was phage treated for 6 days, start

  10. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  11. Phage therapy reduces Campylobacter jejuni colonization in broilers

    NARCIS (Netherlands)

    Wagenaar, J.A.; Bergen, van M.A.P.; Mueller, M.A.; Wassenaar, T.M.; Carlton, R.M.

    2005-01-01

    The effect of phage therapy in the control of Campylobacter jejuni colonization in young broilers, either as a preventive or a therapeutic measure, was tested. A prevention group was infected with C. jejuni at day 4 of a 10-day phage treatment. A therapeutic group was phage treated for 6 days,

  12. Vi I typing phage for generalized transduction of Salmonella typhi.

    OpenAIRE

    Cerquetti, M C; Hooke, A M

    1993-01-01

    Salmonella typhi Vi typing phages were used to transduce temperature-sensitive (Ts) mutants of Salmonella typhi. Antibiotic resistance and Ts+ markers were transduced at high frequency (> 10(-4) per virulent phage). Several markers were cotransduced by phage Vi I, suggesting that it may be useful for mapping studies of the S. typhi genome.

  13. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  14. Diversity and geographical distribution of Flavobacterium psychrophilum isolates and their phages: patterns of susceptibility to phage infection and phage host range.

    Science.gov (United States)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias

    2014-05-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.

  15. Molecular profile of an antibody response to HIV-1 as probed by combinatorial libraries

    NARCIS (Netherlands)

    Barbas, C F; Collet, T A; Amberg, W; Roben, P; Binley, J M; Hoekstra, Dick; Cababa, D; Jones, T M; Williamson, R A; Pilkington, G R

    1993-01-01

    A large number (33) of human Fab fragments reacting with HIV-1 surface glycoprotein gp120 have been generated by selection from a combinatorial IgG1 kappa library displayed on the surface of phage. The library was prepared from a long term asymptomatic HIV-seropositive donor. Analysis of the sequenc

  16. Complete genome sequence of Vibrio anguillarum phage CHOED successfully used for phage therapy in aquaculture

    DEFF Research Database (Denmark)

    Romero, Jaime; Higuera, Gastón; Gajardo, Felipe

    2014-01-01

    Vibrio anguillarum phage CHOED was isolated from Chilean mussels. It is a virulent phage showing effective inhibition of V. anguillarum. CHOED has potential in phage therapy, because it can protect fish from vibriosis in fish farms. Here, we announce the completely sequenced genome of V. anguilla...

  17. Application of phage display in selecting Tomato spotted wilt virus - specific single-chain antibodies (scFvs) for sensitive diagnosis in ELISA

    NARCIS (Netherlands)

    Griep, R.A.; Prins, M.; Twisk, van C.; Keller, H.J.H.G.; Kerschbaumer, R.J.; Kormelink, R.; Goldbach, R.W.; Schots, A.

    2000-01-01

    A panel of recombinant single-chain antibodies (scFvs) against structural proteins of Tomato spotted wilt virus (TSWV) was retrieved from a human combinatorial scFv antibody library using the novel phage display technique. After subcloning the encoding DNA sequences in the expression vector pSKAP/S,

  18. Phage antibodies obtained by competitive selection oil complement-resistant Moraxella (Branhamella) catarrhalis recognize the high-molecular-weight outer membrane protein

    NARCIS (Netherlands)

    Boel, E; Bootsma, E; de Kruif, J; Jansze, M; Klingman, KL; van Dijk, H; Logtenberg, T

    We used competitive panning to select a panel of 10 different human antibodies from a large semisynthetic phage display library that distinguish between serum complement-resistant and complement-sensitive strains of the gram-negative diplococcus Moraxella (Branhamella) catarrhalis. Western blotting

  19. Application of phage display in selecting Tomato spotted wilt virus - specific single-chain antibodies (scFvs) for sensitive diagnosis in ELISA

    NARCIS (Netherlands)

    Griep, R.A.; Prins, M.; Twisk, van C.; Keller, H.J.H.G.; Kerschbaumer, R.J.; Kormelink, R.; Goldbach, R.W.; Schots, A.

    2000-01-01

    A panel of recombinant single-chain antibodies (scFvs) against structural proteins of Tomato spotted wilt virus (TSWV) was retrieved from a human combinatorial scFv antibody library using the novel phage display technique. After subcloning the encoding DNA sequences in the expression vector pSKAP/S,

  20. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.;

    2001-01-01

    We screened phage display libraries of porcine reproductive and respiratory syndrome virus (PRRSV) protein fragments with sera from experimentally infected pigs to identify linear B-cell epitopes that are commonly recognized during infection in vivo. We identified 10 linear epitope sites (ES) 11...

  1. Phage antibodies obtained by competitive selection oil complement-resistant Moraxella (Branhamella) catarrhalis recognize the high-molecular-weight outer membrane protein

    NARCIS (Netherlands)

    Boel, E; Bootsma, E; de Kruif, J; Jansze, M; Klingman, KL; van Dijk, H; Logtenberg, T

    1998-01-01

    We used competitive panning to select a panel of 10 different human antibodies from a large semisynthetic phage display library that distinguish between serum complement-resistant and complement-sensitive strains of the gram-negative diplococcus Moraxella (Branhamella) catarrhalis. Western blotting

  2. Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay

    Directory of Open Access Journals (Sweden)

    Mason Helen D

    2005-09-01

    Full Text Available Abstract Background We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF. Methods A synthetic single-chain antibody (Tomlinson J phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4–7. The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Results Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. Conclusion This study demonstrates that the combination of

  3. Identification of peptide sequences that selectively bind to pentaerythritol trinitrate hemisuccinate-a surrogate of PETN, via phage display technology.

    Science.gov (United States)

    Kubas, George; Rees, William; Caguiat, Jonathan; Asch, David; Fagan, Diana; Cortes, Pedro

    2017-03-01

    The present research investigates the identification of amino acid sequences that selectively bind to a pentaerythritol tetranitrate (PETN) explosive surrogate. Through the use of a phage display technique and enzyme-linked immunosorbent assays (ELISA), a peptide library was tested against pentaerythritol trinitrate hemisuccinate (PETNH), a surrogate of PETN, to screen for those with amino acids having affinity toward the explosive. The results suggest that the library contains peptides selective to PETNH. Following three rounds of panning, clones were picked and tested for specificity toward PETNH. ELISA results from these samples show that each phage clone has some level of selectivity for binding to PETNH. The peptides from these clones have been sequenced and shown to contain certain common amino acid segments among them. This work represents a technological platform for identifying amino-acid sequences selective toward any bio-chem analyte of interest.

  4. Phage & phosphatase: a novel phage-based probe for rapid, multi-platform detection of bacteria.

    Science.gov (United States)

    Alcaine, S D; Pacitto, D; Sela, D A; Nugen, S R

    2015-11-21

    Genetic engineering of bacteriophages allows for the development of rapid, highly specific, and easily manufactured probes for the detection of bacterial pathogens. A challenge for novel probes is the ease of their adoption in real world laboratories. We have engineered the bacteriophage T7, which targets Escherichia coli, to carry the alkaline phosphatase gene, phoA. This inclusion results in phoA overexpression following phage infection of E. coli. Alkaline phosphatase is commonly used in a wide range of diagnostics, and thus a signal produced by our phage-based probe could be detected using common laboratory equipment. Our work demonstrates the successful: (i) modification of T7 phage to carry phoA; (ii) overexpression of alkaline phosphatase in E. coli; and (iii) detection of this T7-induced alkaline phosphatase activity using commercially available colorimetric and chemilumiscent methods. Furthermore, we demonstrate the application of our phage-based probe to rapidly detect low levels of bacteria and discern the antibiotic resistance of E. coli isolates. Using our bioengineered phage-based probe we were able to detect 10(3) CFU per mL of E. coli in 6 hours using a chemiluminescent substrate and 10(4) CFU per mL within 7.5 hours using a colorimetric substrate. We also show the application of this phage-based probe for antibiotic resistance testing. We were able to determine whether an E. coli isolate was resistant to ampicillin within 4.5 hours using chemiluminescent substrate and within 6 hours using a colorimetric substrate. This phage-based scheme could be readily adopted in labs without significant capital investments and can be translated to other phage-bacteria pairs for further detection.

  5. Biomathematical description of synthetic peptide libraries.

    Directory of Open Access Journals (Sweden)

    Timo Sieber

    Full Text Available Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org, allowing scientists to plan and analyse their peptide libraries.

  6. Recognition of epoxy with phage displayed peptides.

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2013-07-01

    The development of a general approach for non-destructive chemical and biological functionalization of epoxy could expand opportunities for both fundamental studies and creating various device platforms. Epoxy shows unique electrical, mechanical, chemical and biological compatibility and has been widely used for fabricating a variety of devices. Phage display has emerged as a powerful method for selecting peptides that possess enhanced selectivity and binding affinity toward a variety of targets. In this letter, we demonstrate for the first time a powerful yet benign approach for identifying binding motifs to epoxy via comprehensively screened phage displayed peptides. Our results show that the epoxy can be selectively recognized with peptide-displaying phages. Further, along with the development of epoxy-based microstructures; recognition of the epoxy with phage displayed peptides can be specifically localized in these microstructures. We anticipate that these results could open up exciting opportunities in the use of peptide-recognized epoxy in fundamental biochemical recognition studies, as well as in applications ranging from analytical devices, hybrid materials, surface and interface, to cell biology. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Phage-bacteria interaction network in human oral microbiome.

    Science.gov (United States)

    Wang, Jinfeng; Gao, Yuan; Zhao, Fangqing

    2016-07-01

    Although increasing knowledge suggests that bacteriophages play important roles in regulating microbial ecosystems, phage-bacteria interaction in human oral cavities remains less understood. Here we performed a metagenomic analysis to explore the composition and variation of oral dsDNA phage populations and potential phage-bacteria interaction. A total of 1,711 contigs assembled with more than 100 Gb shotgun sequencing data were annotated to 104 phages based on their best BLAST matches against the NR database. Bray-Curtis dissimilarities demonstrated that both phage and bacterial composition are highly diverse between periodontally healthy samples but show a trend towards homogenization in diseased gingivae samples. Significantly, according to the CRISPR arrays that record infection relationship between bacteria and phage, we found certain oral phages were able to invade other bacteria besides their putative bacterial hosts. These cross-infective phages were positively correlated with commensal bacteria while were negatively correlated with major periodontal pathogens, suggesting possible connection between these phages and microbial community structure in oral cavities. By characterizing phage-bacteria interaction as networks rather than exclusively pairwise predator-prey relationships, our study provides the first insight into the participation of cross-infective phages in forming human oral microbiota.

  8. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V.; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  9. A family-specific use of the Measure of Processes of Care for Service Providers (MPOC-SP)

    NARCIS (Netherlands)

    Siebes, R. C.; Nijhuis, B. J. G.; Boonstra, A. M.; Ketelaar, M.; Wijnroks, L.; Reinders-Messelink, H. A.; Postema, K.; Vermeer, A.

    2008-01-01

    Objective: To examine the validity and utility of the Dutch Measure of Processes of Care for Service Providers (MPOC-SP) as a family-specific measure. Design: A validation study. Setting: Five paediatric rehabilitation settings in the Netherlands. Main measures: The MPOC-SP was utilized in a general

  10. How to Name and Classify Your Phage: An Informal Guide

    Directory of Open Access Journals (Sweden)

    Evelien Adriaenssens

    2017-04-01

    Full Text Available With this informal guide, we try to assist both new and experienced phage researchers through two important stages that follow phage discovery; that is, naming and classification. Providing an appropriate name for a bacteriophage is not as trivial as it sounds, and the effects might be long-lasting in databases and in official taxon names. Phage classification is the responsibility of the Bacterial and Archaeal Viruses Subcommittee (BAVS of the International Committee on the Taxonomy of Viruses (ICTV. While the BAVS aims at providing a holistic approach to phage taxonomy, for individual researchers who have isolated and sequenced a new phage, this can be a little overwhelming. We are now providing these researchers with an informal guide to phage naming and classification, taking a “bottom-up” approach from the phage isolate level.

  11. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine.

  12. Identification of the specificity of isolated phage display single-chain antibodies using yeast two-hybrid screens

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Ditzel, Henrik

    2009-01-01

    A method is described for the identification of the antigen recognised by an scFv isolated from an antibody phage display library using selection against a complex mixture of proteins (e.g. intact cells, purified cell surface membranes, and tissue sections). The method takes advantage of a yeast ...... two-hybrid system that additionally allows for reorganization of post-translational modifications to the bait and target proteins. This technique is therefore especially useful for identifying surface-expressed antigens....

  13. Twelve previously unknown phage genera are ubiquitous in global oceans.

    Science.gov (United States)

    Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh; Corrier, Kristen; Riemann, Lasse; Verberkmoes, Nathan C; Sullivan, Matthew B

    2013-07-30

    Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing.

  14. Monoclonal antibody proteomics: use of antibody mimotope displaying phages and the relevant synthetic peptides for mAb scouting.

    Science.gov (United States)

    Hajdú, István; Flachner, Beáta; Bognár, Melinda; Végh, Barbara M; Dobi, Krisztina; Lőrincz, Zsolt; Lázár, József; Cseh, Sándor; Takács, László; Kurucz, István

    2014-08-01

    Monoclonal antibody proteomics uses nascent libraries or cloned (Plasmascan™, QuantiPlasma™) libraries of mAbs that react with individual epitopes of proteins in the human plasma. At the initial phase of library creation, cognate protein antigen and the epitope interacting with the antibodies are not known. Scouting for monoclonal antibodies (mAbs) with the best binding characteristics is of high importance for mAb based biomarker assay development. However, in the absence of the identity of the cognate antigen the task represents a challenge. We combined phage display, and surface plasmon resonance (Biacore) experiments to test whether specific phages and the respective mimotope peptides obtained from large scale studies are applicable to determine key features of antibodies for scouting. We show here that mAb captured phage-mimotope heterogeneity that is the diversity of the selected peptide sequences, is inversely correlated with an important binding descriptor; the off-rate of the antibodies and that represents clues for driving the selection of useful mAbs for biomarker assay development. Carefully chosen synthetic mimotope peptides are suitable for specificity testing in competitive assays using the target proteome, in our case the human plasma.

  15. Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals.

    Science.gov (United States)

    Wang, Xianxian; He, Qinghua; Xu, Yang; Liu, Xing; Shu, Mei; Tu, Zhui; Li, Yanping; Wang, Wei; Cao, Dongmei

    2016-01-15

    Immunoassay is frequently used to analyze mycotoxin contamination. However, the introduction of mycotoxins or their conjugates in conventional immunoassay threatens the safety of individuals and the environment. The variable domain of heavy-chain antibodies (VHHs) can be used as alternative compounds to produce anti-idiotypic antibodies, which work as non-toxic surrogate reagents in immunoassay. In this work, anti-zearalenone (ZEN) monoclonal antibody (mAb) was used as the target for biopanning anti-idiotypic VHH from a naïve alpaca VHH phage display library. After four panning cycles, one anti-idiotypic VHH phage clone (Z1) was isolated and the Z1 based phage ELISA for ZEN showed a half inhibitory concentration (IC50) of 0.25±0.02ng/mL, a linear range of 0.11-0.55ng/mL, and a limit of detection (LOD) of 0.08ng/mL. Furthermore, the phage particles of Z1 were also applied to immuno-polymerase chain reaction (PD-IPCR), which supplied both the detection antigens and deoxyribonucleic acid (DNA) templates. Compared with that of phage ELISA, the LOD of Z1 based PD-IPCR was 12-fold improved, with a detection limit of 6.5pg/mL and a linear range of 0.01-100ng/mL. The proposed method was then validated with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results showed the reliability of PD-IPCR for the determination of ZEN in cereal samples. The use of anti-idiotypic VHH phage as non-toxic surrogate and signal-amplification function of PCR make it a promising method for actual ZEN analysis in cereals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Coiled coil miniprotein randomization on phage leads to charge pattern mimicry of the receptor recognition determinant of interleukin 5.

    Science.gov (United States)

    Li, Chuanzhao; Plugariu, Carmela G; Bajgier, Joanna; White, John R; Liefer, Kristin M; Wu, Sheng-Jiun; Chaiken, Irwin

    2002-01-01

    Phage display was used to identify sequences that mimic structural determinants in interleukin5 (IL5) for IL5 receptor recognition. A coiled coil stem loop (CCSL) miniprotein scaffold library was constructed with its turn region randomized and panned for binding variants against human IL5 receptor alpha chain (IL5Ralpha). Competition enzyme-linked immunosorbent assays identified CCSL-phage selectants for which binding to IL5Ralpha was competed by IL5. The most frequently selected and IL5-competed CCSL-phage contain charged residues Arg and Glu in their turn sequences, in this regard resembling a beta strand sequence in the 'CD turn' region, of IL5, that has been proposed to present a key determinant for IL5 receptor alpha chain recognition. The most dominant CCSL-phage selectant sequence, PVEGRV, contains a negative/positive charge pattern similar to that seen in the original CD turn. To test the relatedness of CCSL-phage selectant sequences to the IL5 receptor recognition epitope, PVEGRV was grafted into the sequence 87--92 of a monomeric IL5. The resulting IL5 variant, [(87)PVEGRV(92)]GM1, was able to bind to IL5Ralpha in biosensor assays, to elicit TF-1 cell proliferation and to induce STAT5 phosphorylation in TF-1 cells. The results help discern sequence patterns in the IL5 CD turn region which are key in driving receptor recognition and demonstrate the utility of CCSL miniprotein scaffold phage display to identify local IL5 mimetic sequence arrangements that may ultimately lead to IL5 antagonists.

  17. Affinity isolation of antigen-specific circulating B cells for generation of phage display-derived human monoclonal antibodies

    DEFF Research Database (Denmark)

    Ditzel, Henrik

    2009-01-01

    A method is described for affinity isolation of antigen-specific circulating B cells of interest for subsequent generation of immune antibody phage display libraries. This approach should overcome the problem of low yields of monoclonal antibodies of interest in the libraries generated from...... peripheral blood lymphocytes caused by the low abundance of antigen-specific B cells in the circulation. The preselection of B cells is based on the specificity of the surface Ig receptor and is accomplished using the antigen of interest conjugated to magnetic beads. This method should significantly increase...

  18. Assembling filamentous phage occlude pIV channels.

    Science.gov (United States)

    Marciano, D K; Russel, M; Simon, S M

    2001-07-31

    Filamentous phage f1 is exported from its Escherichia coli host without killing the bacterial cell. Phage-encoded protein pIV, which is required for phage assembly and secretion, forms large highly conductive channels in the outer membrane of E. coli. It has been proposed that the phage are extruded across the bacterial outer membrane through pIV channels. To test this prediction, we developed an in vivo assay by using a mutant pIV that functions in phage export but whose channel opens in the absence of phage extrusion. In E. coli lacking its native maltooligosacharride transporter LamB, this pIV variant allowed oligosaccharide transport across the outer membrane. This entry of oligosaccharide was decreased by phage production and still further decreased by production of phage that cannot be released from the cell surface. Thus, exiting phage block the pIV-dependent entry of oligosaccharide, suggesting that phage occupy the lumen of pIV channels. This study provides the first evidence, to our knowledge, for viral exit through a large aqueous channel.

  19. Convergent evolution of pathogenicity islands in helper cos phage interference

    Science.gov (United States)

    Manning, Keith A.; Dokland, Terje; Marina, Alberto

    2016-01-01

    Staphylococcus aureus pathogenicity islands (SaPIs) are phage satellites that exploit the life cycle of their helper phages for their own benefit. Most SaPIs are packaged by their helper phages using a headful (pac) packaging mechanism. These SaPIs interfere with pac phage reproduction through a variety of strategies, including the redirection of phage capsid assembly to form small capsids, a process that depends on the expression of the SaPI-encoded cpmA and cpmB genes. Another SaPI subfamily is induced and packaged by cos-type phages, and although these cos SaPIs also block the life cycle of their inducing phages, the basis for this mechanism of interference remains to be deciphered. Here we have identified and characterized one mechanism by which the SaPIs interfere with cos phage reproduction. This mechanism depends on a SaPI-encoded gene, ccm, which encodes a protein involved in the production of small isometric capsids, compared with the prolate helper phage capsids. As the Ccm and CpmAB proteins are completely unrelated in sequence, this strategy represents a fascinating example of convergent evolution. Moreover, this result also indicates that the production of SaPI-sized particles is a widespread strategy of phage interference conserved during SaPI evolution. This article is part of the themed issue ‘The new bacteriology’. PMID:27672154

  20. Convergent evolution of pathogenicity islands in helper cos phage interference.

    Science.gov (United States)

    Carpena, Nuria; Manning, Keith A; Dokland, Terje; Marina, Alberto; Penadés, José R

    2016-11-05

    Staphylococcus aureus pathogenicity islands (SaPIs) are phage satellites that exploit the life cycle of their helper phages for their own benefit. Most SaPIs are packaged by their helper phages using a headful (pac) packaging mechanism. These SaPIs interfere with pac phage reproduction through a variety of strategies, including the redirection of phage capsid assembly to form small capsids, a process that depends on the expression of the SaPI-encoded cpmA and cpmB genes. Another SaPI subfamily is induced and packaged by cos-type phages, and although these cos SaPIs also block the life cycle of their inducing phages, the basis for this mechanism of interference remains to be deciphered. Here we have identified and characterized one mechanism by which the SaPIs interfere with cos phage reproduction. This mechanism depends on a SaPI-encoded gene, ccm, which encodes a protein involved in the production of small isometric capsids, compared with the prolate helper phage capsids. As the Ccm and CpmAB proteins are completely unrelated in sequence, this strategy represents a fascinating example of convergent evolution. Moreover, this result also indicates that the production of SaPI-sized particles is a widespread strategy of phage interference conserved during SaPI evolution.This article is part of the themed issue 'The new bacteriology'.

  1. Identification of immunogenic proteins and generation of antibodies against Salmonella Typhimurium using phage display

    Directory of Open Access Journals (Sweden)

    Meyer Torsten

    2012-06-01

    Full Text Available Abstract Background Solely in Europoe, Salmonella Typhimurium causes more than 100,000 infections per year. Improved detection of livestock colonised with S. Typhimurium is necessary to prevent foodborne diseases. Currently, commercially available ELISA assays are based on a mixture of O-antigens (LPS or total cell lysate of Salmonella and are hampered by cross-reaction. The identification of novel immunogenic proteins would be useful to develop ELISA based diagnostic assays with a higher specificity. Results A phage display library of the entire Salmonella Typhimurium genome was constructed and 47 immunogenic oligopeptides were identified using a pool of convalescent sera from pigs infected with Salmonella Typhimurium. The corresponding complete genes of seven of the identified oligopeptids were cloned. Five of them were produced in E. coli. The immunogenic character of these antigens was validated with sera from pigs infeced with S. Tyhimurium and control sera from non-infected animals. Finally, human antibody fragments (scFv against these five antigens were selected using antibody phage display and characterised. Conclusion In this work, we identified novel immunogenic proteins of Salmonella Typhimurium and generated antibody fragments against these antigens completely based on phage display. Five immunogenic proteins were validated using a panel of positive and negative sera for prospective applications in diagnostics of Salmonela Typhimurium.

  2. Precisely modulated pathogenicity island interference with late phage gene transcription.

    Science.gov (United States)

    Ram, Geeta; Chen, John; Ross, Hope F; Novick, Richard P

    2014-10-07

    Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.

  3. Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis

    DEFF Research Database (Denmark)

    Labrie, Simon J.; Josephsen, Jytte; Neve, Horst;

    2008-01-01

    Lactococcus lactis phage P335 is a virulent type phage for the species that bears its name and belongs phage P335 is a virulent type phage for the species that bears its name and belongs to the Siphoviridae family. Morphologically, P335 resembled the L. lactis phages TP901-1 and Tuc2009, except...

  4. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.

    Directory of Open Access Journals (Sweden)

    Benjamin M Scott

    Full Text Available In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1 yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3 was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1 as a serpin amenable to phage display and suggest the utility of this approach for the selection

  5. Phage therapy: delivering on the promise.

    Science.gov (United States)

    Harper, D R; Anderson, J; Enright, M C

    2011-07-01

    Bacteriophages are viruses that infect and, in many cases, destroy their bacterial targets. Within a few years of their initial discovery they were being investigated as therapeutic agents for infectious disease, an approach known as phage therapy. However, the nature of these exquisitely specific agents was not understood and much early use was both uninformed and unsuccessful. As a result they were replaced by chemical antibiotics once these became available. Although work on phage therapy continued (and continues) in Eastern Europe, this was not conducted to a standard allowing it to support clinical uses in areas regulated by the European Medicines Agency or the US FDA. To develop phage therapy for these areas requires work carried out in accordance with the requirements of these agencies, and, driven by the current crisis of antibiotic resistance, such clinical trials are now under way. The first Phase I clinical trial of safety was reported in 2005, and the results of the first Phase II clinical trial of efficacy of a bacteriophage therapeutic was published in 2009. While the delivery of these relatively large and complex agents to the site of disease can be more challenging than for conventional, small-molecule antibiotics, bacteriophages are then able to multiply locally even from an extremely low (picogram range) initial dose. This multiplication where and only where they are needed underlies the potential for bacteriophage therapeutics to become a much needed and powerful weapon against bacterial disease.

  6. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes.

    Science.gov (United States)

    Pacheco, Sabino; Cantón, Emiliano; Zuñiga-Navarrete, Fernando; Pecorari, Frédéric; Bravo, Alejandra; Soberón, Mario

    2015-12-01

    Bacillus thuringiensis (Bt) produces insecticidal proteins that have been used worldwide in the control of insect-pests in crops and vectors of human diseases. However, different insect species are poorly controlled by the available Bt toxins or have evolved resistance to these toxins. Evolution of Bt toxicity could provide novel toxins to control insect pests. To this aim, efficient display systems to select toxins with increased binding to insect membranes or midgut proteins involved in toxicity are likely to be helpful. Here we describe two display systems, phage display and ribosome display, that allow the efficient display of two non-structurally related Bt toxins, Cry1Ac and Cyt1Aa. Improved display of Cry1Ac and Cyt1Aa on M13 phages was achieved by changing the commonly used peptide leader sequence of the coat pIII-fusion protein, that relies on the Sec translocation pathway, for a peptide leader sequence that relies on the signal recognition particle pathway (SRP) and by using a modified M13 helper phage (Phaberge) that has an amber mutation in its pIII genomic sequence and preferentially assembles using the pIII-fusion protein. Also, both Cry1Ac and Cyt1Aa were efficiently displayed on ribosomes, which could allow the construction of large libraries of variants. Furthermore, Cry1Ac or Cyt1Aa displayed on M13 phages or ribosomes were specifically selected from a mixture of both toxins depending on which antigen was immobilized for binding selection. These improved systems may allow the selection of Cry toxin variants with improved insecticidal activities that could counter insect resistances.

  7. A phage-targeting strategy for the design of spatiotemporal drug delivery from grafted matrices

    Directory of Open Access Journals (Sweden)

    Sawada Ritsuko

    2011-02-01

    Full Text Available Abstract Background The natural response to injury is dynamic and normally consists of complex temporal and spatial cellular changes in gene expression, which, when acting in synchrony, result in patent tissue repair and, in some instances, regeneration. However, current therapeutic regiments are static and most rely on matrices, gels and engineered skin tissue. Accordingly, there is a need to design next-generation grafting materials to enable biotherapeutic spatiotemporal targeting from clinically approved matrices. To this end, rather then focus on developing completely new grafting materials, we investigated whether phage display could be deployed onto clinically approved synthetic grafts to identify peptide motifs capable of linking pharmaceutical drugs with differential affinities and eventually, control drug delivery from matrices over both space and time. Methods To test this hypothesis, we biopanned combinatorial peptide libraries onto different formulations of a wound-healing matrix (Integra® and eluted the bound peptides with 1 high salt, 2 collagen and glycosaminoglycan or 3 low pH. After three to six rounds of biopanning, phage recovery and phage amplification of the bound particles, any phage that had acquired a capacity to bind the matrix was sequenced. Results In this first report, we identify distinct classes of matrix-binding peptides which elute differently from the screened matrix and demonstrate that they can be applied in a spatially relevant manner. Conclusions We suggest that further applications of these combinatorial techniques to wound-healing matrices may offer a new way to improve the performance of clinically approved matrices so as to introduce temporal and spatial control over drug delivery.

  8. Exploring the risks of phage application in the environment

    Directory of Open Access Journals (Sweden)

    Sean eMeaden

    2013-11-01

    Full Text Available Interest in using bacteriophages to control the growth and spread of bacterial pathogens is being revived in the wake of widespread antibiotic resistance. However, little is known about the ecological effects that high concentrations of phages in the environment might have on natural microbial communities. We review the current evidence suggesting phage-mediated environmental perturbation, with a focus on agricultural examples, and describe the potential implications for human health and agriculture. Specifically, we examine the known and potential consequences of phage application in certain agricultural practices, discuss the risks of evolved bacterial resistance to phages, and question whether the future of phage therapy will emulate that of antibiotic treatment in terms of widespread resistance. Finally, we propose some basic precautions that could preclude such phenomena and highlight existing methods for tracking bacterial resistance to phage therapeutic agents.

  9. Discovery of diverse and functional antibodies from large human repertoire antibody libraries.

    Science.gov (United States)

    Schwimmer, Lauren J; Huang, Betty; Giang, Hoa; Cotter, Robyn L; Chemla-Vogel, David S; Dy, Francis V; Tam, Eric M; Zhang, Fangjiu; Toy, Pamela; Bohmann, David J; Watson, Susan R; Beaber, John W; Reddy, Nithin; Kuan, Hua-Feng; Bedinger, Daniel H; Rondon, Isaac J

    2013-05-31

    Phage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250 billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries.

  10. Lysogenic Conversion and Phage Resistance Development in Phage Exposed Escherichia coli Biofilms

    Directory of Open Access Journals (Sweden)

    Abram Aertsen

    2013-01-01

    Full Text Available In this study, three-day old mature biofilms of Escherichia coli were exposed once to either a temperate Shiga-toxin encoding phage (H-19B or an obligatory lytic phage (T7, after which further dynamics in the biofilm were monitored. As such, it was found that a single dose of H-19B could rapidly lead to a near complete lysogenization of the biofilm, with a subsequent continuous release of infectious H-19B particles. On the other hand, a single dose of T7 rapidly led to resistance development in the biofilm population. Together, our data indicates a profound impact of phages on the dynamics within structured bacterial populations.

  11. Library Computing

    Science.gov (United States)

    Library Computing, 1985

    1985-01-01

    Special supplement to "Library Journal" and "School Library Journal" covers topics of interest to school, public, academic, and special libraries planning for automation: microcomputer use, readings in automation, online searching, databases of microcomputer software, public access to microcomputers, circulation, creating a…

  12. Digital Libraries

    CERN Document Server

    Papy, Fabrice

    2008-01-01

    Of vital interest to all librarians and information specialists, this book presents all aspects of the effects of digitization of today's and tomorrow's libraries. From social to technical issues, Digital Libraries includes chapters on the growth of the role of librarian, the reader experience, cataloging, search engines, OPAC, law, ergonomic studies, and the future of libraries.

  13. Biomedical Libraries

    Science.gov (United States)

    Pizer, Irwin H.

    1978-01-01

    Biomedical libraries are discussed as a distinct and specialized group of special libraries and their unique services and user interactions are described. The move toward professional standards, as evidenced by the Medical Library Association's new certification program, and the current state of development for a new section of IFLA established…

  14. Probing Tumor Microenvironment With In Vivo Phage Display

    Science.gov (United States)

    2014-10-01

    technology. A, Peptides found in the “Phage pool alone” group are listed in a descending order of frequency. Note that CISQERGESC (CIS) and CIFSGEGESC ( CIF ...expressing CISQERGESC (CIS: 0.6% of the recovered phage clones) and 202 phages expressing a relevant peptide CIFSGEGESC ( CIF : 0.2%) (Table 1A). The...term ended showed that CIS and CIF , which have very similar amino acid sequences, bind to cultured hb6011 CAFs especially to filopodia and fibrous

  15. Evolutionary Rationale for Phages as Complements of Antibiotics.

    Science.gov (United States)

    Torres-Barceló, Clara; Hochberg, Michael E

    2016-04-01

    Antibiotic-resistant bacterial infections are a major concern to public health. Phage therapy has been proposed as a promising alternative to antibiotics, but an increasing number of studies suggest that both of these antimicrobial agents in combination are more effective in controlling pathogenic bacteria than either alone. We advocate the use of phages in combination with antibiotics and present the evolutionary basis for our claim. In addition, we identify compelling challenges for the realistic application of phage-antibiotic combined therapy.

  16. DISTRIBUTION OF PHAGE TYPES AND TRANSFERABLE DRUG RESISTANCE IN SHIGELLAE

    Directory of Open Access Journals (Sweden)

    K.Badalian

    1981-08-01

    Full Text Available A total of 610 strains of Shigellae isolated from cases of diarrhea in Iran during 1962-73 were studied with respect to their phage type, as well as antibiotic resistance and transferable drug resistance along with serotyping. It was shown that there was some relation between serotypes and phage types but no association could be found between phage types and resistance pattern.

  17. Enhanced Sensitive Immunoassay: Noncompetitive Phage Anti-Immune Complex Assay for the Determination of Malachite Green and Leucomalachite Green

    Science.gov (United States)

    2015-01-01

    To develop a more sensitive immunoassay for malachite green (MG) and leucomalachite green (LMG), we identified the immunocomplex binding phage-borne peptides for use in the noncompetitive phage anti-immunocomplex assay (PHAIA). An anti-LMG monoclonal antibody (mAb) was used to select immunocomplex binding peptides from a circular random eight-amino-acid phage-displayed library. After three rounds of panning-elution, five peptides that bound the LMG–mAb immunocomplex were obtained. One of the phage-borne peptide clones that resulted in an assay with the highest sensitivity was chosen for further research. The concentration of LMG producing 50% of the saturated signal and the limit of detection of the assay were 7.02 and 0.55 ng/mL, respectively, with a linear range of 1.35 to 21.56 ng/mL. The PHAIA based on the same antibody was 16 times more sensitive compared to the competitive immunoassay. PHAIA was used to analyze LMG, MG, and two mixtures of spiked fish samples, with validation by high-performance liquid chromatography (HPLC) with fluorescence detector. Results showed a good correlation (R2LMG = 0.9841; R2MG = 0.993; R2Mixture = 0.9903) between the data of PHAIA and HPLC, thus the assay was an efficient method for monitoring food safety. PMID:25077381

  18. Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity.

    Science.gov (United States)

    Sanabria-Ayala, Víctor; Belmont, Iaraset; Abraham, Landa

    2015-01-01

    Previous studies demonstrated that antibodies against triosephosphate isomerase of Taenia solium (TTPI) can alter its enzymatic catalysis. In the present study, we used antibodies produced against the NH2-terminal region of TTPI (1/3NH2TTPI) and the phage display technology to find target regions to inhibit TTPI activity. As a first step, we obtained polyclonal antibodies against non-conserved regions from the 1/3NH2TTPI, which had an inhibitory effect of about 74 % on catalytic activity. Afterward, they were used to screen a library of phage-displayed dodecapeptides; as a result, 41 phage mimotope clones were isolated and grouped according to their amino acid sequence, finding the consensus A1 (VPTXPI), A2 (VPTXXI), B (LTPGQ), and D (DPLPR). Antibodies against selected phage mimotope clones were obtained by rabbit's immunization; these ones clearly recognized TTPI by both Western blot and ELISA. However, only the mimotope PDTS16 (DSVTPTSVMAVA) clone, which belongs to the VPTXXI consensus, raised antibodies capable of inhibiting the TTPI catalytic activity in 45 %. Anti-PDTS16 antibodies were confronted to several synthetic peptides that encompass the 1/3NH2TTPI, and they only recognized three, which share the motif FDTLQK belonging to the helix-α1 in TTPI. This suggests that this motif is the main part of the epitope recognized by anti-PDTS16 antibodies and revealed its importance for TTPI catalysis.

  19. Hyperthermostable binding molecules on phage: Assay components for point-of-care diagnostics for active tuberculosis infection.

    Science.gov (United States)

    Zhao, Ning; Spencer, John; Schmitt, Margaret A; Fisk, John D

    2017-03-15

    Tuberculosis is the leading cause of death from infectious disease worldwide. The low sensitivity, extended processing time, and high expense of current diagnostics are major challenges to the detection and treatment of tuberculosis. Mycobacterium tuberculosis ornithine transcarbamylase (Mtb OTC, Rv1656) has been identified in the urine of patients with active TB infection and is a promising target for point-of-care diagnostics. Specific binding proteins with low nanomolar affinities for Mtb OTC were selected from a phage display library built upon a hyperthermostable Sso7d scaffold. Phage particles displaying Sso7d variants were utilized to generate a sandwich ELISA-based assay for Mtb OTC. The assay response is linear between 2 ng/mL and 125 ng/mL recombinant Mtb OTC and has a limit of detection of 400 pg/mL recombinant Mtb OTC. The assay employing a phage-based detection reagent is comparable to commercially-available antibody-based biosensors. Importantly, the assay maintains functionality at both neutral and basic pH in presence of salt and urea over the range of concentrations typical for human urine. Phage-based diagnostic systems may feature improved physical stability and cost of production relative to traditional antibody-based reagents, without sacrificing specificity and sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bacteriophages and Phage-Derived Proteins – Application Approaches

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general. PMID:25666799

  1. Quality and safety requirements for sustainable phage therapy products.

    Science.gov (United States)

    Pirnay, Jean-Paul; Blasdel, Bob G; Bretaudeau, Laurent; Buckling, Angus; Chanishvili, Nina; Clark, Jason R; Corte-Real, Sofia; Debarbieux, Laurent; Dublanchet, Alain; De Vos, Daniel; Gabard, Jérôme; Garcia, Miguel; Goderdzishvili, Marina; Górski, Andrzej; Hardcastle, John; Huys, Isabelle; Kutter, Elizabeth; Lavigne, Rob; Merabishvili, Maia; Olchawa, Ewa; Parikka, Kaarle J; Patey, Olivier; Pouilot, Flavie; Resch, Gregory; Rohde, Christine; Scheres, Jacques; Skurnik, Mikael; Vaneechoutte, Mario; Van Parys, Luc; Verbeken, Gilbert; Zizi, Martin; Van den Eede, Guy

    2015-07-01

    The worldwide antibiotic crisis has led to a renewed interest in phage therapy. Since time immemorial phages control bacterial populations on Earth. Potent lytic phages against bacterial pathogens can be isolated from the environment or selected from a collection in a matter of days. In addition, phages have the capacity to rapidly overcome bacterial resistances, which will inevitably emerge. To maximally exploit these advantage phages have over conventional drugs such as antibiotics, it is important that sustainable phage products are not submitted to the conventional long medicinal product development and licensing pathway. There is a need for an adapted framework, including realistic production and quality and safety requirements, that allows a timely supplying of phage therapy products for 'personalized therapy' or for public health or medical emergencies. This paper enumerates all phage therapy product related quality and safety risks known to the authors, as well as the tests that can be performed to minimize these risks, only to the extent needed to protect the patients and to allow and advance responsible phage therapy and research.

  2. Bacteriophages and phage-derived proteins--application approaches.

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes - peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases - that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general.

  3. Revisiting phage therapy: new applications for old resources.

    Science.gov (United States)

    Nobrega, Franklin L; Costa, Ana Rita; Kluskens, Leon D; Azeredo, Joana

    2015-04-01

    The success of phage therapy is dependent on the development of strategies able to overcome the limitations of bacteriophages as therapeutic agents, the creation of an adequate regulatory framework, the implementation of safety protocols, and acceptance by the general public. Many approaches have been proposed to circumvent phages' intrinsic limitations but none have proved to be completely satisfactory. In this review we present the major hurdles of phage therapy and the solutions proposed to circumvent them. A thorough discussion of the advantages and drawbacks of these solutions is provided and special attention is given to the genetic modification of phages as an achievable strategy to shape bacteriophages to exhibit desirable biological properties.

  4. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  5. Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grażyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-01-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application. PMID:23305359

  6. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications.

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-12-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.

  7. Interference with phage lambda development by the small subunit of the phage 21 terminase, gp1.

    OpenAIRE

    1991-01-01

    Bacteriophage lambda development is blocked in cells carrying a plasmid that expresses the terminase genes of phage 21. The interference is caused by the small subunit of phage 21 terminase, gp1. Mutants of lambda able to form plaques in the presence of gp1 include sti mutants. One such mutation, sti30, is an A. T-to-G.C transition mutation at base pair 184 on the lambda chromosome. The sti30 mutation extends the length of the ribosome-binding sequence of the Nul gene that is complementary to...

  8. Use of Phage Antibodies to Distinguish Closely Related Species of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Timothy Paget

    2000-01-01

    Full Text Available Acanthamoeba are typically identified in the laboratory using culture and microscopic observation. In this paper we describe the isolation and specificity of antibody fragments that can be used for the identification of Acanthamoeba. A phage library expressing a large repertoire (approx. 5×109 of antibody fragments was used to generate two libraries one enriched for bacteriophage that exhibit genus specific binding and the other containing bacteriophage that bind specifically to pathogenic Acanthamoeba. Individual clones were isolated on the basis of binding by ELISA, and then flowcytometry and immunofluorescence were used for further characterisation. Four monoclonal antibodies were isolated, specific for Acanthamoeba at the generic level with clone HPPG6 exhibiting the highest level of binding. Furthermore clone HPPG55 was specific for pathogenic species of Acanthamoeba.

  9. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries.

    Science.gov (United States)

    Franzini, Raphael M; Neri, Dario; Scheuermann, Jörg

    2014-04-15

    DNA-encoded chemical libraries (DECLs) represent a promising tool in drug discovery. DECL technology allows the synthesis and screening of chemical libraries of unprecedented size at moderate costs. In analogy to phage-display technology, where large antibody libraries are displayed on the surface of filamentous phage and are genetically encoded in the phage genome, DECLs feature the display of individual small organic chemical moieties on DNA fragments serving as amplifiable identification barcodes. The DNA-tag facilitates the synthesis and allows the simultaneous screening of very large sets of compounds (up to billions of molecules), because the hit compounds can easily be identified and quantified by PCR-amplification of the DNA-barcode followed by high-throughput DNA sequencing. Several approaches have been used to generate DECLs, differing both in the methods used for library encoding and for the combinatorial assembly of chemical moieties. For example, DECLs can be used for fragment-based drug discovery, displaying a single molecule on DNA or two chemical moieties at the extremities of complementary DNA strands. DECLs can vary substantially in the chemical structures and the library size. While ultralarge libraries containing billions of compounds have been reported containing four or more sets of building blocks, also smaller libraries have been shown to be efficient for ligand discovery. In general, it has been found that the overall library size is a poor predictor for library performance and that the number and diversity of the building blocks are rather important indicators. Smaller libraries consisting of two to three sets of building blocks better fulfill the criteria of drug-likeness and often have higher quality. In this Account, we present advances in the DECL field from proof-of-principle studies to practical applications for drug discovery, both in industry and in academia. DECL technology can yield specific binders to a variety of target

  10. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus.

    Directory of Open Access Journals (Sweden)

    Yihui Yuan

    Full Text Available Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs. It had a typical genome structure consisting of three modules: the "late" region, the "lysogeny-lysis" region and the "early" region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor.

  11. Complete Genome Sequences of Four Novel Escherichia coli Bacteriophages Belonging to New Phage Groups

    DEFF Research Database (Denmark)

    Carstens, Alexander B; Kot, Witold; Hansen, Lars H

    2015-01-01

    Here, we describe the sequencing and genome annotations of a set of four Escherichia coli bacteriophages (phages) belonging to newly discovered groups previously consisting of only a single phage and thus expand our knowledge of these phage groups.......Here, we describe the sequencing and genome annotations of a set of four Escherichia coli bacteriophages (phages) belonging to newly discovered groups previously consisting of only a single phage and thus expand our knowledge of these phage groups....

  12. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    Science.gov (United States)

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  13. Generation of human antibody fragments against Streptococcus mutans using a phage display chain shuffling approach

    Directory of Open Access Journals (Sweden)

    Barth Stefan

    2005-01-01

    Full Text Available Abstract Background Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials. Results The antibody derivatives were generated using a chain-shuffling approach based on human antibody variable gene phage-display libraries. Like the parent antibody, these derivatives bound specifically to SAI/II, the surface adhesin of the oral pathogen S. mutans. Conclusions Humanization of murine antibodies can be easily achieved using phage display libraries. The human antibody fragments bind the antigen as well as the causative agent of dental caries. In addition the human diabody derivative is capable of aggregating S. mutans in vitro, making it a useful candidate passive immunotherapeutic agent for oral diseases.

  14. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening.

    Science.gov (United States)

    Wu, Chun-Yi; Wang, Don-Hong; Wang, Xiaobing; Dixon, Seth M; Meng, Liping; Ahadi, Sara; Enter, Daniel H; Chen, Chao-Yu; Kato, Jason; Leon, Leonardo J; Ramirez, Laura M; Maeda, Yoshiko; Reis, Carolina F; Ribeiro, Brianna; Weems, Brittany; Kung, Hsing-Jien; Lam, Kit S

    2016-06-13

    Identifying "druggable" targets and their corresponding therapeutic agents are two fundamental challenges in drug discovery research. The one-bead-one-compound (OBOC) combinatorial library method has been developed to discover peptides or small molecules that bind to a specific target protein or elicit a specific cellular response. The phage display cDNA expression proteome library method has been employed to identify target proteins that interact with specific compounds. Here, we combined these two high-throughput approaches, efficiently interrogated approximately 10(13) possible molecular interactions, and identified 91 small molecule compound beads that interacted strongly with the phage library. Of 19 compounds resynthesized, 4 were cytotoxic against cancer cells; one of these compounds was found to interact with EIF5B and inhibit protein translation. As more binding pairs are confirmed and evaluated, the "library-against-library" screening approach and the resulting small molecule-protein domain interaction database may serve as a valuable tool for basic research and drug development.

  15. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA.

    Science.gov (United States)

    Marine, Rachel; Polson, Shawn W; Ravel, Jacques; Hatfull, Graham; Russell, Daniel; Sullivan, Matthew; Syed, Fraz; Dumas, Michael; Wommack, K Eric

    2011-11-01

    Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.

  16. Characterization of Five Podoviridae Phages Infecting Citrobacter freundii.

    Science.gov (United States)

    Hamdi, Sana; Rousseau, Geneviève M; Labrie, Simon J; Kourda, Rim S; Tremblay, Denise M; Moineau, Sylvain; Slama, Karim B

    2016-01-01

    Citrobacter freundii causes opportunistic infections in humans and animals, which are becoming difficult to treat due to increased antibiotic resistance. The aim of this study was to explore phages as potential antimicrobial agents against this opportunistic pathogen. We isolated and characterized five new virulent phages, SH1, SH2, SH3, SH4, and SH5 from sewage samples in Tunisia. Morphological and genomic analyses revealed that the five C. freundii phages belong to the Caudovirales order, Podoviridae family, and Autographivirinae subfamily. Their linear double-stranded DNA genomes range from 39,158 to 39,832 bp and are terminally redundant with direct repeats between 183 and 242 bp. The five genomes share the same organization as coliphage T7. Based on genomic comparisons and on the phylogeny of the DNA polymerases, we assigned the five phages to the T7virus genus but separated them into two different groups. Phages SH1 and SH2 are very similar to previously characterized phages phiYeO3-12 and phiSG-JL2, infecting, respectively, Yersinia enterocolitica and Salmonella enterica, as well as sharing more than 80% identity with most genes of coliphage T7. Phages SH3, SH4, and SH5 are very similar to phages K1F and Dev2, infecting, respectively, Escherichia coli and Cronobacter turicensis. Several structural proteins of phages SH1, SH3, and SH4 were detected by mass spectrometry. The five phages were also stable from pH 5 to 10. No genes coding for known virulence factors or integrases were found, suggesting that the five isolated phages could be good candidates for therapeutic applications to prevent or treat C. freundii infections. In addition, this study increases our knowledge about the evolutionary relationships within the T7virus genus.

  17. Multifunctional g3p-peptide tag for current phage display systems.

    Science.gov (United States)

    Beckmann, C; Haase, B; Timmis, K N; Tesar, M

    1998-03-15

    We have previously described a monoclonal antibody (mAb), 10C3, directed against the gene-3 protein (g3p) of filamentous phage M13, which was produced to study g3p fusion protein expression in Escherichia coli and its incorporation in the phage capsid [Tesar, M., Beckmann, C., Röttgen, P., Haase, B., Faude, U., Timmis, K., 1995. Monoclonal antibody against pIII of filamentous phage: an immunological tool to study pIII fusion protein expression in phage display systems. Immunology 1, 53-54]. In this study we report mapping of the antigenic epitope of the mAb 10C3, by means of short overlapping peptide-sequences [Frank, R., Overwin, H., 1996. Spot synthesis. In: Morris, G.E. (Ed.), Methods in Molecular Biology, Vol. 66: Epitope Mapping Protocols. Humana Press, Totowa, NJ, pp. 149-169.] comprising the C-terminal half of the g3-protein. A minimal recognizable peptide was found which is represented in the 11 amino acid sequence from positions 292 to 302 of g3p [Wezenbeek van, P.M.G.P., Hulsebos, T.J.M., Schoenmakers, J.G.G., 1980. Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11, 129-148]. In order to use the antibody also for detection and purification of recombinant proteins, such as single chain antibodies, the epitope was introduced as a tag sequence into the phagemid pHEN1 [Hoogenboom, H.R., Griffith, A.D., Johnson, K., Chiswell, D.J., Hudson, P., Winter, G., 1991. Multi-subunit proteins on the surface of the filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acid Res. 19, 4133-4137; Nissim, A., Hoogenboom, H.R., Tomlinson, I.M., Flynn, G., Midgley, C., Lane, D., Winter, G., 1994. Antibody fragments from a single pot phage display library as immunochemical reagents. EMBO J. 13 (3) 692-698]. Purified single chain antibodies containing this tag were detectable down to a concentration of 2 ng ml(-1) under non-denaturing conditions (ELISA) or 4 ng per lane on immunoblots

  18. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    Science.gov (United States)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  19. Bio-mimetic nanostructure self-assembled from Au@Ag heterogeneous nanorods and phage fusion proteins for targeted tumor optical detection and photothermal therapy.

    Science.gov (United States)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A; Liu, Aihua

    2014-10-28

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm(2). The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  20. Computational models of populations of bacteria and lytic phage.

    Science.gov (United States)

    Krysiak-Baltyn, Konrad; Martin, Gregory J O; Stickland, Anthony D; Scales, Peter J; Gras, Sally L

    2016-11-01

    The use of phages to control and reduce numbers of unwanted bacteria can be traced back to the early 1900s, when phages were explored as a tool to treat infections before the wide scale use of antibiotics. Recently, phage therapy has received renewed interest as a method to treat multiresistant bacteria. Phages are also widely used in the food industry to prevent the growth of certain bacteria in foods, and are currently being explored as a tool for use in bioremediation and wastewater treatment. Despite the large body of biological research on phages, relatively little attention has been given to computational modeling of the population dynamics of phage and bacterial interactions. The earliest model was described by Campbell in the 1960s. Subsequent modifications to this model include partial or complete resistance, multiple phage binding sites, and spatial heterogeneity. This review provides a general introduction to modeling of the population dynamics of bacteria and phage. The review introduces the basic model and relevant concepts and evaluates more complex variations of the basic model published to date, including a model of disease epidemics caused by infectious bacteria. Finally, the shortcomings and potential ways to improve the models are discussed.

  1. Heat tolerance of dairy lactococcal c2 phages

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Lykke Marvig; Basheer, Aideh; Neve, H.

    2011-01-01

    Nine Lactococcus lactis c2 phages propagated on different hosts were screened for thermal resistance in skimmed milk. Pronounced variations in thermal resistance were found. Three phages displayed high sensitivity towards heat resulting in >8 log reductions after 70 °C for 5 min, whereas the most...

  2. A mimotope of Pre-S2 region of surface antigen of viral hepatitis Bscreened by phage display

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To acquire the phage-displayed mimotopes which mimic the specificity of hepatitis B virus surface antigen (HBsAg), a random peptide library expressing linear peptide with 12 amino acids in length were used to screen with the serum from a hepatitis B virus infected patient in the recovery phase. After 3 rounds of biopanning, the positive phages were confirmed by competitive ELISA using HBsAg/P33. Two phagotopes were identified and one of them was confirmed as mimotope by competition experiment. Based on the mimotpe, a multiple antigenic peptide with four branches was synthesized by solid phase peptide synthesis. The antiginicity and specificity of the synthesized antigen was tested in BALB/c mice compared with the native epitope-based antigen. The results showed that the mimotope-based antigen could evoke higher titer of antibodies with the same specificity of the epitope-based antigen. Those findings indicate mimotopes can be used in antigen and vaccine design.

  3. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  4. Application of phage display technique in molecular nuclear medicine%噬菌体展示技术在分子核医学中的应用

    Institute of Scientific and Technical Information of China (English)

    刘金剑; 刘鉴峰; 孟爱民

    2013-01-01

    噬菌体展示技术是研究分子间多种作用的技术,它能够在机理尚未明确的情况下研究蛋白质与蛋白质、蛋白质与多肽、蛋白质与核酸的相互作用,这种技术的一个关键优势是,它可以研究分子间的直接联系,得到不同亲和力的分子,一次性实现高效筛选多肽的目的.近年来随着噬菌体展示技术的成熟,该技术被广泛应用于生命科学研究的不同领域,如:单克隆抗体制备、多肽筛选、疫苗研制、基因治疗及细胞信号转导研究等.该文综述了噬菌体展示技术在分子核医学相关研究中的运用.%Phage display is a molecular diversity technology that allows the presentation of large peptide and protein libraries on the surface of filamentous phage.Phage display libraries permit the selection of peptides and proteins,including antibodies,with high affinity and specificity for almost any target.In recent years,along with phage display technology maturated,it has been widely used in screening tumor antibody library,the preparation of monoclonal antibody,polypeptide,drug design,gene therapy and cell signal transduction.This review serves as an introduction to phage display in molecular nuclear medicine,and recent application in display technology.

  5. Library Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Carnegie Library of Pittsburgh locations including address, coordinates, phone number, square footage, and standard operating hours.

  6. Filamentous Phages As a Model System in Soft Matter Physics.

    Science.gov (United States)

    Dogic, Zvonimir

    2016-01-01

    Filamentous phages have unique physical properties, such as uniform particle lengths, that are not found in other model systems of rod-like colloidal particles. Consequently, suspensions of such phages provided powerful model systems that have advanced our understanding of soft matter physics in general and liquid crystals in particular. We described some of these advances. In particular we briefly summarize how suspensions of filamentous phages have provided valuable insight into the field of colloidal liquid crystals. We also describe recent experiments on filamentous phages that have elucidated a robust pathway for assembly of 2D membrane-like materials. Finally, we outline unique structural properties of filamentous phages that have so far remained largely unexplored yet have the potential to further advance soft matter physics and material science.

  7. Phage abortive infection in lactococci: variations on a theme.

    Science.gov (United States)

    Chopin, Marie-Christine; Chopin, Alain; Bidnenko, Elena

    2005-08-01

    Abortive infection (Abi) systems, also called phage exclusion, block phage multiplication and cause premature bacterial cell death upon phage infection. This decreases the number of progeny particles and limits their spread to other cells allowing the bacterial population to survive. Twenty Abi systems have been isolated in Lactococcus lactis, a bacterium used in cheese-making fermentation processes, where phage attacks are of economical importance. Recent insights in their expression and mode of action indicate that, behind diverse phenotypic and molecular effects, lactococcal Abis share common traits with the well-studied Escherichia coli systems Lit and Prr. Abis are widespread in bacteria, and recent analysis indicates that Abis might have additional roles other than conferring phage resistance.

  8. Phage Particles as Vaccine Delivery Vehicles: Concepts, Applications and Prospects.

    Science.gov (United States)

    Jafari, Narjes; Abediankenari, Saeid

    2015-01-01

    The development of new strategies for vaccine delivery for generating protective and long-lasting immune responses has become an expanding field of research. In the last years, it has been recognized that bacteriophages have several potential applications in the biotechnology and medical fields because of their intrinsic advantages, such as ease of manipulation and large-scale production. Over the past two decades, bacteriophages have gained special attention as vehicles for protein/peptide or DNA vaccine delivery. In fact, whole phage particles are used as vaccine delivery vehicles to achieve the aim of enhanced immunization. In this strategy, the carried vaccine is protected from environmental damage by phage particles. In this review, phage-based vaccine categories and their development are presented in detail, with discussion of the potential of phage-based vaccines for protection against microbial diseases and cancer treatment. Also reviewed are some recent advances in the field of phage- based vaccines.

  9. America's Star Libraries: Top-Rated Libraries

    Science.gov (United States)

    Lance, Keith Curry; Lyons, Ray

    2009-01-01

    "Library Journal"'s national rating of public libraries, the "LJ" Index of Public Library Service 2009, Round 2, identifies 258 "star" libraries. Created by Keith Curry Lance and Ray Lyons and based on 2007 data from the IMLS, it rates 7,268 public libraries. The top libraries in each group get five, four, or three stars. All included libraries,…

  10. America's Star Libraries: Top-Rated Libraries

    Science.gov (United States)

    Lance, Keith Curry; Lyons, Ray

    2009-01-01

    "Library Journal"'s national rating of public libraries, the "LJ" Index of Public Library Service 2009, Round 2, identifies 258 "star" libraries. Created by Keith Curry Lance and Ray Lyons and based on 2007 data from the IMLS, it rates 7,268 public libraries. The top libraries in each group get five, four, or three stars. All included libraries,…

  11. Staphylococcus aureus phage types and their correlation to antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Mehndiratta P

    2010-10-01

    Full Text Available Context: Staphylococcus aureus is one of the most devastating human pathogen. The organism has a differential ability to spread and cause outbreak of infections. Characterization of these strains is important to control the spread of infection in the hospitals as well as in the community. Aim: To identify the currently existing phage groups of Staphylococcus aureus, their prevalence and resistance to antibiotics. Materials and Methods: Study was undertaken on 252 Staphylococcus aureus strains isolated from clinical samples. Strains were phage typed and their resistance to antibiotics was determined following standard microbiological procedures. Statistical Analysis: Chi square test was used to compare the antibiotic susceptibility between methicillin resistant Staph. aureus (MRSA and methicillin sensitive S. aureus (MSSA strains. Results: Prevalence of MRSA and MSSA strains was found to be 29.36% and 70.65% respectively. Of these 17.56% of MRSA and 40.44% of MSSA strains were community acquired. All the MSSA strains belonging to phage type 81 from the community were sensitive to all the antibiotics tested including clindamycin and were resistant to penicillin. Forty five percent strains of phage group III and 39% of non-typable MRSA strains from the hospital were resistant to multiple antibiotics. Conclusion: The study revealed that predominant phage group amongst MRSA strains was phage group III and amongst MSSA from the community was phage group NA (phage type 81. MSSA strains isolated from the community differed significantly from hospital strains in their phage type and antibiotic susceptibility. A good correlation was observed between community acquired strains of phage type 81 and sensitivity to gentamycin and clindamycin.

  12. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    Science.gov (United States)

    Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.

    2015-01-01

    Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971

  13. Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology

    Institute of Scientific and Technical Information of China (English)

    Ying Gu; Jun Zhang; Ying-Bing Wang; Shao-Wei Li; Hai-Jie Yang; Wen-Xin Luo; Ning-Shao Xia

    2004-01-01

    AIM: To select the peptide mimicking the neutralization epitope of hepatitis E virus which bound to non-type-specific and conformational monoclonal antibodies (mAbs) 8C11 and 8H3 fromed 7-peptide phage display library, and expressed the peptide recombinant with HBcAg in E.coli, and to observe whether the recombinant HBcAg could still form virus like particle (VLP) and to test the activation of the recombinant polyprotein and chemo-synthesized peptide that was selected by mAb 8H3.METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4rounds of panning, monoclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E. coli. Activity of the recombinant proteins was detected by Western blotting, VLPs of the recombinant polyproteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor.RESULTS: Twenty-one positive monoclonal phages (10for 8CL1, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N′-His-Pro-Thr-LeuLeu-Arg-Ile-C′, named 8C11A) and 8H3 (N′-Ser-Ile-LeuPro- Tyr-Pro-Tyr-C′, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E. coli.The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polyprotein could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemosynthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor.CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short

  14. iFish: predicting the pathogenicity of human nonsynonymous variants using gene-specific/family-specific attributes and classifiers.

    Science.gov (United States)

    Wang, Meng; Wei, Liping

    2016-08-16

    Accurate prediction of the pathogenicity of genomic variants, especially nonsynonymous single nucleotide variants (nsSNVs), is essential in biomedical research and clinical genetics. Most current prediction methods build a generic classifier for all genes. However, different genes and gene families have different features. We investigated whether gene-specific and family-specific customized classifiers could improve prediction accuracy. Customized gene-specific and family-specific attributes were selected with AIC, BIC, and LASSO, and Support Vector Machine classifiers were generated for 254 genes and 152 gene families, covering a total of 5,985 genes. Our results showed that the customized attributes reflected key features of the genes and gene families, and the customized classifiers achieved higher prediction accuracy than the generic classifier. The customized classifiers and the generic classifier for other genes and families were integrated into a new tool named iFish (integrated Functional inference of SNVs in human, http://ifish.cbi.pku.edu.cn). iFish outperformed other methods on benchmark datasets as well as on prioritization of candidate causal variants from whole exome sequencing. iFish provides a user-friendly web-based interface and supports other functionalities such as integration of genetic evidence. iFish would facilitate high-throughput evaluation and prioritization of nsSNVs in human genetics research.

  15. The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways.

    Science.gov (United States)

    Trend, Stephanie; Fonceca, Angela M; Ditcham, William G; Kicic, Anthony; Cf, Arest

    2017-07-15

    As antimicrobial-resistant microbes become increasingly common and a significant global issue, novel approaches to treating these infections particularly in those at high risk are required. This is evident in people with cystic fibrosis (CF), who suffer from chronic airway infection caused by antibiotic resistant bacteria, typically Pseudomonas aeruginosa. One option is bacteriophage (phage) therapy, which utilises the natural predation of phage viruses upon their host bacteria. This review summarises the essential and unique aspects of the phage-microbe-human lung interactions in CF that must be addressed to successfully develop and deliver phage to CF airways. The current evidence regarding phage biology, phage-bacterial interactions, potential airway immune responses to phages, previous use of phages in humans and method of phage delivery to the lung are also summarised. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  16. Dispersal and Survival of Flavobacterium psychrophilum Phages In Vivo in Rainbow Trout and In Vitro under Laboratory Conditions: Implications for Their Use in Phage Therapy

    DEFF Research Database (Denmark)

    Madsen, Lone; Bertelsen, Sif K.; Dalsgaard, Inger

    2013-01-01

    Attention has been drawn to phage therapy as an alternative approach for controlling pathogenic bacteria such as Flavobacterium psychrophilum in salmonid aquaculture, which can give rise to high mortalities, especially in rainbow trout fry. Recently, phages have been isolated with a broad host...... range and a strong lytic potential against pathogenic F. psychrophilum under experimental conditions. However, little is known about the fate of phages at environmental conditions. Here, we quantified the dispersal and fate of F. psychrophilum phages and hosts in rainbow trout fry after intraperitoneal...... injection. Both phages and bacteria were isolated from the fish organs for up to 10 days after injection, and coinjection with both bacteria and phages resulted in a longer persistence of the phage in the fish organs, than when the fish had been injected with the phages only. The occurrence of both phage...

  17. Exploration of Phage-Host Interactions in Fish Pathogen Vibrio anguillarum and Anti-Phage Defense Strategies

    DEFF Research Database (Denmark)

    Tan, Demeng

    of V. anguillarum have been isolated, indicating that antibiotic use has to be restricted and alternatives have to be developed. Lytic phages have been demonstrated to play an essential role in preventing bacterial infection. However, phages are also known to play a critical role in the evolution......The disease vibriosis is caused by the bacterial pathogen Vibrio anguillarum and results in large losses in aquaculture both in Denmark and around the world. Antibiotics have been widely used in antimicrobial prophylaxis and treatment of vibriosis. Recently, numerous multidrug-resistant strains...... of bacterial pathogenicity development. Therefore, successful application of phage therapy in the treatment of vibriosis requires a detailed understanding of phage-host interactions, especially with regards to anti-phage defense mechanisms in the host. Part I. As a first approach, 24 V. anguillarum and 13...

  18. Library Use

    DEFF Research Database (Denmark)

    Konzack, Lars

    2012-01-01

    A seminar paper about a survey of role-playing games in public libraries combined with three cases and a presentation of a model.......A seminar paper about a survey of role-playing games in public libraries combined with three cases and a presentation of a model....

  19. Library Research.

    Science.gov (United States)

    Wright, Nancy Kirkpatrick

    This workbook, designed for a Library Research course at Yavapai College, provides 15 lessons in advanced library reference skills. Each lesson provides explanatory text and reinforcement exercises. After Lesson I introduces specialized dictionaries and encyclopedias (e.g., for foreign languages, medicine, music, economics, social sciences, and…

  20. Privatizing Libraries

    Science.gov (United States)

    Jerrard, Jane; Bolt, Nancy; Strege, Karen

    2012-01-01

    This timely special report from ALA Editions provides a succinct but comprehensive overview of the "privatization" of public libraries. It provides a history of the trend of local and state governments privatizing public services and assets, and then examines the history of public library privatization right up to the California…

  1. Privatizing Libraries

    Science.gov (United States)

    Jerrard, Jane; Bolt, Nancy; Strege, Karen

    2012-01-01

    This timely special report from ALA Editions provides a succinct but comprehensive overview of the "privatization" of public libraries. It provides a history of the trend of local and state governments privatizing public services and assets, and then examines the history of public library privatization right up to the California legislation…

  2. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    Science.gov (United States)

    Pryshliak, Mark; Hammerl, Jens A; Reetz, Jochen; Strauch, Eckhard; Hertwig, Stefan

    2014-01-01

    Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  3. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    Directory of Open Access Journals (Sweden)

    Mark Pryshliak

    Full Text Available BACKGROUND: Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1 infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. RESULTS: In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. CONCLUSION: We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  4. Construction of human Fab library and screening of a single-domain antibody of amyloid-beta 42 oligomers

    Institute of Scientific and Technical Information of China (English)

    Zuanning Yuan; Minge Du; Yiwen Chen; Fei Dou

    2013-01-01

    Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli-gomers and constructed a naïve human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe-cifical y recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked immunosorbent assay demonstrated this antibody bound specifical y to human amyloid-beta 42 te-tramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc-cessful y constructed a human phage display library and screened a single-domain antibody that specifical y recognized amyloid-beta 42 oligomers.

  5. Evolution of Lactococcus lactis phages within a cheese factory.

    Science.gov (United States)

    Rousseau, Geneviève M; Moineau, Sylvain

    2009-08-01

    We have sequenced the double-stranded DNA genomes of six lactococcal phages (SL4, CB13, CB14, CB19, CB20, and GR7) from the 936 group that were isolated over a 9-year period from whey samples obtained from a Canadian cheese factory. These six phages infected the same two industrial Lactococcus lactis strains out of 30 tested. The CB14 and GR7 genomes were found to be 100% identical even though they were isolated 14 months apart, indicating that a phage can survive in a cheese plant for more than a year. The other four genomes were related but notably different. The length of the genomes varied from 28,144 to 32,182 bp, and they coded for 51 to 55 open reading frames. All five genomes possessed a 3' overhang cos site that was 11 nucleotides long. Several structural proteins were also identified by nano-high-performance liquid chromatography-tandem mass spectrometry, confirming bioinformatic analyses. Comparative analyses suggested that the most recently isolated phages (CB19 and CB20) were derived, in part, from older phage isolates (CB13 and CB14/GR7). The organization of the five distinct genomes was similar to the previously sequenced lactococcal phage genomes of the 936 group, and from these sequences, a core genome was determined for lactococcal phages of the 936 group.

  6. Safety and efficacy of phage therapy via the intravenous route.

    Science.gov (United States)

    Speck, Peter; Smithyman, Anthony

    2016-02-01

    Increasing development of antimicrobial resistance is driving a resurgence in interest in phage therapy: the use of bacteriophages to treat bacterial infections. As the lytic action of bacteriophages is unaffected by the antibiotic resistance status of their bacterial target, it is thought that phage therapy may have considerable potential in the treatment of a wide range of topical and localized infections. As yet this interest has not extended to intravenous (IV) use, which is surprising given that the historical record shows that phages are likely to be safe and effective when delivered by this route. Starting almost 100 years ago, phages were administered intravenously in treatment of systemic infections including typhoid, and Staphylococcal bacteremia. There was extensive IV use of phages in the 1940s to treat typhoid, reportedly with outstanding efficacy and safety. The safety of IV phage administration is also underpinned by the detailed work of Ochs and colleagues in Seattle who have over four decades' experience with IV injection into human subjects of large doses of highly purified coliphage PhiX174. Though these subjects included a large number of immune-deficient children, no serious side effects were observed over this extended time period. The large and continuing global health problems of typhoid and Staphylococcus aureus are exacerbated by the increasing antibiotic resistance of these pathogens. We contend that these infections are excellent candidates for use of IV phage therapy.

  7. A novel fluorescent probe: europium complex hybridized T7 phage.

    Science.gov (United States)

    Liu, Chin-Mei; Jin, Qiaoling; Sutton, April; Chen, Liaohai

    2005-01-01

    We report on the creation of a novel fluorescent probe of europium-complex hybridized T7 phage. It was made by filling a ligand-displayed T7 ghost phage with a fluorescent europium complex particle. The structure of the hybridized phage, which contains a fluorescent inorganic core surrounded by a ligand-displayed capsid shell, was confirmed by electron microscope, energy-dispersive X-ray analysis (EDX), bioassays, and fluorescence spectrometer. More importantly, as a benefit of the phage display technology, the hybridized phage has the capability to integrate an affinity reagent against virtually any target molecules. The approach provides an original method to fluorescently "tag" a bioligand and/or to "biofunctionalize" a fluorophore particle. By using other types of materials such as radioactive or magnetic particles to fill the ghost phage, we envision that the hybridized phages represent a new class of fluorescent, magnetic, or radioprobes for imaging and bioassays and could be used both in vitro and in vivo.

  8. Biofilm control with natural and genetically-modified phages.

    Science.gov (United States)

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda Shankar; Goel, Ramesh

    2016-04-01

    Bacteriophages, as the most dominant and diverse entities in the universe, have the potential to be one of the most promising therapeutic agents. The emergence of multidrug-resistant bacteria and the antibiotic crisis in the last few decades have resulted in a renewed interest in phage therapy. Furthermore, bacteriophages, with the capacity to rapidly infect and overcome bacterial resistance, have demonstrated a sustainable approach against bacterial pathogens-particularly in biofilm. Biofilm, as complex microbial communities located at interphases embedded in a matrix of bacterial extracellular polysaccharide substances (EPS), is involved in health issues such as infections associated with the use of biomaterials and chronic infections by multidrug resistant bacteria, as well as industrial issues such as biofilm formation on stainless steel surfaces in food industry and membrane biofouling in water and wastewater treatment processes. In this paper, the most recent studies on the potential of phage therapy using natural and genetically-modified lytic phages and their associated enzymes in fighting biofilm development in various fields including engineering, industry, and medical applications are reviewed. Phage-mediated prevention approaches as an indirect phage therapy strategy are also explored in this review. In addition, the limitations of these approaches and suggestions to overcome these constraints are discussed to enhance the efficiency of phage therapy process. Finally, future perspectives and directions for further research towards a better understanding of phage therapy to control biofilm are recommended.

  9. Coevolution of CRISPR bacteria and phage in 2 dimensions

    Science.gov (United States)

    Han, Pu; Deem, Michael

    2014-03-01

    CRISPR (cluster regularly interspaced short palindromic repeats) is a newly discovered adaptive, heritable immune system of prokaryotes. It can prevent infection of prokaryotes by phage. Most bacteria and almost all archae have CRISPR. The CRISPR system incorporates short nucleotide sequences from viruses. These incorporated sequences provide a historical record of the host and predator coevolution. We simulate the coevolution of bacteria and phage in 2 dimensions. Each phage has multiple proto-spacers that the bacteria can incorporate. Each bacterium can store multiple spacers in its CRISPR. Phages can escape recognition by the CRISPR system via point mutation or recombination. We will discuss the different evolutionary consequences of point mutation or recombination on the coevolution of bacteria and phage. We will also discuss an intriguing ``dynamic phase transition'' in the number of phage as a function of time and mutation rate. We will show that due to the arm race between phages and bacteria, the frequency of spacers and proto-spacers in a population can oscillate quite rapidly.

  10. Engineering RNA phage MS2 virus-like particles for peptide display

    Science.gov (United States)

    Jordan, Sheldon Keith

    Phage display is a powerful and versatile technology that enables the selection of novel binding functions from large populations of randomly generated peptide sequences. Random sequences are genetically fused to a viral structural protein to produce complex peptide libraries. From a sufficiently complex library, phage bearing peptides with practically any desired binding activity can be physically isolated by affinity selection, and, since each particle carries in its genome the genetic information for its own replication, the selectants can be amplified by infection of bacteria. For certain applications however, existing phage display platforms have limitations. One such area is in the field of vaccine development, where the goal is to identify relevant epitopes by affinity-selection against an antibody target, and then to utilize them as immunogens to elicit a desired antibody response. Today, affinity selection is usually conducted using display on filamentous phages like M13. This technology provides an efficient means for epitope identification, but, because filamentous phages do not display peptides in the high-density, multivalent arrays the immune system prefers to recognize, they generally make poor immunogens and are typically useless as vaccines. This makes it necessary to confer immunogenicity by conjugating synthetic versions of the peptides to more immunogenic carriers. Unfortunately, when introduced into these new structural environments, the epitopes often fail to elicit relevant antibody responses. Thus, it would be advantageous to combine the epitope selection and immunogen functions into a single platform where the structural constraints present during affinity selection can be preserved during immunization. This dissertation describes efforts to develop a peptide display system based on the virus-like particles (VLPs) of bacteriophage MS2. Phage display technologies rely on (1) the identification of a site in a viral structural protein that is

  11. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food

    DEFF Research Database (Denmark)

    Athina, Zampara; Sørensen, Martine Camilla Holst; Elsser-Gravesen, Anne

    2017-01-01

    Poultry meat is the main source of Campylobacter jejuni foodborne disease. Currently, no effective control measures prevent C. jejuni from contaminating poultry meat. However, post-harvest phage treatment is a promising biocontrol strategy that has not yet been explored. Here we identified phages...... capable of reducing C. jejuni at chilled temperature by a systematic screening of unique phages of our collection consisting of flagellotropic phages and phages dependent on capsular polysaccharides (CPSs) for infection. Interestingly, CPS phages showed varied killing efficiencies at 5 °C in vitro......, ranging from insignificant reduction to 0.55 log reduction. In contrast, none of the flagellotropic phages significantly reduced C. jejuni counts at low temperature. Phage adsorption at 5 °C showed that flagellotropic phages bind reversibly and less efficiently to C. jejuni than CPS phages, which may...

  12. Complete genome sequence of Klebsiella pneumoniae phage JD001.

    Science.gov (United States)

    Cui, Zelin; Shen, Wenbin; Wang, Zheng; Zhang, Haotian; Me, Rao; Wang, Yanchun; Zeng, Lingbin; Zhu, Yongzhang; Qin, Jinhong; He, Ping; Guo, Xiaokui

    2012-12-01

    Klebsiella pneumoniae is a member of the family Enterobacteriaceae, opportunistic pathogens that are among the eight most prevalent infectious agents in hospitals. The emergence of multidrug-resistant strains of K. pneumoniae has became a public health problem globally. To develop an effective antimicrobial agent, we isolated a bacteriophage, named JD001, from seawater and sequenced its genome. Comparative genome analysis of phage JD001 with other K. pneumoniae bacteriophages revealed that phage JD001 has little similarity to previously published K. pneumoniae phages KP15, KP32, KP34, and phiKO2. Here we announce the complete genome sequence of JD001 and report major findings from the genomic analysis.

  13. Phage approved in food, why not as a therapeutic?

    Science.gov (United States)

    Sarhan, Wessam A; Azzazy, Hassan M E

    2015-01-01

    Bacterial resistance is not only restricted to human infections but is also a major problem in food. With the marked decrease in produced antimicrobials, the world is now reassessing bacteriophages. In 2006, ListShield™ received the US FDA approval for using phage in food. Nevertheless, regulatory approval of phage-based therapeutics is still facing many challenges. This review highlights the use of bacteriophages as biocontrol agents in the food industry. It also focuses on the challenges still facing the regulatory approval of phage-based therapeutics and the proposed approaches to overcome such challenges.

  14. Review: phage therapy: a modern tool to control bacterial infections.

    Science.gov (United States)

    Qadir, Muhammad Imran

    2015-01-01

    The evolution of antibiotic-resistant in bacteria has aggravated curiosity in development of alternative therapy to conventional drugs. One of the emerging drugs that can be used alternative to antibiotics is bacteriophage therapy. The use of living phages in the cure of lethal infectious life threatening diseases caused by Gram positive and Gram negative bacteria has been reported. Another development in the field of bacteriophage therapy is the use of genetically modified and non replicating phages in the treatment of bacterial infection. Genetically engineered bacteriophages can be used as adjuvant along with antibiotic therapy. Phages encoded with lysosomal enzymes are also effectual in the treatment of infectious diseases.

  15. Identification of small molecule binding sites within proteins using phage display technology.

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  16. DNA-encoded chemical libraries: foundations and applications in lead discovery.

    Science.gov (United States)

    Zimmermann, Gunther; Neri, Dario

    2016-11-01

    DNA-encoded chemical libraries have emerged as a powerful tool for hit identification in the pharmaceutical industry and in academia. Similar to biological display techniques (such as phage display technology), DNA-encoded chemical libraries contain a link between the displayed chemical building block and an amplifiable genetic barcode on DNA. Using routine procedures, libraries containing millions to billions of compounds can be easily produced within a few weeks. The resulting compound libraries are screened in a single test tube against proteins of pharmaceutical interest and hits can be identified by PCR amplification of DNA barcodes and subsequent high-throughput sequencing.

  17. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.

    Directory of Open Access Journals (Sweden)

    Stephanie J Yaung

    Full Text Available Bacteria rely on two known DNA-level defenses against their bacteriophage predators: restriction-modification and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-associated (Cas systems. Certain phages have evolved countermeasures that are known to block endonucleases. For example, phage T4 not only adds hydroxymethyl groups to all of its cytosines, but also glucosylates them, a strategy that defeats almost all restriction enzymes. We sought to determine whether these DNA modifications can similarly impede CRISPR-based defenses. In a bioinformatics search, we found naturally occurring CRISPR spacers that potentially target phages known to modify their DNA. Experimentally, we show that the Cas9 nuclease from the Type II CRISPR system of Streptococcus pyogenes can overcome a variety of DNA modifications in Escherichia coli. The levels of Cas9-mediated phage resistance to bacteriophage T4 and the mutant phage T4 gt, which contains hydroxymethylated but not glucosylated cytosines, were comparable to phages with unmodified cytosines, T7 and the T4-like phage RB49. Our results demonstrate that Cas9 is not impeded by N6-methyladenine, 5-methylcytosine, 5-hydroxymethylated cytosine, or glucosylated 5-hydroxymethylated cytosine.

  18. The phage-related chromosomal islands of Gram-positive bacteria

    OpenAIRE

    Novick, Richard P.; Christie, Gail E.; Penadés, Jose R.

    2010-01-01

    The phage-related chromosomal islands (PRCIs) were first identified in Staphylococcus aureus as highly mobile, superantigen-encoding genetic elements known as the S. aureus pathogenicity islands (SaPIs). These elements are characterized by a specific set of phage-related functions that enable them to use the phage reproduction cycle for their own transduction and inhibit phage reproduction in the process. SaPIs produce many phage-like infectious particles; their streptococcal counterparts hav...

  19. Lethal effects of /sup 32/P decay on transfecting activity of Bacillus subtillis phage phie DNA

    Energy Technology Data Exchange (ETDEWEB)

    Loveday, K.S.

    1979-07-15

    Disintegration of /sup 32/P present in the DNA of Bacillus subtilis phage phie (a phage containing double-strand DNA) results in the loss of viability of intact phage as well as transfecting activity of isolated DNA. Only 1/12 of the /sup 32/P disintegrations per phage DNA equivalent inactivities the intact phage while nearly every disintegration inactivates the transfecting DNA. This result provides evidence for a single-strand intermediate in the transfection of B. subtilis by phie DNA.

  20. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    Energy Technology Data Exchange (ETDEWEB)

    Steingroewer, Juliane [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)]. E-mail: juliane.steingroewer@tu-dresden.de; Bley, Thomas [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany); Bergemann, Christian [Chemicell GmbH, D-10823, Berlin (Germany); Boschke, Elke [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2007-04-15

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  1. Academic Libraries

    Science.gov (United States)

    Library Journal, 1970

    1970-01-01

    Building data is given for the following academic libraries: (1) Rosary College, River Forest, Illinois; (2) Abilene Christian College, Abilene, Texas; (3) University of California, San Diego, La Jolla, California. (MF)

  2. Localization of melanin in conidia of Alternaria alternata using phage display antibodies.

    Science.gov (United States)

    Carzaniga, Raffaella; Fiocco, Daniela; Bowyer, Paul; O'Connell, Richard J

    2002-03-01

    Melanins derived from 1,8-dihydroxynaphthalene (DHN) are important for the pathogenicity and survival of fungi causing disease in both plants and animals. However, precise information on their location within fungal cell walls is lacking. To obtain antibodies for the immunocytochemical localization of melanin, 83 phage antibodies binding to 1,8-DHN were selected from a naive semisynthetic single-chain Fv (scFv) phage display library. Sequence analysis of the heavy chain binding domains of 17 antibodies showed a high frequency of positively charged amino acids. One antibody, designated M1, was characterized in detail. M1 bound specifically to 1,8-DHN in competitive inhibition enzyme-linked immunosorbent assays, showing no cross-reaction with nine structurally related phenolic compounds. Epitope recognition required two hydroxyl groups in a 1,8 configuration. M1 also bound to naturally occurring melanin isolated from mycelia of Alternaria alternata, suggesting that epitopes remain accessible in polymerized melanin. Transmission electron microscopy-immunogold labeling, using M1 in the form of soluble scFv fragments, showed that melanin was located in the septa and outer (primary) walls of wild-type A. alternata conidia, but not those of an albino mutant, AKT88-1. The M1 antibody provides a new tool for detecting melanized pathogens in plant and animal tissues and for precisely mapping the distribution of the polymer within spores, appressoria, and hyphae.

  3. A bioaugmentation failure caused by phage infection and weak biofilm formation ability

    Institute of Scientific and Technical Information of China (English)

    FU Songzhe; FAN Hongxia; LIU Shuangjiang; LIU Ying; LIU Zhipei

    2009-01-01

    Two biological aerated filters (BAF) were setup for ammonia removal treatment of the circulation water in a marine aquaculture.One of the BAFs was bioaugmented with a heterotrophic nitrifying bacterium, Lutimonas sp.H10, but the ammonia removal was not improved; the massive inoculation was even followed by a nitrification breakdown from day 9 to 18, while nitrification remained stable in the control BAF operated under the same conditions.Fluorescent in situ hybridization (FISH) with rRNA-targeted probes and cultivable method revealed that Lutimonas sp.H10 almost disappeared from the bioaugomented BAF within 3 d, and this was mainly due to the infection of a specific phage as revealed by flask experiment, plaque assay and transmission electron observation.Analyses of 16S rRNA gene libraries showed that bacterial groups from two reactors evolved differently and an overgrowth of protozoa was observed in the bioaugmented BAF.Therefore, phage infection and poor biofilm forming ability of the inoculated strain are the main reasons for bioaugmentation failure.In addition, grazing by protozoa of the bacteria might be the reason for the nitrification breakdown in bioaugmented BAF during day 9-18.

  4. Isolation by phage display and characterization of a singlechain antibody specific for O6-methyldeoxyguanosine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    New approaches of making single chain Fv antibodies against O6-methyl-2′-deoxyguanosine (O6MdG) have been demonstrated by using the phage antibody display system. Using O6MdG as an antigen, 21 positive clones were identified by ELISA from this library, one of which, desig-nated H3, specifically binds to O6MdG with high affinity. The H3 scFv antibody has an affinity constant (Kaff) of 5.94×1011(mol/L)-1. H3 scFv has been successfully used to detect O6MdG in DNA hydrolyses from yeast or E. coli cells treated with a DNA methylating agent. To our knowledge, this is the first report of the selection of a specific scFv against DNA adducts. The results demonstrate the potential applications of the phage display technology for the detection of DNA lesions caused by mutagens and carcinogens.

  5. Functional characterization of a monoclonal antibody epitope using a lambda phage display-deep sequencing platform

    Science.gov (United States)

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Borgogni, Erica; Castellino, Flora; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete “hot spots” with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope. PMID:27530334

  6. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  7. [Inactivation of T4 phage in water environment using proteinase].

    Science.gov (United States)

    Lü, Wen-zhou; Yang, Qing-xiang; Zhang, Yu; Yang, Min; Zhu, Chun-fang

    2004-09-01

    The inactivation effectiveness of proteinase to viruses was investigated by using T4 phage as a model virus. The results showed that the inactivation effectiveness of proteinase to T4 phage was obvious. In the optimum conditions and 67.5 u/mL concentration, the inactivation rate of proteinase K to T4 phage in sterilized water and in sewage achieved 99.4% and 49.4% respectively in an hour, and achieved >99.9% and 81.1% in three hours. The inactivation rate of the industrial proteinase 1398 to T4 phage in sterilized water achieved 74.4% in an hour. The effects of pH and temperature on the inactivation effectiveness was not evident.

  8. Persistence of bacteria and phages in a chemostat.

    Science.gov (United States)

    Smith, Hal L; Thieme, Horst R

    2012-05-01

    The model of bacteriophage predation on bacteria in a chemostat formulated by Levin et al. (Am Nat 111:3-24, 1977) is generalized to include a distributed latent period, distributed viral progeny release from infected bacteria, unproductive adsorption of phages to infected cells, and possible nutrient uptake by infected cells. Indeed, two formulations of the model are given: a system of delay differential equations with infinite delay, and a more general infection-age model that leads to a system of integro-differential equations. It is shown that the bacteria persist, and sharp conditions for persistence and extinction of phages are determined by the reproductive ratio for phage relative to the phage-free equilibrium. A novel feature of our analysis is the use of the Laplace transform.

  9. Complete Genome Sequence of the Streptomyces Phage Nanodon

    Science.gov (United States)

    2016-01-01

    Streptomyces phage Nanodon is a temperate double-stranded DNA Siphoviridae belonging to cluster BD1. It was isolated from soil collected in Kilauea, HI, using Streptomyces griseus subsp. griseus as a host.

  10. Inhibition of phage infection in capsule-producing Streptococcus ...

    African Journals Online (AJOL)

    SERVER

    2007-10-04

    Oct 4, 2007 ... Acid production by capsule-producing Streptococcus thermophilus was inhibited less ... lactic acid bacteria (LAB) are of similar size to fat globules ..... Characterization of new virulent phage (MLC-A) of Lactobacillus paracasei.

  11. Identification of Peptides Inhibiting Adhesion of Monocytes to the Injured Vascular Endothelial Cells through Phage-displaying Screening

    Institute of Scientific and Technical Information of China (English)

    Yu GUO; Jia ZHANG; Ji-Cheng WANG; Feng-Xiang YAN; Bing-Yang ZHU; Hong-Lin HUANG; Duan-Fang LIAO

    2005-01-01

    Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the "adsorption-elution-amplification"procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin- 1 and intercellular adhesion molecule- 1 (ICAM- 1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin-1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin-1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.

  12. Effective Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput DNA Synthesis and Sequencing Technologies.

    Directory of Open Access Journals (Sweden)

    Dongmei Hu

    Full Text Available Phage display technology has been widely used for antibody affinity maturation for decades. The limited library sequence diversity together with excessive redundancy and labour-consuming procedure for candidate identification are two major obstacles to widespread adoption of this technology. We hereby describe a novel library generation and screening approach to address the problems. The approach started with the targeted diversification of multiple complementarity determining regions (CDRs of a humanized anti-ErbB2 antibody, HuA21, with a small perturbation mutagenesis strategy. A combination of three degenerate codons, NWG, NWC, and NSG, were chosen for amino acid saturation mutagenesis without introducing cysteine and stop residues. In total, 7,749 degenerate oligonucleotides were synthesized on two microchips and released to construct five single-chain antibody fragment (scFv gene libraries with 4 x 10(6 DNA sequences. Deep sequencing of the unselected and selected phage libraries using the Illumina platform allowed for an in-depth evaluation of the enrichment landscapes in CDR sequences and amino acid substitutions. Potent candidates were identified according to their high frequencies using NGS analysis, by-passing the need for the primary screening of target-binding clones. Furthermore, a subsequent library by recombination of the 10 most abundant variants from four CDRs was constructed and screened, and a mutant with 158-fold increased affinity (Kd = 25.5 pM was obtained. These results suggest the potential application of the developed methodology for optimizing the binding properties of other antibodies and biomolecules.

  13. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Science.gov (United States)

    Sørensen, Martine C Holst; Gencay, Yilmaz Emre; Birk, Tina; Baldvinsson, Signe Berg; Jäckel, Claudia; Hammerl, Jens A; Vegge, Christina S; Neve, Horst; Brøndsted, Lone

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.

  14. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Directory of Open Access Journals (Sweden)

    Martine C Holst Sørensen

    Full Text Available In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb, host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220 as well as receptors (CPS or flagella recognised by the isolated phages.

  15. Properties of Klebsiella Phage P13 and Associated Exopolysaccharide Depolymerase

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; LI Guiyang; MO Zhaolan; CHAI Zihan; SHANG Anqi; MOU Haijin

    2014-01-01

    The bacteriophage P13 that infects Klebsiella serotype K13 contains a heat-stable depolymerase capable of effective degradation of exopolysaccharide (EPS) produced by this microorganism. In this study, the titer of phage P13, initially 2.0 × 107 pfu mL-1, was found increasing 20 min after infection and reached 5.0 × 109 pfu mL-1 in 60 min. Accordingly, the enzyme activity of de-polymerase approached the maximum 60 min after infection. Treatment at 70℃for 30 min inactivated all the phage, but retained over 90%of the depolymerase activity. Addition of acetone into the crude phage lysate led to precipitation of the protein, with a marked increase in bacterial EPS degradation activity and a rapid drop in the titer of phage. After partial purification by acetone precipitation and ultrafiltration centrifugation, the enzyme was separated from the phage particles, showing two components with enzyme activity on Q-Sepharose Fast Flow. The soluble enzyme had an optimum degradation activity at 60℃and pH 6.5. Transmission electron mi-croscopy demonstrated that the phage P13 particles were spherical with a diameter of 50 nm and a short stumpy tail. It was a dou-ble-strand DNA virus consisting of a nucleic acid molecule of 45976 bp. This work provides an efficient purification operation in-cluding thermal treatment and ultrafiltration centrifugation, to dissociate depolymerase from phage particles. The characterization of phage P13 and associated EPS depolymerase is beneficial for further application of this enzyme.

  16. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  17. Comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25 reveals a novel siphovirus group related to phages infecting hosts of different taxonomic classes.

    Science.gov (United States)

    Flores, Víctor; Sepúlveda-Robles, Omar; Cazares, Adrián; Kameyama, Luis; Guarneros, Gabriel

    2017-08-01

    Bacteriophages (phages) are estimated to be the most abundant and diverse entities in the biosphere harboring vast amounts of novel genetic information. Despite the genetic diversity observed, many phages share common features, such as virion morphology, genome size and organization, and can readily be associated with clearly defined phage groups. However, other phages display unique genomes or, alternatively, mosaic genomes composed of regions that share homology with those of phages of diverse origins; thus, their relationships cannot be easily assessed. In this work, we present a functional and comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25, a virulent member of the Siphoviridae family. The genomes of PaMx25 and a highly homologous phage NP1, bore sequence homology and synteny with the genomes of phages that infect hosts different than Pseudomonas. In order to understand the relationship of the PaMx25 genome with that of other phages, we employed several computational approaches. We found that PaMx25 and NP1 effectively bridged several phage groups. It is expected that as more phage genomes become available, more gaps will be filled, blurring the boundaries that currently separate phage groups.

  18. Paving a regulatory pathway for phage therapy: Europe should muster the resources to financially, technically and legally support the introduction of phage therapy

    OpenAIRE

    Huys, Isabelle; Pirnay, Jean-Paul; Lavigne, Rob; Jennes, Serge; De Vos, Daniel; Casteels, Minne; Verbeken, Gilbert

    2013-01-01

    The growing problem of antibiotic-resistant bacteria has re-kindled interest in phage-based therapies. Yet, the use of phages to treat life-threatening bacterial infections is held back by the lack of an appropriate regulatory framework for phage therapy.

  19. Identification and in vitro characterization of phage-displayed VHHs targeting VEGF

    DEFF Research Database (Denmark)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram;

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a potential target for cancer treatment because of its role in angiogenesis and its overexpression in most human cancers. Currently, anti-VEGF antibodies have been shown to be promising tools for therapeutic applications. However, large size, poor tumor......-targeting purposes. The present study was undertaken to generate and characterize anti-VEGF VHHs from an immune VHH library using phage display. Four rounds of panning were performed, and selected VHHs were characterized using various immunological techniques. Assessment of the antigenic profile of VHHs was done......, significantly inhibited the endothelial cell growth in a dose-dependent manner. Taken together, our results indicate that ZFR-5 and other VHHs may be promising tools in cancer research and treatment....

  20. Identification of binding peptides of the ADAM15 disintegrin domain using phage display

    Indian Academy of Sciences (India)

    Jing Wu; Min-Chen Wu; Lian-Fen Zhang; Jian-Yong Lei; Lei Feng; Jian Jin

    2009-06-01

    ADAM15 plays an important role in tumour development by interacting with integrins. In this study, we investigated the target peptides of the ADAM15 disintegrin domain. First, we successfully produced the recombinant human ADAM15 disintegrin domain (RADD) that could inhibit melanoma cell adhesion by using Escherichia coli. Second, four specific binding peptides (peptides A, B, C, and D) were selected using a phage display 12-mer peptide library. The screening protocol involved 4 rounds of positive panning on RADD and 2 rounds of subtractive selection with streptavidin. By using the BLAST software and a relevant protein database, integrin v3 was found to be homologous to peptide A. Synthetic peptide A had a highly inhibitory effect on RADD–integrin v3 binding. The results demonstrate the potential application of short peptides for disrupting high-affinity ADAM–integrin interactions.

  1. Applying Shannon's information theory to bacterial and phage genomes and metagenomes.

    Science.gov (United States)

    Akhter, Sajia; Bailey, Barbara A; Salamon, Peter; Aziz, Ramy K; Edwards, Robert A

    2013-01-01

    All sequence data contain inherent information that can be measured by Shannon's uncertainty theory. Such measurement is valuable in evaluating large data sets, such as metagenomic libraries, to prioritize their analysis and annotation, thus saving computational resources. Here, Shannon's index of complete phage and bacterial genomes was examined. The information content of a genome was found to be highly dependent on the genome length, GC content, and sequence word size. In metagenomic sequences, the amount of information correlated with the number of matches found by comparison to sequence databases. A sequence with more information (higher uncertainty) has a higher probability of being significantly similar to other sequences in the database. Measuring uncertainty may be used for rapid screening for sequences with matches in available database, prioritizing computational resources, and indicating which sequences with no known similarities are likely to be important for more detailed analysis.

  2. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Directory of Open Access Journals (Sweden)

    Daniel O Connor

    Full Text Available Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  3. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Science.gov (United States)

    Connor, Daniel O; Zantow, Jonas; Hust, Michael; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  4. Selection of Ceratitis capitata (Diptera: Tephritidae) specific recombinant monoclonal phage display antibodies for prey detection analysis.

    Science.gov (United States)

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators.

  5. Applying Shannon's information theory to bacterial and phage genomes and metagenomes

    Science.gov (United States)

    Akhter, Sajia; Bailey, Barbara A.; Salamon, Peter; Aziz, Ramy K.; Edwards, Robert A.

    2013-01-01

    All sequence data contain inherent information that can be measured by Shannon's uncertainty theory. Such measurement is valuable in evaluating large data sets, such as metagenomic libraries, to prioritize their analysis and annotation, thus saving computational resources. Here, Shannon's index of complete phage and bacterial genomes was examined. The information content of a genome was found to be highly dependent on the genome length, GC content, and sequence word size. In metagenomic sequences, the amount of information correlated with the number of matches found by comparison to sequence databases. A sequence with more information (higher uncertainty) has a higher probability of being significantly similar to other sequences in the database. Measuring uncertainty may be used for rapid screening for sequences with matches in available database, prioritizing computational resources, and indicating which sequences with no known similarities are likely to be important for more detailed analysis. PMID:23301154

  6. Applying Shannon's information theory to bacterial and phage genomes and metagenomes

    Science.gov (United States)

    Akhter, Sajia; Bailey, Barbara A.; Salamon, Peter; Aziz, Ramy K.; Edwards, Robert A.

    2013-01-01

    All sequence data contain inherent information that can be measured by Shannon's uncertainty theory. Such measurement is valuable in evaluating large data sets, such as metagenomic libraries, to prioritize their analysis and annotation, thus saving computational resources. Here, Shannon's index of complete phage and bacterial genomes was examined. The information content of a genome was found to be highly dependent on the genome length, GC content, and sequence word size. In metagenomic sequences, the amount of information correlated with the number of matches found by comparison to sequence databases. A sequence with more information (higher uncertainty) has a higher probability of being significantly similar to other sequences in the database. Measuring uncertainty may be used for rapid screening for sequences with matches in available database, prioritizing computational resources, and indicating which sequences with no known similarities are likely to be important for more detailed analysis.

  7. The Legacy of 20th Century Phage Research.

    Science.gov (United States)

    Campbell, Allan M

    2010-09-01

    The Golden Age of Phage Research, where phage was the favored material for attacking many basic questions in molecular biology, lasted from about 1940 to 1970. The era was initiated by Ellis and Delbrück, whose analysis defined the relevant parameters to measure in studying phage growth, and depended on the fact that the contents of a plaque can comprise descendants of a single infecting particle. It ended around 1970 because definitive methods had then become available for answering the same questions in other systems. Some of the accomplishments of phage research were the demonstration by Hershey and Chase that the genetic material of phage T2 is largely composed of DNA, the construction of linkage maps of T2 and T4 by Hershey and Rotman and their extension to very short molecular distances by Benzer, and the isolation of conditionally lethal mutants in T4 by Epstein et al. and in λ by Campbell. The dissection of the phage life cycle into causal chains was explored by Edgar and Wood for T4 assembly and later in the regulation of lysogeny by Kaiser, extended to the molecular level by Ptashne and others. Restriction/modification was discovered in λ by Bertani and Weigle, and the biochemical mechanism was elucidated by Arber and by Smith.

  8. Phage therapy against Enterococcus faecalis in dental root canals

    Directory of Open Access Journals (Sweden)

    Leron Khalifa

    2016-09-01

    Full Text Available Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages. Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals.

  9. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    Directory of Open Access Journals (Sweden)

    Teerapong Yata

    2014-01-01

    Full Text Available Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage, viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage.

  10. Phage therapy against Enterococcus faecalis in dental root canals

    Science.gov (United States)

    Khalifa, Leron; Shlezinger, Mor; Beyth, Shaul; Houri-Haddad, Yael; Coppenhagen-Glazer, Shunit; Beyth, Nurit; Hazan, Ronen

    2016-01-01

    Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE) in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages). Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals. PMID:27640530

  11. Conserved termini and adjacent variable region of Twortlikevirus Staphylococcus phages

    Institute of Scientific and Technical Information of China (English)

    Xianglilan Zhang; Huaixing Kang; Yuyuan Li; Xiaodong Liu; Yu Yang; Shasha Li; Guangqian Pei; Qiang Sun; Peng Shu; Zhiqiang Mi; Yong Huang; Zhiyi Zhang; Yannan Liu; Xiaoping An; Xiaolu Xu; Yigang Tong

    2015-01-01

    Methicillin-resistant Staphylococcus aureus(MRSA) is an increasing cause of serious infection,both in the community and hospital settings. Despite sophisticated strategies and efforts, the antibiotic options for treating MRSA infection are narrowing because of the limited number of newly developed antimicrobials. Here, four newly-isolated MRSA-virulent phages, IME-SA1, IMESA2, IME-SA118 and IME-SA119, were sequenced and analyzed. Their genome termini were identified using our previously proposed "termini analysis theory". We provide evidence that remarkable conserved terminus sequences are found in IME-SA1/2/118/119, and, moreover, are widespread throughout Twortlikevirus Staphylococcus phage G1 and K species. Results also suggested that each phage of the two species has conserved 5′ terminus while the 3′ terminus is variable. More importantly, a variable region with a specific pattern was found to be present near the conserved terminus of Twortlikevirus S. phage G1 species. The clone with the longest variable region had variable terminus lengths in successive generations, while the clones with the shortest variable region and with the average length variable region maintained the same terminal length as themselves during successive generations. IME-SA1 bacterial infection experiments showed that the variation is not derived from adaptation of the phage to different host strains. This is the first study of the conserved terminus and variable region of Twortlikevirus S. phages.

  12. Preparation of cDNA libraries from vascular cells.

    Science.gov (United States)

    Lieb, M E; Taubman, M B

    1999-01-01

    The vast majority of past and present efforts in the molecular cloning of expressed sequences involve isolation of clones from cDNA libraries constructed in bacteriophage lambda (1,2). As discussed in Chapter 6 , screening these cDNA libraries using labeled probes remains the most straightforward method to isolate full length cDNAs for which some partial sequence information is known. Although the availability of high quality reagents and kits over the past decade has made the process of library construction increasingly straightforward, generation of high-quality libraries is a task that still requires a fair amount of dedicated effort. Because alternative PCR-based cloning strategies have become increasingly popular alternatives to cDNA library screening, it is useful to consider the advantages and disadvantages of each strategy before embarking on a project to construct a cDNA library (Table 1). In our opinion, it is worthwhile to construct a cDNA library when the transcript of interest is not exceedingly rare (i.e., can readily be detected by Northern blot analysis of total RNA), when multiple cDNAs will need to be cloned over a period of time, and in situations where occasional mutations can not be tolerated (for example, if the cDNA is to be expressed in mammalian cells to examine function). In situations where the transcript of interest is expressed at exceedingly low levels, or when only a single cDNA needs to be cloned, a PCR-based strategy should be considered. When the tissue source is precious (such as a unique clinical specimen), successful construction of a phage library provides a resource that can be amplified and used for multiple cloning projects over many years, but runs the risk of consuming the available RNA if the library construction fails. Table 1 Comparison of Relative Advantages of cDNA Cloning from Lambda Phage Libraries by Plaque Hybridization Compared to Newer PCR- Based Strategies Lambda phage cDNA library PCR-based strategy Freedom

  13. Phage-free peptide ELISA for ochratoxin A detection based on biotinylated mimotope as a competing antigen.

    Science.gov (United States)

    Zou, Xuqiang; Chen, Chaochao; Huang, Xiaolin; Chen, Xuelan; Wang, Lv; Xiong, Yonghua

    2016-01-01

    To perform the biopanning of a mimotope peptide with reduced affinity to anti-ochratoxin A (OTA) monoclonal antibodies (mAbs), we executed two improved biopanning approaches with a commercial 7-mer peptide library. In the first approach, anti-mouse IgG antibodies were used to erect the anti-OTA mAbs; in the second approach, an ultralow OTA concentration (0.1 ng/mL) was used to perform the competitive elution of phage particles. After the fourth round of biopanning was completed, 30 identified clones were positive phage particles; of these phage particles, 16 exhibited strong competitive inhibition with a low OTA concentration of 0.1 ng/mL. DNA sequencing results revealed that the 16 phage particles represented six different peptide sequences. Among these particles, the phage particle with a peptide sequence of "GMVQTIF" showed the highest sensitivity to OTA detection. The biotinylated 12-mer peptide "GMVQTIF-GGGSK-biotin" was designed as a competing antigen to develop a competitive peptide ELISA. Under the optimal parameters, the proposed peptide ELISA with the biotinylated 12-mer peptide as a competing antigen exhibited good dynamic linear detection for OTA in the range of 0.005 ng/mL-0.2 ng/mL with a detection limit of 0.001 ng/mL. The median inhibition concentration of OTA was 0.024 ng/mL (n=6), which is approximately fivefold more efficient as a competing antigen than the OTA-HRP conjugates. Reaction kinetics revealed that the biotinylated 12-mer peptide exhibited lower affinity to anti-OTA mAbs than the conventional chemical OTA antigen. The practicality of the proposed peptide ELISA was compared with a conventional ELISA method. In summary, this study demonstrated a novel concept of the development of phage-free peptide ELISA for the detection of OTA by using a biotinylated mimotope peptide as a competing antigen. This novel strategy can be applied to sensitively detect other toxic small molecules during food safety monitoring.

  14. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...... using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We...... therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages...

  15. Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors.

    Science.gov (United States)

    Horikawa, Shin; Bedi, Deepa; Li, Suiqiong; Shen, Wen; Huang, Shichu; Chen, I-Hsuan; Chai, Yating; Auad, Maria L; Bozack, Michael J; Barbaree, James M; Petrenko, Valery A; Chin, Bryan A

    2011-01-15

    One of the important applications for which phage-immobilized magnetoelastic (ME) biosensors are being developed is the wireless, on-site detection of pathogenic bacteria for food safety and bio-security. Until now, such biosensors have been constructed by immobilizing a landscape phage probe on gold-coated ME resonators via physical adsorption. Although the physical adsorption method is simple, the immobilization stability and surface coverage of phage probes on differently functionalized sensor surfaces need to be evaluated as a potential way to enhance the detection capabilities of the biosensors. As a model study, a filamentous fd-tet phage that specifically binds streptavidin was adsorbed on either bare or surface-functionalized gold-coated ME resonators. The surface functionalization was performed through the formation of three self-assembled monolayers with a different terminator, based on the sulfur-gold chemistry: AC (activated carboxy-terminated), ALD (aldehyde-terminated), and MT (methyl-terminated). The results, obtained by atomic force microscopy, showed that surface functionalization has a large effect on the surface phage coverage (46.8%, 49.4%, 4.2%, and 5.2% for bare, AC-, ALD-, and MT-functionalized resonators, respectively). In addition, a direct correlation of the observed surface phage coverage with the quantity of subsequently captured streptavidin-coated microbeads was found by scanning electron microscopy and by resonance frequency measurements of the biosensors. The differences in surface phage coverage on the differently functionalized surfaces may then be used to pattern the phage probe layer onto desired parts of the sensor surface to enhance the detection capabilities of ME biosensors.

  16. Design and construction of a new human naïve single-chain fragment variable antibody library, IORISS1.

    Science.gov (United States)

    Pasello, Michela; Zamboni, Silvia; Mallano, Alessandra; Flego, Michela; Picci, Piero; Cianfriglia, Maurizio; Scotlandi, Katia

    2016-04-20

    Human monoclonal antibodies are a powerful tool with increasingly successful exploitations and the single chain fragment variable format can be considered the building block for the implementation of more complex and effective antibody-based constructs. Phage display is one of the best and most efficient methods to isolate human antibodies selected from an efficient and variable phage display library. We report a method for the construction of a human naïve single-chain variable fragment library, termed IORISS1. Many different sets of oligonucleotide primers as well as optimized electroporation and ligation reactions were used to generate this library of 1.2×10(9) individual clones. The key difference is the diversity of variable gene templates, which was derived from only 15 non-immunized human donors. The method described here, was used to make a new human naïve single-chain fragment variable phage display library that represents a valuable source of diverse antibodies that can be used as research reagents or as a starting point for the development of therapeutics. Using biopanning, we determined the ability of IORISS1 to yield antibodies. The results we obtained suggest that, by using an optimized protocol, an efficient phage antibody library can be generated.

  17. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  18. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  19. Comparative Omics and Trait Analyses of Marine Pseudoalteromonas Phages Advance the Phage OTU Concept

    Directory of Open Access Journals (Sweden)

    Melissa B. Duhaime

    2017-07-01

    Full Text Available Viruses influence the ecology and evolutionary trajectory of microbial communities. Yet our understanding of their roles in ecosystems is limited by the paucity of model systems available for hypothesis generation and testing. Further, virology is limited by the lack of a broadly accepted conceptual framework to classify viral diversity into evolutionary and ecologically cohesive units. Here, we introduce genomes, structural proteomes, and quantitative host range data for eight Pseudoalteromonas phages isolated from Helgoland (North Sea, Germany and use these data to advance a genome-based viral operational taxonomic unit (OTU definition. These viruses represent five new genera and inform 498 unaffiliated or unannotated protein clusters (PCs from global virus metagenomes. In a comparison of previously sequenced Pseudoalteromonas phage isolates (n = 7 and predicted prophages (n = 31, the eight phages are unique. They share a genus with only one other isolate, Pseudoalteromonas podophage RIO-1 (East Sea, South Korea and two Pseudoalteromonas prophages. Mass-spectrometry of purified viral particles identified 12–20 structural proteins per phage. When combined with 3-D structural predictions, these data led to the functional characterization of five previously unidentified major capsid proteins. Protein functional predictions revealed mechanisms for hijacking host metabolism and resources. Further, they uncovered a hybrid sipho-myovirus that encodes genes for Mu-like infection rarely described in ocean systems. Finally, we used these data to evaluate a recently introduced definition for virus populations that requires members of the same population to have >95% average nucleotide identity across at least 80% of their genes. Using physiological traits and genomics, we proposed a conceptual model for a viral OTU definition that captures evolutionarily cohesive and ecologically distinct units. In this trait-based framework, sensitive hosts are

  20. COMBINATORIAL LIBRARIES

    DEFF Research Database (Denmark)

    1997-01-01

    The invention provides a method for the production of a combinatorial library of compound of general formula (I) using solid phase methodologies. The cleavage of the array of immobilised compounds of the phthalimido type from the solid support matrix is accomplished by using an array of dinucleop......The invention provides a method for the production of a combinatorial library of compound of general formula (I) using solid phase methodologies. The cleavage of the array of immobilised compounds of the phthalimido type from the solid support matrix is accomplished by using an array...... of dinucleophiles, e.g. hydrazines (hydrazinolysis) or N-hydroxylamines, whereby a combinatorial dimension is introduced in the cleavage step. The invention also provides a compound library....

  1. Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity.

    Science.gov (United States)

    Groves, Maria A T; Amanuel, Lily; Campbell, Jamie I; Rees, D Gareth; Sridharan, Sudharsan; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2014-01-01

    In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics.In our analyses, we observed distinct differences in the pattern of beneficial mutations in antibodies derived from phage and ribosome display selections, and discovered the lead antibody Jedi067 had a ~3700-fold improvement in KD over the parent KENB061. We constructed a homology model of the Fv region of Jedi067 to map the specific positions where mutations occurred in the CDR3 loops. For VL CDR3, positions 94 to 97 carry greater diversity in the ribosome display variants compared with the phage display. The positions 95a, 95b and 96 of VLCDR3 form part of the interface with VH in this model. The model shows that positions 96, 98, 100e, 100f, 100 g, 100h, 100i and 101 of the VHCDR3 include residues at the VH and VL interface. Importantly, Leu96 and Tyr98 are conserved at the interface positions in both phage and ribosome display indicating their importance in maintaining the VH-VL interface. For antibodies derived from ribosome display, there is significant diversity at residues 100a to 100f of the VH CDR3 compared with phage display. A unique deletion of isoleucine at position 102 of the lead candidate, Jedi067, also occurs in the VHCDR3.As anticipated, recombining the mutations via ribosome display led to a greater structural diversity, particularly in the heavy chain CDR3, which in turn

  2. Nanoscale bacteriophage biosensors beyond phage display.

    Science.gov (United States)

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  3. Nanoscale bacteriophage biosensors beyond phage display

    Directory of Open Access Journals (Sweden)

    Lee JW

    2013-10-01

    Full Text Available Jong-Wook Lee,1 Jangwon Song,1,2 Mintai P Hwang,1 Kwan Hyi Lee1,2 1Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea; 2Department of Biomedical Engineering, University of Science and Technology, Seoul, Korea Abstract: Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. Keywords: biosensing, M13 bacteriophage, T4 bacteriophage, bacterial detection, Escherichia coli, SPR sensor

  4. Nanoscale bacteriophage biosensors beyond phage display

    Science.gov (United States)

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. PMID:24143096

  5. Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages.

    Science.gov (United States)

    Niu, Yan D; McAllister, Tim A; Nash, John H E; Kropinski, Andrew M; Stanford, Kim

    2014-01-01

    The T1-like bacteriophages vB_EcoS_AHP24, AHS24, AHP42 and AKS96 of the family Siphoviridae were shown to lyse common phage types of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157:H7), but not non-O157 E. coli. All contained circularly permuted genomes of 45.7-46.8 kb (43.8-44 mol% G+C) encoding 74-81 open reading frames and 1 arginyl-tRNA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the structural proteins were identical among the four phages. Further proteomic analysis identified seven structural proteins responsible for tail fiber, tail tape measure protein, major capsid, portal protein as well as major and minor tail proteins. Bioinformatic analyses on the proteins revealed that genomes of AHP24, AHS24, AHP42 and AKS96 did not encode for bacterial virulence factors, integration-related proteins or antibiotic resistance determinants. All four phages were highly lytic to STEC O157:H7 with considerable potential as biocontrol agents. Comparative genomic, proteomic and phylogenetic analysis suggested that the four phages along with 17 T1-like phage genomes from database of National Center for Biotechnology Information (NCBI) can be assigned into a proposed subfamily "Tunavirinae" with further classification into five genera, namely "Tlslikevirus" (TLS, FSL SP-126), "Kp36likevirus" (KP36, F20), Tunalikevirus (T1, ADB-2 and Shf1), "Rtplikevirus" (RTP, vB_EcoS_ACG-M12) and "Jk06likevirus" (JK06, vB_EcoS_Rogue1, AHP24, AHS24, AHP42, AKS96, phiJLA23, phiKP26, phiEB49). The fact that the viruses related to JK06 have been isolated independently in Israel (JK06) (GenBank Assession #, NC_007291), Canada (vB_EcoS_Rogue1, AHP24, AHS24, AHP42, AKS96) and Mexico (phiKP26, phiJLA23) (between 2005 and 2011) indicates that these similar phages are widely distributed, and that horizontal gene transfer does not always prevent the characterization of bacteriophage evolution. With this new scheme, any new discovered phages with same type can be

  6. Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages.

    Directory of Open Access Journals (Sweden)

    Yan D Niu

    Full Text Available The T1-like bacteriophages vB_EcoS_AHP24, AHS24, AHP42 and AKS96 of the family Siphoviridae were shown to lyse common phage types of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157:H7, but not non-O157 E. coli. All contained circularly permuted genomes of 45.7-46.8 kb (43.8-44 mol% G+C encoding 74-81 open reading frames and 1 arginyl-tRNA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the structural proteins were identical among the four phages. Further proteomic analysis identified seven structural proteins responsible for tail fiber, tail tape measure protein, major capsid, portal protein as well as major and minor tail proteins. Bioinformatic analyses on the proteins revealed that genomes of AHP24, AHS24, AHP42 and AKS96 did not encode for bacterial virulence factors, integration-related proteins or antibiotic resistance determinants. All four phages were highly lytic to STEC O157:H7 with considerable potential as biocontrol agents. Comparative genomic, proteomic and phylogenetic analysis suggested that the four phages along with 17 T1-like phage genomes from database of National Center for Biotechnology Information (NCBI can be assigned into a proposed subfamily "Tunavirinae" with further classification into five genera, namely "Tlslikevirus" (TLS, FSL SP-126, "Kp36likevirus" (KP36, F20, Tunalikevirus (T1, ADB-2 and Shf1, "Rtplikevirus" (RTP, vB_EcoS_ACG-M12 and "Jk06likevirus" (JK06, vB_EcoS_Rogue1, AHP24, AHS24, AHP42, AKS96, phiJLA23, phiKP26, phiEB49. The fact that the viruses related to JK06 have been isolated independently in Israel (JK06 (GenBank Assession #, NC_007291, Canada (vB_EcoS_Rogue1, AHP24, AHS24, AHP42, AKS96 and Mexico (phiKP26, phiJLA23 (between 2005 and 2011 indicates that these similar phages are widely distributed, and that horizontal gene transfer does not always prevent the characterization of bacteriophage evolution. With this new scheme, any new discovered phages with same type

  7. Library rooms or Library halls

    Directory of Open Access Journals (Sweden)

    Alfredo Serrai

    2013-12-01

    Full Text Available Library Halls, understood as Renaissance and Baroque architectural creations, along with the furnishings and decorations, accomplish a cognitive task and serve to transmit knowledge. The design of these spaces based on the idea that they should reflect the merits and content of the collections housed within them, in order to prepare the mind of the reader to respect and admire the volumes. In accordance with this principle, in the fifteenth century library rooms had a basilican shape, with two or three naves, like churches, reflecting thus the spiritual value of the books contained there. Next to that inspiring function, library rooms had also the task of representing the entire logical and conceptual universe of human knowledge in a figurative way, including for this purpose also the and Kunst- und Wunderkammern, namely the collections of natural, artficial objects, and works of art. The importance of library rooms and their function was understood already in the early decades of the seventeenth century, as underlined in the treatise, Musei sive Bibliothecae tam privatae quam publicae Extructio, Instructio, Cura, Usus, written by the Jesuit Claude Clément and published in 1635. Almost the entire volume is dedicated to the decoration and ornamentation of the Saloni, and the function of the library is identified exclusively with the preservation and decoration of the collection, neglecting more specifically bibliographic aspects or those connected to library science. The architectural structure of the Saloni was destined to change in relation to two factors, namely the form of books, and the sources of light. As a consequence, from the end of the sixteenth century – or perhaps even before if one considers the fragments of the Library of Urbino belonging to Federico da Montefeltro – shelves and cabinets have been placed no longer in the center of the room, but were set against the walls. This new disposition of the furniture, surmounted by

  8. Phage display selection on whole cells yields a small peptide specific for HCV receptor human CD81

    Institute of Scientific and Technical Information of China (English)

    JIE CAO; PING ZHAO; X1AO HUI MIAO; LAN JUAN ZHAO; LI JUN XUE; ZHONG TIAN QI

    2003-01-01

    The human CD81(hCD81),the most recently proposed receptor of hepatitis C virus(HCV),can especifically bind to HCV envelope glycoprotein 2(E2).In this study,hCD81-expressing murine NIH/3T3 cells were used to select hCD81-binding peptides from a phage displayed nonapeptide library(PVIII9aaCys).Eighteen of the 75clones selected from the library showed specific binding to the hCD81-expressing NIH/3T3 cells by enzyme linked immunosorbent assay(ELISA)and competitive inhibition test.Twelve out of the 18 clones shared the amino acid motif SPQYWTGPA.Sequence comparison of the motif showed no amino acid homology with the native HCV E2.The motif-containing phages could competitively inhibit the ability of HCV E2 binding to native hCD81-expressing MOLT-4 cells,and induce HCV E2 specific immune response in vivo.These results suggest that the selected motif SPQYWTGPA should be a mimotope of HCV E2 to bind to hCD81 molecules.Our findings cast new light on developing HCV receptor antagonists.

  9. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets?

    Science.gov (United States)

    Abedon, Stephen T

    2016-02-01

    Robust evidence is somewhat lacking for biofilm susceptibility to bacteriophages in nature, contrasting often substantial laboratory biofilm vulnerability to phages. To help bridge this divide, I review a two-part scenario for 'heterogeneous' phage interaction even with phage-permissive single-species biofilms. First, through various mechanisms, those bacteria which are both more newly formed and located at biofilm surfaces may be particularly vulnerable to phage adsorption, rather than biofilm matrix being homogeneously resistant to phage penetration. Second, though phage infection of older, less metabolically active bacteria may still be virion productive, nevertheless the majority of phage population growth in association with biofilm bacteria could involve infection particularly of those bacteria which are more metabolically active and thereby better able to support larger phage bursts, versus clonally related biofilm bacteria equivalently supporting phage production. To the extent that biofilms are physiologically or structurally heterogeneous, with phages exploiting particularly relatively newly divided biofilm-surface bacteria, then even effective phage predation of natural biofilms could result in less than complete overall biofilm clearance. Phage tendencies toward only partial exploitation of even single-species biofilms could be consistent with observations that chronic bacterial infections in the clinic can require more aggressive or extensive phage therapy to eradicate.

  10. Impact of a Single Phage and a Phage Cocktail Application in Broilers on Reduction of Campylobacter jejuni and Development of Resistance

    Science.gov (United States)

    Fischer, Samuel; Kittler, Sophie; Klein, Günter; Glünder, Gerhard

    2013-01-01

    Campylobacteriosis is currently the most frequent foodborne zoonosis in many countries. One main source is poultry. The aim of this study was to enhance the knowledge about the potential of bacteriophages in reducing colonization of broilers with Campylobacter , as there are only a few in vivo studies published. Commercial broilers were inoculated with 104 CFU/bird of a Campylobacter jejuni field strain. Groups of 88 birds each were subsequently treated with a single phage or a four-phage cocktail (107 PFU/bird in CaCO3 buffered SM-Buffer). Control birds received the solvent only. Afterwards, subgroups of eleven birds each were examined for their loads with phages and Campylobacter on day 1, 3, 7, 14, 21, 28, 35 and 42 after phage application. The susceptibility of the Campylobacter population to phage infection was determined using ten isolates per bird. In total 4180 re-isolates were examined. The study demonstrated that the deployed phages persisted over the whole investigation period. The Campylobacter load was permanently reduced by the phage-cocktail as well as by the single phage. The reduction was significant between one and four weeks after treatment and reached a maximum of log10 2.8 CFU/g cecal contents. Phage resistance rates of initially up to 43% in the single phage treated group and 24% in the cocktail treated group later stabilized at low levels. The occurrence of phage resistance influenced but did not override the Campylobacter reducing effect. Regarding the reduction potential, the cocktail treatment had only a small advantage over the singe phage treatment directly after phage administration. However, the cocktail moderated and delayed the emergence of phage resistance. PMID:24205254

  11. Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range

    DEFF Research Database (Denmark)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio

    2014-01-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in di...

  12. YMC-2011, a Temperate Phage of Streptococcus salivarius 57.I.

    Science.gov (United States)

    Chou, Wen-Chun; Huang, Szu-Chuan; Chiu, Cheng-Hsun; Chen, Yi-Ywan M

    2017-03-15

    Streptococcus salivarius is an abundant isolate of the oral cavity. The genome of S. salivarius 57.I consists of a 2-Mb chromosome and a 40,758-bp circular molecule, designated YMC-2011. Annotation of YMC-2011 revealed 55 open reading frames, most of them associated with phage production, although plaque formation is not observed in S. salivarius 57.I after lytic induction using mitomycin C. Results from Southern hybridization and quantitative real-time PCR confirmed that YMC-2011 exists extrachromosomally, with an estimated copy number of 3 to 4. Phage particles were isolated from the supernatant of mitomycin C-treated S. salivarius 57.I cultures, and transmission electron microscopic examination indicated that YMC-2011 belongs to the Siphoviridae family. Phylogenetic analysis suggests that phage YMC-2011 and the cos-type phages of Streptococcus thermophilus originated from a common ancestor. An extended -10 element (p L ) and a σ(70)-like promoter (p R ) were mapped 5' to Ssal_phage00013 (encoding a CI-like repressor) and Ssal_phage00014 (encoding a hypothetical protein), respectively, using 5' rapid amplification of cDNA ends, indicating that YMC-2011 transcribes at least two mRNAs in opposite orientations. Studies using promoter-chloramphenicol acetyltransferase reporter gene fusions revealed that p R , but not p L , was sensitive to mitomycin C induction, suggesting that the switch from lysogenic growth to lytic growth was controlled mainly by the activity of these two promoters. In conclusion, a lysogenic state is maintained in S. salivarius 57.I, presumably by the repression of genes encoding proteins for lytic growth.IMPORTANCE The movement of mobile genetic elements such as bacteriophages and the establishment of lysogens may have profound effects on the balance of microbial ecology where lysogenic bacteria reside. The discovery of phage YMC-2011 from Streptococcus salivarius 57.I suggests that YMC-2011 and Streptococcus thermophilus-infecting phages

  13. A general strategy for antibody library screening via conversion of transient target binding into permanent reporter deposition.

    Science.gov (United States)

    Maaß, Alexander; Heiseler, Tim; Maaß, Franziska; Fritz, Janine; Hofmeyer, Thomas; Glotzbach, Bernhard; Becker, Stefan; Kolmar, Harald

    2014-02-01

    We report here a generally applicable method for the selective covalent attachment of a reporter molecule to a replicating entity that allows one to obtain specific binders from a single round of library screening. We show that selective biotinylation of phage particles displaying a binder to any given target can be achieved by application of a coupled enzyme reaction on the surface of the target-binding phage particles that includes a peroxidase, an oxidase and a catalase. Due to the covalent linkage of biotin together with the tight and stable interaction of biotin with streptavidin, very stringent wash conditions for removal of nonspecific binders can be applied. The method termed (3)CARD (triple catalytic reporter deposition) was successfully applied to single-round screening of a phage display library of camelid single-domain antibodies against three different target proteins.

  14. Ricin Detection Using Phage Displayed Single Domain Antibodies

    Directory of Open Access Journals (Sweden)

    Ellen R. Goldman

    2009-01-01

    Full Text Available Phage-displayed single domain antibodies (sdAb were compared to monomeric solubly expressed sdAb and llama polyclonal antibodies for the detection of ricin. SdAb are comprised of the variable domain derived from camelid heavy chain only antibodies (HcAb. Although HcAb lack variable light chains, they as well as their derivative sdAb are able to bind antigens with high affinity. The small size of sdAb (~16 kDa, while advantageous in many respects, limits the number of labels that can be incorporated. The ability to incorporate multiple labels is a beneficial attribute for reporter elements. Opportunely, sdAb are often selected using phage display methodology. Using sdAb displayed on bacteriophage M13 as the reporter element gives the potential for incorporating a very high number of labels. We have demonstrated the use of both sdAb and phage- displayed sdAb for the detection of ricin using both enzyme linked immunosorbent assays (ELISAs and Luminex fluid array assays. The phage-displayed sdAb led to five to ten fold better detection of ricin in both the ELISA and Luminex assays, resulting in limits of detection of 1 ng/mL and 64 pg/mL respectively. The phage-displayed sdAb were also dramatically more effective for the visualization of binding to target in nitrocellulose dot blot assays, a method frequently used for epitope mapping.

  15. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform.

    Directory of Open Access Journals (Sweden)

    Graham F Hatfull

    2006-06-01

    Full Text Available Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774 of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three-encoding tape-measure proteins, lysins, and minor tail proteins-are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15% have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education.

  16. Strain diversity and phage resistance in complex dairy starter cultures.

    Science.gov (United States)

    Spus, M; Li, M; Alexeeva, S; Wolkers-Rooijackers, J C M; Zwietering, M H; Abee, T; Smid, E J

    2015-08-01

    The compositional stability of the complex Gouda cheese starter culture Ur is thought to be influenced by diversity in phage resistance of highly related strains that co-exist together with bacteriophages. To analyze the role of bacteriophages in maintaining culture diversity at the level of genetic lineages, simple blends of Lactococcus lactis strains were made and subsequently propagated for 152 generations in the absence and presence of selected bacteriophages. We first screened 102 single-colony isolates (strains) from the complex cheese starter for resistance to bacteriophages isolated from this starter. The collection of isolates represents all lactococcal genetic lineages present in the culture. Large differences were found in bacteriophage resistance among strains belonging to the same genetic lineage and among strains from different lineages. The blends of strains were designed such that 3 genetic lineages were represented by strains with different levels of phage resistance. The relative abundance of the lineages in blends with phages was not stable throughout propagation, leading to continuous changes in composition up to 152 generations. The individual resistance of strains to phage predation was confirmed as one of the factors influencing starter culture diversity. Furthermore, loss of proteolytic activity of initially proteolytic strains was found. Reconstituted blends with only 4 strains with a variable degree of phage resistance showed complex behavior during prolonged propagation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Nongenetic individuality in the host-phage interaction.

    Directory of Open Access Journals (Sweden)

    Sivan Pearl

    2008-05-01

    Full Text Available Isogenic bacteria can exhibit a range of phenotypes, even in homogeneous environmental conditions. Such nongenetic individuality has been observed in a wide range of biological processes, including differentiation and stress response. A striking example is the heterogeneous response of bacteria to antibiotics, whereby a small fraction of drug-sensitive bacteria can persist under extensive antibiotic treatments. We have previously shown that persistent bacteria enter a phenotypic state, identified by slow growth or dormancy, which protects them from the lethal action of antibiotics. Here, we studied the effect of persistence on the interaction between Escherichia coli and phage lambda. We used long-term time-lapse microscopy to follow the expression of green fluorescent protein (GFP under the phage lytic promoter, as well as cellular fate, in single infected bacteria. Intriguingly, we found that, whereas persistent bacteria are protected from prophage induction, they are not protected from lytic infection. Quantitative analysis of gene expression reveals that the expression of lytic genes is suppressed in persistent bacteria. However, when persistent bacteria switch to normal growth, the infecting phage resumes the process of gene expression, ultimately causing cell lysis. Using mathematical models for these two host-phage interactions, we found that the bacteria's nongenetic individuality can significantly affect the population dynamics, and might be relevant for understanding the coevolution of bacterial hosts and phages.

  18. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae.

    Science.gov (United States)

    Grose, Julianne H; Casjens, Sherwood R

    2014-11-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.

  19. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina;

    2015-01-01

    were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according......In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...... therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages...

  20. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae

    Science.gov (United States)

    Grose, Julianne H.; Casjens, Sherwood R.

    2014-01-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328

  1. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage.

    Science.gov (United States)

    Hendrix, R W; Smith, M C; Burns, R N; Ford, M E; Hatfull, G F

    1999-03-01

    We report DNA and predicted protein sequence similarities, implying homology, among genes of double-stranded DNA (dsDNA) bacteriophages and prophages spanning a broad phylogenetic range of host bacteria. The sequence matches reported here establish genetic connections, not always direct, among the lambdoid phages of Escherichia coli, phage phiC31 of Streptomyces, phages of Mycobacterium, a previously unrecognized cryptic prophage, phiflu, in the Haemophilus influenzae genome, and two small prophage-like elements, phiRv1 and phiRv2, in the genome of Mycobacterium tuberculosis. The results imply that these phage genes, and very possibly all of the dsDNA tailed phages, share common ancestry. We propose a model for the genetic structure and dynamics of the global phage population in which all dsDNA phage genomes are mosaics with access, by horizontal exchange, to a large common genetic pool but in which access to the gene pool is not uniform for all phage.

  2. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.

    Science.gov (United States)

    Krylov, Victor N

    2014-01-01

    Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.

  3. Coexistence of phage and bacteria on the boundary of self-organized refuges

    DEFF Research Database (Denmark)

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2012-01-01

    , bacteria have stably coexisted with virulent phages for eons. Here, using individual-based stochastic spatial models, we study the conditions for achieving coexistence on the edge between two habitats, one of which is a bacterial refuge with conditions hostile to phage whereas the other is phage friendly...... but difficult to achieve together in nonspatial ecosystem models: (i) highly efficient virulent phage with relatively long lifetimes, high infection rates and large burst sizes; (ii) large, stable, and high-density populations of phage and bacteria; (iii) a fast turnover of both phage and bacteria; and (iv......Bacteriophage are voracious predators of bacteria and a major determinant in shaping bacterial life strategies. Many phage species are virulent, meaning that infection leads to certain death of the host and immediate release of a large batch of phage progeny. Despite this apparent voraciousness...

  4. Three of a Kind: Genetically Similar Tsukamurella Phages TIN2, TIN3, and TIN4.

    Science.gov (United States)

    Dyson, Zoe A; Tucci, Joseph; Seviour, Robert J; Petrovski, Steve

    2015-10-01

    Three Tsukamurella phages, TIN2, TIN3, and TIN4, were isolated from activated sludge treatment plants located in Victoria, Australia, using conventional enrichment techniques. Illumina and 454 whole-genome sequencing of these Siphoviridae viruses revealed that they had similar genome sequences, ranging in size between 76,268 bp and 76,964 bp. All three phages shared 74% nucleotide sequence identity to the previously described Gordonia phage GTE7. Genome sequencing suggested that phage TIN3 had suffered a mutation in one of its lysis genes compared to the sequence of phage TIN4, to which it is genetically very similar. Mass spectroscopy data showed the unusual presence of a virion structural gene in the DNA replication module of phage TIN4, disrupting the characteristic modular genome architecture of Siphoviridae phages. All three phages appeared highly virulent on strains of Tsukamurella inchonensis and Tsukamurella paurometabola. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis--case report

    National Research Council Canada - National Science Library

    Letkiewicz, S; Miedzybrodzki, R; Fortuna, W; Weber-Dabrowska, B; Górski, A

    2009-01-01

    The treatment of three patients suffering from chronic bacterial prostatitis who were qualified for an experimental phage therapy protocol managed at the Phage Therapy Unit in Wrocław is described...

  6. Phage therapy for plant disease control with a focus on fire blight

    National Research Council Canada - National Science Library

    Nagy, Judit Kolozsvári; Király, Lóránt; Schwarczinger, Ildikó

    2012-01-01

    .... Although research on phage-based biopesticides temporarily stopped with the advent of antibiotics, the appearance of antibiotic resistant bacterial strains led to a renewed interest in phage therapy...

  7. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid

    Science.gov (United States)

    Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.

    2015-01-01

    ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long

  8. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    Science.gov (United States)

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  9. Influence of environmental factors on phage-bacteria interaction and on the efficacy and infectivity of phage P100

    Directory of Open Access Journals (Sweden)

    Susanne Fister

    2016-07-01

    Full Text Available When using bacteriophages to control food-borne bacteria in food production plants and processed food, it is crucial to consider that environmental conditions influence their stability. These conditions can also affect the physiological state of bacteria and consequently host-virus interaction and the effectiveness of the phage ability to reduce bacteria numbers. In this study we investigated the stability, binding and replication capability of phage P100 and its efficacy to control L. monocytogenes under conditions typically encountered in dairy plants. The influences of SDS, Lutensol AO 7, salt, smear water and different temperatures were investigated. Results indicate that phage P100 is stable and able to bind to the host under most conditions tested. Replication was dependent upon the growth of L. monocytogenes and efficacy was higher when bacterial growth was reduced by certain environmental conditions. In long-term experiments at different temperatures phages were initially able to reduce bacteria up to seven log10 units after two weeks at 4 °C. However, thereafter re-growth and development of phage-resistant L. monocytogenes isolates were encountered.

  10. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Directory of Open Access Journals (Sweden)

    Kempashanaiah Nanjundappa

    2011-08-01

    Full Text Available Abstract Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80. Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host

  11. Library news

    CERN Multimedia

    CERN Library

    2010-01-01

    The CERN Library has been providing electronic access to the "Techniques de l'Ingénieur" database for the past 8 months. As a reminder, this is a multidisciplinary database of over 4000 technical and scientific articles in French, covering a broad range of topics such as mechanical engineering, safety, electronics and the environment. In a few simple steps, you can create your own account, select the types of documents you are interested in and configure your settings so as to receive alerts when articles in your field of activity are published. You can now access this resource from outside CERN using the "remote access to electronic resources" service. Further information is available here. Direct access to the database. Remote access to electronic resources. If you have any questions or comments, don't hesitate to contact us at: library.desk@cern.ch.

  12. WORKPLACE SOCIAL SUPPORT AND WORK–FAMILY CONFLICT: A META-ANALYSIS CLARIFYING THE INFLUENCE OF GENERAL AND WORK–FAMILY-SPECIFIC SUPERVISOR AND ORGANIZATIONAL SUPPORT

    Science.gov (United States)

    KOSSEK, ELLEN ERNST; PICHLER, SHAUN; BODNER, TODD; HAMMER, LESLIE B.

    2011-01-01

    This article uses meta-analysis to develop a model integrating research on relationships between employee perceptions of general and work–family-specific supervisor and organizational support and work–family conflict. Drawing on 115 samples from 85 studies comprising 72,507 employees, we compared the relative influence of 4 types of workplace social support to work–family conflict: perceived organizational support (POS); supervisor support; perceived organizational work–family support, also known as family-supportive organizational perceptions (FSOP); and supervisor work–family support. Results show work–family-specific constructs of supervisor support and organization support are more strongly related to work–family conflict than general supervisor support and organization support, respectively. We then test a mediation model assessing the effects of all measures at once and show positive perceptions of general and work–family-specific supervisor indirectly relate to work–family conflict via organizational work–family support. These results demonstrate that work–family-specific support plays a central role in individuals’ work–family conflict experiences. PMID:21691415

  13. Library Benchmarking

    Directory of Open Access Journals (Sweden)

    Wiji Suwarno

    2017-02-01

    Full Text Available The term benchmarking has been encountered in the implementation of total quality (TQM or in Indonesian termed holistic quality management because benchmarking is a tool to look for ideas or learn from the library. Benchmarking is a processof measuring and comparing for continuous business process of systematic and continuous measurement, the process of measuring and comparing for continuous business process of an organization to get information that can help these organization improve their performance efforts.

  14. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data.

    Science.gov (United States)

    Garneau, Julian R; Depardieu, Florence; Fortier, Louis-Charles; Bikard, David; Monot, Marc

    2017-08-15

    The worrying rise of antibiotic resistance in pathogenic bacteria is leading to a renewed interest in bacteriophages as a treatment option. Novel sequencing technologies enable description of an increasing number of phage genomes, a critical piece of information to understand their life cycle, phage-host interactions, and evolution. In this work, we demonstrate how it is possible to recover more information from sequencing data than just the phage genome. We developed a theoretical and statistical framework to determine DNA termini and phage packaging mechanisms using NGS data. Our method relies on the detection of biases in the number of reads, which are observable at natural DNA termini compared with the rest of the phage genome. We implemented our method with the creation of the software PhageTerm and validated it using a set of phages with well-established packaging mechanisms representative of the termini diversity, i.e. 5'cos (Lambda), 3'cos (HK97), pac (P1), headful without a pac site (T4), DTR (T7) and host fragment (Mu). In addition, we determined the termini of nine Clostridium difficile phages and six phages whose sequences were retrieved from the Sequence Read Archive. PhageTerm is freely available (https://sourceforge.net/projects/phageterm), as a Galaxy ToolShed and on a Galaxy-based server (https://galaxy.pasteur.fr).

  15. Design of Ligands for Affinity Purification of G-CSF Based on Peptide Ligands Derived from a Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Combinatorial peptide libraries have become powerful tools to screen functional ligands by the principle of affinity selection. We screened in a phage peptide library to investigate potential peptide affinity ligands for the purification of human granulocyte colony-stimulation factor(hG-CSF). Peptide ligands will be promising to replace monoclonal antibodies as they have advantages of high stability, efficiency, selectivity and low price.

  16. The diverse genetic switch of enterobacterial and marine telomere phages.

    Science.gov (United States)

    Hammerl, Jens A; Jäckel, Claudia; Funk, Eugenia; Pinnau, Sabrina; Mache, Christin; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the enterobacterial telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator, similar to CI, Cro and Q of lambda, respectively. Moreover, N15 and ϕKO2 contain 3 related operator (OR) sites between cI and cro, while only one site (OR3) has been detected in PY54. Marine telomere phages possess a putative cI gene but not a cro-like gene. Instead, a gene is located at the position of cro, whose product shows some similarity to the PY54 ORF42 product, the function of which is unknown. We have determined the transcription start sites of the predicted repressor genes of N15, PY54, ϕKO2 and of the marine telomere phage VP58.5. The influence of the genes on phage propagation was analyzed in E. coli, Y. enterocolitica and V.parahaemolyticus. We show that the repressors and antiterminators of N15, ϕKO2 and PY54 exerted their predicted activities. However, while the proteins of both N15 and ϕKO2 affected lysis and lysogeny by N15, they did not affect PY54 propagation. On the other hand, the respective PY54 proteins exclusively influenced the propagation of this phage. The immB region of VP58.5 contains 2 genes that revealed prophage repressor activity, while a lytic repressor gene could not be identified. The results indicate an unexpected diversity of the growth regulation mechanisms in these temperate phages.

  17. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina;

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...

  18. Effect of Bacteriophages on the Growth of Flavobacterium psychrophilum and Development of Phage-Resistant Strains

    DEFF Research Database (Denmark)

    Christiansen, Rói Hammershaimb; Madsen, Lone; Dalsgaard, Inger;

    2016-01-01

    The controlling effect of single and multiple phages on the density of Flavobacterium psychrophilum at different initial multiplicity of infection (MOI) was assessed in batch cultures to explore the potential for phage-based treatment of this important fish pathogen. A high initial phage concentr...

  19. Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes

    Directory of Open Access Journals (Sweden)

    Ramy Karam Aziz

    2015-05-01

    Full Text Available Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set of publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. We propose adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.

  20. Phage mutations in response to CRISPR diversification in a bacterial population.

    Science.gov (United States)

    Sun, Christine L; Barrangou, Rodolphe; Thomas, Brian C; Horvath, Philippe; Fremaux, Christophe; Banfield, Jillian F

    2013-02-01

    Interactions between bacteria and their coexisting phage populations impact evolution and can strongly influence biogeochemical processes in natural ecosystems. Periodically, mutation or migration results in exposure of a host to a phage to which it has no immunity; alternatively, a phage may be exposed to a host it cannot infect. To explore the processes by which coexisting, co-evolving hosts and phage populations establish, we cultured Streptococcus thermophilus DGCC7710 with phage 2972 and tracked CRISPR (clustered regularly interspaced short palindromic repeats) diversification and host-phage co-evolution in a population derived from a colony that acquired initial CRISPR-encoded immunity. After 1 week of co-culturing, the coexisting host-phage populations were metagenomically characterized using 454 FLX Titanium sequencing. The evolved genomes were compared with reference genomes to identify newly incorporated spacers in S. thermophilus DGCC7710 and recently acquired single-nucleotide polymorphisms (SNPs) in phage 2972. Following phage exposure, acquisition of immune elements (spacers) led to a genetically diverse population with multiple subdominant strain lineages. Phage mutations that circumvented three early immunization events were localized in the proto-spacer adjacent motif (PAM) or near the PAM end of the proto-spacer, suggesting a strong selective advantage for the phage that mutated in this region. The sequential fixation or near fixation of these single mutations indicates selection events so severe that single phage genotypes ultimately gave rise to all surviving lineages and potentially carried traits unrelated to immunity to fixation.

  1. Complete Genome Sequence of Escherichia Phage ADB-2 Isolated from a Fecal Sample of Poultry.

    Science.gov (United States)

    Bhensdadia, D V; Bhimani, H D; Rawal, C M; Kothari, V V; Raval, V H; Kothari, C R; Patel, A B; Bhatt, V D; Parmar, N R; Sajnani, M R; Koringa, P G; Joshi, C G; Singh, S P; Kothari, R K

    2013-03-14

    Escherichia phage ADB-2 was isolated from a chicken fecal sample. It is a virulent phage and shows effective inhibition of Escherichia coli strains. Here we announce the completely sequenced genome of Escherichia phage ADB-2, and major findings from its annotation are described.

  2. Selective posttranslational modification of phage-displayed polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-02-05

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  3. Selective posttranslational modification of phage-displayed polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-11-19

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  4. MimoDB: a New Repository for Mimotope Data Derived from Phage Display Technology

    Directory of Open Access Journals (Sweden)

    Xianlong Wang

    2010-11-01

    Full Text Available Peptides selected from phage-displayed random peptide libraries are valuable in two aspects. On one hand, these peptides are candidates for new diagnostics, therapeutics and vaccines. On the other hand, they can be used to predict the networks or sites of protein-protein interactions. MimoDB, a new repository for these peptides, was developed, in which 10,716 peptides collected from 571 publications were grouped into 1,229 sets. Besides peptide sequences, other important information, such as the target, template, library and complex structure, was also included. MimoDB can be browsed and searched through a user-friendly web interface. For computational biologists, MimoDB can be used to derive customized data sets and benchmarks, which are useful for new algorithm development and tool evaluation. For experimental biologists, their results can be searched against the MimoDB database to exclude possible target-unrelated peptides. The MimoDB database is freely accessible at http://immunet.cn/mimodb/.

  5. Exploiting Nanobodies in the Detection and Quantification of Human Growth Hormone via Phage-Sandwich Enzyme-Linked Immunosorbent Assay

    Directory of Open Access Journals (Sweden)

    Hossam Murad

    2017-05-01

    Full Text Available BackgroundMonitoring blood levels of human growth hormone (hGH in most children with short stature deficiencies is crucial for taking a decision of treatment with extended course of daily and expensive doses of recombinant hGH (rhGH or Somatropin®. Besides, misusing of rhGH by sportsmen is banned by the World Anti-Doping Agency and thus sensitive GH-detecting methods are highly welcome in this field. Nanobodies are the tiniest antigen-binding entity derived from camel heavy chain antibodies. They were successfully generated against numerous antigens including hormones.MethodsA fully nanobody-based sandwich ELISA method was developed in this work for direct measurement of GH in biological samples.ResultsTwo major characteristics of nanobody were exploited for this goal: the robust and stable structure of the nanobody (NbGH04 used to capture hGH from tested samples, and the great ability of tailoring, enabling the display of the anti-GH detector nanobody (NbGH07 on the tip of M13-phage. Such huge, stable, and easy-to-prepare phage-Nb was used in ELISA to provide an amplified signal. Previously, NbGH04 was retrieved on immobilized hGH by phage display from a wide “immune” cDNA library prepared from a hGH-immunized camel. Here, and in order to assure epitope heterogeneity, NbGH07 was isolated from the same library using NbGH04-captured hGH as bait. Interaction of both nanobodies with hGH was characterized and compared with different anti-GH nanobodies and antibodies. The sensitivity (~0.5 ng/ml and stability of the nanobody-base sandwich ELISA were assessed using rhGH before testing in the quantification of hGH in blood sera and cell culture supernatants.ConclusionIn regard to all advantages of nanobodies; stability, solubility, production affordability in Escherichia coli, and gene tailoring, nanobody-based phage sandwich ELISA developed here would provide a valuable method for hGH detection and quantification.

  6. Exploiting Nanobodies in the Detection and Quantification of Human Growth Hormone via Phage-Sandwich Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Murad, Hossam; Assaad, Jana Mir; Al-Shemali, Rasha; Abbady, Abdul Qader

    2017-01-01

    Monitoring blood levels of human growth hormone (hGH) in most children with short stature deficiencies is crucial for taking a decision of treatment with extended course of daily and expensive doses of recombinant hGH (rhGH or Somatropin(®)). Besides, misusing of rhGH by sportsmen is banned by the World Anti-Doping Agency and thus sensitive GH-detecting methods are highly welcome in this field. Nanobodies are the tiniest antigen-binding entity derived from camel heavy chain antibodies. They were successfully generated against numerous antigens including hormones. A fully nanobody-based sandwich ELISA method was developed in this work for direct measurement of GH in biological samples. Two major characteristics of nanobody were exploited for this goal: the robust and stable structure of the nanobody (NbGH04) used to capture hGH from tested samples, and the great ability of tailoring, enabling the display of the anti-GH detector nanobody (NbGH07) on the tip of M13-phage. Such huge, stable, and easy-to-prepare phage-Nb was used in ELISA to provide an amplified signal. Previously, NbGH04 was retrieved on immobilized hGH by phage display from a wide "immune" cDNA library prepared from a hGH-immunized camel. Here, and in order to assure epitope heterogeneity, NbGH07 was isolated from the same library using NbGH04-captured hGH as bait. Interaction of both nanobodies with hGH was characterized and compared with different anti-GH nanobodies and antibodies. The sensitivity (~0.5 ng/ml) and stability of the nanobody-base sandwich ELISA were assessed using rhGH before testing in the quantification of hGH in blood sera and cell culture supernatants. In regard to all advantages of nanobodies; stability, solubility, production affordability in Escherichia coli, and gene tailoring, nanobody-based phage sandwich ELISA developed here would provide a valuable method for hGH detection and quantification.

  7. Dormitory libraries: libraries in dormitories

    Directory of Open Access Journals (Sweden)

    Peter Pavletič

    2004-01-01

    Full Text Available Dormitory libries are not justly treated in Slovenia. They have a double purpose: to develop student literacy, especially reading, critical and creative competence and, moreover, to provide students with opportunities for learning and active spending of free-time. This is made possible by means of a good collection of expertly arranged library material, which is regulary updated and presented to its users, both students and tutors alike. A questionnaire has helped us to find out that libraries in secondary school dormitories carry out their work rather successfully, especially from the viewpoint of poor facilities. The major problems are, nevertheless, the appropriate qualifications of those who fill the posts of librarian and low financial resources. Therefore, such activities should be thoroughly analysed and reconsidered in terms of possible effective solutions, if we want to at least maintain them, let alone develop them.

  8. Libraries for users services in academic libraries

    CERN Document Server

    Alvite, Luisa

    2010-01-01

    This book reviews the quality and evolution of academic library services. It revises service trends offered by academic libraries and the challenge of enhancing traditional ones such as: catalogues, repositories and digital collections, learning resources centres, virtual reference services, information literacy and 2.0 tools.studies the role of the university library in the new educational environment of higher educationrethinks libraries in academic contextredefines roles for academic libraries

  9. Marine phages as excellent tracers for reactive colloidal transport in porous media

    Science.gov (United States)

    Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2016-04-01

    Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and

  10. Use of phage display to identify novel mineralocorticoid receptor-interacting proteins.

    Science.gov (United States)

    Yang, Jun; Fuller, Peter J; Morgan, James; Shibata, Hirotaka; McDonnell, Donald P; Clyne, Colin D; Young, Morag J

    2014-09-01

    The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter.

  11. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology.

    Directory of Open Access Journals (Sweden)

    Vasileios Askoxylakis

    Full Text Available UNLABELLED: Carbonic anhydrase IX (CAIX is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. METHODS: Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC. Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. RESULTS: In vitro binding experiments of (125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. CONCLUSIONS: These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.

  12. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.

    Science.gov (United States)

    Soares, Tatiane Sanches; Soares Torquato, Ricardo Jose; Alves Lemos, Francisco Jose; Tanaka, Aparecida Sadae

    2013-01-01

    Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.

  13. Phage display against corneal epithelial cells produced bioactive peptides that inhibit Aspergillus adhesion to the corneas.

    Directory of Open Access Journals (Sweden)

    Ge Zhao

    Full Text Available Dissection of host-pathogen interactions is important for both understanding the pathogenesis of infectious diseases and developing therapeutics for the infectious diseases like various infectious keratitis. To enhance the knowledge about pathogenesis infectious keratitis, a random 12-mer peptide phage display library was screened against cultured human corneal epithelial cells (HCEC. Fourteen sequences were obtained and BLASTp analysis showed that most of their homologue counterparts in GenBank were for defined or putative proteins in various pathogens. Based on known or predicted functions of the homologue proteins, ten synthetic peptides (Pc-A to Pc-J were measured for their affinity to bind cells and their potential efficacy to interfere with pathogen adhesion to the cells. Besides binding to HCEC, most of them also bound to human corneal stromal cells and umbilical endothelial cells to different extents. When added to HCEC culture, the peptides induced expression of MyD88 and IL-17 in HCEC, and the stimulated cell culture medium showed fungicidal potency to various extents. While peptides Pc-C and Pc-E inhibited Aspergillus fumigatus (A.f adhesion to HCEC in a dose-dependent manner, the similar inhibition ability of peptides Pc-A and Pc-B required presence of their homologue ligand Alb1p on A.f. When utilized in an eyeball organ culture model and an in vivo A.f keratitis model established in mouse, Pc-C and Pc-E inhibited fungal adhesion to corneas, hence decreased corneal disruption caused by inflammatory infiltration. Affinity pull-down of HCEC membrane proteins with peptide Pc-C revealed several molecules as potential receptors for this peptide. In conclusion, besides proving that phage display-selected peptides could be utilized to interfere with adhesion of pathogens to host cells, hence could be exploited for managing infectious diseases including infectious keratitis, we also proposed that the phage display technique and the

  14. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    together these data suggest that selection of phage display libraries against a clonal progenitor stem cell population can be used to identify progenitor stem cell targeting peptides. The peptides may be useful for monitoring hPS cell differentiation and for the development of cell enrichment procedures to improve the efficiency of directed differentiation toward clinically relevant human cell types.

  15. Rapid development of new protein biosensors utilizing peptides obtained via phage display.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    Full Text Available There is a consistent demand for new biosensors for the detection of protein targets, and a systematic method for the rapid development of new sensors is needed. Here we present a platform where short unstructured peptides that bind to a desired target are selected using M13 phage display. The selected peptides are then chemically synthesized and immobilized on gold, allowing for detection of the target using electrochemical techniques such as electrochemical impedance spectroscopy (EIS. A quartz crystal microbalance (QCM is also used as a diagnostic tool during biosensor development. We demonstrate the utility of this approach by creating a novel peptide-based electrochemical biosensor for the enzyme alanine aminotransferase (ALT, a well-known biomarker of hepatotoxicity. Biopanning of the M13 phage display library over immobilized ALT, led to the rapid identification of a new peptide (ALT5-8 with an amino acid sequence of WHWRNPDFWYLK. Phage particles expressing this peptide exhibited nanomolar affinity for immobilized ALT (K(d,app = 85±20 nM. The newly identified ALT5-8 peptide was then chemically synthesized with a C-terminal cysteine for gold immobilization. The performance of the gold-immobilized peptides was studied with cyclic voltammetry (CV, QCM, and EIS. Using QCM, the sensitivity for ALT detection was 8.9±0.9 Hz/(µg/mL and the limit of detection (LOD was 60 ng/mL. Using EIS measurements, the sensitivity was 142±12 impedance percentage change %/(µg/mL and the LOD was 92 ng/mL. In both cases, the LOD was below the typical concentration of ALT in human blood. Although both QCM and EIS produced similar LODs, EIS is preferable due to a larger linear dynamic range. Using QCM, the immobilized peptide exhibited a nanomolar dissociation constant for ALT (K(d = 20.1±0.6 nM. These results demonstrate a simple and rapid platform for developing and assessing the performance of sensitive, peptide-based biosensors for new protein

  16. A novel approach for immunization, screening and characterization of selected scFv libraries using membrane fractions of tumor cells.

    Science.gov (United States)

    Tur, Mehmet Kemal; Rothe, Achim; Huhn, Michael; Goerres, Ute; Klimka, Alexander; Stöcker, Michael; Engert, Andreas; Fischer, Rainerr; Finner, Ricarda; Barth, Stefan

    2003-04-01

    Isolation of cell-surface specific antibodies prerequisites the functional expressing of antigens on intact cells, which are maintained routinely by cell culturing. However, long-term culturing of tumor cells could alter their antigen expression patterns and stable fixation of whole cells is not guaranteed on plastic surfaces during stringent screening procedures. We prepared functional breast cancer cell-membrane fractions that express surface molecules in their native conformation. Specific binding phages were isolated from phage antibody libraries constructed from the spleen messenger RNA of mice immunized with breast cancer cell-membrane fractions. After negative selection on non-mammary carcinoma cells and four rounds of positive selection on breast carcinoma cell lines, phage antibodies were enriched that bound specifically to breast cancer cell lines as confirmed by phage enzyme linked immunosorbent assay (ELISA) using 96-well plates coated with breast cancer cell membranes. The isolated phage antibodies were highly specific for the breast cancer cell line 8701-BC but not on other carcinoma such as the Hodgkin-derived cell line L540Cy as demonstrated by ELISA and flow cytometry. This report describes a rapid and more versatile method for isolating antibody fragments compared to whole cell screening procedures. One single membrane preparation can be stored for at least 15 months at -80 degrees C and used to immunize mice or for screening of antibody libraries. The selection and screening strategy used should be generally applicable to identify novel cell-surface antigens and their corresponding antibodies.

  17. Transmission of phage by glassy-winged sharpshooters, a vector of Xylella fastidiosa

    Science.gov (United States)

    Bhowmick, Tushar Suvra; Das, Mayukh; Heinz, Kevin M.; Krauter, Peter C.; Gonzalez, Carlos F.

    2016-01-01

    ABSTRACT Xylella fastidiosa subsp. fastidiosa (Xff) is the causal agent of Pierce's Disease (PD) of grapevines and is vectored by the glassy-winged sharpshooter (GWSS, Homalodisca vitripennis). Previously we have reported the development of a bacteriophage (phage) based biocontrol system for PD, but no information on insect transmission of phages has been reported. Here we communicate that laboratory reared GWSSs fed on cowpea plants (Vigna unguiculata subsp. unguiculata) harboring the virulent phage Paz were able to uptake of phage efficiently when the phage was present in high concentration, but were inefficient in transfer to plants. PMID:27738554

  18. DNA replication of single-stranded Escherichia coli DNA phages

    NARCIS (Netherlands)

    Baas, P.D.

    1985-01-01

    Research on single-stranded DNA phages has contributed tremendously to our knowledge of several fundamental life-processes. The small size of their genomes and the fast rate at which they multiply in their host, Escherichia coil, made them attractive candidates for various studies. There are two cla

  19. Development of a phage typing system for Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    1993-01-01

    isolated significantly more often from piglets with exudative epidermitis than from healthy piglets. The phage typing system described appears to be a valuable tool in diagnosis of exudative epidermitis in pigs, and furthermore, might be of value in epidemiological studies of S. hyicus....

  20. The phage-driven microbial loop in petroleum bioremediation.

    Science.gov (United States)

    Rosenberg, Eugene; Bittan-Banin, Gili; Sharon, Gil; Shon, Avital; Hershko, Galit; Levy, Itzik; Ron, Eliora Z

    2010-07-01

    During the drilling process and transport of crude oil, water mixes with the petroleum. At oil terminals, the water settles to the bottom of storage tanks. This drainage water is contaminated with emulsified oil and water-soluble hydrocarbons and must be treated before it can be released into the environment. In this study, we tested the efficiency of a continuous flow, two-stage bioreactor for treating drainage water from an Israeli oil terminal. The bioreactor removed all of the ammonia, 93% of the sulfide and converted 90% of the total organic carbon (TOC) into carbon dioxide. SYBR Gold staining indicated that reactor 1 contained 1.7 × 10(8) bacteria and 3.7 × 10(8) phages per millilitre, and reactor 2 contained 1.3 × 10(8) bacteria and 1.7 × 10(9) phages per millilitre. The unexpectedly high mineralization of TOC and high concentration of phage in reactor 2 support the concept of a phage-driven microbial loop in the bioremediation of the drainage water. In general, application of this concept in bioremediation of contaminated water has the potential to increase the efficiency of processes.

  1. Strain diversity and phage resistance in complex dairy starter cultures

    NARCIS (Netherlands)

    Spus, M.; Alexeeva, S.V.; Wolkers-Rooijackers, J.C.M.; Zwietering, M.H.; Abee, T.; Smid, E.J.

    2015-01-01

    The compositional stability of the complex Gouda cheese starter culture Ur is thought to be influenced by diversity in phage resistance of highly related strains that co-exist together with bacteriophages. To analyze the role of bacteriophages in maintaining culture diversity at the level of genetic

  2. Identification of Soft Matter Binding Peptide Ligands Using Phage Display.

    Science.gov (United States)

    Günay, Kemal Arda; Klok, Harm-Anton

    2015-10-21

    Phage display is a powerful tool for the selection of highly affine, short peptide ligands. While originally primarily used for the identification of ligands to proteins, the scope of this technique has significantly expanded over the past two decades. Phage display nowadays is also increasingly applied to identify ligands that selectively bind with high affinity to a broad range of other substrates including natural and biological polymers as well as a variety of low-molecular-weight organic molecules. Such peptides are of interest for various reasons. The ability to selectively and with high affinity bind to the substrate of interest allows the conjugation or immobilization of, e.g., nanoparticles or biomolecules, or generally, facilitates interactions at materials interfaces. On the other hand, presentation of